1
|
Estrogen Induces Selective Transcription of Caveolin1 Variants in Human Breast Cancer through Estrogen Responsive Element-Dependent Mechanisms. Int J Mol Sci 2020; 21:ijms21175989. [PMID: 32825330 PMCID: PMC7503496 DOI: 10.3390/ijms21175989] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/13/2020] [Accepted: 08/19/2020] [Indexed: 02/07/2023] Open
Abstract
The estrogen receptor (ER) signaling regulates numerous physiological processes mainly through activation of gene transcription (genomic pathways). Caveolin1 (CAV1) is a membrane-resident protein that behaves as platform to enable different signaling molecules and receptors for membrane-initiated pathways. CAV1 directly interacts with ERs and allows their localization on membrane with consequent activation of ER-non-genomic pathways. Loss of CAV1 function is a common feature of different types of cancers, including breast cancer. Two protein isoforms, CAV1α and CAV1β, derived from two alternative translation initiation sites, are commonly described for this gene. However, the exact transcriptional regulation underlying CAV1 expression pattern is poorly elucidated. In this study, we dissect the molecular mechanism involved in selective expression of CAV1β isoform, induced by estrogens and downregulated in breast cancer. Luciferase assays and Chromatin immunoprecipitation demonstrate that transcriptional activation is triggered by estrogen-responsive elements embedded in CAV1 intragenic regions and DNA-binding of estrogen-ER complexes. This regulatory control is dynamically established by local chromatin changes, as proved by the occurrence of histone H3 methylation/demethylation events and association of modifier proteins as well as modification of H3 acetylation status. Thus, we demonstrate for the first time, an estrogen-ERs-dependent regulatory circuit sustaining selective CAV1β expression.
Collapse
|
2
|
Egger AN, Rajabi‐Estarabadi A, Williams NM, Resnik SR, Fox JD, Wong LL, Jozic I. The importance of caveolins and caveolae to dermatology: Lessons from the caves and beyond. Exp Dermatol 2020; 29:136-148. [PMID: 31845391 PMCID: PMC7028117 DOI: 10.1111/exd.14068] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/25/2019] [Accepted: 11/28/2019] [Indexed: 12/15/2022]
Abstract
Caveolae are flask-shaped invaginations of the cell membrane rich in cholesterol and sphingomyelin, with caveolin proteins acting as their primary structural components that allow compartmentalization and orchestration of various signalling molecules. In this review, we discuss how pleiotropic functions of caveolin-1 (Cav1) and its intricate roles in numerous cellular functions including lipid trafficking, signalling, cell migration and proliferation, as well as cellular senescence, infection and inflammation, are integral for normal development and functioning of skin and its appendages. We then examine how disruption of the homeostatic levels of Cav1 can lead to development of various cutaneous pathophysiologies including skin cancers, cutaneous fibroses, psoriasis, alopecia, age-related changes in skin and aberrant wound healing and propose how levels of Cav1 may have theragnostic value in skin physiology/pathophysiology.
Collapse
Affiliation(s)
- Andjela N. Egger
- Wound Healing and Regenerative Medicine Research ProgramDr. Phillip Frost Department of Dermatology and Cutaneous SurgeryUniversity of Miami Miller School of MedicineMiamiFLUSA
| | - Ali Rajabi‐Estarabadi
- Wound Healing and Regenerative Medicine Research ProgramDr. Phillip Frost Department of Dermatology and Cutaneous SurgeryUniversity of Miami Miller School of MedicineMiamiFLUSA
| | - Natalie M. Williams
- Wound Healing and Regenerative Medicine Research ProgramDr. Phillip Frost Department of Dermatology and Cutaneous SurgeryUniversity of Miami Miller School of MedicineMiamiFLUSA
| | - Sydney R. Resnik
- Wound Healing and Regenerative Medicine Research ProgramDr. Phillip Frost Department of Dermatology and Cutaneous SurgeryUniversity of Miami Miller School of MedicineMiamiFLUSA
| | - Joshua D. Fox
- Wound Healing and Regenerative Medicine Research ProgramDr. Phillip Frost Department of Dermatology and Cutaneous SurgeryUniversity of Miami Miller School of MedicineMiamiFLUSA
| | - Lulu L. Wong
- Wound Healing and Regenerative Medicine Research ProgramDr. Phillip Frost Department of Dermatology and Cutaneous SurgeryUniversity of Miami Miller School of MedicineMiamiFLUSA
| | - Ivan Jozic
- Wound Healing and Regenerative Medicine Research ProgramDr. Phillip Frost Department of Dermatology and Cutaneous SurgeryUniversity of Miami Miller School of MedicineMiamiFLUSA
| |
Collapse
|
3
|
Haddad D, Al Madhoun A, Nizam R, Al-Mulla F. Role of Caveolin-1 in Diabetes and Its Complications. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:9761539. [PMID: 32082483 PMCID: PMC7007939 DOI: 10.1155/2020/9761539] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 12/10/2019] [Accepted: 12/26/2019] [Indexed: 12/25/2022]
Abstract
It is estimated that in 2017 there were 451 million people with diabetes worldwide. These figures are expected to increase to 693 million by 2045; thus, innovative preventative programs and treatments are a necessity to fight this escalating pandemic disorder. Caveolin-1 (CAV1), an integral membrane protein, is the principal component of caveolae in membranes and is involved in multiple cellular functions such as endocytosis, cholesterol homeostasis, signal transduction, and mechanoprotection. Previous studies demonstrated that CAV1 is critical for insulin receptor-mediated signaling, insulin secretion, and potentially the development of insulin resistance. Here, we summarize the recent progress on the role of CAV1 in diabetes and diabetic complications.
Collapse
Affiliation(s)
- Dania Haddad
- Genetics and Bioinformatics Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Ashraf Al Madhoun
- Genetics and Bioinformatics Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Rasheeba Nizam
- Genetics and Bioinformatics Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Fahd Al-Mulla
- Genetics and Bioinformatics Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| |
Collapse
|
4
|
Jozic I, Sawaya AP, Pastar I, Head CR, Wong LL, Glinos GD, Wikramanayake TC, Brem H, Kirsner RS, Tomic-Canic M. Pharmacological and Genetic Inhibition of Caveolin-1 Promotes Epithelialization and Wound Closure. Mol Ther 2019; 27:1992-2004. [PMID: 31409528 PMCID: PMC6838864 DOI: 10.1016/j.ymthe.2019.07.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 07/10/2019] [Accepted: 07/17/2019] [Indexed: 12/20/2022] Open
Abstract
Chronic wounds-including diabetic foot ulcers, venous leg ulcers, and pressure ulcers-represent a major health problem that demands an urgent solution and new therapies. Despite major burden to patients, health care professionals, and health care systems worldwide, there are no efficacious therapies approved for treatment of chronic wounds. One of the major obstacles in achieving wound closure in patients is the lack of epithelial migration. Here, we used multiple pre-clinical wound models to show that Caveolin-1 (Cav1) impedes healing and that targeting Cav1 accelerates wound closure. We found that Cav1 expression is significantly upregulated in wound edge biopsies of patients with non-healing wounds, confirming its healing-inhibitory role. Conversely, Cav1 was absent from the migrating epithelium and is downregulated in acutely healing wounds. Specifically, Cav1 interacted with membranous glucocorticoid receptor (mbGR) and epidermal growth factor receptor (EGFR) in a glucocorticoid-dependent manner to inhibit cutaneous healing. However, pharmacological disruption of caveolae by MβCD or CRISPR/Cas9-mediated Cav1 knockdown resulted in disruption of Cav1-mbGR and Cav1-EGFR complexes and promoted epithelialization and wound healing. Our data reveal a novel mechanism of inhibition of epithelialization and wound closure, providing a rationale for pharmacological targeting of Cav1 as potential therapy for patients with non-healing chronic wounds.
Collapse
Affiliation(s)
- Ivan Jozic
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Andrew P Sawaya
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Irena Pastar
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Cheyanne R Head
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Lulu L Wong
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - George D Glinos
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Tongyu Cao Wikramanayake
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Harold Brem
- Division of Wound Healing and Regenerative Medicine, Newark Beth Israel Medical Center, RWJBarnabas Health, Newark, NJ 07112, USA
| | - Robert S Kirsner
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Marjana Tomic-Canic
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Cellular and Molecular Pharmacology Graduate Program in Biomedical Sciences, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
5
|
Han B, Tiwari A, Kenworthy AK. Tagging strategies strongly affect the fate of overexpressed caveolin-1. Traffic 2015; 16:417-38. [PMID: 25639341 PMCID: PMC4440517 DOI: 10.1111/tra.12254] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 12/24/2014] [Accepted: 12/24/2014] [Indexed: 01/01/2023]
Abstract
Caveolin-1 (Cav1) is the primary scaffolding protein of caveolae, flask-shaped invaginations of the plasma membrane thought to function in endocytosis, mechanotransduction, signaling and lipid homeostasis. A significant amount of our current knowledge about caveolins and caveolae is derived from studies of transiently overexpressed, C-terminally tagged caveolin proteins. However, how different tags affect the behavior of ectopically expressed Cav1 is still largely unknown. To address this question, we performed a comparative analysis of the subcellular distribution, oligomerization state and detergent resistance of transiently overexpressed Cav1 labeled with three different C-terminal tags (EGFP, mCherry and myc). We show that addition of fluorescent protein tags enhances the aggregation and/or degradation of both wild-type Cav1 and an oligomerization defective P132L mutant. Strikingly, complexes formed by overexpressed Cav1 fusion proteins excluded endogenous Cav1 and Cav2, and the properties of native caveolins were largely preserved even when abnormal aggregates were present in cells. These findings suggest that differences in tagging strategies may be a source of variation in previously published studies of Cav1 and that overexpressed Cav1 may exert functional effects outside of caveolae. They also highlight the need for a critical re-evaluation of current knowledge based on transient overexpression of tagged Cav1.
