1
|
Iobbi V, Parisi V, Giacomini M, De Riccardis F, Brun P, Núñez-Pons L, Drava G, Giordani P, Monti MC, Poggi R, Murgia Y, De Tommasi N, Bisio A. Sesterterpenoids: sources, structural diversity, biological activity, and data management. Nat Prod Rep 2025; 42:443-481. [PMID: 39832137 DOI: 10.1039/d4np00041b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Reviewing the literature published up to October 2024.Sesterterpenoids are one of the most chemically diverse and biologically promising subgroup of terpenoids, the largest family of secondary metabolites. The present review article summarizes more than seven decades of studies on isolation and characterization of more than 1600 structurally novel sesterterpenoids, supplemented by biological, pharmacological, ecological, and geographic distribution data. All the information have been implemented in eight tables available on the web and a relational database https://sesterterpenoids.unige.net/. The interface has two sections, one open to the public for reading only and the other, protected by an authentication mechanism, for timely updating of published results.
Collapse
Affiliation(s)
- Valeria Iobbi
- Department of Pharmacy, University of Genova, Viale Cembrano 4, 16148 Genova, Italy.
| | - Valentina Parisi
- Department of Pharmacy, Via Giovanni Paolo II, 132, 84084 Fisciano, Salerno, Italy.
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy
| | - Mauro Giacomini
- Department of Informatics, Bioengineering, Robotics and System Science, University of Genova, Via all'Opera Pia 13, 16146 Genova, Italy
| | - Francesco De Riccardis
- Department of Chemistry and Biology "A. Zambelli", Via Giovanni Paolo II, 132, 84084 Fisciano, Salerno, Italy
| | - Paola Brun
- Department of Molecular Medicine, Section of Microbiology, University of Padova, Via A. Gabelli, 63, 35121 Padova, Italy
| | - Laura Núñez-Pons
- Department of Integrative Marine Ecology (EMI), Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy
| | - Giuliana Drava
- Department of Pharmacy, University of Genova, Viale Cembrano 4, 16148 Genova, Italy.
| | - Paolo Giordani
- Department of Pharmacy, University of Genova, Viale Cembrano 4, 16148 Genova, Italy.
| | - Maria Chiara Monti
- Department of Pharmacy, University of Napoli "Federico II", Via T. De Amicis 95, 80131 Napoli, Italy
| | - Roberto Poggi
- Museo Civico di Storia Naturale Giacomo Doria, Via Brigata Liguria 9, 16121 Genova, Italy
| | - Ylenia Murgia
- Department of Informatics, Bioengineering, Robotics and System Science, University of Genova, Via all'Opera Pia 13, 16146 Genova, Italy
| | - Nunziatina De Tommasi
- Department of Pharmacy, Via Giovanni Paolo II, 132, 84084 Fisciano, Salerno, Italy.
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy
| | - Angela Bisio
- Department of Pharmacy, University of Genova, Viale Cembrano 4, 16148 Genova, Italy.
| |
Collapse
|
2
|
Li B, Baniasadi HR, Liang J, Phillips MA, Michael AJ. New routes for spermine biosynthesis. J Biol Chem 2025; 301:108390. [PMID: 40074085 PMCID: PMC11999265 DOI: 10.1016/j.jbc.2025.108390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 02/28/2025] [Accepted: 03/04/2025] [Indexed: 03/14/2025] Open
Abstract
The polyamine spermine (Spm) is a flexible linear teraamine found in bacteria and eukaryotes and in all known cases is synthesized from triamine spermidine by addition of an aminopropyl group acquired from decarboxylated S-adenosylmethionine (dcAdoMet). We have now identified in bacteria a second biosynthetic route for Spm based on the formation of carboxyspermine from spermidine, dependent on aspartate β-semialdehyde (ASA). This route also produces thermospermine (Tspm) from spermidine via carboxythermospermine. Two enzymes, carboxyspermidine dehydrogenase and carboxyspermidine decarboxylase, are responsible for ASA-dependent production of spermidine, Spm, and Tspm from diamine putrescine. Production of Spm/Tspm from spermidine is controlled primarily by carboxyspermidine dehydrogenase, not carboxyspermidine decarboxylase. This new ASA-dependent Spm biosynthetic pathway is an example of convergent evolution, employing nonanalogous, nonhomologous enzymes to produce the same biosynthetic products as the dcAdoMet-dependent Spm pathway. We have also identified bacteria that encode hybrid Spm biosynthetic pathways dependent on both dcAdoMet and ASA. In the hybrid pathways, spermidine is produced from agmatine primarily by the ASA-dependent route, and Spm is synthesized from agmatine or spermidine by dcAdoMet-dependent modules. Both parts of the hybrid pathway initiate from agmatine and each produces N1-aminopropylagmatine, so that agmatine, N1-aminopropylagmatine, and spermidine are common, potentially shared metabolites. Bacteria such as Clostridium leptum that encode the hybrid pathway may explain the origin of Spm produced by the gut microbiota. This is the first example of convergent evolution of hybrid dcAdoMet- and ASA-dependent N1-aminopropylagmatine, spermidine, and Spm biosynthesis encoded in the same genomes and suggests additional polyamine biosynthetic diversification remains to be discovered.
Collapse
Affiliation(s)
- Bin Li
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Hamid R Baniasadi
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Jue Liang
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Margaret A Phillips
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Anthony J Michael
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, Texas, USA.
| |
Collapse
|
3
|
Hassan AS, O’Donovan LA, Cowley JM, Akomeah B, Phillips RJ, Pettolino F, Schultz CJ, Burton RA. In planta ectopic expression of two subtypes of tomato cellulose synthase-like M genes affects cell wall integrity and supports a role in arabinogalactan and/or rhamnogalacturonan-I biosynthesis. PLANT & CELL PHYSIOLOGY 2025; 66:101-119. [PMID: 39658008 PMCID: PMC11775392 DOI: 10.1093/pcp/pcae145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 12/01/2024] [Accepted: 12/09/2024] [Indexed: 12/12/2024]
Abstract
Diversification of the cellulose synthase superfamily of glycosyltransferases has provided plants with the ability to synthesize varied cell wall polysaccharides such as xyloglucan, mannans, and the mixed-linkage glucans of cereals. Surprisingly, some but not all members of the cellulose synthase-like M (CslM) gene family have recently been shown to be involved in the glycosylation of the aglycone core of a range of triterpenoid saponins. However, no cell wall activity has yet been attributed to any of the CslM gene family members. Here, evolution of the CslM gene family in eudicots is explored to better understand the differences between the two metabolically distinct classes of CslMs (CslM1 and CslM2) and the very closely related CslGs. To achieve this, a robust tBLASTn approach was developed to identify CslM1, CslM2, and CslG sequences using diagnostic peptides, suitable for complex genomes using unannotated and short-read datasets. To ascertain whether both CslM1 and CslM2 proteins have cell wall functions, in addition to the 'saponin' role of CslM2, tomato CslM1 and CslM2 genes were ectopically expressed in Arabidopsis thaliana by stable transformation and in the transient Nicotiana benthamiana system. Transformed plants were analysed with immunofluorescence, immunogold transmission electron microscopy, and cell wall polysaccharides were extracted for monosaccharide linkage analysis. Our results support a role for both CslM1 and CslM2 in the biosynthesis of type II arabinogalactan linkages, generating new insight into how the diverse functions of CslMs can coexist and providing clear targets for future research.
Collapse
Affiliation(s)
- Ali S Hassan
- School of Agriculture, Food and Wine, University of Adelaide, PMB1, Glen Osmond, South Australia 5064, Australia
| | - Lisa A O’Donovan
- School of Agriculture, Food and Wine, University of Adelaide, PMB1, Glen Osmond, South Australia 5064, Australia
| | - James M Cowley
- School of Agriculture, Food and Wine, University of Adelaide, PMB1, Glen Osmond, South Australia 5064, Australia
| | - Belinda Akomeah
- School of Agriculture, Food and Wine, University of Adelaide, PMB1, Glen Osmond, South Australia 5064, Australia
| | - Renee J Phillips
- School of Agriculture, Food and Wine, University of Adelaide, PMB1, Glen Osmond, South Australia 5064, Australia
| | - Filomena Pettolino
- CSIRO Agriculture and Food, GPO Box 1700, Canberra, Australian Capital Territory 2601, Australia
| | - Carolyn J Schultz
- School of Agriculture, Food and Wine, University of Adelaide, PMB1, Glen Osmond, South Australia 5064, Australia
| | - Rachel A Burton
- School of Agriculture, Food and Wine, University of Adelaide, PMB1, Glen Osmond, South Australia 5064, Australia
| |
Collapse
|
4
|
Chugh S, Létisse F, Neyrolles O. The exometabolome as a hidden driver of bacterial virulence and pathogenesis. Trends Microbiol 2024:S0966-842X(24)00312-3. [PMID: 39701858 DOI: 10.1016/j.tim.2024.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/20/2024] [Accepted: 11/22/2024] [Indexed: 12/21/2024]
Abstract
The traditional view of metabolism as merely supplying energy and biosynthetic precursors is undergoing a paradigm shift. Metabolic dynamics not only regulates gene expression but also orchestrates cellular processes with remarkable precision. Most bacterial pathogens exhibit exceptional metabolic plasticity, enabling them to adapt to diverse environments, including hostile conditions within a host. While the role of intracellular bacterial metabolism in pathogen-host interactions has been extensively studied, the contributions of the extracellularly released or secreted bacterial metabolites (referred to here as the bacterial 'exometabolome') to metabolic adaptations and disease pathogenesis remain largely unexplored. In this review, we highlight the significant and intriguing roles of bacterial exometabolomes in drug tolerance, immune suppression, and disease pathogenesis, opening a new frontier in our understanding of bacterial-host interactions.
