1
|
Kumar SS, Mountjoy KG. Measuring GPCR-Induced Intracellular Calcium Signaling Using a Quantitative High-Throughput Assay. Methods Mol Biol 2025; 2861:3-22. [PMID: 39395093 DOI: 10.1007/978-1-0716-4164-4_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2024]
Abstract
Alterations in intracellular calcium are integral to signal transduction pathways for many G-protein-coupled receptors, but this signaling is not well studied. This is mostly due to a lack of reliable, robust, high-throughput, quantitative methods to monitor intracellular calcium concentrations in live cells. Recently, we developed a reliable, robust, quantitative method to measure intracellular calcium levels in which HEK293 cell suspensions loaded with Fura-2/AM are placed in 96-well plates. Minimum and maximum intracellular calcium levels, which are required for converting fluorescence into calcium concentrations, are calibrated using EGTA to chelate calcium and ionomycin to load calcium into cells, respectively. Fluorescence is monitored with a PHERAstar FS plate reader. We provide a detailed method for this high-throughput assay that can be used to quantitate intracellular calcium in endogenous and exogenously (stable or transient) expressed GPCRs in HEK293 cells.
Collapse
Affiliation(s)
- Shree S Kumar
- Faculty of Medical and Health Sciences, Department of Molecular Medicine and Pathology, School of Medical Sciences, The University of Auckland, Auckland, New Zealand
| | - Kathleen G Mountjoy
- Faculty of Medical and Health Sciences, Department of Molecular Medicine and Pathology, School of Medical Sciences, The University of Auckland, Auckland, New Zealand.
| |
Collapse
|
2
|
Saito A, Kise R, Inoue A. Generation of Comprehensive GPCR-Transducer-Deficient Cell Lines to Dissect the Complexity of GPCR Signaling. Pharmacol Rev 2024; 76:599-619. [PMID: 38719480 DOI: 10.1124/pharmrev.124.001186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/02/2024] [Accepted: 05/06/2024] [Indexed: 06/16/2024] Open
Abstract
G-protein-coupled receptors (GPCRs) compose the largest family of transmembrane receptors and are targets of approximately one-third of Food and Drug Administration-approved drugs owing to their involvement in almost all physiologic processes. GPCR signaling occurs through the activation of heterotrimeric G-protein complexes and β-arrestins, both of which serve as transducers, resulting in distinct cellular responses. Despite seeming simple at first glance, accumulating evidence indicates that activation of either transducer is not a straightforward process as a stimulation of a single molecule has the potential to activate multiple signaling branches. The complexity of GPCR signaling arises from the aspects of G-protein-coupling selectivity, biased signaling, interpathway crosstalk, and variable molecular modifications generating these diverse signaling patterns. Numerous questions relative to these aspects of signaling remained unanswered until the recent development of CRISPR genome-editing technology. Such genome editing technology presents opportunities to chronically eliminate the expression of G-protein subunits, β-arrestins, G-protein-coupled receptor kinases (GRKs), and many other signaling nodes in the GPCR pathways at one's convenience. Here, we review the practicality of using CRISPR-derived knockout (KO) cells in the experimental contexts of unraveling the molecular details of GPCR signaling mechanisms. To mention a few, KO cells have revealed the contribution of β-arrestins in ERK activation, Gα protein selectivity, GRK-based regulation of GPCRs, and many more, hence validating its broad applicability in GPCR studies. SIGNIFICANCE STATEMENT: This review emphasizes the practical application of G-protein-coupled receptor (GPCR) transducer knockout (KO) cells in dissecting the intricate regulatory mechanisms of the GPCR signaling network. Currently available cell lines, along with accumulating KO cell lines in diverse cell types, offer valuable resources for systematically elucidating GPCR signaling regulation. Given the association of GPCR signaling with numerous diseases, uncovering the system-based signaling map is crucial for advancing the development of novel drugs targeting specific diseases.
Collapse
Affiliation(s)
- Ayaki Saito
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Ryoji Kise
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| |
Collapse
|
3
|
Luginina AP, Khnykin AN, Khorn PA, Moiseeva OV, Safronova NA, Pospelov VA, Dashevskii DE, Belousov AS, Borschevskiy VI, Mishin AV. Rational Design of Drugs Targeting G-Protein-Coupled Receptors: Ligand Search and Screening. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:958-972. [PMID: 38880655 DOI: 10.1134/s0006297924050158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 06/18/2024]
Abstract
G protein-coupled receptors (GPCRs) are transmembrane proteins that participate in many physiological processes and represent major pharmacological targets. Recent advances in structural biology of GPCRs have enabled the development of drugs based on the receptor structure (structure-based drug design, SBDD). SBDD utilizes information about the receptor-ligand complex to search for suitable compounds, thus expanding the chemical space of possible receptor ligands without the need for experimental screening. The review describes the use of structure-based virtual screening (SBVS) for GPCR ligands and approaches for the functional testing of potential drug compounds, as well as discusses recent advances and successful examples in the application of SBDD for the identification of GPCR ligands.
Collapse
Affiliation(s)
- Aleksandra P Luginina
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| | - Andrey N Khnykin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| | - Polina A Khorn
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| | - Olga V Moiseeva
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Nadezhda A Safronova
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| | - Vladimir A Pospelov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| | - Dmitrii E Dashevskii
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| | - Anatolii S Belousov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| | - Valentin I Borschevskiy
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia.
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna, Moscow Region, 141980, Russia
| | - Alexey V Mishin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia.
| |
Collapse
|
4
|
Ciofoaia V, Chen W, Tarek BW, Gay M, Shivapurkar N, Smith JP. The Role of a Cholecystokinin Receptor Antagonist in the Management of Chronic Pancreatitis: A Phase 1 Trial. Pharmaceutics 2024; 16:611. [PMID: 38794273 PMCID: PMC11125239 DOI: 10.3390/pharmaceutics16050611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/27/2024] [Accepted: 04/29/2024] [Indexed: 05/26/2024] Open
Abstract
Chronic pancreatitis (CP) is a rare but debilitating condition with an 8-fold increased risk of developing pancreatic cancer. In addition to the symptoms that come from the loss of endocrine and exocrine function in CP, the management of chronic pain is problematic. We previously showed that the CCK-receptor antagonist called proglumide could decrease inflammation, acinar-ductal metaplasia, and fibrosis in murine models of CP. We hypothesized that proglumide would be safe and diminish pain caused by CP. A Phase 1 open-labeled safety study was performed in subjects with clinical and radiographic evidence of CP with moderate to severe pain. After a 4-week observation period, the subjects were treated with proglumide in 400 mg capsules three times daily (1200 mg per day) by mouth for 12 weeks, and then subjects returned for a safety visit 4 weeks after the discontinuation of the study medication. The results of three pain surveys (Numeric Rating Scale, COMPAT-SF, and NIH PROMIS) showed that the patients had significantly less pain after 12 weeks of proglumide compared to the pre-treatment observation phase. Of the eight subjects in this study, two experienced nausea and diarrhea with proglumide. These side effects resolved in one subject with doses reduced to 800 mg per day. No abnormalities were noted in the blood chemistries. A blood microRNA blood biomarker panel that corresponded to pancreatic inflammation and fibrosis showed significant improvement. We conclude that proglumide is safe and well tolerated in most subjects with CP at a dose of 1200 mg per day. Furthermore, proglumide therapy may have a beneficial effect by decreasing pain associated with CP.
Collapse
Affiliation(s)
- Victor Ciofoaia
- Departments of Gastroenterology and Medicine, MedStar Washington Hospital Center, Washington, DC 20010, USA; (V.C.); (B.W.T.)
| | - Wenqiang Chen
- Department of Medicine, Georgetown University, Washington, DC 20007, USA; (W.C.); (M.G.); (N.S.)
| | - Bakain W. Tarek
- Departments of Gastroenterology and Medicine, MedStar Washington Hospital Center, Washington, DC 20010, USA; (V.C.); (B.W.T.)
| | - Martha Gay
- Department of Medicine, Georgetown University, Washington, DC 20007, USA; (W.C.); (M.G.); (N.S.)
| | - Narayan Shivapurkar
- Department of Medicine, Georgetown University, Washington, DC 20007, USA; (W.C.); (M.G.); (N.S.)
| | - Jill P. Smith
- Department of Medicine, Georgetown University, Washington, DC 20007, USA; (W.C.); (M.G.); (N.S.)
| |
Collapse
|
5
|
Gay MD, Drda JC, Chen W, Huang Y, Yassin AA, Duka T, Fang H, Shivapurkar N, Smith JP. Implicating the cholecystokinin B receptor in liver stem cell oncogenesis. Am J Physiol Gastrointest Liver Physiol 2024; 326:G291-G309. [PMID: 38252699 PMCID: PMC11211039 DOI: 10.1152/ajpgi.00208.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/09/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024]
Abstract
Hepatocellular carcinoma (HCC) is the fastest-growing cause of cancer-related deaths worldwide. Chronic inflammation and fibrosis are the greatest risk factors for the development of HCC. Although the cell of origin for HCC is uncertain, many theories believe this cancer may arise from liver progenitor cells or stem cells. Here, we describe the activation of hepatic stem cells that overexpress the cholecystokinin-B receptor (CCK-BR) after liver injury with either a DDC diet (0.1% 3, 5-diethoxy-carbonyl 1,4-dihydrocollidine) or a NASH-inducing CDE diet (choline-deficient ethionine) in murine models. Pharmacologic blockade of the CCK-BR with a receptor antagonist proglumide or knockout of the CCK-BR in genetically engineered mice during the injury diet reduces the expression of hepatic stem cells and prevents the formation of three-dimensional tumorspheres in culture. RNA sequencing of livers from DDC-fed mice treated with proglumide or DDC-fed CCK-BR knockout mice showed downregulation of differentially expressed genes involved in cell proliferation and oncogenesis and upregulation of tumor suppressor genes compared with controls. Inhibition of the CCK-BR decreases hepatic transaminases, fibrosis, cytokine expression, and alters the hepatic immune cell signature rendering the liver microenvironment less oncogenic. Furthermore, proglumide hastened recovery after liver injury by reversing fibrosis and improving markers of synthetic function. Proglumide is an older drug that is orally bioavailable and being repurposed for liver conditions. These findings support a promising therapeutic intervention applicable to patients to prevent the development of HCC and decrease hepatic fibrosis.NEW & NOTEWORTHY This investigation identified a novel pathway involving the activation of hepatic stem cells and liver oncogenesis. Receptor blockade or genetic disruption of the cholecystokinin-B receptor (CCK-BR) signaling pathway decreased the activation and proliferation of hepatic stem cells after liver injury without eliminating the regenerative capacity of healthy hepatocytes.
Collapse
Affiliation(s)
- Martha D Gay
- Department of Medicine, Georgetown University, Washington, District of Columbia, United States
| | - Jack C Drda
- Department of Medicine, Georgetown University, Washington, District of Columbia, United States
| | - Wenqiang Chen
- Department of Medicine, Georgetown University, Washington, District of Columbia, United States
| | - Yimeng Huang
- Department of Oncology, Georgetown University, Washington, District of Columbia, United States
| | - Amal A Yassin
- Department of Oncology, Georgetown University, Washington, District of Columbia, United States
| | - Tetyana Duka
- Department of Medicine, Georgetown University, Washington, District of Columbia, United States
| | - Hongbin Fang
- Department of Biostatistics, Bioinformatics and Biomathematics, Georgetown University, Washington, District of Columbia, United States
| | - Narayan Shivapurkar
- Department of Medicine, Georgetown University, Washington, District of Columbia, United States
| | - Jill P Smith
- Department of Medicine, Georgetown University, Washington, District of Columbia, United States
- Department of Oncology, Georgetown University, Washington, District of Columbia, United States
| |
Collapse
|
6
|
Wang H, Wu J, Zhang R. Effect of Neurokinin-1 Receptor Knockdown on the Expression of RANTES in Allergic Rhinitis. Am J Rhinol Allergy 2023; 37:730-738. [PMID: 37525517 DOI: 10.1177/19458924231191012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
BACKGROUND Neurokinin-1 receptor (NK-1R) and normal T cell expressed and secreted (RANTES) have been shown to play important roles in allergic rhinitis (AR). However, whether the regulating effect of NK-1R in AR is achieved via RANTES remains unknown. METHODS In the present study, Sprague-Dawley rats were sensitized and challenged with ovalbumin to make AR models. During the challenge period, the rats were treated intranasally with NK-1R-specific small interfering RNA (siRNA) for NKR group, negative siRNA for NCS group, rats in NSAR group and NS group were given saline. The amount of nasal secretion and the numbers of nose rubs and sneezes were measured in each rat. The levels of NK-1R and RANTES in the nasal mucosal tissues were determined through real-time fluorescence quantitative RT-PCR and immunohistochemical staining. The numbers of eosinophils in the collected nasal lavage fluid (NLF) were counted, and the concentration of RANTES in NLF was determined by enzyme-linked immunosorbent assay. RESULTS Compared with that in the NS group, the expression of NK-1R and RANTES was significantly higher in the nasal mucosa of NSAR and NCS group rats. The sneezing and nose rubbing counts and the amount of nasal secretions were increased significantly in the NSAR and NCS groups. Rats in the NKR group experienced greater relief from AR symptoms than rats in the NSAR and NCS groups. Furthermore, knockdown of NK-1R expression also significantly eliminated RANTES expression and eosinophil infiltration in the nasal mucosa of NKR group rats. CONCULSION For the first time, we show that intranasal treatment with NK-1R-specific siRNA can significantly decrease RANTES expression, AR-related symptoms, and eosinophil inflammation, suggesting that the regulating effect of NK-1R in the development of AR occurs via alteration of RANTES expression.
Collapse
Affiliation(s)
- Hong Wang
- Department of Otorhinolaryngology, Huadong Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jing Wu
- Department of Otorhinolaryngology, Huadong Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ruxin Zhang
- Department of Otorhinolaryngology, Huadong Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
7
|
Colucci ACM, Tassinari ID, Loss EDS, de Fraga LS. History and Function of the Lactate Receptor GPR81/HCAR1 in the Brain: A Putative Therapeutic Target for the Treatment of Cerebral Ischemia. Neuroscience 2023; 526:144-163. [PMID: 37391123 DOI: 10.1016/j.neuroscience.2023.06.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/21/2023] [Accepted: 06/24/2023] [Indexed: 07/02/2023]
Abstract
GPR81 is a G-protein coupled receptor (GPCR) discovered in 2001, but deorphanized only 7 years later, when its affinity for lactate as an endogenous ligand was demonstrated. More recently, GPR81 expression and distribution in the brain were also confirmed and the function of lactate as a volume transmitter has been suggested since then. These findings shed light on a new function of lactate acting as a signaling molecule in the central nervous system, in addition to its well-known role as a metabolic fuel for neurons. GPR81 seems to act as a metabolic sensor, coupling energy metabolism, synaptic activity, and blood flow. Activation of this receptor leads to Gi-mediated downregulation of adenylyl cyclase and subsequent reduction in cAMP levels, regulating several downstream pathways. Recent studies have also suggested the potential role of lactate as a neuroprotective agent, mainly under brain ischemic conditions. This effect is usually attributed to the metabolic role of lactate, but the underlying mechanisms need further investigation and could be related to lactate signaling via GPR81. The activation of GPR81 showed promising results for neuroprotection: it modulates many processes involved in the pathophysiology of ischemia. In this review, we summarize the history of GPR81, starting with its deorphanization; then, we discuss GPR81 expression and distribution, signaling transduction cascades, and neuroprotective roles. Lastly, we propose GPR81 as a potential target for the treatment of cerebral ischemia.