Collapse
Affiliation(s)
- Bing Han
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of MedicineNashville, TN, USA
| | - Ajit Tiwari
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of MedicineNashville, TN, USA
| | - Anne K Kenworthy
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of MedicineNashville, TN, USA
- Department of Cell and Developmental Biology, Vanderbilt University School of MedicineNashville, TN, USA
- Epithelial Biology Program, Vanderbilt University School of MedicineNashville, TN, USA
- Chemical and Physical Biology Program, Vanderbilt UniversityNashville, TN, USA
| |
Collapse
|
6
|
Volpicelli F, Caiazzo M, Moncharmont B, di Porzio U, Colucci-D’Amato L. Neuronal differentiation dictates estrogen-dependent survival and ERK1/2 kinetic by means of caveolin-1. PLoS One 2014; 9:e109671. [PMID: 25350132 PMCID: PMC4211669 DOI: 10.1371/journal.pone.0109671] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 09/02/2014] [Indexed: 11/18/2022] Open
Abstract
Estrogens promote a plethora of effects in the CNS that profoundly affect both its development and mature functions and are able to influence proliferation, differentiation, survival and neurotransmission. The biological effects of estrogens are cell-context specific and also depend on differentiation and/or proliferation status in a given cell type. Furthermore, estrogens activate ERK1/2 in a variety of cellular types. Here, we investigated whether ERK1/2 activation might be influenced by estrogens stimulation according to the differentiation status and the molecular mechanisms underling this phenomenon. ERK1/2 exert an opposing role on survival and death, as well as on proliferation and differentiation depending on different kinetics of phosphorylation. Hence we report that mesencephalic primary cultures and the immortalized cell line mes-c-myc A1 express estrogen receptor α and activate ERK1/2 upon E2 stimulation. Interestingly, following the arrest of proliferation and the onset of differentiation, we observe a change in the kinetic of ERKs phosphorylation induced by estrogens stimulation. Moreover, caveolin-1, a main constituent of caveolae, endogenously expressed and co-localized with ER-α on plasma membrane, is consistently up-regulated following differentiation and cell growth arrest. In addition, we demonstrate that siRNA-induced caveolin-1 down-regulation or disruption by means of ß-cyclodextrin treatment changes ERK1/2 phosphorylation in response to estrogens stimulation. Finally, caveolin-1 down-regulation abolishes estrogens-dependent survival of neurons. Thus, caveolin-1 appears to be an important player in mediating, at least, some of the non-genomic action of estrogens in neurons, in particular ERK1/2 kinetics of activation and survival.
Collapse
Affiliation(s)
- Floriana Volpicelli
- Department of Pharmacy, University of Naples “Federico II”, Naples, Italy
- Institute of Genetics and Biophysics “Adriano Buzzati Traverso”, CNR, Naples, Italy
| | - Massimiliano Caiazzo
- Institute of Genetics and Biophysics “Adriano Buzzati Traverso”, CNR, Naples, Italy
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Bruno Moncharmont
- Department of Medicine and Health Sciences, University of Molise, Campobasso, Italy
| | - Umberto di Porzio
- Institute of Genetics and Biophysics “Adriano Buzzati Traverso”, CNR, Naples, Italy
| | - Luca Colucci-D’Amato
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, Caserta, Italy
- C.I.R.N., Inter-University Center for Research in Neuroscience, Naples, Italy
- * E-mail:
| |
Collapse
|
7
|
Coutinho P, Vega C, Pojoga LH, Rivera A, Prado GN, Yao TM, Adler G, Torres-Grajales M, Maldonado ER, Ramos-Rivera A, Williams JS, Williams G, Romero JR. Aldosterone's rapid, nongenomic effects are mediated by striatin: a modulator of aldosterone's effect on estrogen action. Endocrinology 2014; 155:2233-43. [PMID: 24654783 PMCID: PMC4020933 DOI: 10.1210/en.2013-1834] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The cellular responses to steroids are mediated by 2 general mechanisms: genomic and rapid/nongenomic effects. Identification of the mechanisms underlying aldosterone (ALDO)'s rapid vs their genomic actions is difficult to study, and these mechanisms are not clearly understood. Recent data suggest that striatin is a mediator of nongenomic effects of estrogen. We explored the hypothesis that striatin is an intermediary of the rapid/nongenomic effects of ALDO and that striatin serves as a novel link between the actions of the mineralocorticoid and estrogen receptors. In human and mouse endothelial cells, ALDO promoted an increase in phosphorylated extracellular signal-regulated protein kinases 1/2 (pERK) that peaked at 15 minutes. In addition, we found that striatin is a critical intermediary in this process, because reducing striatin levels with small interfering RNA (siRNA) technology prevented the rise in pERK levels. In contrast, reducing striatin did not significantly affect 2 well-characterized genomic responses to ALDO. Down-regulation of striatin with siRNA produced similar effects on estrogen's actions, reducing nongenomic, but not some genomic, actions. ALDO, but not estrogen, increased striatin levels. When endothelial cells were pretreated with ALDO, the rapid/nongenomic response to estrogen on phosphorylated endothelial nitric oxide synthase (peNOS) was enhanced and accelerated significantly. Importantly, pretreatment with estrogen did not enhance ALDO's nongenomic response on pERK. In conclusion, our results indicate that striatin is a novel mediator for both ALDO's and estrogen's rapid and nongenomic mechanisms of action on pERK and phosphorylated eNOS, respectively, thereby suggesting a unique level of interactions between the mineralocorticoid receptor and the estrogen receptor in the cardiovascular system.
Collapse
Affiliation(s)
- Patricia Coutinho
- Division of Endocrinology, Diabetes and Hypertension (P.C., C.V., L.H.P., G.N.P., T.M.Y., G.A., M.T.-G., E.R.M., A.R.-R., J.S.W., G.W., J.R.R.), Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, and Department of Laboratory Medicine (C.V., A.R., G.N.P., E.R.M.), Boston Children's Hospital and Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Obradovic M, Stewart AJ, Pitt SJ, Labudovic-Borovic M, Sudar E, Petrovic V, Zafirovic S, Maravic-Stojkovic V, Vasic V, Isenovic ER. In vivo effects of 17β-estradiol on cardiac Na(+)/K(+)-ATPase expression and activity in rat heart. Mol Cell Endocrinol 2014; 388:58-68. [PMID: 24662727 DOI: 10.1016/j.mce.2014.03.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Revised: 03/15/2014] [Accepted: 03/15/2014] [Indexed: 12/24/2022]
Abstract
In this study the in vivo effects of estradiol in regulating Na(+)/K(+)-ATPase function in rat heart was studied. Adult male Wistar rats were treated with estradiol (40μg/kg, i.p.) and after 24h the animals were sacrificed and the heart excised. Following estradiol administration, cardiac Na(+)/K(+)-ATPase activity, expression of the α1 subunit, and phosphorylation of the α1 subunit were significantly increased. These animals also had significantly decreased levels of digoxin-like immunoreactive factor(s). Na(+) levels were also significantly reduced but to a level that was still within the normal physiological range, highlighting the ability of the Na(+)/K(+)-ATPase to balance the ionic composition following treatment with estradiol. Estradiol treated rats also showed increased phosphorylation of protein kinase B (Akt), and extracellular-signal-regulated kinase 1/2 (ERK1/2). We therefore suggest a role for Akt and/or ERK1/2 in estradiol-mediated regulation of cardiac Na(+)/K(+)-ATPase expression and activity in rat heart.
Collapse
Affiliation(s)
- Milan Obradovic
- Institute of Nuclear Sciences Vinca, University of Belgrade, Laboratory of Radiobiology and Molecular Genetics, Mike Petrovica Alasa 12-14, 11000 Belgrade, Serbia.
| | - Alan J Stewart
- School of Medicine, University of St Andrews, North Haugh, St Andrews KY16 9TF, United Kingdom.
| | - Samantha J Pitt
- School of Medicine, University of St Andrews, North Haugh, St Andrews KY16 9TF, United Kingdom.
| | - Milica Labudovic-Borovic
- Institute of Histology and Embryology "Aleksandar Đ. Kostić", Faculty of Medicine, University of Belgrade, Visegradska 26, 11000 Belgrade, Serbia.
| | - Emina Sudar
- Institute of Nuclear Sciences Vinca, University of Belgrade, Laboratory of Radiobiology and Molecular Genetics, Mike Petrovica Alasa 12-14, 11000 Belgrade, Serbia.
| | - Voin Petrovic
- Institute of Nuclear Sciences Vinca, University of Belgrade, Laboratory of Physical Chemistry, Mike Petrovica Alasa 12-14, 11000 Belgrade, Serbia.
| | - Sonja Zafirovic
- Institute of Nuclear Sciences Vinca, University of Belgrade, Laboratory of Radiobiology and Molecular Genetics, Mike Petrovica Alasa 12-14, 11000 Belgrade, Serbia.
| | - Vera Maravic-Stojkovic
- Dedinje Cardiovascular Institute, Belgrade University, School of Medicine, Heroja Milana Tepica 1, 11000 Belgrade, Serbia.
