1
|
Lee YI, Song WS, Oh DK. Enhanced production of ginsenoside compound K by synergistic conversion of fermentation with Aspergillus tubingensis and commercial cellulase. Front Bioeng Biotechnol 2025; 12:1538031. [PMID: 39845373 PMCID: PMC11750783 DOI: 10.3389/fbioe.2024.1538031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 12/23/2024] [Indexed: 01/24/2025] Open
Abstract
Fermentation of ginseng extract is limited by the low concentration of compound K (CK), a bioactive ginsenoside. In this study, a novel approach combining Aspergillus tubingensis fermentation with Aspergillus niger cellulase conversion was used to enhance CK production from high concentrations of American ginseng extract (AGE). The reaction conditions, including the feeding rate and concentrations of carbon source, enzyme type, AGE and enzyme concentrations, temperature, pH, and timing of enzyme addition, were optimized. Under optimized conditions, this combined method achieved an enhanced CK production of 8.06 g/L (13.0 mM) after 168 h, with a productivity of 48 mg/L/h. This approach led to a 2.0-fold increase in concentration and a 1.7-fold increase in productivity when compared with traditional fermentation using the same strain. The findings of this study demonstrate the synergistic effect of combining fermentation with enzyme conversion to improve CK production.
Collapse
Affiliation(s)
| | | | - Deok-Kun Oh
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
2
|
Zhang P, Liu H, Yu Y, Peng S, Zeng A, Song L. Terpenoids mediated cell apoptotsis in cervical cancer: Mechanisms, advances and prospects. Fitoterapia 2025; 180:106323. [PMID: 39631509 DOI: 10.1016/j.fitote.2024.106323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/14/2024] [Accepted: 11/28/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND Cervical cancer remains one of the most common malignancies among women globally, causing hundreds of thousands of deaths annually. Despite widespread vaccination and screening programs, the incidence of cervical cancer remains high in developing countries. OBJECTIVE This review aims to systematically summarize the existing terpenoids effective in preventing cervical cancer, elucidate their potential mechanisms in the prophylaxis and treatment of cervical cancer, and assess the limitations of current studies. RESULTS Studies have shown that terpenoids can decrease the incidence of cervical cancer and promote apoptosis of cancer cells through various signaling pathways, including the PI3K/AKT pathway, the endoplasmic reticulum stress (ERS) pathway, and the mitochondria- and caspase-dependent cell death pathways. Furthermore, some terpenoids have been found to enhance the sensitivity to chemotherapy drugs, thus improving patients' quality of life. CONCLUSION Terpenoids play a significant role in inhibiting the progression of cervical cancer. However, due to their diversity and complex mechanisms of action, further research is necessary to investigate their specific targets and bioactivities to advance their clinical trials and applications.
Collapse
Affiliation(s)
- Peng Zhang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan Province, China
| | - Hong Liu
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan Province, China
| | - Yuan Yu
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan Province, China
| | - Shiyang Peng
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan Province, China
| | - Anqi Zeng
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Sciences, Sichuan Institute for Translational Chinese Medicine, Chengdu, Sichuan 610041, PR China.
| | - Linjiang Song
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan Province, China.
| |
Collapse
|
3
|
Meng L, Cao Q, Du X, Lv H, Li C, Zhang X, Jiang N, Xiao Y. Structurally diverse bufadienolides from the skins of Bufo bufo gargarizans and their cytotoxicity. Sci Rep 2024; 14:27344. [PMID: 39521925 PMCID: PMC11550443 DOI: 10.1038/s41598-024-79194-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024] Open
Abstract
Natural products, with their extensive chemical diversity, distinctive biological activities, and vast reservoirs, provide a robust foundation for advancing cancer therapeutics. A comprehensive phytochemical investigation of the skins from Bufo bufo gargarizans afforded two new bufadienolide derivatives identified as bufalactamides A and B (1-2), along with six known compounds: argentinogenin (3), desacetylcinobufagin (4), desacetylcinobufaginol (5), cinobufaginol (6), bufalin (7) and gamabufalin (8). The structural elucidation of these compounds was meticulously carried out by analyses of spectroscopic data (1D and 2D NMR, HR-ESIMS), and comparison with the literature data. Plausible biosynthetic pathways for the new compounds were also discussed. Moreover, the cytotoxicity of the compounds was investigated using various cancer cell lines, including lung cancer (A549), colon cancer (HCT-116), liver cancer (SK-Hep-1), and ovarian cancer (SKOV3). Our research findings indicated that compounds 3, and 6-8 exhibit potent cytotoxic activity (IC50 < 2.5 µM). In contrast, compounds 4 and 5 display moderate cytotoxic activity (IC50 < 50 µM) while compounds 1 and 2 show no cytotoxic activity (IC50 > 100 µM). From this data, we conducted a comprehensive analysis of the structure-activity relationships among these compounds.
Collapse
Affiliation(s)
- Lingjie Meng
- Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, China.
- Institute of life sciences, Zunyi Medical University, Zunyi, China.
- College of Basic Medicine, Zunyi Medical University, Zunyi, China.
| | - Qian Cao
- Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, China
- College of Basic Medicine, Zunyi Medical University, Zunyi, China
| | - Xinyi Du
- Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, China
| | - Huijing Lv
- Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, China
- College of Basic Medicine, Zunyi Medical University, Zunyi, China
| | - Chengjin Li
- Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, China
| | - Xiaoke Zhang
- Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, China
- Institute of life sciences, Zunyi Medical University, Zunyi, China
- College of Basic Medicine, Zunyi Medical University, Zunyi, China
| | - Nian Jiang
- Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, China
- Institute of life sciences, Zunyi Medical University, Zunyi, China
- College of Basic Medicine, Zunyi Medical University, Zunyi, China
| | - Yi Xiao
- Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, China
- Institute of life sciences, Zunyi Medical University, Zunyi, China
- College of Basic Medicine, Zunyi Medical University, Zunyi, China
| |
Collapse
|
4
|
Wang M, Cai C, Jin W, Zhao Y, Mu Y, Ren L, Zhao D, Liu F, Sun L. 20(S)-ginsenoside Rg3 protects against diabetic muscle atrophy by promoting myoblastic differentiation and protecting mitochondrial function. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 134:155964. [PMID: 39168012 DOI: 10.1016/j.phymed.2024.155964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/29/2024] [Accepted: 08/15/2024] [Indexed: 08/23/2024]
Abstract
BACKGROUND High glucose levels are a primary cause of diabetes-associated cellular dysfunction and tissue damage. Muscles are the key insulin target organ and therefore, have a high level of sensitivity to hyperglycemia. Our previous study revealed that 20(S)-ginsenoside Rg3 (S-Rg3) is a monomer with a good myogenic differentiation effect in ginsenoside. Furthermore, it can alleviate dexamethasone-induced muscle atrophy by protecting mitochondrial function. However, whether S-Rg3 is effective for diabetic-induced muscle atrophy has not been reported. PURPOSE This study aimed to investigate the protective effect of S-Rg3 on diabetic-induced muscle atrophy. METHODS C2C12 myoblasts, Drosophila, and mice were used as model systems, and the protective effect of S-Rg3 on diabetes was evaluated by assessing the levels of glucose and lipids. Furthermore, H&E, toluidine blue, Giemsa, and immunofluorescence staining were performed to detect the effects of S-Rg3 on muscle atrophy and myogenic differentiation. Moreover, the effects of S-Rg3 on mitochondrial morphology and function were also evaluated by electron microscopy, flow cytometry, and Seahorse. In addition, the underlying pathways of S-Rg3 effects were detected by Western blot. The related inhibitors and gene mutations in Drosophila were used for validation. RESULTS The analysis of diabetic mice model fed with a high-fat diet (HFD) and high glucose (HG) revealed that in the injured C2C12 myoblasts, S-Rg3 treatment significantly reduced the levels of triglycerides and glucose. Furthermore, it promoted the differentiation of myoblasts and inhibited mitochondrial dysfunction. In the Drosophila HG and HFD diabetic model, S-Rg3 reduced triglyceride and trehalose levels, increased climbing distance values, promoted myoblasts differentiation, preserved mitochondrial function, and inhibited muscle atrophy. Mechanistically, the beneficial effects of S-Rg3 were at least partially associated with the phosphorylation of AMPK and FoxO3 together with the inhibition of Smad3 phosphorylation, this pathway was validated by the UAS-AMPKα-RNAi Drosophila model. CONCLUSION In summary, this study revealed mechanistic insights into how S-Rg3 protects against diabetes-associated muscle atrophy in cells, Drosophila, and mice.
Collapse
Affiliation(s)
- Manying Wang
- Research Center of Traditional Chinese Medicine, Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Changjiu Cai
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Wenqi Jin
- Research Center of Traditional Chinese Medicine, Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Yunyun Zhao
- Department of Endocrinology and Metabolism, Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Yue Mu
- Department of Endocrinology and Metabolism, Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Limei Ren
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Daqing Zhao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Fangbing Liu
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun, China.
| | - Liwei Sun
- Research Center of Traditional Chinese Medicine, Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China; Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Changchun, China.
| |
Collapse
|
5
|
Li Q, Tong Y, Chen J, Xie T. Targeting programmed cell death via active ingredients from natural plants: a promising approach to cancer therapy. Front Pharmacol 2024; 15:1491802. [PMID: 39584140 PMCID: PMC11582395 DOI: 10.3389/fphar.2024.1491802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 10/09/2024] [Indexed: 11/26/2024] Open
Abstract
Cancer is a serious public health problem in humans, and prevention and control strategies are still necessary. Therefore, the development of new therapeutic drugs is urgently needed. Targeting programmed cell death, particularly via the induction of cancer cell apoptosis, is one of the cancer treatment approaches employed. Recently, an increasing number of studies have shown that compounds from natural plants can target programmed cell death and kill cancer cells, laying the groundwork for use in future anticancer treatments. In this review, we focus on the latest research progress on the role and mechanism of natural plant active ingredients in different forms of programmed cell death, such as apoptosis, autophagy, necroptosis, ferroptosis, and pyroptosis, to provide a strong theoretical basis for the clinical development of antitumor drugs.