Collapse
Affiliation(s)
- Anna Clara Machado Colucci
- Laboratório de Neurobiologia e Metabolismo (NeuroMet), Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2600, lab. 660, Porto Alegre, Brazil; Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2600, Porto Alegre, Brazil; Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre (HCPA), Rua Ramiro Barcelos, 2350, Porto Alegre, Brazil
| | - Isadora D'Ávila Tassinari
- Laboratório de Neurobiologia e Metabolismo (NeuroMet), Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2600, lab. 660, Porto Alegre, Brazil; Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2600, Porto Alegre, Brazil; Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre (HCPA), Rua Ramiro Barcelos, 2350, Porto Alegre, Brazil
| | - Eloísa da Silveira Loss
- Laboratório de Endocrinologia Experimental (LABENEX), Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2600, lab. 660, Porto Alegre, Brazil; Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2600, Porto Alegre, Brazil
| | - Luciano Stürmer de Fraga
- Laboratório de Neurobiologia e Metabolismo (NeuroMet), Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2600, lab. 660, Porto Alegre, Brazil; Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2600, Porto Alegre, Brazil; Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre (HCPA), Rua Ramiro Barcelos, 2350, Porto Alegre, Brazil.
| |
Collapse
|
8
|
Rabiee A, Gay MD, Shivapurkar N, Cao H, Nadella S, Smith CI, Lewis JH, Bansal S, Cheema A, Kwagyan J, Smith JP. Safety and Dosing Study of a Cholecystokinin Receptor Antagonist in Non-alcoholic Steatohepatitis. Clin Pharmacol Ther 2022; 112:1271-1279. [PMID: 36087237 PMCID: PMC9691615 DOI: 10.1002/cpt.2745] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 09/06/2022] [Indexed: 01/31/2023]
Abstract
High saturated fat diets have been shown to raise blood levels of cholecystokinin (CCK) and induce nonalcoholic steatohepatitis (NASH). CCK receptors are expressed on stellate cells and are responsible for hepatic fibrosis when activated. The purpose of this study was to test the safety and dose of a CCK receptor antagonist, proglumide, in human participants with NASH. An open-label single ascending dose study was conducted in 18 participants with clinical NASH based upon steatosis by liver ultrasound, elevated hepatic transaminases, and a component of the metabolic syndrome. Three separate cohorts (N = 6 each) were treated with oral proglumide for 12 weeks in a sequential ascending fashion with 800 (Cohort 1), 1,200 (Cohort 2), and 1,600 (Cohort 3) mg/day, respectively. Blood hematology, chemistries, proglumide levels, a biomarker panel for fibrosis, and symptom surveys were determined at baseline and every 4 weeks. Abdominal ultrasounds and transient elastography utilizing FibroScan were obtained at baseline and at Week 12. Proglumide was well tolerated at all doses without any serious adverse events. There was no change in body weight from baseline to Week 12. For Cohorts 1, 2, and 3, the median percent change in alanine aminotransferase was 8.42, -5.05, and -22.23 and median percent change in fibrosis score by FibroScan was 8.13, -5.44, and -28.87 (kPa), respectively. Hepatic steatosis as measured by controlled attenuation parameter score significantly decreased with proglumide, (P < 0.05). Blood microRNA biomarkers and serum 4-hydroxyproline were consistent with decreased fibrosis at Week 12 compared with baseline. These findings suggest proglumide exhibits anti-inflammatory and anti-fibrotic properties and this compound is well tolerated in participants with NASH.
Collapse
Affiliation(s)
- Atoosa Rabiee
- Department of MedicineWashington DC Veterans Affairs Medical CenterWashingtonDCUSA
| | - Martha D. Gay
- Department of MedicineGeorgetown University Medical CenterWashingtonDCUSA
| | | | - Hong Cao
- Department of MedicineGeorgetown University Medical CenterWashingtonDCUSA
| | - Sandeep Nadella
- Departments of Gastroenterology and Transplant SurgeryMedStar Georgetown University HospitalWashingtonDCUSA
| | - Coleman I. Smith
- Departments of Gastroenterology and Transplant SurgeryMedStar Georgetown University HospitalWashingtonDCUSA
| | - James H. Lewis
- Departments of Gastroenterology and Transplant SurgeryMedStar Georgetown University HospitalWashingtonDCUSA
| | - Sunil Bansal
- Department of MedicineGeorgetown University Medical CenterWashingtonDCUSA
| | - Amrita Cheema
- Department of MedicineGeorgetown University Medical CenterWashingtonDCUSA
| | - John Kwagyan
- Department of StatisticsHoward UniversityWashingtonDCUSA
| | - Jill P. Smith
- Department of MedicineWashington DC Veterans Affairs Medical CenterWashingtonDCUSA
- Department of MedicineGeorgetown University Medical CenterWashingtonDCUSA
| |
Collapse
|
9
|
Sanchez GA, Jutkiewicz EM, Ingram S, Smrcka AV. Coincident Regulation of PLC β Signaling by Gq-Coupled and μ-Opioid Receptors Opposes Opioid-Mediated Antinociception. Mol Pharmacol 2022; 102:269-279. [PMID: 36116788 PMCID: PMC11033930 DOI: 10.1124/molpharm.122.000541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 09/05/2022] [Indexed: 11/22/2022] Open
Abstract
Pain management is an important problem worldwide. The current frontline approach for pain management is the use of opioid analgesics. The primary analgesic target of opioids is the μ-opioid receptor (MOR). Deletion of phospholipase Cβ3 (PLCβ3) or selective inhibition of Gβγ regulation of PLCβ3 enhances the potency of the antinociceptive effects of morphine suggesting a novel strategy for achieving opioid-sparing effects. Here we investigated a potential mechanism for regulation of PLC signaling downstream of MOR in human embryonic kidney 293 cells and found that MOR alone could not stimulate PLC but rather required a coincident signal from a Gq-coupled receptor. Knockout of PLCβ3 or pharmacological inhibition of its upstream regulators, Gβγ or Gq, ex vivo in periaqueductal gray slices increased the potency of the selective MOR agonist [D-Ala2, N-Me-Phe4, Gly5-ol]-enkephalin acetate salt in inhibiting presynaptic GABA release. Finally, inhibition of Gq- G protein-coupled receptor coupling in mice enhanced the antinociceptive effects of morphine. These data support a model where Gq and Gβγ-dependent signaling cooperatively regulate PLC activation to decrease MOR-dependent antinociceptive potency. Ultimately, this could lead to identification of new non-MOR targets that would allow for lower-dose utilization of opioid analgesics. SIGNIFICANCE STATEMENT: Previous work demonstrated that deletion of phospholipase Cβ3 (PLCβ3) in mice potentiates μ-opioid receptor (MOR)-dependent antinociception. How PLCβ3 is regulated downstream of MOR had not been clearly defined. We show that PLC-dependent diacylglycerol generation is cooperatively regulated by MOR-Gβγ and Gq-coupled receptor signaling through PLCβ3 and that blockade of either Gq-signaling or Gβγ signaling enhances the potency of opioids in ex vivo brain slices and in vivo. These results reveal potential novel strategies for improving opioid analgesic potency and safety.
Collapse
Affiliation(s)
- Gissell A Sanchez
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan (G.A.S., E.M.J., A.V.S.) and Department of Neurologic Surgery, Oregon Health Sciences University, Portland, Oregon (S.I.)
| | - Emily M Jutkiewicz
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan (G.A.S., E.M.J., A.V.S.) and Department of Neurologic Surgery, Oregon Health Sciences University, Portland, Oregon (S.I.)
| | - Susan Ingram
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan (G.A.S., E.M.J., A.V.S.) and Department of Neurologic Surgery, Oregon Health Sciences University, Portland, Oregon (S.I.)
| | - Alan V Smrcka
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan (G.A.S., E.M.J., A.V.S.) and Department of Neurologic Surgery, Oregon Health Sciences University, Portland, Oregon (S.I.)
| |
Collapse
|
10
|
Anant A, Saha M, Dhiman S, Singh P, Kurmi BD, Gupta GD, Asati V. An analytical review for the estimation of montelukast sodium. SEPARATION SCIENCE PLUS 2022. [DOI: 10.1002/sscp.202100069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Arjun Anant
- Department of Pharmaceutical Analysis ISF College of Pharmacy Moga Punjab India
| | - Moumita Saha
- Department of Pharmaceutical Analysis ISF College of Pharmacy Moga Punjab India
| | - Shubham Dhiman
- Department of Pharmaceutical Analysis ISF College of Pharmacy Moga Punjab India
| | - Priti Singh
- Department of Pharmaceutical Analysis ISF College of Pharmacy Moga Punjab India
| | - Balak Das Kurmi
- Department of Pharmaceutics ISF College of Pharmacy Moga Punjab India
| | | | - Vivek Asati
- Department of Pharmaceutical Chemistry ISF College of Pharmacy Moga Punjab India
| |
Collapse
|
11
|
Proglumide Reverses Nonalcoholic Steatohepatitis by Interaction with the Farnesoid X Receptor and Altering the Microbiome. Int J Mol Sci 2022; 23:ijms23031899. [PMID: 35163821 PMCID: PMC8836891 DOI: 10.3390/ijms23031899] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/29/2022] [Accepted: 02/02/2022] [Indexed: 01/29/2023] Open
Abstract
Nonalcoholic steatohepatitis (NASH) is associated with obesity, metabolic syndrome, and dysbiosis of the gut microbiome. Cholecystokinin (CCK) is released by saturated fats and plays an important role in bile acid secretion. CCK receptors are expressed on cholangiocytes, and CCK-B receptor expression increases in the livers of mice with NASH. The farnesoid X receptor (FXR) is involved in bile acid transport and is a target for novel therapeutics for NASH. The aim of this study was to examine the role of proglumide, a CCK receptor inhibitor, in a murine model of NASH and its interaction at FXR. Mice were fed a choline deficient ethionine (CDE) diet to induce NASH. Some CDE-fed mice received proglumide-treated drinking water. Blood was collected and liver tissues were examined histologically. Proglumide's interaction at FXR was evaluated by computer modeling, a luciferase reporter assay, and tissue FXR expression. Stool microbiome was analyzed by RNA-Sequencing. CDE-fed mice developed NASH and the effect was prevented by proglumide. Computer modeling demonstrated specific binding of proglumide to FXR. Proglumide binding in the reporter assay was consistent with a partial agonist at the FXR with a mean binding affinity of 215 nM. FXR expression was significantly decreased in livers of CDE-fed mice compared to control livers, and proglumide restored FXR expression to normal levels. Proglumide therapy altered the microbiome signature by increasing beneficial and decreasing harmful bacteria. These data highlight the potential novel mechanisms by which proglumide therapy may improve NASH through interaction with the FXR and consequent alteration of the gut microbiome.
Collapse
|
12
|
Balanced modulation of neuromuscular synaptic transmission via M1 and M2 muscarinic receptors during inhibition of cholinesterases. Sci Rep 2022; 12:1688. [PMID: 35105922 PMCID: PMC8807813 DOI: 10.1038/s41598-022-05730-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 01/17/2022] [Indexed: 11/16/2022] Open
Abstract
Organophosphorus (OP) compounds that inhibit acetylcholinesterase are a common cause of poisoning worldwide, resulting in several hundred thousand deaths each year. The pathways activated during OP compound poisoning via overstimulation of muscarinic acetylcholine receptors (mAChRs) play a decisive role in toxidrome. The antidotal therapy includes atropine, which is a nonspecific blocker of all mAChR subtypes. Atropine is efficient for mitigating depression in respiratory control centers but does not benefit patients with OP-induced skeletal muscle weakness. By using an ex vivo model of OP-induced muscle weakness, we studied the effects of the M1/M4 mAChR antagonist pirenzepine and the M2/M4 mAChR antagonist methoctramine on the force of mouse diaphragm muscle contraction. It was shown that weakness caused by the application of paraoxon can be significantly prevented by methoctramine (1 µM). However, neither pirenzepine (0.1 µM) nor atropine (1 µM) was able to prevent muscle weakness. Moreover, the application of pirenzepine significantly reduced the positive effect of methoctramine. Thus, balanced modulation of neuromuscular synaptic transmission via M1 and M2 mAChRs contributes to paraoxon-induced muscle weakness. It was shown that methoctramine (10 µmol/kg, i.p.) and atropine (50 µmol/kg, i.p.) were equieffective toward increasing the survival of mice poisoned with a 2xLD50 dose of paraoxon.