| | - Vesna Vasic
- Institute of Nuclear Sciences Vinca, University of Belgrade, Laboratory of Physical Chemistry, Mike Petrovica Alasa 12-14, 11000 Belgrade, Serbia.
| | - Esma R Isenovic
- Institute of Nuclear Sciences Vinca, University of Belgrade, Laboratory of Radiobiology and Molecular Genetics, Mike Petrovica Alasa 12-14, 11000 Belgrade, Serbia.
| |
Collapse
|
9
|
Matsumoto Y, Otsuka F, Takano-Narazaki M, Katsuyama T, Nakamura E, Tsukamoto N, Inagaki K, Sada KE, Makino H. Estrogen facilitates osteoblast differentiation by upregulating bone morphogenetic protein-4 signaling. Steroids 2013; 78:513-20. [PMID: 23499826 DOI: 10.1016/j.steroids.2013.02.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 02/09/2013] [Accepted: 02/26/2013] [Indexed: 11/24/2022]
Abstract
Imbalanced functions of osteoclasts and osteoblasts are involved in various types of bone damage including postmenopausal osteoporosis. In the present study, we investigated the cellular mechanism by which estrogen interacts in the process of osteoblastic differentiation regulated by BMP-4 using mouse MC3T3-E1 cells that express estrogen receptors (ER) and BMP-4. Estradiol enhanced BMP-4-induced Runx2, osterix, ALP and osteocalcin expression in MC3T3-E1 cells. BMP-4-induced mineralization shown by Alizarin red staining was also facilitated by estrogen treatment. It was revealed that estrogen upregulated BMP-4-induced Smad1/5/8 phosphorylation, BRE-Luc activity and Id-1 mRNA expression. The expression of BMPRII was increased by estrogen in MC3T3-E1 cells, and inhibition of BMPRII or ALK-2/3 signaling impaired the effect of estrogen on BMP-4 signaling. Of note, the enhanced expression of osterix, ALP and osteocalcin mRNAs induced by BMP-4 and estrogen was reversed in the presence of an ER antagonist. Given that membrane-impermeable estrogen also upregulated BMP-4-induced expression of osteoblastic markers and Id-1 mRNA, non-genomic ER activity is involved in the mechanism by which estrogen enhances BMP-4-induced osteoblast differentiation in MC3T3-E1 cells. On the other hand, the expression of ERα and endogenous BMP-4 was suppressed by BMP-4 treatment regardless of the presence of estrogen, implying the presence of a negative feedback loop for osteoblast differentiation. Thus, estrogen is functionally involved in the process of osteoblast differentiation regulated by BMP-4 through upregulating BMP sensitivity of MC3T3-E1 cells.
Collapse
Affiliation(s)
- Yoshinori Matsumoto
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Tabatadze N, Smejkalova T, Woolley CS. Distribution and posttranslational modification of synaptic ERα in the adult female rat hippocampus. Endocrinology 2013; 154. [PMID: 23183182 PMCID: PMC3548183 DOI: 10.1210/en.2012-1870] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Acute 17β-estradiol (E2) signaling in the brain is mediated by extranuclear estrogen receptors. Here we used biochemical methods to investigate the distribution, posttranslational modification, and E2 regulation of estrogen receptor-α (ERα) in synaptosomal fractions isolated by differential centrifugation from the adult female rat hippocampus. We find that ERα is concentrated presynaptically and is highly enriched with synaptic vesicles. Immunoisolation of vesicles using vesicle subtype-specific markers showed that ERα is associated with both glutamate and γ-aminobutyric acid-containing neurotransmitter vesicles as well as with some large dense core vesicles. Experiments using broad spectrum and residue-specific phosphatases indicated that a portion of ERα in synaptosomal fractions is phosphorylated at serine/threonine residues leading to a mobility shift in SDS-PAGE and creating a double band on Western blots. The phosphorylated form of ERα runs in the upper of the two bands and is particularly concentrated with synaptic vesicles. Finally, we used E2 with or without the acyl protein thioesterase 1 inhibitor, Palmostatin B, to show that 20 min of E2 treatment of hippocampal slices depletes ERα from the synaptosomal membrane by depalmitoylation. We found no evidence that E2 regulates phosphorylation of synaptosomal ERα on this time scale. These studies begin to fill the gap between detailed molecular characterization of extranuclear ERα in previous in vitro studies and acute E2 modulation of hippocampal synapses in the adult brain.
Collapse
Affiliation(s)
- Nino Tabatadze
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA
| | | | | |
Collapse
|
11
|
Plant sterols as anticancer nutrients: evidence for their role in breast cancer. Nutrients 2013; 5:359-87. [PMID: 23434903 PMCID: PMC3635199 DOI: 10.3390/nu5020359] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 11/30/2012] [Accepted: 01/24/2013] [Indexed: 12/12/2022] Open
Abstract
While many factors are involved in the etiology of cancer, it has been clearly established that diet significantly impacts one’s risk for this disease. More recently, specific food components have been identified which are uniquely beneficial in mitigating the risk of specific cancer subtypes. Plant sterols are well known for their effects on blood cholesterol levels, however research into their potential role in mitigating cancer risk remains in its infancy. As outlined in this review, the cholesterol modulating actions of plant sterols may overlap with their anti-cancer actions. Breast cancer is the most common malignancy affecting women and there remains a need for effective adjuvant therapies for this disease, for which plant sterols may play a distinctive role.
Collapse
|
12
|
Micevych P, Christensen A. Membrane-initiated estradiol actions mediate structural plasticity and reproduction. Front Neuroendocrinol 2012; 33:331-41. [PMID: 22828999 PMCID: PMC3496015 DOI: 10.1016/j.yfrne.2012.07.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 07/11/2012] [Accepted: 07/13/2012] [Indexed: 12/17/2022]
Abstract
Over the years, our ideas about estrogen signaling have greatly expanded. In addition to estradiol having direct nuclear actions that mediate transcription and translation, more recent experiments have demonstrated membrane-initiated signaling. Both direct nuclear and estradiol membrane signaling can be mediated by the classical estrogen receptors, ERα and ERβ, which are two of the numerous putative membrane estrogen receptors. Thus far, however, only ERα has been shown to play a prominent role in regulating female reproduction and sexual behavior. Because ERα is a ligand-gated transcription factor and not a typical membrane receptor, trafficking to the cell membrane requires post-translational modifications. Two necessary modifications are palmitoylation and association with caveolins, a family of scaffolding proteins. In addition to their role in trafficking, caveolin proteins also serve to determine ERα interactions with metabotropic glutamate receptors (mGluRs). It is through these complexes that ERα, which cannot by itself activate G proteins, is able to initiate intracellular signaling. Various combinations of ERα-mGluR interactions have been demonstrated throughout the nervous system from hippocampus to striatum to hypothalamus to dorsal root ganglion (DRG) in both neurons and astrocytes. These combinations of ER and mGluR allow estradiol to have both facilitative and inhibitory actions in neurons. In hypothalamic astrocytes, the estradiol-mediated release of intracellular calcium stores regulating neurosteroid synthesis requires ERα-mGluR1a interaction. In terms of estradiol regulation of female sexual receptivity, activation of ERα-mGluR1a signaling complex leads to the release of neurotransmitters and alteration of neuronal morphology. This review will examine estradiol membrane signaling (EMS) activating a limbic-hypothalamic lordosis regulating circuit, which involves ERα trafficking, internalization, and modifications of neuronal morphology in a circuit that underlies female sexual receptivity.
Collapse
Affiliation(s)
- Paul Micevych
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1763, United States.
| | | |
Collapse
|
13
|
Byrne DP, Dart C, Rigden DJ. Evaluating caveolin interactions: do proteins interact with the caveolin scaffolding domain through a widespread aromatic residue-rich motif? PLoS One 2012; 7:e44879. [PMID: 23028656 PMCID: PMC3444507 DOI: 10.1371/journal.pone.0044879] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Accepted: 08/09/2012] [Indexed: 01/08/2023] Open
Abstract
Caveolins are coat proteins of caveolae, small flask-shaped pits of the plasma membranes of most cells. Aside from roles in caveolae formation, caveolins recruit, retain and regulate many caveolae-associated signalling molecules. Caveolin-protein interactions are commonly considered to occur between a ∼20 amino acid region within caveolin, the caveolin scaffolding domain (CSD), and an aromatic-rich caveolin binding motif (CBM) on the binding partner (фXфXXXXф, фXXXXфXXф or фXфXXXXфXXф, where ф is an aromatic and X an unspecified amino acid). The CBM resembles a typical linear motif - a short, simple sequence independently evolved many times in different proteins for a specific function. Here we exploit recent improvements in bioinformatics tools and in our understanding of linear motifs to critically examine the role of CBMs in caveolin interactions. We find that sequences conforming to the CBM occur in 30% of human proteins, but find no evidence for their statistical enrichment in the caveolin interactome. Furthermore, sequence- and structure-based considerations suggest that CBMs do not have characteristics commonly associated with true interaction motifs. Analysis of the relative solvent accessible area of putative CBMs shows that the majority of their aromatic residues are buried within the protein and are thus unlikely to interact directly with caveolin, but may instead be important for protein structural stability. Together, these findings suggest that the canonical CBM may not be a common characteristic of caveolin-target interactions and that interfaces between caveolin and targets may be more structurally diverse than presently appreciated.
