1
|
Hao X, Zhou W, Huang Z, Li Y, Li D, Xu J. High-performance soft-packaged supercapacitors with high energy density enabled by advanced boron-modified single-walled carbon nanotubes-enhanced nickel oxide. J Colloid Interface Sci 2025; 689:137200. [PMID: 40054272 DOI: 10.1016/j.jcis.2025.02.208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 02/24/2025] [Accepted: 02/27/2025] [Indexed: 03/26/2025]
Abstract
Soft-packaged supercapacitors (SCs) provide notable advantages, including high power density, high safety, and long lifespan, yet their application is still relatively limited due to the low energy density and insufficient cycle stability. To assess their practicality, we employed a simple in-situ nucleation assembly and high-temperature calcination strategy tofabricate boron-modified single-walled carbon nanotubes-enhanced nickel oxide (B-(NiO@SWNT10)) electrodes, characterised by rich oxygen vacancies (OV) and high specific surface area. The results demonstrated that the B-(NiO@SWNT10) electrode provided a formidable specific capacitance of 1257.7F g-1 at 1 A g-1, with excellent cycling stability (98.3 % retention over 10,000 cycles). Additionally, the B-(NiO@SWNT10)//nitrogen-doped graphene (GN) device had an outstanding energy density (53.0 Wh kg-1 at 900 W kg-1), surpassing many SCs reported to date. A soft-packaged SCs also showed robust electrochemical performance and was effective in powering electronic devices like smartphones and wearable technology, etc. This work offers a new perspective on the practical application of soft-packaged SCs in portable electronic products.
Collapse
Affiliation(s)
- Xiaojing Hao
- Jiangxi Provincial Key Laboratory of Flexible Electronics, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China
| | - Weiqiang Zhou
- Jiangxi Provincial Key Laboratory of Flexible Electronics, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China.
| | - Zian Huang
- Jiangxi Provincial Key Laboratory of Flexible Electronics, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China
| | - Yize Li
- Jiangxi Provincial Key Laboratory of Flexible Electronics, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China
| | - Danqin Li
- Jiangxi Provincial Key Laboratory of Flexible Electronics, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China.
| | - Jingkun Xu
- Jiangxi Provincial Key Laboratory of Flexible Electronics, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China.
| |
Collapse
|
2
|
Quan MC, Mai DJ. Biomolecular Actuators for Soft Robots. Chem Rev 2025; 125:4974-5002. [PMID: 40331746 DOI: 10.1021/acs.chemrev.4c00811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Biomolecules present promising stimuli-responsive mechanisms to revolutionize soft actuators. Proteins, peptides, and nucleic acids foster specific intermolecular interactions, and their boundless sequence design spaces encode precise actuation capabilities. Drawing inspiration from nature, biomolecular actuators harness existing stimuli-responsive properties to meet the needs of diverse applications. This review features biomolecular actuators that respond to a wide variety of stimuli to drive both user-directed and autonomous actuation. We discuss how advances in biomaterial fabrication accelerate prototyping of precise, custom actuators, and we identify biomolecules with untapped actuation potential. Finally, we highlight opportunities for multifunctional and reconfigurable biomolecules to improve the versatility and sustainability of next-generation soft actuators.
Collapse
Affiliation(s)
- Michelle C Quan
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Danielle J Mai
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
3
|
Sun X, Chan EWC, Shiraz FR, Zhu B, Yang J, Matura K, Sarojini V, Tekoglu S, Barker D, Travas-Sejdic J. ε-Poly-L-lysine-graft-oligo(3-hexylthiophene) Copolymers as Antibacterial and Biodegradable Polymer Electronics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e01726. [PMID: 40434043 DOI: 10.1002/advs.202501726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 05/07/2025] [Indexed: 05/29/2025]
Abstract
Biodegradable polymer electronics offer an innovative solution to the growing challenge of electronic waste, which are engineered to disintegrate after a defined functional period. Here, a new class of graft copolymer is presented, ε-poly-L-lysine-graft-oligo(3-hexylthiophene) (EPL-g-O3HTs), synthesized by covalently grafting oligo(3-hexylthiophene) onto the biopolymer ε-poly-L-lysine at three grafting densities, resulting in copolymers containing 43, 65 and 90 wt.% O3HT (EPL-g-O3HT-1, EPL-g-O3HT-2 and EPL-g-O3HT-3, respectively). Benefiting from the "guidance" of ε-poly-L-lysine on O3HT chains alignment, the graft copolymer with optimized grafting density exhibits an extended conjugation length and increased crystallite size of O3HT. Thin films of three copolymers, upon doping, demonstrate appreciable conductivity under ambient conditions. EPL-g-O3HT-1 could be fully break down over 12 days by enzymatic degradation. EPL-g-O3HT-1 also displays excellent broad-spectrum antibacterial activity against Gram-negative and Gram-positive bacteria, attributed to its high ɛ-poly-L-lysine content. It is further demonstrated the versatility of EPL-g-O3HTs in transient electronics for electromyography sensors for muscle signal acquisition and as the channel material in organic electrochemical transistors. Combining tunable conductivity, controlled biodegradability, and antimicrobial properties, EPL-g-O3HT copolymers hold significant potential for diverse transient electronic applications, including skin and implantable electronics, where degradable electronics with antimicrobial properties are highly desirable.
Collapse
Affiliation(s)
- Xin Sun
- Centre for Innovative Materials for Health, School of Chemical Sciences, The University of Auckland, Auckland, 1010, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, 6140, New Zealand
| | - Eddie Wai Chi Chan
- Centre for Innovative Materials for Health, School of Chemical Sciences, The University of Auckland, Auckland, 1010, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, 6140, New Zealand
| | - Fathumma Rizana Shiraz
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, 6140, New Zealand
- School of Chemical Sciences and The Centre for Green Chemical Science, University of Auckland, Auckland, 1142, New Zealand
| | - Bicheng Zhu
- Centre for Innovative Materials for Health, School of Chemical Sciences, The University of Auckland, Auckland, 1010, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, 6140, New Zealand
| | - Jingwen Yang
- Centre for Innovative Materials for Health, School of Chemical Sciences, The University of Auckland, Auckland, 1010, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, 6140, New Zealand
| | - Katharina Matura
- Linz Institute for Organic Solar Cells and Institute of Physical Chemistry, Johannes Kepler University Linz, Altenbergerstrasse 69, Linz, 4040, Austria
| | - Viji Sarojini
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, 6140, New Zealand
- School of Chemical Sciences and The Centre for Green Chemical Science, University of Auckland, Auckland, 1142, New Zealand
| | - Serpil Tekoglu
- Linz Institute for Organic Solar Cells and Institute of Physical Chemistry, Johannes Kepler University Linz, Altenbergerstrasse 69, Linz, 4040, Austria
| | - David Barker
- Centre for Innovative Materials for Health, School of Chemical Sciences, The University of Auckland, Auckland, 1010, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, 6140, New Zealand
| | - Jadranka Travas-Sejdic
- Centre for Innovative Materials for Health, School of Chemical Sciences, The University of Auckland, Auckland, 1010, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, 6140, New Zealand
| |
Collapse
|
4
|
Luo Y, Wang S, Xu Y, Liu N, Dong L, Shen Y, Zhao FG. Exploring redox-active electrolytes to boost energy density of carbon-based supercapacitors. J Colloid Interface Sci 2025; 684:729-734. [PMID: 39818033 DOI: 10.1016/j.jcis.2025.01.082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 01/08/2025] [Accepted: 01/10/2025] [Indexed: 01/18/2025]
Abstract
To boost supercapacitor (SC) energy density, we introduced redox-active molecules into an aqueous H2SO4 electrolyte. Using retrosynthetic analysis, we identified aminoquinones, specifically triaminochlorobenzoquinone (TACBQ), as promising candidates. Characterization via elemental analysis, Fourier Transform Infrared Spectrometer (FT-IR), nuclear magnetic resonance (NMR), and X-ray photoelectron spectroscopy (XPS) confirmed structure of TACBQ. We incorporated varying TACBQ concentrations into 1 M H2SO4, finding that 2 mg mL-1 optimized SC performance. Compared to 1 M H2SO4 alone, the 2 mg mL-1 TACBQ system showed marked improvements: in a three-electrode setup, specific capacitance increased from 141 F g-1 to 358 F g-1 at 1 A g-1. In a two-electrode quasi-solid-state device, capacitance rose from 27 F g-1 to 35 F g-1 at 1 A g-1, the voltage window expanded from 1 V to 1.6 V, and energy density improved from 3.75 Wh kg-1 to 12.43 Wh kg-1 at 1000 W kg-1. After 10,000 cycles at 10 A g-1, the device retained 84 % capacity.
Collapse
Affiliation(s)
- Yang Luo
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, 928 Second Street, Hangzhou 310018 China
| | - Shanshun Wang
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, 928 Second Street, Hangzhou 310018 China
| | - Yamin Xu
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, 928 Second Street, Hangzhou 310018 China
| | - Naxing Liu
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, 928 Second Street, Hangzhou 310018 China
| | - Lei Dong
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072 China
| | - Yongmiao Shen
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, 928 Second Street, Hangzhou 310018 China
| | - Fu-Gang Zhao
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, 928 Second Street, Hangzhou 310018 China; Zhejiang Sci-Tech University Shengzhou Innovation Research Institute, Shengzhou 312400, China.
| |
Collapse
|
5
|
Li D, Xu Y, Dai J, Qin Q, Fu H, Wang X, Xu Y, Zeng B, Luo W, Dai L. Solution processable triarylamine-based polyamide for electrochromic supercapacitors and smart displays with energy reuse. J Colloid Interface Sci 2025; 684:11-20. [PMID: 39764893 DOI: 10.1016/j.jcis.2025.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/31/2024] [Accepted: 01/01/2025] [Indexed: 01/31/2025]
Abstract
Electrochromic (EC) materials based on ion insertion/desertion mechanisms provide a possibility for energy storage. Solution-processable energy storage EC polyamides have great potential for use in smart displays and EC supercapacitors. A suitable monomer structure design is particularly important for enhancing the electrochemical properties of polyamides. The symmetrical donor-acceptor-donor structure triarylamine (TAA) diamine monomer was prepared by the Ullmann reaction, and the corresponding polyamide (named BDPA-CA) was prepared by polycondensation reaction. The propeller-shaped skeleton of the TAA unit effectively increases the internal volume and endows the BDPA-CA with the property of solution processing. The introduction of electron-withdrawing benzothiadiazole groups into the main chain enhances the optical contrast of BDPA-CA during electrochemical oxidation. Moreover, the energy storage mechanism of BDPA-CA is elucidated via density functional theory calculations. The exposed sulfur (S) and oxygen (O) atoms in BDPA-CA can serve as active sites for lithium ion (Li+) binding, and the nitrogen (N) atom at the center of the TAA moiety is a perchlorate ion (ClO4-) binding active site, which suggests that the full interaction of the dual active sites can increase the capacitance value of the BDPA-CA film electrodes.
Collapse
Affiliation(s)
- Dongxu Li
- College of Materials, Fujian Provincial Key Laboratory of Fire Retardant Materials, Xiamen Key Laboratory of Fire Retardant Materials, Xiamen University, Xiamen 361005, China
| | - Yiping Xu
- College of Materials, Fujian Provincial Key Laboratory of Fire Retardant Materials, Xiamen Key Laboratory of Fire Retardant Materials, Xiamen University, Xiamen 361005, China
| | - Juguo Dai
- College of Materials, Fujian Provincial Key Laboratory of Fire Retardant Materials, Xiamen Key Laboratory of Fire Retardant Materials, Xiamen University, Xiamen 361005, China
| | - Qiaoyun Qin
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Hucheng Fu
- College of Materials, Fujian Provincial Key Laboratory of Fire Retardant Materials, Xiamen Key Laboratory of Fire Retardant Materials, Xiamen University, Xiamen 361005, China
| | - Xiaohong Wang
- College of Materials, Fujian Provincial Key Laboratory of Fire Retardant Materials, Xiamen Key Laboratory of Fire Retardant Materials, Xiamen University, Xiamen 361005, China
| | - Yiting Xu
- College of Materials, Fujian Provincial Key Laboratory of Fire Retardant Materials, Xiamen Key Laboratory of Fire Retardant Materials, Xiamen University, Xiamen 361005, China.
| | - Birong Zeng
- College of Materials, Fujian Provincial Key Laboratory of Fire Retardant Materials, Xiamen Key Laboratory of Fire Retardant Materials, Xiamen University, Xiamen 361005, China
| | - Weiang Luo
- College of Materials, Fujian Provincial Key Laboratory of Fire Retardant Materials, Xiamen Key Laboratory of Fire Retardant Materials, Xiamen University, Xiamen 361005, China
| | - Lizong Dai
- College of Materials, Fujian Provincial Key Laboratory of Fire Retardant Materials, Xiamen Key Laboratory of Fire Retardant Materials, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
6
|
Zhang Z, Wang Y, Sun J, Dang L, Li Q, He X, Liu Z, Lei Z, Liu ZT. Zinc-Seeded PEDOT:PSS Aerogel Host as Highly Reversible Dendrite-Free Zinc Metal Anode. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2500790. [PMID: 40012341 DOI: 10.1002/smll.202500790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 02/14/2025] [Indexed: 02/28/2025]
Abstract
The parasitic reactions and rampant dendrite growth on the Zn anode side pose significant obstacles to the future applications of aqueous zinc ion batteries. Herein, a lightweight anode host is reported by introducing nanosized metallic Zn into the poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) (P-S) aerogel (Zn/P-S). The ‒SO3H groups interact with Zn2+ and guild their migrations along PSS chains, while the nanosized Zn offer additional nucleation sites and homogenize the electrical and Zn2+ ion concentration. Owing to these synergistic effects, uniform and dense Zn deposition with the (002) plane aligned parallel to the P-S substrate is achieved, even at a high plating capacity of 20 mAh cm-2. Moreover, the deposited Zn over the Zn/P-S host (Zn@Zn/P-S) exhibits a highly reversible plating/stripping behavior with Coulombic efficiency maintained at 99% over 700 cycles. Consequently, the Zn@Zn/P-S-based symmetric Zn||Zn cell can work stably over 500 h at 0.5 mAh cm‒2 and 100 h at 4 mAh cm‒2 with a depth of discharge of 40%. A Zn@Zn/P-S||NaV3O8 full battery presents a high rate capability along with 82.2% capacity retention after 1000 cycles at 2 A g‒1. This strategy provides a novel approach for designing polymer-based Zn anodes with corrosion-resistant and dendrite-free striping/plating behaviors.
Collapse
Affiliation(s)
- Zhanrui Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, MOE, Shaanxi Engineering Lab for Advanced Energy Technology, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, 620 West Chang' an Street, Xi'an, Shaanxi, 710119, China
| | - Yao Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, MOE, Shaanxi Engineering Lab for Advanced Energy Technology, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, 620 West Chang' an Street, Xi'an, Shaanxi, 710119, China
| | - Jie Sun
- Key Laboratory of Applied Surface and Colloid Chemistry, MOE, Shaanxi Engineering Lab for Advanced Energy Technology, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, 620 West Chang' an Street, Xi'an, Shaanxi, 710119, China
| | - Liqin Dang
- Key Laboratory of Applied Surface and Colloid Chemistry, MOE, Shaanxi Engineering Lab for Advanced Energy Technology, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, 620 West Chang' an Street, Xi'an, Shaanxi, 710119, China
| | - Qi Li
- Key Laboratory of Applied Surface and Colloid Chemistry, MOE, Shaanxi Engineering Lab for Advanced Energy Technology, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, 620 West Chang' an Street, Xi'an, Shaanxi, 710119, China
| | - Xuexia He
- Key Laboratory of Applied Surface and Colloid Chemistry, MOE, Shaanxi Engineering Lab for Advanced Energy Technology, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, 620 West Chang' an Street, Xi'an, Shaanxi, 710119, China
| | - Zonghuai Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, MOE, Shaanxi Engineering Lab for Advanced Energy Technology, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, 620 West Chang' an Street, Xi'an, Shaanxi, 710119, China
| | - Zhibin Lei
- Key Laboratory of Applied Surface and Colloid Chemistry, MOE, Shaanxi Engineering Lab for Advanced Energy Technology, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, 620 West Chang' an Street, Xi'an, Shaanxi, 710119, China
| | - Zhao-Tie Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, MOE, School of Chemistry & Engineering, Shaanxi Normal University, 620 West Chang' an Street, Xi'an, Shaanxi, 710119, China
| |
Collapse
|
7
|
Wang Z, Wan S, Chen Y, Ren J, Liu L, Yuan P, Luo Q, Deng P, Liang Z, Yue X, Wang J. In situ integration of bimetallic NiFe Prussian blue analogs on carbon cloth for the oxygen evolution reaction. Chem Commun (Camb) 2025; 61:4686-4689. [PMID: 40012514 DOI: 10.1039/d4cc06260d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
This study develops a cost-effective strategy to integrate the bimetal NiFe Prussian blue analog (PBA) on carbon cloth (NFPB@CC) as a highly-active oxygen evolution reaction (OER) hybrid catalyst. NFPB@CC possesses abundant unsaturated metal active sites, with a low OER overpotential of only 332 mV and a low Tafel slope of 78 mV dec-1 at 10 mA cm-1.