Collapse
Affiliation(s)
- Qian Li
- School of Pharmacy and Department of Hepatology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Yan Tong
- School of Pharmacy and Department of Hepatology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Jianxiang Chen
- School of Pharmacy and Department of Hepatology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Tian Xie
- School of Pharmacy and Department of Hepatology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| |
Collapse
|
6
|
Seo EB, Oh SM, Han A. Gochujang suppresses cell survival and changes reactive oxygen species metabolism in colorectal cancer cells. Food Nutr Res 2024; 68:10844. [PMID: 39525326 PMCID: PMC11549730 DOI: 10.29219/fnr.v68.10844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/29/2024] [Accepted: 09/03/2024] [Indexed: 11/16/2024] Open
Abstract
There is a significant global increase in colorectal cancer (CRC) among young adults. Gochujang, one of the signature Korean traditional fermented foods, contains various bioactive compounds and has multiple health-beneficial effects, including anticancer effects; however, the detailed cellular and molecular mechanisms of its anticancer outcomes are not fully understood. The objective of the present study was to investigate the detailed underlying anticancer mechanisms of Gochujang in CRC cells. Gochujang was extracted with 80% ethanol, and total polyphenol contents (9.9 ± 1.63 mgGAE/g) and total flavonoid contents (0.14 ± 0.07 mgQE/g) of Gochujang extract (GE) were evaluated. GE significantly suppressed cell viability, migration, and colony formation in CRC cells. Also, GE increased the cell cycle arrest-related protein p21 level, whereas it decreased cell cycle progression-associated proteins, such as p-Rb. Moreover, GE markedly elevated the levels of proapoptotic proteins (e.g. Bim and c-PARP), while it downregulated antiapoptotic protein expressions (e.g. Bcl-2 and Bcl-xL). GE also altered the expression of the autophagy-involved proteins. Furthermore, GE strongly reduced the expression of major antioxidant enzymes and increased the reactive oxygen species (ROS) generation in CRC cells, causing an imbalance of ROS metabolism. In conclusion, this study demonstrated that Gochujang exerts anticancer effects in CRC cells by inhibiting cell proliferation, increasing cell death, and interrupting ROS metabolism.
Collapse
Affiliation(s)
- Eun-Bi Seo
- Department of Food Science and Human Nutrition, Jeonbuk National University, Jeonju, Republic of Korea
| | - So-Min Oh
- Department of Food Science and Human Nutrition, Jeonbuk National University, Jeonju, Republic of Korea
| | - Anna Han
- Department of Food Science and Human Nutrition, Jeonbuk National University, Jeonju, Republic of Korea
- K-food Research Center, Jeonbuk National University, Jeonju, Republic of Korea
| |
Collapse
|
7
|
Qian J, Jiang Y, Hu H. Ginsenosides: an immunomodulator for the treatment of colorectal cancer. Front Pharmacol 2024; 15:1408993. [PMID: 38939839 PMCID: PMC11208871 DOI: 10.3389/fphar.2024.1408993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 05/23/2024] [Indexed: 06/29/2024] Open
Abstract
Ginsenosides, the primary bioactive ingredients derived from the root of Panax ginseng, are eagerly in demand for tumor patients as a complementary and alternative drug. Ginsenosides have increasingly become a "hot topic" in recent years due to their multifunctional role in treating colorectal cancer (CRC) and regulating tumor microenvironment (TME). Emerging experimental research on ginsenosides in the treatment and immune regulation of CRC has been published, while no review sums up its specific role in the CRC microenvironment. Therefore, this paper systematically introduces how ginsenosides affect the TME, specifically by enhancing immune response, inhibiting the activation of stromal cells, and altering the hallmarks of CRC cells. In addition, we discuss their impact on the physicochemical properties of the tumor microenvironment. Furthermore, we discuss the application of ginsenosides in clinical treatment as their efficacy in enhancing tumor patient immunity and prolonging survival. The future perspectives of ginsenoside as a complementary and alternative drug of CRC are also provided. This review hopes to open up a new horizon for the cancer treatment of Traditional Chinese Medicine monomers.
Collapse
Affiliation(s)
- Jianan Qian
- Department of Gastroenterology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yanyu Jiang
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hongyi Hu
- Department of Gastroenterology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
8
|
Song X, Wang L, Cai P, Xu Y, Liu Q, Fan D. Synergistic anticancer effects of ginsenoside CK and gefitinib against gefitinib-resistant NSCLC by regulating the balance of angiogenic factors through HIF-1α/VEGF. Toxicol Appl Pharmacol 2024; 486:116938. [PMID: 38642809 DOI: 10.1016/j.taap.2024.116938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/09/2024] [Accepted: 04/17/2024] [Indexed: 04/22/2024]
Abstract
Drug resistance is a serious problem for gefitinib in the treatment of lung cancer. Ginsenoside CK, a metabolite of diol ginsenosides, have many excellent pharmacological activities, but whether ginsenoside CK can overcome gefitinib resistance remains unclear. In our study, the sensitizing activity of ginsenoside CK on gefitinib-resistant non-small cell lung cancer (NSCLC) in vitro and in vivo was investigated. Ginsenoside CK was confirmed to enhance the anti-proliferation, pro-apoptotic and anti-migration effects of gefitinib in primary and acquired resistant NSCLC. Furthermore, the combined administration of CK and gefitinib effectively promoted the sensitivity of lung cancer xenograft to gefitinib in vivo, and the tumor inhibition rate reached 70.97% (vs. gefitinib monotherapy 32.65%). Subsequently, tubule formation experiment and western blot results showed that co-treatment of ginsenoside CK inhibited the angiogenesis ability of HUVEC cells, and inhibited the expression of HIF-1α, VEGF, FGF and MMP2/9. More interestingly, ginsenoside CK co-treatment enhanced the expression of anti-angiogenic factor PF4, increased pericellular envelope, and promoted the normalization of vascular structure. In conclusion, ginsenoside CK improved the resistance of gefitinib by regulating the balance of angiogenic factors through down-regulating the HIF-1α/VEGF signaling pathway, providing a theoretical basis for improving the clinical efficacy of gefitinib and applying combined strategies to overcome drug resistance.
Collapse
Affiliation(s)
- Xiaoping Song
- Department of Pharmaceutical Engineering, School of Chemical Engineering, Northwest University, 229 Taibai North Road, Xi'an 710069, China; Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710069, China; Biotech. & Biomed. Research Institute, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Lina Wang
- Department of Pharmaceutical Engineering, School of Chemical Engineering, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Panpan Cai
- Department of Pharmaceutical Engineering, School of Chemical Engineering, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Ying Xu
- Department of Pharmaceutical Engineering, School of Chemical Engineering, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Qingchao Liu
- Department of Pharmaceutical Engineering, School of Chemical Engineering, Northwest University, 229 Taibai North Road, Xi'an 710069, China; Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710069, China.
| | - Daidi Fan
- Department of Pharmaceutical Engineering, School of Chemical Engineering, Northwest University, 229 Taibai North Road, Xi'an 710069, China; Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710069, China; Biotech. & Biomed. Research Institute, Northwest University, 229 Taibai North Road, Xi'an 710069, China.
| |
Collapse
|
9
|
Wang H, Huang M, Zhu M, Su C, Zhang Y, Chen H, Jiang Y, Wang H, Guo Q, Zhang S. Paclitaxel combined with Compound K inducing pyroptosis of non-small cell lung cancer cells by regulating Treg/Th17 balance. Chin Med 2024; 19:26. [PMID: 38360696 PMCID: PMC10870689 DOI: 10.1186/s13020-024-00904-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/05/2024] [Indexed: 02/17/2024] Open
Abstract
BACKGROUND Immune checkpoint inhibitors, which have attracted much attention in recent years, have achieved good efficacy, but their use is limited by the high incidence of acquired drug resistance. Therefore, there is an urgent need to develop new immunotherapy drugs. Compound taxus chinensis capsule (CTC) is an oral paclitaxel compound drug, clinical results showed it can change the number of regulatory T cells and T helper cell 17 in peripheral blood. Regulating the balance between regulatory T cells and T helper cell 17 is considered to be an effective anticancer strategy. Paclitaxel and ginsenoside metabolite compound K are the main immunomodulatory components, it is not clear that paclitaxel combined with compound K can inhibit tumor development by regulating the balance between regulatory T cell and T helper cell 17. METHODS MTT, EdU proliferation and plate colony formation assay were used to determine the concentration of paclitaxel and compound K. AnnexinV-FITC/PI staining, ELISA, Western Blot assay, Flow Cytometry and Immunofluorescence were used to investigate the effect of paclitaxel combined with compound K on Lewis cell cultured alone or co-cultured with splenic lymphocyte. Finally, transplanted tumor C57BL/6 mice model was constructed to investigate the anti-cancer effect in vivo. RESULTS According to the results of MTT, EdU proliferation and plate colony formation assay, paclitaxel (10 nM) and compound K (60 μM) was used to explore the mechanism. The results of Flow Cytometry demonstrated that paclitaxel combined with compound K increased the number of T helper cell 17 and decreased the number of regulatory T cells, which induced pyroptosis of cancer cells. The balance was mediated by the JAK-STAT pathway according to the results of Western Blot and Immunofluorescence. Finally, the in vivo results showed that paclitaxel combined with compound K significantly inhibit the progression of lung cancer. CONCLUSIONS In this study, we found that paclitaxel combined with compound K can activate CD8+ T cells and induce pyroptosis of tumor cells by regulating the balance between regulatory T cells and T helper cell 17. These results demonstrated that this is a feasible treatment strategy for lung cancer.
