1
|
Liu H, Kenar J, Shere HTW, Schwamm RJ, Hill MS, Mahon MF, McMullin CL. Allosteric Differentiation of Al(I) Reactivity. Chemistry 2025; 31:e202501352. [PMID: 40211470 PMCID: PMC12117181 DOI: 10.1002/chem.202501352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2025] [Accepted: 04/10/2025] [Indexed: 04/26/2025]
Abstract
The dimeric potassium alumanyl, [{SiNDipp}AlK]2 ({SiNDipp} = {CH2SiMe2N(Dipp)}2; Dipp = 2,6-i-Pr2C6H3), reacts with two equivalents of PhC≡CR (R = Ph or SiMe3) with the exclusive formation of the aluminacyclopropene derivatives, [{SiNDipp}Al{η2-C2(R1)(R2)}]. In contrast, reactions with an equal stoichiometry of both alumanyl and alkyne reagents provide the products of not only alkyne cycloaddition but also para-C-H activation of a phenyl substituent. Supported by a theoretical study, this outcome is judged to result from a sequence of cooperative steps and the introduction of a modicum of kinetic discrimination that is suggested to be allosteric in origin.
Collapse
Affiliation(s)
- Han‐Ying Liu
- Department of ChemistryUniversity of Bath, Claverton DownBathBA2 7AYUK
| | - Jakub Kenar
- Department of ChemistryUniversity of Bath, Claverton DownBathBA2 7AYUK
| | - Henry T. W. Shere
- Department of ChemistryUniversity of Bath, Claverton DownBathBA2 7AYUK
| | - Ryan J. Schwamm
- Department of ChemistryUniversity of Bath, Claverton DownBathBA2 7AYUK
| | - Michael S. Hill
- Department of ChemistryUniversity of Bath, Claverton DownBathBA2 7AYUK
| | - Mary F. Mahon
- Department of ChemistryUniversity of Bath, Claverton DownBathBA2 7AYUK
| | | |
Collapse
|
2
|
Singh RP, Mankad NP. Molecular Design of Al(II) Intermediates for Small Molecule Activation. JACS AU 2025; 5:2076-2088. [PMID: 40443891 PMCID: PMC12117437 DOI: 10.1021/jacsau.5c00352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2025] [Revised: 04/22/2025] [Accepted: 04/25/2025] [Indexed: 06/02/2025]
Abstract
Promoting societally important small molecule activation processes with earth-abundant metals is foundational for a sustainable chemistry future. In this context, mapping new reaction pathways that would enable abundant main-group elements to mimic the behaviors of d- and f-block elements is facilitated by exploring unusual oxidation states. The most abundant metal on earth, aluminum, has been well studied in the Lewis acidic +III and Lewis basic +I oxidation states but rarely in the potentially biphilic +II oxidation state until recently, when a renaissance of Al-(II) chemistry emerged from a range of research groups. In this Perspective, we review the chemistry of mononuclear Al radicals, including both Al-centered radicals (i.e., Al-(II) compounds) and redox non-innocent systems (i.e., formally Al-(II) species that are physically Al-(III) with ligand-centered radicals), with an emphasis on small molecule reactivity. We also provide a meta-analysis of the Al-(II) literature to summarize how different design strategies (e.g., redox non-innocence, strained coordination geometries) have been shown to impart biphilic character to Al radicals and tune their behavior, thus allowing Al radicals to mimic the chemistry of certain d- and f-block metal ions such as Ti-(III) and Sm-(II). We expect these molecular design concepts to inform future Al-(II) studies as the chemistry of this unusual oxidation state of Al continues to grow.
Collapse
Affiliation(s)
- Roushan Prakash Singh
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois60607, United States
| | - Neal P. Mankad
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois60607, United States
| |
Collapse
|
3
|
Sarkar D, Vasko P, Ying L, Struijs JJC, Griffin LP, Aldridge S. Dehydrogenative Dual Ammonia Activation and Transfer by an N-Heterocyclic Boryloxy Aluminyl Compound. Angew Chem Int Ed Engl 2025; 64:e202502326. [PMID: 39979213 DOI: 10.1002/anie.202502326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 02/20/2025] [Accepted: 02/20/2025] [Indexed: 02/22/2025]
Abstract
The reactivity of an N-heterocyclic boryloxy (NHBO) ligated aluminyl compound has been harnessed for main-group-mediated dehydrogenative dual activation of ammonia. The Al(I) system K[{(HCDippN)2BO}2Al] reacts with excess NH3 to give the Al(III) bis(amide) K[{(HCDippN)2BO}2Al(NH2)2] and in the process generates H2. The initial stage of the reaction proceeds via formal N-H oxidative addition at Al(I) (via a coordination/proton shuttling sequence) to give an aluminium(III) primary amido hydride. Subsequent protonolysis of the strongly hydridic Al-H bond selectively yields the corresponding aluminium bis(amide) and H2. This step occurs without competing protolytic ligand loss - exploiting the limited basicity of the supporting [(boryl)O]- donors. In terms of amide transfer reactivity, the utility of K[{(HCDippN)2BO}2Al(NH2)2] in delivering one or both equivalents of [NH2]- to electrophilic substrates (HBpin, CO2 and Ph2CO) has been demonstrated.
Collapse
Affiliation(s)
- Debotra Sarkar
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK
| | - Petra Vasko
- Department of Chemistry, University of Helsinki, A.I. Virtasen Aukio 1, P.O. Box 55, FI-00014, Helsinki, Finland
| | - Lu Ying
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK
| | - Job J C Struijs
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK
| | - Liam P Griffin
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK
| | - Simon Aldridge
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK
| |
Collapse
|
4
|
Nguyen DT, Mondal R, Evans MJ, Parr JM, Jones C. Assembly of Functionalized Organic Fragments via Reductive Activation and (Cross)-Coupling of C 2H 4, CO, CO 2 and/or H 2 Using a Magnesium-Dinitrogen Complex. Angew Chem Int Ed Engl 2025; 64:e202500264. [PMID: 40016175 PMCID: PMC12051727 DOI: 10.1002/anie.202500264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 02/25/2025] [Accepted: 02/27/2025] [Indexed: 03/01/2025]
Abstract
Reactions of 1,2-dimagnesioethane compound [{K(TCHPNON)Mg}2(μ-C2H4)] (TCHPNON = 4,5-bis(2,4,6-tricyclohexylanilido)-2,7-diethyl-9,9-dimethyl-xanthene), formed by the two-electron reduction of ethene with a dimagnesium/dipotassium complex of reduced N2, viz. [{K(TCHPNON)Mg}2(μ-N2)], with CO and CO2 have been explored. In the case of the reaction with CO, cross-coupling of the reduced ethene fragment with two molecules of CO gave a heterobimetallic complex of the parent cyclobutenediolate dianion, [{K(TCHPNON)Mg}2(μ-O2C4H4)], which when exposed to THF gave adduct [{K(TCHPNON)Mg}2(μ-O2C4H4)(THF)]. Treating [{K(TCHPNON)Mg}2(μ-C2H4)] with CO2 led to the insertion of CO2 into both Mg─C bonds and all Mg─N bonds, yielding a magnesium succinate complex, [{K(TCHPNON-C2O4)Mg}2(μ-O4C4H4)], in which the diamide ligands have been converted to xanthene bridged dicarbamates. The reaction of [{K(TCHPNON)Mg}2(μ-N2)] with CO2, proceeded via reductive coupling of the heterocumulene to give the oxalate dianion, in addition to the insertion of CO2 into all Mg─N bonds of the magnesium-dinitrogen complex, forming dimeric [{K(TCHPNON-C2O4)Mg}2(μ-O4C2)]2. When treated with THF this yields monomeric [{K(THF)(TCHPNON-C2O4)Mg(THF)}2(μ-O4C2)]. Related chemistry results from the reaction of a dianionic magnesium(I) compound with CO2. In contrast, C─C bond formation was not observed in the reaction of [{K(TCHPNON)Mg}2(μ-N2)] with a CO2 analog, i.e., the carbodiimide CyNCNCy (Cy = cyclohexyl). Instead, H abstraction by a proposed radical intermediate gave polymeric formamidinate complex [K(TCHPNON)Mg{(CyN)2CH}]∞. Reaction of CO2 with the magnesium hydride complex [{K(TCHPNON)Mg(μ-H)}2] gave the unusual trimeric magnesium formate complex [{K(TCHPNON-CO2)Mg}(μ-O2CH)]3 in which CO2 has inserted into only one Mg─N bond of each TCHPNON ligand. This study highlights the capacity of [{K(TCHPNON)Mg}2(μ-N2)] to act as a masked dimagnesium(I) diradical in reductive coupling or cross-coupling of the simple gaseous reagents, C2H4, CO, CO2 and H2, to give value-added organic fragments.
Collapse
Affiliation(s)
- Dat T. Nguyen
- School of ChemistryMonash UniversityPO Box 23MelbourneVictoria3800Australia
| | - Rahul Mondal
- School of ChemistryMonash UniversityPO Box 23MelbourneVictoria3800Australia
| | - Matthew J. Evans
- School of ChemistryMonash UniversityPO Box 23MelbourneVictoria3800Australia
| | - Joseph M. Parr
- School of ChemistryMonash UniversityPO Box 23MelbourneVictoria3800Australia
| | - Cameron Jones
- School of ChemistryMonash UniversityPO Box 23MelbourneVictoria3800Australia
| |
Collapse
|
5
|
Singh RP, Quirion KP, Telser J, Ess DH, Mankad NP. Cooperative Heterobimetallic CO 2 Activation Involving a Mononuclear Aluminum(II) Intermediate. J Am Chem Soc 2025; 147:12715-12721. [PMID: 40178809 DOI: 10.1021/jacs.5c00944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Molecular chemistry of aluminum most commonly involves AlIII ions due to their noble gas electronic configurations. In contrast, the chemistry of AlII ions is underexplored and may contain undiscovered reaction manifolds. Here, we report the CO2 activation chemistry of a transient AlII intermediate supported by a chelating, dianionic ligand and investigate the electronic structure details and reaction mechanisms required to access this reactivity. We found that a heterobinuclear complex, (NON)Al-FeCp(CO)2 (1), undergoes Al-Fe bond homolysis at ambient conditions to reveal the [(NON)Al]•/[CpFe(CO)2]• radical pair in situ. The presence of predominantly Al-centered spin density (i.e., an AlII ion) within this radical pair was established by quantum-chemical calculations and with experiments in which radical scavengers (TEMPO, benzophenone) induce Al-Fe bond homolysis. Exposure of 1 to CO2 atmosphere resulted in insertion of CO2 into the Al-Fe bond. This net 2-electron CO2 reduction process was computationally modeled using density functional theory and direct dynamics simulations, revealing that reduction involves two 1-electron steps and, thus, depends on stabilization of high-energy [CO2]•- by coordination to aluminum. This mechanism for CO2 activation is unexpected given the canonical predisposition of CO2 for multielectron reduction processes and demonstrates the possibility of discovering new reaction profiles using earth-abundant elements in unusual oxidation states.
Collapse
Affiliation(s)
- Roushan Prakash Singh
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, United States
| | - Kevin P Quirion
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84604, United States
| | - Joshua Telser
- Department of Biological, Physical and Health Sciences, Roosevelt University, Chicago, Illinois 60605, United States
| | - Daniel H Ess
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84604, United States
| | - Neal P Mankad
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, United States
| |
Collapse
|
6
|
Murphy F, Kennedy AR, Weetman CE. Divergent reduction chemistry of NHC-aluminium(III) hydrides. Dalton Trans 2025; 54:6038-6042. [PMID: 40163545 DOI: 10.1039/d5dt00379b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Understanding and controlling facile reduction chemistry is a key challenge in molecular main group chemistry. Herein, we report the divergent reduction chemistry of aluminium(III) hydrides supported by N-heterocyclic carbenes (NHCs). Choice of reducing agent and NHC ligand are key, with Al(II) dialanes, Al(II) cations, asymmetric Al(II) dialanes and ligand exchange reactions all identified via NMR and single crystal X-ray diffraction.