Collapse
Affiliation(s)
- Zhiyong Wang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shusheng Wan
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuanmao Chen
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Juntao Ren
- Department of Catalytic Materials, Henan Newmight Company, Xuchang 461700, China.
| | - Lin Liu
- School of Materials Science and Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Panpan Yuan
- School of Materials Science and Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Qiong Luo
- School of Materials Science and Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Peng Deng
- School of Materials Science and Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Zheng Liang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xinyang Yue
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Junxiong Wang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
8
|
Zhong Z, Shao Q, Ni B, Wang D, Xie Z, Xu L, Mu Y, Wang Q, Wang T, Feng Y, Hou J, Jiang K, Cheetham AK, Wang T. HOF-Enabled Synthesis of Porous PEDOT as an Improved Electrode Material for Supercapacitor. ACS APPLIED MATERIALS & INTERFACES 2025; 17:15804-15812. [PMID: 40014802 DOI: 10.1021/acsami.4c19109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Controlling the nanostructure of conducting polymers (CPs) is essential for enhancing their performance in energy storage applications. Existing CPs often suffer from low effective pseudocapacitance due to poor ion permeability. In this study, we introduce a novel approach using hydrogen-bonded organic frameworks (HOFs) to synthesize porous poly(3,4-ethylenedioxythiophene) (PEDOT). We incorporated 3,4-ethylenedioxythiophene (EDOT) into HOF-16 by leveraging the flexible hydrogen-bonding interactions. Following the polymerization of EDOT, the HOF-16 was removed to form a porous interconnected network of PEDOT. Electrochemical evaluations demonstrated that the porous PEDOT exhibited significantly enhanced performance, including high specific capacitance, excellent rate capability, and ∼95% capacitance retention after 10,000 cycles. Compared to PEDOT prepared without HOF, the porous PEDOT showed a 34% increase in specific capacitance and a 10% improvement in 10,000-cycle capacitance retention. This work highlights the potential of HOF-enabled synthesis in creating high performance conducting polymers, offering a new avenue to improve supercapacitor performance, particularly in capacitance and cycling stability.
Collapse
Affiliation(s)
- Zihan Zhong
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian 116024, China
| | - Qingqing Shao
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Baoxin Ni
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, Fudan University, Shanghai 200438, China
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Dazhi Wang
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian 116024, China
- Liaoning Huanghai Laboratory, Dalian University of Technology, Dalian 116024, China
- State Key Laboratory of High-performance Precision Manufacturing, Dalian University of Technology, Dalian 116024, China
| | - Zixi Xie
- School of Chemical Engineering, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Libang Xu
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yakui Mu
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qisen Wang
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian 116024, China
| | - Tan Wang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Yiwen Feng
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian 116024, China
- Liaoning Huanghai Laboratory, Dalian University of Technology, Dalian 116024, China
| | - Jingwei Hou
- School of Chemical Engineering, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Kun Jiang
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, Fudan University, Shanghai 200438, China
| | - Anthony K Cheetham
- Materials Department and Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States
| | - Tiesheng Wang
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian 116024, China
- Liaoning Huanghai Laboratory, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
9
|
Miao H, Liu Y, Zheng C, Huang X, Song Y, Tong L, Dong C, Fu X, Huang H, Ge M, Liu H, Qian Y. A flexible, antifreezing, and long-term stable cellulose ionic conductive hydrogel via one-step preparation for flexible electronic sensors. Carbohydr Polym 2025; 351:122936. [PMID: 39778980 DOI: 10.1016/j.carbpol.2024.122936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 01/11/2025]
Abstract
Ionic conductive hydrogels have attracted great attention due to their good flexibility and conductivity in flexible electronic devices. However, because of the icing and water loss problems, the compatibility issue between the mechanical properties and conductivity of hydrogel electrolytes over a wide temperature range remains extremely challenging to achieve. Although, antifreezing/water-retaining additives could alleviate these problems, the reduced performance and complex preparation methods seriously limit their development. In this work, a simple strategy without additives was provided to prepare an ionic conductive cellulose hydrogel (ICH) in one step through molten salt hydrate. The hydrogel featured controllable mechanical properties (0.19 MPa - 0.67 MPa), high ionic conductivity (78.96 mS/cm), excellent freezing resistance (-80 °C). More importantly, due to the existing metal salts component, the ICH exhibited long-term stability in water-retention ability (75.6 %, after 90 days) and ionic conductivity (85 %, after 90 days) over a wide working temperature range (-80 °C to 40 °C). Benefiting from these advantages, the ICH exhibited excellent electromechanical performance in human movement detection and movement direction identification, indicating a promising apply for flexible electronic device.
Collapse
Affiliation(s)
- Haiyue Miao
- Key Laboratory of Thorium Energy, Shanghai Institute of Applied Physics, Chinese Academy of Science, No. 2019 Jialuo Road, Shanghai 201800, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yiyang Liu
- Phonon Science Research Center for Carbon Dioxide, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Chongyang Zheng
- Department of Oral and Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Xiaojuan Huang
- Department of Oral and Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Yidan Song
- Physics Department & Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, North Zhongshan Road 3663, 200062 Shanghai, China
| | - Lulu Tong
- Key Laboratory of Thorium Energy, Shanghai Institute of Applied Physics, Chinese Academy of Science, No. 2019 Jialuo Road, Shanghai 201800, China
| | - Changwu Dong
- Key Laboratory of Thorium Energy, Shanghai Institute of Applied Physics, Chinese Academy of Science, No. 2019 Jialuo Road, Shanghai 201800, China
| | - Xiaobin Fu
- Key Laboratory of Thorium Energy, Shanghai Institute of Applied Physics, Chinese Academy of Science, No. 2019 Jialuo Road, Shanghai 201800, China.
| | - Hailong Huang
- Key Laboratory of Thorium Energy, Shanghai Institute of Applied Physics, Chinese Academy of Science, No. 2019 Jialuo Road, Shanghai 201800, China.
| | - Min Ge
- Key Laboratory of Thorium Energy, Shanghai Institute of Applied Physics, Chinese Academy of Science, No. 2019 Jialuo Road, Shanghai 201800, China
| | - Hongtao Liu
- Key Laboratory of Thorium Energy, Shanghai Institute of Applied Physics, Chinese Academy of Science, No. 2019 Jialuo Road, Shanghai 201800, China.
| | - Yuan Qian
- Key Laboratory of Thorium Energy, Shanghai Institute of Applied Physics, Chinese Academy of Science, No. 2019 Jialuo Road, Shanghai 201800, China
| |
Collapse
|
10
|
Zhao Z, Guo Y, Chen D, Wang X, Deng L, Hou Y, Zhang Q, Ye Z, Zhang L, Lu J. Facilitated Self-Adjusting Mechanism with Mn 2+ Additive in Electrolyte for Ammonium-Ion Hybrid Supercapacitors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2410005. [PMID: 39757717 DOI: 10.1002/smll.202410005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/30/2024] [Indexed: 01/07/2025]
Abstract
Ammonium-ion hybrid supercapacitors (AIHSCs) have gained extensive attention due to their high safety and environmental friendliness. Manganese oxides are among the most promising cathode materials; however, the side electrochemical reactions occurring in aqueous electrolytes limit their reversible capacities and energy densities. This work prepares the β-/γ-MnO2 electrode and reveals the side electrochemical reactions occurring in the (NH4)2SO4 electrolyte. Besides the widely recognized dissolution of MnO2, the re-deposition of MnO2 and irreversible insertion of NH4 + exist simultaneously during cycling, resulting in irreversible structural changes of MnO2. A portion of β-/γ-MnO2 converts to δ-MnO2, and a layer of 7Mn(OH)2·2MnSO4·H2O forms on the electrode surface, modifying the ionic accessibility and structural stability of the electrode. The structural changes, along with the competition among the three types of side reactions, cause capacity decay and uprise during cycling. Accordingly, the self-adjusting mechanism is proposed, and trace Mn2+ is added to the electrolyte to facilitate this mechanism, thereby improving performance. Finally, the AIHSC, featuring the MnO2 cathode and activated carbon anode in the Mn2+-added (NH4)2SO4 electrolyte, shows 60.2 mAh g-1 at 0.5 A g-1 under 0-2 V. The maximum energy and power densities of 60.2 Wh kg-1 and 5000 W kg-1 are achieved.
Collapse
Affiliation(s)
- Zhenyun Zhao
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, China
- National Engineering Lab for Textile Fiber Materials and Processing Technology, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Yunna Guo
- Clean Nano Energy Center, State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, 066004, China
| | - Dongliang Chen
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Xu Wang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Lei Deng
- Clean Nano Energy Center, State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, 066004, China
| | - Yang Hou
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Qinghua Zhang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Zhizhen Ye
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Liqiang Zhang
- Clean Nano Energy Center, State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, 066004, China
| | - Jianguo Lu
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
11
|
Wu Y, An C, Guo Y, Kang L, Wang Y, Wan H, Tang H, Ma Q, Yang C, Xu M, Zhao Y, Jiang N. Multiscale Structural Control by Matrix Engineering for Polydimethylsiloxane Filled Graphene Woven Fabric Strain Sensors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2410148. [PMID: 39757495 DOI: 10.1002/smll.202410148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/06/2024] [Indexed: 01/07/2025]
Abstract
Elastomer cure shrinkage during composite fabrication often induces wrinkling in conductive networks, significantly affecting the performance of flexible strain sensors, yet the specific roles of such wrinkles are not fully understood. Herein, a highly sensitive polydimethylsiloxane-filled graphene woven fabric (PDMS-f-GWF) strain sensor by optimizing the PDMS cure shrinkage through careful adjustment of the base-to-curing-agent ratio is developed. This sensor achieves a gauge factor of ∼700 at 25% strain, which is over 6 times higher than sensors using commercially formulated PDMS. This enhanced sensing performance is attributed to multiscale structural control of the graphene network, enabled by precisely tuned cure shrinkage of PDMS. Using in situ scanning electron microscopy, X-ray scattering, and Raman spectroscopy, an optimized PDMS base-to-curing-agent ratio of 10:0.8 is show that enables interconnected structural changes from atomic to macroscopic scales, including larger "real" strain within the graphene lattice, enhanced flattening of graphene wrinkles, and increased crack density. These findings highlight the critical role of elastomer shrinkage in modulating the multiscale structure of conductive networks, offering new insights into matrix engineering strategies that advance the sensing performance of elastomer-based flexible strain sensors.
Collapse
Affiliation(s)
- Ying Wu
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Institute of Materials Intelligent Technology, Liaoning Academy of Materials, Shenyang, 110004, China
| | - Chao An
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yaru Guo
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Liying Kang
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yang Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Haixiao Wan
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Haijun Tang
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Qianyi Ma
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Chunming Yang
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Ming Xu
- School of Materials Science and Engineering, State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yixin Zhao
- Beijing Key Laboratory for Precise Mining of Intergrown Energy and Resources, China University of Mining and Technology, Beijing, 100083, China
| | - Naisheng Jiang
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Institute of Materials Intelligent Technology, Liaoning Academy of Materials, Shenyang, 110004, China
| |
Collapse
|
12
|
Jin J, Ma H, Liang H, Zhang Y. Biopolymer-Derived Carbon Materials for Wearable Electronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2414620. [PMID: 39871757 DOI: 10.1002/adma.202414620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/01/2024] [Indexed: 01/29/2025]
Abstract
Advanced carbon materials are widely utilized in wearable electronics. Nevertheless, the production of carbon materials from fossil-based sources raised concerns regarding their non-renewability, high energy consumption, and the consequent greenhouse gas emissions. Biopolymers, readily available in nature, offer a promising and eco-friendly alternative as a carbon source, enabling the sustainable production of carbon materials for wearable electronics. This review aims to discuss the carbonization mechanisms, carbonization techniques, and processes, as well as the diverse applications of biopolymer-derived carbon materials (BioCMs) in wearable electronics. First, the characteristics of four representative biopolymers, including cellulose, lignin, chitin, and silk fibroin, and their carbonization processes are discussed. Then, typical carbonization techniques, including pyrolysis carbonization, laser-induced carbonization, Joule heating carbonization, hydrothermal transformation, and salt encapsulation carbonization are discussed. The influence of the processes on the morphology and properties of the resultant BioCMs are summarized. Subsequently, applications of BioCMs in wearable devices, including physical sensors, chemical sensors, energy devices, and display devices are discussed. Finally, the challenges currently facing the field and the future opportunities are discussed.
Collapse
Affiliation(s)
- Jiongke Jin
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Haoxuan Ma
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Huarun Liang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Yingying Zhang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
13
|
Zhao Y, Wei M, Zhang H, Zhang H, Zhu Y, Ma H, Xue M. A Feasible Strategy for High-Performance Aqueous Zinc-Ion Batteries: Introducing Conducting Polymer. CHEMSUSCHEM 2025; 18:e202401354. [PMID: 39136174 DOI: 10.1002/cssc.202401354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/06/2024] [Indexed: 10/23/2024]
Abstract
Aqueous zinc ion batteries (AZIBs) offer great potential for large-scale energy storage because of their high safety, low cost and acceptable energy density. However, the cycle life of AZIBs is inevitably affected by parasitic reactions and dendritic growth caused by multiple factors such as electrode, electrolyte and separator, which pose significant obstacles to the practical application of AZIBs. To address these challenges, conducting polymer (CP) based materials have gained widespread attention in the realm of rechargeable batteries due to the adjustable band gap, controllable morphology, and excellent flexibility of CPs. In particular, CPs exhibit remarkable conductivity, low dimensionality, and doping characteristics, making them highly promising for integration into the AZIB system. In this review, the problems associated with the cathode, anode, electrolyte, and separator of AZIBs are discussed, and the application of CPs for their modification is summarized. The review provides a comprehensive analysis of the action mechanisms involved in the CP modification process and offers valuable insights for the design and development of CPs that can be effectively utilized in AZIBs. Additionally, the review presents a promising outlook of this research field, aiming to further advance the application of low-cost and high-performance CPs and their composites in AZIBs.
Collapse
Affiliation(s)
- Yi Zhao
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mengzhen Wei
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huanrong Zhang
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huimin Zhang
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yucheng Zhu
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hui Ma
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Mianqi Xue
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
14
|
Zhu L, Liu Q, Zhang Y, Sun H, Chen S, Liang L, An S, Yang X, Zang L. Recent Advances in the Tunable Optoelectromagnetic Properties of PEDOTs. Molecules 2025; 30:179. [PMID: 39795235 PMCID: PMC11721937 DOI: 10.3390/molecules30010179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/23/2024] [Accepted: 01/02/2025] [Indexed: 01/13/2025] Open
Abstract
Conducting polymers represent a crucial class of functional materials with widespread applications in diverse fields. Among these, poly(3,4-ethylenedioxythiophene) (PEDOT) and its derivatives have garnered significant attention due to their distinctive optical, electronic, and magnetic properties, as well as their exceptional tunability. These properties often exhibit intricate interdependencies, manifesting as synergistic, concomitant, or antagonistic relationships. In optics, PEDOTs are renowned for their high transparency and unique photoelectric responses. From an electrical perspective, they display exceptional conductivity, thermoelectric, and piezoelectric performance, along with notable electrochemical activity and stability, enabling a wide array of electronic applications. In terms of magnetic properties, PEDOTs demonstrate outstanding electromagnetic shielding efficiency and microwave absorption capabilities. Moreover, these properties can be precisely tailored through molecular structure modifications, chemical doping, and composite formation to suit various application requirements. This review systematically examines the mechanisms underlying the optoelectromagnetic properties of PEDOTs, highlights their tunability, and outlines prospective research directions. By providing critical theoretical insights and technical references, this review aims to advance the application landscape of PEDOTs.