Collapse
Affiliation(s)
- Hongzheng Wang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China
| | - Min Huang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China
| | - Mengyuan Zhu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China
| | - Chi Su
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 21009, People's Republic of China
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing, 210009, People's Republic of China
| | - Yijian Zhang
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 21009, People's Republic of China
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing, 210009, People's Republic of China
- The Fourth Clinical College of Nanjing Medical University, Nanjing, 210009, People's Republic of China
| | - Hongyu Chen
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China
| | - Yuexin Jiang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China
| | - Haidi Wang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China
| | - Qinglong Guo
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China.
| | - Shuai Zhang
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 21009, People's Republic of China.
| |
Collapse
|
10
|
Wang K, Xu Y, Huang H, Peng D, Chen J, Li P, Du B. Porcupine quills keratin peptides induces G0/G1 cell cycle arrest and apoptosis via p53/p21 pathway and caspase cascade reaction in MCF-7 breast cancer cells. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:1741-1755. [PMID: 37862230 DOI: 10.1002/jsfa.13065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 09/29/2023] [Accepted: 10/20/2023] [Indexed: 10/22/2023]
Abstract
BACKGROUND Porcupine quills, a by-product of porcupine pork, are rich in keratin, which is an excellent source of bioactive peptides. The objective of this study was to investigate the underlying mechanism of anti-proliferation effect of porcupine quills keratin peptides (PQKPs) on MCF-7 cells. RESULTS Results showed that PQKPs induced MCF-7 cells apoptosis by significantly decreasing the secretion level of anti-apoptosis protein Bcl-2 and increasing the secretion levels of pro-apoptosis proteins Bax, cytochrome c, caspase 9, caspase 3 and PARP. PQKPs also arrested the cell cycle at G0/G1 phase via remarkably reducing the protein levels of CDK4 and enhancing the protein levels of p53 and p21. High-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) analysis identified nine peptides with molecular weights less than 1000 Da in PQKPs. Molecular docking results showed that TPGPPT and KGPAC identified from PQKPs could bind with p53 mutant and Bcl-2 protein by conventional hydrogen bonds, carbon hydrogen bonds and van der Waals force. Furthermore, the anti-proliferation impact of synthesized peptides (TPGPPT and KGPAC) was shown in MCF-7 cells. CONCLUSION These findings indicated that PQKPs suppressed the proliferation of MCF-7 breast cancer cells by triggering apoptosis and G0/G1 cell cycle arrest. Moreover, the outcome of this study will bring fresh insights into the production and application of animal byproducts. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Kun Wang
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Yanan Xu
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Haozhang Huang
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Dong Peng
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Jianping Chen
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, China
| | - Pan Li
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Bing Du
- College of Food Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
11
|
Zhang J, Liu Y, An C, Liu C, Ma S, Zhang Q, Ding H, Shao J, Xue W. Protective Effect of Ginsenoside CK against Autoimmune Hepatitis Induced by Concanavalin A. Foods 2023; 12:4379. [PMID: 38137182 PMCID: PMC10743209 DOI: 10.3390/foods12244379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/29/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
Ginsenoside CK, a kind of rare ginsenoside transformed from protopanaxadiol saponins extracted from the genus Panax, has been proven to possess favorable bioactivities such as anti-inflammatory, anti-cancer, anti-diabetes, and hepatoprotective effects. The current study is targeted to determine the effect of ginsenoside CK on hepatitis induced by concanavalin A (Con A). Mice were treated with different dosages of ginsenoside CK for 7 days, and Con A (15 mg/kg) was intravenously injected to induce autoimmune hepatitis (AIH) after the last administration. The results demonstrated that pretreatment with ginsenoside CK (40 mg/kg) could obviously ameliorate the increase in serum indicators related to liver function such as AST, ALT, and ALP, and hepatic lesions induced by Con A. Meanwhile, ginsenoside CK suppressed hepatocyte apoptosis, which was observed in pathological data, and immunoblotting results showed that the expression of Bax, Bcl-2, and other proteins was regulated by CK. Furthermore, the release of inflammatory cytokines such as tumor necrosis factor-α (TNF-α) and IL-6 in mice with AIH were lowered by the administration of 40 mg/kg of ginsenoside CK. Furthermore, ginsenoside CK elevated the gene expression of Nrf2 and Sirt1 and augmented downstream target genes such as HO-1. In addition, a significant inhibition effect of the TLR4/NF-κB signal was observed in 40 mg/kg CK-pretreated mice compared with the model group. To sum up, the results indicated that ginsenoside CK has a notable hepatoprotective effect against AIH by activating Sirt1/Nrf2 and suppressing the TLR4/NF-κB signaling pathway.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Wenjiao Xue
- Shaanxi Institute of Microbiology, Shaanxi Key Laboratory of Qinling Ecological Security, Xiying Road 76, Xi’an 710043, China; (J.Z.); (Y.L.); (C.A.); (C.L.); (S.M.); (Q.Z.); (H.D.); (J.S.)
| |
Collapse
|
12
|
Han S, Liu X, Ju S, Mu W, Abulikemu G, Zhen Q, Yang J, Zhang J, Li Y, Liu H, Chen Q, Cui B, Wu S, Zhang Y. New mechanisms and biomarkers of lymph node metastasis in cervical cancer: reflections from plasma proteomics. Clin Proteomics 2023; 20:35. [PMID: 37689639 PMCID: PMC10492398 DOI: 10.1186/s12014-023-09427-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 08/21/2023] [Indexed: 09/11/2023] Open
Abstract
OBJECTIVE Lymph node metastasis (LNM) and lymphatic vasculature space infiltration (LVSI) in cervical cancer patients indicate a poor prognosis, but satisfactory methods for diagnosing these phenotypes are lacking. This study aimed to find new effective plasma biomarkers of LNM and LVSI as well as possible mechanisms underlying LNM and LVSI through data-independent acquisition (DIA) proteome sequencing. METHODS A total of 20 cervical cancer plasma samples, including 7 LNM-/LVSI-(NC), 4 LNM-/LVSI + (LVSI) and 9 LNM + /LVSI + (LNM) samples from a cohort, were subjected to DIA to identify differentially expressed proteins (DEPs) for LVSI and LNM. Subsequently, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed for DEP functional annotation. Protein-protein interaction (PPI) and weighted gene coexpression network analysis (WGCNA) were used to detect new effective plasma biomarkers and possible mechanisms. RESULTS A total of 79 DEPs were identified in the cohort. GO and KEGG analyses showed that DEPs were mainly enriched in the complement and coagulation pathway, lipid and atherosclerosis pathway, HIF-1 signal transduction pathway and phagosome and autophagy. WGCNA showed that the enrichment of the green module differed greatly between groups. Six interesting core DEPs (SPARC, HPX, VCAM1, TFRC, ERN1 and APMAP) were confirmed to be potential plasma diagnostic markers for LVSI and LNM in cervical cancer patients. CONCLUSION Proteomic signatures developed in this study reflected the potential plasma diagnostic markers and new possible pathogenesis mechanisms in the LVSI and LNM of cervical cancer.
Collapse
Affiliation(s)
- Sai Han
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, Shandong, 250012, People's Republic of China
| | - Xiaoli Liu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, Shandong, 250012, People's Republic of China
| | - Shuang Ju
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, Shandong, 250012, People's Republic of China
| | - Wendi Mu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, Shandong, 250012, People's Republic of China
| | - Gulijinaiti Abulikemu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, Shandong, 250012, People's Republic of China
| | - Qianwei Zhen
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, Shandong, 250012, People's Republic of China
| | - Jiaqi Yang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, Shandong, 250012, People's Republic of China
| | - Jingjing Zhang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, Shandong, 250012, People's Republic of China
| | - Yi Li
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, Shandong, 250012, People's Republic of China
| | - Hongli Liu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, Shandong, 250012, People's Republic of China
| | - Qian Chen
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, Shandong, 250012, People's Republic of China
| | - Baoxia Cui
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, Shandong, 250012, People's Republic of China
| | - Shuxia Wu
- Department of Obstetrics and Gynecology, the Fifth People's Hospital of Jinan, Jinan, Shandong, 250012, People's Republic of China.
| | - Youzhong Zhang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, Shandong, 250012, People's Republic of China.
| |
Collapse
|
13
|
Li X, Cao D, Sun S, Wang Y. Anticancer therapeutic effect of ginsenosides through mediating reactive oxygen species. Front Pharmacol 2023; 14:1215020. [PMID: 37564184 PMCID: PMC10411515 DOI: 10.3389/fphar.2023.1215020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/10/2023] [Indexed: 08/12/2023] Open
Abstract
Dysregulation of reactive oxygen species (ROS) production and ROS-regulated pathways in cancer cells leads to abnormal accumulation of reactive oxygen species, displaying a double-edged role in cancer progression, either supporting transformation/proliferation and stimulating tumorigenesis or inducing cell death. Cancer cells can accommodate reactive oxygen species by regulating them at levels that allow the activation of pro-cancer signaling pathways without inducing cell death via modulation of the antioxidant defense system. Therefore, targeting reactive oxygen species is a promising approach for cancer treatment. Ginsenosides, their derivatives, and related drug carriers are well-positioned to modulate multiple signaling pathways by regulating oxidative stress-mediated cellular and molecular targets to induce apoptosis; regulate cell cycle arrest and autophagy, invasion, and metastasis; and enhance the sensitivity of drug-resistant cells to chemotherapeutic agents of different cancers depending on the type, level, and source of reactive oxygen species, and the type and stage of the cancer. Our review focuses on the pro- and anticancer effects of reactive oxygen species, and summarizes the mechanisms and recent advances in different ginsenosides that bring about anticancer effects by targeting reactive oxygen species, providing new ideas for designing further anticancer studies or conducting more preclinical and clinical studies.