Collapse
|
13
|
Meng QT, Liu XY, Liu XT, Liu J, Munanairi A, Barry DM, Liu B, Jin H, Sun Y, Yang Q, Gao F, Wan L, Peng J, Jin JH, Shen KF, Kim R, Yin J, Tao A, Chen ZF. BNP facilitates NMB-encoded histaminergic itch via NPRC-NMBR crosstalk. eLife 2021; 10:71689. [PMID: 34919054 PMCID: PMC8789279 DOI: 10.7554/elife.71689] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 12/16/2021] [Indexed: 11/13/2022] Open
Abstract
Histamine-dependent and -independent itch is conveyed by parallel peripheral neural pathways that express gastrin-releasing peptide (GRP) and neuromedin B (NMB), respectively, to the spinal cord of mice. B-type natriuretic peptide (BNP) has been proposed to transmit both types of itch via its receptor NPRA encoded by Npr1. However, BNP also binds to its cognate receptor, NPRC encoded by Npr3 with equal potency. Moreover, natriuretic peptides (NP) signal through the Gi-couped inhibitory cGMP pathway that is supposed to inhibit neuronal activity, raising the question of how BNP may transmit itch information. Here, we report that Npr3 expression in laminae I-II of the dorsal horn partially overlaps with NMB receptor (NMBR) that transmits histaminergic itch via Gq-couped PLCβ-Ca2+ signaling pathway. Functional studies indicate that NPRC is required for itch evoked by histamine but not chloroquine (CQ), a nonhistaminergic pruritogen. Importantly, BNP significantly facilitates scratching behaviors mediated by NMB, but not GRP. Consistently, BNP evoked Ca2+ responses in NMBR/NPRC HEK 293 cells and NMBR/NPRC dorsal horn neurons. These results reveal a previously unknown mechanism by which BNP facilitates NMB-encoded itch through a novel NPRC-NMBR cross-signaling in mice. Our studies uncover distinct modes of action for neuropeptides in transmission and modulation of itch in mice. An itch is a common sensation that makes us want to scratch. Most short-term itches are caused by histamine, a chemical that is released by immune cells following an infection or in response to an allergic reaction. Chronic itching, on the other hand, is not usually triggered by histamine, and is typically the result of neurological or skin disorders, such as atopic dermatitis. The sensation of itching is generated by signals that travel from the skin to nerve cells in the spinal cord. Studies in mice have shown that the neuropeptides responsible for delivering these signals differ depending on whether or not the itch involves histamine: GRPs (short for gastrin-releasing proteins) convey histamine-independent itches, while NMBs (short for neuromedin B) convey histamine-dependent itches. It has been proposed that another neuropeptide called BNP (short for B-type natriuretic peptide) is able to transmit both types of itch signals to the spinal cord. But it remains unclear how this signaling molecule is able to do this. To investigate, Meng, Liu, Liu, Liu et al. carried out a combination of behavioral, molecular and pharmacological experiments in mice and nerve cells cultured in a laboratory. The experiments showed that BNP alone cannot transmit the sensation of itching, but it can boost itching signals that are triggered by histamine. It is widely believed that BNP activates a receptor protein called NPRA. However, Meng et al. found that the BNP actually binds to another protein which alters the function of the receptor activated by NMBs. These findings suggest that BNP modulates rather than initiates histamine-dependent itching by enhancing the interaction between NMBs and their receptor. Understanding how itch signals travel from the skin to neurons in the spinal cord is crucial for designing new treatments for chronic itching. The work by Meng et al. suggests that treatments targeting NPRA, which was thought to be a key itch receptor, may not be effective against chronic itching, and that other drug targets need to be explored.
Collapse
Affiliation(s)
- Qing-Tao Meng
- Center for the Study of Itch and Sensory Disorders, Washington University in St. Louis, St Louis, United States
| | - Xian-Yu Liu
- Center for the Study of Itch and Sensory Disorders, Washington University in St. Louis, St Louis, United States
| | - Xue-Ting Liu
- Center for the Study of Itch and Sensory Disorders, Washington University in St. Louis, St Louis, United States
| | - Juan Liu
- Center for the Study of Itch and Sensory Disorders, Washington University in St. Louis, St Louis, United States
| | - Admire Munanairi
- Center for the Study of Itch and Sensory Disorders, Washington University in St. Louis, St Louis, United States
| | - Devin M Barry
- Center for the Study of Itch and Sensory Disorders, Washington University in St. Louis, St Louis, United States
| | - Benlong Liu
- Center for the Study of Itch and Sensory Disorders, Washington University in St. Louis, St Louis, United States
| | - Hua Jin
- Center for the Study of Itch and Sensory Disorders, Washington University in St. Louis, St Louis, United States
| | - Yu Sun
- Center for the Study of Itch and Sensory Disorders, Washington University in St. Louis, St Louis, United States
| | - Qianyi Yang
- Center for the Study of Itch and Sensory Disorders, Washington University in St. Louis, St Louis, United States
| | - Fang Gao
- Center for the Study of Itch and Sensory Disorders, Washington University in St. Louis, St Louis, United States
| | - Li Wan
- Center for the Study of Itch and Sensory Disorders, Washington University in St. Louis, St Louis, United States
| | - Jiahang Peng
- Center for the Study of Itch and Sensory Disorders, Washington University in St. Louis, St Louis, United States
| | - Jin-Hua Jin
- Center for the Study of Itch and Sensory Disorders, Washington University in St. Louis, St Louis, United States
| | - Kai-Feng Shen
- Center for the Study of Itch and Sensory Disorders, Washington University in St. Louis, St Louis, United States
| | - Ray Kim
- Center for the Study of Itch and Sensory Disorders, Washington University in St. Louis, St Louis, United States
| | - Jun Yin
- Center for the Study of Itch and Sensory Disorders, Washington University in St. Louis, St Louis, United States
| | - Ailin Tao
- Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhou-Feng Chen
- Department of Anesthesiology, Washington University in St. Louis, St Louis, United States
| |
Collapse
|
14
|
Wang LY, Zhang YF, Yang DY, Zhang SJ, Han DD, Luo YP. Aureoverticillactam, a Potent Antifungal Macrocyclic Lactam from Streptomyces aureoverticillatus HN6, Generates Calcium Dyshomeostasis-Induced Cell Apoptosis via the Phospholipase C Pathway in Fusarium oxysporum f. sp. cubense Race 4. PHYTOPATHOLOGY 2021; 111:2010-2022. [PMID: 33900117 DOI: 10.1094/phyto-12-20-0543-r] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Extensive efforts have been made to discover new biofungicides of high efficiency for control of Fusarium oxysporum f. sp. cubense race 4, a catastrophic soilborne phytopathogen causing banana Fusarium wilt worldwide. We confirmed for the first time that aureoverticillactam (YY3) has potent antifungal activity against F. oxysporum f. sp. cubense race 4, with effective dose for 50% inhibition (EC50) of 20.80 μg/ml against hyphal growth and 12.62 μg/ml against spore germination. To investigate its mechanism of action, we observed the cellular ultrastructures of F. oxysporum f. sp. cubense race 4 with YY3 treatment and found that YY3 led to cell wall thinning, mitochondrial deformities, apoptotic degradation of the subcellular fractions, and entocyte leakage. Consistent with these variations, increased permeability of cell membrane and mitochondrial membrane also occurred after YY3 treatment. On the enzymatic level, the activity of mitochondrial complex III, as well as the ATP synthase, was significantly suppressed by YY3 at a concentration >12.50 μg/ml. Moreover, YY3 elevated the cytosolic Ca2+ level to promote mitochondrial reactive oxygen species (ROS) production. Cell apoptosis also occurred as expected. On the transcriptome level, key genes involved in the phosphatidylinositol signaling pathway were significantly affected, with the expression level of Plc1 increased approximately fourfold. The expression levels of two apoptotic genes, casA1 and casA2, were also significantly increased by YY3. Of note, phospholipase C activation was observed with YY3 treatment in F. oxysporum f. sp. cubense race 4. These findings indicate that YY3 exerts its antifungal activity by activating the phospholipase C calcium-dependent ROS signaling pathway, which makes it a promising biofungicide.
Collapse
Affiliation(s)
- Lan-Ying Wang
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou 570228, China
| | - Yun-Fei Zhang
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou 570228, China
| | - De-You Yang
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou 570228, China
| | - Shu-Jing Zhang
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou 570228, China
| | - Dan-Dan Han
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou 570228, China
| | - Yan-Ping Luo
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou 570228, China
| |
Collapse
|
15
|
Horioka M, Ceraudo E, Lorenzen E, Sakmar TP, Huber T. Purinergic Receptors Crosstalk with CCR5 to Amplify Ca 2+ Signaling. Cell Mol Neurobiol 2021; 41:1085-1101. [PMID: 33216235 PMCID: PMC8159800 DOI: 10.1007/s10571-020-01002-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 11/06/2020] [Indexed: 02/07/2023]
Abstract
Many G protein-coupled receptors (GPCRs) signal through more than one subtype of heterotrimeric G proteins. For example, the C-C chemokine receptor type 5 (CCR5), which serves as a co-receptor to facilitate cellular entry of human immunodeficiency virus 1 (HIV-1), normally signals through the heterotrimeric G protein, Gi. However, CCR5 also exhibits G protein signaling bias and certain chemokine analogs can cause a switch to Gq pathways to induce Ca2+ signaling. We want to understand how much of the Ca2+ signaling from Gi-coupled receptors is due to G protein promiscuity and how much is due to transactivation and crosstalk with other receptors. We propose a possible mechanism underlying the apparent switching between different G protein signaling pathways. We show that chemokine-mediated Ca2+ flux in HEK293T cells expressing CCR5 can be primed and enhanced by ATP pretreatment. In addition, agonist-dependent lysosomal exocytosis results in the release of ATP to the extracellular milieu, which amplifies cellular signaling networks. ATP is quickly degraded via ADP and AMP to adenosine. ATP, ADP and adenosine activate different cell surface purinergic receptors. Endogenous Gq-coupled purinergic P2Y receptors amplify Ca2+ signaling and allow for Gi- and Gq-coupled receptor signaling pathways to converge. Associated secretory release of GPCR ligands, such as chemokines, opioids, and monoamines, should also lead to concomitant release of ATP with a synergistic effect on Ca2+ signaling. Our results suggest that crosstalk between ATP-activated purinergic receptors and other Gi-coupled GPCRs is an important cooperative mechanism to amplify the intracellular Ca2+ signaling response.
Collapse
Affiliation(s)
- Mizuho Horioka
- Tri-Institutional Program in Chemical Biology, New York, NY, 10065, USA
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, 1230 York Ave., New York, NY, USA
| | - Emilie Ceraudo
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, 1230 York Ave., New York, NY, USA
| | - Emily Lorenzen
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, 1230 York Ave., New York, NY, USA
| | - Thomas P Sakmar
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, 1230 York Ave., New York, NY, USA.
| | - Thomas Huber
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, 1230 York Ave., New York, NY, USA.
| |
Collapse
|
16
|
Simultaneous readout of multiple FRET pairs using photochromism. Nat Commun 2021; 12:2005. [PMID: 33790271 PMCID: PMC8012603 DOI: 10.1038/s41467-021-22043-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 02/17/2021] [Indexed: 01/11/2023] Open
Abstract
Förster resonant energy transfer (FRET) is a powerful mechanism to probe associations in situ. Simultaneously performing more than one FRET measurement can be challenging due to the spectral bandwidth required for the donor and acceptor fluorophores. We present an approach to distinguish overlapping FRET pairs based on the photochromism of the donor fluorophores, even if the involved fluorophores display essentially identical absorption and emission spectra. We develop the theory underlying this method and validate our approach using numerical simulations. To apply our system, we develop rsAKARev, a photochromic biosensor for cAMP-dependent protein kinase (PKA), and combine it with the spectrally-identical biosensor EKARev, a reporter for extracellular signal-regulated kinase (ERK) activity, to deliver simultaneous readout of both activities in the same cell. We further perform multiplexed PKA, ERK, and calcium measurements by including a third, spectrally-shifted biosensor. Our work demonstrates that exploiting donor photochromism in FRET can be a powerful approach to simultaneously read out multiple associations within living cells. Performing multiple FRET measurements at once can be challenging. Here the authors report a method to discriminate between overlapping FRET pairs, even if the fluorophores display almost identical absorption and emission spectra, based on the photochromism of the donor fluorophores.
Collapse
|
17
|
Pfeil EM, Brands J, Merten N, Vögtle T, Vescovo M, Rick U, Albrecht IM, Heycke N, Kawakami K, Ono Y, Ngako Kadji FM, Hiratsuka S, Aoki J, Häberlein F, Matthey M, Garg J, Hennen S, Jobin ML, Seier K, Calebiro D, Pfeifer A, Heinemann A, Wenzel D, König GM, Nieswandt B, Fleischmann BK, Inoue A, Simon K, Kostenis E. Heterotrimeric G Protein Subunit Gαq Is a Master Switch for Gβγ-Mediated Calcium Mobilization by Gi-Coupled GPCRs. Mol Cell 2020; 80:940-954.e6. [PMID: 33202251 DOI: 10.1016/j.molcel.2020.10.027] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 09/21/2020] [Accepted: 10/16/2020] [Indexed: 12/18/2022]
Abstract
Mechanisms that control mobilization of cytosolic calcium [Ca2+]i are key for regulation of numerous eukaryotic cell functions. One such paradigmatic mechanism involves activation of phospholipase Cβ (PLCβ) enzymes by G protein βγ subunits from activated Gαi-Gβγ heterotrimers. Here, we report identification of a master switch to enable this control for PLCβ enzymes in living cells. We find that the Gαi-Gβγ-PLCβ-Ca2+ signaling module is entirely dependent on the presence of active Gαq. If Gαq is pharmacologically inhibited or genetically ablated, Gβγ can bind to PLCβ but does not elicit Ca2+ signals. Removal of an auto-inhibitory linker that occludes the active site of the enzyme is required and sufficient to empower "stand-alone control" of PLCβ by Gβγ. This dependence of Gi-Gβγ-Ca2+ on Gαq places an entire signaling branch of G-protein-coupled receptors (GPCRs) under hierarchical control of Gq and changes our understanding of how Gi-GPCRs trigger [Ca2+]i via PLCβ enzymes.