Collapse
Affiliation(s)
- Ling Zhu
- School of Pharmacy and Flexible Electronics Innovation Institute, Jiangxi Science & Technology Normal University, Nanchang 330013, China; (L.Z.); (Q.L.); (S.A.)
- Jiangxi Provincial Key Laboratory of Flexible Electronics, Nanchang 330013, China; (Y.Z.); (L.L.)
| | - Qi Liu
- School of Pharmacy and Flexible Electronics Innovation Institute, Jiangxi Science & Technology Normal University, Nanchang 330013, China; (L.Z.); (Q.L.); (S.A.)
- Jiangxi Provincial Key Laboratory of Flexible Electronics, Nanchang 330013, China; (Y.Z.); (L.L.)
| | - Yuqian Zhang
- Jiangxi Provincial Key Laboratory of Flexible Electronics, Nanchang 330013, China; (Y.Z.); (L.L.)
| | - Hui Sun
- Binzhou Testing Center, Binzhou 256600, China;
| | - Shuai Chen
- School of Pharmacy and Flexible Electronics Innovation Institute, Jiangxi Science & Technology Normal University, Nanchang 330013, China; (L.Z.); (Q.L.); (S.A.)
- Jiangxi Provincial Key Laboratory of Flexible Electronics, Nanchang 330013, China; (Y.Z.); (L.L.)
| | - Lishan Liang
- Jiangxi Provincial Key Laboratory of Flexible Electronics, Nanchang 330013, China; (Y.Z.); (L.L.)
| | - Siying An
- School of Pharmacy and Flexible Electronics Innovation Institute, Jiangxi Science & Technology Normal University, Nanchang 330013, China; (L.Z.); (Q.L.); (S.A.)
- Jiangxi Provincial Key Laboratory of Flexible Electronics, Nanchang 330013, China; (Y.Z.); (L.L.)
| | - Xiaomei Yang
- Department of Materials Science and Engineering, University of Utah, Salt Lake City, UT 84112, USA;
| | - Ling Zang
- Department of Materials Science and Engineering, University of Utah, Salt Lake City, UT 84112, USA;
| |
Collapse
|
15
|
Zhang X, Xin D, Yu Z, Sun J, Li Q, He X, Liu Z, Lei Z. Highly capacitive MXene film by incorporating poly(3,4-ethylenedioxythiophene) hollow spheres prepared through an interfacial oxidation polymerization. J Colloid Interface Sci 2025; 677:472-481. [PMID: 39154440 DOI: 10.1016/j.jcis.2024.08.102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 08/20/2024]
Abstract
Sheets stacking of Ti3C2Tx MXene dramatically reduces the ion-accessible sites and brings a sluggish reaction kinetics. While introducing transitional metal oxides or polymers in the MXene films could partially alleviate such issue, their enhanced performances are realized at the expense of electrode conductivity or cycling stability. Herein, we report an alternative spacer of conductive poly(3,4-ethylenedioxythiophene) (PEDOT) hollow spheres (HSs) which are fabricated by a facile template-assisted interfacial polymerization. The Fe3+ ions electrostatically adsorbed on the -SO3H groups of the sulfonated polystyrene spheres (S-PS) initiate the polymerization of uniform PEDOT shell, yielding uniform PEDOT HSs after dissolving the S-PS core. Introducing these PEDOT HSs in the MXene film generates the highly flexible MXene-PEDOT (MP) films featuring hierarchically porous network and high conductivity (283 S cm-1). Consequently, specific capacitance of 218 F g-1 at 3 mV s-1, along with a forty-folds decrease in relaxation time constant (1.0 vs 39.8 s) has been achieved. Moreover, the MP film also exhibits nearly thickness-independent capacitive performances with film thickness in the range of 10-46 μm. A maximal energy density of 21.2 μWh cm-2 at 1015 μW cm-2 together with 92 % capacitance retention over 5000 cycles are achieved for the MP-based solid-state supercapacitor. The intrinsic high conductivity, excellent mechanical flexibility and good structure integrity are responsible for such outstanding electrochemical behaviors.
Collapse
Affiliation(s)
- Xianchi Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, MOE, Shaanxi Engineering Lab for Advanced Energy Technology, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, 620 West Chang'an Street, Xi'an, Shaanxi 710119, China
| | - Diheng Xin
- Key Laboratory of Applied Surface and Colloid Chemistry, MOE, Shaanxi Engineering Lab for Advanced Energy Technology, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, 620 West Chang'an Street, Xi'an, Shaanxi 710119, China
| | - Zhiyuan Yu
- Key Laboratory of Applied Surface and Colloid Chemistry, MOE, Shaanxi Engineering Lab for Advanced Energy Technology, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, 620 West Chang'an Street, Xi'an, Shaanxi 710119, China
| | - Jie Sun
- Key Laboratory of Applied Surface and Colloid Chemistry, MOE, Shaanxi Engineering Lab for Advanced Energy Technology, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, 620 West Chang'an Street, Xi'an, Shaanxi 710119, China
| | - Qi Li
- Key Laboratory of Applied Surface and Colloid Chemistry, MOE, Shaanxi Engineering Lab for Advanced Energy Technology, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, 620 West Chang'an Street, Xi'an, Shaanxi 710119, China
| | - Xuexia He
- Key Laboratory of Applied Surface and Colloid Chemistry, MOE, Shaanxi Engineering Lab for Advanced Energy Technology, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, 620 West Chang'an Street, Xi'an, Shaanxi 710119, China
| | - Zonghuai Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, MOE, Shaanxi Engineering Lab for Advanced Energy Technology, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, 620 West Chang'an Street, Xi'an, Shaanxi 710119, China
| | - Zhibin Lei
- Key Laboratory of Applied Surface and Colloid Chemistry, MOE, Shaanxi Engineering Lab for Advanced Energy Technology, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, 620 West Chang'an Street, Xi'an, Shaanxi 710119, China.
| |
Collapse
|
16
|
Zhou T, Wu B, Li C, Zhang X, Li W, Pang H. Advancements in Manganese-Based Cathode for Sustainable Energy Utilization. CHEMSUSCHEM 2024; 17:e202400890. [PMID: 38924355 DOI: 10.1002/cssc.202400890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/18/2024] [Accepted: 06/24/2024] [Indexed: 06/28/2024]
Abstract
Manganese-based compounds, especially manganese oxides, are one of the most exceptional electrode materials. Specifically, manganese oxides have gained significant interest owing to their unique crystal structures, high theoretical capacity, abundant natural availability and eco-friendly nature. However, as transition metal semiconductors, manganese oxide possess low electrical conductivity, limited rate capacity, and suboptical cycle stability. Thus, combining manganese oxides with carbon or other metallic materials can significantly improve their electrochemical performance. These composites increase active sites and conductivity, thereby improving electrode reaction kinetics, cycle stability, and lifespan of supercapacitors (SCs) and batteries. This paper reviews the latest applications of Mn-based cathodes in SCs and advanced batteries. Moreover, the energy storage mechanisms were also proposed. In this review, the development prospects and challenges for advanced energy storage applications of Mn-based cathodes are summarized.
Collapse
Affiliation(s)
- Ting Zhou
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225009, China
| | - Binjing Wu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225009, China
| | - Chengze Li
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225009, China
| | - Xinhuan Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225009, China
| | - Wenting Li
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225009, China
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225009, China
| |
Collapse
|
17
|
Xiao J, He M, Zhan B, Guo H, Yang JL, Zhang Y, Qi X, Gu J. Multifunctional microwave absorption materials: construction strategies and functional applications. MATERIALS HORIZONS 2024; 11:5874-5894. [PMID: 39229798 DOI: 10.1039/d4mh00793j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
The widespread adoption of wireless communication technology, especially with the introduction of artificial intelligence and the Internet of Things, has greatly improved our quality of life. However, this progress has led to increased electromagnetic (EM) interference and pollution issues. The development of advanced microwave absorbing materials (MAMs) is one of the most feasible solutions to solve these problems, and has therefore received widespread attention. However, MAMs still face many limitations in practical applications and are not yet widely used. This paper presents a comprehensive review of the current status and future prospects of MAMs, and identifies the various challenges from practical application scenarios. Furthermore, strategies and principles for the construction of multifunctional MAMs are discussed in order to address the possible problems that are faced. This article also presents the potential applications of MAMs in other fields including environmental science, energy conversion, and medicine. Finally, an analysis of the potential outcomes and future challenges of multifunctional MAMs are presented.
Collapse
Affiliation(s)
- Junxiong Xiao
- College of Physics, Guizhou Province Key Laboratory for Photoelectrics Technology and Application, Guizhou University, Guiyang City 550025, People's Republic of China.
| | - Mukun He
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, People's Republic of China.
| | - Beibei Zhan
- College of Physics, Guizhou Province Key Laboratory for Photoelectrics Technology and Application, Guizhou University, Guiyang City 550025, People's Republic of China.
| | - Hua Guo
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, People's Republic of China.
| | - Jing-Liang Yang
- College of Physics, Guizhou Province Key Laboratory for Photoelectrics Technology and Application, Guizhou University, Guiyang City 550025, People's Republic of China.
| | - Yali Zhang
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, People's Republic of China.
| | - Xiaosi Qi
- College of Physics, Guizhou Province Key Laboratory for Photoelectrics Technology and Application, Guizhou University, Guiyang City 550025, People's Republic of China.
| | - Junwei Gu
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, People's Republic of China.
| |
Collapse
|
18
|
Liu R, Xia K, Yu T, Gao F, Zhang Q, Zhu L, Ye Z, Yang S, Ma Y, Lu J. Multifunctional Smart Fabrics with Integration of Self-Cleaning, Energy Harvesting, and Thermal Management Properties. ACS NANO 2024; 18:31085-31097. [PMID: 39480157 DOI: 10.1021/acsnano.4c08324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2024]
Abstract
Due to their good wearability, smart fabrics have gradually developed into one of the important components of multifunctional flexible electronics. Nevertheless, function integration is typically accomplished through the intricate stacking of diverse modules, which inevitably compromises comfort and elevates processing complexities. The integration of these discrete functional modules into a unified design for smart fabrics represents a superior solution. Here, we put forward a rational approach to functional integration for the typical challenges of thermal management, energy supply, and surface contamination in smart fabrics. This sandwich-structured multilayer fabric (MLF) is obtained by continuous electrospinning of two layer P(VDF-HFP) fabric and one layer P(VDF-HFP) fabric functionalized with core-shell SiO2/ZnO/ZIF-8 (SZZ) nanoparticles. Specifically, MLFs achieve effective and stable energy harvesting in triboelectric nanogenerators (TENGs) with hydrophobicity and antibacterial properties. Meanwhile, MLFs also have high mid-infrared emissivity and sunlight reflectivity, successfully realizing radiative cooling under different climates, and have been applied in wearing clothing, roof shading, and car covers. This work may contribute to the design and manufacturing of next-generation thermal comfort smart fabrics and wearable electronics, particularly in terms of the rational design of multifunctional devices.
Collapse
Affiliation(s)
- Rumin Liu
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310058, China
- Institute for Composites Science Innovation, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310058, China
- Institute of Wenzhou, Zhejiang University, Wenzhou 325006, China
| | - Kequan Xia
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
| | - Tao Yu
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Feng Gao
- College of Chemical and Biochemical Engineering, Zhejiang University, Hangzhou 310058, China
| | - Qinghua Zhang
- College of Chemical and Biochemical Engineering, Zhejiang University, Hangzhou 310058, China
| | - Liping Zhu
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310058, China
- Institute of Wenzhou, Zhejiang University, Wenzhou 325006, China
| | - Zhizhen Ye
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310058, China
- Institute of Wenzhou, Zhejiang University, Wenzhou 325006, China
| | - Shikuan Yang
- Institute for Composites Science Innovation, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Yaoguang Ma
- State Key Laboratory for Extreme Photonics and Instrumentation, College of Optical Science and Engineering, International Research Center for Advanced Photonics, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310027, China
| | - Jianguo Lu
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310058, China
- Institute of Wenzhou, Zhejiang University, Wenzhou 325006, China
| |
Collapse
|
19
|
Fan X, Luo Y, Li K, Wong YJ, Wang C, Yeo JCC, Yang G, Li J, Loh XJ, Li Z, Chen X. A Recyclable Ionogel with High Mechanical Robustness Based on Covalent Adaptable Networks. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2407398. [PMID: 39275986 DOI: 10.1002/adma.202407398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/04/2024] [Indexed: 09/16/2024]
Abstract
Ionogels are an emerging class of soft materials for flexible electronics, with high ionic conductivity, low volatility, and mechanical stretchability. Recyclable ionogels are recently developed to address the sustainability crisis of current electronics, through the introduction of non-covalent bonds. However, this strategy sacrifices mechanical robustness and chemical stability, severely diminishing the potential for practical application. Here, covalent adaptable networks (CANs) are incorporated into ionogels, where dynamic covalent crosslinks endow high strength (11.3 MPa tensile strength), stretchability (2396% elongation at break), elasticity (energy loss coefficient of 0.055 at 100% strain), and durability (5000 cycles of 150% strain). The reversible nature of CANs allows the ionogel to be closed-loop recyclable for up to ten times. Additionally, the ionogel is toughened by physical crosslinks between conducting ions and polymer networks, breaking the common dilemma in enhancing mechanical properties and electrical conductivity. The ionogel demonstrates robust strain sensing performance under harsh mechanical treatments and is applied for reconfigurable multimodal sensing based on its recyclability. This study provides insights into improving the mechanical and electrical properties of ionogels toward functionally reliable and environmentally sustainable bioelectronics.
Collapse
Affiliation(s)
- Xiaotong Fan
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore, 627833, Republic of Singapore
| | - Yifei Luo
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore, 138634, Republic of Singapore
| | - Ke Li
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore, 138634, Republic of Singapore
| | - Yi Jing Wong
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore, 138634, Republic of Singapore
- Innovative Center for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Cong Wang
- Innovative Center for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Jayven Chee Chuan Yeo
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore, 138634, Republic of Singapore
| | - Gaoliang Yang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore, 138634, Republic of Singapore
| | - Jiaofu Li
- Innovative Center for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore, 138634, Republic of Singapore
| | - Zibiao Li
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore, 627833, Republic of Singapore
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore, 138634, Republic of Singapore
- Department of Materials Science & Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117575, Singapore
| | - Xiaodong Chen
- Innovative Center for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| |
Collapse
|
20
|
Mo F, Zhou P, Lin S, Zhong J, Wang Y. A Review of Conductive Hydrogel-Based Wearable Temperature Sensors. Adv Healthc Mater 2024; 13:e2401503. [PMID: 38857480 DOI: 10.1002/adhm.202401503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/04/2024] [Indexed: 06/12/2024]
Abstract
Conductive hydrogel has garnered significant attention as an emergent candidate for diverse wearable sensors, owing to its remarkable and tailorable properties such as flexibility, biocompatibility, and strong electrical conductivity. These attributes make it highly suitable for various wearable sensor applications (e.g., biophysical, bioelectrical, and biochemical sensors) that can monitor human health conditions and provide timely interventions. Among these applications, conductive hydrogel-based wearable temperature sensors are especially important for healthcare and disease surveillance. This review aims to provide a comprehensive overview of conductive hydrogel-based wearable temperature sensors. First, this work summarizes different types of conductive fillers-based hydrogel, highlighting their recent developments and advantages as wearable temperature sensors. Next, this work discusses the sensing characteristics of conductive hydrogel-based wearable temperature sensors, focusing on sensitivity, dynamic stability, stretchability, and signal output. Then, state-of-the-art applications are introduced, ranging from body temperature detection and wound temperature detection to disease monitoring. Finally, this work identifies the remaining challenges and prospects facing this field. By addressing these challenges with potential solutions, this review hopes to shed some light on future research and innovations in this promising field.