Collapse
Affiliation(s)
- Xiaonan Li
- Department of Geriatrics, The First Hospital of Jilin University, Changchun, China
| | - Donghui Cao
- Department of Clinical Research, The First Hospital of Jilin University, Changchun, China
| | - Siming Sun
- Department of Clinical Research, The First Hospital of Jilin University, Changchun, China
| | - Yuehui Wang
- Department of Geriatrics, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
14
|
Wu Y, Min L, Zhang P, Zhang L, Xu Y, Li D, Zheng M, Pei D, Wang Q. ORP5 promotes migration and invasion of cervical cancer cells by inhibiting endoplasmic reticulum stress. Cell Stress Chaperones 2023; 28:395-407. [PMID: 37314629 PMCID: PMC10352219 DOI: 10.1007/s12192-023-01357-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/25/2023] [Accepted: 05/29/2023] [Indexed: 06/15/2023] Open
Abstract
ORP5 is a transmembrane protein anchored to the endoplasmic reticulum, which mainly functions as a lipid transporter and has reportedly been linked to cancer. However, the specific mechanism of ORP5 action in cervical cancer (CC) is unclear. In this study, we found that ORP5 promotes the migration and invasive ability of CC cells in vitro and in vivo. In addition, ORP5 expression was linked to endoplasmic reticulum stress, and ORP5 encouraged CC metastasis by inhibiting endoplasmic reticulum stress. Mechanistically, ORP5 inhibited endoplasmic reticulum stress in CC cells by stimulating ubiquitination and proteasomal degradation of SREBP1 to reduce its expression. In conclusion, ORP5 promotes the malignant progression of CC by inhibiting endoplasmic reticulum stress, providing a therapeutic target and strategy for CC treatment.
Collapse
Affiliation(s)
- Yi Wu
- Department of Pathology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Luyao Min
- Department of Pathology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Peng Zhang
- Jiangsu Province Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Lin Zhang
- Department of Pathology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Yuting Xu
- Department of Pathology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Danhua Li
- Department of Pathology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Maojin Zheng
- Department of Pathology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Dongsheng Pei
- Department of Pathology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.
| | - Qingling Wang
- Department of Pathology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.
| |
Collapse
|
15
|
Song WS, Shin KC, Oh DK. Production of ginsenoside compound K from American ginseng extract by fed-batch culture of Aspergillus tubingensis. AMB Express 2023; 13:64. [PMID: 37356062 DOI: 10.1186/s13568-023-01556-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 05/03/2023] [Indexed: 06/27/2023] Open
Abstract
Compound K (C-K), one of the most bioactive ginsenoside, is produced by hydrolyzing the glycoside moieties of protopanaxadiol (PPD)-type glycosylated ginsenosides in the ginseng extract. To enhance the biotransformation of PPD-type ginsenosides in American ginseng extract (AGE) into C-K, the optimization of the feed type, concentration, and period for the carbon source sucrose and the reactant AGE was performed in fed-batch fermentation of Aspergillus tubingensis using a fermenter. The concentration (3.94 g/L) and productivity (27.4 mg/L/h) of C-K after feed optimization in fed-batch fermentation increased 3.1-fold compared to those (1.29 g/L and 8.96 mg/L/h) in batch fermentation, and a molar conversion of 100% was achieved. To the best of our knowledge, this is the first trial of fed-batch fermentation to convert ginseng extract into deglycosylated ginsenoside and the highest reported C-K concentration and productivity using ginseng extract via fermentation. After ethanol and resin treatments, C-K solids with purities of 59% and 96% were obtained from the fermentation broth as food- and pharmaceutical-grade products, respectively.
Collapse
Affiliation(s)
- Woo-Seok Song
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-Ro, Gwangjin-Gu, Seoul, 05029, Republic of Korea
| | - Kyung-Chul Shin
- Department of Integrative Bioscience and Biotechnology, Konkuk University, 120 Neungdong-Ro, Gwangjin-Gu, Seoul, 05029, Republic of Korea.
| | - Deok-Kun Oh
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-Ro, Gwangjin-Gu, Seoul, 05029, Republic of Korea.
- Department of Integrative Bioscience and Biotechnology, Konkuk University, 120 Neungdong-Ro, Gwangjin-Gu, Seoul, 05029, Republic of Korea.
| |
Collapse
|
16
|
Huang Y, Ran X, Liu H, Luo M, Qin Y, Yan J, Li X, Jia Y. A novel dammarane triterpenoid alleviates atherosclerosis by activating the LXRα pathway. Chin Med 2023; 18:72. [PMID: 37322486 DOI: 10.1186/s13020-023-00758-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 04/24/2023] [Indexed: 06/17/2023] Open
Abstract
BACKGROUND We have previously demonstrated that ginsenoside compound K can attenuate the formation of atherosclerotic lesions. Therefore, ginsenoside compound K has potential for atherosclerosis therapy. How to improve the druggability and enhance the antiatherosclerotic activity of ginsenoside compound K are the core problems in the prevention and treatment of atherosclerosis. CKN is a ginsenoside compound K derivative that was previously reported to have excellent antiatherosclerotic activity in vitro, and we have applied for international patents for it. METHODS Male C57BL/6 ApoE-/- mice were fed a high-fat and high-choline diet to induce atherosclerosis and were subjected to in vivo studies. In vitro, the CCK-8 method was applied to evaluate cytotoxicity in macrophages. Foam cells were utilized, and cellular lipid determination was performed for in vitro studies. The area of atherosclerotic plaque and fatty infiltration of the liver were measured by image analysis. Serum lipid and liver function were determined by a seralyzer. Immunofluorescence and western blot analysis were conducted to explore the alterations in the expression levels of lipid efflux-related proteins. Molecular docking, reporter gene experiments and cellular thermal shift assays were used to verify the interaction between CKN and LXRα. RESULTS After confirming the therapeutic effects of CKN, molecular docking, reporter gene experiments and cellular thermal shift assays were used to predict and investigate the antiatherosclerotic mechanisms of CKN. CKN exhibited the greatest potency, with a 60.9% and 48.1% reduction in en face atherosclerotic lesions on the thoracic aorta and brachiocephalic trunk, reduced plasma lipid levels and decreased foam cell levels in the vascular plaque content in HHD-fed ApoE-/- mice. Moreover, CKN in the present study may exert its antiatherosclerotic effects through activated ABCA1 by promoting LXRα nuclear translocation and reducing the adverse effects of LXRα activation. CONCLUSIONS Our results revealed that CKN prevented the formation of atherosclerosis in ApoE-/- mice by activating the LXRα pathway.
Collapse
Affiliation(s)
- Yan Huang
- Institute of Materia Medica and Department of Pharmaceutics, College of Pharmacy, Third Military Medical University, Shapingba, Chongqing, 400038, China
| | - Xiaodong Ran
- Institute of Materia Medica and Department of Pharmaceutics, College of Pharmacy, Third Military Medical University, Shapingba, Chongqing, 400038, China
| | - Hongmei Liu
- Institute of Materia Medica and Department of Pharmaceutics, College of Pharmacy, Third Military Medical University, Shapingba, Chongqing, 400038, China
| | - Mingming Luo
- Institute of Materia Medica and Department of Pharmaceutics, College of Pharmacy, Third Military Medical University, Shapingba, Chongqing, 400038, China
| | - Yiyu Qin
- Institute of Materia Medica and Department of Pharmaceutics, College of Pharmacy, Third Military Medical University, Shapingba, Chongqing, 400038, China
| | - Jinqiong Yan
- Institute of Materia Medica and Department of Pharmaceutics, College of Pharmacy, Third Military Medical University, Shapingba, Chongqing, 400038, China
| | - Xiaohui Li
- Institute of Materia Medica and Department of Pharmaceutics, College of Pharmacy, Third Military Medical University, Shapingba, Chongqing, 400038, China.
| | - Yi Jia
- Institute of Materia Medica and Department of Pharmaceutics, College of Pharmacy, Third Military Medical University, Shapingba, Chongqing, 400038, China.
| |
Collapse
|
17
|
Tang TT, Jiang L, Zhong Q, Ni ZJ, Thakur K, Khan MR, Wei ZJ. Saikosaponin D exerts cytotoxicity on human endometrial cancer ishikawa cells by inducing apoptosis and inhibiting metastasis through MAPK pathways. Food Chem Toxicol 2023; 177:113815. [PMID: 37209937 DOI: 10.1016/j.fct.2023.113815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/01/2023] [Accepted: 05/07/2023] [Indexed: 05/22/2023]
Abstract
Saikosaponin D (SSD) is one of plant secondary metabolic active substance with effective anti-tumor ability; however, the toxicity of Saikosaponin D on human endometrial cancer Ishikawa cells is still unclear. Our results revealed that SSD displayed cytotoxicity on the Ishikawa cell with an IC50 = 15.69 μM, but was non-toxic to the human normal cell line HEK293. SSD could upregulate p21 and Cyclin B to keep cells in the G2/M stage. In addition, it activated the death receptor and mitochondrion routes to induce apoptosis in Ishikawa cells. The transwell chamber and wound healing results showed that SSD inhibited the cell migration and invasion. In addition, we found that it was closely related to the MAPK cascade pathway, and it could mediate the three classical MAPK pathways to block cell metastasis. In conclusion, SSD could be potentially beneficial as a natural secondary metabolite in preventing and treating endometrial carcinoma.