Collapse
Affiliation(s)
- Fáinché Murphy
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow, G1 1XL, UK.
| | - Alan R Kennedy
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow, G1 1XL, UK.
| | - Catherine E Weetman
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow, G1 1XL, UK.
| |
Collapse
|
7
|
O'Reilly A, Booth AMS, Smith GWA, Evans MJ, Feng Lim L, Pantazis DA, Cox N, McMullin CL, Fulton JR, Coles MP. Reaction of a Potassium Aluminyl with Sn[N(SiMe 3) 2] 2 - Isolation of a Stable, Trimetallic Sn(I) Radical Anion. Chemistry 2025; 31:e202500358. [PMID: 39953692 DOI: 10.1002/chem.202500358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 02/14/2025] [Accepted: 02/14/2025] [Indexed: 02/17/2025]
Abstract
The reaction of the potassium aluminyl K[Al(NON)] ([NON]2-=[O(SiMe2NDipp)2]2-, Dipp=2,6-iPr2C6H3) with the stannylene Sn[N(SiMe3)2]2 in benzene afforded K3[(Sn4){Al(NON)}2{N(SiMe3)2}], containing a distorted tetrahedral Sn4-cluster. Computational analysis indicates that four of the edges in this unit are composed of Sn-Sn bonds, with the remaining two that are spanned by aluminium involved in three centre two electron (3c2e) Sn-Al-Sn bonds. The formation of Al(II) species during this reaction is indicated by the isolation of the dialuminated cyclohexadiene 1,4-[Al(NON)]2(μ-C6H6). Repeating the reaction in methylcyclohexane generated a thermally stable, trimetallic Sn(I) radical anion in K[Sn{Al(NON)}2]. Compared to all other reported Sn(I) radicals, its EPR spectrum is unique; the main turning points of its spectrum appear at g values above 2 and the Sn hyperfine coupling is substantially smaller in magnitude. These data, together with ENDOR measurements and DFT calculations show that the SOMO is entirely localised in an unhybridised 5p orbital, such that spin-orbit contributions to the g and Sn hyperfine tensors are quenched.
Collapse
Affiliation(s)
- Andrea O'Reilly
- School of Chemical and Physical Sciences, Victoria University of Wellington, PO Box 600, Wellington, 6012, New Zealand
| | - Andrew M S Booth
- School of Chemical and Physical Sciences, Victoria University of Wellington, PO Box 600, Wellington, 6012, New Zealand
| | - George W A Smith
- School of Chemical and Physical Sciences, Victoria University of Wellington, PO Box 600, Wellington, 6012, New Zealand
| | - Matthew J Evans
- School of Chemical and Physical Sciences, Victoria University of Wellington, PO Box 600, Wellington, 6012, New Zealand
| | - Li Feng Lim
- Research School of Chemistry, The Australian National University, Canberra, ACT, 2601, Australia
| | - Dimitrios A Pantazis
- Max-Planck Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Nicholas Cox
- Research School of Chemistry, The Australian National University, Canberra, ACT, 2601, Australia
| | | | - J Robin Fulton
- School of Chemical and Physical Sciences, Victoria University of Wellington, PO Box 600, Wellington, 6012, New Zealand
| | - Martyn P Coles
- School of Chemical and Physical Sciences, Victoria University of Wellington, PO Box 600, Wellington, 6012, New Zealand
| |
Collapse
|
8
|
Zhang X, Kong L, Liu LL. Aluminadichalcogeniranes and Aluminatrichalcogenetanes: Heavier Analogs of Dioxiranes and Trioxetanes. Angew Chem Int Ed Engl 2025; 64:e202422335. [PMID: 39837791 DOI: 10.1002/anie.202422335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 12/30/2024] [Accepted: 01/21/2025] [Indexed: 01/23/2025]
Abstract
Dioxiranes and their heavier chalcogen analogs have long been recognized as pivotal reagents and intermediates in synthetic chemistry, while trioxetanes have largely remained theoretical constructs. In this work, we present the synthesis of neutral, isoelectronic aluminum/chalcogen analogs of dioxiranes and trioxetanes, specifically aluminadiselenirane, aluminaditellurirane, aluminatriselenetane, aluminatritelluretane, and a mixed Se/Te analog of aluminatrichalcogenetane. These compounds, featuring strained AlCh2 and AlCh3 ring (Ch=Se, Te), exhibit significant polarization between the aluminum and chalcogen components. Reactivity studies have revealed that both aluminadiselenirane and aluminaditellurirane show pronounced ambiphilic behavior when interacting with proximal substrates, undergoing facile ring-opening (cyclo)additions. Additionally, the coordination chemistry of aluminatriselenetane with a Lewis acid has been documented. These investigations not only broaden the repertoire of unique main group species but also provide access to heterocyclic structures that present synthetic challenges through conventional methods.
Collapse
Affiliation(s)
- Xin Zhang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Lingbing Kong
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Liu Leo Liu
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
9
|
Griffin LP, Bauer AK, Crumpton AE, Ellwanger MA, Heilmann A, Wiesner A, Neidig ML, Aldridge S. Synthesis, and Structural and Spectroscopic Analysis of Trielyl-Derived Complexes of Iron. Chemistry 2025; 31:e202404451. [PMID: 39960353 PMCID: PMC11937870 DOI: 10.1002/chem.202404451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 02/17/2025] [Indexed: 03/06/2025]
Abstract
The reactivity of group 13 anions of the form [(NON)E]- (NON=4,5-bis(2,6-diisopropylanilido)-2,7-di-tert-butyl-9,9-dimethyl-xanthene, E=Al, Ga, In) towards Fe(CO)5 has been investigated. In the case of the aluminyl system, both reaction outcome and product structure are highly sensitive to the availability of the potassium counterion; sequestration by 18-crown-6 is necessary to yield a species featuring a direct, unsupported Al-Fe bond. 2.2.2-Cryptand, by contrast, yields a species featuring bridging carbonyl ligands, while the use of no sequestering agent at all leads to isocarbonyl bridging to aluminium. Owing to their lower oxophilicity, the heavier congeners gallium and indium more straightforwardly deliver Fe-E bonded adducts (E=Ga, In). The series of trielyl iron complexes has been interrogated by structural and computational analyses, as well as by IR and Mössbauer spectroscopies, revealing a consistent shift in bond polarity and electron richness at iron as group 13 is descended. This in turn is consistent with the diminishing donor strength of the trielyl ligand with increasing atomic number.
Collapse
Affiliation(s)
- Liam P. Griffin
- Inorganic Chemistry LaboratoryDepartment of ChemistryUniversity of OxfordSouth Parks RoadOxfordOX1 3QRUK
| | - Alexis K. Bauer
- Inorganic Chemistry LaboratoryDepartment of ChemistryUniversity of OxfordSouth Parks RoadOxfordOX1 3QRUK
| | - Agamemnon E. Crumpton
- Inorganic Chemistry LaboratoryDepartment of ChemistryUniversity of OxfordSouth Parks RoadOxfordOX1 3QRUK
| | - Mathias A. Ellwanger
- Inorganic Chemistry LaboratoryDepartment of ChemistryUniversity of OxfordSouth Parks RoadOxfordOX1 3QRUK
| | - Andreas Heilmann
- Inorganic Chemistry LaboratoryDepartment of ChemistryUniversity of OxfordSouth Parks RoadOxfordOX1 3QRUK
| | - Anja Wiesner
- Institute of Inorganic ChemistryFreie Universität BerlinFabeckstr. 34/3614195BerlinGermany
| | - Michael L. Neidig
- Inorganic Chemistry LaboratoryDepartment of ChemistryUniversity of OxfordSouth Parks RoadOxfordOX1 3QRUK
| | - Simon Aldridge
- Inorganic Chemistry LaboratoryDepartment of ChemistryUniversity of OxfordSouth Parks RoadOxfordOX1 3QRUK
| |
Collapse
|
10
|
Mansikkamäki A, Chekkottu Parambil A. A framework for designing main-group single-molecule magnets. Phys Chem Chem Phys 2025. [PMID: 40018751 DOI: 10.1039/d4cp04790g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Single-molecule magnets (SMMs) are molecular entities with strongly anisotropic magnetic moment. As a result, SMMs display slow relaxation of magnetization at the macroscopic scale. Up to date all experimentally characterized SMMs are based on either d- or f-block metals with lanthanides proving to be the most successful. In the present work, a framework for constructing SMMs consisting purely of main-group elements will be outlined by computational and theoretical means. The proposed main-group SMMs utilize the strong spin-orbit coupling of a single heavy p-block atom or ion that can lead to strong magnetic anisotropy and pronounced SMM properties. A theoretical crystal-field model is developed to describe the magnetic properties of p-block SMMs with a minimal set of parameters related to the chemical structure of the SMMs. The model is used to establish which p-block elements and oxidation states can lead to SMM behavior. A large number of model structures are studied to establish general features of optimal chemical structures. These include one- and two-coordinate structures involving ligands with different coordination modes and all group 13 to 17 elements in periods 4 to 6. The results show that the most viable structures are based on mono-coordinated complexes of bismuth in oxidation state 0 with σ-donor ligands. Structures with bulkier ligands that sterically protect the bismuth atoms are then proposed as a starting point for the practical realization of main-group SMMs. The calculations show that minimizing the anagostic interactions with the bismuth atom is essential in the ligand design, which along with the low oxidation state of bismuth introduces significant synthetic challenges. The results do, however, show that main-group SMMs are plausible from a practical point of view within a limited set of heavier p-block elements in specific oxidation states. Furthermore, the proposed SMMs display much larger energy barriers for the relaxation of magnetization than even the best lanthanide-based SMMs do. This indicates that it is possible that main-group SMMs can supersede even the best currently known SMMs based on d- or f-block elements.
Collapse
|
11
|
O'Reilly A, Robson RA, Evans MJ, Fulton JR, Coles MP. Reductive Coupling of Ketones: Contrasting the Reactivity of an Aluminyl and a Gallyl Anion. Inorg Chem 2025; 64:3582-3593. [PMID: 39930786 DOI: 10.1021/acs.inorgchem.4c05519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
The synthesis of a new potassium gallyl system, K[Ga(NON)] ([NON]2- = [O(SiMe2NDipp)2]2-, Dipp = 2,6-iPr2C6H3), has been reported, and its reactivity toward a variety of ketones has been studied. The potassium gallyl is initially isolated as the contacted dimeric pair (CDP) [K{Ga(NON)}]2 but can be converted to the monomeric ion pair (MIP) (NON)Ga-K(TMEDA)2 or the separated ion pair (SIP) [K(222-crypt)][Ga(NON)] upon addition of coordinating polydentate ligands. The reaction of the CDP with two equivalents of benzophenone or 9-fluorenone per gallium center generates homocoupled pinacolate products. However, the reaction with acetophenone initially forms a gallium 1,3-phenylethene-1-olate, which C-C couples to a second equivalent of acetophenone to form an unprecedented gallium 1,3-diphenylbutane-1,3-diolate. This reactivity is contrasted with the analogous potassium aluminyl CDP [K{Al(NON)}]2, where preferential formation of the pinacolate product is observed under the same reaction conditions.