Collapse
Affiliation(s)
- Saurabh Chugh
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Fabien Létisse
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Olivier Neyrolles
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France.
| |
Collapse
|
5
|
Blázquez MA. Polyamines: Their Role in Plant Development and Stress. ANNUAL REVIEW OF PLANT BIOLOGY 2024; 75:95-117. [PMID: 38382905 DOI: 10.1146/annurev-arplant-070623-110056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
This review focuses on the intricate relationship between plant polyamines and the genetic circuits and signaling pathways that regulate various developmental programs and the defense responses of plants when faced with biotic and abiotic aggressions. Particular emphasis is placed on genetic evidence supporting the involvement of polyamines in specific processes, such as the pivotal role of thermospermine in regulating xylem cell differentiation and the significant contribution of polyamine metabolism in enhancing plant resilience to drought. Based on the numerous studies describing effects of the manipulation of plant polyamine levels, two conceptually different mechanisms for polyamine activity are discussed: direct participation of polyamines in translational regulation and the indirect production of hydrogen peroxide as a defensive mechanism against pathogens. By describing the multifaceted functions of polyamines, this review underscores the profound significance of these compounds in enabling plants to adapt and thrive in challenging environments.
Collapse
Affiliation(s)
- Miguel A Blázquez
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, Valencia, Spain;
| |
Collapse
|
6
|
Li B, Liang J, Baniasadi HR, Kurihara S, Phillips MA, Michael AJ. Functional identification of bacterial spermine, thermospermine, norspermine, norspermidine, spermidine, and N 1-aminopropylagmatine synthases. J Biol Chem 2024; 300:107281. [PMID: 38588807 PMCID: PMC11107197 DOI: 10.1016/j.jbc.2024.107281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/10/2024] Open
Abstract
Spermine synthase is an aminopropyltransferase that adds an aminopropyl group to the essential polyamine spermidine to form tetraamine spermine, needed for normal human neural development, plant salt and drought resistance, and yeast CoA biosynthesis. We functionally identify for the first time bacterial spermine synthases, derived from phyla Bacillota, Rhodothermota, Thermodesulfobacteriota, Nitrospirota, Deinococcota, and Pseudomonadota. We also identify bacterial aminopropyltransferases that synthesize the spermine same mass isomer thermospermine, from phyla Cyanobacteriota, Thermodesulfobacteriota, Nitrospirota, Dictyoglomota, Armatimonadota, and Pseudomonadota, including the human opportunistic pathogen Pseudomonas aeruginosa. Most of these bacterial synthases were capable of synthesizing spermine or thermospermine from the diamine putrescine and so possess also spermidine synthase activity. We found that most thermospermine synthases could synthesize tetraamine norspermine from triamine norspermidine, that is, they are potential norspermine synthases. This finding could explain the enigmatic source of norspermine in bacteria. Some of the thermospermine synthases could synthesize norspermidine from diamine 1,3-diaminopropane, demonstrating that they are potential norspermidine synthases. Of 18 bacterial spermidine synthases identified, 17 were able to aminopropylate agmatine to form N1-aminopropylagmatine, including the spermidine synthase of Bacillus subtilis, a species known to be devoid of putrescine. This suggests that the N1-aminopropylagmatine pathway for spermidine biosynthesis, which bypasses putrescine, may be far more widespread than realized and may be the default pathway for spermidine biosynthesis in species encoding L-arginine decarboxylase for agmatine production. Some thermospermine synthases were able to aminopropylate N1-aminopropylagmatine to form N12-guanidinothermospermine. Our study reveals an unsuspected diversification of bacterial polyamine biosynthesis and suggests a more prominent role for agmatine.
Collapse
Affiliation(s)
- Bin Li
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Jue Liang
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Hamid R Baniasadi
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Shin Kurihara
- Faculty of Biology-Oriented Science and Technology, Kindai University, Kinokawa, Wakayama, Japan
| | - Margaret A Phillips
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Anthony J Michael
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, Texas, USA.
| |
Collapse
|
7
|
Goh KJ, Stubenrauch CJ, Lithgow T. The TAM, a Translocation and Assembly Module for protein assembly and potential conduit for phospholipid transfer. EMBO Rep 2024; 25:1711-1720. [PMID: 38467907 PMCID: PMC11014939 DOI: 10.1038/s44319-024-00111-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 02/08/2024] [Accepted: 02/20/2024] [Indexed: 03/13/2024] Open
Abstract
The assembly of β-barrel proteins into the bacterial outer membrane is an essential process enabling the colonization of new environmental niches. The TAM was discovered as a module of the β-barrel protein assembly machinery; it is a heterodimeric complex composed of an outer membrane protein (TamA) bound to an inner membrane protein (TamB). The TAM spans the periplasm, providing a scaffold through the peptidoglycan layer and catalyzing the translocation and assembly of β-barrel proteins into the outer membrane. Recently, studies on another membrane protein (YhdP) have suggested that TamB might play a role in phospholipid transport to the outer membrane. Here we review and re-evaluate the literature covering the experimental studies on the TAM over the past decade, to reconcile what appear to be conflicting claims on the function of the TAM.
Collapse
Affiliation(s)
- Kwok Jian Goh
- Centre to Impact AMR, Monash University, Melbourne, VIC, 3800, Australia
- Infection Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, VIC, 3800, Australia
| | - Christopher J Stubenrauch
- Centre to Impact AMR, Monash University, Melbourne, VIC, 3800, Australia
- Infection Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, VIC, 3800, Australia
| | - Trevor Lithgow
- Centre to Impact AMR, Monash University, Melbourne, VIC, 3800, Australia.
- Infection Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, VIC, 3800, Australia.
| |
Collapse
|
8
|
Xi H, Nie X, Gao F, Liang X, Li H, Zhou H, Cai Y, Yang C. A bacterial spermidine biosynthetic pathway via carboxyaminopropylagmatine. SCIENCE ADVANCES 2023; 9:eadj9075. [PMID: 37878710 PMCID: PMC10599626 DOI: 10.1126/sciadv.adj9075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 09/22/2023] [Indexed: 10/27/2023]
Abstract
Spermidine, a ubiquitous polyamine, is known to be required for critical physiological functions in bacteria. Two principal pathways are known for spermidine biosynthesis, both of which involve aminopropylation of putrescine. Here, we identified a spermidine biosynthetic pathway via a previously unknown metabolite, carboxyaminopropylagmatine (CAPA), in a model cyanobacterium Synechocystis sp. PCC 6803 through an approach combining 13C and 15N tracers, metabolomics, and genetic and biochemical characterization. The CAPA pathway starts with reductive condensation of agmatine and l-aspartate-β-semialdehyde into CAPA by a previously unknown CAPA dehydrogenase, followed by decarboxylation of CAPA to form aminopropylagmatine, and ends with conversion of aminopropylagmatine to spermidine by an aminopropylagmatine ureohydrolase. Thus, the pathway does not involve putrescine and depends on l-aspartate-β-semialdehyde as the aminopropyl group donor. Genomic, biochemical, and metagenomic analyses showed that the CAPA-pathway genes are widespread in 15 different phyla of bacteria distributed in marine, freshwater, and other ecosystems.
Collapse
Affiliation(s)
- Huachao Xi
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoqun Nie
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Fang Gao
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Xinxin Liang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Jiangsu, China
| | - Hu Li
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Haiyan Zhou
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yujie Cai
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Jiangsu, China
| | - Chen Yang
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
9
|
Kazemzadeh K, Pelosi L, Chenal C, Chobert SC, Hajj Chehade M, Jullien M, Flandrin L, Schmitt W, He Q, Bouvet E, Jarzynka M, Varoquaux N, Junier I, Pierrel F, Abby SS. Diversification of Ubiquinone Biosynthesis via Gene Duplications, Transfers, Losses, and Parallel Evolution. Mol Biol Evol 2023; 40:msad219. [PMID: 37788637 PMCID: PMC10597321 DOI: 10.1093/molbev/msad219] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 09/11/2023] [Accepted: 09/26/2023] [Indexed: 10/05/2023] Open
Abstract
The availability of an ever-increasing diversity of prokaryotic genomes and metagenomes represents a major opportunity to understand and decipher the mechanisms behind the functional diversification of microbial biosynthetic pathways. However, it remains unclear to what extent a pathway producing a specific molecule from a specific precursor can diversify. In this study, we focus on the biosynthesis of ubiquinone (UQ), a crucial coenzyme that is central to the bioenergetics and to the functioning of a wide variety of enzymes in Eukarya and Pseudomonadota (a subgroup of the formerly named Proteobacteria). UQ biosynthesis involves three hydroxylation reactions on contiguous carbon atoms. We and others have previously shown that these reactions are catalyzed by different sets of UQ-hydroxylases that belong either to the iron-dependent Coq7 family or to the more widespread flavin monooxygenase (FMO) family. Here, we combine an experimental approach with comparative genomics and phylogenetics to reveal how UQ-hydroxylases evolved different selectivities within the constrained framework of the UQ pathway. It is shown that the UQ-FMOs diversified via at least three duplication events associated with two cases of neofunctionalization and one case of subfunctionalization, leading to six subfamilies with distinct hydroxylation selectivity. We also demonstrate multiple transfers of the UbiM enzyme and the convergent evolution of UQ-FMOs toward the same function, which resulted in two independent losses of the Coq7 ancestral enzyme. Diversification of this crucial biosynthetic pathway has therefore occurred via a combination of parallel evolution, gene duplications, transfers, and losses.