Collapse
Affiliation(s)
- Fan Mo
- Department of Biotechnology and Food Engineering, Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong, 515063, China
| | - Pengcheng Zhou
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong, 515063, China
- Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Shihong Lin
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong, 515063, China
| | - Junwen Zhong
- Department of Electromechanical Engineering, University of Macau, Macau, 999078, China
| | - Yan Wang
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong, 515063, China
- Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
- Guangdong Provincial Key Laboratory of Materials and Technologies for Energy Conversion, Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong, 515063, China
| |
Collapse
|
21
|
Chen L, Gong R, Ge D, Yang L, Hu Z, Yu HY. Stiff gel-protected fiber-shaped supercapacitors based on CNFA/silk composite fiber with superhigh interference-resistant ability as self-powered temperature sensor. Int J Biol Macromol 2024; 278:134604. [PMID: 39137853 DOI: 10.1016/j.ijbiomac.2024.134604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 08/15/2024]
Abstract
The development of self-powered sensors with interference-resistant detection is a priority area of research for the next generation of wearable electronic devices. Nevertheless, the presence of multiple stimuli in the actual environment will result in crosstalk with the sensor, thereby hindering the ability to obtain an accurate response to a singular stimulus. Here, we present a self-powered sensor composed of silk-based conductive composite fibers (CNFA@ESF), which is capable of energy storage and sensing. The fabricated CNFA@ESF exhibits excellent mechanical performance, as well as flexibility that can withstand various deformations. The CNFA@ESF provides a good areal capacitance (44.44 mF cm-2), high-rate capability, and excellent cycle stability (91 % for 5000 cycles). In addition, CNFA@ESF also shows good sensing performance for multiple signals including strain, temperature, and humidity. It was observed that the assembly of the symmetrical device with a stiff hydrogel surface layer for protection enabled the real-time, interference-free monitoring of temperature signals. Also, the CNFA@ESF can be woven into fabrics and integrated with a solar cell to form a self-powered sensor system, which has been proven to convert and store solar energy to power electronic watches, indicating its huge potential for future wearable electronics.
Collapse
Affiliation(s)
- Lumin Chen
- Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China; School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China; Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
| | - Ruixin Gong
- Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Dan Ge
- Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Lu Yang
- Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Zhongce Hu
- Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Hou-Yong Yu
- Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| |
Collapse
|
22
|
Sun Z, Ou Q, Dong C, Zhou J, Hu H, Li C, Huang Z. Conducting polymer hydrogels based on supramolecular strategies for wearable sensors. EXPLORATION (BEIJING, CHINA) 2024; 4:20220167. [PMID: 39439497 PMCID: PMC11491309 DOI: 10.1002/exp.20220167] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 02/02/2024] [Indexed: 10/25/2024]
Abstract
Conductive polymer hydrogels (CPHs) are gaining considerable attention in developing wearable electronics due to their unique combination of high conductivity and softness. However, in the absence of interactions, the incompatibility between hydrophobic conductive polymers (CPs) and hydrophilic polymer networks gives rise to inadequate bonding between CPs and hydrogel matrices, thereby significantly impairing the mechanical and electrical properties of CPHs and constraining their utility in wearable electronic sensors. Therefore, to endow CPHs with good performance, it is necessary to ensure a stable and robust combination between the hydrogel network and CPs. Encouragingly, recent research has demonstrated that incorporating supramolecular interactions into CPHs enhances the polymer network interaction, improving overall CPH performance. However, a comprehensive review focusing on supramolecular CPH (SCPH) for wearable sensing applications is currently lacking. This review provides a summary of the typical supramolecular strategies employed in the development of high-performance CPHs and elucidates the properties of SCPHs that are closely associated with wearable sensors. Moreover, the review discusses the fabrication methods and classification of SCPH sensors, while also exploring the latest application scenarios for SCPH wearable sensors. Finally, it discusses the challenges of SCPH sensors and offers suggestions for future advancements.
Collapse
Affiliation(s)
- Zhiyuan Sun
- School of Chemical Engineering and TechnologyXi'an Jiaotong UniversityXi'anPeople's Republic of China
| | - Qingdong Ou
- Macao Institute of Materials Science and Engineering (MIMSE)Faculty of Innovation EngineeringMacau University of Science and TechnologyMacao TaipaPeople's Republic of China
| | - Chao Dong
- Chemistry and Physics DepartmentCollege of Art and ScienceThe University of Texas of Permian BasinOdessaTexasUSA
| | - Jinsheng Zhou
- College of Chemistry and Environmental EngineeringShenzhen UniversityShenzhenPeople's Republic of China
| | - Huiyuan Hu
- College of Chemistry and Environmental EngineeringShenzhen UniversityShenzhenPeople's Republic of China
| | - Chong Li
- Guangdong Polytechnic of Science and TechnologyZhuhaiPeople's Republic of China
| | - Zhandong Huang
- School of Chemical Engineering and TechnologyXi'an Jiaotong UniversityXi'anPeople's Republic of China
| |
Collapse
|
23
|
Kim H, Lee J, Kong H, Park T, Kim TS, Yang H, Yeo J. Laser-Printed Photoanode: Femtosecond Laser-Induced Crystalline Phase Transformation of WO 3 Nanorods for Space-Efficient and Flexible Thin-Film Solar Water-Splitting Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402051. [PMID: 38733227 DOI: 10.1002/smll.202402051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/02/2024] [Indexed: 05/13/2024]
Abstract
Despite its potential for clean hydrogen harvesting, photoelectrochemical (PEC) water-splitting cells face challenges in commercialization, particularly related its harvesting performance and productivity at an industrial scale. Herein, a facile fabrication method of flexible thin-film photoanode for PEC water-splitting to overcome these limitations, based on laser processing technologies, is proposed. Laser-induced graphene, a carbon structure produced through direct laser writing carbonization (DLWC), plays a dual role: a flexible and stable current collector and a substrate for the hydrothermal synthesis of tungsten trioxide (WO3) nanorods (NRs). To facilitate water-splitting, a femtosecond-pulsed laser (fs laser) is focused on the WO3 NRs, converting their crystalline phase from pristine orthorhombic to monoclinic structure without thermal damage. With NiFe layered double hydroxide (LDH) catalyst, the flexible thin-film photoanode exhibits good PEC performance (1.46 mA cm-2 at 1.23 VRHE) and retains ≈90% of its performance after 3000 bending cycles. With its excellent mechanical properties, the flexible photoanode can be operated in various shapes with different curvatures, enabling space-efficient PEC water-splitting by loading larger photoanode within a given space. This study is expected to contribute to the advancement of large-scale solar water-splitting cells, introducing a new approach to enhance H2/O2 production and expand its application range.
Collapse
Affiliation(s)
- Hyeonwoo Kim
- Novel Applied Nano Optics Lab, Department of Physics, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea
| | - Jehoon Lee
- Novel Applied Nano Optics Lab, Department of Physics, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea
| | - Heejung Kong
- Novel Applied Nano Optics Lab, Department of Physics, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea
| | - Taeuk Park
- Novel Applied Nano Optics Lab, Department of Physics, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea
| | - Tae Sung Kim
- Novel Applied Nano Optics Lab, Department of Physics, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea
| | - Haechang Yang
- Novel Applied Nano Optics Lab, Department of Physics, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea
| | - Junyeob Yeo
- Novel Applied Nano Optics Lab, Department of Physics, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea
- Department of Hydrogen & Renewable Energy, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea
| |
Collapse
|
24
|
Wang Y, Zhang Z, Wang L, Wang J, Meng W, Sun J, Li Q, He X, Liu Z, Lei Z. Highly Reversible and Dendrite-Free Zinc Anodes Enabled by PEDOT Nanowire Interfacial Layers for Aqueous Zinc-Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2024; 16:43026-43037. [PMID: 39093713 DOI: 10.1021/acsami.4c09699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
The aqueous zinc-ion batteries (ZIBs) have gained increasing attention because of their high specific capacity, low cost, and good safety. However, side reactions, hydrogen evolution reaction, and uncontrolled zinc dendrites accompanying the Zn metal anodes have impeded the applications of ZIBs in grid-scale energy storage. Herein, the poly(3,4-ethylenedioxythiophene) (PEDOT) nanowires as an interfacial layer on the Zn anode (Zn-PEDOT) are reported to address the above issues. Our experimental results and density functional theory simulation reveal that the interactions between the Zn2+ and S atoms in thiophene rings of PEDOT not only facilitate the desolvation of hydrated Zn2+ but also can regulate the diffusion of Zn2+ along the thiophene molecular chains and induce the dendrite-free deposition of Zn along the (002) surface. Consequently, the Zn||Cu-PEDOT half-cell exhibits highly reversible plating/stripping behavior with an average Coulombic efficiency of 99.7% over 2500 cycles at 1 mA cm-2 and a capacity of 0.5 mAh cm-2. A symmetric Zn-PEDOT cell can steadily operate over 1100 h at 1 mA cm-2 (1 mAh cm-2) and 470 h at 10 mA cm-2 (2 mAh cm-2), outperforming the counterpart bare Zn anodes. Besides, a Zn-PEDOT||V2O5 full cell could deliver a specific capacity of 280 mAh g-1 at 1 A g-1 and exhibits a decent cycling stability, which are much superior to the bare Zn||V2O5 cell. Our results demonstrate that PEDOT nanowires are one of the promising interfacial layers for dendrite-free aqueous ZIBs.
Collapse
Affiliation(s)
- Yao Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, MOE, Shaanxi Engineering Lab for Advanced Energy Technology, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, 620 West Chang'an Street, Xi'an, Shaanxi 710119, China
| | - Zhanrui Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, MOE, Shaanxi Engineering Lab for Advanced Energy Technology, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, 620 West Chang'an Street, Xi'an, Shaanxi 710119, China
| | - Liwen Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, MOE, Shaanxi Engineering Lab for Advanced Energy Technology, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, 620 West Chang'an Street, Xi'an, Shaanxi 710119, China
| | - Jingxuan Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, MOE, Shaanxi Engineering Lab for Advanced Energy Technology, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, 620 West Chang'an Street, Xi'an, Shaanxi 710119, China
| | - Weijia Meng
- Shaanxi Key Laboratory of New Transportation Energy and Automotive Energy Saving, School of Energy and Electrical Engineering, Chang'an University, Xi'an 710061, China
| | - Jie Sun
- Key Laboratory of Applied Surface and Colloid Chemistry, MOE, Shaanxi Engineering Lab for Advanced Energy Technology, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, 620 West Chang'an Street, Xi'an, Shaanxi 710119, China
| | - Qi Li
- Key Laboratory of Applied Surface and Colloid Chemistry, MOE, Shaanxi Engineering Lab for Advanced Energy Technology, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, 620 West Chang'an Street, Xi'an, Shaanxi 710119, China
| | - Xuexia He
- Key Laboratory of Applied Surface and Colloid Chemistry, MOE, Shaanxi Engineering Lab for Advanced Energy Technology, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, 620 West Chang'an Street, Xi'an, Shaanxi 710119, China
| | - Zonghuai Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, MOE, Shaanxi Engineering Lab for Advanced Energy Technology, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, 620 West Chang'an Street, Xi'an, Shaanxi 710119, China
| | - Zhibin Lei
- Key Laboratory of Applied Surface and Colloid Chemistry, MOE, Shaanxi Engineering Lab for Advanced Energy Technology, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, 620 West Chang'an Street, Xi'an, Shaanxi 710119, China
| |
Collapse
|
25
|
Rao KA, Mazhar ME, Ahmad J. Facile hydrothermal synthesis of a tri-metallic Cu-Mn-Ni oxide-based electrochemical pseudo capacitor. Dalton Trans 2024; 53:13012-13021. [PMID: 39028037 DOI: 10.1039/d4dt00142g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Transition metal oxide nanocomposites with heterostructures have gained a lot of attention for use in supercapacitors owing to their low cost, high surface area, fast transport of ions and electrons and high specific capacitance due to efficacious interplay between the electrode and the electrolytes. In this study, we fabricated tri-metallic Cu, Mn, Ni(CMNO), bi-metallic Mn, Ni(MNO) and mono-metallic Ni(NO) oxides through a facile hydrothermal route. All the fabricated materials were characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and energy dispersive spectroscopy (EDX), and their electrochemical properties were studied using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and galvanostatic charge-discharge (GCD). The CMNO material showed remarkable electrochemical performance with a specific capacitance of 790.63 F g-1 at a current density of 1 A g-1, surpassing the performance of MNO (438.4 F g-1) and NO (290.82 F g-1). Furthermore, CMNO showed high cycling stability with a retention of 96.7% specific capacitance after 8000 cycles. Based on remarkable and unique properties, the CMNO material is regarded as a promising material for new-generation pseudo-capacitor applications.
Collapse
Affiliation(s)
- Komal Ali Rao
- Institute of Physics, Bahauddin Zakariya University, Multan-60800, Pakistan.
| | | | - Javed Ahmad
- Institute of Physics, Bahauddin Zakariya University, Multan-60800, Pakistan.
| |
Collapse
|
26
|
Qorbani M, Chen KH, Chen LC. Hybrid and Asymmetric Supercapacitors: Achieving Balanced Stored Charge across Electrode Materials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400558. [PMID: 38570734 DOI: 10.1002/smll.202400558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/06/2024] [Indexed: 04/05/2024]
Abstract
An electrochemical capacitor configuration extends its operational potential window by leveraging diverse charge storage mechanisms on the positive and negative electrodes. Beyond harnessing capacitive, pseudocapacitive, or Faradaic energy storage mechanisms and enhancing electrochemical performance at high rates, achieving a balance of stored charge across electrodes poses a significant challenge over a wide range of charge-discharge currents or sweep rates. Consequently, fabricating hybrid and asymmetric supercapacitors demands precise electrochemical evaluations of electrode materials and the development of a reliable methodology. This work provides an overview of fundamental aspects related to charge-storage mechanisms and electrochemical methods, aiming to discern the contribution of each process. Subsequently, the electrochemical properties, including the working potential windows, rate capability profiles, and stabilities, of various families of electrode materials are explored. It is then demonstrated, how charge balancing between electrodes falters across a broad range of charge-discharge currents or sweep rates. Finally, a methodology for achieving charge balance in hybrid and asymmetric supercapacitors is proposed, outlining multiple conditions dependent on loaded mass and charge-discharge current. Two step-by-step tutorials and model examples for applying this methodology are also provided. The proposed methodology is anticipated to stimulate continued dialogue among researchers, fostering advancements in achieving stable and high-performance supercapacitor devices.
Collapse
Affiliation(s)
- Mohammad Qorbani
- Center for Condensed Matter Sciences, National Taiwan University, Taipei, 10617, Taiwan
- Center of Atomic Initiative for New Materials, National Taiwan University, Taipei, 10617, Taiwan
| | - Kuei-Hsien Chen
- Center for Condensed Matter Sciences, National Taiwan University, Taipei, 10617, Taiwan
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 10617, Taiwan
| | - Li-Chyong Chen
- Center for Condensed Matter Sciences, National Taiwan University, Taipei, 10617, Taiwan
- Center of Atomic Initiative for New Materials, National Taiwan University, Taipei, 10617, Taiwan
- Department of Physics, National Taiwan University, Taipei, 10617, Taiwan
| |
Collapse
|
27
|
Xiao BH, Xiao K, Li JX, Xiao CF, Cao S, Liu ZQ. Flexible electrochemical energy storage devices and related applications: recent progress and challenges. Chem Sci 2024; 15:11229-11266. [PMID: 39055032 PMCID: PMC11268522 DOI: 10.1039/d4sc02139h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 06/26/2024] [Indexed: 07/27/2024] Open
Abstract
Given the escalating demand for wearable electronics, there is an urgent need to explore cost-effective and environmentally friendly flexible energy storage devices with exceptional electrochemical properties. However, the existing types of flexible energy storage devices encounter challenges in effectively integrating mechanical and electrochemical performances. This review is intended to provide strategies for the design of components in flexible energy storage devices (electrode materials, gel electrolytes, and separators) with the aim of developing energy storage systems with excellent performance and deformability. Firstly, a concise overview is provided on the structural characteristics and properties of carbon-based materials and conductive polymer materials utilized in flexible energy storage devices. Secondly, the fabrication process and strategies for optimizing their structures are summarized. Subsequently, a comprehensive review is presented regarding the applications of carbon-based materials and conductive polymer materials in various fields of flexible energy storage, such as supercapacitors, lithium-ion batteries, and zinc-ion batteries. Finally, the challenges and future directions for next-generation flexible energy storage systems are proposed.