Collapse
Affiliation(s)
- Andrea O'Reilly
- School of Chemical and Physical Sciences, Victoria University of Wellington, P.O. Box 600, Kelburn, Wellington 6140, New Zealand
| | - Rebecca A Robson
- School of Chemical and Physical Sciences, Victoria University of Wellington, P.O. Box 600, Kelburn, Wellington 6140, New Zealand
| | - Matthew J Evans
- School of Chemical and Physical Sciences, Victoria University of Wellington, P.O. Box 600, Kelburn, Wellington 6140, New Zealand
| | - J Robin Fulton
- School of Chemical and Physical Sciences, Victoria University of Wellington, P.O. Box 600, Kelburn, Wellington 6140, New Zealand
| | - Martyn P Coles
- School of Chemical and Physical Sciences, Victoria University of Wellington, P.O. Box 600, Kelburn, Wellington 6140, New Zealand
| |
Collapse
|
12
|
Byrne KM, Hicks J, Griffin LP, Aldridge S, Krämer T. Hydride Rebound: A Frustrated Lewis Pair (FLP)-Type Cooperative Mechanism for H 2 Activation by a Potassium Aluminyl Compound. Chemistry 2025; 31:e202500095. [PMID: 39821938 DOI: 10.1002/chem.202500095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 01/15/2025] [Accepted: 01/16/2025] [Indexed: 01/19/2025]
Abstract
Combining experiment and theory, the mechanisms of H2 activation by the potassium-bridged aluminyl dimer K2[Al(NON)]2 (NON=4,5-bis(2,6-diisopropylanilido)-2,7-di-tertbutyl-9,9-dimethylxanthene) and its monomeric K+-sequestered counterpart have been investigated. These systems show diverging reactivity towards the activation of dihydrogen, with the dimeric species undergoing formal oxidative addition of H2 at each Al centre under ambient conditions, and the monomer proving to be inert to dihydrogen addition. Noting that this K+ dependence is inconsistent with classical models of single-centre reactivity for carbene-like Al(I) species, we rationalize these observations instead by a cooperative frustrated Lewis pair (FLP)-type mechanism (for the dimer) in which the aluminium centre acts as the Lewis base and the K+ centres as Lewis acids. In contrast to previous theoretical work on this precise system by Schaefer and co-workers, the potassium ions are shown to play explicit roles in stabilizing a nascent 2-bridging hydride, formed by heterolytic H-H bond cleavage (with accompanying protonation of the aluminium-centred lone pair). K-to-Al hydride "rebound" into the vacant aluminium-centred p-orbital then completes the net addition of H2 via sequential H+/H- transfer. The experimentally determined kinetic isotope effect (kH/kD=2.6) reflects a high degree of bond activation in the transition state (as predicted quantum chemically).
Collapse
Affiliation(s)
- Keelan M Byrne
- Department of Chemistry, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Jamie Hicks
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom
| | - Liam P Griffin
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom
| | - Simon Aldridge
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom
| | - Tobias Krämer
- Department of Chemistry, Maynooth University, Maynooth, Co. Kildare, Ireland
- Hamilton Institute, Maynooth University, Maynooth, Co. Kildare, Ireland
- School of Chemistry, Trinity College Dublin, College Green, Dublin, Ireland
| |
Collapse
|
13
|
Merschel A, Heda S, Vishnevskiy YV, Neumann B, Stammler HG, Ghadwal RS. Annulated carbocyclic gallylene and bis-gallylene with two-coordinated Ga(i) atoms. Chem Sci 2025; 16:2222-2230. [PMID: 39781217 PMCID: PMC11706234 DOI: 10.1039/d4sc06782g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 11/09/2024] [Indexed: 01/12/2025] Open
Abstract
The first carbocyclic gallylene [(ADC)2Ga(GaI2)] and bis-gallylene [(ADC)Ga]2 (ADC = PhC{N(Dipp)C}2; Dipp = 2,6-iPr2C6H3) featuring a central C4Ga2 ring annulated between two 1,3-imidazole rings are prepared by KC8 reductions of [(ADC)GaI2]2. Treatment of [(ADC)Ga]2 with Fe2(CO)9 affords complex [(ADC)GaFe(CO)4]2 in which each Ga(i) atom serves as a two-electron donor. [(ADC)Ga]2 activates white phosphorus (P4) and the Csp2 -F bond of aryl fluorides (ArF) to yield compounds [(ADC)Ga(P4)]2 and cis-/trans-[(ADC)GaF(Ar)]2, respectively. [(ADC)Ga]2 undergoes oxidation with (Me2S)AuCl to give [(ADC)GaCl2]2, while with PhN[double bond, length as m-dash]NPh it forms [1 + 4]-cycloaddition product [(ADC)GaN(Ph)N[double bond, length as m-dash]C6H5]2 by the dearomatization of one of the phenyl rings.
Collapse
Affiliation(s)
- Arne Merschel
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld Universitätsstrasse 25 D-33615 Bielefeld Germany http://www.ghadwalgroup.de
| | - Shkelqim Heda
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld Universitätsstrasse 25 D-33615 Bielefeld Germany http://www.ghadwalgroup.de
| | - Yury V Vishnevskiy
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld Universitätsstrasse 25 D-33615 Bielefeld Germany http://www.ghadwalgroup.de
| | - Beate Neumann
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld Universitätsstrasse 25 D-33615 Bielefeld Germany http://www.ghadwalgroup.de
| | - Hans-Georg Stammler
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld Universitätsstrasse 25 D-33615 Bielefeld Germany http://www.ghadwalgroup.de
| | - Rajendra S Ghadwal
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld Universitätsstrasse 25 D-33615 Bielefeld Germany http://www.ghadwalgroup.de
| |
Collapse
|
14
|
Jackson RA, Evans NJ, Babula DJ, Horsley Downie TM, Charman RSC, Neale SE, Mahon MF, Liptrot DJ. Nucleophilicity at copper(-I) in a compound with a Cu-Mg bond. Nat Commun 2025; 16:1101. [PMID: 39875432 PMCID: PMC11775243 DOI: 10.1038/s41467-025-56544-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 01/21/2025] [Indexed: 01/30/2025] Open
Abstract
Copper is ubiquitous as a structural material, and as a reagent in (bio)chemical transformations. A vast number of chemical reactions rely on the near-inevitable preference of copper for positive oxidation states to make useful compounds. Here we show this electronic paradigm can be subverted in a stable compound with a copper-magnesium bond, which conforms to the formal oxidation state of Cu(-I). The Cu-Mg bond is synthesized by the reaction of an N-heterocyclic carbene (NHC) ligated copper alkoxide with a dimeric magnesium(I) compound. Its identity is confirmed by single-crystal X-ray structural analysis and NMR spectroscopy, and computational investigations provide data consistent with a high charge density at copper. The Cu-Mg bond acts as a source of the cupride anion, transferring the NHC-copper fragment to electrophilic s-, p-, and d-block atoms to make known and new copper-containing compounds.
Collapse
Affiliation(s)
- Ross A Jackson
- Department of Chemistry, University of Bath, Bath, BA2 7AY, UK
| | | | - Dawid J Babula
- Department of Chemistry, University of Bath, Bath, BA2 7AY, UK
- Institute for Sustainability, University of Bath, Bath, BA2 7AY, UK
| | | | - Rex S C Charman
- Department of Chemistry, University of Bath, Bath, BA2 7AY, UK
| | - Samuel E Neale
- Department of Chemistry, University of Bath, Bath, BA2 7AY, UK
| | - Mary F Mahon
- Department of Chemistry, University of Bath, Bath, BA2 7AY, UK
| | - David J Liptrot
- Department of Chemistry, University of Bath, Bath, BA2 7AY, UK.
| |
Collapse
|
15
|
Wu CS, Su MD. Understanding the Reactivity of "Naked" Acyclic Carbene-like Species Featuring a Group 13 Element in the [4+1] Cycloaddition with Benzene. Inorg Chem 2025; 64:1519-1531. [PMID: 39805697 DOI: 10.1021/acs.inorgchem.4c04773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
The chemical reactivity between benzene and the "naked" acyclic carbene-like (G13X2)- species, having two bulky N-heterocyclic boryloxy ligands at the Group 13 center, was theoretically assessed using density functional theory computations. Our theoretical studies show that (BX2)- preferentially undergoes C-H bond insertion with benzene, both kinetically and thermodynamically, whereas the (AlX2)- analogue favors a reversible [4 + 1] cycloaddition. Conversely, the heavier carbene analogues ((GaX2)-, (InX2)-, and (TlX2)-) are not expected to engage in a reaction with benzene. The activation strain model analysis suggests that the geometric deformation energy of benzene, driven by the relativistic effects of the central G13 element in the (G13X2)- molecule, is crucial in determining the chemical reactivity of the [4 + 1] cycloaddition with benzene. According to our theoretical analyses, the stronger forward bonding is specifically the sp2-σ-orbital (G13) → vacant protruding p-π* orbitals (bent benzene). In contrast, the weaker backward bonding is the empty p-π orbital (G13) ←-filled protruding p-π orbital (bent benzene). Moreover, our theoretical findings indicate that the singlet-triplet splitting of (G13X2)- can be used as a diagnostic measure to predict the barrier height and reaction energy for their [4 + 1] cycloaddition with benzene.
Collapse
Affiliation(s)
- Chi-Shiun Wu
- Department of Applied Chemistry, National Chiayi University, Chiayi 60004, Taiwan
| | - Ming-Der Su
- Department of Applied Chemistry, National Chiayi University, Chiayi 60004, Taiwan
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
16
|
Liu HY, Shere HTW, Neale SE, Hill MS, Mahon MF, McMullin CL. Terminal Alkyne Activation by an Al(I)-Centered Anion: Impact on the Mechanism of Alkali Metal Identity. Organometallics 2025; 44:236-243. [PMID: 39822185 PMCID: PMC11734126 DOI: 10.1021/acs.organomet.4c00435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/27/2024] [Accepted: 12/03/2024] [Indexed: 01/19/2025]
Abstract
The group 1 alumanyls, [{SiNDipp}AlM]2 (M = K, Rb, Cs; SiNDipp = {CH2SiMe2NDipp}2), display a variable kinetic facility (K < Rb < Cs) toward oxidative addition of the acidic C-H bond of terminal alkynes to provide the corresponding alkali metal hydrido(alkynyl)aluminate derivatives. Theoretical analysis of the formation of these compounds through density functional theory (DFT) calculations implies that the experimentally observed changes in reaction rate are a consequence of the variable stability of the [{SiNDipp}AlM]2 dimers, the integrity of which reflects the ability of M+ to maintain the polyhapto group 1-arene interactions necessary for dimer propagation. These observations highlight that such "on-dimer" reactivity takes place sequentially and also that the ability of each constituent Al(I) center to effect the activation of the organic substrate is kinetically differentiated.