Collapse
Affiliation(s)
- Katayoun Kazemzadeh
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000 Grenoble, France
| | - Ludovic Pelosi
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000 Grenoble, France
| | - Clothilde Chenal
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000 Grenoble, France
| | - Sophie-Carole Chobert
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000 Grenoble, France
| | - Mahmoud Hajj Chehade
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000 Grenoble, France
| | - Margaux Jullien
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000 Grenoble, France
| | - Laura Flandrin
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000 Grenoble, France
| | - William Schmitt
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000 Grenoble, France
| | - Qiqi He
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000 Grenoble, France
| | - Emma Bouvet
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000 Grenoble, France
| | - Manon Jarzynka
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000 Grenoble, France
| | - Nelle Varoquaux
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000 Grenoble, France
| | - Ivan Junier
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000 Grenoble, France
| | - Fabien Pierrel
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000 Grenoble, France
| | - Sophie S Abby
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000 Grenoble, France
| |
Collapse
|
10
|
Li B, Liang J, Phillips MA, Michael AJ. Neofunctionalization of S-adenosylmethionine decarboxylase into pyruvoyl-dependent L-ornithine and L-arginine decarboxylases is widespread in bacteria and archaea. J Biol Chem 2023; 299:105005. [PMID: 37399976 PMCID: PMC10407285 DOI: 10.1016/j.jbc.2023.105005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/12/2023] [Accepted: 06/28/2023] [Indexed: 07/05/2023] Open
Abstract
S-adenosylmethionine decarboxylase (AdoMetDC/SpeD) is a key polyamine biosynthetic enzyme required for conversion of putrescine to spermidine. Autocatalytic self-processing of the AdoMetDC/SpeD proenzyme generates a pyruvoyl cofactor from an internal serine. Recently, we discovered that diverse bacteriophages encode AdoMetDC/SpeD homologs that lack AdoMetDC activity and instead decarboxylate L-ornithine or L-arginine. We reasoned that neofunctionalized AdoMetDC/SpeD homologs were unlikely to have emerged in bacteriophages and were probably acquired from ancestral bacterial hosts. To test this hypothesis, we sought to identify candidate AdoMetDC/SpeD homologs encoding L-ornithine and L-arginine decarboxylases in bacteria and archaea. We searched for the anomalous presence of AdoMetDC/SpeD homologs in the absence of its obligatory partner enzyme spermidine synthase, or the presence of two AdoMetDC/SpeD homologs encoded in the same genome. Biochemical characterization of candidate neofunctionalized genes confirmed lack of AdoMetDC activity, and functional presence of L-ornithine or L-arginine decarboxylase activity in proteins from phyla Actinomycetota, Armatimonadota, Planctomycetota, Melainabacteria, Perigrinibacteria, Atribacteria, Chloroflexota, Sumerlaeota, Omnitrophota, Lentisphaerota, and Euryarchaeota, the bacterial candidate phyla radiation and DPANN archaea, and the δ-Proteobacteria class. Phylogenetic analysis indicated that L-arginine decarboxylases emerged at least three times from AdoMetDC/SpeD, whereas L-ornithine decarboxylases arose only once, potentially from the AdoMetDC/SpeD-derived L-arginine decarboxylases, revealing unsuspected polyamine metabolic plasticity. Horizontal transfer of the neofunctionalized genes appears to be the more prevalent mode of dissemination. We identified fusion proteins of bona fide AdoMetDC/SpeD with homologous L-ornithine decarboxylases that possess two, unprecedented internal protein-derived pyruvoyl cofactors. These fusion proteins suggest a plausible model for the evolution of the eukaryotic AdoMetDC.
Collapse
Affiliation(s)
- Bin Li
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Jue Liang
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Margaret A Phillips
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Anthony J Michael
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, Texas, USA.
| |
Collapse
|
11
|
Yu L, Pan J, Guo M, Duan H, Zhang H, Narbad A, Zhai Q, Tian F, Chen W. Gut microbiota and anti-aging: Focusing on spermidine. Crit Rev Food Sci Nutr 2023; 64:10419-10437. [PMID: 37326367 DOI: 10.1080/10408398.2023.2224867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The human gut microbiota plays numerous roles in regulating host growth, the immune system, and metabolism. Age-related changes in the gut environment lead to chronic inflammation, metabolic dysfunction, and illness, which in turn affect aging and increase the risk of neurodegenerative disorders. Local immunity is also affected by changes in the gut environment. Polyamines are crucial for cell development, proliferation, and tissue regeneration. They regulate enzyme activity, bind to and stabilize DNA and RNA, have antioxidative properties, and are necessary for the control of translation. All living organisms contain the natural polyamine spermidine, which has anti-inflammatory and antioxidant properties. It can regulate protein expression, prolong life, and improve mitochondrial metabolic activity and respiration. Spermidine levels experience an age-related decrease, and the development of age-related diseases is correlated with decreased endogenous spermidine concentrations. As more than just a consequence, this review explores the connection between polyamine metabolism and aging and identifies advantageous bacteria for anti-aging and metabolites they produce. Further research is being conducted on probiotics and prebiotics that support the uptake and ingestion of spermidine from food extracts or stimulate the production of polyamines by gut microbiota. This provides a successful strategy to increase spermidine levels.
Collapse
Affiliation(s)
- Leilei Yu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Research Laboratory for Probiotics, Jiangnan UniversityWuxi, Jiangsu, China
| | - Jiani Pan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Min Guo
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Hui Duan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Research Laboratory for Probiotics, Jiangnan UniversityWuxi, Jiangsu, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China
| | - Arjan Narbad
- International Joint Research Laboratory for Probiotics, Jiangnan UniversityWuxi, Jiangsu, China
- Gut Health and Microbiome Institute Strategic Programme, Quadram Institute Bioscience, Norwich, UK
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Research Laboratory for Probiotics, Jiangnan UniversityWuxi, Jiangsu, China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Research Laboratory for Probiotics, Jiangnan UniversityWuxi, Jiangsu, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Research Laboratory for Probiotics, Jiangnan UniversityWuxi, Jiangsu, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
12
|
Xu Y, Wu JY, Liu QJ, Xue JY. Genome-Wide Identification and Evolutionary Analyses of SrfA Operon Genes in Bacillus. Genes (Basel) 2023; 14:422. [PMID: 36833349 PMCID: PMC9956979 DOI: 10.3390/genes14020422] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/21/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
A variety of secondary metabolites contributing to plant growth are synthesized by bacterial nonribosomal peptide synthases (NRPSs). Among them, the NRPS biosynthesis of surfactin is regulated by the SrfA operon. To explore the molecular mechanism for the diversity of surfactins produced by bacteria within the genus Bacillus, we performed a genome-wide identification study focused on three critical genes of the SrfA operon-SrfAA, SrfAB and SrfAC-from 999 Bacillus genomes (belonging to 47 species). Gene family clustering indicated the three genes can be divided into 66 orthologous groups (gene families), of which a majority comprised members of multiple genes (e.g., OG0000009 had members of all three SrfAA, SrfAB and SrfAC genes), indicating high sequence similarity among the three genes. Phylogenetic analyses also found that none of the three genes formed monophyletic groups, but were usually arranged in a mixed manner, suggesting the close evolutionary relationship among the three genes. Considering the module structure of the three genes, we propose that self-duplication, especially tandem duplications, might have contributed to the initial establishment of the entire SrfA operon, and further gene fusion and recombination as well as accumulated mutations might have continuously shaped the different functional roles of SrfAA, SrfAB and SrfAC. Overall, this study provides novel insight into metabolic gene clusters and operon evolution in bacteria.
Collapse
Affiliation(s)
- Ying Xu
- State Key Laboratory of Enhanced Oil Recovery, PetroChina Research Institute of Petroleum Exploration & Development, Beijing 100083, China
| | - Jia-Yi Wu
- College of Horticulture, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Qing-Jie Liu
- State Key Laboratory of Enhanced Oil Recovery, PetroChina Research Institute of Petroleum Exploration & Development, Beijing 100083, China
| | - Jia-Yu Xue
- College of Horticulture, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
13
|
Khersonsky O, Fleishman SJ. What Have We Learned from Design of Function in Large Proteins? BIODESIGN RESEARCH 2022; 2022:9787581. [PMID: 37850148 PMCID: PMC10521758 DOI: 10.34133/2022/9787581] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 02/21/2022] [Indexed: 10/19/2023] Open
Abstract
The overarching goal of computational protein design is to gain complete control over protein structure and function. The majority of sophisticated binders and enzymes, however, are large and exhibit diverse and complex folds that defy atomistic design calculations. Encouragingly, recent strategies that combine evolutionary constraints from natural homologs with atomistic calculations have significantly improved design accuracy. In these approaches, evolutionary constraints mitigate the risk from misfolding and aggregation, focusing atomistic design calculations on a small but highly enriched sequence subspace. Such methods have dramatically optimized diverse proteins, including vaccine immunogens, enzymes for sustainable chemistry, and proteins with therapeutic potential. The new generation of deep learning-based ab initio structure predictors can be combined with these methods to extend the scope of protein design, in principle, to any natural protein of known sequence. We envision that protein engineering will come to rely on completely computational methods to efficiently discover and optimize biomolecular activities.