Collapse
Affiliation(s)
- Tong-Tong Tang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, People's Republic of China.
| | - Li Jiang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, People's Republic of China.
| | - Qian Zhong
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, People's Republic of China; School of Biological Science and Engineering, Ningxia Key Laboratory for the Development and Application of Microbial Resources in Extreme Environments, North Minzu University, Yinchuan, 750021, People's Republic of China.
| | - Zhi-Jing Ni
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, People's Republic of China; School of Biological Science and Engineering, Ningxia Key Laboratory for the Development and Application of Microbial Resources in Extreme Environments, North Minzu University, Yinchuan, 750021, People's Republic of China.
| | - Kiran Thakur
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, People's Republic of China; School of Biological Science and Engineering, Ningxia Key Laboratory for the Development and Application of Microbial Resources in Extreme Environments, North Minzu University, Yinchuan, 750021, People's Republic of China.
| | - Mohammad Rizwan Khan
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia.
| | - Zhao-Jun Wei
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, People's Republic of China; School of Biological Science and Engineering, Ningxia Key Laboratory for the Development and Application of Microbial Resources in Extreme Environments, North Minzu University, Yinchuan, 750021, People's Republic of China.
| |
Collapse
|
18
|
Tao T, Zhang P, Zeng Z, Wang M. Advances in autophagy modulation of natural products in cervical cancer. JOURNAL OF ETHNOPHARMACOLOGY 2023; 314:116575. [PMID: 37142142 DOI: 10.1016/j.jep.2023.116575] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/23/2023] [Accepted: 05/01/2023] [Indexed: 05/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Natural products play a critical role in drug development and is emerging as a potential source of biologically active metabolites for therapeutic intervention, especially in cancer therapy. In recent years, there is increasing evidence that many natural products may modulate autophagy through various signaling pathways in cervical cancer. Understanding the mechanisms of these natural products helps to develop medications for cervical cancer treatments. AIM OF THE STUDY In recent years, there is increasing evidence that many natural products may modulate autophagy through various signaling pathways in cervical cancer. In this review, we briefly introduce autophagy and systematically describe several classes of natural products implicated in autophagy modulation in cervical cancer, hoping to provide valuable information for the development of cervical cancer treatments based on autophagy. MATERIALS AND METHODS We searched for studies on natural products and autophagy in cervical cancer on the online database and summarized the relationship between natural products and autophagy modulation in cervical cancer. RESULTS Autophagy is a lysosome-mediated catabolic process in eukaryotic cells that plays an important role in a variety of physiological and pathological processes, including cervical cancer. Abnormal expression of cellular autophagy and autophagy-related proteins has been implicated in cervical carcinogenesis, and human papillomavirus infection can affect autophagic activity. Flavonoids, alkaloids, polyphenols, terpenoids, quinones, and other compounds are important sources of natural products that act as anticancer agents. In cervical cancer, natural products exert the anticancer function mainly through the induction of protective autophagy. CONCLUSIONS The regulation of cervical cancer autophagy by natural products has significant advantages in inducing apoptosis, inhibiting proliferation, and reducing drug resistance in cervical cancer.
Collapse
Affiliation(s)
- Tao Tao
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Ping Zhang
- Department of Obstetrics and Gynecology, Shenyang Women's and Children's Hospital, Shenyang, Liaoning Province, China
| | - Zhi Zeng
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Min Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China.
| |
Collapse
|
19
|
Sarkar A, Paul A, Banerjee T, Maji A, Saha S, Bishayee A, Maity TK. Therapeutic advancements in targeting BCL-2 family proteins by epigenetic regulators, natural, and synthetic agents in cancer. Eur J Pharmacol 2023; 944:175588. [PMID: 36791843 DOI: 10.1016/j.ejphar.2023.175588] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/21/2023] [Accepted: 02/08/2023] [Indexed: 02/17/2023]
Abstract
Cancer is amongst the deadliest and most disruptive disorders, having a much higher death rate than other diseases worldwide. Human cancer rates continue to rise, thereby posing the most significant concerns for medical health professionals. In the last two decades, researchers have gone past several milestones in tackling cancer while gaining insight into the role of apoptosis in cancer or targeting various biomarker tools for prognosis and diagnosis. Apoptosis which is still a topic full of complexities, can be controlled considerably by B-cell lymphoma 2 (BCL-2) and its family members. Therefore, targeting proteins of this family to prevent tumorigenesis, is essential to focus on the pharmacological features of the anti-apoptotic and pro-apoptotic members, which will help to develop and manage this disorder. This review deals with the advancements of various epigenetic regulators to target BCL-2 family proteins, including the mechanism of several microRNAs (miRNAs) and long non-coding RNAs (lncRNAs). Similarly, a rise in natural and synthetic molecules' research over the last two decades has allowed us to acquire insights into understanding and managing the transcriptional alterations that have led to apoptosis and treating various neoplastic diseases. Furthermore, several inhibitors targeting anti-apoptotic proteins and inducers or activators targeting pro-apoptotic proteins in preclinical and clinical stages have been summarized. Overall, agonistic and antagonistic mechanisms of BCL-2 family proteins conciliated by epigenetic regulators, natural and synthetic agents have proven to be an excellent choice in developing cancer therapeutics.
Collapse
Affiliation(s)
- Arnab Sarkar
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, 700032, India.
| | - Abhik Paul
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, 700032, India.
| | - Tanmoy Banerjee
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, 700032, India.
| | - Avik Maji
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, 700032, India.
| | - Sanjukta Saha
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, 700032, India.
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, 34211, USA.
| | - Tapan Kumar Maity
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, 700032, India.
| |
Collapse
|
20
|
Wu PJ, Chiou HL, Hsieh YH, Lin CL, Lee HL, Liu IC, Ying TH. Induction of immunogenic cell death effect of licoricidin in cervical cancer cells by enhancing endoplasmic reticulum stress-mediated high mobility group box 1 expression. ENVIRONMENTAL TOXICOLOGY 2023. [PMID: 37013980 DOI: 10.1002/tox.23793] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/20/2023] [Accepted: 03/19/2023] [Indexed: 06/19/2023]
Abstract
Licoricidin (LCD) is an activity compound of the roots of Glycyrrhiza uralensis, which has therapeutic efficacy, including anti-virus, anti-cancer, and enhanced immunity in Traditional Chinese Medicine. Herein, this study aimed to clarify the effect of LCD on cervical cancer cells. In the present study, we found that LCD significantly inhibited cell viability via inducing cell apoptosis and companies with cleaved-PARP protein expression and caspase-3/-9 activity. Cell viability was markedly reversed these effects by pan-caspase inhibitor Z-VAD-FMK treatment. Furthermore, we showed that LCD-induced ER (endoplasmic reticulum) stress triggers upregulating the protein level of GRP78 (Bip), CHOP, and IRE1α, and subsequently confirmed the mRNA level by quantitative real-time polymerase chain reaction. In addition, LCD exhibited the release of danger-associated molecular patterns from cervical cancer cells, such as the release of high-mobility group box 1 (HMGB1), secretion of ATP, and exposure of calreticulin (CRT) on the cell surface, which led to immunogenic cell death (ICD). These results provide a novel foundation that LCD induces ICD via triggering ER stress in human cervical cancer cells. LCD might be an ICD inducer of immunotherapy in progressive cervical cancer.
Collapse
Affiliation(s)
- Pei-Ju Wu
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Obstetrics and Gynecology, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Hui-Ling Chiou
- School of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan
| | - Yi-Hsien Hsieh
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chia-Liang Lin
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Hsiang-Lin Lee
- Department of Surgery, Chung Shan Medical University Hospital, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - I-Chun Liu
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Tsung-Ho Ying
- Department of Obstetrics and Gynecology, Chung Shan Medical University Hospital, Taichung, Taiwan
- Department of Obstetrics and Gynecology, School of Medicine, College of Medicine, Chung Shan Medical University, Taichung, Taiwan
| |
Collapse
|
21
|
Li XL, Yin Q, Wang W, Ma RH, Ni ZJ, Thakur K, Zhang JG, Wei ZJ. Effect of ginsenoside CK combined with cisplatin on the proliferation and migration of human cervical cancer HeLa cells via Ras/ERK/MAPK pathway. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
|
22
|
How ginseng regulates autophagy: Insights from multistep process. Biomed Pharmacother 2023; 158:114139. [PMID: 36580724 DOI: 10.1016/j.biopha.2022.114139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/03/2022] [Accepted: 12/13/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Although autophagy is a recognized contributor to the pathogenesis of human diseases, chloroquine and hydroxychloroquine are the only two FDA-approved autophagy inhibitors to date. Emerging evidence has revealed the potential therapeutic benefits of various extracts and active compounds isolated from ginseng, especially ginsenosides and their derivatives, by mediating autophagy. Mechanistically, active components from ginseng mediate key regulators in the multistep processes of autophagy, namely, initiation, autophagosome biogenesis and cargo degradation. AIM OF REVIEW To date, a review that systematically described the relationship between ginseng and autophagy is still lacking. Breakthroughs in finding the key players in ginseng-autophagy regulation will be a promising research area, and will provide positive insights into the development of new drugs based on ginseng and autophagy. KEY SCIENTIFIC CONCEPTS OF REVIEW Here, we comprehensively summarized the critical roles of ginseng-regulated autophagy in treating diseases, including cancers, neurological disorders, cardiovascular diseases, inflammation, and neurotoxicity. The dual effects of the autophagy response in certain diseases are worthy of note; thus, we highlight the complex impacts of both ginseng-induced and ginseng-inhibited autophagy. Moreover, autophagy and apoptosis are controlled by multiple common upstream signals, cross-regulate each other and affect certain diseases, especially cancers. Therefore, this review also discusses the cross-signal transduction pathways underlying the molecular mechanisms and interaction between ginseng-regulated autophagy and apoptosis.
Collapse
|
23
|
Li W, Li H, Zheng L, Xia J, Yang X, Men S, Yuan Y, Fan Y. Ginsenoside CK improves skeletal muscle insulin resistance by activating DRP1/PINK1-mediated mitophagy. Food Funct 2023; 14:1024-1036. [PMID: 36562271 DOI: 10.1039/d2fo02026b] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Skeletal muscle insulin resistance is the main cause of type 2 diabetes, and mitochondria play a key role. Ginsenoside CK is the main active compound of ginseng with a variety of therapeutic effects, but few studies have reported on its mechanism towards skeletal muscle insulin resistance. Here, we found that CK significantly increased skeletal muscle insulin sensitivity, thereby alleviating hyperglycemia and insulin resistance. Furthermore, the effects of CK on skeletal muscle were associated with an improved mitochondrial fusion/fission dynamics balance and fatty acid oxidation. In fatty acid (FA)-induced C2C12 cells, CK promoted the translocation of GLUT4 to the cell membrane to improve glucose uptake and glycogen synthesis and also enhanced the mitochondrial quality. CK ameliorated the damaged mitochondrial membrane potential (ΔΨm), which was based on mitophagy activation. After the knockdown of mitophagy-related receptors, we found that DRP1/PINK1 was the key pathway of CK-induced mitophagy. These findings indicated that ginsenoside CK is a promising lead compound against diabetes.