Collapse
Affiliation(s)
- Han-Ying Liu
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2
7AY, U.K.
| | - Henry T. W. Shere
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2
7AY, U.K.
| | - Samuel E. Neale
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2
7AY, U.K.
| | - Michael S. Hill
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2
7AY, U.K.
| | - Mary F. Mahon
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2
7AY, U.K.
| | - Claire L. McMullin
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2
7AY, U.K.
| |
Collapse
|
17
|
Ebeler F, Neumann B, Stammler HG, Fernández I, Ghadwal RS. Structural Snapshots of Reversible Carbon Dioxide Capture and (De)oxygenation at Group 14 Diradicaloids. J Am Chem Soc 2024; 146:34979-34989. [PMID: 39648518 DOI: 10.1021/jacs.4c15062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
Although diradicals should exhibit a rather small reaction barrier as compared to closed-shell species for activating kinetically inert molecules, the activation and functionalization of carbon dioxide with stable main-group diradicals remain virtually unexplored. In this work, we present a thorough study on CO2 activation, reversible capture, and (de)oxygenation mediated by stable Group 14 singlet diradicals (i.e., diradicaloids) [(ADC)E]2 (E = Si, Ge, Sn) based on an anionic dicarbene (ADC) framework (ADC = PhC{N(Dipp)C}2; Dipp = 2,6-iPr2C6H3). [(ADC)E]2 readily undergo [4 + 2]-cycloadditions with CO2 to result in barrelene-type bis-metallylenes [(ADC)E]2(OC═O). The CO2 addition is reversible for E = Ge; thus, CO2 detaches under vacuum or at an elevated temperature and regenerates [(ADC)Ge]2. [(ADC)Sn]2(OC═O) is isolable but deoxygenates additional CO2 to form [(ADC)Sn]2(O2CO) and CO. [(ADC)Si]2(OC═O) is extremely reactive and could not be isolated or detected as it spontaneously reacts further with CO2 to yield elusive monomeric Si(IV) oxides [(ADC)Si(O)]2(COn) or carbonates [(ADC)Si(CO3)]2(COn) (n = 1 or 2) via the (de)oxygenation of CO2. The molecular structures of all isolated compounds have been established by X-ray diffraction, and a mechanistic insight of their formation has been suggested by DFT calculations.
Collapse
Affiliation(s)
- Falk Ebeler
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstrasse 25, D-33615 Bielefeld, Germany
| | - Beate Neumann
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstrasse 25, D-33615 Bielefeld, Germany
| | - Hans-Georg Stammler
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstrasse 25, D-33615 Bielefeld, Germany
| | - Israel Fernández
- Departamento de Química Orgánica and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Rajendra S Ghadwal
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstrasse 25, D-33615 Bielefeld, Germany
| |
Collapse
|
18
|
Evans MJ, Parr JM, Nguyen DT, Jones C. An isolable stannaimine and its cycloaddition/metathesis reactions with carbon dioxide. Chem Commun (Camb) 2024; 60:10350-10353. [PMID: 39219473 DOI: 10.1039/d4cc04006f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
An N-heterocyclic stannylene :Sn(NONAd) (NONAd = [O(SiMe2NAd)2]2-, Ad = 1-adamantyl), reacts rapidly with 2,4,6-tricyclohexylphenyl azide (TCHP)N3, affording a stannaimine, (NONAd)SnN(TCHP). Solutions of (NONAd)SnN(TCHP) react immediately with carbon dioxide (CO2) to give a [2+2]-cycloaddition product, which, upon heating, subsequently engages in a metathesis process to give [Sn(NONAd)(μ-O)]2 and the bulky isocyanate, (TCHP)NCO.
Collapse
Affiliation(s)
- Matthew J Evans
- School of Chemistry, Monash University, Melbourne, PO Box 23, Victoria, 3800, Australia.
| | - Joseph M Parr
- School of Chemistry, Monash University, Melbourne, PO Box 23, Victoria, 3800, Australia.
| | - Dat T Nguyen
- School of Chemistry, Monash University, Melbourne, PO Box 23, Victoria, 3800, Australia.
| | - Cameron Jones
- School of Chemistry, Monash University, Melbourne, PO Box 23, Victoria, 3800, Australia.
| |
Collapse
|
19
|
Shere HTW, Liu HY, Hill MS, Mahon MF. Alumanyl Reduction, Reductive Coupling and C-H Isomerization of Organic Nitriles. Organometallics 2024; 43:1938-1945. [PMID: 39268183 PMCID: PMC11388447 DOI: 10.1021/acs.organomet.4c00289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/19/2024] [Accepted: 07/31/2024] [Indexed: 09/15/2024]
Abstract
The behavior of the potassium alumanyl, [{SiNDipp}AlK]2 ({SiNDipp} = {CH2SiMe2N(Dipp)}2; Dipp = 2,6-i-Pr2C6H3), toward organic nitriles has been investigated. In common with earlier studies of the reactivity of charge neutral Al(I) species with multiply bonded small molecules, it is suggested that the initial step in all the reactions involves [2 + 1] cycloaddition and the generation of an [η2-C=N-Al] alumina azacyclopropane unit. In the cases of o- and m-tolyl-substituted aryl nitriles, this species is too kinetically labile to allow its isolation and undergoes C-C coupling via immediate Al-C/C≡N insertion to yield the alumina diazabutadiene derivatives. In contrast, the increased steric profile of alkyl nitriles imposes a marked influence on the nature of the products formed. Consistent with the proposed sequential pathway, reaction of [{SiNDipp}AlK]2 with t-BuCN provides an isolable alumina cyclopropane species that is kinetically resistant to onward reaction with a further nitrile equivalent. While reduction in the alkyl nitrile steric demands by use of i-PrCN again facilitates C-C bond formation, the crowding of the Al center by the resultant alumina-diazabutadienediide moiety appears to be beyond the limit of kinetic viability, resulting in an unusual 2-fold C-H to N-H isomerization from one of the C-iso-propyl substituents and the isolation of a 1-alumina-2,5-diazabutadiene structure.
Collapse
Affiliation(s)
- Henry T W Shere
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K
| | - Han-Ying Liu
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K
| | - Michael S Hill
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K
| | - Mary F Mahon
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K
| |
Collapse
|
20
|
Boronski JT, Griffin LP, Conder C, Crumpton AE, Wales LL, Aldridge S. On the nature and limits of alkaline earth-triel bonding. Chem Sci 2024:d4sc03832k. [PMID: 39234213 PMCID: PMC11367318 DOI: 10.1039/d4sc03832k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/21/2024] [Indexed: 09/06/2024] Open
Abstract
The synthesis of a series of isostructural organometallic complexes featuring Ae-Tr bonds (Ae = Be, Mg; Tr = Al, Ga, In) has been investigated, and their electronic structures probed by quantum chemical calculations. This systematic study allows for comparison, not only of the metal-metal bonding chemistries of the two lightest alkaline earth (Ae) elements, beryllium and magnesium, but also of the three triel (Tr) elements, aluminium, gallium, and indium. Computational analyses (NBO, QTAIM, EDA-NOCV) reveal that Be-Tr bonding is more covalent than Mg-Tr bonding. More strikingly, these calculations predict that the beryllium-indyl complex - featuring the first structurally characterised Be-In bond - should act as a source of nucleophilic beryllium. This has been confirmed experimentally by its reactivity towards methyl iodide, which yields the Be-Me functionality. By extension, the electrophilic character of the beryllium centre in the beryllium-gallyl complex contrasts with the umpoled, nucleophilic behaviour of the beryllium centre in both the -indyl and -aluminyl complexes.
Collapse
Affiliation(s)
- Josef T Boronski
- Chemistry Research Laboratory, Department of Chemistry Oxford OX1 3TA UK
| | - Liam P Griffin
- Chemistry Research Laboratory, Department of Chemistry Oxford OX1 3TA UK
| | - Caroline Conder
- Chemistry Research Laboratory, Department of Chemistry Oxford OX1 3TA UK
| | | | - Lewis L Wales
- Chemistry Research Laboratory, Department of Chemistry Oxford OX1 3TA UK
| | - Simon Aldridge
- Chemistry Research Laboratory, Department of Chemistry Oxford OX1 3TA UK
| |
Collapse
|
21
|
Sarkar D, Vasko P, Gluharev T, Griffin LP, Bogle C, Struijs J, Tang J, Roper AF, Crumpton AE, Aldridge S. Synthesis, Isolation, and Reactivity Studies of 'Naked' Acyclic Gallyl and Indyl Anions. Angew Chem Int Ed Engl 2024; 63:e202407427. [PMID: 38775385 DOI: 10.1002/anie.202407427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Indexed: 07/03/2024]
Abstract
By exploiting the electronic capabilities of the N-heterocyclic boryloxy (NHBO) ligand, we have synthesized "naked" acyclic gallyl [Ga{OB(NDippCH)2}2]- and indyl [In{OB(NDippCH)2}2]- anions (as their [K(2.2.2-crypt)]+ salts) through K+ abstraction from [KGa{OB(NDippCH)2}2] and [KIn{OB(NDippCH)2}2] using 2.2.2-crypt. These systems represent the first O-ligated gallyl/indyl systems, are ultimately accessed from cyclopentadienyl GaI/InI precursors by substitution chemistry, and display nucleophilic reactivity which is strongly influenced by the presence (or otherwise) of the K+ counterion.
Collapse
Affiliation(s)
- Debotra Sarkar
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Park Road, Oxford, OX1 3QR, UK
| | - Petra Vasko
- Department of Chemistry, University of Helsinki, A. I. Virtasen Aukio 1, P.O. Box 55, Helsinki, FI-00014, Finland
| | - Tihomir Gluharev
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Park Road, Oxford, OX1 3QR, UK
| | - Liam P Griffin
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Park Road, Oxford, OX1 3QR, UK
| | - Charlotte Bogle
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Park Road, Oxford, OX1 3QR, UK
| | - Job Struijs
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Park Road, Oxford, OX1 3QR, UK
| | - Jianqin Tang
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Park Road, Oxford, OX1 3QR, UK
| | - Aisling F Roper
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Park Road, Oxford, OX1 3QR, UK
| | - Agamemnon E Crumpton
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Park Road, Oxford, OX1 3QR, UK
| | - Simon Aldridge
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Park Road, Oxford, OX1 3QR, UK
| |
Collapse
|
22
|
Evans MJ, Mullins J, Mondal R, Jones C. Reductions of Arenes using a Magnesium-Dinitrogen Complex. Chemistry 2024; 30:e202401005. [PMID: 38622992 DOI: 10.1002/chem.202401005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 04/17/2024]
Abstract
In this contribution, we present "Birch-type", and other reductions of simple arenes by the potassium salt of an anionic magnesium dinitrogen complex, [{K(TCHPNON)Mg}2(μ-N2)] (TCHPNON=4,5-bis(2,4,6-tricyclohexylanilido)-2,7-diethyl-9,9-dimethyl-xanthene), which acts as a masked dimagnesium(I) diradical in these reactions. This reagent is non-hazardous, easy-to-handle, and in some cases provides access to 1,4-cyclohexadiene reduction products under relatively mild reaction conditions. This system works effectively to reduce benzene, naphthalene and anthracene through magnesium-bound "Birch-type" reduction intermediates. Cyclohexadiene products can be subsequently released from the magnesium centres by protonolysis with methanol. In contrast, the reduction of substituted arenes is less selective and involves competing reaction pathways. For toluene and 1,3,5-triphenylbenzene, the structural authentication of "Birch-type" reduction intermediates is conclusive, although the formation of corresponding 1,4-cyclohexadiene derivatives was low yielding. Reduction of anisole did not yield an isolable "Birch-type" intermediate, but instead gave a C-O activation product. Treating triphenylphosphine with [{K(TCHPNON)Mg}2(μ-N2)] resulted in the extrusion of both biphenyl and dinitrogen to afford a magnesium(II) phosphanide [{K(TCHPNON)Mg(μ-PPh2)}2]. Reduction of fluorobenzene proceeded via C-F activation of the arene, and isolation of the magnesium(II) fluoride [{K(TCHPNON)Mg(μ-F)}2]. Finally, the two-electron reduction of 1,3,5,7-cyclooctatetraene (COT) with [{K(TCHPNON)Mg}2(μ-N2)] yielded a complex, [{K(TCHPNON)Mg}2(μ-COT)], incorporating the aromatic dianion (COT2-).