Collapse
Affiliation(s)
- Olga Khersonsky
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Sarel J. Fleishman
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
14
|
Li B, Liang J, Hanfrey CC, Phillips MA, Michael AJ. Discovery of ancestral L-ornithine and L-lysine decarboxylases reveals parallel, pseudoconvergent evolution of polyamine biosynthesis. J Biol Chem 2021; 297:101219. [PMID: 34560100 PMCID: PMC8503589 DOI: 10.1016/j.jbc.2021.101219] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/17/2021] [Accepted: 09/19/2021] [Indexed: 11/15/2022] Open
Abstract
Polyamines are fundamental molecules of life, and their deep evolutionary history is reflected in extensive biosynthetic diversification. The polyamines putrescine, agmatine, and cadaverine are produced by pyridoxal 5'-phosphate-dependent L-ornithine, L-arginine, and L-lysine decarboxylases (ODC, ADC, LDC), respectively, from both the alanine racemase (AR) and aspartate aminotransferase (AAT) folds. Two homologous forms of AAT-fold decarboxylase are present in bacteria: an ancestral form and a derived, acid-inducible extended form containing an N-terminal fusion to the receiver-like domain of a bacterial response regulator. Only ADC was known from the ancestral form and limited to the Firmicutes phylum, whereas extended forms of ADC, ODC, and LDC are present in Proteobacteria and Firmicutes. Here, we report the discovery of ancestral form ODC, LDC, and bifunctional O/LDC and extend the phylogenetic diversity of functionally characterized ancestral ADC, ODC, and LDC to include phyla Fusobacteria, Caldiserica, Nitrospirae, and Euryarchaeota. Using purified recombinant enzymes, we show that these ancestral forms have a nascent ability to decarboxylate kinetically less preferred amino acid substrates with low efficiency, and that product inhibition primarily affects preferred substrates. We also note a correlation between the presence of ancestral ODC and ornithine/arginine auxotrophy and link this with a known symbiotic dependence on exogenous ornithine produced by species using the arginine deiminase system. Finally, we show that ADC, ODC, and LDC activities emerged independently, in parallel, in the homologous AAT-fold ancestral and extended forms. The emergence of the same ODC, ADC, and LDC activities in the nonhomologous AR-fold suggests that polyamine biosynthesis may be inevitable.
Collapse
Affiliation(s)
- Bin Li
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Jue Liang
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, Texas, USA
| | | | - Margaret A Phillips
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Anthony J Michael
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, Texas, USA.
| |
Collapse
|
15
|
Huang Y, Ji X, Ma Z, Łężyk M, Xue Y, Zhao H. Green chemical and biological synthesis of cadaverine: recent development and challenges. RSC Adv 2021; 11:23922-23942. [PMID: 35479032 PMCID: PMC9036910 DOI: 10.1039/d1ra02764f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/29/2021] [Indexed: 11/21/2022] Open
Abstract
Cadaverine has great potential to be used as an important monomer for the development of a series of high value-added products with market prospects. The most promising strategies for cadaverine synthesis involve using green chemical and bioconversion technologies. Herein, the review focuses on the progress and strategies towards the green chemical synthesis and biosynthesis of cadaverine. Specifically, we address the specific biosynthetic pathways of cadaverine from different substrates as well as extensively discussing the origination, structure and catalytic mechanism of the key lysine decarboxylases. The advanced strategies for process intensification, the separation and purification of cadaverine have been summarized. Furthermore, the challenging issues of the environmental, economic, and applicable impact for cadaverine production are also highlighted. This review concludes with the promising outlooks of state-of-the-art applications of cadaverine along with some insights toward their challenges and potential improvements.
Collapse
Affiliation(s)
- Yuhong Huang
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences Beijing 100190 China
- Innovation Academy for Green Manufacture, Chinese Academy of Sciences Beijing 100190 China
- Zhengzhou Institute of Emerging Industrial Technology Zhengzhou City Henan 450000 China
- Zhongke Langfang Institute of Process Engineering Langfang 065001 China
| | - Xiuling Ji
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences Beijing 100190 China
| | - Zhanling Ma
- Zhengzhou Institute of Emerging Industrial Technology Zhengzhou City Henan 450000 China
| | - Mateusz Łężyk
- Water Supply and Bioeconomy Division, Faculty of Environmental Engineering and Energy, Poznan University of Technology Berdychowo 4 60-965 Poznan Poland
| | - Yaju Xue
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences Beijing 100190 China
| | - Hai Zhao
- Innovation Academy for Green Manufacture, Chinese Academy of Sciences Beijing 100190 China
| |
Collapse
|
16
|
de Rond T, Asay JE, Moore BS. Co-occurrence of enzyme domains guides the discovery of an oxazolone synthetase. Nat Chem Biol 2021; 17:794-799. [PMID: 34099916 PMCID: PMC8238888 DOI: 10.1038/s41589-021-00808-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 04/29/2021] [Indexed: 02/04/2023]
Abstract
Multidomain enzymes orchestrate two or more catalytic activities to carry out metabolic transformations with increased control and speed. Here, we report the design and development of a genome-mining approach for targeted discovery of biochemical transformations through the analysis of co-occurring enzyme domains (CO-ED) in a single protein. CO-ED was designed to identify unannotated multifunctional enzymes for functional characterization and discovery based on the premise that linked enzyme domains have evolved to function collaboratively. Guided by CO-ED, we targeted an unannotated predicted ThiF-nitroreductase di-domain enzyme found in more than 50 proteobacteria. Through heterologous expression and biochemical reconstitution, we discovered a series of natural products containing the rare oxazolone heterocycle and characterized their biosynthesis. Notably, we identified the di-domain enzyme as an oxazolone synthetase, validating CO-ED-guided genome mining as a methodology with potential broad utility for both the discovery of unusual enzymatic transformations and the functional annotation of multidomain enzymes.
Collapse
Affiliation(s)
- Tristan de Rond
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093
| | - Julia E. Asay
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093
| | - Bradley S. Moore
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093,Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093
| |
Collapse
|
17
|
Winther KS, Sørensen MA, Svenningsen SL. Polyamines are Required for tRNA Anticodon Modification in Escherichia coli. J Mol Biol 2021; 433:167073. [PMID: 34058151 DOI: 10.1016/j.jmb.2021.167073] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/19/2021] [Accepted: 05/23/2021] [Indexed: 11/25/2022]
Abstract
Biogenic polyamines are natural aliphatic polycations formed from amino acids by biochemical pathways that are highly conserved from bacteria to humans. Their cellular concentrations are carefully regulated and dysregulation causes severe cell growth defects. Polyamines have high affinity for nucleic acids and are known to interact with mRNA, tRNA and rRNA to stimulate the translational machinery, but the exact molecular mechanism(s) for this stimulus is still unknown. Here we exploit that Escherichia coli is viable in the absence of polyamines, including the universally conserved putrescine and spermidine. Using global macromolecule labelling approaches we find that ribosome efficiency is reduced by 50-70% in the absence of polyamines and this reduction is caused by slow translation elongation speed. The low efficiency causes rRNA and multiple tRNA species to be overproduced in the absence of polyamines, suggesting an impact on the feedback regulation of stable RNA transcription. Importantly, we find that polyamine deficiency affects both tRNA levels and tRNA modification patterns. Specifically, a large fraction of tRNAhis, tRNAtyr and tRNAasn lack the queuosine modification in the anticodon "wobble" base, which can be reversed by addition of polyamines to the growth medium. In conclusion, we demonstrate that polyamines are needed for modification of specific tRNA, possibly by facilitating the interaction with modification enzymes.
Collapse
Affiliation(s)
| | - Michael Askvad Sørensen
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark
| | - Sine Lo Svenningsen
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark
| |
Collapse
|
18
|
Schultz CJ, Goonetilleke SN, Liang J, Lahnstein J, Levin KA, Bianco-Miotto T, Burton RA, Mather DE, Chalmers KJ. Analysis of Genetic Diversity in the Traditional Chinese Medicine Plant 'Kushen' ( Sophora flavescens Ait.). FRONTIERS IN PLANT SCIENCE 2021; 12:704201. [PMID: 34413868 PMCID: PMC8369264 DOI: 10.3389/fpls.2021.704201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/14/2021] [Indexed: 05/13/2023]
Abstract
Kushen root, from the woody legume Sophora flavescens, is a traditional Chinese medicine that is a key ingredient in several promising cancer treatments. This activity is attributed in part to two quinolizidine alkaloids (QAs), oxymatrine and matrine, that have a variety of therapeutic activities in vitro. Genetic selection is needed to adapt S. flavescens for cultivation and to improve productivity and product quality. Genetic diversity of S. flavescens was investigated using genotyping-by-sequencing (GBS) on 85 plants grown from seeds collected from 9 provinces of China. DArTSeq provided over 10,000 single nucleotide polymorphism (SNP) markers, 1636 of which were used in phylogenetic analysis to reveal clear regional differences for S. flavescens. One accession from each region was selected for PCR-sequencing to identify gene-specific SNPs in the first two QA pathway genes, lysine decarboxylase (LDC) and copper amine oxidase (CAO). To obtain SfCAO sequence for primer design we used a targeted transcript capture and assembly strategy using publicly available RNA sequencing data. Partial gene sequence analysis of SfCAO revealed two recently duplicated genes, SfCAO1 and SfCAO2, in contrast to the single gene found in the QA-producing legume Lupinus angustifolius. We demonstrate high efficiency converting SNPs to Kompetitive Allele Specific PCR (KASP) markers developing 27 new KASP markers, 17 from DArTSeq data, 7 for SfLDC, and 3 for SfCAO1. To complement this genetic diversity analysis a field trial site has been established in South Australia, providing access to diverse S. flavescens material for morphological, transcriptomic, and QA metabolite analysis. Analysis of dissected flower buds revealed that anthesis occurs before buds fully open suggesting a potential for S. flavescens to be an inbreeding species, however this is not supported by the relatively high level of heterozygosity observed. Two plants from the field trial site were analysed by quantitative real-time PCR and levels of matrine and oxymatrine were assessed in a variety of tissues. We are now in a strong position to select diverse plants for crosses to accelerate the process of genetic selection needed to adapt kushen to cultivation and improve productivity and product quality.