Collapse
Affiliation(s)
- Weili Li
- Engineering Research Center of Glycoconjugates of Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun, China.
| | - Haiyang Li
- Engineering Research Center of Glycoconjugates of Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun, China.
| | - Lujuan Zheng
- Engineering Research Center of Glycoconjugates of Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun, China.
| | - Jing Xia
- Engineering Research Center of Glycoconjugates of Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun, China.
| | - Xiaoxuan Yang
- Engineering Research Center of Glycoconjugates of Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun, China.
| | - Shuhan Men
- Engineering Research Center of Glycoconjugates of Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun, China.
| | - Ye Yuan
- Engineering Research Center of Glycoconjugates of Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun, China.
| | - Yuying Fan
- Engineering Research Center of Glycoconjugates of Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun, China.
| |
Collapse
|
24
|
Han G, Wang J, Li Y, Chen Z, Xu X, Liu T, Wang Y, Bai F, Liu K, Zhao Y. Novel Peptide from the Hydrolysate of Hybrid Sturgeon ( Acipenseridae) Spinal Cord: Isolation, Identification, and Anti-proliferative Effects in Human Cervix Cancer Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:770-779. [PMID: 36541899 DOI: 10.1021/acs.jafc.2c07594] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Anti-proliferative peptides have recently attracted attention for their excellent bioactivity and biocompatibility. In this paper, five novel anti-proliferative peptides were identified from the hydrolysate of hybrid sturgeon spinal cord (HSSC). In addition, the structure-activity relationship of the novel anti-proliferative peptides was explored. In vitro experiments indicated that the peptide "VDSVLDVVRK" presented the highest inhibition of HeLa cell growth in all samples (IC50 = 2.5 μM). VDSVLDVVRK showed a random coil secondary structure and nanomicelles in the tumor microenvironment. Transmission electron microscopy results confirmed that nanomicelles disassemble as the concentration of VDSVLDVVRK decreases. Furthermore, VDSVLDVVRK could induce HeLa cell apoptosis by increasing the expression of Cyt-c (98.65 ± 1.85%, p < 0.01) and caspase-9 (39.85 ± 1.81%, p < 0.01). In this study, the anti-proliferative mechanism of the HSSC peptide was discussed, which provided a theoretical basis for the research and development of anti-proliferative functional food.
Collapse
Affiliation(s)
- Guixin Han
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003 Shandong, P.R. China
| | - Jinlin Wang
- Quzhou Sturgeon Aquatic Food Science and Technology Development Co., Ltd., Quzhou 324002 Zhejiang, P.R. China
| | - Yujin Li
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003 Shandong, P.R. China
| | - Zefan Chen
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003 Shandong, P.R. China
| | - Xinxing Xu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003 Shandong, P.R. China
| | - Tianhong Liu
- Marine Science Research Institute of Shandong Province, Qingdao 266104 Shandong, P.R. China
| | - Ying Wang
- Marine Science Research Institute of Shandong Province, Qingdao 266104 Shandong, P.R. China
| | - Fan Bai
- Quzhou Sturgeon Aquatic Food Science and Technology Development Co., Ltd., Quzhou 324002 Zhejiang, P.R. China
| | - Kang Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003 Shandong, P.R. China
| | - Yuanhui Zhao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003 Shandong, P.R. China
| |
Collapse
|
25
|
Anthocyanins from Lycium ruthenicum Murray Inhibit HepG2 Cells Growth, Metastasis and Promote Apoptosis and G2/M Phase Cycle Arrest by Activating the AMPK/mTOR Autophagy Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:9609596. [PMID: 36619198 PMCID: PMC9822762 DOI: 10.1155/2022/9609596] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 12/02/2022] [Accepted: 12/12/2022] [Indexed: 12/31/2022]
Abstract
Among the most common malignancies in humans, liver cancer ranks third in terms of mortality in the world. Seeking new anticancer drugs or adjuvant chemotherapy drugs from natural products has attracted the attention of many researchers. Lycium ruthenicum Murray (LR), a health food and traditional Chinese medicine, exerts extensive pharmacological properties, of which anthocyanins are one of the key active components. In this research, we explored the antitumor activity and autophagy regulation mechanism of anthocyanins from Lycium ruthenicum Murray (ALR) in HepG2 cells. Our results found that ALR profoundly reduced the cell viability, clone formation, migration, and invasion and promoted apoptosis and G2/M phase arrest of HepG2 cells in a dose-dependent pattern. Further studies confirmed that ALR treatment significantly increased the number of autophagic vacuoles and autophagosomes, upregulated the expression of Beclin-1, p62, LC3-II/LC3-I, and p-AMPK, and concomitantly downregulated the expression of p-mTOR. When autophagy was inhibited by 3-methyladenine (3-MA), ALR-induced proliferation inhibition, invasion, and migration capabilities, as well as apoptosis rate and G2/M phase arrest, were all reversed, and the activities of key proteins in the AMPK/mTOR pathway were all constrained. In summary, the results presented here indicate that ALR may be effective as a natural antitumor agent by activating AMPK and inhibiting the mTOR autophagy pathway in HepG2 cells.
Collapse
|
26
|
Chang L, Wang D, Kan S, Hao M, Liu H, Yang Z, Xia Q, Liu W. Ginsenoside Rd inhibits migration and invasion of tongue cancer cells through H19/miR-675-5p/CDH1 axis. J Appl Oral Sci 2022; 30:e20220144. [PMID: 36074434 PMCID: PMC9444189 DOI: 10.1590/1678-7757-2022-0144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/18/2022] [Indexed: 11/27/2022] Open
Abstract
Objective Tongue squamous cell carcinoma (TSCC) is an oral cancer, with high malignancy and frequent early migration and invasion. Only a few drugs can treat tongue cancer. Ginsenoside Rd is a ginseng extract with anti-cancer effects. Many noncoding RNAs are abnormally expressed in tongue cancer, thus influencing its occurrence and development. H19 and miR-675-5p can promote cancer cell growth. This study aimed to analyze the regulation effect of ginsenoside Rd on H19 and miR-675-5p in tongue cancer. Methodology We used CCK8 and flow cytometry to study the growth and apoptosis. Transwell assay was used to assess invasion; wound-healing assay to assess migration; and colony formation assays to test the ability of cells to form colonies. H19, miR-675-5p, and CDH1 expressions were analyzed by qPCR. E-cadherin expression was detected using western blot. CRISPR/cas9 system was used for CDH1 knockout. Results Ginsenoside Rd inhibited the growth and increased the apoptosis of SCC9 cells. Ginsenoside Rd also inhibited the migration and invasion of SCC9 cells. H19 and miR-675-5p were highly expressed, while CDH1 and E-cadherin expressions were low. H19 and miR-675-5p promoted SCC9 metastasis. In contrast, CDH1 and E-cadherin inhibited the metastasis of SCC9 cells. Bioinformatics analysis showed that miR-675-5p was associated with CDH1. H19 and miR-675-5p expressions decreased after ginsenoside Rd treatment, while CDH1 and E-cadherin expressions increased. Conclusions Ginsenoside Rd inhibits tongue cancer cell migration and invasion via the H19/miR-675-5p/CDH1 axis.
Collapse
Affiliation(s)
- Lu Chang
- Jilin University, Hospital of Stomatology, Department of Oral and Maxillofacial Surgery, Changchun, China.,Jilin University, College of Animal Science, Laboratory Animal Center, Changchun, China.,Jilin University, Hospital of Stomatology, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, China
| | - Dongxu Wang
- Jilin University, College of Animal Science, Laboratory Animal Center, Changchun, China
| | - Shaoning Kan
- Jilin University, Hospital of Stomatology, Department of Oral and Maxillofacial Surgery, Changchun, China
| | - Ming Hao
- Jilin University, Hospital of Stomatology, Department of Oral and Maxillofacial Surgery, Changchun, China
| | - Huimin Liu
- Jilin University, Hospital of Stomatology, Department of Oral and Maxillofacial Surgery, Changchun, China
| | - Zhijing Yang
- Jilin University, Hospital of Stomatology, Department of Oral and Maxillofacial Surgery, Changchun, China
| | - Qianyun Xia
- Jilin University, College of Animal Science, Laboratory Animal Center, Changchun, China
| | - Weiwei Liu
- Jilin University, Hospital of Stomatology, Department of Oral and Maxillofacial Surgery, Changchun, China
| |
Collapse
|
27
|
Song WS, Kim MJ, Shin KC, Oh DK. Increased Production of Ginsenoside Compound K by Optimizing the Feeding of American Ginseng Extract during Fermentation by Aspergillus tubingensis. J Microbiol Biotechnol 2022; 32:902-910. [PMID: 35719083 PMCID: PMC9628922 DOI: 10.4014/jmb.2203.03059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 12/15/2022]
Abstract
The ginsenoside compound K (C-K) is widely used in traditional medicines, nutritional supplements, and cosmetics owing to its diverse pharmacological activities. Although many studies on C-K production have been conducted, fermentation is reported to produce C-K with low concentration and productivity. In the present study, addition of an inducer and optimization of the carbon and nitrogen sources in the medium were performed using response surface methodology to increase the C-K production via fermentation by Aspergillus tubingensis, a generally recognized as safe fungus. The optimized inducer and carbon and nitrogen sources were 2 g/l rice straw, 10 g/l sucrose, and 10 g/l soy protein concentrate, respectively, and they resulted in a 3.1-fold increase in the concentration and productivity of C-K (0.22 g/l and 1.52 mg/l/h, respectively) compared to those used before optimization without inducer (0.071 g/l and 0.49 mg/l/h, respectively). The feeding methods of American ginseng extract (AGE), including feeding timing, feeding concentration, and feeding frequency, were also optimized. Under the optimized conditions, A. tubingensis produced 3.96 mM (2.47 g/l) C-K at 144 h by feeding two times with 8 g/l AGE at 48 and 60 h, with a productivity of 17.1 mg/l/h. The concentration and productivity of C-K after optimization of feeding methods were 11-fold higher than those before the optimization (0.22 g/l and 1.52 mg/l/h, respectively). Thus, the optimization for the feeding methods of ginseng extract is an efficient strategy to increase C-K production. To our knowledge, this is the highest reported C-K concentration and productivity via fermentation reported so far.