Collapse
Affiliation(s)
- Bo-Hao Xiao
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Key Laboratory for Clean Energy and Materials, Guangzhou University Guangzhou 510006 China
- School of Materials Science & Engineering, Jiangsu University Zhenjiang 212013 China
| | - Kang Xiao
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Key Laboratory for Clean Energy and Materials, Guangzhou University Guangzhou 510006 China
| | - Jian-Xi Li
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Key Laboratory for Clean Energy and Materials, Guangzhou University Guangzhou 510006 China
| | - Can-Fei Xiao
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Key Laboratory for Clean Energy and Materials, Guangzhou University Guangzhou 510006 China
| | - Shunsheng Cao
- School of Materials Science & Engineering, Jiangsu University Zhenjiang 212013 China
| | - Zhao-Qing Liu
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Key Laboratory for Clean Energy and Materials, Guangzhou University Guangzhou 510006 China
| |
Collapse
|
28
|
Giovagnoli A, D’Altri G, Yeasmin L, Di Matteo V, Scurti S, Di Filippo MF, Gualandi I, Cassani MC, Caretti D, Panzavolta S, Focarete ML, Rea M, Ballarin B. Multi-Layer PVA-PANI Conductive Hydrogel for Symmetrical Supercapacitors: Preparation and Characterization. Gels 2024; 10:458. [PMID: 39057481 PMCID: PMC11276198 DOI: 10.3390/gels10070458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/01/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
This work describes a simple, inexpensive, and robust method to prepare a flexible "all in one" integrated hydrogel supercapacitors (HySCs). Preparing smart hydrogels with high electrical conductivity, ability to stretch significantly, and excellent mechanical properties is the last challenge for tailored wearable devices. In this paper, we employed a physical crosslinking process that involves consecutive freezing and thawing cycles to prepare a polyvinyl alcohol (PVA)-based hydrogel. Exploiting the self-healing properties of these materials, the assembly of the different layers of the HySCs has been performed. The ionic conductivity within the electrolyte layer arises from the inclusion of an H2SO4 solution in the hydrogel network. Instead, the electronic conductivity is facilitated by the addition of the conductive polymer PANI-PAMPSA into the hydrogel layers. Electrochemical measures have highlighted newsworthy properties related to our HySCs, opening their use in wearable electronic applications.
Collapse
Affiliation(s)
- Angelica Giovagnoli
- Department of Industrial Chemistry “Toso Montanari”, University of Bologna, Distretto Navile—Via Gobetti 85, 40129 Bologna, Italy; (A.G.); (G.D.); (L.Y.); (V.D.M.); (S.S.); (M.C.C.); (D.C.)
| | - Giada D’Altri
- Department of Industrial Chemistry “Toso Montanari”, University of Bologna, Distretto Navile—Via Gobetti 85, 40129 Bologna, Italy; (A.G.); (G.D.); (L.Y.); (V.D.M.); (S.S.); (M.C.C.); (D.C.)
| | - Lamyea Yeasmin
- Department of Industrial Chemistry “Toso Montanari”, University of Bologna, Distretto Navile—Via Gobetti 85, 40129 Bologna, Italy; (A.G.); (G.D.); (L.Y.); (V.D.M.); (S.S.); (M.C.C.); (D.C.)
- Applied Science and Technology Department, Politecnico di Torino, Corso Duca Degli Abruzzi, 24, 10129 Torino, Italy
| | - Valentina Di Matteo
- Department of Industrial Chemistry “Toso Montanari”, University of Bologna, Distretto Navile—Via Gobetti 85, 40129 Bologna, Italy; (A.G.); (G.D.); (L.Y.); (V.D.M.); (S.S.); (M.C.C.); (D.C.)
| | - Stefano Scurti
- Department of Industrial Chemistry “Toso Montanari”, University of Bologna, Distretto Navile—Via Gobetti 85, 40129 Bologna, Italy; (A.G.); (G.D.); (L.Y.); (V.D.M.); (S.S.); (M.C.C.); (D.C.)
| | - Maria Francesca Di Filippo
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy; (M.F.D.F.); (S.P.); (M.L.F.); (M.R.)
| | - Isacco Gualandi
- Department of Industrial Chemistry “Toso Montanari”, University of Bologna, Distretto Navile—Via Gobetti 85, 40129 Bologna, Italy; (A.G.); (G.D.); (L.Y.); (V.D.M.); (S.S.); (M.C.C.); (D.C.)
- Center for Industrial Research-Advanced Applications, Mechanical Engineering and Materials Technology CIRI MAM University of Bologna, Viale Risorgimento 2, 40136 Bologna, Italy
- Center for Industrial Research-Fonti Rinnovabili, Ambiente, Mare e Energia CIRI FRAME University of Bologna, Viale Risorgimento 2, 40136 Bologna, Italy
| | - Maria Cristina Cassani
- Department of Industrial Chemistry “Toso Montanari”, University of Bologna, Distretto Navile—Via Gobetti 85, 40129 Bologna, Italy; (A.G.); (G.D.); (L.Y.); (V.D.M.); (S.S.); (M.C.C.); (D.C.)
- Center for Industrial Research-Advanced Applications, Mechanical Engineering and Materials Technology CIRI MAM University of Bologna, Viale Risorgimento 2, 40136 Bologna, Italy
| | - Daniele Caretti
- Department of Industrial Chemistry “Toso Montanari”, University of Bologna, Distretto Navile—Via Gobetti 85, 40129 Bologna, Italy; (A.G.); (G.D.); (L.Y.); (V.D.M.); (S.S.); (M.C.C.); (D.C.)
- Center for Industrial Research-Advanced Applications, Mechanical Engineering and Materials Technology CIRI MAM University of Bologna, Viale Risorgimento 2, 40136 Bologna, Italy
| | - Silvia Panzavolta
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy; (M.F.D.F.); (S.P.); (M.L.F.); (M.R.)
| | - Maria Letizia Focarete
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy; (M.F.D.F.); (S.P.); (M.L.F.); (M.R.)
| | - Mariangela Rea
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy; (M.F.D.F.); (S.P.); (M.L.F.); (M.R.)
| | - Barbara Ballarin
- Department of Industrial Chemistry “Toso Montanari”, University of Bologna, Distretto Navile—Via Gobetti 85, 40129 Bologna, Italy; (A.G.); (G.D.); (L.Y.); (V.D.M.); (S.S.); (M.C.C.); (D.C.)
- Center for Industrial Research-Advanced Applications, Mechanical Engineering and Materials Technology CIRI MAM University of Bologna, Viale Risorgimento 2, 40136 Bologna, Italy
- Center for Industrial Research-Fonti Rinnovabili, Ambiente, Mare e Energia CIRI FRAME University of Bologna, Viale Risorgimento 2, 40136 Bologna, Italy
| |
Collapse
|
29
|
Thirumalai D, Santhamoorthy M, Kim SC, Lim HR. Conductive Polymer-Based Hydrogels for Wearable Electrochemical Biosensors. Gels 2024; 10:459. [PMID: 39057482 PMCID: PMC11275512 DOI: 10.3390/gels10070459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Hydrogels are gaining popularity for use in wearable electronics owing to their inherent biomimetic characteristics, flexible physicochemical properties, and excellent biocompatibility. Among various hydrogels, conductive polymer-based hydrogels (CP HGs) have emerged as excellent candidates for future wearable sensor designs. These hydrogels can attain desired properties through various tuning strategies extending from molecular design to microstructural configuration. However, significant challenges remain, such as the limited strain-sensing range, significant hysteresis of sensing signals, dehydration-induced functional failure, and surface/interfacial malfunction during manufacturing/processing. This review summarizes the recent developments in polymer-hydrogel-based wearable electrochemical biosensors over the past five years. Initially serving as carriers for biomolecules, polymer-hydrogel-based sensors have advanced to encompass a wider range of applications, including the development of non-enzymatic sensors facilitated by the integration of nanomaterials such as metals, metal oxides, and carbon-based materials. Beyond the numerous existing reports that primarily focus on biomolecule detection, we extend the scope to include the fabrication of nanocomposite conductive polymer hydrogels and explore their varied conductivity mechanisms in electrochemical sensing applications. This comprehensive evaluation is instrumental in determining the readiness of these polymer hydrogels for point-of-care translation and state-of-the-art applications in wearable electrochemical sensing technology.
Collapse
Affiliation(s)
- Dinakaran Thirumalai
- Digital Healthcare Research Center, Pukyong National University, Busan 48513, Republic of Korea;
| | - Madhappan Santhamoorthy
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38544, Republic of Korea; (M.S.); (S.-C.K.)
| | - Seong-Cheol Kim
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38544, Republic of Korea; (M.S.); (S.-C.K.)
| | - Hyo-Ryoung Lim
- Digital Healthcare Research Center, Pukyong National University, Busan 48513, Republic of Korea;
- Major of Human Bioconvergence, Division of Smart Healthcare, College of Information Technology and Convergence, Pukyong National University, Busan 48513, Republic of Korea
| |
Collapse
|
30
|
Lee DY, Choi DE, Ahn Y, Kye H, Kim MS, Kim BG. Sequential Cascade Doping of Conjugated-Polymer-Wrapped Carbon Nanotubes for Highly Electrically Conductive Platforms. Polymers (Basel) 2024; 16:1884. [PMID: 39000739 PMCID: PMC11244060 DOI: 10.3390/polym16131884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/25/2024] [Accepted: 06/29/2024] [Indexed: 07/17/2024] Open
Abstract
To explore a highly conductive flexible platform, this study develops PIDF-BT@SWCNT by wrapping single-walled carbon nanotubes (SWCNTs) with a conjugated polymer, PIDF-BT, known for its effective doping properties. By evaluating the doping behaviors of various dopants on PIDF-BT, appropriate dopant combinations for cascade doping are selected to improve the doping efficiency of PIDF-BT@SWCNT. Specifically, using F4TCNQ or F6TCNNQ as the first dopant, followed by AuCl3 as the second dopant, demonstrates remarkable doping efficiency, surpassing that of the individual dopants and yielding an exceptional electrical conductivity exceeding 6000 S/cm. Characterization using X-ray photoelectron spectroscopy and Raman spectroscopy elucidates the doping mechanism, revealing an increase in the proportion of electron-donating atoms and the ratio of quinoid structures upon F4TCNQ/AuCl3 cascade doping. These findings offer insights into optimizing dopant combinations for cascade doping, showcasing its advantages in enhancing doping efficiency and resulting electrical conductivity compared with single dopant processes.
Collapse
Affiliation(s)
- Da Young Lee
- Department of Materials Science and Engineering, Konkuk University, 120 Neungdong-ro, Seoul 05029, Republic of Korea;
| | - Da Eun Choi
- Department of Organic and Nano System Engineering, Konkuk University, 120 Neungdong-ro, Seoul 05029, Republic of Korea; (D.E.C.); (Y.A.); (H.K.); (M.S.K.)
| | - Yejin Ahn
- Department of Organic and Nano System Engineering, Konkuk University, 120 Neungdong-ro, Seoul 05029, Republic of Korea; (D.E.C.); (Y.A.); (H.K.); (M.S.K.)
| | - Hyojin Kye
- Department of Organic and Nano System Engineering, Konkuk University, 120 Neungdong-ro, Seoul 05029, Republic of Korea; (D.E.C.); (Y.A.); (H.K.); (M.S.K.)
| | - Min Seon Kim
- Department of Organic and Nano System Engineering, Konkuk University, 120 Neungdong-ro, Seoul 05029, Republic of Korea; (D.E.C.); (Y.A.); (H.K.); (M.S.K.)
| | - Bong-Gi Kim
- Department of Materials Science and Engineering, Konkuk University, 120 Neungdong-ro, Seoul 05029, Republic of Korea;
- Department of Organic and Nano System Engineering, Konkuk University, 120 Neungdong-ro, Seoul 05029, Republic of Korea; (D.E.C.); (Y.A.); (H.K.); (M.S.K.)
| |
Collapse
|
31
|
Chen B, Huang N, Zhai Z, Zhang C, Liu L, Yang B, Jiang X. Enhancing Interfacial Capacitance by Boron Doping in Vertically Porous Carbon Toward High-Performance AC Filtering Electrochemical Capacitors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310523. [PMID: 38295042 DOI: 10.1002/smll.202310523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/13/2024] [Indexed: 02/02/2024]
Abstract
Electrochemical capacitors (ECs) show great perspective in alternate current (AC) filtering once they simultaneously reach ultra-fast response and high capacitance density. Nevertheless, the structure-design criteria of the two key properties are often mutually incompatible in electrode construction. Herein, it is proposed that combining vertically oriented porous carbon with enhanced interfacial capacitance (Ci) can efficiently solve this issue. Theoretically, the density function theory calculation shows that the Ci of a carbon electrode can be enhanced by boron doping due to the corresponding compact induced charge layer. Experimentally, the vertical-oriented boron-doped graphene nanowalls (BGNWs) electrodes, whose Ci is enhanced from 4.20 to 10.16 µF cm-2 upon boron doping, are prepared on a large scale (480 cm2) using a hot-filament chemical vapor deposition technique (HFCVD). Owing to the high Ci and vertically oriented porous structure, BGNWs-based EC has a high capacitance density of 996 µF cm-2 with a phase angle of - 79.4° at 120 Hz in aqueous electrolyte and a high energy density of 1953 µFV2 cm-2 in organic electrolyte. As a result, the EC is capable of smoothing 120 Hz ripples for 60 Hz AC filtering. These results provide enlightening insights on designing high-performance ECs for high-frequency applications.
Collapse
Affiliation(s)
- Bin Chen
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang, 110016, China
| | - Nan Huang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang, 110016, China
| | - Zhaofeng Zhai
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Chuyan Zhang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Lusheng Liu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Bing Yang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang, 110016, China
| | - Xin Jiang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
- Institute of Materials Engineering, University of Siegen, 57076, Siegen, Germany
| |
Collapse
|
32
|
Liu G, Huang Z, Xu J, Lin T, Zhang B, He P. MnO 2 Nanoparticles Decorated PEDOT:PSS for High Performance Stretchable and Transparent Supercapacitors. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1080. [PMID: 38998685 PMCID: PMC11243227 DOI: 10.3390/nano14131080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/16/2024] [Accepted: 06/22/2024] [Indexed: 07/14/2024]
Abstract
With the swift advancement of wearable electronics and artificial intelligence, the integration of electronic devices with the human body has advanced significantly, leading to enhanced real-time health monitoring and remote disease diagnosis. Despite progress in developing stretchable materials with skin-like mechanical properties, there remains a need for materials that also exhibit high optical transparency. Supercapacitors, as promising energy storage devices, offer advantages such as portability, long cycle life, and rapid charge/discharge rates, but achieving high capacity, stretchability, and transparency simultaneously remains challenging. This study combines the stretchable, transparent polymer PEDOT:PSS with MnO2 nanoparticles to develop high-performance, stretchable, and transparent supercapacitors. PEDOT:PSS films were deposited on a PDMS substrate using a spin-coating method, followed by electrochemical deposition of MnO2 nanoparticles. This method ensured that the nanosized MnO2 particles were uniformly distributed, maintaining the transparency and stretchability of PEDOT:PSS. The resulting PEDOT:PSS/MnO2 nanoparticle electrodes were gathered into a symmetric device using a LiCl/PVA gel electrolyte, achieving an areal capacitance of 1.14 mF cm-2 at 71.2% transparency and maintaining 89.92% capacitance after 5000 cycles of 20% strain. This work presents a scalable and economical technique to manufacturing supercapacitors that combine high capacity, transparency, and mechanical stretchability, suggesting potential applications in wearable electronics.