Collapse
Affiliation(s)
- Carolyn J. Schultz
- School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Adelaide, SA, Australia
| | - Shashi N. Goonetilleke
- School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Adelaide, SA, Australia
| | - Jianping Liang
- Department of Chinese Medicine, College of Life Sciences, Shanxi Agricultural University, Shanxi, China
- *Correspondence: Jianping Liang,
| | - Jelle Lahnstein
- School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Adelaide, SA, Australia
| | - Kara A. Levin
- School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Adelaide, SA, Australia
| | - Tina Bianco-Miotto
- School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Adelaide, SA, Australia
| | - Rachel A. Burton
- School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Adelaide, SA, Australia
| | - Diane E. Mather
- School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Adelaide, SA, Australia
| | - Kenneth J. Chalmers
- School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Adelaide, SA, Australia
- Kenneth J. Chalmers,
| |
Collapse
|
19
|
Li B, Deng X, Kim SH, Buhrow L, Tomchick DR, Phillips MA, Michael AJ. Alternative pathways utilize or circumvent putrescine for biosynthesis of putrescine-containing rhizoferrin. J Biol Chem 2020; 296:100146. [PMID: 33277357 PMCID: PMC7857480 DOI: 10.1074/jbc.ra120.016738] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/02/2020] [Accepted: 12/04/2020] [Indexed: 11/23/2022] Open
Abstract
The siderophore rhizoferrin (N1,N4-dicitrylputrescine) is produced in fungi and bacteria to scavenge iron. Putrescine-producing bacterium Ralstonia pickettii synthesizes rhizoferrin and encodes a single nonribosomal peptide synthetase-independent siderophore (NIS) synthetase. From biosynthetic logic, we hypothesized that this single enzyme is sufficient for rhizoferrin biosynthesis. We confirmed this by expression of R. pickettii NIS synthetase in Escherichia coli, resulting in rhizoferrin production. This was further confirmed in vitro using the recombinant NIS synthetase, synthesizing rhizoferrin from putrescine and citrate. Heterologous expression of homologous lbtA from Legionella pneumophila, required for rhizoferrin biosynthesis in that species, produced siderophore activity in E. coli. Rhizoferrin is also synthesized by Francisella tularensis and Francisella novicida, but unlike R. pickettii or L. pneumophila, Francisella species lack putrescine biosynthetic pathways because of genomic decay. Francisella encodes a NIS synthetase FslA/FigA and an ornithine decarboxylase homolog FslC/FigC, required for rhizoferrin biosynthesis. Ornithine decarboxylase produces putrescine from ornithine, but we show here in vitro that FigA synthesizes N-citrylornithine, and FigC is an N-citrylornithine decarboxylase that together synthesize rhizoferrin without using putrescine. We co-expressed F. novicida figA and figC in E. coli and produced rhizoferrin. A 2.1 Å X-ray crystal structure of the FigC N-citrylornithine decarboxylase reveals how the larger substrate is accommodated and how active site residues have changed to recognize N-citrylornithine. FigC belongs to a new subfamily of alanine racemase-fold PLP-dependent decarboxylases that are not involved in polyamine biosynthesis. These data reveal a natural product biosynthetic workaround that evolved to bypass a missing precursor and re-establish it in the final structure.
Collapse
Affiliation(s)
- Bin Li
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Xiaoyi Deng
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Sok Ho Kim
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Leann Buhrow
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Diana R Tomchick
- Department of Biophysics, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Margaret A Phillips
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Anthony J Michael
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, Texas, USA.
| |
Collapse
|
20
|
Lee SG, Harline K, Abar O, Akadri SO, Bastian AG, Chen HYS, Duan M, Focht CM, Groziak AR, Kao J, Kottapalli JS, Leong MC, Lin JJ, Liu R, Luo JE, Meyer CM, Mo AF, Pahng SH, Penna V, Raciti CD, Srinath A, Sudhakar S, Tang JD, Cox BR, Holland CK, Cascella B, Cruz W, McClerkin SA, Kunkel BN, Jez JM. The plant pathogen enzyme AldC is a long-chain aliphatic aldehyde dehydrogenase. J Biol Chem 2020; 295:13914-13926. [PMID: 32796031 DOI: 10.1074/jbc.ra120.014747] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/11/2020] [Indexed: 12/13/2022] Open
Abstract
Aldehyde dehydrogenases are versatile enzymes that serve a range of biochemical functions. Although traditionally considered metabolic housekeeping enzymes because of their ability to detoxify reactive aldehydes, like those generated from lipid peroxidation damage, the contributions of these enzymes to other biological processes are widespread. For example, the plant pathogen Pseudomonas syringae strain PtoDC3000 uses an indole-3-acetaldehyde dehydrogenase to synthesize the phytohormone indole-3-acetic acid to elude host responses. Here we investigate the biochemical function of AldC from PtoDC3000. Analysis of the substrate profile of AldC suggests that this enzyme functions as a long-chain aliphatic aldehyde dehydrogenase. The 2.5 Å resolution X-ray crystal of the AldC C291A mutant in a dead-end complex with octanal and NAD+ reveals an apolar binding site primed for aliphatic aldehyde substrate recognition. Functional characterization of site-directed mutants targeting the substrate- and NAD(H)-binding sites identifies key residues in the active site for ligand interactions, including those in the "aromatic box" that define the aldehyde-binding site. Overall, this study provides molecular insight for understanding the evolution of the prokaryotic aldehyde dehydrogenase superfamily and their diversity of function.
Collapse
Affiliation(s)
- Soon Goo Lee
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA; Department of Chemistry and Biochemistry, University of North Carolina-Wilmington, Wilmington, North Carolina, USA
| | - Kate Harline
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Orchid Abar
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Sakirat O Akadri
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Alexander G Bastian
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Hui-Yuan S Chen
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Michael Duan
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Caroline M Focht
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Amanda R Groziak
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Jesse Kao
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | | | - Matthew C Leong
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Joy J Lin
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Regina Liu
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Joanna E Luo
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Christine M Meyer
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Albert F Mo
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Seong Ho Pahng
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Vinay Penna
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Chris D Raciti
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Abhinav Srinath
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Shwetha Sudhakar
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Joseph D Tang
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Brian R Cox
- Department of Chemistry and Biochemistry, University of North Carolina-Wilmington, Wilmington, North Carolina, USA
| | - Cynthia K Holland
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA; Department of Biology, Williams College, Williamstown, Massachusetts, USA
| | - Barrie Cascella
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Wilhelm Cruz
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Sheri A McClerkin
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA; Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, Illinois, USA
| | - Barbara N Kunkel
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Joseph M Jez
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA.
| |
Collapse
|
21
|
Lichman BR. The scaffold-forming steps of plant alkaloid biosynthesis. Nat Prod Rep 2020; 38:103-129. [PMID: 32745157 DOI: 10.1039/d0np00031k] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Alkaloids from plants are characterised by structural diversity and bioactivity, and maintain a privileged position in both modern and traditional medicines. In recent years, there have been significant advances in elucidating the biosynthetic origins of plant alkaloids. In this review, I will describe the progress made in determining the metabolic origins of the so-called true alkaloids, specialised metabolites derived from amino acids containing a nitrogen heterocycle. By identifying key biosynthetic steps that feature in the majority of pathways, I highlight the key roles played by modifications to primary metabolism, iminium reactivity and spontaneous reactions in the molecular and evolutionary origins of these pathways.
Collapse
Affiliation(s)
- Benjamin R Lichman
- Centre for Novel Agricultural Products, Department of Biology, University of York, York YO10 5DD, UK.
| |
Collapse
|
22
|
Richter AA, Mais CN, Czech L, Geyer K, Hoeppner A, Smits SHJ, Erb TJ, Bange G, Bremer E. Biosynthesis of the Stress-Protectant and Chemical Chaperon Ectoine: Biochemistry of the Transaminase EctB. Front Microbiol 2019; 10:2811. [PMID: 31921013 PMCID: PMC6915088 DOI: 10.3389/fmicb.2019.02811] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 11/20/2019] [Indexed: 12/20/2022] Open
Abstract
Bacteria frequently adapt to high osmolarity surroundings through the accumulation of compatible solutes. Ectoine is a prominent member of these types of stress protectants and is produced via an evolutionarily conserved biosynthetic pathway beginning with the L-2,4-diaminobutyrate (DAB) transaminase (TA) EctB. Here, we studied EctB from the thermo-tolerant Gram-positive bacterium Paenibacillus lautus (Pl) and show that this tetrameric enzyme is highly tolerant to salt, pH, and temperature. During ectoine biosynthesis, EctB converts L-glutamate and L-aspartate-beta-semialdehyde into 2-oxoglutarate and DAB, but it also catalyzes the reverse reaction. Our analysis unravels that EctB enzymes are mechanistically identical to the PLP-dependent gamma-aminobutyrate TAs (GABA-TAs) and only differ with respect to substrate binding. Inspection of the genomic context of the ectB gene in P. lautus identifies an unusual arrangement of juxtapositioned genes for ectoine biosynthesis and import via an Ehu-type binding-protein-dependent ABC transporter. This operon-like structure suggests the operation of a highly coordinated system for ectoine synthesis and import to maintain physiologically adequate cellular ectoine pools under osmotic stress conditions in a resource-efficient manner. Taken together, our study provides an in-depth mechanistic and physiological description of EctB, the first enzyme of the ectoine biosynthetic pathway.