Collapse
Affiliation(s)
- Dominic P. Byrne
- Institute of Integrative Biology, The University of Liverpool, Liverpool, United Kingdom
| | - Caroline Dart
- Institute of Integrative Biology, The University of Liverpool, Liverpool, United Kingdom
| | - Daniel J. Rigden
- Institute of Integrative Biology, The University of Liverpool, Liverpool, United Kingdom
- * E-mail:
| |
Collapse
|
14
|
Pojoga LH, Coutinho P, Rivera A, Yao TM, Maldonado ER, Youte R, Adler GK, Williams J, Turchin A, Williams GH, Romero JR. Activation of the mineralocorticoid receptor increases striatin levels. Am J Hypertens 2012; 25:243-9. [PMID: 22089104 DOI: 10.1038/ajh.2011.197] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Aldosterone (ALDO), a critical regulator of sodium homeostasis, mediates its effects via activation of the mineralocorticoid receptor (MR) through mechanisms that are not entirely clear. Striatin, a membrane associated protein, interacts with estrogen receptors in endothelial cells. METHODS We studied the effects of MR activation in vitro and in vivo on striatin levels in vascular tissue. RESULTS We observed that dietary sodium restriction was associated with increased striatin levels in mouse heart and aorta and that striatin and MR are present in the human endothelial cell line, (EA.hy926), and in mouse aortic endothelial cells (MAEC). Further, we show that MR co-precipitates with striatin in vascular tissue. Incubation of EA.hy926 cells with ALDO (10(-8) mol/l for 5-24 h) increases striatin protein and mRNA expression, an effect that was inhibited by canrenoic acid, an MR antagonist. Consistent with these observations, incubation of MAEC with ALDO increased striatin levels that were likewise blocked by canrenoic acid. To test the in vivo relevance of these findings, we studied two previously described mouse models of increased ALDO levels. Intraperitoneal ALDO administration augmented the abundance of striatin protein in mouse heart. We also observed that in a murine model of chronic ALDO-mediated cardiovascular damage following treatment with N(G)-nitro-L-arginine methyl ester plus angiotensin II an increased abundance of striatin protein in heart and kidney tissue. CONCLUSION Our results provide evidence that increased striatin levels is a component of MR activation in the vasculature and suggest that regulation of striatin by ALDO may modulate estrogen's nongenomic effects.
Collapse
|
15
|
Interaction abolishment between mutant caveolin-1Δ62–100 and ABCA1 reduces HDL-mediated cellular cholesterol efflux. Biochem Biophys Res Commun 2011; 414:337-43. [DOI: 10.1016/j.bbrc.2011.09.070] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Accepted: 09/14/2011] [Indexed: 11/18/2022]
|
16
|
Chen H, Zhang Y, Li S, Lin M, Shi Y, Sang Q, Liu M, Zhang H, Lu D, Meng Z, Liu X, Lin H. Molecular cloning, characterization and expression profiles of three estrogen receptors in protogynous hermaphroditic orange-spotted grouper (Epinephelus coioides). Gen Comp Endocrinol 2011; 172:371-81. [PMID: 21473869 DOI: 10.1016/j.ygcen.2011.03.025] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Revised: 03/18/2011] [Accepted: 03/27/2011] [Indexed: 11/29/2022]
Abstract
Estrogen plays key roles in vertebrate reproductive system via estrogen receptors (ERs) as mediating pathways. In the present study, three full-length ERs cDNA sequences were isolated from a protogynous teleost, the orange-spotted grouper (Epinephelus coioides), and were 2235bp for gERα, 1967bp for gERβ1 and 2158bp for gERβ2, respectively. Phylogenetic and amino acid alignment analyses showed that each gER was clustered in the corresponding taxonomic groups of the perciformes and exhibited high evolutional conservation in functional domains. RT-PCR revealed that gERs expressed at different levels in all the obtained tissues. gERα highly expressed in mature ovaries, gERβ1 mainly expressed in immature ovaries and gERβ2 varied greatly during ovarian development. During female to male sex reversal induced by 17α-methyltestosterone (MT) implantation, gERα decreased gradually, gERβ1 increased gradually, and gERβ2 decreased firstly and recovered subsequently in male stage. The present study speculated the potential roles of gERs during female maturation and female to male sex reversal induced by MT in the protogynous grouper E. coioides.
Collapse
Affiliation(s)
- Huapu Chen
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Li Z, Feng S, Lopez V, Elhammady G, Anderson ML, Kaftanovskaya EM, Agoulnik AI. Uterine cysts in female mice deficient for caveolin-1 and insulin-like 3 receptor RXFP2. Endocrinology 2011; 152:2474-82. [PMID: 21467199 PMCID: PMC3100621 DOI: 10.1210/en.2010-1015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Gene mutations of insulin-like 3 (INSL3) peptide or its G protein-coupled receptor RXFP2 (relaxin family peptide receptor 2) lead to cryptorchidism. The role of INSL3 in adult females is less known, although INSL3 expression has been described in female reproductive organs. Caveolin-1 (CAV1), the main component of caveoli cell membrane invaginations, has been shown to play an important role in epithelial organization and stromal-epithelial interactions. We created a null allele of Cav1 mice by deleting its second exon through embryonic stem cell targeting. Immunohistochemical analysis demonstrated that CAV1 expression was primarily localized to endothelial blood vessel cells and the myometrium uterus, whereas the strongest expression of Rxfp2 was detected in the endometrial epithelium. By 12 months of age approximately 18% of Cav1-/- females developed single or multiple dilated endometrial cysts lined by a flattened, simple low epithelium. A deficiency for Rxfp2 on Cav1-deficient background led to more than a 2-fold increase in the incidence of uterine cysts (54-58%). Appearance of cysts led to a severe disorganization of uterine morphology. We have found that the cysts had an increased expression of β-catenin and estrogen receptor β in endometrial stromal and epithelial cells and increased epithelial proliferation. An analysis of simple dilated cysts in human patients for CAV1 expression did not show appreciable differences with control regardless of menstrual phase, suggesting an involvement of additional factors in human disease. The results of this study suggest a novel synergistic role of INSL3/RXFP2 and CAV1 in structural maintenance of the uterus.
Collapse
Affiliation(s)
- Zhen Li
- Department of Human Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida 33199, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Sandoval KE, Witt KA. Age and 17β-estradiol effects on blood-brain barrier tight junction and estrogen receptor proteins in ovariectomized rats. Microvasc Res 2010; 81:198-205. [PMID: 21192956 DOI: 10.1016/j.mvr.2010.12.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Revised: 11/24/2010] [Accepted: 12/20/2010] [Indexed: 01/16/2023]
Abstract
Age and estrogen levels alter blood-brain barrier (BBB) tight junction (TJ) regulation, impacting brain homeostasis and pathological outcomes. This examination evaluated BBB TJ and estrogen receptor (ER) protein expression changes in young (8-10 week) and middle-aged (10-12 month) ovariectomized female Fisher-344 rats with chronic 17β-estradiol or placebo treatment. Middle-aged rats showed decreased protein expression of occludin with 17β-estradiol (55 kDa band) or placebo (45, 55, 60 kDa bands) treatment compared to respective young. In young animals, 17β-estradiol treatment increased expression of the occludin 55 kDa band over placebo; however, this effect was lost in the middle-aged animals. In both young and middle-aged animals, expression of claudin-5 (23, 32 kDa bands) and ERα (66 kDa) increased with 17β-estradiol treatment, while junctional adhesion molecule-A showed no change across all groups. However, ERα expression (66 kDa) was significantly reduced in the middle-aged animals compared to young placebo treated animals. Measurement of BBB TJ permeability via in situ perfusion of (14)C-sucrose showed no change with age or treatment. Our results show that increasing age and 17β-estradiol treatment alters the expression of ERα and distinct BBB TJ protein isoforms without altering functional paracellular permeability.
Collapse
Affiliation(s)
- Karin E Sandoval
- Pharmaceutical Sciences, School of Pharmacy, Southern Illinois University, Edwardsville, 200 University Park Drive, Edwardsville, IL 62026, USA
| | | |
Collapse
|
19
|
Sud N, Wiseman DA, Black SM. Caveolin 1 is required for the activation of endothelial nitric oxide synthase in response to 17beta-estradiol. Mol Endocrinol 2010; 24:1637-49. [PMID: 20610538 PMCID: PMC2940462 DOI: 10.1210/me.2010-0043] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Accepted: 06/03/2010] [Indexed: 11/19/2022] Open
Abstract
Evidence suggests that estrogen mediates rapid endothelial nitric oxide synthase (eNOS) activation via estrogen receptor-a (ERalpha) within the plasma membrane of endothelial cells (EC). ERalpha is known to colocalize with caveolin 1, the major structural protein of caveolae, and caveolin 1 stimulates the translocation of ERalpha to the plasma membrane. However, the role played by caveolin 1 in regulating 17beta-estradiol-mediated NO signaling in EC has not been adequately resolved. Thus, the purpose of this study was to explore how 17beta-estradiol stimulates eNOS activity and the role of caveolin 1 in this process. Our data demonstrate that modulation of caveolin 1 expression using small interfering RNA or adenoviral gene delivery alters ERalpha localization to the plasma membrane in EC. Further, before estrogen stimulation ERalpha associates with caveolin 1, whereas stimulation promotes a pp60(Src)-mediated phosphorylation of caveolin 1 at tyrosine 14, increasing ERalpha-PI3 kinase interactions and disrupting caveolin 1-ERalpha interactions. Adenoviral mediated overexpression of a phosphorylation-deficient mutant of caveolin (Y14FCav) attenuated the ERalpha/PI3 kinase interaction and prevented Akt-mediated eNOS activation. Furthermore, Y14FCav overexpression reduced eNOS phosphorylation at serine1177 and decreased NO generation after estrogen exposure. Using a library of overlapping peptides we identified residues 62-73 of caveolin 1 as the ERalpha-binding site. Delivery of a synthetic peptide based on this sequence decreased ERalpha plasma membrane translocation and reduced estrogen-mediated activation of eNOS. In conclusion, caveolin 1 stimulates 17beta-estradiol-induced NO production by promoting ERalpha to the plasma membrane, which facilitates the activation of the PI3 kinase pathway, leading to eNOS activation and NO generation.