Collapse
Affiliation(s)
- Matthew J Evans
- School of Chemistry, Monash University, PO Box 23, 3800, Melbourne, Victoria, Australia
| | - Jeremy Mullins
- School of Chemistry, Monash University, PO Box 23, 3800, Melbourne, Victoria, Australia
| | - Rahul Mondal
- School of Chemistry, Monash University, PO Box 23, 3800, Melbourne, Victoria, Australia
| | - Cameron Jones
- School of Chemistry, Monash University, PO Box 23, 3800, Melbourne, Victoria, Australia
| |
Collapse
|
23
|
Griffin LP, Ellwanger MA, Crumpton AE, Roy MMD, Heilmann A, Aldridge S. Mercury-Group 13 Metal Covalent Bonds: A Systematic Comparison of Aluminyl, Gallyl and Indyl Metallo-ligands. Angew Chem Int Ed Engl 2024; 63:e202404527. [PMID: 38545953 DOI: 10.1002/anie.202404527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 03/28/2024] [Indexed: 04/23/2024]
Abstract
Bimetallic compounds containing direct metal-group 13 element bonds have been shown to display unprecedented patterns of cooperative reactivity towards small molecules, which can be influenced by the identity of the group 13 element. In this context, we present here a systematic appraisal of group 13 metallo-ligands of the type [(NON)E]- (NON=4,5-bis(2,6-diisopropylanilido)-2,7-di-tert-butyl-9,9-dimethylxanthene) for E=Al, Ga and In, through a comparison of structural and spectroscopic parameters associated with the trans L or X ligands in linear d10 complexes of the types LM{E(NON)} and XM'{E(NON)}. These studies are facilitated by convenient syntheses (from the In(I) precursor, InCp) of the potassium indyl species [{K(NON)In}⋅KCp]n (1) and [(18-crown-6)2K2Cp] [(NON)In] (1'), and lead to the first structural characterisation of Ag-In and Hg-E (E=Al, In) covalent bonds. The resulting structural, spectroscopic and quantum chemical probes of Ag/Hg complexes are consistent with markedly stronger σ-donor capabilities of the aluminyl ligand, [(NON)Al]-, over its gallium and indium counterparts.
Collapse
Affiliation(s)
- Liam P Griffin
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK
| | - Mathias A Ellwanger
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK
| | - Agamemnon E Crumpton
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK
| | - Matthew M D Roy
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK
| | - Andreas Heilmann
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK
| | - Simon Aldridge
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK
| |
Collapse
|
24
|
Evans MJ, Jones C. Low oxidation state and hydrido group 2 complexes: synthesis and applications in the activation of gaseous substrates. Chem Soc Rev 2024; 53:5054-5082. [PMID: 38595211 DOI: 10.1039/d4cs00097h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Numerous industrial processes utilise gaseous chemical feedstocks to produce useful chemical products. Atmospheric and other small molecule gases, including anthropogenic waste products (e.g. carbon dioxide), can be viewed as sustainable building blocks to access value-added chemical commodities and materials. While transition metal complexes have been well documented in the reduction and transformation of these substrates, molecular complexes of the terrestrially abundant alkaline earth metals have also demonstrated promise with remarkable reactivity reported towards an array of industrially relevant gases over the past two decades. This review covers low oxidation state and hydrido group 2 complexes and their role in the reduction and transformation of a selection of important gaseous substrates towards value-added chemical products.
Collapse
Affiliation(s)
- Matthew J Evans
- School of Chemistry, Monash University, PO Box 23, Melbourne, Victoria, 3800, Australia.
| | - Cameron Jones
- School of Chemistry, Monash University, PO Box 23, Melbourne, Victoria, 3800, Australia.
| |
Collapse
|
25
|
Sarkar D, Vasko P, Roper AF, Crumpton AE, Roy MMD, Griffin LP, Bogle C, Aldridge S. Reversible [4 + 1] Cycloaddition of Arenes by a "Naked" Acyclic Aluminyl Compound. J Am Chem Soc 2024; 146:11792-11800. [PMID: 38626444 PMCID: PMC11066863 DOI: 10.1021/jacs.4c00376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 04/18/2024]
Abstract
The large steric profile of the N-heterocyclic boryloxy ligand, -OB(NDippCH)2, and its ability to stabilize the metal-centered HOMO, are exploited in the synthesis of the first example of a "naked" acyclic aluminyl complex, [K(2.2.2-crypt)][Al{OB(NDippCH)2}2]. This system, which is formed by substitution at AlI (rather than reduction of AlIII), represents the first O-ligated aluminyl compound and is shown to be capable of hitherto unprecedented reversible single-site [4 + 1] cycloaddition of benzene. This chemistry and the unusual regioselectivity of the related cycloaddition of anthracene are shown to be highly dependent on the availability (or otherwise) of the K+ countercation.
Collapse
Affiliation(s)
- Debotra Sarkar
- Inorganic
Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, U.K.
| | - Petra Vasko
- Department
of Chemistry, University of Helsinki, A.I. Virtasen Aukio 1, P.O. Box 55, Helsinki FI-00014, Finland
| | - Aisling F. Roper
- Inorganic
Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, U.K.
| | - Agamemnon E. Crumpton
- Inorganic
Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, U.K.
| | - Matthew M. D. Roy
- Inorganic
Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, U.K.
| | - Liam P. Griffin
- Inorganic
Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, U.K.
| | - Charlotte Bogle
- Inorganic
Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, U.K.
| | - Simon Aldridge
- Inorganic
Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, U.K.
| |
Collapse
|
26
|
Macdonald PA, Kennedy AR, Weetman CE, Robertson SD, Mulvey RE. Synthesis, characterisation, and catalytic application of a soluble molecular carrier of sodium hydride activated by a substituted 4-(dimethylamino)pyridine. Commun Chem 2024; 7:94. [PMID: 38678145 PMCID: PMC11055874 DOI: 10.1038/s42004-024-01184-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/18/2024] [Indexed: 04/29/2024] Open
Abstract
Recently main group compounds have stepped into the territory of precious transition metal compounds with respect to utility in the homogeneous catalysis of fundamentally important organic transformations. Inspired by the need to promote more sustainability in chemistry because of their greater abundance in nature, this change of direction is surprising since main group metals generally do not possess the same breadth of reactivity as precious transition metals. Here, we introduce the dihydropyridylsodium compound, Na-1,2-tBu-DH(DMAP), and its monomeric variant [Na-1,2-tBu-DH(DMAP)]·Me6TREN, and demonstrate their effectiveness in transfer hydrogenation catalysis of the representative alkene 1,1-diphenylethylene to the alkane 1,1-diphenylethane using 1,4-cyclohexadiene as hydrogen source [DMAP = 4-dimethylaminopyridine; Me6TREN = tris(N,N-dimethyl-2-aminoethyl)amine]. Sodium is appealing because of its high abundance in the earth's crust and oceans, but organosodium compounds have been rarely used in homogeneous catalysis. The success of the dihydropyridylsodium compounds can be attributed to their high solubility and reactivity in organic solvents.
Collapse
Affiliation(s)
- Peter A Macdonald
- WestCHEM, Department of Pure & Applied Chemistry, University of Strathclyde, Glasgow, G1 1XL, UK
| | - Alan R Kennedy
- WestCHEM, Department of Pure & Applied Chemistry, University of Strathclyde, Glasgow, G1 1XL, UK
| | - Catherine E Weetman
- WestCHEM, Department of Pure & Applied Chemistry, University of Strathclyde, Glasgow, G1 1XL, UK
| | - Stuart D Robertson
- WestCHEM, Department of Pure & Applied Chemistry, University of Strathclyde, Glasgow, G1 1XL, UK.
| | - Robert E Mulvey
- WestCHEM, Department of Pure & Applied Chemistry, University of Strathclyde, Glasgow, G1 1XL, UK.
| |
Collapse
|
27
|
He M, Hu C, Wei R, Wang XF, Liu LL. Recent advances in the chemistry of isolable carbene analogues with group 13-15 elements. Chem Soc Rev 2024; 53:3896-3951. [PMID: 38436383 DOI: 10.1039/d3cs00784g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
Carbenes (R2C:), compounds with a divalent carbon atom containing only six valence shell electrons, have evolved into a broader class with the replacement of the carbene carbon or the RC moiety with main group elements, leading to the creation of main group carbene analogues. These analogues, mirroring the electronic structure of carbenes (a lone pair of electrons and an empty orbital), demonstrate unique reactivity. Over the last three decades, this area has seen substantial advancements, paralleling the innovations in carbene chemistry. Recent studies have revealed a spectrum of unique carbene analogues, such as monocoordinate aluminylenes, nitrenes, and bismuthinidenes, notable for their extraordinary properties and diverse reactivity, offering promising applications in small molecule activation. This review delves into the isolable main group carbene analogues that are in the forefront from 2010 and beyond, spanning elements from group 13 (B, Al, Ga, In, and Tl), group 14 (Si, Ge, Sn, and Pb) and group 15 (N, P, As, Sb, and Bi). Specifically, this review focuses on the potential amphiphilic species that possess both lone pairs of electrons and vacant orbitals. We detail their comprehensive synthesis and stabilization strategies, outlining the reactivity arising from their distinct structural characteristics.
Collapse
Affiliation(s)
- Mian He
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Chaopeng Hu
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Rui Wei
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Xin-Feng Wang
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Liu Leo Liu
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
28
|
Merschel A, Vishnevskiy YV, Neumann B, Stammler HG, Ghadwal RS. Access to a peri-Annulated Aluminium Compound via C-H Bond Activation by a Cyclic Bis-Aluminylene. Chemistry 2024; 30:e202400293. [PMID: 38345596 DOI: 10.1002/chem.202400293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Indexed: 02/29/2024]
Abstract
Carbocyclic aluminium halides [(ADC)AlX2]2 (2-X) (X=F, Cl, and I) based on an anionic dicarbene (ADC=PhC{N(Dipp)C}2, Dipp = 2,6-iPr2C6H3) framework are prepared as crystalline solids by dehydrohalogenations of the alane [(ADC)AlH2]2 (1). KC8 reduction of 2-I affords the peri-annulated Al(III) compound [(ADCH)AlH]2 (4) (ADCH=PhC{N(Dipp)C2(DippH)N}, DippH=2-iPr,6-(Me2C)C6H3)) as a colorless crystalline solid in 76 % yield. The formation of 4 suggests intramolecular insertion of the putative bis-aluminylene species [(ADC)Al]2 (3) into the methine C-H bond of HCMe2 group. Calculations predict singlet ground state for 3, while the conversion of 3 into 4 is thermodynamically favored by 61 kcal/mol. Compounds 2-F, 2-Cl, 2-I, and 4 have been characterized by NMR spectroscopy and their solid-state molecular structures have been established by single crystal X-ray diffraction.
Collapse
Affiliation(s)
- Arne Merschel
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstrasse 25, D-33615, Bielefeld, Germany
| | - Yury V Vishnevskiy
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstrasse 25, D-33615, Bielefeld, Germany
| | - Beate Neumann
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstrasse 25, D-33615, Bielefeld, Germany
| | - Hans-Georg Stammler
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstrasse 25, D-33615, Bielefeld, Germany
| | - Rajendra S Ghadwal
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstrasse 25, D-33615, Bielefeld, Germany
| |
Collapse
|
29
|
Feng G, Chan KL, Lin Z, Yamashita M. Alumanyl-Samarium(II): Synthesis, Characterization, and Reactivity Studies. J Am Chem Soc 2024; 146:7204-7209. [PMID: 38505938 DOI: 10.1021/jacs.4c01193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Metal-metal bonded species involving lanthanides are intriguing but rare. The recently reported salt metathesis reaction of an Al anion and SmI2(thf)2 yields novel heterometallic compound possessing two distinctive Al-Sm bonds. Although the Al-Sm bonds were considerably long [3.518(1) and 3.543(1) Å], DFT calculations indicated polar character of the Alδ--Smδ+ bonds. This is the first example of lanthanide species containing X-type Al ligands. Reactivity studies have demonstrated that the introduction of Sm(II) produces unique reactivity. The reaction with carbodiimide led to an insertion of carbodiimide into the Al-Sm bonds and reductive coupling of carbodiimide to create an oxalamidinate moiety, facilitated by Sm(II). Exposure of the Al-Sm-Al complex toward ethylene furnished a Sm(II) salt of anionic aluminacyclopropane that was spontaneously isomerized to a 1,4-dialuminacyclohexane derivative. The important role of Sm(II) to facilitate the ring expansion through an alkyl-relay mechanism was elucidated by DFT calculations.