Collapse
Affiliation(s)
- Eva Marie Pfeil
- Molecular, Cellular and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115 Bonn, Germany; Research Training Group 1873, University of Bonn, Bonn, Germany
| | - Julian Brands
- Molecular, Cellular and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115 Bonn, Germany; Research Training Group 1873, University of Bonn, Bonn, Germany
| | - Nicole Merten
- Molecular, Cellular and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115 Bonn, Germany
| | - Timo Vögtle
- Institute of Experimental Biomedicine I, University Hospital Würzburg and Rudolf Virchow Center, University of Würzburg, 97080 Würzburg, Germany
| | - Maddalena Vescovo
- Molecular, Cellular and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115 Bonn, Germany
| | - Ulrike Rick
- Molecular, Cellular and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115 Bonn, Germany
| | - Ina-Maria Albrecht
- Molecular, Cellular and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115 Bonn, Germany
| | - Nina Heycke
- Molecular, Cellular and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115 Bonn, Germany
| | - Kouki Kawakami
- Graduate School of Pharmaceutical Science, Tohoku University, Sendai 980-8578, Japan
| | - Yuki Ono
- Graduate School of Pharmaceutical Science, Tohoku University, Sendai 980-8578, Japan
| | | | - Suzune Hiratsuka
- Graduate School of Pharmaceutical Science, Tohoku University, Sendai 980-8578, Japan
| | - Junken Aoki
- Graduate School of Pharmaceutical Science, Tohoku University, Sendai 980-8578, Japan
| | - Felix Häberlein
- Molecular, Cellular and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115 Bonn, Germany; Research Training Group 1873, University of Bonn, Bonn, Germany
| | - Michaela Matthey
- Department of Systems Physiology, Medical Faculty, Ruhr University Bochum, 44801 Bochum, Germany; Institute of Physiology I, Life and Brain Center, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Jaspal Garg
- Institute of Pharmacology and Toxicology, University Hospital Bonn, University of Bonn, 53127 Bonn, Germany
| | - Stephanie Hennen
- Molecular, Cellular and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115 Bonn, Germany
| | - Marie-Lise Jobin
- Institute of Pharmacology and Toxicology and Bio-Imaging Center, University of Würzburg, 97078 Würzburg, Germany
| | - Kerstin Seier
- Institute of Pharmacology and Toxicology and Bio-Imaging Center, University of Würzburg, 97078 Würzburg, Germany
| | - Davide Calebiro
- Institute of Pharmacology and Toxicology and Bio-Imaging Center, University of Würzburg, 97078 Würzburg, Germany; Institute of Metabolism and Systems Research and Centre of Membrane Proteins and Receptors, University of Birmingham, B15 2TT Birmingham, UK
| | - Alexander Pfeifer
- Institute of Physiology I, Life and Brain Center, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Akos Heinemann
- Division of Pharmacology, Otto-Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, 8010 Graz, Austria
| | - Daniela Wenzel
- Department of Systems Physiology, Medical Faculty, Ruhr University Bochum, 44801 Bochum, Germany; Institute of Physiology I, Life and Brain Center, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Gabriele M König
- Institute for Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115 Bonn, Germany
| | - Bernhard Nieswandt
- Institute of Experimental Biomedicine I, University Hospital Würzburg and Rudolf Virchow Center, University of Würzburg, 97080 Würzburg, Germany
| | - Bernd K Fleischmann
- Institute of Physiology I, Life and Brain Center, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Asuka Inoue
- Graduate School of Pharmaceutical Science, Tohoku University, Sendai 980-8578, Japan
| | - Katharina Simon
- Molecular, Cellular and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115 Bonn, Germany.
| | - Evi Kostenis
- Molecular, Cellular and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115 Bonn, Germany.
| |
Collapse
|
18
|
Gay MD, Safronenka A, Cao H, Liu FH, Malchiodi ZX, Tucker RD, Kroemer A, Shivapurkar N, Smith JP. Targeting the Cholecystokinin Receptor: A Novel Approach for Treatment and Prevention of Hepatocellular Cancer. Cancer Prev Res (Phila) 2020; 14:17-30. [PMID: 33115780 DOI: 10.1158/1940-6207.capr-20-0220] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 08/21/2020] [Accepted: 10/15/2020] [Indexed: 12/14/2022]
Abstract
Hepatocellular carcinoma (HCC) is the fastest growing cancer worldwide in part due to the obesity epidemic and fatty liver disease, particularly nonalcoholic steatohepatitis (NASH). Chronic inflammation with the release of cytokines and chemokines with activation of hepatic stellate cells results in changes of the liver extracellular matrix (ECM) that predisposes to the development of HCC. Blood levels of the gastrointestinal peptide cholecystokinin (CCK) are increased in humans and mice consuming a high-fat diet. We found that the CCK-B receptor (CCK-BR) expression increased in the livers of mice with NASH. Treatment of mice with a CCK-BR antagonist, proglumide, prevented NASH, lowered hepatic inflammatory cytokines and chemokines, reduced oxidative stress, decreased F4/80+ hepatic macrophages, and prevented HCC. CCK-AR and CCK-BR expression was increased in both murine and human HCC cell lines compared with that of normal liver, and CCK stimulated the growth of wild-type and CCK-A receptor knockout HCC cells in vitro, but not CCK-BR knockout cells suggesting that the CCK-BR mediates proliferation. Proglumide therapy significantly reduced growth by 70% and 73% in mice bearing Dt81Hepa1-6 or in RIL-75 HCC tumors, respectively. IHC of a human liver tissue array with a selective CCK-BR antibody revealed staining of human HCC and no staining in normal liver. PREVENTION RELEVANCE: This investigation demonstrates the role of the gastrointestinal peptide cholecystokinin (CCK) in hepatocellular carcinoma (HCC) and how CCK-BR blockade reverses the premalignant state of the hepatic extracellular matrix hence, rendering it less susceptible to the development of HCC. Thereby, CCK-BR blockade is a novel approach for the prevention/treatment of HCC.
Collapse
Affiliation(s)
- Martha D Gay
- Department of Medicine, Georgetown University College of Medicine, Washington, DC
| | - Anita Safronenka
- Department of Medicine, Georgetown University College of Medicine, Washington, DC
| | - Hong Cao
- Department of Medicine, Georgetown University College of Medicine, Washington, DC
| | - Felice H Liu
- Department of Medicine, Georgetown University College of Medicine, Washington, DC
| | - Zoe X Malchiodi
- Department of Oncology, Georgetown University College of Medicine, Washington, DC
| | - Robin D Tucker
- Department of Pathology, Georgetown University College of Medicine, Washington, DC
| | - Alexander Kroemer
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital, Washington DC
| | - Narayan Shivapurkar
- Department of Medicine, Georgetown University College of Medicine, Washington, DC
| | - Jill P Smith
- Department of Medicine, Georgetown University College of Medicine, Washington, DC. .,Department of Oncology, Georgetown University College of Medicine, Washington, DC
| |
Collapse
|
19
|
Lind S, Dahlgren C, Holmdahl R, Olofsson P, Forsman H. Functional selective FPR1 signaling in favor of an activation of the neutrophil superoxide generating NOX2 complex. J Leukoc Biol 2020; 109:1105-1120. [PMID: 33040403 PMCID: PMC8246850 DOI: 10.1002/jlb.2hi0520-317r] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/20/2020] [Accepted: 09/08/2020] [Indexed: 02/06/2023] Open
Abstract
The formyl peptide receptors FPR1 and FPR2 are abundantly expressed by neutrophils, in which they regulate proinflammatory tissue recruitment of inflammatory cells, the production of reactive oxygen species (ROS), and resolution of inflammatory reactions. The unique dual functionality of the FPRs makes them attractive targets to develop FPR‐based therapeutics as novel anti‐inflammatory treatments. The small compound RE‐04‐001 has earlier been identified as an inducer of ROS in differentiated HL60 cells but the precise target and the mechanism of action of the compound was has until now not been elucidated. In this study, we reveal that RE‐04‐001 specifically targets and activates FPR1, and the concentrations needed to activate the neutrophil NADPH‐oxidase was very low (EC50 ∼1 nM). RE‐04‐001 was also found to be a neutrophil chemoattractant, but when compared to the prototype FPR1 agonist N‐formyl‐Met‐Leu‐Phe (fMLF), the concentrations required were comparably high, suggesting that signaling downstream of the RE‐04‐001‐activated‐FPR1 is functionally selective. In addition, the RE‐04‐001‐induced response was strongly biased toward the PLC‐PIP2‐Ca2+ pathway and ERK1/2 activation but away from β‐arrestin recruitment. Compared to the peptide agonist fMLF, RE‐04‐001 is more resistant to inactivation by the MPO‐H2O2‐halide system. In summary, this study describes RE‐04‐001 as a novel small molecule agonist specific for FPR1, which displays a biased signaling profile that leads to a functional selective activating of human neutrophils. RE‐04‐001 is, therefore, a useful tool, not only for further mechanistic studies of the regulatory role of FPR1 in inflammation in vitro and in vivo, but also for developing FPR1‐specific drug therapeutics.
Collapse
Affiliation(s)
- Simon Lind
- Department of Rheumatology and Inflammation Research, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Claes Dahlgren
- Department of Rheumatology and Inflammation Research, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Rikard Holmdahl
- Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Peter Olofsson
- Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Huamei Forsman
- Department of Rheumatology and Inflammation Research, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
20
|
Integration of Rap1 and Calcium Signaling. Int J Mol Sci 2020; 21:ijms21051616. [PMID: 32120817 PMCID: PMC7084553 DOI: 10.3390/ijms21051616] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 02/24/2020] [Accepted: 02/25/2020] [Indexed: 02/07/2023] Open
Abstract
Ca2+ is a universal intracellular signal. The modulation of cytoplasmic Ca2+ concentration regulates a plethora of cellular processes, such as: synaptic plasticity, neuronal survival, chemotaxis of immune cells, platelet aggregation, vasodilation, and cardiac excitation–contraction coupling. Rap1 GTPases are ubiquitously expressed binary switches that alternate between active and inactive states and are regulated by diverse families of guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs). Active Rap1 couples extracellular stimulation with intracellular signaling through secondary messengers—cyclic adenosine monophosphate (cAMP), Ca2+, and diacylglycerol (DAG). Much evidence indicates that Rap1 signaling intersects with Ca2+ signaling pathways to control the important cellular functions of platelet activation or neuronal plasticity. Rap1 acts as an effector of Ca2+ signaling when activated by mechanisms involving Ca2+ and DAG-activated (CalDAG-) GEFs. Conversely, activated by other GEFs, such as cAMP-dependent GEF Epac, Rap1 controls cytoplasmic Ca2+ levels. It does so by regulating the activity of Ca2+ signaling proteins such as sarcoendoplasmic reticulum Ca2+-ATPase (SERCA). In this review, we focus on the physiological significance of the links between Rap1 and Ca2+ signaling and emphasize the molecular interactions that may offer new targets for the therapy of Alzheimer’s disease, hypertension, and atherosclerosis, among other diseases.
Collapse
|
21
|
Predescu DV, Crețoiu SM, Crețoiu D, Alexandra Pavelescu L, Suciu N, Radu BM, Voinea SC. G Protein-Coupled Receptors (GPCRs)-Mediated Calcium Signaling in Ovarian Cancer: Focus on GPCRs activated by Neurotransmitters and Inflammation-Associated Molecules. Int J Mol Sci 2019; 20:ijms20225568. [PMID: 31703453 PMCID: PMC6888001 DOI: 10.3390/ijms20225568] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 11/05/2019] [Accepted: 11/06/2019] [Indexed: 12/12/2022] Open
Abstract
G-coupled protein receptors (GCPR) involve several signaling pathways, some of them being coupled with intracellular calcium (Ca2+) mobilization. GPCRs were involved in migration, invasion and metastasis of different types of cancers, including ovarian cancer. Many studies have discussed the essential contribution of GPCRs activated by steroid hormones in ovarian cancer. However, ovarian cancer is also associated with altered signals coming from the nervous system, the immune system or the inflammatory environment, in which GPCRs are ‘sensing’ these molecular signals. Many studies have been oriented so far on ovarian cell lines (most of them being of human cell lines), and only few studies based on animal models or clinical studies have been devoted to the expression changes or functional role of GPCRs in ovarian cancer. In this paper, we review the alterations of GPCRs activated by neurotransmitters (muscarinic receptors, serotonin receptors, dopamine receptors, adrenoceptors) or inflammation-associated molecules (bradykinin receptors, histamine receptors, chemokine receptors) in ovarian cancer and we discuss their potential as histological biomarkers.
Collapse
Affiliation(s)
- Dragoș-Valentin Predescu
- Department of General Surgery, Sf. Maria Clinical Hospital, Carol Davila University of Medicine and Pharmacy, 37-39 Ion Mihalache Blvd., 011172 Bucharest, Romania
| | - Sanda Maria Crețoiu
- Department of Cell and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd., 050474 Bucharest, Romania
| | - Dragoș Crețoiu
- Department of Cell and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd., 050474 Bucharest, Romania
- Fetal Medicine Excellence Research Center, Alessandrescu-Rusescu National Institute of Mother and Child Health, Polizu Clinical Hospital, 38-52 Gh. Polizu Street, 020395 Bucharest, Romania
| | - Luciana Alexandra Pavelescu
- Department of Cell and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd., 050474 Bucharest, Romania
| | - Nicolae Suciu
- Fetal Medicine Excellence Research Center, Alessandrescu-Rusescu National Institute of Mother and Child Health, Polizu Clinical Hospital, 38-52 Gh. Polizu Street, 020395 Bucharest, Romania
- Department of Obstetrics and Gynecology, Alessandrescu-Rusescu National Institute of Mother and Child Health, Polizu Clinical Hospital, 38-52 Gh. Polizu Street, 020395 Bucharest, Romania
- Division of Obstetrics and Gynecology and Neonatology, Carol Davila University of Medicine and Pharmacy, Polizu Clinical Hospital, 38-52 Gh. Polizu Street, 020395 Bucharest, Romania
| | - Beatrice Mihaela Radu
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independenţei, 050095 Bucharest, Romania
- Life, Environmental and Earth Sciences Division, Research Institute of the University of Bucharest (ICUB), University of Bucharest, 91-95 Splaiul Independenţei, 050095 Bucharest, Romania
- Correspondence: ; Tel.: +00-40-21-318-1573
| | - Silviu-Cristian Voinea
- Department of Surgical Oncology, Prof. Dr. Alexandru Trestioreanu Oncology Institute, Carol Davila University of Medicine and Pharmacy, 252 Fundeni Rd., 022328 Bucharest, Romania
| |
Collapse
|
22
|
Smith NA, Bekar LK, Nedergaard M. Astrocytic Endocannabinoids Mediate Hippocampal Transient Heterosynaptic Depression. Neurochem Res 2019; 45:100-108. [PMID: 31254249 DOI: 10.1007/s11064-019-02834-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 06/14/2019] [Accepted: 06/20/2019] [Indexed: 12/29/2022]
Abstract
Astrocytes are highly dynamic cells that modulate synaptic transmission within a temporal domain of seconds to minutes in physiological contexts such as Long-Term Potentiation (LTP) and Heterosynaptic Depression (HSD). Recent studies have revealed that astrocytes also modulate a faster form of synaptic activity (milliseconds to seconds) known as Transient Heterosynaptic Depression (tHSD). However, the mechanism underlying astrocytic modulation of tHSD is not fully understood. Are the traditional gliotransmitters ATP or glutamate released via hemichannels/vesicles or are other, yet, unexplored pathways involved? Using various approaches to manipulate astrocytes, including the Krebs cycle inhibitor fluoroacetate, connexin 43/30 double knockout mice (hemichannels), and inositol triphosphate type-2 receptor knockout mice, we confirmed early reports demonstrating that astrocytes are critical for tHSD. We also confirmed the importance of group II metabotropic glutamate receptors (mGluRs) in astrocytic modulation of tHSD using a group II agonist. Using dominant negative SNARE mice, which have disrupted glial vesicle function, we also found that vesicular release of gliotransmitters and activation of adenosine A1 receptors are not required for tHSD. As astrocytes can release lipids upon receptor stimulation, we asked if astrocyte-derived endocannabinoids are involved in tHSD. Interestingly, a cannabinoid receptor 1 (CB1R) antagonist blocked and an inhibitor of the endogenous endocannabinoid 2-arachidonyl glycerol (2-AG) degradation potentiates tHSD in hippocampal slices. Taken together, this study provides the first evidence for group II mGluR-mediated astrocytic endocannabinoids in transiently suppressing presynaptic neurotransmitter release associated with the phenomenon of tHSD.