Collapse
Affiliation(s)
- Neetu Sud
- Pulmonary Vascular Disease Program, Vascular Biology Center, Medical College of Georgia, Augusta, Georgia 30912, USA
| | | | | |
Collapse
|
20
|
Pojoga LH, Romero JR, Yao TM, Loutraris P, Ricchiuti V, Coutinho P, Guo C, Lapointe N, Stone JR, Adler GK, Williams GH. Caveolin-1 ablation reduces the adverse cardiovascular effects of N-omega-nitro-L-arginine methyl ester and angiotensin II. Endocrinology 2010; 151:1236-46. [PMID: 20097717 PMCID: PMC2840694 DOI: 10.1210/en.2009-0514] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Caveolae are the major cellular membrane structure through which extracellular mediators transmit information to intracellular signaling pathways. In vascular tissue (but not ventricular myocardium), caveolin-1 (cav-1) is the main component of caveolae; cav-1 modulates enzymes and receptors, such as the endothelial nitric oxide synthase and the angiotensin II (AngII) type 1 receptor. Evidence suggests that AngII and aldosterone (ALDO) are important mediators of ventricular injury. We have described a model of biventricular damage in rodents that relies on treatment with N-omega-nitro-l-arginine methyl ester (L-NAME (nitric oxide synthase inhibitor)) and AngII. This damage initiated at the vascular level and was observed only in the presence of ALDO and an activated mineralocorticoid receptor (MR). We hypothesize that cav-1 modulates the adverse cardiac effects mediated by ALDO in this animal model. To test this hypothesis, we assessed the ventricular damage and measures of inflammation, in wild-type (WT) and cav-1 knockout (KO) mice randomized to either placebo or L-NAME/AngII treatment. Despite displaying cardiac hypertrophy at baseline and higher blood pressure responses to L-NAME/AngII, cav-1 KO mice displayed, as compared with WT, decreased treatment-induced biventricular damage as well as decreased transcript levels of the proinflammatory marker plasminogen activator inhibitor-1. Additionally, L-NAME/AngII induced an increase in cardiac MR levels in WT but not cav-1-ablated mice. Moreover and despite similar circulating ALDO levels in both genotypes, the myocardial damage (as determined histologically and by plasminogen activator inhibitor-1 mRNA levels) was less sensitive to ALDO levels in cav-1 KO vs. WT mice, consistent with decreased MR signaling in the cav-1 KO. Thus, we conclude that the L-NAME/AngII-induced biventricular damage is mediated by a mechanism partially dependent on cav-1 and signaling via MR/ALDO.
Collapse
Affiliation(s)
- Luminita H Pojoga
- Brigham and Women's Hospital/Harvard Medical School, Department of Endocrinology, Diabetes, and Hypertension, 221 Longwood Avenue, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Micevych P, Dominguez R. Membrane estradiol signaling in the brain. Front Neuroendocrinol 2009; 30:315-27. [PMID: 19416735 PMCID: PMC2720427 DOI: 10.1016/j.yfrne.2009.04.011] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2009] [Revised: 04/22/2009] [Accepted: 04/23/2009] [Indexed: 12/16/2022]
Abstract
While the physiology of membrane-initiated estradiol signaling in the nervous system has remained elusive, a great deal of progress has been made toward understanding the activation of cell signaling. Membrane-initiated estradiol signaling activates G proteins and their downstream cascades, but the identity of membrane receptors and the proximal signaling mechanism(s) have been more difficult to elucidate. Mounting evidence suggests that classical intracellular estrogen receptor-alpha (ERalpha) and ERbeta are trafficked to the membrane to mediate estradiol cell signaling. Moreover, an interaction of membrane ERalpha and ERbeta with metabotropic glutamate receptors has been identified that explains the pleomorphic actions of membrane-initiated estradiol signaling. This review focuses on the mechanism of actions initiated by membrane estradiol receptors and discusses the role of scaffold proteins and signaling cascades involved in the regulation of nociception, sexual receptivity and the synthesis of neuroprogesterone, an important component in the central nervous system signaling.
Collapse
Affiliation(s)
- Paul Micevych
- Department of Neurobiology and the Laboratory of Neuroendocrinology David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1763, USA.
| | | |
Collapse
|
22
|
17beta-estradiol-mediated neuroprotection and ERK activation require a pertussis toxin-sensitive mechanism involving GRK2 and beta-arrestin-1. J Neurosci 2009; 29:4228-38. [PMID: 19339617 DOI: 10.1523/jneurosci.0550-09.2009] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
17-beta-Estradiol (E2) is a steroid hormone involved in numerous bodily functions, including several brain functions. In particular, E2 is neuroprotective against excitotoxicity and other forms of brain injuries, a property that requires the extracellular signal-regulated kinase (ERK) pathway and possibly that of other signaling molecules. The mechanism and identity of the receptor(s) involved remain unclear, although it has been suggested that E2 receptor alpha (ERalpha) and G proteins are involved. We, therefore, investigated whether E2-mediated neuroprotection and ERK activation were linked to pertussis toxin (PTX)-sensitive G-protein-coupled effector systems. Biochemical and image analysis of organotypic hippocampal slices and cortical neuronal cultures showed that E2-mediated neuroprotection as well as E2-induced ERK activation were sensitive to PTX. The sensitivity to PTX suggested a possible role of G-protein- and beta-arrestin-mediated mechanisms. Western immunoblots from E2-treated cortical neuronal cultures revealed an increase in phosphorylation of both G-protein-coupled receptor-kinase 2 and beta-arrestin-1, a G-protein-coupled receptor adaptor protein. Transfection of neurons with beta-arrestin-1 small interfering RNA prevented E2-induced ERK activation. Coimmunoprecipitation experiments indicated that E2 increased the recruitment of beta-arrestin-1 and c-Src to ERalpha. These findings suggested that ERalpha is regulated by a mechanism associated with receptor desensitization and downregulation. In support of this idea, we found that E2 treatment of cortical synaptoneurosomes resulted in internalization of ERalpha, whereas treatment of cortical neurons with the ER agonists E-6-BSA-FITC [beta-estradiol-6-(O-carboxymethyl)oxime-bovine serum albumin conjugated with fluorescein isothiocyanate] and E-6-biotin [1,3,5(10)-estratrien-3,17beta-diol-6-one-6-carboxymethloxime-NH-propyl-biotin] resulted in agonist internalization. These results demonstrate that E2-mediated neuroprotection and ERK activation involve ERalpha activation of G-protein- and beta-arrestin-mediated mechanisms.
Collapse
|
23
|
Solomon KR, Freeman MR. Do the cholesterol-lowering properties of statins affect cancer risk? Trends Endocrinol Metab 2008; 19:113-21. [PMID: 18356074 DOI: 10.1016/j.tem.2007.12.004] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2007] [Revised: 11/28/2007] [Accepted: 12/03/2007] [Indexed: 01/24/2023]
Abstract
The potential of 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors ('statins') to reduce the incidence and/or progression of certain malignancies remains uncertain. Some investigators have concluded that statins have no effects on malignancies of any kind. However, results of several epidemiologic studies, including four recent prospective cohort studies, suggest that long-term statin therapy inhibits the progression of prostate cancer. We argue that the principal mechanism of any anticancer effects from statin use arises from prolonged lowering of circulating cholesterol. Evidence suggests that prostate cancer might be particularly sensitive to this intervention. Our hypothesis provides a perspective from which mechanistic studies of cholesterol-lowering drugs and cancer, in addition to prospective trials in patients, might be designed.
Collapse
Affiliation(s)
- Keith R Solomon
- Department of Orthopaedic Surgery, Children's Hospital Boston, Boston, MA 02115, USA.
| | | |
Collapse
|
24
|
Boulware MI, Kordasiewicz H, Mermelstein PG. Caveolin proteins are essential for distinct effects of membrane estrogen receptors in neurons. J Neurosci 2007; 27:9941-50. [PMID: 17855608 PMCID: PMC6672640 DOI: 10.1523/jneurosci.1647-07.2007] [Citation(s) in RCA: 159] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
It has become widely accepted that along with its ability to directly regulate gene expression, estradiol also influences cell signaling and brain function via rapid membrane-initiated events. Many of these novel signaling processes are dependent on estrogen receptors (ERs) localized to the neuronal membrane. However, the mechanism(s) by which ERs are able to trigger cell signaling when targeted to the neuronal membrane surface has yet to be determined. In hippocampal neurons, we find that caveolin proteins are essential for the regulation of CREB (cAMP response element-binding protein) phosphorylation after estradiol activation of metabotropic glutamate receptor (mGluR) signaling. Furthermore, caveolin-1 (CAV1) and CAV3 differentially regulate the ability of estradiol to activate two discrete signaling pathways. ER alpha activation of mGluR1a is dependent on CAV1, whereas CAV3 is necessary for ER alpha and ER beta activation of mGluR2/3. These results are consistent with previous reports in non-neuronal cells, implicating the importance of caveolin proteins in rapid estrogen signaling. In addition, the functional isolation of distinct estrogen-sensitive signaling pathways by different caveolin proteins suggests novel mechanisms through which the membrane-initiated effects of estradiol are orchestrated.