Collapse
Affiliation(s)
- Guiming Liu
- State Key Laboratory of Precision Welding & Joining of Materials and Structures, Harbin Institute of Technology, Harbin 150001, China; (G.L.); (Z.H.); (J.X.); (T.L.)
| | - Zhao Huang
- State Key Laboratory of Precision Welding & Joining of Materials and Structures, Harbin Institute of Technology, Harbin 150001, China; (G.L.); (Z.H.); (J.X.); (T.L.)
| | - Jiujie Xu
- State Key Laboratory of Precision Welding & Joining of Materials and Structures, Harbin Institute of Technology, Harbin 150001, China; (G.L.); (Z.H.); (J.X.); (T.L.)
| | - Tiesong Lin
- State Key Laboratory of Precision Welding & Joining of Materials and Structures, Harbin Institute of Technology, Harbin 150001, China; (G.L.); (Z.H.); (J.X.); (T.L.)
| | - Bowen Zhang
- School of Electrical Engineering, Tiangong University, Tianjin 300350, China
| | - Peng He
- State Key Laboratory of Precision Welding & Joining of Materials and Structures, Harbin Institute of Technology, Harbin 150001, China; (G.L.); (Z.H.); (J.X.); (T.L.)
| |
Collapse
|
33
|
Mei S, Xu B, Wan J, Chen J. Preparation of CNT/CNF/PDMS/TPU Nanofiber-Based Conductive Films Based on Centrifugal Spinning Method for Strain Sensors. SENSORS (BASEL, SWITZERLAND) 2024; 24:4026. [PMID: 38931809 PMCID: PMC11207652 DOI: 10.3390/s24124026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/05/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024]
Abstract
Flexible conductive films are a key component of strain sensors, and their performance directly affects the overall quality of the sensor. However, existing flexible conductive films struggle to maintain high conductivity while simultaneously ensuring excellent flexibility, hydrophobicity, and corrosion resistance, thereby limiting their use in harsh environments. In this paper, a novel method is proposed to fabricate flexible conductive films via centrifugal spinning to generate thermoplastic polyurethane (TPU) nanofiber substrates by employing carbon nanotubes (CNTs) and carbon nanofibers (CNFs) as conductive fillers. These fillers are anchored to the nanofibers through ultrasonic dispersion and impregnation techniques and subsequently modified with polydimethylsiloxane (PDMS). This study focuses on the effect of different ratios of CNTs to CNFs on the film properties. Research demonstrated that at a 1:1 ratio of CNTs to CNFs, with TPU at a 20% concentration and PDMS solution at 2 wt%, the conductive films crafted from these blended fillers exhibited outstanding performance, characterized by electrical conductivity (31.4 S/m), elongation at break (217.5%), and tensile cycling stability (800 cycles at 20% strain). Furthermore, the nanofiber-based conductive films were tested by attaching them to various human body parts. The tests demonstrated that these films effectively respond to motion changes at the wrist, elbow joints, and chest cavity, underscoring their potential as core components in strain sensors.
Collapse
Affiliation(s)
- Shunqi Mei
- Hubei Digital Textile Equipment Key Laboratory, Wuhan Textile University, Wuhan 430073, China; (S.M.); (B.X.); (J.C.)
- The Advanced Textile Technology Innovation Center (Jianhu Laboratory), Shaoxing 312000, China
- School of Mechanical & Electrical Engineering, Xi’an Polytechnic University, Xi’an 710048, China
| | - Bin Xu
- Hubei Digital Textile Equipment Key Laboratory, Wuhan Textile University, Wuhan 430073, China; (S.M.); (B.X.); (J.C.)
| | - Jitao Wan
- Hubei Digital Textile Equipment Key Laboratory, Wuhan Textile University, Wuhan 430073, China; (S.M.); (B.X.); (J.C.)
| | - Jia Chen
- Hubei Digital Textile Equipment Key Laboratory, Wuhan Textile University, Wuhan 430073, China; (S.M.); (B.X.); (J.C.)
| |
Collapse
|
34
|
Xu L, Liu Y, Xuan X, Xu X, Li Y, Lu T, Pan L. Heterointerface regulation of covalent organic framework-anchored graphene via a solvent-free strategy for high-performance supercapacitor and hybrid capacitive deionization electrodes. MATERIALS HORIZONS 2024; 11:2974-2985. [PMID: 38592376 DOI: 10.1039/d4mh00161c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Covalent organic frameworks (COFs) with customizable geometry and redox centers are an ideal candidate for supercapacitors and hybrid capacitive deionization (HCDI). However, their poor intrinsic conductivity and micropore-dominated pore structures severely impair their electrochemical performance, and the synthesis process using organic solvents brings serious environmental and cost issues. Herein, a 2D redox-active pyrazine-based COF (BAHC-COF) was anchored on the surface of graphene in a solvent-free strategy for heterointerface regulation. The as-prepared BAHC-COF/graphene (BAHCGO) nanohybrid materials possess high-speed charge transport offered by the graphene carrier and accelerated electrolyte ion migration within the BAHC-COF, allowing ions to effectively occupy ion storage sites inside BAHC. As a result, the BAHCGO//activated carbon asymmetric supercapacitor achieves a high energy output of 61.2 W h kg-1 and a satisfactory long-term cycling life. More importantly, BAHCGO-based HCDI possesses a high salt adsorption capacity (SAC) of 67.5 mg g-1 and excellent long-term desalination/regeneration stability. This work accelerates the application of COF-based materials in the fields of energy storage and water treatment.
Collapse
Affiliation(s)
- Liming Xu
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China.
| | - Yong Liu
- School of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China.
| | - Xiaoyang Xuan
- College of Chemistry and Chemical Engineering, Taishan University, Taian, Shandong 271000, China.
| | - Xingtao Xu
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China
| | - Yuquan Li
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Ting Lu
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China.
| | - Likun Pan
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
35
|
Chen C, Wei S, Zhang Q, Yang H, Xu J, Chen L, Liu X. High-performance VO 2/CNT@PANI with core-shell construction enable printable in-planar symmetric supercapacitors. J Colloid Interface Sci 2024; 664:53-62. [PMID: 38458055 DOI: 10.1016/j.jcis.2024.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/22/2024] [Accepted: 03/03/2024] [Indexed: 03/10/2024]
Abstract
As a progressive electronic energy storage device, the flexible supercapacitor holds tremendous promise for powering wearable/portable electronic products. Of various pseudocapacitor materials, vanadium dioxide (VO2) has garnered extensive attention due to its impressive theoretical capacitance. However, the challenges of inferior cycling life and lower energy density to be addressed. Herein, we prepare VO2 nanorods with winding carbon nanotubes (CNT) via a facile solvothermal route, followed by in situ polymerization of polyaniline (PANI) shell. Taking full advantage of the synergistic effect, the VO2/CNT@PANI composite delivers a high specific capacitance of 354.2F/g at 0.5 A/g and a long cycling life of ∼ 88.2 % over 5000 cycles resulting from the enhanced conductivity of CNT and stabilization of PANI shell. By screen printing the formulated inks with outstanding rheological behaviours, we manufacture an in-planar VO2/CNT@PANI symmetric supercapacitor (VO2/CNT@PANI SSC) device featuring an orderly arrangement structure. This device yields a remarkable areal energy density of 99.57 μWh/cm2 at a power density of 387.5 μW/cm2 while retaining approximately ∼ 87.6 % of its initial capacitance after prolonged use. Furthermore, we successfully powered a portable game machine for more than 2 min using two SSCs connected in series with ease. Therefore, this work presents a universal strategy that utilises combination and coating to boost electrochemical performance for flexible high-performance supercapacitors.
Collapse
Affiliation(s)
- Cheng Chen
- Electronic Information School, Wuhan University, Wuhan 480032, China
| | - Shiwen Wei
- School of Electronic Information Engineering, Jingchu University of Technology, Jingmen 448000, China
| | - Qiang Zhang
- School of Electronic Information Engineering, Jingchu University of Technology, Jingmen 448000, China
| | - Huijun Yang
- Electronic Information School, Wuhan University, Wuhan 480032, China
| | - Jiaxin Xu
- Electronic Information School, Wuhan University, Wuhan 480032, China
| | - Liangzhe Chen
- School of Electronic Information Engineering, Jingchu University of Technology, Jingmen 448000, China.
| | - Xinghai Liu
- Electronic Information School, Wuhan University, Wuhan 480032, China.
| |
Collapse
|
36
|
Cao Y, Li S, Zhong J, Cao Y, Qiu W. CNT@SrTiO 3 Nanocomposites Synthesized by In Situ Reaction for a High-Performance Flexible Supercapacitor. ACS OMEGA 2024; 9:22423-22435. [PMID: 38799353 PMCID: PMC11112693 DOI: 10.1021/acsomega.4c01890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/29/2024]
Abstract
This study presents the in situ synthesis of CNT@SrTiO3 nanocomposite films for the development of high-performance flexible supercapacitors. The synthesis process involved the use of organic-inorganic hybrid polymers containing metal elements as precursors for thermal decomposition reaction under a reducing atmosphere. Due to the formation of chemical bonding between Ti elements and the CNTs, the interface between STO and CNT surface could provide additional active sites for ion transport and storage. Thereby, the incorporation of SrTiO3 nanoparticles into CNTs enhanced the electrochemical performance of the resulting nanocomposite membranes. To further investigate the influence of STO content and synthesis temperature, we conducted a detailed analysis. The findings indicated that the CNT@STO film with 25% STO content, synthesized at 700 °C, and possessed optimal performance with an areal capacitance of 6682 mF·cm-2 at 5 mV·s-1. Furthermore, a symmetrical flexible supercapacitor assembled by two CNT@STO-25 electrodes demonstrated strong application potential in wearable devices, owing to its long cycle life, excellent flexibility, and high energy density of 430.2 μWh·cm-2 (corresponding power density of 4.5 mW·cm-2). Based on these results, we believe that this study provides a fresh idea for the development of novel flexible energy storage materials.
Collapse
Affiliation(s)
- Yue Cao
- South
China Advanced Institute for Soft Matter Science and Technology, School
of Emergent Soft Matter, South China University
of Technology, Guangzhou 510640, China
- Guangdong
Provincial Key Laboratory of Functional and Intelligent Hybrid Materials
and Devices, South China University of Technology, Guangzhou 510640, China
| | - Shijingmin Li
- South
China Advanced Institute for Soft Matter Science and Technology, School
of Emergent Soft Matter, South China University
of Technology, Guangzhou 510640, China
- Guangdong
Provincial Key Laboratory of Functional and Intelligent Hybrid Materials
and Devices, South China University of Technology, Guangzhou 510640, China
| | - Jinhua Zhong
- HXF
SAW CO. LTD, Metallurgical Geology Bureau, Yichang 443005, China
| | - Yi Cao
- Hubei
Key Laboratory of Photoelectric Materials and Devices, School of Materials
Science and Engineering, Hubei Normal University, Huangshi 435002, China
- National
Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, China
| | - Wenfeng Qiu
- South
China Advanced Institute for Soft Matter Science and Technology, School
of Emergent Soft Matter, South China University
of Technology, Guangzhou 510640, China
- Guangdong
Provincial Key Laboratory of Functional and Intelligent Hybrid Materials
and Devices, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
37
|
Liu G, Huang Z, Xu J, Zhang B, Lin T, He P. Simple and Efficient Synthesis of Ruthenium(III) PEDOT:PSS Complexes for High-Performance Stretchable and Transparent Supercapacitors. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:866. [PMID: 38786821 PMCID: PMC11124221 DOI: 10.3390/nano14100866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024]
Abstract
In the evolving landscape of portable electronics, there is a critical demand for components that meld stretchability with optical transparency, especially in supercapacitors. Traditional materials fall short in harmonizing conductivity, stretchability, transparency, and capacity. Although poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) stands out as an exemplary candidate, further performance enhancements are necessary to meet the demands of practical applications. This study presents an innovative and effective method for enhancing electrochemical properties by homogeneously incorporating Ru(III) into PEDOT:PSS. These Ru(III) PEDOT:PSS complexes are readily synthesized by dipping PEDOT:PSS films in RuCl3 solution for no longer than one minute, leveraging the high specific capacitance of Ru(III) while minimizing interference with transmittance. The supercapacitor made with this Ru(III) PEDOT:PSS complex demonstrated an areal capacitance of 1.62 mF cm-2 at a transmittance of 73.5%, which was 155% higher than that of the supercapacitor made with PEDOT:PSS under comparable transparency. Notably, the supercapacitor retained 87.8% of its initial capacitance even under 20% tensile strain across 20,000 cycles. This work presents a blueprint for developing stretchable and transparent supercapacitors, marking a significant stride toward next-generation wearable electronics.
Collapse
Affiliation(s)
- Guiming Liu
- State Key Laboratory of Precision Welding & Joining of Materials and Structures, Harbin Institute of Technology, Harbin 150001, China; (G.L.); (Z.H.); (J.X.)
| | - Zhao Huang
- State Key Laboratory of Precision Welding & Joining of Materials and Structures, Harbin Institute of Technology, Harbin 150001, China; (G.L.); (Z.H.); (J.X.)
| | - Jiujie Xu
- State Key Laboratory of Precision Welding & Joining of Materials and Structures, Harbin Institute of Technology, Harbin 150001, China; (G.L.); (Z.H.); (J.X.)
| | - Bowen Zhang
- School of Electrical Engineering, Tiangong University, Tianjin 300350, China;
| | - Tiesong Lin
- State Key Laboratory of Precision Welding & Joining of Materials and Structures, Harbin Institute of Technology, Harbin 150001, China; (G.L.); (Z.H.); (J.X.)
| | - Peng He
- State Key Laboratory of Precision Welding & Joining of Materials and Structures, Harbin Institute of Technology, Harbin 150001, China; (G.L.); (Z.H.); (J.X.)
| |
Collapse
|
38
|
Yu Z, Deng C, Ding C, Zhang X, Liu Y, Liu C, Lou Z, Seidi F, Han J, Yong Q, Xiao H. Organic-inorganic hybrid ZIF-8/MXene/cellulose-based textiles with improved antibacterial and electromagnetic interference shielding performance. Int J Biol Macromol 2024; 266:131080. [PMID: 38537850 DOI: 10.1016/j.ijbiomac.2024.131080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/11/2024] [Accepted: 03/20/2024] [Indexed: 04/08/2024]
Abstract
Despite the tremendous efforts on developing antibacterial wearable textile materials containing Ti3C2Tx MXene, the singular antimicrobial mechanism, poor antibacterial durability, and oxidation susceptibility of MXene limits their applications. In this context, flexible multifunctional cellulosic textiles were prepared via layer-by-layer assembly of MXene and the in-situ synthesis of zeolitic imidazolate framework-8 (ZIF-8). Specifically, the introduction of highly conductive MXene enhanced the interface interactions between the ZIF-8 layer and cellulose fibers, endowing the green-based materials with outstanding synergistic photothermal/photodynamic therapy (PTT/PDT) activity and adjustable electromagnetic interference (EMI) shielding performance. In-situ polymerization formed a MXene/ZIF-8 bilayer structure, promoting the generation of reactive oxygen species (ROS) while protecting MXene from oxidation. The as-prepared smart textile exhibited excellent bactericidal efficacy of >99.99 % against both Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) after 5 min of NIR (300 mW cm-2) irradiation which is below the maximum permissible exposure (MPE) limit. The sustained released Zn2+ from the ZIF-8 layer achieved a bactericidal efficiency of over 99.99 % within 48 h without NIR light. Furthermore, this smart textile also demonstrated remarkable EMI shielding efficiency (47.7 dB). Clearly, this study provides an elaborate strategy for designing and constructing multifunctional cellulose-based materials for a variety of applications.