Collapse
Affiliation(s)
- Nathan A Smith
- Division of Glia Disease and Therapeutics, Dept. of Neurosurgery, Center for Translational Neuromedicine, School of Medicine and Dentistry, University of Rochester, Rochester, NY, 14642, USA.
- Center for Neuroscience, Children's Research Institute, Children's National Medical Center, 111 Michigan Ave, Washington, NW, 20010, USA.
- George Washington University School of Medicine and Health Sciences, Washington, DC, 20052, USA.
| | - Lane K Bekar
- Department of Anatomy, Physiology and Pharmacology, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| | - Maiken Nedergaard
- Division of Glia Disease and Therapeutics, Dept. of Neurosurgery, Center for Translational Neuromedicine, School of Medicine and Dentistry, University of Rochester, Rochester, NY, 14642, USA
| |
Collapse
|
23
|
Ibeh CL, Yiu AJ, Kanaras YL, Paal E, Birnbaumer L, Jose PA, Bandyopadhyay BC. Evidence for a regulated Ca 2+ entry in proximal tubular cells and its implication in calcium stone formation. J Cell Sci 2019; 132:jcs.225268. [PMID: 30910829 DOI: 10.1242/jcs.225268] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 03/14/2019] [Indexed: 12/14/2022] Open
Abstract
Calcium phosphate (CaP) crystals, which begin to form in the early segments of the loop of Henle (LOH), are known to act as precursors for calcium stone formation. The proximal tubule (PT), which is just upstream of the LOH and is a major site for Ca2+ reabsorption, could be a regulator of such CaP crystal formation. However, PT Ca2+ reabsorption is mostly described as being paracellular. Here, we show the existence of a regulated transcellular Ca2+ entry pathway in luminal membrane PT cells induced by Ca2+-sensing receptor (CSR, also known as CASR)-mediated activation of transient receptor potential canonical 3 (TRPC3) channels. In support of this idea, we found that both CSR and TRPC3 are physically and functionally coupled at the luminal membrane of PT cells. More importantly, TRPC3-deficient mice presented with a deficiency in PT Ca2+ entry/transport, elevated urinary [Ca2+], microcalcifications in LOH and urine microcrystals formations. Taken together, these data suggest that a signaling complex comprising CSR and TRPC3 exists in the PT and can mediate transcellular Ca2+ transport, which could be critical in maintaining the PT luminal [Ca2+] to mitigate formation of the CaP crystals in LOH and subsequent formation of calcium stones.
Collapse
Affiliation(s)
- Cliff-Lawrence Ibeh
- Calcium Signaling Laboratory, Research Service, Veterans Affairs Medical Center, 50 Irving Street, NW, Washington DC, DC 20422, USA
| | - Allen J Yiu
- Calcium Signaling Laboratory, Research Service, Veterans Affairs Medical Center, 50 Irving Street, NW, Washington DC, DC 20422, USA.,Department of Medicine, Division of Renal Diseases & Hypertension, The George Washington University, Washington DC, DC 20037, USA
| | - Yianni L Kanaras
- Calcium Signaling Laboratory, Research Service, Veterans Affairs Medical Center, 50 Irving Street, NW, Washington DC, DC 20422, USA
| | - Edina Paal
- Pathology and Laboratory Service, Veterans Affairs Medical Center, 50 Irving Street, NW, Washington DC, DC 20422, USA
| | - Lutz Birnbaumer
- Division of Intramural Research, NIEHS, Research Triangle Park, Durham, NC 27709, USA.,Institute for Biomedical Research (BIOMED), Catholic University of Argentina, C1107AFF Buenos Aires, Argentina
| | - Pedro A Jose
- Department of Medicine, Division of Renal Diseases & Hypertension, The George Washington University, Washington DC, DC 20037, USA.,Department of Pharmacology and Physiology, The George Washington University, Washington DC, DC 20037, USA
| | - Bidhan C Bandyopadhyay
- Calcium Signaling Laboratory, Research Service, Veterans Affairs Medical Center, 50 Irving Street, NW, Washington DC, DC 20422, USA .,Department of Medicine, Division of Renal Diseases & Hypertension, The George Washington University, Washington DC, DC 20037, USA.,Department of Pharmacology and Physiology, The George Washington University, Washington DC, DC 20037, USA
| |
Collapse
|
24
|
Pin JP, Kniazeff J, Prézeau L, Liu JF, Rondard P. GPCR interaction as a possible way for allosteric control between receptors. Mol Cell Endocrinol 2019; 486:89-95. [PMID: 30849406 DOI: 10.1016/j.mce.2019.02.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 02/19/2019] [Accepted: 02/20/2019] [Indexed: 12/17/2022]
Abstract
For more than twenty years now, GPCR dimers and larger oligomers have been the subject of intense debates. Evidence for a role of such complexes in receptor trafficking to and from the plasma membrane have been provided. However, one main issue is of course to determine whether or not such a phenomenon can be responsible for an allosteric and reciprocal control (allosteric control) of the subunits. Such a possibility would indeed add to the possible ways a cell integrates various signals targeting GPCRs. Among the large GPCR family, the class C receptors that include mGlu and GABAB receptors, represent excellent models to examine such a possibility as they are mandatory dimers. In the present review, we will report on the observed allosteric interaction between the subunits of class C GPCRs, both mGluRs and GABABRs, and on the structural bases of these interactions. We will then discuss these findings for other GPCR types such as the rhodopsin-like class A receptors. We will show that many of the observations made with class C receptors have also been reported with class A receptors, suggesting that the mechanisms involved in the allosteric control between subunits in GPCR dimers may not be unique to class C GPCRs.
Collapse
Affiliation(s)
- Jean-Philippe Pin
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France.
| | - Julie Kniazeff
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Laurent Prézeau
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Jiang-Feng Liu
- Cellular Signaling Laboratory, International Research Center for Sensory Biology and Technology of MOST, Key Laboratory of Molecular Biophysics of MOE, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Philippe Rondard
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| |
Collapse
|
25
|
The Lactate Receptor HCAR1 Modulates Neuronal Network Activity through the Activation of G α and G βγ Subunits. J Neurosci 2019; 39:4422-4433. [PMID: 30926749 DOI: 10.1523/jneurosci.2092-18.2019] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 03/19/2019] [Accepted: 03/22/2019] [Indexed: 12/28/2022] Open
Abstract
The discovery of a G-protein-coupled receptor for lactate named hydroxycarboxylic acid receptor 1 (HCAR1) in neurons has pointed to additional nonmetabolic effects of lactate for regulating neuronal network activity. In this study, we characterized the intracellular pathways engaged by HCAR1 activation, using mouse primary cortical neurons from wild-type (WT) and HCAR1 knock-out (KO) mice from both sexes. Using whole-cell patch clamp, we found that the activation of HCAR1 with 3-chloro-5-hydroxybenzoic acid (3Cl-HBA) decreased miniature EPSC frequency, increased paired-pulse ratio, decreased firing frequency, and modulated membrane intrinsic properties. Using fast calcium imaging, we show that HCAR1 agonists 3,5-dihydroxybenzoic acid, 3Cl-HBA, and lactate decreased by 40% spontaneous calcium spiking activity of primary cortical neurons from WT but not from HCAR1 KO mice. Notably, in neurons lacking HCAR1, the basal activity was increased compared with WT. HCAR1 mediates its effect in neurons through a Giα-protein. We observed that the adenylyl cyclase-cAMP-protein kinase A axis is involved in HCAR1 downmodulation of neuronal activity. We found that HCAR1 interacts with adenosine A1, GABAB, and α2A-adrenergic receptors, through a mechanism involving both its Giα and Giβγ subunits, resulting in a complex modulation of neuronal network activity. We conclude that HCAR1 activation in neurons causes a downmodulation of neuronal activity through presynaptic mechanisms and by reducing neuronal excitability. HCAR1 activation engages both Giα and Giβγ intracellular pathways to functionally interact with other Gi-coupled receptors for the fine tuning of neuronal activity.SIGNIFICANCE STATEMENT Expression of the lactate receptor hydroxycarboxylic acid receptor 1 (HCAR1) was recently described in neurons. Here, we describe the physiological role of this G-protein-coupled receptor (GPCR) and its activation in neurons, providing information on its expression and mechanism of action. We dissected out the intracellular pathway through which HCAR1 activation tunes down neuronal network activity. For the first time, we provide evidence for the functional cross talk of HCAR1 with other GPCRs, such as GABAB, adenosine A1- and α2A-adrenergic receptors. These results set HCAR1 as a new player for the regulation of neuronal network activity acting in concert with other established receptors. Thus, HCAR1 represents a novel therapeutic target for pathologies characterized by network hyperexcitability dysfunction, such as epilepsy.
Collapse
|
26
|
Wang L, Lee G, Kuei C, Yao X, Harrington A, Bonaventure P, Lovenberg TW, Liu C. GPR139 and Dopamine D2 Receptor Co-express in the Same Cells of the Brain and May Functionally Interact. Front Neurosci 2019; 13:281. [PMID: 30971885 PMCID: PMC6443882 DOI: 10.3389/fnins.2019.00281] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 03/11/2019] [Indexed: 01/11/2023] Open
Abstract
GPR139, a Gq-coupled receptor that is activated by the essential amino acids L-tryptophan and L-phenylalanine, is predominantly expressed in the brain and pituitary. The physiological function of GPR139 remains elusive despite the availability of pharmacological tool agonist compounds and knock-out mice. Whole tissue RNA sequencing data from human, mouse and rat tissues revealed that GPR139 and the dopamine D2 receptor (DRD2) exhibited some similarities in their distribution patterns in the brain and pituitary gland. To determine if there was true co-expression of these two receptors, we applied double in situ hybridization in mouse tissues using the RNAscope® technique. GPR139 and DRD2 mRNA co-expressed in a majority of same cells within part of the dopaminergic mesolimbic pathways (ventral tegmental area and olfactory tubercle), the nigrostriatal pathway (compact part of substantia nigra and caudate putamen), and also the tuberoinfundibular pathway (arcuate hypothalamic nucleus and anterior lobe of pituitary). Both receptors mRNA also co-express in the same cells of the brain regions involved in responses to negative stimulus and stress, such as lateral habenula, lateral septum, interpeduncular nucleus, and medial raphe nuclei. GPR139 mRNA expression was detected in the dentate gyrus and the pyramidal cell layer of the hippocampus as well as the paraventricular hypothalamic nucleus. The functional interaction between GPR139 and DRD2 was studied in vitro using a calcium mobilization assay in cells co-transfected with both receptors from several species (human, rat, and mouse). The dopamine DRD2 agonist did not stimulate calcium response in cells expressing DRD2 alone consistent with the Gi signaling transduction pathway of this receptor. In cells co-transfected with DRD2 and GPR139 the DRD2 agonist was able to stimulate calcium response and its effect was blocked by either a DRD2 or a GPR139 antagonist supporting an in vitro interaction between GPR139 and DRD2. Taken together, these data showed that GPR139 and DRD2 are in position to functionally interact in native tissue.
Collapse
Affiliation(s)
- Lien Wang
- Janssen Research and Development, LLC, San Diego, CA, United States
| | - Grace Lee
- Janssen Research and Development, LLC, San Diego, CA, United States
| | - Chester Kuei
- Janssen Research and Development, LLC, San Diego, CA, United States
| | - Xiang Yao
- Janssen Research and Development, LLC, San Diego, CA, United States
| | | | | | | | - Changlu Liu
- Janssen Research and Development, LLC, San Diego, CA, United States
| |
Collapse
|
27
|
Zhou Y, Lv M, Li T, Zhang T, Duncan R, Wang L, Lu XL. Spontaneous calcium signaling of cartilage cells: from spatiotemporal features to biophysical modeling. FASEB J 2019; 33:4675-4687. [PMID: 30601690 DOI: 10.1096/fj.201801460r] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Intracellular calcium ([Ca2+]i) oscillation is a fundamental signaling response of cartilage cells under mechanical loading or osmotic stress. Chondrocytes are usually considered as nonexcitable cells with no spontaneous [Ca2+]i signaling. This study proved that chondrocytes can exhibit robust spontaneous [Ca2+]i signaling without explicit external stimuli. The intensity of [Ca2+]i peaks from individual chondrocytes maintain a consistent spatiotemporal pattern, acting as a unique "fingerprint" for each cell. Statistical analysis revealed lognormal distributions of the temporal parameters of [Ca2+]i peaks, as well as strong linear correlations between their means and sds. Based on these statistical findings, we hypothesized that the spontaneous [Ca2+]i peaks may result from an autocatalytic process and that [Ca2+]i oscillation is controlled by a threshold-regulating mechanism. To test these 2 mechanisms, we established a multistage biophysical model by assuming the spontaneous [Ca2+]i signaling of chondrocytes as a combination of deterministic and stochastic processes. The theoretical model successfully explained the lognormal distribution of the temporal parameters and the fingerprint feature of [Ca2+]i peaks. In addition, by using antagonists for 10 pathways, we revealed that the initiation of spontaneous [Ca2+]i peaks in chondrocytes requires the presence of extracellular Ca2+, and that the PLC-inositol 1,4,5-trisphosphate pathway, which controls the release of calcium from the endoplasmic reticulum, can affect the initiation of spontaneous [Ca2+]i peaks in chondrocytes. The purinoceptors and transient receptor potential vanilloid 4 channels on the plasma membrane also play key roles in the spontaneous [Ca2+]i signaling of chondrocytes. In contrast, blocking the T-type or L-type voltage-gated calcium channel promoted the spontaneous calcium signaling. This study represents a systematic effort to understand the features and initiation mechanisms of spontaneous [Ca2+]i signaling in chondrocytes, which are critical for chondrocyte mechanobiology.-Zhou, Y., Lv, M., Li, T., Zhang, T., Duncan, R., Wang, L., Lu, X. L. Spontaneous calcium signaling of cartilage cells: from spatiotemporal features to biophysical modeling.