Collapse
Affiliation(s)
- Marissa I. Boulware
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455
| | - Holly Kordasiewicz
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455
| | - Paul G. Mermelstein
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455
| |
Collapse
|
25
|
Abstract
1. Cerebral vessels express oestrogen receptors (ER) in both the smooth muscle and endothelial cell layers of cerebral blood vessels. Levels of ERalpha are higher in female rats chronically exposed to oestrogen, either endogenous or exogenous. 2. Chronic exposure to oestrogen, either endogenous (normally cycling females) or exogenous (ovariectomized with oestrogen replacement), results in cerebral arteries that are more dilated than arteries from ovariectomized counterparts when studied in vitro. This effect is primarily mediated by an increase in the production of vasodilator factors, including nitric oxide (NO) and prostacylin. In contrast, oestrogen appears to suppress the production of endothelial-derived hyperpolarizing factor. Oestrogen treatment increases cerebrovascular levels of endothelial nitric oxide synthase (eNOS), cyclo-oxygenase (COX)-1 and prostacyclin synthase. In addition, via activation of the phosphatidylinositol 3-kinase/Akt pathway, both acute and chronic oestrogen exposure increases eNOS phosphorylation, increasing NO production. 3. Oestrogen receptors have also been localized to cerebrovascular mitochondria and exposure to oestrogen increases the efficiency of energy production while simultaneously reducing mitochondrial production of reactive oxygen species. Oestrogen increases the production of mitochondrial proteins encoded by both mitochondrial and nuclear DNA, including cytochrome c, subunits I and IV of complex IV and Mn-superoxide dismutase. Oestrogen treatment increases the activity of citrate synthase and complex IV and decreases mitochondrial production of H(2)O(2). 4. Oestrogen also has potent anti-inflammatory effects in the cerebral circulation that may have important implications for the incidence and severity of cerebrovascular disease. Administration of lipopolysaccharide or interleukin-1beta to ovariectomized female rats induces cerebrovascular COX-2 and inducible nitric oxide synthase (iNOS) protein expression and increases prostaglandin E(2) expression. Levels of COX-2 and iNOS expression vary with the stage of the oestrous cycle, and the cerebrovascular inflammatory response is suppressed in ovariectomized animals treated with oestrogen. Interleukin-1beta induction of COX-2 protein is prevented by treatment with a nuclear factor (NF)-kappaB inhibitor, and oestrogen treatment reduces cerebrovascular NF-kappaB activity. 5. Cerebrovascular dysfunction and pathology contribute to the pathogenesis of stroke, brain trauma, oedema and dementias, such as Alzheimer's disease. A better understanding of the action of oestrogen on cerebrovascular function holds promise for the development of new therapeutic entities that could be useful in preventing or treating a wide variety of cerebrovascular diseases.
Collapse
Affiliation(s)
- Sue P Duckles
- Department of Pharmacology, School of Medicine, University of California, Irvine, California 92697, USA.
| | | |
Collapse
|
26
|
Freeman MR, Cinar B, Kim J, Mukhopadhyay NK, Di Vizio D, Adam RM, Solomon KR. Transit of hormonal and EGF receptor-dependent signals through cholesterol-rich membranes. Steroids 2007; 72:210-7. [PMID: 17173942 PMCID: PMC2709209 DOI: 10.1016/j.steroids.2006.11.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2006] [Accepted: 11/13/2006] [Indexed: 01/17/2023]
Abstract
The functional consequences of changes in membrane lipid composition that coincide with malignant growth are poorly understood. Sufficient data have been acquired from studies of lipid binding proteins, post-translational modifications of signaling proteins, and biochemical inhibition of lipidogenic pathways to indicate that growth and survival pathways might be substantially re-directed by alterations in the lipid content of membranes. Cholesterol and glycosphingolipids segregate into membrane patches that exhibit a liquid-ordered state in comparison to membrane domains containing relatively lower amounts of these classes of lipids. These "lipid raft" structures, which may vary in size and stability in different cell types, both accumulate and exclude signaling proteins and have been implicated in signal transduction through a number of cancer-relevant pathways. In prostate cancer cells, signaling from epidermal growth factor receptor (EGFR) to the serine-threonine kinase Akt1, as well as from IL-6 to STAT3, have been demonstrated to be influenced by experimental interventions that target cholesterol homeostasis. The recent finding that classical steroid hormone receptors also reside in these microdomains, and thus may function within these structures in a signaling capacity independent of their role as nuclear factors, suggests a novel means of cross-talk between receptor tyrosine kinase-derived and steroidogenic signals. Potential points of intersection between components of the EGFR family of receptor tyrosine kinases and androgen receptor signaling pathways, which may be sensitive to disruptions in cholesterol metabolism, are discussed. Understanding the manner in which these pathways converge within cholesterol-rich membranes may present new avenues for therapeutic intervention in hormone-dependent cancers.
Collapse
Affiliation(s)
- Michael R Freeman
- Urological Diseases Research Center, Department of Urology, Children's Hospital Boston, Boston, MA 02115, United States.
| | | | | | | | | | | | | |
Collapse
|
27
|
Dasari A, Bartholomew JN, Volonte D, Galbiati F. Oxidative stress induces premature senescence by stimulating caveolin-1 gene transcription through p38 mitogen-activated protein kinase/Sp1-mediated activation of two GC-rich promoter elements. Cancer Res 2006; 66:10805-14. [PMID: 17108117 PMCID: PMC4288740 DOI: 10.1158/0008-5472.can-06-1236] [Citation(s) in RCA: 171] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Cellular senescence is believed to represent a natural tumor suppressor mechanism. We have previously shown that up-regulation of caveolin-1 was required for oxidative stress-induced premature senescence in fibroblasts. However, the molecular mechanisms underlying caveolin-1 up-regulation in senescent cells remain unknown. Here, we show that subcytotoxic oxidative stress generated by hydrogen peroxide application promotes premature senescence and stimulates the activity of a (-1,296) caveolin-1 promoter reporter gene construct in fibroblasts. Functional deletion analysis mapped the oxidative stress response elements of the mouse caveolin-1 promoter to the sequences -244/-222 and -124/-101. The hydrogen peroxide-mediated activation of both Cav-1 (-244/-222) and Cav-1 (-124/-101) was prevented by the antioxidant quercetin. Combination of electrophoretic mobility shift studies, chromatin immunoprecipitation analysis, Sp1 overexpression experiments, as well as promoter mutagenesis identifies enhanced Sp1 binding to two GC-boxes at -238/-231 and -118/-106 as the core mechanism of oxidative stress-triggered caveolin-1 transactivation. In addition, signaling studies show p38 mitogen-activated protein kinase (MAPK) as the upstream regulator of Sp1-mediated activation of the caveolin-1 promoter following oxidative stress. Inhibition of p38 MAPK prevents the oxidant-induced Sp1-mediated up-regulation of caveolin-1 protein expression and development of premature senescence. Finally, we show that oxidative stress induces p38-mediated up-regulation of caveolin-1 and premature senescence in normal human mammary epithelial cells but not in MCF-7 breast cancer cells, which do not express caveolin-1 and undergo apoptosis. This study delineates for the first time the molecular mechanisms that modulate caveolin-1 gene transcription upon oxidative stress and brings new insights into the redox control of cellular senescence in both normal and cancer cells.
Collapse
Affiliation(s)
- Arvind Dasari
- Department of Pharmacology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | | | | | | |
Collapse
|
28
|
Xia W, Bacus S, Hegde P, Husain I, Strum J, Liu L, Paulazzo G, Lyass L, Trusk P, Hill J, Harris J, Spector NL. A model of acquired autoresistance to a potent ErbB2 tyrosine kinase inhibitor and a therapeutic strategy to prevent its onset in breast cancer. Proc Natl Acad Sci U S A 2006; 103:7795-800. [PMID: 16682622 PMCID: PMC1472524 DOI: 10.1073/pnas.0602468103] [Citation(s) in RCA: 283] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2006] [Indexed: 12/19/2022] Open
Abstract
The development of acquired resistance to ErbB2 tyrosine kinase inhibitors limits the clinical efficacy of this class of cancer therapeutics. Little is known about the mechanism(s) of acquired resistance to these agents. Here we establish a model of acquired resistance to N-{3-chloro-4-[(3-fluorobenzyl) oxy]phenyl}-6-[5-({[2 (methylsulfonyl)ethyl]amino}methyl)-2-furyl]-4-quinazolinamine (lapatinib), an inhibitor of ErbB2 and ErbB1 tyrosine kinases by chronically exposing lapatinib-sensitive ErbB2-overexpressing breast cancer cells to lapatinib, simulating the clinic where lapatinib is administered on a daily chronic basis. Analysis of baseline gene expression in acquired lapatinib-resistant and parental cells indicates estrogen receptor (ER) signaling involvement in the development of resistance. Using gene interference, we confirm that acquired resistance to lapatinib is mediated by a switch in cell survival dependence and regulation of a key antiapoptotic mediator from ErbB2 alone to codependence upon ER and ErbB2 rather than loss of ErbB2 expression or insensitivity of ErbB2 signaling to lapatinib. Increased ER signaling in response to lapatinib is enhanced by the activation of factors facilitating the transcriptional activity of ER, notably FOXO3a and caveolin-1. Importantly, we confirm that lapatinib induces ER signaling in tumor biopsies from patients with ErbB2-overexpressing breast cancers receiving lapatinib therapy. These findings provided the rationale for preventing the development of acquired resistance by simultaneously inhibiting both ER and ErbB2 signaling pathways. Establishing clinically relevant models of acquired resistance to ErbB2 kinase inhibitors will enhance therapeutic strategies to improve clinical outcomes for patients with ErbB2-overexpressing breast cancers.