Collapse
Affiliation(s)
- Genfeng Feng
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Aichi, Japan
| | - Ka Lok Chan
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong
| | - Zhenyang Lin
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong
| | - Makoto Yamashita
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Aichi, Japan
| |
Collapse
|
30
|
Dankert F, Hevia E. Synthesis and Modular Reactivity of Low Valent Al/Zn Heterobimetallics Supported by Common Monodentate Amides. Chemistry 2024; 30:e202304336. [PMID: 38189633 DOI: 10.1002/chem.202304336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/05/2024] [Accepted: 01/05/2024] [Indexed: 01/09/2024]
Abstract
Recent advances on low valent main group metal chemistry have shown the excellent potential of heterobimetallic complexes derived from Al(I) to promote cooperative small molecule activation processes. A signature feature of these complexes is the use of bulky chelating ligands which act as spectators providing kinetic stabilization to their highly reactive Al-M bonds. Here we report the synthesis of novel Al/Zn bimetallics prepared by the selective formal insertion of AlCp* into the Zn-N bond of the utility zinc amides ZnR2 (R=HMDS, hexamethyldisilazide; or TMP, 2,2,6,6-tetramethylpiperidide). By systematically assessing the reactivity of the new [(R)(Cp*)AlZn(R)] bimetallics towards carbodiimides, structural and mechanistic insights have been gained on their ability to undergo insertion in their Zn-Al bond. Disclosing a ligand effect, when R=TMP, an isomerization process can be induced giving [(TMP)2AlZn(Cp*)] which displays a special reactivity towards carbodiimides and carbon dioxide involving both its Al-N bonds, leaving its Al-Zn bond untouched.
Collapse
Affiliation(s)
- Fabian Dankert
- Department für Chemie, Biochemie und Pharmazie, Universität Bern, Freiestraße 3, Bern, 3012, Switzerland
| | - Eva Hevia
- Department für Chemie, Biochemie und Pharmazie, Universität Bern, Freiestraße 3, Bern, 3012, Switzerland
| |
Collapse
|
31
|
Landaeta VR, Horsley Downie TM, Wolf R. Low-Valent Transition Metalate Anions in Synthesis, Small Molecule Activation, and Catalysis. Chem Rev 2024; 124:1323-1463. [PMID: 38354371 PMCID: PMC10906008 DOI: 10.1021/acs.chemrev.3c00121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 10/09/2023] [Accepted: 10/09/2023] [Indexed: 02/16/2024]
Abstract
This review surveys the synthesis and reactivity of low-oxidation state metalate anions of the d-block elements, with an emphasis on contributions reported between 2006 and 2022. Although the field has a long and rich history, the chemistry of transition metalate anions has been greatly enhanced in the last 15 years by the application of advanced concepts in complex synthesis and ligand design. In recent years, the potential of highly reactive metalate complexes in the fields of small molecule activation and homogeneous catalysis has become increasingly evident. Consequently, exciting applications in small molecule activation have been developed, including in catalytic transformations. This article intends to guide the reader through the fascinating world of low-valent transition metalates. The first part of the review describes the synthesis and reactivity of d-block metalates stabilized by an assortment of ligand frameworks, including carbonyls, isocyanides, alkenes and polyarenes, phosphines and phosphorus heterocycles, amides, and redox-active nitrogen-based ligands. Thereby, the reader will be familiarized with the impact of different ligand types on the physical and chemical properties of metalates. In addition, ion-pairing interactions and metal-metal bonding may have a dramatic influence on metalate structures and reactivities. The complex ramifications of these effects are examined in a separate section. The second part of the review is devoted to the reactivity of the metalates toward small inorganic molecules such as H2, N2, CO, CO2, P4 and related species. It is shown that the use of highly electron-rich and reactive metalates in small molecule activation translates into impressive catalytic properties in the hydrogenation of organic molecules and the reduction of N2, CO, and CO2. The results discussed in this review illustrate that the potential of transition metalate anions is increasingly being tapped for challenging catalytic processes with relevance to organic synthesis and energy conversion. Therefore, it is hoped that this review will serve as a useful resource to inspire further developments in this dynamic research field.
Collapse
Affiliation(s)
| | | | - Robert Wolf
- University of Regensburg, Institute
of Inorganic Chemistry, 93040 Regensburg, Germany
| |
Collapse
|
32
|
Zatsepin P, Moriyama T, Chen C, Muratsugu S, Tada M, Yamashita M. Vanadium Alumanyl Complex: Synthesis, Characterization, Reactivity, and Application as a Catalyst for C-H Alumanylation of Alkenes. J Am Chem Soc 2024; 146:3492-3497. [PMID: 38279921 DOI: 10.1021/jacs.3c13418] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2024]
Abstract
A complex containing a V-Al bond is described. This species can be prepared by either transmetalation of a previously disclosed alumanylpotassium with Cp2VCl or photolytic oxidative alumination of Cp2V using the corresponding dialumane. Reaction of the resulting V-Al complex with H2 gave a Cp2V-dihydridoaluminate complex. These complexes were studied with X-ray crystallography, vanadium K-edge XANES spectroscopy, and DFT calculations. Finally, the reactivity of these molecules was studied opening the way to a catalytic C-H alumanylation of alkenes.
Collapse
Affiliation(s)
- Pavel Zatsepin
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Aichi, Japan
| | - Takumi Moriyama
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Aichi, Japan
| | - Chaoqi Chen
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Aichi, Japan
| | - Satoshi Muratsugu
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Aichi, Japan
- Integrated Research Consortium on Chemical Science (IRCCS), Nagoya University, Tokai National Higher Education and Research System, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Mizuki Tada
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Aichi, Japan
- Integrated Research Consortium on Chemical Science (IRCCS), Nagoya University, Tokai National Higher Education and Research System, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
- Research Center for Materials Science (RCMS), Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Aichi, Japan
| | - Makoto Yamashita
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Aichi, Japan
- Integrated Research Consortium on Chemical Science (IRCCS), Nagoya University, Tokai National Higher Education and Research System, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| |
Collapse
|
33
|
O'Reilly A, Gardiner MG, McMullin CL, Fulton JR, Coles MP. Aluminyl derived ethene functionalization with heteroallenes, leading to an intramolecular ligand rearrangement. Chem Commun (Camb) 2024; 60:881-884. [PMID: 38165276 DOI: 10.1039/d3cc05785b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
The aluminacyclopropane K[Al(NON)(η-C2H4)] ([NON]2- = [O(SiMe2NDipp)2]2-, Dipp = 2,6-iPr2C6H3) reacts with CO2 and iPrNCNiPr to afford ring-expanded products of C-C bond formation. The latter system undergoes a 1,3-silyl retro-Brook rearrangement of the NON-group, to afford the [NNO]2- ligand ([NNO]2- = [N(Dipp)SiMe2N(Dipp)SiMe2O]2-). The mechanism of transformation was examined by density functional theory (DFT).
Collapse
Affiliation(s)
- Andrea O'Reilly
- School of Chemical and Physical Sciences, Victoria University of Wellington, PO Box 600, Wellington 6012, New Zealand.
| | - Michael G Gardiner
- Research School of Chemistry, The Australian National University, Canberra, ACT 2601, Australia
| | | | - J Robin Fulton
- School of Chemical and Physical Sciences, Victoria University of Wellington, PO Box 600, Wellington 6012, New Zealand.
| | - Martyn P Coles
- School of Chemical and Physical Sciences, Victoria University of Wellington, PO Box 600, Wellington 6012, New Zealand.
| |
Collapse
|
34
|
O'Reilly A, Evans MJ, McMullin CL, Fulton JR, Coles MP. Pinacol Cross-Coupling Promoted by an Aluminyl Anion. Chemistry 2024; 30:e202302999. [PMID: 37786922 DOI: 10.1002/chem.202302999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/04/2023]
Abstract
A simple sequential addition protocol for the reductive coupling of ketones and aldehydes by a potassium aluminyl grants access to unsymmetrical pinacolate derivatives. Isolation of an aluminium ketyl complex presents evidence for the accessibility of radical species. Product release from the aluminium centre was achieved using an iodosilane, forming the disilylated 1,2-diol and a neutral aluminium iodide, thereby demonstrating the steps required to generate a closed synthetic cycle for pinacol (cross) coupling at an aluminyl anion.
Collapse
Affiliation(s)
- Andrea O'Reilly
- School of Chemical and Physical Sciences, Victoria University of Wellington, P.O. Box 600, Wellington, 6012, New Zealand
| | - Matthew J Evans
- School of Chemical and Physical Sciences, Victoria University of Wellington, P.O. Box 600, Wellington, 6012, New Zealand
| | | | - J Robin Fulton
- School of Chemical and Physical Sciences, Victoria University of Wellington, P.O. Box 600, Wellington, 6012, New Zealand
| | - Martyn P Coles
- School of Chemical and Physical Sciences, Victoria University of Wellington, P.O. Box 600, Wellington, 6012, New Zealand
| |
Collapse
|
35
|
Evans MJ, Anker MD, McMullin CL, Coles MP. Reductive Coupling of a Diazoalkane Derivative Promoted by a Potassium Aluminyl and Elimination of Dinitrogen to Generate a Reactive Aluminium Ketimide. Chemistry 2023; 29:e202302903. [PMID: 37786384 PMCID: PMC10946750 DOI: 10.1002/chem.202302903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/04/2023]
Abstract
The reaction of 9-diazo-9H-fluorene (fluN2 ) with the potassium aluminyl K[Al(NON)] ([NON]2- =[O(SiMe2 NDipp)2 ]2- , Dipp=2,6-iPr2 C6 H3 ) affords K[Al(NON)(κN1 ,N3 -{(fluN2 )2 })] (1). Structural analysis shows a near planar 1,4-di(9H-fluoren-9-ylidene)tetraazadiide ligand that chelates to the aluminium. The thermally induced elimination of dinitrogen from 1 affords the neutral aluminium ketimide complex, Al(NON)(N=flu)(THF) (2) and the 1,2-di(9H-fluoren-9-yl)diazene dianion as the potassium salt, [K2 (THF)3 ][fluN=Nflu] (3). The reaction of 2 with N,N'-diisopropylcarbodiimide (iPrN=C=NiPr) affords the aluminium guanidinate complex, Al(NON){N(iPr)C(N=CMe2 )N(CHflu)} (4), showing a rare example of reactivity at a metal ketimide ligand. Density functional theory (DFT) calculations have been used to examine the bonding in the newly formed [(fluN2 )2 ]2- ligand in 1 and the ketimide bonding in 2. The mechanism leading to the formation of 4 has also been studied using this technique.