Collapse
Affiliation(s)
- Yilu Zhou
- Department of Mechanical Engineering, University of Delaware, Newark, Delaware, USA
| | - Mengxi Lv
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, Delaware, USA
| | - Tong Li
- Department of Mechanical Engineering, University of Delaware, Newark, Delaware, USA.,Department of Engineering Mechanics, Dalian University of Technology, Dalian, China; and
| | - Tiange Zhang
- Department of Mechanical Engineering, University of Delaware, Newark, Delaware, USA
| | - Randall Duncan
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
| | - Liyun Wang
- Department of Mechanical Engineering, University of Delaware, Newark, Delaware, USA
| | - X Lucas Lu
- Department of Mechanical Engineering, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
28
|
Berg KA, Clarke WP. Making Sense of Pharmacology: Inverse Agonism and Functional Selectivity. Int J Neuropsychopharmacol 2018; 21:962-977. [PMID: 30085126 PMCID: PMC6165953 DOI: 10.1093/ijnp/pyy071] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 08/04/2018] [Indexed: 12/12/2022] Open
Abstract
Constitutive receptor activity/inverse agonism and functional selectivity/biased agonism are 2 concepts in contemporary pharmacology that have major implications for the use of drugs in medicine and research as well as for the processes of new drug development. Traditional receptor theory postulated that receptors in a population are quiescent unless activated by a ligand. Within this framework ligands could act as agonists with various degrees of intrinsic efficacy, or as antagonists with zero intrinsic efficacy. We now know that receptors can be active without an activating ligand and thus display "constitutive" activity. As a result, a new class of ligand was discovered that can reduce the constitutive activity of a receptor. These ligands produce the opposite effect of an agonist and are called inverse agonists. The second topic discussed is functional selectivity, also commonly referred to as biased agonism. Traditional receptor theory also posited that intrinsic efficacy is a single drug property independent of the system in which the drug acts. However, we now know that a drug, acting at a single receptor subtype, can have multiple intrinsic efficacies that differ depending on which of the multiple responses coupled to a receptor is measured. Thus, a drug can be simultaneously an agonist, an antagonist, and an inverse agonist acting at the same receptor. This means that drugs have an additional level of selectivity (signaling selectivity or "functional selectivity") beyond the traditional receptor selectivity. Both inverse agonism and functional selectivity need to be considered when drugs are used as medicines or as research tools.
Collapse
Affiliation(s)
- Kelly A Berg
- Department of Pharmacology, University of Texas Health, San Antonio, Texas
| | - William P Clarke
- Department of Pharmacology, University of Texas Health, San Antonio, Texas,Correspondence: William P. Clarke, PhD, Department of Pharmacology, Mail Stop 7764, UT Health at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229 ()
| |
Collapse
|
29
|
Mori Y, Kushima H, Koshibu M, Saito T, Hiromura M, Kohashi K, Terasaki M, Seino Y, Yamada Y, Hirano T. Glucose-Dependent Insulinotropic Polypeptide Suppresses Peripheral Arterial Remodeling in Male Mice. Endocrinology 2018; 159:2717-2732. [PMID: 29846588 DOI: 10.1210/en.2018-00336] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 05/23/2018] [Indexed: 12/18/2022]
Abstract
Glucose-dependent insulinotropic polypeptide (GIP) exhibits direct cardiovascular actions in addition to its well-known insulinotropic effect. However, the role of GIP in peripheral artery disease remains unclear. In this study, we evaluated the effects of GIP against peripheral arterial remodeling in mouse models. The genetic deletion of GIP receptor (GIPR) led to exaggerated neointimal hyperplasia after transluminal femoral artery wire injury. Conversely, chronic GIP infusion suppressed neointimal hyperplasia and facilitated endothelial regeneration. The beneficial effects of GIP were abrogated by inhibiting nitric oxide (NO) synthase, suggesting a possible mechanism mediated by NO. In cultured human umbilical vein endothelial cells (HUVECs), GIP elevated cytosolic calcium levels without affecting intracellular cAMP levels. Furthermore, GIP dose-dependently increased NO production, whereas this effect was abolished by inhibiting AMP-activated protein kinase (AMPK). GIP induced AMPK phosphorylation, which was abrogated by inhibiting phospholipase C and calcium-calmodulin-dependent protein kinase kinase but not by adenylate cyclase or liver kinase B1, suggesting the existence of a calcium-mediated GIPR signaling pathway. These effects of GIP were retained in severe hyperglycemic Leprdb/ Leprdb mice and in high-glucose-cultured HUVECs. Overall, we demonstrated the protective effects of GIP against peripheral arterial remodeling as well as the involvement of a calcium-mediated GIPR signaling pathway in vascular endothelial cells. Our findings imply the potential vascular benefits of multiple agonists targeting G protein-coupled receptors, including GIPR, which are under development for the treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Yusaku Mori
- Division of Diabetes, Metabolism, and Endocrinology, Showa University School of Medicine, Shinagawa-ku, Tokyo, Japan
| | - Hideki Kushima
- Division of Diabetes, Metabolism, and Endocrinology, Showa University School of Medicine, Shinagawa-ku, Tokyo, Japan
| | - Masakazu Koshibu
- Division of Diabetes, Metabolism, and Endocrinology, Showa University School of Medicine, Shinagawa-ku, Tokyo, Japan
| | - Tomomi Saito
- Division of Diabetes, Metabolism, and Endocrinology, Showa University School of Medicine, Shinagawa-ku, Tokyo, Japan
| | - Munenori Hiromura
- Division of Diabetes, Metabolism, and Endocrinology, Showa University School of Medicine, Shinagawa-ku, Tokyo, Japan
| | - Kyoko Kohashi
- Division of Diabetes, Metabolism, and Endocrinology, Showa University School of Medicine, Shinagawa-ku, Tokyo, Japan
| | - Michishige Terasaki
- Division of Diabetes, Metabolism, and Endocrinology, Showa University School of Medicine, Shinagawa-ku, Tokyo, Japan
| | - Yutaka Seino
- Kansai Electric Power Medical Research Institute, Kobe-shi, Hyogo, Japan
| | - Yuichiro Yamada
- Department of Endocrinology, Diabetes and Geriatric Medicine, Akita University Graduate School of Medicine, Akita-shi, Akita, Japan
| | - Tsutomu Hirano
- Division of Diabetes, Metabolism, and Endocrinology, Showa University School of Medicine, Shinagawa-ku, Tokyo, Japan
| |
Collapse
|
30
|
Yanashima K, Chieosilapatham P, Yoshimoto E, Okumura K, Ogawa H, Niyonsaba F. Innate defense regulator IDR-1018 activates human mast cells through G protein-, phospholipase C-, MAPK- and NF-ĸB-sensitive pathways. Immunol Res 2018; 65:920-931. [PMID: 28653285 DOI: 10.1007/s12026-017-8932-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Host defense (antimicrobial) peptides not only display antimicrobial activities against numerous pathogens but also exert a broader spectrum of immune-modulating functions. Innate defense regulators (IDRs) are a class of host defense peptides synthetically developed from natural or endogenous cationic host defense peptides. Of the IDRs developed to date, IDR-1018 is more efficient not only in killing bacteria but also in regulating the various functions of macrophages and neutrophils and accelerating the wound healing process. Because mast cells intimately participate in wound healing and a number of host defense peptides involved in wound healing are also known to activate mast cells, this study aimed to investigate the effects of IDR-1018 on mast cell activation. Here, we showed that IDR-1018 induced the degranulation of LAD2 human mast cells and caused their production of leukotrienes, prostaglandins and various cytokines and chemokines, including granulocyte-macrophage colony-stimulating factor, interleukin-8, monocyte chemoattractant protein-1 and -3, macrophage-inflammatory protein-1α and -1β, and tumor necrosis factor-α. Furthermore, IDR-1018 increased intracellular calcium mobilization and induced mast cell chemotaxis. The mast cell activation was markedly suppressed by pertussis toxin, U-73122, U0126, SB203580, JNK inhibitor II, and NF-κB activation inhibitor II, suggesting the involvement of G-protein, phospholipase C, ERK, p38, JNK and NF-κB pathways, respectively, in IDR-1018-induced mast cell activation. Notably, we confirmed that IDR-1018 caused the phosphorylation of MAPKs and IκB. Altogether, the current study suggests a novel immunomodulatory role of IDR-1018 through its ability to recruit and activate human mast cells at the sites of inflammation and wounds. HIGHLIGHTS We report that IDR-1018 stimulates various functions of human mast cells. IDR-1018-induced mast cell activation is mediated through G protein, PLC, MAPK and NF-κB pathways. IDR-1018 will be a useful therapeutic agent for wound healing.
Collapse
Affiliation(s)
- Kensuke Yanashima
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Panjit Chieosilapatham
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.,Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Eri Yoshimoto
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Ko Okumura
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Hideoki Ogawa
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - François Niyonsaba
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan. .,Faculty of International Liberal Arts, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.
| |
Collapse
|
31
|
Nepomuceno D, Kuei C, Dvorak C, Lovenberg T, Liu C, Bonaventure P. Re-evaluation of Adrenocorticotropic Hormone and Melanocyte Stimulating Hormone Activation of GPR139 in Vitro. Front Pharmacol 2018; 9:157. [PMID: 29599718 PMCID: PMC5863515 DOI: 10.3389/fphar.2018.00157] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 02/13/2018] [Indexed: 01/17/2023] Open
Abstract
It is now well established that GPR139, a G-protein coupled receptor exclusively expressed in the brain and pituitary, is activated by the essential amino acids L-tryptophan (L-Trp) and L-phenylalanine (L-Phe) via Gαq-coupling. The in vitro affinity and potency values of L-Trp and L-Phe are within the physiological concentration ranges of L-Trp and L-Phe. A recent paper suggests that adrenocorticotropic hormone (ACTH), α and β melanocyte stimulating hormones (α-MSH and β-MSH) and derivatives α-MSH1-9/α-MSH1-10 can also activate GPR139 in vitro. We tested this hypothesis using guanosine 5′-O-(3-[35S]thio)-triphosphate binding (GTPγS), calcium mobilization and [3H]JNJ-63533054 radioligand binding assays. In the GTPγS binding assay, α-MSH, α-MSH1-9/α-MSH1-10, and β-MSH had no effect on [35S]GTPγS incorporation in cell membranes expressing GPR139 up to 30 μM in contrast to the concentration dependent activation produced by L-Trp, JNJ-63533054, and TC-09311 (two small molecule GPR139 agonists). ACTH slightly decreased the basal level of [35S]GTPγS incorporation at 30 μM. In the GPR139 radioligand binding assay, a moderate displacement of [3H]JNJ-63533054 binding by ACTH and β-MSH was observed at 30 μM (40 and 30%, respectively); α-MSH, α-MSH1-9/α-MSH1-10 did not displace any specific binding at 30 μM. In three different host cell lines stably expressing GPR139, α-MSH, and β-MSH did not stimulate calcium mobilization in contrast to L-Trp, JNJ-63533054, and TC-09311. ACTH, α-MSH1-9/α-MSH1-10 only weakly stimulated calcium mobilization at 30 μM (<50% of EC100). We then co-transfected GPR139 with the three melanocortin (MC) receptors (MC3R, MC4R, and MC5R) to test the hypothesis that ACTH, α-MSH, and β-MSH might stimulate calcium mobilization through a MCR/GPR139 interaction. All three MC peptides stimulated calcium response in cells co-transfected with GPR139 and MC3R, MC4R, or MC5R. The MC peptides did not stimulate calcium response in cells expressing MC3R or MC5R alone consistent with the Gs signaling transduction pathway of these receptors. In agreement with the previously reported multiple signaling pathways of MC4R, including Gq transduction pathway, the MC peptides produced a calcium response in cells expressing MC4R alone. Together, our findings do not support that GPR139 is activated by ACTH, α-MSH, and β-MSH at physiologically relevant concentration but we did unravel an in vitro interaction between GPR139 and the MCRs.
Collapse
Affiliation(s)
- Diane Nepomuceno
- Janssen Research and Development, LLC, San Diego, CA, United States
| | - Chester Kuei
- Janssen Research and Development, LLC, San Diego, CA, United States
| | - Curt Dvorak
- Janssen Research and Development, LLC, San Diego, CA, United States
| | | | - Changlu Liu
- Janssen Research and Development, LLC, San Diego, CA, United States
| | | |
Collapse
|
32
|
Unveiling the participation of avian kinin ornithokinin and its receptors in the chicken inflammatory response. Vet Immunol Immunopathol 2017; 188:34-47. [PMID: 28615126 DOI: 10.1016/j.vetimm.2017.04.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 03/28/2017] [Accepted: 04/11/2017] [Indexed: 01/06/2023]
Abstract
Vasoactive peptides are key early mediators of inflammation released through activation of different enzymatic systems. The mammalian kinin-kallikrein (K-KLK) system produces bradykinin (BK) through proteolytic cleavage of a kininogen precursor by enzymes named kallikreins. BK acts through specific ubiquitous G-protein coupled receptors (B1R and B2R) to participate in physiological processes and inflammatory responses, such as activation of mononuclear phagocytes. In chickens, the BK-like nonapeptide ornithokinin (OK) has been shown to promote intracellular calcium increase in embryonic fibroblasts and to be vasodilatory in vivo. Also, one of its receptors (B2R) was already cloned. However, the participation of chicken K-KLK system components in the inflammatory response remains unknown and was therefore investigated. We first showed that B1R, B2R and kininogen 1 (KNG1) are expressed in unstimulated chicken tissues and macrophages. We next showed that chicken B1R and B2R are expressed at transcript and protein levels in chicken macrophages and are upregulated by E. coli LPS or avian pathogenic E. coli (APEC) infection. Interestingly, exogenous OK induced internalization and degradation of OK receptors protein, notably B2R. Also, OK induced intracellular calcium increase and potentiated zymosan-induced ROS production and Dextran-FITC endocytosis by chicken macrophages. Exogenous OK itself did not promote APEC killing and had no pro-inflammatory effect. However, when combined with LPS or APEC, OK upregulated cytokine/chemokine gene expression and NO production by chicken macrophages. This effect was not blocked by canonical non-peptide B1R or B2R receptor antagonists but was GPCR- and PI3K/Akt-dependent. In vivo, pulmonary colibacillosis led to upregulation of OK receptors expression in chicken lungs and liver. Also, colibacillosis led to significant upregulation of OK precursor KNG1 expression in liver and in cultured hepatocytes (LMH). We therefore provide hitherto unknown information on how OK and its receptors are involved in inflammation and infection in chickens.
Collapse
|
33
|
Adenosine A1 and A2A Receptors in the Brain: Current Research and Their Role in Neurodegeneration. Molecules 2017; 22:molecules22040676. [PMID: 28441750 PMCID: PMC6154612 DOI: 10.3390/molecules22040676] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Revised: 04/21/2017] [Accepted: 04/21/2017] [Indexed: 12/20/2022] Open
Abstract
The inhibitory adenosine A1 receptor (A1R) and excitatory A2A receptor (A2AR) are predominantly expressed in the brain. Whereas the A2AR has been implicated in normal aging and enhancing neurotoxicity in multiple neurodegenerative diseases, the inhibitory A1R has traditionally been ascribed to have a neuroprotective function in various brain insults. This review provides a summary of the emerging role of prolonged A1R signaling and its potential cross-talk with A2AR in the cellular basis for increased neurotoxicity in neurodegenerative disorders. This A1R signaling enhances A2AR-mediated neurodegeneration, and provides a platform for future development of neuroprotective agents in stroke, Parkinson’s disease and epilepsy.