Collapse
Affiliation(s)
- Wenle Xia
- Departments of *Oncology Biology and
| | - Sarah Bacus
- Targeted Molecular Diagnostics, Westmont, IL 60559
| | - Priti Hegde
- Genomic and Proteomic Sciences, GlaxoSmithKline, Research Triangle Park, NC 27709; and
| | - Intisar Husain
- Genomic and Proteomic Sciences, GlaxoSmithKline, Research Triangle Park, NC 27709; and
| | - Jay Strum
- Genomic and Proteomic Sciences, GlaxoSmithKline, Research Triangle Park, NC 27709; and
| | | | - Georgina Paulazzo
- Genomic and Proteomic Sciences, GlaxoSmithKline, Research Triangle Park, NC 27709; and
| | - Ljuba Lyass
- Targeted Molecular Diagnostics, Westmont, IL 60559
| | | | - Jason Hill
- Targeted Molecular Diagnostics, Westmont, IL 60559
| | | | | |
Collapse
|
29
|
Fecchi K, Volonte D, Hezel MP, Schmeck K, Galbiati F. Spatial and temporal regulation of GLUT4 translocation by flotillin-1 and caveolin-3 in skeletal muscle cells. FASEB J 2006; 20:705-7. [PMID: 16455755 PMCID: PMC4288748 DOI: 10.1096/fj.05-4661fje] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Skeletal muscle tissue is one of the main sites where glucose uptake occurs in response to insulin. The glucose transporter type-4 (GLUT4) is primarily responsible for the insulin-stimulated increase in glucose uptake. Upon insulin stimulation, GLUT4 is recruited from intracellular reserves to the plasma membrane. The molecular mechanisms that regulate the translocation of GLUT4 to the sarcolemma remain to be fully identified. Here, we demonstrate that GLUT4 is localized to perinuclear stores that contain flotillin-1, a marker of lipid rafts, in skeletal muscle cells. Stimulation with insulin for 10 min results in the translocation of flotillin-1/GLUT4-containing domains to the plasma membrane in a PI3K- and PKCzeta-dependent manner. We also demonstrate that caveolin-3, a marker of caveolae, is required for the insulin receptor-mediated activation of the PI3K-dependent pathway, which occurs 2 min after insulin stimulation. In fact, we demonstrate that lack of caveolin-3 significantly reduces insulin-stimulated glucose uptake in caveolin-3 null myotubes by inhibiting both PI3K and Akt, as well as the movement of GLUT4 to the plasma membrane. Interestingly, caveolin-3 moves away from the plasma membrane toward the cytoplasm 5 min after insulin stimulation and temporarily interacts with flotillin-1/GLUT4-containing domains before they reach the sarcolemma, with the consequent movement of the insulin receptor from caveolin-3-containing domains to flotillin-1-containing domains. Such translocation temporally matches the insulin-stimulated movement of Cbl and CrkII in flotillin-1/GLUT4-containing domains, as well as the activation of the GDP-GTP exchange factor C3G. Disruption of flotillin-1-based domains prevents the activation of C3G, movement of GLUT4 to the sarcolemma, and glucose uptake in response to insulin. Thus, the activation of the Cbl/C3G/TC10-dependent pathway, which occurs before flotillin-1/GLUT4-containing domains reach the plasma membrane, is flotillin-1 mediated and follows the activation of the PI3K-mediated signaling. Taken together, these results indicate that flotillin-1 and caveolin-3 may regulate muscle energy metabolism through the spatial and temporal segregation of key components of the insulin signaling.
Collapse
Affiliation(s)
- Katia Fecchi
- Department of Pharmacology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | | | | | | | | |
Collapse
|
30
|
Kiss AL, Turi A, Müllner N, Kovács E, Botos E, Greger A. Oestrogen-mediated tyrosine phosphorylation of caveolin-1 and its effect on the oestrogen receptor localisation: an in vivo study. Mol Cell Endocrinol 2005; 245:128-37. [PMID: 16368181 DOI: 10.1016/j.mce.2005.11.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2005] [Revised: 11/08/2005] [Accepted: 11/10/2005] [Indexed: 01/23/2023]
Abstract
Recently, it has been shown that 17beta estradiol (E2) induces a rapid and transient activation of the Src ERK phosphorylation cascade: a clear indication that the alpha oestrogen receptor (ERalpha) is able to associate with the plasma membrane. Increasing evidence suggests that caveolae, which are caveolin-1 containing, highly hydrophobic membrane domains, play an important role in E2 induced signal transduction. Caveolae can accumulate signalling molecules preferentially; thus, they may have a regulatory role in signalling processes. Results from previous experiments have shown that E2 treatment decreased the number of surface connected caveolae significantly in uterine smooth muscle cells and also downregulated the expression of caveolin-1. In addition to providing further evidence that ERalpha interacts with caveolin/caveolae in uterine smooth muscle cells, this study also shows that the interaction between caveolin-1 and ERalpha is actually facilitated by E2. One of the signal transduction components found to accumulate in caveolae is Src kinase in an amount that increases simultaneously with increases in the amount of ERalpha. Upon E2 treatment, Src kinase is tyrosine phosphorylated, which, in turn, stimulates Src kinase to phosphorylate caveolin-1. Phosphorylation of caveolin-1 can drive caveolae to pinch off from the plasma membrane, thereby decreasing the amount of plasma membrane-associated caveolin-1. This loss of caveolin/caveolae activates the signal cascade that triggers cell proliferation.
Collapse
Affiliation(s)
- Anna L Kiss
- Department of Human Morphology and Developmental Biology, Semmelweis University Budapest, H-1450 Budapest, Tuzoltó u. 58, Hungary.
| | | | | | | | | | | |
Collapse
|
31
|
Stirone C, Boroujerdi A, Duckles SP, Krause DN. Estrogen receptor activation of phosphoinositide-3 kinase, akt, and nitric oxide signaling in cerebral blood vessels: rapid and long-term effects. Mol Pharmacol 2005; 67:105-13. [PMID: 15496504 DOI: 10.1124/mol.104.004465] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Estrogen receptor regulation of nitric oxide production by vascular endothelium may involve rapid, membrane-initiated signaling pathways in addition to classic genomic mechanisms. In this study, we demonstrate using intact cerebral blood vessels that 17beta-estradiol rapidly activates endothelial nitric-oxide synthase (eNOS) via a phosphoinositide-3 (PI-3) kinase-dependent pathway. The effect is mediated by estrogen receptors (ERs), consistent with colocalization of ERalpha and caveolin-1 immunoreactivity at the plasma membrane of endothelial cells lining cerebral arteries. Treatment with 10 nM 17beta-estradiol for 30 min increased NO production, as measured by total nitrite assay, in cerebral vessels isolated from ovariectomized rats. This effect was significantly decreased by membrane cholesterol depletion with beta-methyl-cyclodextrin, the ER antagonist ICI 182,780 [fulvestrant (Faslodex)], and two inhibitors of PI-3 kinase: wortmannin and LY294002 [2-(4-morpholinyl)-8-phenyl-1(4H)-benzopyran-4-one hydrochloride]. In parallel with NO production, 17beta-estradiol treatment rapidly increased phosphorylation of both eNOS (p-eNOS) and Akt (p-Akt). PI-3 kinase inhibitors also blocked the latter effects; together, these data are consistent with ER activation of the PI-3 kinase-p-Akt-p-eNOS pathway. ERalpha protein (66 and 50 kDa) coimmunoprecipitated with eNOS as well as with the p85alpha regulatory subunit of PI-3 kinase, further implicating ERalpha in kinase activation of eNOS. Little is known regarding the effects of estrogen on cellular kinase pathways in vivo; therefore, we compared cerebral blood vessels isolated from ovariectomized rats that were either untreated or given estrogen replacement for 4 weeks. Long-term estrogen exposure increased levels of cerebrovascular p-Akt and p-eNOS as well as basal NO production. Thus, in addition to the rapid activation of PI-3 kinase, p-Akt, and p-eNOS, estrogen signaling via nontranscriptional, kinase mechanisms has long-term consequences for vascular function.