Collapse
Affiliation(s)
- Matthew J. Evans
- School of Chemical and Physical SciencesVictoria University of WellingtonP.O. Box 600Wellington6012New Zealand
| | - Mathew D. Anker
- School of Chemical and Physical SciencesVictoria University of WellingtonP.O. Box 600Wellington6012New Zealand
| | | | - Martyn P. Coles
- School of Chemical and Physical SciencesVictoria University of WellingtonP.O. Box 600Wellington6012New Zealand
| |
Collapse
|
36
|
R Judge N, Logallo A, Hevia E. Main group metal-mediated strategies for C-H and C-F bond activation and functionalisation of fluoroarenes. Chem Sci 2023; 14:11617-11628. [PMID: 37920337 PMCID: PMC10619642 DOI: 10.1039/d3sc03548d] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/11/2023] [Indexed: 11/04/2023] Open
Abstract
With fluoroaromatic compounds increasingly employed as scaffolds in agrochemicals and active pharmaceutical ingredients, the development of methods which facilitate regioselective functionalisation of their C-H and C-F bonds is a frontier of modern synthesis. Along with classical lithiation and nucleophilic aromatic substitution protocols, the vast majority of research efforts have focused on transition metal-mediated transformations enabled by the redox versatilities of these systems. Breaking new ground in this area, recent advances in main group metal chemistry have delineated unique ways in which s-block, Al, Ga and Zn metal complexes can activate this important type of fluorinated molecule. Underpinned by chemical cooperativity, these advances include either the use of heterobimetallic complexes where the combined effect of two metals within a single ligand set enables regioselective low polarity C-H metalation; or the use of novel low valent main group metal complexes supported by special stabilising ligands to induce C-F bond activations. Merging these two different approaches, this Perspective provides an overview of the emerging concept of main-group metal mediated C-H/C-F functionalisation of fluoroarenes. Showcasing the untapped potential that these systems can offer in these processes; focus is placed on how special chemical cooperation is established and how the trapping of key reaction intermediates can inform mechanistic understanding.
Collapse
Affiliation(s)
- Neil R Judge
- Departement für Chemie, Biochemie und Pharmazie, Universität Bern Switzerland
| | - Alessandra Logallo
- Departement für Chemie, Biochemie und Pharmazie, Universität Bern Switzerland
| | - Eva Hevia
- Departement für Chemie, Biochemie und Pharmazie, Universität Bern Switzerland
| |
Collapse
|
37
|
Fernández S, Fernando S, Planas O. Cooperation towards nobility: equipping first-row transition metals with an aluminium sword. Dalton Trans 2023; 52:14259-14286. [PMID: 37740303 DOI: 10.1039/d3dt02722h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
The exploration for noble metals substitutes in catalysis has become a highly active area of research, driven by the pursuit of sustainable chemical processes. Although the utilization of base metals holds great potential as an alternative, their successful implementation in predictable catalytic processes necessitates the development of appropriate ligands. Such ligands must be capable of controlling their intricate redox chemistry and promote two-electron events, thus mimicking well-established organometallic processes in noble metal catalysis. While numerous approaches for infusing nobility to base metals have been explored, metal-ligand cooperation has garnered significant attention in recent years. Within this context, aluminium-based ligands offer interesting features to fine-tune the activity of metal centres, but their application in base metal catalysis remains largely unexplored. This perspective seeks to highlight the most recent breakthroughs in the reactivity of heterobimetallic aluminium-base-metal complexes, while also showcasing their potential to develop novel and predictable catalytic transformations. By turning the spotlight on such heterobimetallic species, we aim to inspire chemists to explore aluminium-base-metal species and expand the range of their applications as catalysts.
Collapse
Affiliation(s)
- Sergio Fernández
- Queen Mary University of London, School of Physical and Chemical Sciences, Department of Chemistry, Mile End Road, London E1 4NS, UK.
| | - Selwin Fernando
- Queen Mary University of London, School of Physical and Chemical Sciences, Department of Chemistry, Mile End Road, London E1 4NS, UK.
| | - Oriol Planas
- Queen Mary University of London, School of Physical and Chemical Sciences, Department of Chemistry, Mile End Road, London E1 4NS, UK.
| |
Collapse
|
38
|
Banerjee S, Ballmann GM, Evans MJ, O'Reilly A, Kennedy AR, Fulton JR, Coles MP, Mulvey RE. Three Oxidative Addition Routes of Alkali Metal Aluminyls to Dihydridoaluminates and Reactivity with CO 2. Chemistry 2023; 29:e202301849. [PMID: 37429823 DOI: 10.1002/chem.202301849] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/08/2023] [Accepted: 07/10/2023] [Indexed: 07/12/2023]
Abstract
Three distinct routes are reported to the soluble, dihydridoaluminate compounds, AM[Al(NONDipp )(H)2 ] (AM=Li, Na, K, Rb, Cs; [NONDipp ]2- =[O(SiMe2 NDipp)2 ]2- ; Dipp=2,6-iPr2 C6 H3 ) starting from the alkali metal aluminyls, AM[Al(NONDipp )]. Direct H2 hydrogenation of the heavier analogues (AM=Rb, Cs) produced the first examples of structurally characterized rubidium and caesium dihydridoaluminates, although harsh conditions were required for complete conversion. Using 1,4-cyclohexadiene (1,4-CHD) as an alternative hydrogen source in transfer hydrogenation reactions provided a lower energy pathway to the full series of products for AM=Li-Cs. A further moderation in conditions was noted for the thermal decomposition of the (silyl)(hydrido)aluminates, AM[Al(NONDipp )(H)(SiH2 Ph)]. Probing the reaction of Cs[Al(NONDipp )] with 1,4-CHD provided access to a novel inverse sandwich complex, [{Cs(Et2 O)}2 {Al(NONDipp )(H)}2 (C6 H6 )], containing the 1,4-dialuminated [C6 H6 ]2- dianion and representing the first time that an intermediate in the commonly utilized oxidation process of 1,4-CHD to benzene has been trapped. The synthetic utility of the newly installed Al-H bonds has been demonstrated by their ability to reduce CO2 under mild conditions to form the bis-formate AM[Al(NONDipp )(O2 CH)2 ] compounds, which exhibit a diverse series of eyecatching bimetallacyclic structures.
Collapse
Affiliation(s)
- Sumanta Banerjee
- WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, G1 1XL, Glasgow, UK
| | - Gerd M Ballmann
- WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, G1 1XL, Glasgow, UK
| | - Matthew J Evans
- School of Chemical and Physical Sciences, Victoria University of Wellington, P.O. Box 600, Wellington, 6140, New Zealand
| | - Andrea O'Reilly
- School of Chemical and Physical Sciences, Victoria University of Wellington, P.O. Box 600, Wellington, 6140, New Zealand
| | - Alan R Kennedy
- WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, G1 1XL, Glasgow, UK
| | - J Robin Fulton
- School of Chemical and Physical Sciences, Victoria University of Wellington, P.O. Box 600, Wellington, 6140, New Zealand
| | - Martyn P Coles
- School of Chemical and Physical Sciences, Victoria University of Wellington, P.O. Box 600, Wellington, 6140, New Zealand
| | - Robert E Mulvey
- WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, G1 1XL, Glasgow, UK
| |
Collapse
|
39
|
Liu HY, Hill MS, Mahon MF, McMullin CL, Schwamm RJ. Seven-Membered Cyclic Diamidoalumanyls of Heavier Alkali Metals: Structures and C-H Activation of Arenes. Organometallics 2023; 42:2881-2892. [PMID: 37829511 PMCID: PMC10565898 DOI: 10.1021/acs.organomet.3c00323] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Indexed: 10/14/2023]
Abstract
Like the previously reported potassium-based system, rubidium and cesium reduction of [{SiNDipp}AlI] ({SiNDipp} = {CH2SiMe2NDipp}2) with the heavier alkali metals [M = Rb and Cs] provides dimeric group 1 alumanyl derivatives, [{SiNDipp}AlM]2. In contrast, similar treatment with sodium results in over-reduction and incorporation of a formal equivalent of [{SiNDipp}Na2] into the resultant sodium alumanyl species. The dimeric K, Rb, and Cs compounds display a variable efficacy toward the C-H oxidative addition of arene C-H bonds at elevated temperatures (Cs > Rb > K, 110 °C) to yield (hydrido)(organo)aluminate species. Consistent with the synthetic experimental observations, computational (DFT) assessment of the benzene C-H activation indicates that rate-determining attack of the Al(I) nucleophile within the dimeric species is facilitated by π-engagement of the arene with the electrophilic M+ cation, which becomes increasingly favorable as group 1 is descended.
Collapse
Affiliation(s)
- Han-Ying Liu
- Department of Chemistry, University
of Bath, Claverton
Down, Bath BA2 7AY, U.K.
| | - Michael S. Hill
- Department of Chemistry, University
of Bath, Claverton
Down, Bath BA2 7AY, U.K.
| | - Mary F. Mahon
- Department of Chemistry, University
of Bath, Claverton
Down, Bath BA2 7AY, U.K.
| | - Claire L. McMullin
- Department of Chemistry, University
of Bath, Claverton
Down, Bath BA2 7AY, U.K.
| | - Ryan J. Schwamm
- Department of Chemistry, University
of Bath, Claverton
Down, Bath BA2 7AY, U.K.
| |
Collapse
|
40
|
Vrána J, Růžičková Z, Růžička A, Dostál L. Synthesis and reactivity of alkali metal aluminates bearing bis(organoamido)phosphane ligand. Dalton Trans 2023; 52:12623-12631. [PMID: 37610275 DOI: 10.1039/d3dt01859h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
In this study, we report a group of alkali metal aluminates bearing bis(organoamido)phosphane ligand. The starting complex {[PhP(NtBu)2]AlMe2}Li·OEt2 (1) was prepared by stepwise deprotonation of the parent PhP(NHtBu)2 by nBuLi and AlMe3. Further derivatization of aluminate 1 was performed by the virtual substitution of lithium -{[PhP(NtBu)2]AlMe2}K (2), methyl substituents - {[PhP(NtBu)2]AlH2}Li·THF (3), modification of steric bulk and induction effects on the phosphorus atom - {[tBuP(N-2,6-iPr2C6H3)2]AlMe2}Li·(OEt2)2 (4), and phosphorus atom oxidation state {[Ph(Y)P(NtBu)2]AlMe2}Li (Y = O (5), S (6), Se (7), Te (8)). The structure causing non-covalent interactions in 1-4 were evaluated with the help of theoretical calculations and topological analysis ranging from π-electron system-metal to agostic interactions of various types. The further reactions of 1 with various nucleophiles were found to be a versatile tool for the preparation of iminophosphonamides via the formation of P-E bond (E = Si, Ge, Sn, Pb, P, and C) and followed by P(III) → P(V) tautomeric shift.
Collapse
Affiliation(s)
- Jan Vrána
- Department of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic.
| | - Zdeňka Růžičková
- Department of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic.
| | - Aleš Růžička
- Department of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic.
| | - Libor Dostál
- Department of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic.
| |
Collapse
|
41
|
Liu HY, Mahon MF, Hill MS. Aluminum-Boron Bond Formation by Boron Ester Oxidative Addition at an Alumanyl Anion. Inorg Chem 2023; 62:15310-15319. [PMID: 37672789 PMCID: PMC10521018 DOI: 10.1021/acs.inorgchem.3c02566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Indexed: 09/08/2023]
Abstract
The potassium diamidoalumanyl, [K{Al(SiNDipp)}]2 (SiNDipp = {CH2SiMe2NDipp}2), reacts with the terminal B-O bonds of pinacolato boron esters, ROBpin (R = Me, i-Pr), and B(OMe)3 to provide potsassium (alkoxy)borylaluminate derivatives, [K{Al(SiNDipp)(OR)(Bpin)}]n (R = Me, n = 2; R = i-Pr, n = ∞) and [K{Al(SiNDipp)(OMe)(B(OMe)2)}]∞, comprising Al-B σ bonds. An initial assay of the reactivity of these species with the heteroallene molecules, N,N'-diisopropylcarbodiimide and CO2, highlights the kinetic inaccessibility of their Al-B bonds; only decomposition at high temperature is observed with the carbodiimide, whereas CO2 preferentially inserts into the Al-O bond of [K{Al(SiNDipp)(OMe)(Bpin)}]2 to provide a dimeric methyl carbonate species. Treatment of the acyclic dimethoxyboryl species, however, successfully liberates a terminal alumaboronic ester featuring trigonal N2Al-BO2 coordination environments at both boron and aluminum.