Collapse
Affiliation(s)
- Alexandra A Richter
- Laboratory for Microbiology, Department of Biology, Philipps-University Marburg, Marburg, Germany.,SYNMIKRO Research Center, Philipps-University Marburg, Marburg, Germany
| | - Christopher-Nils Mais
- SYNMIKRO Research Center, Philipps-University Marburg, Marburg, Germany.,Department of Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Laura Czech
- Laboratory for Microbiology, Department of Biology, Philipps-University Marburg, Marburg, Germany.,SYNMIKRO Research Center, Philipps-University Marburg, Marburg, Germany
| | - Kyra Geyer
- Department of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Astrid Hoeppner
- Center for Structural Studies, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Sander H J Smits
- Center for Structural Studies, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,Institute of Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Tobias J Erb
- SYNMIKRO Research Center, Philipps-University Marburg, Marburg, Germany.,Department of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Gert Bange
- SYNMIKRO Research Center, Philipps-University Marburg, Marburg, Germany.,Department of Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Erhard Bremer
- Laboratory for Microbiology, Department of Biology, Philipps-University Marburg, Marburg, Germany.,SYNMIKRO Research Center, Philipps-University Marburg, Marburg, Germany
| |
Collapse
|
23
|
Czech L, Wilcken S, Czech O, Linne U, Brauner J, Smits SHJ, Galinski EA, Bremer E. Exploiting Substrate Promiscuity of Ectoine Hydroxylase for Regio- and Stereoselective Modification of Homoectoine. Front Microbiol 2019; 10:2745. [PMID: 31827466 PMCID: PMC6890836 DOI: 10.3389/fmicb.2019.02745] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 11/12/2019] [Indexed: 11/13/2022] Open
Abstract
Extant enzymes are not only highly efficient biocatalysts for a single, or a group of chemically closely related substrates but often have retained, as a mark of their evolutionary history, a certain degree of substrate ambiguity. We have exploited the substrate ambiguity of the ectoine hydroxylase (EctD), a member of the non-heme Fe(II)-containing and 2-oxoglutarate-dependent dioxygenase superfamily, for such a task. Naturally, the EctD enzyme performs a precise regio- and stereoselective hydroxylation of the ubiquitous stress protectant and chemical chaperone ectoine (possessing a six-membered pyrimidine ring structure) to yield trans-5-hydroxyectoine. Using a synthetic ectoine derivative, homoectoine, which possesses an expanded seven-membered diazepine ring structure, we were able to selectively generate, both in vitro and in vivo, trans-5-hydroxyhomoectoine. For this transformation, we specifically used the EctD enzyme from Pseudomonas stutzeri in a whole cell biocatalyst approach, as this enzyme exhibits high catalytic efficiency not only for its natural substrate ectoine but also for homoectoine. Molecular docking approaches with the crystal structure of the Sphingopyxis alaskensis EctD protein predicted the formation of trans-5-hydroxyhomoectoine, a stereochemical configuration that we experimentally verified by nuclear-magnetic resonance spectroscopy. An Escherichia coli cell factory expressing the P. stutzeri ectD gene from a synthetic promoter imported homoectoine via the ProU and ProP compatible solute transporters, hydroxylated it, and secreted the formed trans-5-hydroxyhomoectoine, independent from all currently known mechanosensitive channels, into the growth medium from which it could be purified by high-pressure liquid chromatography.
Collapse
Affiliation(s)
- Laura Czech
- Laboratory for Microbiology, Department of Biology, Philipps-Universität Marburg, Marburg, Germany
| | - Sarah Wilcken
- Laboratory for Microbiology, Department of Biology, Philipps-Universität Marburg, Marburg, Germany
| | - Oliver Czech
- Department of Chemistry, Philipps-Universität Marburg, Marburg, Germany
| | - Uwe Linne
- Department of Chemistry, Philipps-Universität Marburg, Marburg, Germany
| | - Jarryd Brauner
- Institute of Microbiology and Biotechnology, Rheinische Friedrich-Wilhelms-Universität, Bonn, Germany
| | - Sander H J Smits
- Institute of Biochemistry, Heinrich-Heine Universität Düsseldorf, Düsseldorf, Germany.,Center for Structural Studies, Heinrich-Heine Universität Düsseldorf, Düsseldorf, Germany
| | - Erwin A Galinski
- Institute of Microbiology and Biotechnology, Rheinische Friedrich-Wilhelms-Universität, Bonn, Germany
| | - Erhard Bremer
- Laboratory for Microbiology, Department of Biology, Philipps-Universität Marburg, Marburg, Germany.,SYNMIKRO Research Center, Philipps-Universität Marburg, Marburg, Germany
| |
Collapse
|
24
|
Shimizu Y, Rai A, Okawa Y, Tomatsu H, Sato M, Kera K, Suzuki H, Saito K, Yamazaki M. Metabolic diversification of nitrogen-containing metabolites by the expression of a heterologous lysine decarboxylase gene in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 100:505-521. [PMID: 31364191 PMCID: PMC6899585 DOI: 10.1111/tpj.14454] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 05/03/2019] [Accepted: 06/25/2019] [Indexed: 05/04/2023]
Abstract
Lysine decarboxylase converts l-lysine to cadaverine as a branching point for the biosynthesis of plant Lys-derived alkaloids. Although cadaverine contributes towards the biosynthesis of Lys-derived alkaloids, its catabolism, including metabolic intermediates and the enzymes involved, is not known. Here, we generated transgenic Arabidopsis lines by expressing an exogenous lysine/ornithine decarboxylase gene from Lupinus angustifolius (La-L/ODC) and identified cadaverine-derived metabolites as the products of the emerged biosynthetic pathway. Through untargeted metabolic profiling, we observed the upregulation of polyamine metabolism, phenylpropanoid biosynthesis and the biosynthesis of several Lys-derived alkaloids in the transgenic lines. Moreover, we found several cadaverine-derived metabolites specifically detected in the transgenic lines compared with the non-transformed control. Among these, three specific metabolites were identified and confirmed as 5-aminopentanal, 5-aminopentanoate and δ-valerolactam. Cadaverine catabolism in a representative transgenic line (DC29) was traced by feeding stable isotope-labeled [α-15 N]- or [ε-15 N]-l-lysine. Our results show similar 15 N incorporation ratios from both isotopomers for the specific metabolite features identified, indicating that these metabolites were synthesized via the symmetric structure of cadaverine. We propose biosynthetic pathways for the metabolites on the basis of metabolite chemistry and enzymes known or identified through catalyzing specific biochemical reactions in this study. Our study shows that this pool of enzymes with promiscuous activities is the driving force for metabolite diversification in plants. Thus, this study not only provides valuable information for understanding the catabolic mechanism of cadaverine but also demonstrates that cadaverine accumulation is one of the factors to expand plant chemodiversity, which may lead to the emergence of Lys-derived alkaloid biosynthesis.
Collapse
Affiliation(s)
- Yohei Shimizu
- Graduate School of Pharmaceutical SciencesChiba University1‐8‐1 Inohana, Chuo‐kuChiba260‐8675Japan
- RIKEN Center for Sustainable Resource Science1‐7‐22 Suehiro‐cho, Tsurumi‐kuYokohama230‐0045Japan
| | - Amit Rai
- Graduate School of Pharmaceutical SciencesChiba University1‐8‐1 Inohana, Chuo‐kuChiba260‐8675Japan
| | - Yuko Okawa
- Graduate School of Pharmaceutical SciencesChiba University1‐8‐1 Inohana, Chuo‐kuChiba260‐8675Japan
| | - Hajime Tomatsu
- Graduate School of Pharmaceutical SciencesChiba University1‐8‐1 Inohana, Chuo‐kuChiba260‐8675Japan
- Present address:
Human Metabolome Technologies, Inc.246‐2 Mizukami, KakuganjiTsuruokaYamagata997‐0052Japan
| | - Masaru Sato
- Kazusa DNA Research Institute2‐6‐7 Kazusa‐KamatariKisarazuChiba292‐0818Japan
| | - Kota Kera
- Graduate School of Pharmaceutical SciencesChiba University1‐8‐1 Inohana, Chuo‐kuChiba260‐8675Japan
- Present address:
Department of Biomolecular EngineeringGraduate School of EngineeringTohoku UniversityAobayama 6‐6‐07Sendai980‐8579Japan
| | - Hideyuki Suzuki
- Kazusa DNA Research Institute2‐6‐7 Kazusa‐KamatariKisarazuChiba292‐0818Japan
| | - Kazuki Saito
- Graduate School of Pharmaceutical SciencesChiba University1‐8‐1 Inohana, Chuo‐kuChiba260‐8675Japan
- RIKEN Center for Sustainable Resource Science1‐7‐22 Suehiro‐cho, Tsurumi‐kuYokohama230‐0045Japan
| | - Mami Yamazaki
- Graduate School of Pharmaceutical SciencesChiba University1‐8‐1 Inohana, Chuo‐kuChiba260‐8675Japan
| |
Collapse
|
25
|
A polyamine-independent role for S-adenosylmethionine decarboxylase. Biochem J 2019; 476:2579-2594. [DOI: 10.1042/bcj20190561] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 08/27/2019] [Accepted: 08/29/2019] [Indexed: 11/17/2022]
Abstract
AbstractThe only known function of S-adenosylmethionine decarboxylase (AdoMetDC) is to supply, with its partner aminopropyltransferase enzymes such as spermidine synthase (SpdSyn), the aminopropyl donor for polyamine biosynthesis. Polyamine spermidine is probably essential for the growth of all eukaryotes, most archaea and many bacteria. Two classes of AdoMetDC exist, the prokaryotic class 1a and 1b forms, and the eukaryotic class 2 enzyme, which is derived from an ancient fusion of two prokaryotic class 1b genes. Herein, we show that ‘eukaryotic' class 2 AdoMetDCs are found in bacteria and are enzymatically functional. However, the bacterial AdoMetDC class 2 genes are phylogenetically limited and were likely acquired from a eukaryotic source via transdomain horizontal gene transfer, consistent with the class 2 form of AdoMetDC being a eukaryotic invention. We found that some class 2 and thousands of class 1b AdoMetDC homologues are present in bacterial genomes that also encode a gene fusion of an N-terminal membrane protein of the Major Facilitator Superfamily (MFS) class of transporters and a C-terminal SpdSyn-like domain. Although these AdoMetDCs are enzymatically functional, spermidine is absent, and an entire fusion protein or its SpdSyn-like domain only, does not biochemically complement a SpdSyn deletion strain of E. coli. This suggests that the fusion protein aminopropylates a substrate other than putrescine, and has a role outside of polyamine biosynthesis. Another integral membrane protein found clustered with these genes is DUF350, which is also found in other gene clusters containing a homologue of the glutathionylspermidine synthetase family and occasionally other polyamine biosynthetic enzymes.