Collapse
|
34
|
|
35
|
Schanze N, Jacobi SF, Rijntjes E, Mergler S, Del Olmo M, Hoefig CS, Khajavi N, Lehmphul I, Biebermann H, Mittag J, Köhrle J. 3-Iodothyronamine Decreases Expression of Genes Involved in Iodide Metabolism in Mouse Thyroids and Inhibits Iodide Uptake in PCCL3 Thyrocytes. Thyroid 2017; 27:11-22. [PMID: 27788620 DOI: 10.1089/thy.2016.0182] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
BACKGROUND 3-Iodothyronamine (3-T1AM) is an endogenous decarboxylated thyroid hormone (TH) metabolite. Pharmacological doses of 3-T1AM decrease heart rate, body temperature, and metabolic rate in rodents-effects that are contrary to classic TH excess. Furthermore, a single dose of 3-T1AM was shown to suppress the hypothalamic-pituitary-thyroid (HPT) axis in rats. It was hypothesized that 3-T1AM might play a role in the fine-tuning of TH action and might have a direct regulatory effect on the thyroid gland. METHODS This study tested whether repeated 3-T1AM treatment interfered with thyroid function and the HPT axis in mice. Therefore, male C57BL/6 mice were intraperitoneally injected with 5 mg/kg of 3-T1AM or vehicle daily for seven days. Additionally, the effects of 3-T1AM on the differentiated rat thyrocyte cell line PCCL3 were analyzed. RESULTS Repeated administration of 3-T1AM decreased thyroidal mRNA content of the sodium iodide symporter (Nis), thyroglobulin, and pendrin in mice. No interference with the HPT axis was observed, as determined by unaltered pituitary mRNA levels of triiodothyronine-responsive genes, including thyrotropin subunit β. Furthermore, 3-T1AM treatment did not change transcript levels of hepatic triiodothyronine-responsive genes, such as deiodinase 1. In line with this, serum TH concentrations were not changed after the treatment period of seven days. In concordance with the in vivo findings, 3-T1AM decreased the thyrotropin-dependent expression of Nis and functional iodide uptake in PCCL3 cells in vitro. Additionally, uptake and metabolism of 3-T1AM by PCCL3 cells was observed, as well as 3-T1AM-dependent changes in intracellular Ca2+ concentration that might be involved in mediating the reported effects. CONCLUSIONS In conclusion, 3-T1AM application decreased expression of selected TH synthesis genes by acting directly on the thyroid gland, and it might therefore affect TH synthesis without involvement of the HPT axis.
Collapse
Affiliation(s)
- Nancy Schanze
- 1 Institut für Experimentelle Endokrinologie, Charité-Universitätsmedizin Berlin , Berlin, Germany
- 2 Department of Cell and Molecular Biology, Karolinska Institutet , Stockholm, Sweden
| | - Simon Friedrich Jacobi
- 2 Department of Cell and Molecular Biology, Karolinska Institutet , Stockholm, Sweden
- 3 Institut für Experimentelle Pädiatrische Endokrinologie, Charité-Universitätsmedizin Berlin , Berlin, Germany
| | - Eddy Rijntjes
- 1 Institut für Experimentelle Endokrinologie, Charité-Universitätsmedizin Berlin , Berlin, Germany
| | - Stefan Mergler
- 4 Experimentelle Ophthalmologie, Charité-Universitätsmedizin Berlin , Berlin, Germany
| | - Marta Del Olmo
- 1 Institut für Experimentelle Endokrinologie, Charité-Universitätsmedizin Berlin , Berlin, Germany
| | - Carolin Stephanie Hoefig
- 1 Institut für Experimentelle Endokrinologie, Charité-Universitätsmedizin Berlin , Berlin, Germany
- 2 Department of Cell and Molecular Biology, Karolinska Institutet , Stockholm, Sweden
| | - Noushafarin Khajavi
- 3 Institut für Experimentelle Pädiatrische Endokrinologie, Charité-Universitätsmedizin Berlin , Berlin, Germany
| | - Ina Lehmphul
- 1 Institut für Experimentelle Endokrinologie, Charité-Universitätsmedizin Berlin , Berlin, Germany
| | - Heike Biebermann
- 3 Institut für Experimentelle Pädiatrische Endokrinologie, Charité-Universitätsmedizin Berlin , Berlin, Germany
| | - Jens Mittag
- 2 Department of Cell and Molecular Biology, Karolinska Institutet , Stockholm, Sweden
- 5 Molecular Endocrinology, Universitätsklinikum Schleswig-Holstein , Medizinische Klinik I/CBBM, Lübeck, Germany
| | - Josef Köhrle
- 1 Institut für Experimentelle Endokrinologie, Charité-Universitätsmedizin Berlin , Berlin, Germany
| |
Collapse
|
36
|
|
37
|
Bhosle VK, Rivera JC, Zhou TE, Omri S, Sanchez M, Hamel D, Zhu T, Rouget R, Rabea AA, Hou X, Lahaie I, Ribeiro-da-Silva A, Chemtob S. Nuclear localization of platelet-activating factor receptor controls retinal neovascularization. Cell Discov 2016; 2:16017. [PMID: 27462464 PMCID: PMC4941644 DOI: 10.1038/celldisc.2016.17] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 05/11/2016] [Indexed: 02/08/2023] Open
Abstract
Platelet-activating factor (PAF) is a pleiotropic phospholipid with proinflammatory, procoagulant and angiogenic actions on the vasculature. We and others have reported the presence of PAF receptor (Ptafr) at intracellular sites such as the nucleus. However, mechanisms of localization and physiologic functions of intracellular Ptafr remain poorly understood. We hereby identify the importance of C-terminal motif of the receptor and uncover novel roles of Rab11a GTPase and importin-5 in nuclear translocation of Ptafr in primary human retinal microvascular endothelial cells. Nuclear localization of Ptafr is independent of exogenous PAF stimulation as well as intracellular PAF biosynthesis. Moreover, nuclear Ptafr is responsible for the upregulation of unique set of growth factors, including vascular endothelial growth factor, in vitro and ex vivo. We further corroborate the intracrine PAF signaling, resulting in angiogenesis in vivo, using Ptafr antagonists with distinct plasma membrane permeability. Collectively, our findings show that nuclear Ptafr translocates in an agonist-independent manner, and distinctive functions of Ptafr based on its cellular localization point to another dimension needed for pharmacologic selectivity of drugs.
Collapse
Affiliation(s)
- Vikrant K Bhosle
- Department of Pharmacology and Therapeutics, McGill University, Montréal, QC, Canada; CHU Sainte Justine Hospital Research Centre, University of Montréal, Montréal, QC, Canada; Department of Ophthalmology, Research Centre of Hôpital Maisonneuve-Rosemont, University of Montréal, Montréal, QC, Canada
| | - José Carlos Rivera
- CHU Sainte Justine Hospital Research Centre, University of Montréal, Montréal, QC, Canada; Department of Ophthalmology, Research Centre of Hôpital Maisonneuve-Rosemont, University of Montréal, Montréal, QC, Canada
| | - Tianwei Ellen Zhou
- Department of Pharmacology and Therapeutics, McGill University, Montréal, QC, Canada; CHU Sainte Justine Hospital Research Centre, University of Montréal, Montréal, QC, Canada; Department of Ophthalmology, Research Centre of Hôpital Maisonneuve-Rosemont, University of Montréal, Montréal, QC, Canada; Department of Medicine, McGill University Health Center, Montreal, QC, Canada
| | - Samy Omri
- CHU Sainte Justine Hospital Research Centre, University of Montréal, Montréal, QC, Canada; Department of Ophthalmology, Research Centre of Hôpital Maisonneuve-Rosemont, University of Montréal, Montréal, QC, Canada
| | - Melanie Sanchez
- Department of Pharmacology and Therapeutics, McGill University, Montréal, QC, Canada; CHU Sainte Justine Hospital Research Centre, University of Montréal, Montréal, QC, Canada; Department of Ophthalmology, Research Centre of Hôpital Maisonneuve-Rosemont, University of Montréal, Montréal, QC, Canada
| | - David Hamel
- CHU Sainte Justine Hospital Research Centre, University of Montréal, Montréal, QC, Canada; Department of Pharmacology, University of Montréal, Montréal, QC, Canada
| | - Tang Zhu
- CHU Sainte Justine Hospital Research Centre, University of Montréal , Montréal, QC, Canada
| | - Raphael Rouget
- Department of Pharmacology and Therapeutics, McGill University, Montréal, QC, Canada; CHU Sainte Justine Hospital Research Centre, University of Montréal, Montréal, QC, Canada
| | - Areej Al Rabea
- Experimental Surgery, Montreal General Hospital, McGill University , Montréal, QC, Canada
| | - Xin Hou
- CHU Sainte Justine Hospital Research Centre, University of Montréal , Montréal, QC, Canada
| | - Isabelle Lahaie
- CHU Sainte Justine Hospital Research Centre, University of Montréal, Montréal, QC, Canada; Department of Ophthalmology, Research Centre of Hôpital Maisonneuve-Rosemont, University of Montréal, Montréal, QC, Canada
| | - Alfredo Ribeiro-da-Silva
- Department of Pharmacology and Therapeutics, McGill University, Montréal, QC, Canada; Alan Edwards Centre for Research on Pain, McGill University, Montréal, QC, Canada; Department of Anatomy and Cell Biology, McGill University, Montréal, QC, Canada
| | - Sylvain Chemtob
- Department of Pharmacology and Therapeutics, McGill University, Montréal, QC, Canada; CHU Sainte Justine Hospital Research Centre, University of Montréal, Montréal, QC, Canada; Department of Ophthalmology, Research Centre of Hôpital Maisonneuve-Rosemont, University of Montréal, Montréal, QC, Canada; Department of Pharmacology, University of Montréal, Montréal, QC, Canada; Departments of Pediatrics and Ophthalmology, Faculty of Medicine, University of Montréal, Montréal, QC, Canada
| |
Collapse
|
38
|
Wang JL, Chou CT, Liang WZ, Yeh JH, Kuo CC, Lee CY, Shieh P, Kuo DH, Chen FA, Jan CR. Effect of 2,5-dimethylphenol on Ca(2+) movement and viability in PC3 human prostate cancer cells. Toxicol Mech Methods 2016; 26:327-33. [PMID: 27310574 DOI: 10.3109/15376516.2016.1158893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The phenolic compound 2,5-dimethylphenol is a natural product. 2,5-Dimethylphenol has been shown to affect rat hepatic and pulmonary microsomal metabolism. However, the effect of 2,5-dimethylphenol on Ca(2+ )signaling and cyotoxicity has never been explored in any culture cells. This study explored the effect of 2,5-dimethylphenol on cytosolic free Ca(2+ )levels ([Ca(2+)]i) and cell viability in PC3 human prostate cancer cells. 2,5-Dimethylphenol at concentrations between 500 μM and 1000 μM evoked [Ca(2+)]i rises in a concentration-dependent manner. This Ca(2+ )signal was inhibited by approximately half by the removal of extracellular Ca(2+). 2,5-Dimethylphenol-induced Ca(2+ )influx was confirmed by Mn(2+)-induced quench of fura-2 fluorescence. Pretreatment with the protein kinase C (PKC) inhibitor GF109203X, nifedipine or the store-operated Ca(2+ )entry inhibitors (econazole or SKF96365) inhibited 2,5-dimethylphenol-induced Ca(2+ )signal in Ca(2+)-containing medium by ∼30%. Treatment with the endoplasmic reticulum Ca(2+ )pump inhibitor thapsigargin in Ca(2+)-free medium abolished 2,5-dimethylphenol-induced [Ca(2+)]i rises. Conversely, treatment with 2,5-dimethylphenol abolished thapsigargin-induced [Ca(2+)]i rises. Inhibition of phospholipase C (PLC) with U73122 reduced 2,5-dimethylphenol-evoked [Ca(2+)]i rises by ∼80%. 2,5-Dimethylphenol killed cells at concentrations of 350-1000 μM in a concentration-dependent fashion. Chelation of cytosolic Ca(2+ )with 1,2-bis(2-aminophenoxy)ethane-N, N, N', N'-tetraacetic acid/AM (BAPTA/AM) did not prevent 2,5-dimethylphenol's cytotoxicity. Together, in PC3 cells, 2,5-dimethylphenol induced [Ca(2+)]i rises that involved Ca(2+ )entry through PKC-regulated store-operated Ca(2+ )channels and PLC-dependent Ca(2+ )release from the endoplasmic reticulum. 2,5-Dimethylphenol induced cytotoxicity in a Ca(2+)-independent manner.
Collapse
Affiliation(s)
- Jue-Long Wang
- a Department of Rehabilitation , Kaohsiung Veterans General Hospital Tainan Branch , Tainan , Taiwan , ROC
| | - Chiang-Ting Chou
- b Department of Nursing , Division of Basic Medical Sciences, Chang Gung Institute of Technology , Chia-Yi, Taiwan , ROC .,c Chronic Diseases and Health Promotion Research Center, Chang Gung Institute of Technology , Chia-Yi, Taiwan , ROC
| | - Wei-Zhe Liang
- d Department of Medical Education and Research , Kaohsiung Veterans General Hospital , Kaohsiung , Taiwan , ROC
| | - Jeng-Hsien Yeh
- e Department of Pathology and Laboratory Medicine , Kaohsiung Veterans General Hospital , Kaohsiung , Taiwan , ROC
| | - Chun-Chi Kuo
- f Department of Nursing , Tzu Hui Institute of Technology , Pingtung , Taiwan , ROC
| | - Chao-Ying Lee
- g School of Pharmacy, China Medical University , Taichung , Taiwan , ROC
| | - Pochuen Shieh
- h Department of Pharmacy , Tajen University , Pingtung , Taiwan , ROC
| | - Daih-Huang Kuo
- h Department of Pharmacy , Tajen University , Pingtung , Taiwan , ROC
| | - Fu-An Chen
- h Department of Pharmacy , Tajen University , Pingtung , Taiwan , ROC
| | - Chung-Ren Jan
- d Department of Medical Education and Research , Kaohsiung Veterans General Hospital , Kaohsiung , Taiwan , ROC
| |
Collapse
|
39
|
Wang JL, Chou CT, Liu K, Liang WZ, Cheng JS, Chang HT, Chen IS, Lu T, Kuo CC, Yu CC, Shieh P, Kuo DH, Chen FA, Jan CR. Ca 2+ Signaling and Cell Death Induced by Protriptyline in HepG2 Human Hepatoma Cells. J Biochem Mol Toxicol 2016; 30:539-547. [PMID: 27252039 DOI: 10.1002/jbt.21820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 04/21/2016] [Accepted: 05/05/2016] [Indexed: 11/08/2022]
Abstract
The effect of protriptyline on Ca2+ physiology in human hepatoma is unclear. This study explored the effect of protriptyline on [Ca2+ ]i and cytotoxicity in HepG2 human hepatoma cells. Protriptyline (50-150 μM) evoked [Ca2+ ]i rises. The Ca2+ entry was inhibited by removal of Ca2+ . Protriptyline-induced Ca2+ entry was confirmed by Mn2+ -induced quench of fura-2 fluorescence. Except nifedipine, econazole, SKF96365, GF109203X, and phorbol 12-myristate 13 acetate did not inhibit Ca2+ entry. Treatment with the endoplasmic reticulum Ca2+ pump inhibitor 2,5-di-tert-butylhydroquinone (BHQ) inhibited 40% of protriptyline-induced response. Treatment with protriptyline abolished BHQ-induced response. Inhibition of phospholipase C (PLC) suppressed protriptyline-evoked response by 70%. At 20-40 μM, protriptyline killed cells which was not reversed by the Ca2+ chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid-acetoxymethyl ester (BAPTA/AM). Together, in HepG2 cells, protriptyline induced [Ca2+ ]i rises that involved Ca2+ entry through nifedipine-sensitive Ca2+ channels and PLC-dependent Ca2+ release from endoplasmic reticulum. Protriptyline induced Ca2+ -independent cell death.