Collapse
Affiliation(s)
- Han-Ying Liu
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2
7AY, U.K.
| | - Mary F. Mahon
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2
7AY, U.K.
| | - Michael S. Hill
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2
7AY, U.K.
| |
Collapse
|
42
|
Zhang C, Dankert F, Jiang Z, Wang B, Munz D, Chu J. Evidence for Carbene Intermediates in Isocyanide Homologation by Aluminium(I). Angew Chem Int Ed Engl 2023; 62:e202307352. [PMID: 37319123 DOI: 10.1002/anie.202307352] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/15/2023] [Accepted: 06/15/2023] [Indexed: 06/17/2023]
Abstract
The C-C bond formation between C1 molecules plays an important role in chemistry as manifested by the Fischer-Tropsch (FT) process. Serving as models for the FT process, we report here the reactions between a neutral AlI complex (Me NacNac)Al (1, Me NacNac=HC[(CMe)(NDipp)]2 , Dipp=2,6-diisopropylphenyl) and various isocyanides. The step-by-step coupling mechanism was studied in detail by low-temperature NMR monitoring, isotopic labeling, as well as quantum chemical calculations. Three different products were isolated in reaction of 1 with the sterically encumbered 2,6-bis(benzhydryl)-4-Me-phenyl isocyanide (BhpNC). These products substantiate carbene intermediates. The reaction between 1 and adamantyl isocyanide (AdNC) generated a trimerization product, and a corresponding carbene intermediate could be trapped in the form of a molybdenum(0) complex. Tri-, tetra-, and even pentamerization products were isolated with the sterically less congested phenyl and p-methoxyphenyl isocyanides (PhNC and PMPNC) with concurrent construction of quinoline or indole heterocycles. Overall, this study provides evidence for carbene intermediates in FT-type chemistry of aluminium(I) and isocyanides.
Collapse
Affiliation(s)
- Cuijuan Zhang
- School of Chemical Sciences, University of Chinese Academy of Sciences, 101408, Beijing, China
| | - Fabian Dankert
- Coordination Chemistry, Saarland University, Campus C4.1, 66123, Saarbrücken, Germany
| | - Ziang Jiang
- School of Chemical Sciences, University of Chinese Academy of Sciences, 101408, Beijing, China
| | - Baolu Wang
- School of Chemical Sciences, University of Chinese Academy of Sciences, 101408, Beijing, China
| | - Dominik Munz
- Coordination Chemistry, Saarland University, Campus C4.1, 66123, Saarbrücken, Germany
| | - Jiaxiang Chu
- School of Chemical Sciences, University of Chinese Academy of Sciences, 101408, Beijing, China
| |
Collapse
|
43
|
Zhang X, Liu LL. Crystalline Neutral Aluminum Selenide/Telluride: Isoelectronic Aluminum Analogues of Carbonyls. J Am Chem Soc 2023; 145:15729-15734. [PMID: 37459288 DOI: 10.1021/jacs.3c05954] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Neutral aluminum chalcogenides (R-Al(L)═Ch; L = ligand, Ch = chalcogen), stabilized by a Lewis base ligand, represent isoelectronic counterparts to carbonyl compounds and have long been pursued for isolation. Herein, we present the synthesis of an aluminum selenide, [N]-Al(iPr2-bimy)═Se, and an aluminum telluride, [N]-Al(iPr2-bimy)═Te, under ambient conditions ([N] = 1,8-bis(3,5-di-tert-butylphenyl)-3,6-di-tert-butylcarbazolyl; iPr2-bimy = 1,3-diisoproplylbenzimidazole-2-ylidene). These compounds arise from the oxidation reaction of [N]-Al(iPr2-bimy) with Se and (nBu)3P═Te, respectively. One notable characteristic of the Al and Ch interaction is the presence of an Al-Ch σ bond, strengthened by the electrostatic attraction between the Al+ and Ch- centers as well as the donation of lone pairs from Ch into vacant orbitals at Al. This results in an Al-Ch multiple bond with an ambiphilic nature. Preliminary investigations into their reactivity unveil their remarkable propensity for facile (cyclo)addition reactions with diverse substrates, including PhCCH, PhCN, AdN3, MeI, PhSiH3, and C6F6, leading to the formation of unprecedented main group heterocycles and alumachalcogenides.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Liu Leo Liu
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen 518055, China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
44
|
Evans MJ, Anker MD, McMullin CL, Coles MP. Controlled reductive C-C coupling of isocyanides promoted by an aluminyl anion. Chem Sci 2023; 14:6278-6288. [PMID: 37325153 PMCID: PMC10266456 DOI: 10.1039/d3sc01387a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/12/2023] [Indexed: 06/17/2023] Open
Abstract
We report the reaction of the potassium aluminyl, K[Al(NON)] ([NON]2- = [O(SiMe2NDipp)2]2-, Dipp = 2,6-iPr2C6H3) with a series of isocyanide substrates (R-NC). In the case of tBu-NC, degradation of the isocyanide was observed generating an isomeric mixture of the corresponding aluminium cyanido-κC and -κN compounds, K[Al(NON)(H)(CN)]/K[Al(NON)(H)(NC)]. The reaction with 2,6-dimethylphenyl isocyanide (Dmp-NC), gave a C3-homologation product, which in addition to C-C bond formation showed dearomatisation of one of the aromatic substituents. In contrast, using adamantyl isocyanide Ad-NC allowed both the C2- and C3-homologation products to be isolated, allowing a degree of control to be exercised over the chain growth process. These data also show that the reaction proceeds through a stepwise addition, supported in this study by the synthesis of the mixed [(Ad-NC)2(Dmp-NC)]2- product. Computational analysis of the bonding within the homologised products confirm a high degree of multiple bond character in the exocyclic ketenimine units of the C2- and C3-products. In addition, the mechanism of chain growth was investigated, identifying different possible pathways leading to the observed products, and highlighting the importance of the potassium cation in formation of the initial C2-chain.
Collapse
Affiliation(s)
- Matthew J Evans
- School of Chemical and Physical Sciences, Victoria University of Wellington P. O. Box 600 Wellington New Zealand
| | - Mathew D Anker
- School of Chemical and Physical Sciences, Victoria University of Wellington P. O. Box 600 Wellington New Zealand
| | | | - Martyn P Coles
- School of Chemical and Physical Sciences, Victoria University of Wellington P. O. Box 600 Wellington New Zealand
| |
Collapse
|
45
|
Abstract
Three-membered-ring scaffolds of carbocycles, namely, cyclopropanes and cyclopropenes, are ubiquitous in natural products and pharmaceutical molecules. These molecules exhibit a peculiar reactivity, and their applications as synthetic intermediates and versatile building blocks in organic synthesis have been extensively studied over the past century. The incorporation of heteroatoms into three-membered cyclic structures has attracted significant attention, reflecting fundamental differences in their electronic/geometric structures and reactivities compared to their carbon congeners and their associated potential for exploitation in applications. Recently, the chemistry of low-valent aluminum species, alumylenes, dialumenes, and aluminyl anions, has dramatically developed, which has allowed access to hitherto unprecedented aluminacycles. This Perspective focuses upon advances in the chemistry of three-membered aluminacycles, including their synthetic protocols, spectroscopic and structural properties, and reactivity toward various substrates and small molecules.
Collapse
Affiliation(s)
- Chenting Yan
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 637371 Singapore, Singapore
| | - Rei Kinjo
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 637371 Singapore, Singapore
| |
Collapse
|
46
|
Liu HY, Neale SE, Hill MS, Mahon MF, McMullin CL. Structural snapshots of an Al-Cu bond-mediated transformation of terminal acetylenes. Chem Sci 2023; 14:2866-2876. [PMID: 36937577 PMCID: PMC10016343 DOI: 10.1039/d3sc00240c] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/14/2023] [Indexed: 02/17/2023] Open
Abstract
The copper(i) alumanyl derivative, [{SiNDipp}Al-Cu(NHCiPr)] (SiNDipp = {CH2SiMe2NDipp}2; Dipp = 2,6-di-isopropylphenyl; NHCiPr = N,N'-di-isopropyl-4,5-dimethyl-2-ylidene), reacts in a stepwise fashion with up to three equivalents of various terminal alkynes. This reactivity results in the sequential formation of cuprous (hydrido)(alkynyl)aluminate, (alkenyl)(alkynyl)aluminate and bis(alkynyl)aluminate derivatives, examples of which have been fully characterised. The process of alkene liberation resulting from the latter reaction step constitutes a unique case of alkyne transfer semi-hydrogenation in which the C-H acidic alkyne itself acts as a source of proton, with the Cu-Al bond providing the requisite electrons to effect reduction. This reaction sequence is validated by DFT calculations, which rationalise the variable stability of the initially formed heterobimetallic hydrides.
Collapse
Affiliation(s)
- Han-Ying Liu
- Department of Chemistry, University of Bath Claverton Down Bath BA2 7AY UK
| | - Samuel E Neale
- Department of Chemistry, University of Bath Claverton Down Bath BA2 7AY UK
| | - Michael S Hill
- Department of Chemistry, University of Bath Claverton Down Bath BA2 7AY UK
| | - Mary F Mahon
- Department of Chemistry, University of Bath Claverton Down Bath BA2 7AY UK
| | - Claire L McMullin
- Department of Chemistry, University of Bath Claverton Down Bath BA2 7AY UK
| |
Collapse
|
47
|
Villegas-Escobar N, Hoobler PR, Toro-Labbé A, Schaefer HF. High-Level Coupled-Cluster Study on Substituent Effects in H 2 Activation by Low-Valent Aluminyl Anions. J Phys Chem A 2023; 127:956-965. [PMID: 36689320 DOI: 10.1021/acs.jpca.2c08403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The synthesis of novel aluminyl anion complexes has been well exploited in recent years. Moreover, the elucidation of the structure and reactivity of these complexes opens the path toward a new understanding of low-valent aluminum complexes and their chemistry. This work computationally treats the substituent effect on aluminyl anions to discover suitable alternatives for H2 activation at a high level of theory utilizing coupled-cluster techniques extrapolated to the complete basis set. The results reveal that the simplest AlH2- system is the most reactive toward the activation of H2, but due to the low steric demand, severe difficulty in the stabilization of this system makes its use nonviable. However, the results indicate that, in principle, aluminyl systems with -C, -CN, -NC, and -N chelating centers would be the best choices of ligand toward the activation of molecular hydrogen by taking care of suitable steric demand to prevent dimerization of the catalysts. Furthermore, computations show that monosubstitution (besides -H) in aluminyl anions is preferred over disubstitution. So our predictions show that bidentate ligands may yield less reactive aluminyl anions to activate H2 than monodentate ones.
Collapse
Affiliation(s)
- Nery Villegas-Escobar
- Departamento de Físico-Química, Facultad de Ciencias Químicas, Universidad de Concepción, Concepción4070386, Chile
| | - Preston R Hoobler
- Department of Chemistry, Covenant College, Lookout Mountain, Georgia30750, United States
| | - Alejandro Toro-Labbé
- Laboratorio de Química Teórica Computacional (QTC), Facultad de Química, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna, 4860Santiago, Chile
| | - Henry F Schaefer
- Center for Computational Quantum Chemistry, University of Georgia, Athens, Georgia30602, United States
| |
Collapse
|