Collapse
|
26
|
Sekula B, Dauter Z. Structural Study of Agmatine Iminohydrolase From Medicago truncatula, the Second Enzyme of the Agmatine Route of Putrescine Biosynthesis in Plants. FRONTIERS IN PLANT SCIENCE 2019; 10:320. [PMID: 30984210 PMCID: PMC6447857 DOI: 10.3389/fpls.2019.00320] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 02/27/2019] [Indexed: 05/27/2023]
Abstract
Plants are unique eukaryotes that can produce putrescine (PUT), a basic diamine, from arginine via a three-step pathway. This process starts with arginine decarboxylase that converts arginine to agmatine. Then, the consecutive action of two hydrolytic enzymes, agmatine iminohydrolase (AIH) and N-carbamoylputrescine amidohydrolase, ultimately produces PUT. An alternative route of PUT biosynthesis requires ornithine decarboxylase that catalyzes direct putrescine biosynthesis. However, some plant species lack this enzyme and rely only on agmatine pathway. The scope of this manuscript concerns the structural characterization of AIH from the model legume plant, Medicago truncatula. MtAIH is a homodimer built of two subunits with a characteristic propeller fold, where five αββαβ repeated units are arranged around the fivefold pseudosymmetry axis. Dimeric assembly of this plant AIH, formed by interactions of conserved structural elements from one repeat, is drastically different from that observed in dimeric bacterial AIHs. Additionally, the structural snapshot of MtAIH in complex with 6-aminohexanamide, the reaction product analog, presents the conformation of the enzyme during catalysis. Our structural results show that MtAIH undergoes significant structural rearrangements of the long loop, which closes a tunnel-shaped active site over the course of the catalytic event. This conformational change is also observed in AIH from Arabidopsis thaliana, indicating the importance of the closed conformation of the gate-keeping loop for the catalysis of plant AIHs.
Collapse
Affiliation(s)
- Bartosz Sekula
- Synchrotron Radiation Research Section of Macromolecular Crystallography Laboratory, National Cancer Institute, Argonne, IL, United States
| | | |
Collapse
|
27
|
Ramakrishnan B, Venkateswarlu K, Sethunathan N, Megharaj M. Local applications but global implications: Can pesticides drive microorganisms to develop antimicrobial resistance? THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 654:177-189. [PMID: 30445319 DOI: 10.1016/j.scitotenv.2018.11.041] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 11/02/2018] [Accepted: 11/03/2018] [Indexed: 05/07/2023]
Abstract
Pesticides are an important agricultural input, and the introduction of new active ingredients with increased efficiencies drives their higher production and consumption worldwide. Inappropriate application and storage of these chemicals often contaminate plant tissues, air, water, or soil environments. The presence of pesticides can lead to developing tolerance, resistance or persistence and even the capabilities to degrade them by the microbiomes of theses environments. The pesticide-degrading microorganisms gain and employ several mechanisms for attraction (chemotaxis), membrane transport systems, efflux pumps, enzymes and genetical make-up with plasmid and chromosome encoded catabolic genes for degradation. Even the evolution and the mechanisms of inheritance for pesticide-degradation as a functional trait in several microorganisms are beginning to be understood. Because of the commonalities in the microbial responses of sensing and uptake, and adaptation due to the selection pressures of pesticides and antimicrobial substances including antibiotics, the pesticide-degraders have higher chances of possessing antimicrobial resistance as a surplus functional trait. This review critically examines the probabilities of pesticide contamination of soil and foliage, the knowledge gaps in the regulation and storage of pesticide chemicals, and the human implications of pesticide-degrading microorganisms with antimicrobial resistance in the global strategy of 'One Health'.
Collapse
Affiliation(s)
| | - Kadiyala Venkateswarlu
- Formerly Department of Microbiology, Sri Krishnadevaraya University, Anantapur 515055, India
| | - Nambrattil Sethunathan
- Flat No. 103, Ushodaya Apartments, Sri Venkateswara Officers Colony, Ramakrishnapuram, Secunderabad 500056, India
| | - Mallavarapu Megharaj
- Global Centre for Environmental Remediation (GCER) and Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, ATC Building, Callaghan, NSW 2308, Australia.
| |
Collapse
|
28
|
Sekula B, Dauter Z. Spermidine Synthase (SPDS) Undergoes Concerted Structural Rearrangements Upon Ligand Binding - A Case Study of the Two SPDS Isoforms From Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2019; 10:555. [PMID: 31134111 PMCID: PMC6514230 DOI: 10.3389/fpls.2019.00555] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 04/11/2019] [Indexed: 05/14/2023]
Abstract
Spermidine synthases (SPDSs) catalyze the production of the linear triamine, spermidine, from putrescine. They utilize decarboxylated S-adenosylmethionine (dc-SAM), a universal cofactor of aminopropyltransferases, as a donor of the aminopropyl moiety. In this work, we describe crystal structures of two SPDS isoforms from Arabidopsis thaliana (AtSPDS1 and AtSPDS2). AtSPDS1 and AtSPDS2 are dimeric enzymes that share the fold of the polyamine biosynthesis proteins. Subunits of both isoforms present the characteristic two-domain structure. Smaller, N-terminal domain is built of the two β-sheets, while the C-terminal domain has a Rossmann fold-like topology. The catalytic cleft composed of two main compartments, the dc-SAM binding site and the polyamine groove, is created independently in each AtSPDS subunits at the domain interface. We also provide the structural details about the dc-SAM binding mode and the inhibition of SPDS by a potent competitive inhibitor, cyclohexylamine (CHA). CHA occupies the polyamine binding site of AtSPDS where it is bound at the bottom of the active site with the amine group placed analogously to the substrate. The crystallographic snapshots show in detail the structural rearrangements of AtSPDS1 and AtSPDS2 that are required to stabilize ligands within the active site. The concerted movements are observed in both compartments of the catalytic cleft, where three major parts significantly change their conformation. These are (i) the neighborhood of the glycine-rich region where aminopropyl moiety of dc-SAM is bound, (ii) the very flexible gate region with helix η6, which interacts with both, the adenine moiety of dc-SAM and the bound polyamine or inhibitor, and (iii) the N-terminal β-hairpin, that limits the putrescine binding grove at the bottom of the catalytic site.
Collapse
|
29
|
Harnessing Underground Metabolism for Pathway Development. Trends Biotechnol 2019; 37:29-37. [DOI: 10.1016/j.tibtech.2018.08.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 07/17/2018] [Accepted: 08/06/2018] [Indexed: 01/13/2023]
|
30
|
Burnat M, Li B, Kim SH, Michael AJ, Flores E. Homospermidine biosynthesis in the cyanobacteriumAnabaenarequires a deoxyhypusine synthase homologue and is essential for normal diazotrophic growth. Mol Microbiol 2018; 109:763-780. [DOI: 10.1111/mmi.14006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Mireia Burnat
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC and Universidad de Sevilla Avda. Américo Vespucio 49E‐41092Sevilla Spain
| | - Bin Li
- Department of Biochemistry University of Texas Southwestern Medical Center 5323 Harry Hines BlvdDallas TX 75390‐9041USA
| | - Sok Ho Kim
- Department of Biochemistry University of Texas Southwestern Medical Center 5323 Harry Hines BlvdDallas TX 75390‐9041USA
| | - Anthony J. Michael
- Department of Biochemistry University of Texas Southwestern Medical Center 5323 Harry Hines BlvdDallas TX 75390‐9041USA
| | - Enrique Flores
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC and Universidad de Sevilla Avda. Américo Vespucio 49E‐41092Sevilla Spain
| |
Collapse
|
31
|
Telfer TJ, Codd R. Fluorinated Analogues of Desferrioxamine B from Precursor-Directed Biosynthesis Provide New Insight into the Capacity of DesBCD. ACS Chem Biol 2018; 13:2456-2471. [PMID: 30081629 DOI: 10.1021/acschembio.8b00340] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The siderophore desferrioxamine B (DFOB, 1) native to Streptomyces pilosus is biosynthesized by the DesABCD enzyme cluster. DesA-mediated decarboxylation of l-lysine gives 1,5-diaminopentane (DP) for processing by DesBCD. S. pilosus culture medium was supplemented with rac-1,4-diamino-2-fluorobutane ( rac-FDB) to compete against DP to generate fluorinated analogues of DFOB, as agents of potential clinical interest. LC-MS/MS analysis identified fluorinated analogues of DFOB with one, two, or three DP units (binary notation: 0) exchanged for one (DFOA-F1[001] (2), DFOA-F1[010] (3), DFOA-F1[100] (4)), two (DFOA-F2[011] (5), DFOA-F2[110] (6), DFOA-F2[101] (7)), or three (DFOA-F3[111] (8)) rac-FDB units (binary notation: 1). The two sets of constitutional isomers 2-4 and 5-7 arose from the position of the substrates in the N-acetyl, internal, or amine-containing regions of the DFOB trimer. N-Acetylated fluorinated DFOB analogues were formed where the rac-FDB substrate was positioned in the amine region ( e.g., N-Ac-DFOA-F1[001] (2a)). Other analogues contained two hydroxamic acid groups and three amide bonds. Experiments using rac-FDB, R-FDB, or S-FDB showed a similar species profile between rac-FDB and R-FDB. These data are consistent with the following. (i) DesB can act on rac-FDB. (ii) DesC can act directly on rac-FDB. (iii) The products of DesBC or DesC catalysis of rac-FDB can undergo a second round of DesC catalysis at the free amine. (iv) DesD catalysis of these products gives N, N'-diacetylated compounds. (v) A minimum of two hydroxamic acid groups is required to form a viable DesD-substrate(s) precomplex. (vi) One or more DesBCD-catalyzed steps in DFOB biosynthesis is enantioselective. This work has provided a potential path to access fluorinated analogues of DFOB and new insight into its biosynthesis.