Collapse
Affiliation(s)
- Chris Stirone
- Department of Pharmacology, College of Medicine, University of California-Irvine, Irvine, CA 92697-4625, USA
| | | | | | | |
Collapse
|
32
|
Abstract
Sex steroid hormones are involved in the metabolism, accumulation and distribution of adipose tissues. It is now known that oestrogen receptor, progesterone receptor and androgen receptor exist in adipose tissues, so their actions could be direct. Sex steroid hormones carry out their function in adipose tissues by both genomic and nongenomic mechanisms. In the genomic mechanism, the sex steroid hormone binds to its receptor and the steroid-receptor complex regulates the transcription of given genes. Leptin and lipoprotein lipase are two key proteins in adipose tissues that are regulated by transcriptional control with sex steroid hormones. In the nongenomic mechanism, the sex steroid hormone binds to its receptor in the plasma membrane, and second messengers are formed. This involves both the cAMP cascade and the phosphoinositide cascade. Activation of the cAMP cascade by sex steroid hormones would activate hormone-sensitive lipase leading to lipolysis in adipose tissues. In the phosphoinositide cascade, diacylglycerol and inositol 1,4,5-trisphosphate are formed as second messengers ultimately causing the activation of protein kinase C. Their activation appears to be involved in the control of preadipocyte proliferation and differentiation. In the presence of sex steroid hormones, a normal distribution of body fat exists, but with a decrease in sex steroid hormones, as occurs with ageing or gonadectomy, there is a tendency to increase central obesity, a major risk for cardiovascular disease, type 2 diabetes and certain cancers. Because sex steroid hormones regulate the amount and distribution of adipose tissues, they or adipose tissue-specific selective receptor modulators might be used to ameliorate obesity. In fact, hormone replacement therapy in postmenopausal women and testosterone replacement therapy in older men appear to reduce the degree of central obesity. However, these therapies have numerous side effects limiting their use, and selective receptor modulators of sex steroid hormones are needed that are more specific for adipose tissues with fewer side effects.
Collapse
Affiliation(s)
- J S Mayes
- Center for Health Sciences, Oklahoma State University, Tulsa, OK 74107-1898, USA
| | | |
Collapse
|
33
|
Deecher DC, Swiggard P, Frail DE, O'Connor LT. Characterization of a membrane-associated estrogen receptor in a rat hypothalamic cell line (D12). Endocrine 2003; 22:211-23. [PMID: 14709794 DOI: 10.1385/endo:22:3:211] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2003] [Revised: 08/27/2003] [Accepted: 08/27/2003] [Indexed: 11/11/2022]
Abstract
The ability of estrogens to produce rapid changes in cellular function has been firmly established. The question remains whether these changes are mediated by a modified form of the nuclear estrogen receptor (ER) that is associated with the plasma membrane (mER) or by a completely novel membrane receptor. Therefore, we characterized the biochemical properties of the nuclear and membrane-associated ERs expressed endogenously in a rat hypothalamic endothelial cell line (D12). Radioligand binding experiments using D12 membrane fractions showed that these cells exhibit properties consistent with a binding site specific for estrogens (mER). Equilibrium binding assays using [125I]16-alpha-iodo-3,17- beta-estradiol revealed saturable binding to mER, an affinity value similar to nuclear ER, with differing receptor expression levels. Competition assays revealed that 9 of 12 ER ligands tested had comparable affinities for mER and ER. For example, 17-alpha-estradiol and estrone had similar binding characteristics for both receptors while differences were noted for raloxifene, 17beta-estradiol (E2), and genistein. Western blot and immunocytochemical analyses using antibodies specific for ERalpha confirmed that D12 cells expressed a membrane-associated protein with a molecular mass (67 kDa) similar to that of ERalpha that colocalized with caveolae-enriched membranes. A rapid increase in intracellar Ca2+ levels in the presence of E2 suggests that mER can mediate physiologic changes through calcium mobilization. These data support the expression of mER in these brain-derived endothelial cells that is similar to, but biochemically distinguishable from, nuclear ERalpha.
Collapse
Affiliation(s)
- Darlene C Deecher
- Women's Health Research Institute, Wyeth Research, Collegeville, PA 19426, USA.
| | | | | | | |
Collapse
|
34
|
Li L, Haynes MP, Bender JR. Plasma membrane localization and function of the estrogen receptor alpha variant (ER46) in human endothelial cells. Proc Natl Acad Sci U S A 2003; 100:4807-12. [PMID: 12682286 PMCID: PMC153637 DOI: 10.1073/pnas.0831079100] [Citation(s) in RCA: 373] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Estrogen receptor (ER) alpha variants have been identified in an array of nonendothelial cells. We previously demonstrated that estrogen rapidly induces nitric oxide release via a phosphatidylinositol 3-kinase/Akt/endothelial nitric-oxide synthase (eNOS) pathway in EA.hy926 cells (immortalized human endothelial cells), which express a 46-kDa ER. We now confirm that, due to alternative splicing, the 46-kDa endothelial cell protein (ER46) is an amino-terminal truncated product of full-length ER alpha (ER66). ER46 is expressed in the plasma membrane, cytosol, and nucleus of resting, estrogen-deprived cells. Flow cytometric and immunofluorescence microscopic analyses demonstrated that the ER46 C but not N terminus is Ab-accessible in the plasma membrane. Inhibition of palmitoylation with tunicamycin and [(3)H]palmitic acid labeling demonstrated an estrogen-induced, palmitoylation-dependent plasma membrane ER46 recruitment, with reorganization into caveolae. In reconstituted, estrogen-stimulated COS-7 (ER-null) cells, membrane ER46 more efficiently triggered membrane eNOS phosphorylation than ER66. Conversely, ER66 more efficiently mediated estrogen response element reporter-gene transactivation than ER46. These results demonstrate that ER46 is localized and further dynamically targeted to the plasma membrane in a palmitoylation-dependent manner. ER46 more efficiently modulates membrane-initiated estrogen actions, including eNOS activation, than full-length ER66. These findings may have important implications in vascular-specific targeting of estrogen receptor agonists.
Collapse
Affiliation(s)
- Lei Li
- Section of Cardiovascular Medicine, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, CT 06536, USA
| | | | | |
Collapse
|
35
|
Razandi M, Alton G, Pedram A, Ghonshani S, Webb P, Levin ER. Identification of a structural determinant necessary for the localization and function of estrogen receptor alpha at the plasma membrane. Mol Cell Biol 2003; 23:1633-46. [PMID: 12588983 PMCID: PMC151696 DOI: 10.1128/mcb.23.5.1633-1646.2003] [Citation(s) in RCA: 252] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Estrogen receptors (ER) have been localized to the cell plasma membrane (PM), where signal transduction mediates some estradiol (E2) actions. However, the precise structural features of ER that result in membrane localization have not been determined. We obtained a partial tryptic peptide/mass spectrometry analysis of membrane mouse ERalpha protein. Based on this, we substituted alanine for the determined serine at amino acid 522 within the E domain of wild-type (wt) ERalpha. Upon transfection in CHO cells, the S522A mutant ERalpha resulted in a 62% decrease in membrane receptor number and reduced colocalization with caveolin 1 relative to those with expression of wt ERalpha. E2 was significantly less effective in stimulating multiple rapid signals from the membranes of CHO cells expressing ERalpha S522A than from those of CHO cells expressing wt ERalpha. In contrast, nuclear receptor expression and transcriptional function were very similar. The S522A mutant was also 60% less effective than wt ERalpha in binding caveolin 1, which facilitates ER transport to the PM. All functions of ERalpha mutants with other S-to-A substitutions were comparable to those of wt ER, and deletion of the A/B or C domain had little consequence for membrane localization or function. Transfection of ERalpha S522A into breast cancer cells that express native ER downregulated E2 binding at the membrane, signaling to ERK, and G1/S cell cycle events and progression. However, there was no effect on the E2 transactivation of an ERE-luciferase reporter. In summary, serine 522 is necessary for the efficient translocation and function of ERalpha at the PM. The S522A mutant also serves as a dominant-negative construct, identifying important functions of E2 that originate from activating PM ER.
Collapse
Affiliation(s)
- Mahnaz Razandi
- Division of Endocrinology, Veterans Affairs Medical Center, Long Beach, Long Beach, California 90822, USA
| | | | | | | | | | | |
Collapse
|
36
|
Zschocke J, Manthey D, Bayatti N, Behl C. Functional interaction of estrogen receptor alpha and caveolin isoforms in neuronal SK-N-MC cells. J Steroid Biochem Mol Biol 2003; 84:167-70. [PMID: 12711000 DOI: 10.1016/s0960-0760(03)00026-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Estrogen receptors (ERs) are expressed in neuronal cells and exhibit a wide variety of activities in the central nervous system. The actions of ERs are regulated in a hormone-dependent manner as well as by a number of co-activators and -repressors. A recently identified co-activator of ERalpha is caveolin-1 which has been shown to mediate the ligand-independent activation of this steroid receptor. In the present study we have demonstrated that neuronal SK-N-MC cells lacking functional ERalpha show high levels of caveolin-1/-2 specific transcripts and proteins. Ectopic expression of ERalpha in SK-N-MC cells leads to the transcriptional suppression of caveolin-1 and -2 genes. This silencing event is accompanied by changes in the methylation pattern of the caveolin-1 promoter. Certain CpG dinucleotides were methylated in the caveolin-1 promoter region of the SK-ERalpha cells whereas the same sites were non-methylated in control SK-N-MC cells, implicating a gene silencing mechanism including hypermethylation of DNA. In addition, inhibitors of methyltransferases or histone deacetylases, enzymes involved in the establishment and maintenance of silenced chromatin status, partially restored caveolin transcription in SK-ERalpha cells. In conclusion, our observations provide a possible mechanism of negative feedback regulation of ERalpha co-activator caveolin by the steroid receptor itself in this cellular model.
Collapse
Affiliation(s)
- Jürgen Zschocke
- Institute of Physiological Chemistry and Pathobiochemistry, Johannes Gutenberg University, 55099 Mainz, Germany
| | | | | | | |
Collapse
|