Collapse
Affiliation(s)
- Woo-Seok Song
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Min-Ju Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Kyung-Chul Shin
- Department of Integrative Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea,Corresponding authors K.C. Shin E-mail:
| | - Deok-Kun Oh
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea,Department of Integrative Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea,
D.K. Oh Phone: +82-2-454-3118 Fax: +82-2-444-5518 E-mail:
| |
Collapse
|
28
|
Apigenin inhibits migration and induces apoptosis of human endometrial carcinoma Ishikawa cells via PI3K-AKT-GSK-3β pathway and endoplasmic reticulum stress. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
29
|
Sun Q, Zhen P, Li D, Liu X, Ding X, Liu H. Amentoflavone promotes ferroptosis by regulating reactive oxygen species (ROS) /5’AMP-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) to inhibit the malignant progression of endometrial carcinoma cells. Bioengineered 2022; 13:13269-13279. [PMID: 35635082 PMCID: PMC9275900 DOI: 10.1080/21655979.2022.2079256] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
It was reported that amentoflavone (AF) had anti-tumor ability. Therefore, this study aimed to investigate the role of AF in endometrial cancer as well as to discuss its underlying mechanism. The viability, proliferation, and apoptosis of endometrial carcinoma cells (KLE) with AF administration were detected by methyl tetrazolium (MTT) assay, clone formation, and terminal deoxynucleotidyl transferase (TdT) dUTP Nick-End Labeling (TUNEL) assays. Thiobarbituric acid reactive substance (TBARS) production and Fe2+ level in AF-treated KLE cells were detected by TBARS assay and Iron assay. The expressions of proliferation- apoptosis-, ferroptosis-, and 5'AMP-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) signaling-related proteins in AF-treated KLE cells were detected by western blot analysis. Reactive oxygen species (ROS) expression in AF-treated KLE cells was determined by ROS assay kit. N-acetyl cysteine (NAC), which is an inhibitor of ROS, was used to confirm whether AF exerted its effects on KLE cells through ROS/AMPK/mTOR signaling. As a result, AF inhibited the viability and proliferation of KLE cells but promoted apoptosis and ferroptosis. The expressions of ROS and AMPK were increased, while mTOR expression was decreased in AF-treated KLE cells. NAC reversed the effects of AF on biological behaviors of KLE cells by inactivating ROS/AMPK/mTOR signaling. In conclusion, AF promoted ferroptosis by activating ROS/AMPK/mTOR to inhibit the viability and proliferation and promoted the apoptosis and ferroptosis of KLE cells.
Collapse
Affiliation(s)
- Qi Sun
- Traditional Chinese Medicine (Mongolian Medicine) College, Chifeng University, Chifeng, Inner Mongolia, China
| | - Peng Zhen
- Department of Radiation Oncology, Chifeng Cancer Hospital, Chifeng, Inner Mongolia, China
| | - Dandan Li
- Rehabilitation Department, Chifeng Cancer Hospital, Chifeng, Inner Mongolia, China
| | - Xiaochen Liu
- Rehabilitation Department, Chifeng Cancer Hospital, Chifeng, Inner Mongolia, China
| | - Xinling Ding
- Department of Human Anatomy, Basic Medical College, Chifeng University, Chifeng, Inner Mongolia, China
| | - Huihui Liu
- Cancer Rehabilitation Department, Chifeng Cancer Hospital, Chifeng, Inner Mongolia, China
| |
Collapse
|
30
|
Liu Y, Li H, Zheng Z, Niu A, Liu S, Li W, Ren P, Liu Y, Inam M, Guan L, Ma H. Rosa rugosa polysaccharide induces autophagy-mediated apoptosis in human cervical cancer cells via the PI3K/AKT/mTOR pathway. Int J Biol Macromol 2022; 212:257-274. [DOI: 10.1016/j.ijbiomac.2022.05.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 12/24/2022]
|
31
|
Wang K, Qian R, Li H, Wang C, Ding Y, Gao Z. Interpreting the Pharmacological Mechanisms of Sho-saiko-to on Thyroid Carcinoma through Combining Network Pharmacology and Experimental Evaluation. ACS OMEGA 2022; 7:11166-11176. [PMID: 35415320 PMCID: PMC8991932 DOI: 10.1021/acsomega.1c07335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
Sho-saiko-to is a well-known traditional Chinese medicine compound and is considered to have therapeutic effects against many diseases, including thyroid cancer (TC). However, the mechanisms and therapeutic targets of Sho-saiko-to against TC remain unclear. In this study, network pharmacology, molecular docking, and cell experiments were combined to predict and verify the targets and mechanisms of the active ingredients of Sho-saiko-to against TC. The results demonstrated that the main chemical ingredients of Sho-saiko-to could suppress the viability and proliferation of TC cells, promote apoptosis through the caspase3 pathway, and induce autophagy through the PI3K-AKT pathway. In addition, Sho-saiko-to could also induce the redifferentiation of anaplastic thyroid cancer. Our study provides a novel approach for treating differentiated thyroid cancer (DTC) or radioactive iodine refractory differentiated thyroid cancer (RAIR-DTC).
Collapse
Affiliation(s)
- Kun Wang
- Department
of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei
Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Ruijie Qian
- Department
of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei
Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Hongyan Li
- Department
of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei
Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Chenyang Wang
- Department
of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei
Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Ying Ding
- Department
of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei
Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Zairong Gao
- Department
of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei
Key Laboratory of Molecular Imaging, Wuhan 430022, China
| |
Collapse
|
32
|
Xue P, Zhang G, Zhao H, Wang W, Zhang J, Ren L. Serum albumin complexed with ellagic acid from pomegranate peel and its metabolite urolithin B. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101618] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
33
|
Pang H, Wu T, Peng Z, Tan Q, Peng X, Zhan Z, Song L, Wei B. Baicalin induces apoptosis and autophagy in human osteosarcoma cells by increasing ROS to inhibit PI3K/Akt/mTOR, ERK1/2 and β-catenin signaling pathways. J Bone Oncol 2022; 33:100415. [PMID: 35573641 PMCID: PMC9091934 DOI: 10.1016/j.jbo.2022.100415] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/16/2022] [Accepted: 01/28/2022] [Indexed: 12/22/2022] Open
Abstract
Baicalin causes apoptosis and autophagy through accumulating ROS to suppress PI3K/Akt/mTOR, ERK1/2 and β-catenin pathways in OS cells. Baicalin-induced autophagosome further triggers apoptosis. Baicalin-induced ROS and Ca2+ interactions induce apoptosis. Baicalin molecule targets PI3Kγ, inhibiting downstream effectors AKT and mTOR.
Baicalin, a flavonoid derivative, exerts antitumor activity in a variety of neoplasms. However, whether baicalin exerts antitumor effects on osteosarcoma cells remains to be elucidated. In this study, treatment with baicalin reduced the proliferation and invasive potential of osteosarcoma cells and reduced the mitochondrial membrane potential, which eventually caused mitochondrial apoptosis. In addition, baicalin increased intercellular Ca2+ and ROS concentrations. Baicalin-induced apoptosis was confirmed by enhanced Bax, cleaved caspase-3, and cleaved PARP levels and decreased Bcl-2 levels. The increase in LC3-II and p62 suggested that baicalin induced autophagosome formation but ultimately inhibited downstream autophagy. Moreover, apoptosis induced by baicalin was attenuated by the addition of 3-MA. Furthermore, we found that baicalin inhibited the PI3K/Akt/mTOR, ERK1/2 and β-catenin signaling pathways. Chelation of free Ca2+ by BAPTA-AM also inhibited both apoptosis induction and ROS concentration changes. Finally, NAC pretreatment reversed baicalin treatment outcomes, including the increase in Ca2+ concentration, induction of apoptosis and autophagy, and inhibition of the pathways. Molecular docking results indicated that baicalin might interact with the structural domain of PI3Kγ. Thus, baicalin may be considered a potential candidate for osteosarcoma treatment.