Collapse
Affiliation(s)
- Thomas J. Telfer
- School of Medical Sciences (Pharmacology), The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Rachel Codd
- School of Medical Sciences (Pharmacology), The University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
32
|
Shinsky SA, Christianson DW. Polyamine Deacetylase Structure and Catalysis: Prokaryotic Acetylpolyamine Amidohydrolase and Eukaryotic HDAC10. Biochemistry 2018. [PMID: 29533602 DOI: 10.1021/acs.biochem.8b00079] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Polyamines such as putrescine, spermidine, and spermine are small aliphatic cations that serve myriad biological functions in all forms of life. While polyamine biosynthesis and cellular trafficking pathways are generally well-defined, only recently has the molecular basis of reversible polyamine acetylation been established. In particular, enzymes that catalyze polyamine deacetylation reactions have been identified and structurally characterized: histone deacetylase 10 (HDAC10) from Homo sapiens and Danio rerio (zebrafish) is a highly specific N8-acetylspermidine deacetylase, and its prokaryotic counterpart, acetylpolyamine amidohydrolase (APAH) from Mycoplana ramosa, is a broad-specificity polyamine deacetylase. Similar to the greater family of HDACs, which mainly serve as lysine deacetylases, both enzymes adopt the characteristic arginase-deacetylase fold and employ a Zn2+-activated water molecule for catalysis. In contrast with HDACs, however, the active sites of HDAC10 and APAH are sterically constricted to enforce specificity for long, slender polyamine substrates and exclude bulky peptides and proteins containing acetyl-l-lysine. Crystal structures of APAH and D. rerio HDAC10 reveal that quaternary structure, i.e., dimer assembly, provides the steric constriction that directs the polyamine substrate specificity of APAH, whereas tertiary structure, a unique 310 helix defined by the P(E,A)CE motif, provides the steric constriction that directs the polyamine substrate specificity of HDAC10. Given the recent identification of HDAC10 and spermidine as mediators of autophagy, HDAC10 is rapidly emerging as a biomarker and target for the design of isozyme-selective inhibitors that will suppress autophagic responses to cancer chemotherapy, thereby rendering cancer cells more susceptible to cytotoxic drugs.
Collapse
Affiliation(s)
- Stephen A Shinsky
- Roy and Diana Vagelos Laboratories, Department of Chemistry , University of Pennsylvania , 231 South 34th Street , Philadelphia , Pennsylvania 19104-6323 , United States
| | - David W Christianson
- Roy and Diana Vagelos Laboratories, Department of Chemistry , University of Pennsylvania , 231 South 34th Street , Philadelphia , Pennsylvania 19104-6323 , United States
| |
Collapse
|
33
|
Hassan Y, Zhou T. Addressing the mycotoxin deoxynivalenol contamination with soil-derived bacterial and enzymatic transformations targeting the C3 carbon. WORLD MYCOTOXIN J 2018. [DOI: 10.3920/wmj2017.2259] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The search for feasible biological means of detoxifying mycotoxins has attained successful accomplishments in the past twenty years due to the involvement of many teams coming from diverse backgrounds and research expertise. The recently witnessed breakthroughs in the field of bacterial genomics (including next-generation sequencing), proteomics, and computational biology helped all in shaping the current understanding of how microorganisms/mycotoxins/environmental factors intertwined and interact together, hence paving the road for some substantial discoveries. This perspective review summarises the advances that were observed in the past two decades within the deoxynivalenol (DON) bio-detoxification field. It highlights the research efforts and progresses that were made in the arena of the aerobic oxidation and epimerization of this mycotoxin at the C3 carbon carried out by multiple Devosia species. Moreover, it sets practical examples and discusses how the recent standing-knowledge of bacterial detoxifications of this mycotoxin has evolved into a fascinating potential of empirical bacterial and enzymatic solutions aiming at addressing DON contamination. The obtained results argue for determining the involved enzyme’s co-factors and defining the chemistry behind the established catalytic activity at an early stage of investigation to maximise the chances of isolating the responsible enzymes.
Collapse
Affiliation(s)
- Y.I. Hassan
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, Ontario N1G 5C9, Canada
| | - T. Zhou
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, Ontario N1G 5C9, Canada
| |
Collapse
|
34
|
Crystal structure of thermospermine synthase from Medicago truncatula and substrate discriminatory features of plant aminopropyltransferases. Biochem J 2018; 475:787-802. [PMID: 29367265 DOI: 10.1042/bcj20170900] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 01/19/2018] [Accepted: 01/24/2018] [Indexed: 01/06/2023]
Abstract
Polyamines are linear polycationic compounds that play a crucial role in the growth and development of higher plants. One triamine (spermidine, SPD) and two tetraamine isomers (spermine, SPM, and thermospermine, TSPM) are obtained by the transfer of the aminopropyl group from decarboxylated S-adenosylmethionine to putrescine and SPD. These reactions are catalyzed by the specialized aminopropyltransferases. In that respect, plants are unique eukaryotes that have independently evolved two enzymes, thermospermine synthase (TSPS), encoded by the gene ACAULIS5, and spermine synthase, which produce TSPM and SPM, respectively. In this work, we structurally characterize the ACAULIS5 gene product, TSPS, from the model legume plant Medicago truncatula (Mt). Six crystal structures of MtTSPS - one without ligands and five in complexes with either reaction substrate (SPD), reaction product (TSPM), or one of three cofactor analogs (5'-methylthioadenosine, S-adenosylthiopropylamine, and adenosine) - give detailed insights into the biosynthesis of TSPM. Combined with small-angle X-ray scattering data, the crystal structures show that MtTSPS is a symmetric homotetramer with an interdomain eight-stranded β-barrel. Such an assembly and the presence of a hinge-like feature between N-terminal and C-terminal domains give the protein additional flexibility which potentially improves loading substrates and discarding products after the catalytic event. We also discuss the sequence and structural features around the active site of the plant aminopropyltransferases that distinguish them from each other and determine their characteristic substrate discrimination.
Collapse
|
35
|
Sousa FL, Preiner M, Martin WF. Native metals, electron bifurcation, and CO 2 reduction in early biochemical evolution. Curr Opin Microbiol 2018; 43:77-83. [PMID: 29316496 DOI: 10.1016/j.mib.2017.12.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 12/21/2017] [Accepted: 12/22/2017] [Indexed: 12/22/2022]
Abstract
Molecular hydrogen is an ancient source of energy and electrons. Anaerobic autotrophs that harness the H2/CO2 redox couple harbour ancient biochemical traits that trace back to the universal common ancestor. Aspects of their physiology, including the abundance of transition metals, radical reaction mechanisms, and their main exergonic bioenergetic reactions, forge links between ancient microbes and geochemical reactions at hydrothermal vents. The midpoint potential of H2 however requires anaerobes that reduce CO2 with H2 to use flavin based electron bifurcation-a mechanism to conserve energy as low potential reduced ferredoxins via soluble proteins-for CO2 fixation. This presents a paradox. At the onset of biochemical evolution, before there were proteins, how was CO2 reduced using H2? FeS minerals alone are probably not the solution, because biological CO2 reduction is a two electron reaction. Physiology can provide clues. Some acetogens and some methanogens can grow using native iron (Fe0) instead of H2 as the electron donor. In the laboratory, Fe0 efficiently reduces CO2 to acetate and methanol. Hydrothermal vents harbour awaruite, Ni3Fe, a natural compound of native metals. Native metals might have been the precursors of electron bifurcation in biochemical evolution.
Collapse
Affiliation(s)
- Filipa L Sousa
- Division of Archaea Biology and Ecogenomics, Department of Ecogenomics and Systems Biology, University of Vienna, Althanstrasse 14 UZA I, 1090 Vienna, Austria.
| | - Martina Preiner
- Institute of Molecular Evolution, Heinrich-Heine-University, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - William F Martin
- Institute of Molecular Evolution, Heinrich-Heine-University, Universitätsstr. 1, 40225 Düsseldorf, Germany; Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
| |
Collapse
|
36
|
Rosenberg J, Yeak KC, Commichau FM. A two-step evolutionary process establishes a non-native vitamin B6 pathway in Bacillus subtilis. Environ Microbiol 2017; 20:156-168. [PMID: 29027347 DOI: 10.1111/1462-2920.13950] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 09/22/2017] [Accepted: 09/27/2017] [Indexed: 12/11/2022]
Abstract
Pyridoxal 5'-phosphate (PLP), the most important form of vitamin B6 serves as a cofactor for many proteins. Two alternative pathways for de novo PLP biosynthesis are known: the short deoxy-xylulose-5-phosphate (DXP)-independent pathway, which is present in the Gram-positive model bacterium Bacillus subtilis and the longer DXP-dependent pathway, which has been intensively studied in the Gram-negative model bacterium Escherichia coli. Previous studies revealed that bacteria contain many promiscuous enzymes causing a so-called 'underground metabolism', which can be important for the evolution of novel pathways. Here, we evaluated the potential of B. subtilis to use a truncated non-native DXP-dependent PLP pathway from E. coli for PLP synthesis. Adaptive laboratory evolution experiments revealed that two non-native enzymes catalysing the last steps of the DXP-dependent PLP pathway and two genomic alterations are sufficient to allow growth of vitamin B6 auxotrophic bacteria as rapid as the wild type. Thus, the existence of an underground metabolism in B. subtilis facilitates the generation of a pathway for synthesis of PLP using parts of a non-native vitamin B6 pathway. The introduction of non-native enzymes into a metabolic network and rewiring of native metabolism could be helpful to generate pathways that might be optimized for producing valuable substances.
Collapse
Affiliation(s)
- Jonathan Rosenberg
- Department of General Microbiology, Institute for Microbiology and Genetics, Georg-August-University Göttingen, Göttingen, Germany
| | - KahYen C Yeak
- Department of General Microbiology, Institute for Microbiology and Genetics, Georg-August-University Göttingen, Göttingen, Germany
| | - Fabian M Commichau
- Department of General Microbiology, Institute for Microbiology and Genetics, Georg-August-University Göttingen, Göttingen, Germany
| |
Collapse
|