Collapse
Affiliation(s)
- Zhaochuan Yu
- International Innovation Center fo Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; Department of Chemical Engineering, University of New Brunswick, Fredericton, NB E3B 5A3, Canada
| | - Chao Deng
- International Innovation Center fo Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; Macromolecular Chemistry and Bavarian Polymer Institute, University of Bayreuth, 95440 Bayreuth, Germany; Key Laboratory of Clean Dyeing and Finishing Technology of Zhejiang Province, Shaoxing University, Shaoxing 312000, China.
| | - Chenhui Ding
- Macromolecular Chemistry and Bavarian Polymer Institute, University of Bayreuth, 95440 Bayreuth, Germany
| | - Xing Zhang
- College of Textile and Fashion, Hunan Institute of Engineering, Xiangtan, Hunan 411104, China
| | - Yuqian Liu
- International Innovation Center fo Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Chao Liu
- International Innovation Center fo Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Zhichao Lou
- International Innovation Center fo Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Farzad Seidi
- International Innovation Center fo Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Jingquan Han
- International Innovation Center fo Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Qiang Yong
- International Innovation Center fo Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, NB E3B 5A3, Canada.
| |
Collapse
|
39
|
Jiang S, Lu L, Song Y. Recent Advances of Flexible MXene and its Composites for Supercapacitors. Chemistry 2024; 30:e202304036. [PMID: 38298129 DOI: 10.1002/chem.202304036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/22/2024] [Accepted: 01/31/2024] [Indexed: 02/02/2024]
Abstract
MXenes have unique properties such as high electrical conductivity, excellent mechanical properties, rich surface chemistry, and convenient processability. These characteristics make them ideal for producing flexible materials with tunable microstructures. This paper reviews the laboratory research progress of flexible MXene and its composite materials for supercapacitors. And introduces the general synthesis method of MXene, as well as the preparation and properties of flexible MXene. By analyzing the current research status, the electrochemical reaction mechanism of MXene was explained from the perspectives of electrolyte and surface terminating groups. This review particularly emphasizes the composite methods of freestanding flexible MXene composite materials. The review points out that the biggest problem with flexible MXene electrodes is severe self-stacking, which reduces the number of chemically active sites, weakens ion accessibility, and ultimately lowers electrochemical performance. Therefore, it is necessary to composite MXene with other electrode materials and design a good microstructure. This review affirms the enormous potential of flexible MXene and its composite materials in the field of supercapacitors. In addition, the challenges and possible improvements faced by MXene based materials in practical applications were also discussed.
Collapse
Affiliation(s)
- Shiben Jiang
- College of Chemical Engineering, State Key Laboratory of Materials-oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, P.R. China
| | - Linghong Lu
- College of Chemical Engineering, State Key Laboratory of Materials-oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, P.R. China
| | - Yan Song
- College of Chemical Engineering, State Key Laboratory of Materials-oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, P.R. China
| |
Collapse
|
40
|
Fan D, Fang Z, Xiong Z, Fu F, Qiu S, Yan M. Self-assembled high polypyrrole loading flexible paper-based electrodes for high-performance supercapacitors. J Colloid Interface Sci 2024; 660:555-564. [PMID: 38266337 DOI: 10.1016/j.jcis.2024.01.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/18/2023] [Accepted: 01/05/2024] [Indexed: 01/26/2024]
Abstract
Despite the intriguing features of freestanding flexible electronic devices, such as their binder-free nature and cost-effectiveness, the limited loading capacity of active material poses a challenge to achieving practical high-performance flexible electrodes. We propose a novel approach that integrates multiple self-assembly and in-situ polymerization techniques to fabricate a high-loading paper-based flexible electrode (MXene/Polypyrrole/Paper) with exceptional areal capacitance. The approach enables polypyrrole to form a porous conductive network structure on the surface of paper fiber through MXene grafting via hydrogen bonding and electrostatic interaction, resulting in an exceptionally high polypyrrole loading of 10.0 mg/cm2 and a conductivity of 2.03 S/cm. Moreover, MXene-modified polypyrrole paper exhibits a more homogeneous pore size distribution ranging from 5 to 50 μm and an increased specific surface area of 3.11 m2/g. Additionally, we have optimized in-situ polymerization cycles for paper-based supercapacitors, resulting in a remarkable areal capacitance of 2316 mF/cm2 (at 2 mA/cm2). The capacitance retention rate and conductivity rate maintain over 90 % after undergoing 100 bends.The maximum energy density and cycling stability are characterized to be 83.6 μWh/cm2 and up to 96 % retention after 10,000 cycles. These results significantly outperform those previously reported for paper-based counterparts. Overall, our work presents a facile and versatile strategy for assembling high-loading, paper-based flexible supercapacitors network architecture that can be employed in developing large-scale energy storage devices.
Collapse
Affiliation(s)
- Dezhe Fan
- School of Chemistry and Chemical Engineering, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China
| | - Zhiqiang Fang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Wushan Road 381, Guangzhou 510641, China
| | - Zihang Xiong
- School of Chemistry and Chemical Engineering, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China
| | - Fangbao Fu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China.
| | - Shuoyang Qiu
- Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - Mengzhen Yan
- School of Chemistry and Chemical Engineering, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|
41
|
Tundwal A, Kumar H, Binoj BJ, Sharma R, Kumar G, Kumari R, Dhayal A, Yadav A, Singh D, Kumar P. Developments in conducting polymer-, metal oxide-, and carbon nanotube-based composite electrode materials for supercapacitors: a review. RSC Adv 2024; 14:9406-9439. [PMID: 38516158 PMCID: PMC10951819 DOI: 10.1039/d3ra08312h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 03/05/2024] [Indexed: 03/23/2024] Open
Abstract
Supercapacitors are the latest development in the field of energy storage devices (ESDs). A lot of research has been done in the last few decades to increase the performance of supercapacitors. The electrodes of supercapacitors are modified by composite materials based on conducting polymers, metal oxide nanoparticles, metal-organic frameworks, covalent organic frameworks, MXenes, chalcogenides, carbon nanotubes (CNTs), etc. In comparison to rechargeable batteries, supercapacitors have advantages such as quick charging and high power density. This review is focused on the progress in the development of electrode materials for supercapacitors using composite materials based on conducting polymers, graphene, metal oxide nanoparticles/nanofibres, and CNTs. Moreover, we investigated different types of ESDs as well as their electrochemical energy storage mechanisms and kinetic aspects. We have also discussed the classification of different types of SCs; advantages and drawbacks of SCs and other ESDs; and the use of nanofibres, carbon, CNTs, graphene, metal oxide-nanofibres, and conducting polymers as electrode materials for SCs. Furthermore, modifications in the development of different types of SCs such as pseudo-capacitors, hybrid capacitors, and electrical double-layer capacitors are discussed in detail; both electrolyte-based and electrolyte-free supercapacitors are taken into consideration. This review will help in designing and fabricating high-performance supercapacitors with high energy density and power output, which will act as an alternative to Li-ion batteries in the future.
Collapse
Affiliation(s)
- Aarti Tundwal
- Dept of Chemistry, Central University of Haryana Mahendergarh-123031 India
| | - Harish Kumar
- Dept of Chemistry, Central University of Haryana Mahendergarh-123031 India
| | - Bibin J Binoj
- Dept of Chemistry, Central University of Haryana Mahendergarh-123031 India
| | - Rahul Sharma
- Dept of Chemistry, Central University of Haryana Mahendergarh-123031 India
| | - Gaman Kumar
- Dept of Chemistry, Central University of Haryana Mahendergarh-123031 India
| | - Rajni Kumari
- Dept of Chemistry, Central University of Haryana Mahendergarh-123031 India
| | - Ankit Dhayal
- Dept of Chemistry, Central University of Haryana Mahendergarh-123031 India
| | - Abhiruchi Yadav
- Dept of Chemistry, Central University of Haryana Mahendergarh-123031 India
| | | | - Parvin Kumar
- Dept of Chemistry, Kurukshetra University Kurukshetra India
| |
Collapse
|
42
|
Morang S, Bandyopadhyay A, Borah N, Kar A, Mandal BB, Karak N. Photoluminescent Self-Healable Waterborne Polyurethane/Mo and S Codoped Graphitic Carbon Nitride Nanocomposite with Bioimaging and Encryption Capability. ACS APPLIED BIO MATERIALS 2024; 7:1910-1924. [PMID: 38391158 DOI: 10.1021/acsabm.3c01259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Creating polymers that combine various functions within a single system expands the potential applications of such polymeric materials. However, achieving polymer materials that possess simultaneously elevated strength, toughness, and self-healing capabilities, along with special properties, remains a significant challenge. The present study demonstrates the preparation of S and Mo codoped graphitic carbon nitride (g-C3N4) (Mo@S-CN) nanohybrid and the fabrication of self-healing waterborne polyurethane (SHWPU)/Mo@S-CN (SHWPU/NS) nanocomposites for advanced applications. Mo@S-CN is an intriguing combination of g-C3N4 nanosheets and molybdenum oxide (MoOx) nanorods, forming a complex lamellar structure. This unique arrangement significantly improves the inborn properties of SHWPU to an impressive degree, especially mechanical strength (28.37-34.11 MPa), fracture toughness (73.65-140.98 MJ m-2), and thermal stability (340.17-348.01 °C), and introduces fluorescence activity into the matrix. Interestingly, a representative SHWPU/NS0.5 film is so tough that a dumbbell of 15 kg, which is 53,003 times heavier than the weight of the film, can be successfully lifted without any significant crack. Remarkably, fluorescence activity is developed because of electronic excitations occurring within the repeating polymeric tris-triazine units of the Mo@S-CN nanohybrid. This fascinating feature was effectively harnessed by assessing the usability of aqueous dispersions of the Mo@S-CN nanohybrid and photoluminescent SHWPU/NS nanocomposites as sustainable stains for bioimaging of human dermal fibroblast cells and anticounterfeiting materials, respectively. The in vitro fluorescence tagging test showed blue emission from 365 nm excitation, green emission from 470 nm excitation, and red emission from 545 nm excitation. Most importantly, in vitro hemocompatibility assessment, in vitro cytocompatibility, cell proliferation assessment, and cellular morphology assessment supported the biocompatibility nature of the Mo@S-CN nanohybrid and SHWPU/NS nanocomposites. Thus, these materials can be used for advanced applications including bioimaging.
Collapse
Affiliation(s)
- Samiran Morang
- Advanced Polymer and Nanomaterial Laboratory (APNL), Department of Chemical Sciences, Tezpur University, Napaam, Tezpur, Assam 784028, India
| | - Ashutosh Bandyopadhyay
- Biomaterials and Tissue Engineering Laboratory, Department of Biosciences & Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Nobomi Borah
- Advanced Polymer and Nanomaterial Laboratory (APNL), Department of Chemical Sciences, Tezpur University, Napaam, Tezpur, Assam 784028, India
| | - Annesha Kar
- Advanced Polymer and Nanomaterial Laboratory (APNL), Department of Chemical Sciences, Tezpur University, Napaam, Tezpur, Assam 784028, India
| | - Biman B Mandal
- Biomaterials and Tissue Engineering Laboratory, Department of Biosciences & Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
- Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Niranjan Karak
- Advanced Polymer and Nanomaterial Laboratory (APNL), Department of Chemical Sciences, Tezpur University, Napaam, Tezpur, Assam 784028, India
| |
Collapse
|
43
|
Bi J, Liu Y, Du Z, Wang K, Guan W, Wu H, Ai W, Huang W. Bottom-Up Magnesium Deposition Induced by Paper-Based Triple-Gradient Scaffolds toward Flexible Magnesium Metal Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309339. [PMID: 37918968 DOI: 10.1002/adma.202309339] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/01/2023] [Indexed: 11/04/2023]
Abstract
The development of advanced magnesium metal batteries (MMBs) has been hindered by longstanding challenges, such as the inability to induce uniform magnesium (Mg) nucleation and the inefficient utilization of Mg foil. This study introduces a novel solution in the form of a flexible, lightweight, paper-based scaffold that incorporates gradient conductivity, magnesiophilicity, and pore size. This design is achieved through an industrially adaptable papermaking process in which the ratio of carboxylated multi-walled carbon nanotubes to softwood cellulose fibers is meticulously adjusted. The triple-gradient structure of the scaffold enables the regulation of Mg ion flux, promoting bottom-up Mg deposition. Owing to its high flexibility, low thickness, and reduced density, the scaffold has potential applications in flexible and wearable electronics. Accordingly, the triple-gradient electrodes exhibit stable operation for over 1200 h at 3 mA cm-2 /3 mAh cm-2 in symmetrical cells, markedly outperforming the non-gradient and metallic Mg alternatives. Notably, this study marks the first successful fabrication of a flexible MMB pouch full cell, achieving an impressive volumetric energy density of 244 Wh L-1 . The simplicity and scalability of the triple-gradient design, which uses readily available materials through an industrially compatible papermaking process, open new doors for the production of flexible, high-energy-density metal batteries.
Collapse
Affiliation(s)
- Jingxuan Bi
- Frontiers Science Center for Flexible Electronics and Xi'an Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Yuhang Liu
- Frontiers Science Center for Flexible Electronics and Xi'an Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Zhuzhu Du
- Frontiers Science Center for Flexible Electronics and Xi'an Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Ke Wang
- Frontiers Science Center for Flexible Electronics and Xi'an Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Wanqing Guan
- Frontiers Science Center for Flexible Electronics and Xi'an Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Haiwei Wu
- Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China
| | - Wei Ai
- Frontiers Science Center for Flexible Electronics and Xi'an Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics and Xi'an Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
| |
Collapse
|
44
|
Wei X, Lin T, Gao J, Hu Y, Zhang Z, Peng J, Li J, Zhai M. Mechanically Robust and Highly Conductive Poly(ionic liquid)/Polyacrylamide Double-Network Hydrogel Electrolytes for Flexible Symmetric Supercapacitors with a Wide Operating Voltage Range. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38419321 DOI: 10.1021/acsami.3c18818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Flexible electronic devices, such as supercapacitors (SCs), place high demands on the mechanical properties, ionic conductivity, and electrochemical stability of electrolytes. Hydrogels, which combine flexibility and the advantages of both solid and liquid electrolytes, will meet the demand. Here, we report the synthesis of novel poly(ionic liquid)/polyacrylamide double-network (DN) (PIL/PAM DN) hydrogel electrolytes containing different metal salts via a two-step γ-radiation method. The resultant Li2SO4-1.0/PIL/PAM DN hydrogel electrolyte possesses excellent mechanical properties (tensile strength of 3.64 MPa, elongation at break of 446%) and high ionic conductivity (24.1 mS·cm-1). The corresponding flexible SC based on the Li2SO4-1.0/PIL/PAM DN hydrogel electrolyte (SC-Li2SO4) presents improved ion diffusion, ideal electrochemical double-layer capacitor behavior, good rate capability, and excellent cyclic stability. Moreover, symmetric SC-Li2SO4 achieves a wide operating voltage range of up to 1.5 V, with a maximum energy density of 26.0 W h·kg-1 and a capacitance retention of 94.1% after 10,000 galvanostatic charge-discharge cycles, owing to the deactivation of free water molecules by the synergistic effect of PIL, PAM, and SO42-. Above all, the capacitance of SC-Li2SO4 is well-maintained after overcharge, overdischarge, short circuit, extreme temperature, compression, and bending tests, indicating its high security and flexibility. This work reveals the enormous application potential of PIL-based conductive hydrogel electrolytes for flexible electronic devices.