Collapse
Affiliation(s)
- He Pang
- Orthopedics Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Tingrui Wu
- Orthopedics Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Zhonghua Peng
- Orthopedics Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Qichao Tan
- Orthopedics Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Xin Peng
- Orthopedics Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Zeyu Zhan
- Orthopedics Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Lijun Song
- Reproductive Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
- Corresponding authors.
| | - Bo Wei
- Orthopedics Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
- Corresponding authors.
| |
Collapse
|
34
|
Ding L, Gu S, Zhou B, Wang M, Zhang Y, Wu S, Zou H, Zhao G, Gao Z, Xu L. Ginsenoside Compound K Enhances Fracture Healing via Promoting Osteogenesis and Angiogenesis. Front Pharmacol 2022; 13:855393. [PMID: 35462912 PMCID: PMC9020191 DOI: 10.3389/fphar.2022.855393] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
Fractures have an extraordinarily negative impact on an individual’s quality of life and functional status, particularly delayed or non-union fractures. Osteogenesis and angiogenesis are closely related to bone growth and regeneration, and bone modeling and remodeling. Recently Chinese medicine has been extensively studied to promote osteogenic differentiation in MSCs. Studies have found that Ginseng can be used as an alternative for tissue regeneration and engineering. Ginseng is a commonly used herbal medicine in clinical practice, and one of its components, Ginsenoside Compound K (CK), has received much attention. Evidence indicates that CK has health-promoting effects in inflammation, atherosclerosis, diabetics, aging, etc. But relatively little is known about its effect on bone regeneration and the underlying cellular and molecular mechanisms. In this study, CK was found to promote osteogenic differentiation of rat bone marrow mesenchymal stem cells (rBMSCs) by RT-PCR and Alizarin Red S staining in vitro. Mechanistically, we found CK could promote osteogenesis through activating Wnt/β-catenin signaling pathway by immunofluorescence staining and luciferase reporter assay. And we also showed that the tube formation capacity of human umbilical vein endothelial cells (HUVECs) was increased by CK. Furthermore, using the rat open femoral fracture model, we found that CK could improve fracture repair as demonstrated by Micro-CT, biomechanical and histology staining analysis. The formation of H type vessel in the fracture callus was also increased by CK. These findings provide a scientific basis for treating fractures with CK, which may expand its application in clinical practice.
Collapse
Affiliation(s)
- Lingli Ding
- Key Laboratory of Orthopaedics and Traumatology, Lingnan Medical Research Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Song Gu
- The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Bingyu Zhou
- Key Laboratory of Orthopaedics and Traumatology, Lingnan Medical Research Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Min Wang
- Key Laboratory of Orthopaedics and Traumatology, Lingnan Medical Research Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yage Zhang
- Key Laboratory of Orthopaedics and Traumatology, Lingnan Medical Research Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Siluo Wu
- Key Laboratory of Orthopaedics and Traumatology, Lingnan Medical Research Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hong Zou
- Engineering Laboratory for Nutrition, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Guoping Zhao
- Master Lab for Innovative Application of Nature Products, National Center of Technology Innovation for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- Bio-Med Big Data Center, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
- State Key Laboratory of Genetic Engineering, Department of Microbiology and Immunology, School of Life Sciences, Fudan University, Shanghai, China
- Department of Microbiology, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
- *Correspondence: Guoping Zhao, ; Zhao Gao, ; Liangliang Xu,
| | - Zhao Gao
- Er Sha Sports Training Center of Guangdong Province, Guangzhou, China
- *Correspondence: Guoping Zhao, ; Zhao Gao, ; Liangliang Xu,
| | - Liangliang Xu
- Key Laboratory of Orthopaedics and Traumatology, Lingnan Medical Research Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Guoping Zhao, ; Zhao Gao, ; Liangliang Xu,
| |
Collapse
|
35
|
Aroua LM, Al-Hakimi AN, Abdulghani MA, Alhag SK. Elaboration of novel urea bearing schiff bases as potent in vitro anticancer candidates with low in vivo acute oral toxicity. MAIN GROUP CHEMISTRY 2022. [DOI: 10.3233/mgc-220019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A novel series of urea Schiff base derivatives were synthesized via the condensation of o-phenylenediamine, naphthyl isocyanate and appropriate aryl aldehyde. The results of the in vitro cytotoxic activities of compounds 5a–h against cancer cells lines PC3, SKOV-3 and HeLa, revealed that almost all compounds exhibited good to moderate activities Compound 5g owing bromine atom at p-position displayed higher activity compared to homolog 5b possessing chlorine atom due to adequate diameter of bromine which is more favourable than chlorine for the inhibition activity. In addition, compound 5h is the best candidate of this series exhibiting excellent activity for three cancer cells lines. Compound 5h demonstrated also an excellent activity with IC50 value of 0.6±0.3μg/mL for prostate cancer cell line PC3 and it is considered more effective than the standard drug doxorubicin Dox (IC50 = 2.6±0.03μg/mL). The most active compound 5h displayed the best activity against ovarian cancer cell line SKOV3 with IC50 = 1.8±0.2μg/mL. This results are higher than clinically used drug Dox (IC50. 2.2±0.02μg/mL). The results of screening activities cytotoxic effect toward cervix cancer cell line HeLa, affirm that compound 5h manifest an activity with IC50 value of 2.2±0.4μg/mL comparable to Dox (IC50. 1.9±0.04μg/mL). In the current study, in vivo acute oral toxicity assessment of urea Schiff base hybrid compounds 5a – h indicated that there was no mortality on treated female mice during 14 days assessment test compared with the vehicle-treated group confirming the safety with LD50 greater than 2000 mg/kg. In the actual study, the results affirmed that compounds 5a–h manifested in vivo no toxicity to saint cells, the compounds 5b, 5g and 5h presented higher anticancer activities against three cancer cells which authorizes promoters to use them as candidate anticancer agents.
Collapse
Affiliation(s)
- Lotfi M. Aroua
- Department of Chemistry, College of Science, Qassim University, Campus University, King Abdulaziz Road, Al-Malida, Buraydah, Qassim, Kingdom of Saudi Arabia
- Laboratory of Organic Structural Chemistry & Macromolecules, Department of Chemistry, Faculty of Sciences of Tunis, Tunis El-Manar University, El Manar, Tunis Tunisia
- Carthage University, Department of Chemistry, Faculty of Sciences of Bizerte, Jarzouna, Tunisia
| | - Ahmed N. Al-Hakimi
- Department of Chemistry, College of Science, Qassim University, Campus University, King Abdulaziz Road, Al-Malida, Buraydah, Qassim, Kingdom of Saudi Arabia
- Department of Chemistry, Faculty of Sciences, Ibb University, Ibb, Yemen
| | - Mahfoudh A.M. Abdulghani
- Department of Pharmacology & Toxicology, Unaizah College of Pharmacy, Qassim University, Qassim, Kingdom of Saudi Arabia
| | - Sadeq K. Alhag
- Department of Biology, College of Science and Arts, King Khalid University, Muhayl Asser, Saudi Arabia
- Department of Biology, College of Science, Ibb University, Yemen
| |
Collapse
|
36
|
Apatinib and Ginsenoside-Rb1 Synergetically Control the Growth of Hypopharyngeal Carcinoma Cells. DISEASE MARKERS 2022; 2022:3833489. [PMID: 35069931 PMCID: PMC8776476 DOI: 10.1155/2022/3833489] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 12/06/2021] [Accepted: 12/14/2021] [Indexed: 02/07/2023]
Abstract
Background Apatinib is an anticancer drug known to inhibit the vascular endothelial growth factor receptor-2 (VEGFR-2) through regulating tyrosine kinases. Drug resistance and reduced activity in various cancers is the matter of great concern; thus, researchers opt to use combination of the two or more drugs. So far, its gynergetic anticancer role with a traditional Chinese drug Ginsenoside-Rb1 (G-Rb1) has not been studied in cancers including hypopharyngeal carcinoma. Objective The current study is aimed at investigating the anticancer synergetic effects of G-Rb1 and apatinib in hypopharyngeal carcinoma. Methods The synergetic effects of both drugs on cell proliferation, wound healing and cell migration, and cell apoptosis were studied in hypopharyngeal carcinoma cells. Furthermore, the xenograft rat model was generated, and tumor inhibition was monitored after treating rats with both drugs as mono- and combination therapy. In addition, protein expression and localization were performed by western blotting and immunofluorescent staining, respectively. Results The analyses of the data showed that combination therapy of apatinib and G-Rb1 significantly inhibited the proliferation, migration, and wound healing capability of hypopharyngeal carcinoma cells. Moreover, the glycolysis rate of the cells in the combination therapy (apatinib and G-Rb1) group was significantly decreased as compared to that in the monotherapy group or no treatment group, suggesting that the glycolysis inhibition led to the inhibition of tumor growth. Moreover, the combination therapy on xenograft rats dramatically reduced the tumor size. Furthermore, combination therapy also exhibited an increased count of CD3+ and CD4+ T cells, as well as the ratio between CD4+ and CD8+ T cells. Conclusion Interestingly, a combination of apatinib and G-Rb1 induced more tumor cell apoptosis and reduced cell proliferation than the individual drug treatment and promote antitumor immunity by enhancing immunomodulatory molecules. Thus, we believe that this study could serve as a valuable platform to assess the synergetic anticancer effects of the herbal as well as synthetic medicines.
Collapse
|
37
|
Ma YL, Yang Y, Thakur K, Cespedes-Acuña CL, Zhang JG, Wei ZJ. Evaluation of spatial memory and anti-fatigue function of long-term supplementation of <i>β</i>-alanine and confirmation through cAMP-PKA and apoptosis pathways in mice. EFOOD 2021. [DOI: 10.53365/efood.k/144395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
With an aim to explore the effects of <i>β</i>-alanine (<i>β</i>-A) on spatial memory and fatigue resistance, Kunming mice were treated with different concentrations of β-A (418, 836, and 2090 mg·kg<sup> -1</sup>·day<sup> -1</sup>). After gavage feeding with <i>β</i>-A for 10 weeks, results of the maze and MWM tests showed that <i>β</i>-A can enhance spatial learning and memory in mice. After evaluating the fatigue resistance, biochemical parameters (LG, GG, BUN, SOD, and MDA) showed significant differences in the low concentration treatment group compared to control group. Our data demonstrated that the appropriate dose of <i>β</i>-A can alleviate the oxidative stress and muscle fatigue in mice. Subsequently, expression of mRNA of key genes involved in cAMP-PKA pathway (PDE4A, MAPK1, adcy1, cAMP and CREB) was up regulated. Also, expression levels of apoptotic pathway genes were significantly affected as confirmed by qPCR and Western blotting. Our results demonstrated that <i>β</i>-A can enhance spatial learning and memory in mice via regulation of cAMP-PKA and apoptotic pathway.
Collapse
|