Collapse
Affiliation(s)
- Xuyan Wei
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, The Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Tingrui Lin
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, The Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Fujian Key Laboratory of Architectural Coating, Skshu Paint Co., Ltd., 518 North Liyuan Avenue, Licheng District, Putian 351100, Fujian, China
| | - Jiyuan Gao
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, The Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, China
| | - Yang Hu
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, The Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zeyu Zhang
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, The Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Institute of Chemical Defense, Beijing 100191, China
| | - Jing Peng
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, The Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jiuqiang Li
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, The Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Maolin Zhai
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, The Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
45
|
Ding Y, Jiang J, Wu Y, Zhang Y, Zhou J, Zhang Y, Huang Q, Zheng Z. Porous Conductive Textiles for Wearable Electronics. Chem Rev 2024; 124:1535-1648. [PMID: 38373392 DOI: 10.1021/acs.chemrev.3c00507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Over the years, researchers have made significant strides in the development of novel flexible/stretchable and conductive materials, enabling the creation of cutting-edge electronic devices for wearable applications. Among these, porous conductive textiles (PCTs) have emerged as an ideal material platform for wearable electronics, owing to their light weight, flexibility, permeability, and wearing comfort. This Review aims to present a comprehensive overview of the progress and state of the art of utilizing PCTs for the design and fabrication of a wide variety of wearable electronic devices and their integrated wearable systems. To begin with, we elucidate how PCTs revolutionize the form factors of wearable electronics. We then discuss the preparation strategies of PCTs, in terms of the raw materials, fabrication processes, and key properties. Afterward, we provide detailed illustrations of how PCTs are used as basic building blocks to design and fabricate a wide variety of intrinsically flexible or stretchable devices, including sensors, actuators, therapeutic devices, energy-harvesting and storage devices, and displays. We further describe the techniques and strategies for wearable electronic systems either by hybridizing conventional off-the-shelf rigid electronic components with PCTs or by integrating multiple fibrous devices made of PCTs. Subsequently, we highlight some important wearable application scenarios in healthcare, sports and training, converging technologies, and professional specialists. At the end of the Review, we discuss the challenges and perspectives on future research directions and give overall conclusions. As the demand for more personalized and interconnected devices continues to grow, PCT-based wearables hold immense potential to redefine the landscape of wearable technology and reshape the way we live, work, and play.
Collapse
Affiliation(s)
- Yichun Ding
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, P. R. China
- Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350108, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, P. R. China
| | - Jinxing Jiang
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, P. R. China
| | - Yingsi Wu
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, P. R. China
| | - Yaokang Zhang
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, P. R. China
| | - Junhua Zhou
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, P. R. China
| | - Yufei Zhang
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, P. R. China
| | - Qiyao Huang
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, P. R. China
- Research Institute for Intelligent Wearable Systems, The Hong Kong Polytechnic University, Hong Kong SAR 999077, P. R. China
| | - Zijian Zheng
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, P. R. China
- Department of Applied Biology and Chemical Technology, Faculty of Science, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, P. R. China
- Research Institute for Intelligent Wearable Systems, The Hong Kong Polytechnic University, Hong Kong SAR 999077, P. R. China
- Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hong Kong SAR 999077, P. R. China
| |
Collapse
|
46
|
Hu J, Dong M. Recent advances in two-dimensional nanomaterials for sustainable wearable electronic devices. J Nanobiotechnology 2024; 22:63. [PMID: 38360734 PMCID: PMC10870598 DOI: 10.1186/s12951-023-02274-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/14/2023] [Indexed: 02/17/2024] Open
Abstract
The widespread adoption of smart terminals has significantly boosted the market potential for wearable electronic devices. Two-dimensional (2D) nanomaterials show great promise for flexible, wearable electronics of next-generation electronic materials and have potential in energy, optoelectronics, and electronics. First, this review focuses on the importance of functionalization/defects in 2D nanomaterials, a discussion of different kinds of 2D materials for wearable devices, and the overall structure-property relationship of 2D materials. Then, in this comprehensive review, we delve into the burgeoning realm of emerging applications for 2D nanomaterial-based flexible wearable electronics, spanning diverse domains such as energy, medical health, and displays. A meticulous exploration is presented, elucidating the intricate processes involved in tailoring material properties for specific applications. Each research direction is dissected, offering insightful perspectives and dialectical evaluations that illuminate future trajectories and inspire fruitful investigations in this rapidly evolving field.
Collapse
Affiliation(s)
- Jing Hu
- Interdisciplinary Nanoscience Center, Aarhus University, 8000, Aarhus C, Denmark.
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China.
| | - Mingdong Dong
- Interdisciplinary Nanoscience Center, Aarhus University, 8000, Aarhus C, Denmark.
| |
Collapse
|
47
|
Yan Y, Han M, Jiang Y, Ng ELL, Zhang Y, Owh C, Song Q, Li P, Loh XJ, Chan BQY, Chan SY. Electrically Conductive Polymers for Additive Manufacturing. ACS APPLIED MATERIALS & INTERFACES 2024; 16:5337-5354. [PMID: 38284988 DOI: 10.1021/acsami.3c13258] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
The use of electrically conductive polymers (CPs) in the development of electronic devices has attracted significant interest due to their unique intrinsic properties, which result from the synergistic combination of physicochemical properties in conventional polymers with the electronic properties of metals or semiconductors. Most conventional methods adopted for the fabrication of devices with nonplanar morphologies are still challenged by the poor ionic/electronic mobility of end products. Additive manufacturing (AM) brings about exciting prospects to the realm of CPs by enabling greater design freedom, more elaborate structures, quicker prototyping, relatively low cost, and more environmentally friendly electronic device creation. A growing variety of AM technologies are becoming available for three-dimensional (3D) printing of conductive devices, i.e., vat photopolymerization (VP), material extrusion (ME), powder bed fusion (PBF), material jetting (MJ), and lamination object manufacturing (LOM). In this review, we provide an overview of the recent research progress in the area of CPs developed for AM, which advances the design and development of future electronic devices. We consider different AM techniques, vis-à-vis, their development progress and respective challenges in printing CPs. We also discuss the material requirements and notable advances in 3D printing of CPs, as well as their potential electronic applications including wearable electronics, sensors, energy storage and conversion devices, etc. This review concludes with an outlook on AM of CPs.
Collapse
Affiliation(s)
- Yinjia Yan
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), and Ningbo Institute, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Miao Han
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), and Ningbo Institute, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Yixue Jiang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
- Department of Materials Science and Engineering, College of Design and Engineering, National University of Singapore, 9 Engineering Drive 1, 117575, Singapore
| | - Evelyn Ling Ling Ng
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Yanni Zhang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), and Ningbo Institute, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Cally Owh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, 9 Engineering Drive 1, 117575, Singapore
| | - Qing Song
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), and Ningbo Institute, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Peng Li
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), and Ningbo Institute, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Benjamin Qi Yu Chan
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Siew Yin Chan
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), and Ningbo Institute, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| |
Collapse
|
48
|
Xie Q, Yi C, Zhang H, Xia H, Xu G, Miao C, Yang L, Shui T, Zhang W, Sun Z. Stretchable Zn‐Ion Hybrid Capacitor with Hydrogel Encapsulated 3D Interdigital Structure. ADVANCED ENERGY MATERIALS 2024; 14. [DOI: 10.1002/aenm.202303592] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Indexed: 03/06/2025]
Abstract
AbstractTo enhance the areal energy density of current flexible energy storage devices, hybrid capacitors combining the advantages of supercapacitors and batteries are proposed and further enhanced by incorporating the 3D interdigital structure design. However, uneven electric field distribution and hindered ion diffusion kinetics due to the non‐electroactive components in these devices limit the enhancement of areal electrochemical performances when expanding the electrodes longitudinally. Herein, hydrogels with high ionic conductivity and high mechanical stability are designed to accommodate Zn2+‐containing electrolytes and integrated with Ti3C2Tx‐MXene electrodes to assemble flexible Zn‐ion hybrid capacitors (ZIHCs). Fully encapsulated by ionic conductive hydrogels, 3D interdigital electrodes enable omnidirectional ion transport and unimpeded ionic accessibility, facilitating adequate electrode reactions, rapid energy storage, and uniform energy distribution. Hence, the all‐hydrogel‐encapsulated ZIHC achieved a 50‐fold increase in capacitance with a quadrupled electrode thickness, exhibiting a large areal capacitance of 1432 mF cm−2 and an energy density of 389.7 µWh cm−2 without sacrificing power density and rate performance. Finite element simulations further illustrate the uniform distribution of potential, electric field intensity, and energy density in this structure. In addition, the device shows great stability under deformation, excellent adhesion, and underwater workability, demonstrating great promise for next‐generation wearable energy storage devices.
Collapse
Affiliation(s)
- Qian Xie
- Jiangsu Key Laboratory of Advanced Metallic Materials School of Materials Science and Engineering Southeast University Nanjing 211189 China
| | - Chengjie Yi
- Jiangsu Key Laboratory of Advanced Metallic Materials School of Materials Science and Engineering Southeast University Nanjing 211189 China
| | - Hanning Zhang
- Jiangsu Key Laboratory of Advanced Metallic Materials School of Materials Science and Engineering Southeast University Nanjing 211189 China
| | - Huan Xia
- Jiangsu Key Laboratory of Advanced Metallic Materials School of Materials Science and Engineering Southeast University Nanjing 211189 China
| | - Gang Xu
- Jiangsu Key Laboratory of Advanced Metallic Materials School of Materials Science and Engineering Southeast University Nanjing 211189 China
| | - Chunyang Miao
- Jiangsu National Synergetic Innovation Center for Advanced Materials Key Laboratory of Flexible Electronics and Institute of Advanced Materials Nanjing Tech University Nanjing 211816 China
| | - Li Yang
- Jiangsu Key Laboratory of Advanced Metallic Materials School of Materials Science and Engineering Southeast University Nanjing 211189 China
| | - Tao Shui
- Jiangsu Key Laboratory of Advanced Metallic Materials School of Materials Science and Engineering Southeast University Nanjing 211189 China
| | - Wei Zhang
- Jiangsu Key Laboratory of Advanced Metallic Materials School of Materials Science and Engineering Southeast University Nanjing 211189 China
| | - ZhengMing Sun
- Jiangsu Key Laboratory of Advanced Metallic Materials School of Materials Science and Engineering Southeast University Nanjing 211189 China
| |
Collapse
|
49
|
Zheng T, Zhang H, Chen C, Tu X, Fang L, Zhang M, He W, Wang P. Self-Powered Dual-Band Electrochromic Supercapacitor Devices for Smart Window Based on Ternary Dielectric Triboelectric Nanogenerator. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:229. [PMID: 38276747 PMCID: PMC10820962 DOI: 10.3390/nano14020229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/14/2024] [Accepted: 01/15/2024] [Indexed: 01/27/2024]
Abstract
A dual-band electrochromic supercapacitor device (DESCD) can be driven by an external power supply to modulate solar radiation, which is a promising energy-saving strategy and has broad application prospects in smart windows. However, traditional power supplies, such as batteries, supercapacitors, etc., usually face limited lifetimes and potential environmental issues. Hence, we propose a self-powered DESCD based on TiO2/WO3 dual-band electrochromic material and a ternary dielectric rotating triboelectric nanogenerator (TDR-TENG). The TDR-TENG can convert mechanical energy from the environment into electrical energy to obtain a high output of 840 V, 23.9 µA, and 327 nC. The as-prepared TDR-TENG can drive the TiO2/WO3 film to store energy with a high dual-band modulation amplitude of 41.6% in the visible (VIS) region and 84% in the near-infrared (NIR) region, decreasing the indoor-outdoor light-heat interaction and thereby reducing the building energy consumption. The self-powered DESCD demonstrated in this study has multiple functions of energy harvesting, energy storage, and energy saving, providing a promising strategy for the development of self-powered smart windows.
Collapse
Affiliation(s)
- Tianxiang Zheng
- Energy Materials and Devices Key Lab of Anhui Province for Photoelectric Conversion, School of Materials Science and Engineering, Anhui University, Hefei 230601, China; (T.Z.); (H.Z.); (C.C.); (X.T.); (L.F.); (M.Z.)
| | - Haonan Zhang
- Energy Materials and Devices Key Lab of Anhui Province for Photoelectric Conversion, School of Materials Science and Engineering, Anhui University, Hefei 230601, China; (T.Z.); (H.Z.); (C.C.); (X.T.); (L.F.); (M.Z.)
| | - Chen Chen
- Energy Materials and Devices Key Lab of Anhui Province for Photoelectric Conversion, School of Materials Science and Engineering, Anhui University, Hefei 230601, China; (T.Z.); (H.Z.); (C.C.); (X.T.); (L.F.); (M.Z.)
| | - Xinbo Tu
- Energy Materials and Devices Key Lab of Anhui Province for Photoelectric Conversion, School of Materials Science and Engineering, Anhui University, Hefei 230601, China; (T.Z.); (H.Z.); (C.C.); (X.T.); (L.F.); (M.Z.)
| | - Lin Fang
- Energy Materials and Devices Key Lab of Anhui Province for Photoelectric Conversion, School of Materials Science and Engineering, Anhui University, Hefei 230601, China; (T.Z.); (H.Z.); (C.C.); (X.T.); (L.F.); (M.Z.)
| | - Mingjie Zhang
- Energy Materials and Devices Key Lab of Anhui Province for Photoelectric Conversion, School of Materials Science and Engineering, Anhui University, Hefei 230601, China; (T.Z.); (H.Z.); (C.C.); (X.T.); (L.F.); (M.Z.)
| | - Wen He
- Energy Materials and Devices Key Lab of Anhui Province for Photoelectric Conversion, School of Materials Science and Engineering, Anhui University, Hefei 230601, China; (T.Z.); (H.Z.); (C.C.); (X.T.); (L.F.); (M.Z.)
| | - Peihong Wang
- Energy Materials and Devices Key Lab of Anhui Province for Photoelectric Conversion, School of Materials Science and Engineering, Anhui University, Hefei 230601, China; (T.Z.); (H.Z.); (C.C.); (X.T.); (L.F.); (M.Z.)
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education, Hefei 230601, China
| |
Collapse
|
50
|
Peng Z, Zhou Y, Shu H, Yu C, Zhong W. Ultrahigh-Ionic-Conductivity, Antifreezing Poly(amidoxime)-Grafted Polyzwitterion Hydrogel for Facile Integrated into High-Performance Stretchable Flexible Supercapacitor. ACS OMEGA 2024; 9:2234-2249. [PMID: 38250425 PMCID: PMC10795038 DOI: 10.1021/acsomega.3c04966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/05/2023] [Accepted: 12/11/2023] [Indexed: 01/23/2024]
Abstract
Developing wearable supercapacitors (SCs) with high stretchability, arbitrary deformability, and antifreezing ability is still a challenge. In the present work, an ultrahigh-ionic-conductivity, antifreezing poly(amidoxime)-graft-polyzwitterion (PAO-g-PSBMA) hydrogel electrolyte is fabricated by grafting PSBMA in PAO. Owing to the abundant hydrophilic and high ionic adsorption capacity of amidoxime groups in PAO and zwitterion groups in PSBMA, the as-prepared PAO-g-PSBMA hydrogel can facilitate the dissociation of lithium salt and exhibit an ultrahigh ionic conductivity of 29.8 S m-1 at 25 °C and 3.4 S m-1 even at -30 °C. Employing mATi3C2Tx and mSTi3C2Tx, which contain small amounts of PAO-AGE and PAO-g-PSBMA dispersions, respectively, coated onto both sides of the PAO-g-PSBMA hydrogel, we followed a thermal treatment to facilely form integrated stretchable flexible SCs. The as-prepared SCs show an outstanding recoverable tensile stain of 80% and an excellent electrochemical stability under many types and times of arbitrary deformation. More importantly, as-prepared mATi3C2Tx- and mSTi3C2Tx-based SCs present fantastic antifreezing ability and excellent stability with 74.6 and 78.3% retention of the initial capacitance, respectively, even after 1000 times of stretching to 60% at -30 °C. This work offers a new strategy of using PAO-grafted polyzwitterion for obtaining an antifreezing stretchable SC, which shows a high potential for application in next-generation integrated stretchable devices in various fields.
Collapse
Affiliation(s)
- Zhiyuan Peng
- College of Materials Science
and Engineering, Hunan University, Changsha 410082, P. R. China
| | - Yutang Zhou
- College of Materials Science
and Engineering, Hunan University, Changsha 410082, P. R. China
| | - Honghao Shu
- College of Materials Science
and Engineering, Hunan University, Changsha 410082, P. R. China
| | - Chuying Yu
- College of Materials Science
and Engineering, Hunan University, Changsha 410082, P. R. China
| | - Wenbin Zhong
- College of Materials Science
and Engineering, Hunan University, Changsha 410082, P. R. China
| |
Collapse
|