Collapse
Affiliation(s)
- Jue-Long Wang
- Department of Rehabilitation, Kaohsiung Veterans General Hospital Tainan Branch, Tainan, Taiwan
| | - Chiang-Ting Chou
- Department of Nursing, Division of Basic Medical Sciences, Chang Gung Institute of Technology, Chia-Yi, Taiwan.,Chronic Diseases and Health Promotion Research Center, Chang Gung Institute of Technology, Chia-Yi, Taiwan
| | - Kang Liu
- Department of Anesthesia, Kaohsiung Veterans General Hospital Tainan Branch, Tainan, Taiwan
| | - Wei-Zhe Liang
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Jin-Shiung Cheng
- Department of Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Hong-Tai Chang
- Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - I-Shu Chen
- Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Ti Lu
- Department of Psychiatry, Kaohsiung Veterans General Hospital, Kaohsiung, 813, Taiwan
| | - Chun-Chi Kuo
- Department of Nursing, Tzu Hui Institute of Technology, Pingtung, Taiwan
| | - Chia-Cheng Yu
- Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Pochuen Shieh
- Department of Pharmacy, Tajen University, Pingtung, Taiwan
| | - Daih-Huang Kuo
- Department of Pharmacy, Tajen University, Pingtung, Taiwan
| | - Fu-An Chen
- Department of Pharmacy, Tajen University, Pingtung, Taiwan
| | - Chung-Ren Jan
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| |
Collapse
|
40
|
Kataoka H, Ariyama Y, Deushi M, Osaka M, Nitta K, Yoshida M. Inhibitory Effect of Serotonin Antagonist on Leukocyte-Endothelial Interactions In Vivo and In Vitro. PLoS One 2016; 11:e0147929. [PMID: 26824242 PMCID: PMC4732655 DOI: 10.1371/journal.pone.0147929] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Accepted: 01/11/2016] [Indexed: 11/25/2022] Open
Abstract
Background Although 5-HT2A serotonergic antagonists have been used to treat vascular disease in patients with diabetes mellitus or obesity, their effects on leukocyte-endothelial interactions have not been fully investigated. In this study, we assessed the effects of sarpogrelate hydrochloride (SRPO), a 5-HT2A receptor inverse agonist, on leukocyte-endothelial cell interactions in obesity both in vivo and in vitro. Methods and Findings In the in vivo experiment, C57BL/6 mice were fed a high-fat high-fructose diet (HFFD), comprising 20% fat and 30% fructose, with or without intraperitoneal injection of 5 mg/kg/day SRPO for 4 weeks. The body weight, visceral fat weight, and serum monocyte chemoattractant protein-1 levels in the mice increased significantly with the HFFD, but these effects were prevented by chronic injections of SRPO. Intravital microscopy of the femoral artery detected significant leukocyte-endothelial interactions after treatment with HFFD, but these leukocyte-endothelial interactions were reduced in the mice injected with SRPO. In the in vitro experiment, pre-incubation of activated human umbilical vein endothelial cells (HUVECs) with platelet-rich plasma (PRP) induced THP-1 cell adhesion under physiological flow conditions, but the adhesion was reduced by pretreatment of PRP with SRPO. A fluorescent immunobinding assay showed that PRP induced significant upregulation of E-selectin in HUVECs, but this upregulation was reduced by pretreatment of PRP with SRPO. In other in vitro conditions, pre-incubation of THP-1 cells with phorbol 12-myristate 13-acetate increased the adhesion of THP-1 cells to activated HUVECs under rotational conditions, but this adhesion was reduced by pretreatment with SRPO. Western blotting analysis showed that protein kinase C α activation in THP-1 cells was inhibited by SRPO. Conclusion Our findings indicated that SRPO inhibits vascular inflammation in obesity via inactivation of platelets and leukocytes, and improvement of obese.
Collapse
Affiliation(s)
- Hiroshi Kataoka
- Department of Medicine, Kidney Center, Tokyo Women’s Medical University, Tokyo, Japan
| | - Yuno Ariyama
- Department of Life Sciences and Bioethics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Michiyo Deushi
- Department of Life Sciences and Bioethics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Mizuko Osaka
- Department of Life Sciences and Bioethics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kosaku Nitta
- Department of Medicine, Kidney Center, Tokyo Women’s Medical University, Tokyo, Japan
| | - Masayuki Yoshida
- Department of Life Sciences and Bioethics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
- * E-mail:
| |
Collapse
|
41
|
Horvat A, Zorec R, Vardjan N. Adrenergic stimulation of single rat astrocytes results in distinct temporal changes in intracellular Ca(2+) and cAMP-dependent PKA responses. Cell Calcium 2016; 59:156-63. [PMID: 26794933 DOI: 10.1016/j.ceca.2016.01.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 01/04/2016] [Accepted: 01/05/2016] [Indexed: 01/24/2023]
Abstract
During the arousal and startle response, locus coeruleus neurons, innervating practically all brain regions, release catecholamine noradrenaline, which reaches neural brain cells, including astrocytes. These glial cells respond to noradrenergic stimulation by simultaneous activation of the α- and β-adrenergic receptors (ARs) in the plasma membrane with increasing cytosolic levels of Ca(2+) and cAMP, respectively. AR-activation controls a myriad of processes in astrocytes including glucose metabolism, gliosignal vesicle homeostasis, gene transcription, cell morphology and antigen-presenting functions, all of which have distinct temporal characteristics. It is known from biochemical studies that Ca(2+) and cAMP signals in astrocytes can interact, however it is presently unclear whether the temporal properties of the two second messengers are time associated upon AR-activation. We used confocal microscopy to study AR agonist-induced intracellular changes in Ca(2+) and cAMP in single cultured cortical rat astrocytes by real-time monitoring of the Ca(2+) indicator Fluo4-AM and the fluorescence resonance energy transfer-based nanosensor A-kinase activity reporter 2 (AKAR2), which reports the activity of cAMP via its downstream effector protein kinase A (PKA). The results revealed that the activation of α1-ARs by phenylephrine triggers periodic (phasic) Ca(2+) oscillations within 10s, while the activation of β-ARs by isoprenaline leads to a ∼10-fold slower tonic rise to a plateau in cAMP/PKA activity devoid of oscillations. Thus the concomitant activation of α- and β-ARs triggers the Ca(2+) and cAMP second messenger systems in astrocytes with distinct temporal properties, which appears to be tailored to regulate downstream effectors in different time domains.
Collapse
Affiliation(s)
- Anemari Horvat
- Laboratory of Neuroendocrinology - Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia
| | - Robert Zorec
- Laboratory of Neuroendocrinology - Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia; Celica Biomedical, Tehnološki park 24, 1000 Ljubljana, Slovenia.
| | - Nina Vardjan
- Laboratory of Neuroendocrinology - Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia; Celica Biomedical, Tehnološki park 24, 1000 Ljubljana, Slovenia.
| |
Collapse
|
42
|
Grunddal KV, Ratner CF, Svendsen B, Sommer F, Engelstoft MS, Madsen AN, Pedersen J, Nøhr MK, Egerod KL, Nawrocki AR, Kowalski T, Howard AD, Poulsen SS, Offermanns S, Bäckhed F, Holst JJ, Holst B, Schwartz TW. Neurotensin Is Coexpressed, Coreleased, and Acts Together With GLP-1 and PYY in Enteroendocrine Control of Metabolism. Endocrinology 2016; 157:176-94. [PMID: 26469136 DOI: 10.1210/en.2015-1600] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The 2 gut hormones glucagon-like peptide-1 (GLP-1) and peptide YY (PYY) are well known to be coexpressed, costored, and released together to coact in the control of key metabolic target organs. However, recently, it became clear that several other gut hormones can be coexpressed in the intestinal-specific lineage of enteroendocrine cells. Here, we focus on the anatomical and functional consequences of the coexpression of neurotensin with GLP-1 and PYY in the distal small intestine. Fluorescence-activated cell sorting analysis, laser capture, and triple staining demonstrated that GLP-1 cells in the crypts become increasingly multihormonal, ie, coexpressing PYY and neurotensin as they move up the villus. Proglucagon promoter and pertussis toxin receptor-driven cell ablation and reappearance studies indicated that although all the cells die, the GLP-1 cells reappear more quickly than PYY- and neurotensin-positive cells. High-resolution confocal fluorescence microscopy demonstrated that neurotensin is stored in secretory granules distinct from GLP-1 and PYY storing granules. Nevertheless, the 3 peptides were cosecreted from both perfused small intestines and colonic crypt cultures in response to a series of metabolite, neuropeptide, and hormonal stimuli. Importantly, neurotensin acts synergistically, ie, more than additively together with GLP-1 and PYY to decrease palatable food intake and inhibit gastric emptying, but affects glucose homeostasis in a more complex manner. Thus, neurotensin is a major gut hormone deeply integrated with GLP-1 and PYY, which should be taken into account when exploiting the enteroendocrine regulation of metabolism pharmacologically.
Collapse
Affiliation(s)
- Kaare V Grunddal
- Novo Nordisk Foundation Center for Basic Metabolic Research (K.V.G., C.F.R., B.S., M.S.E., A.N.M., J.P., M.K.N., K.L.E., F.B., J.J.H., B.H., T.W.S.), Section for Metabolic Receptology and Enteroendocrinology; Laboratory for Molecular Pharmacology (K.V.G., C.F.R., M.S.E., A.N.M., M.K.N., K.L.E., B.H., T.W.S.), Department of Neuroscience and Pharmacology; and Department of Biomedical Sciences (B.S., J.P., S.S.P., J.J.H.), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark; Department of Molecular and Clinical Medicine (F.S., F.B.), Sahlgrenska Center for Cardiovascular and Metabolic Research/Wallenberg Laboratory, University of Gothenburg, 413 45 Gothenburg, Sweden; Danish Diabetes Academy (M.S.E.), 5000 Odense, Denmark; Merck Research Laboratories (A.R.N., T.K., A.D.H.), Kenilworth, NJ 07033; and Department of Pharmacology (S.O.), Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Cecilia F Ratner
- Novo Nordisk Foundation Center for Basic Metabolic Research (K.V.G., C.F.R., B.S., M.S.E., A.N.M., J.P., M.K.N., K.L.E., F.B., J.J.H., B.H., T.W.S.), Section for Metabolic Receptology and Enteroendocrinology; Laboratory for Molecular Pharmacology (K.V.G., C.F.R., M.S.E., A.N.M., M.K.N., K.L.E., B.H., T.W.S.), Department of Neuroscience and Pharmacology; and Department of Biomedical Sciences (B.S., J.P., S.S.P., J.J.H.), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark; Department of Molecular and Clinical Medicine (F.S., F.B.), Sahlgrenska Center for Cardiovascular and Metabolic Research/Wallenberg Laboratory, University of Gothenburg, 413 45 Gothenburg, Sweden; Danish Diabetes Academy (M.S.E.), 5000 Odense, Denmark; Merck Research Laboratories (A.R.N., T.K., A.D.H.), Kenilworth, NJ 07033; and Department of Pharmacology (S.O.), Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Berit Svendsen
- Novo Nordisk Foundation Center for Basic Metabolic Research (K.V.G., C.F.R., B.S., M.S.E., A.N.M., J.P., M.K.N., K.L.E., F.B., J.J.H., B.H., T.W.S.), Section for Metabolic Receptology and Enteroendocrinology; Laboratory for Molecular Pharmacology (K.V.G., C.F.R., M.S.E., A.N.M., M.K.N., K.L.E., B.H., T.W.S.), Department of Neuroscience and Pharmacology; and Department of Biomedical Sciences (B.S., J.P., S.S.P., J.J.H.), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark; Department of Molecular and Clinical Medicine (F.S., F.B.), Sahlgrenska Center for Cardiovascular and Metabolic Research/Wallenberg Laboratory, University of Gothenburg, 413 45 Gothenburg, Sweden; Danish Diabetes Academy (M.S.E.), 5000 Odense, Denmark; Merck Research Laboratories (A.R.N., T.K., A.D.H.), Kenilworth, NJ 07033; and Department of Pharmacology (S.O.), Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Felix Sommer
- Novo Nordisk Foundation Center for Basic Metabolic Research (K.V.G., C.F.R., B.S., M.S.E., A.N.M., J.P., M.K.N., K.L.E., F.B., J.J.H., B.H., T.W.S.), Section for Metabolic Receptology and Enteroendocrinology; Laboratory for Molecular Pharmacology (K.V.G., C.F.R., M.S.E., A.N.M., M.K.N., K.L.E., B.H., T.W.S.), Department of Neuroscience and Pharmacology; and Department of Biomedical Sciences (B.S., J.P., S.S.P., J.J.H.), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark; Department of Molecular and Clinical Medicine (F.S., F.B.), Sahlgrenska Center for Cardiovascular and Metabolic Research/Wallenberg Laboratory, University of Gothenburg, 413 45 Gothenburg, Sweden; Danish Diabetes Academy (M.S.E.), 5000 Odense, Denmark; Merck Research Laboratories (A.R.N., T.K., A.D.H.), Kenilworth, NJ 07033; and Department of Pharmacology (S.O.), Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Maja S Engelstoft
- Novo Nordisk Foundation Center for Basic Metabolic Research (K.V.G., C.F.R., B.S., M.S.E., A.N.M., J.P., M.K.N., K.L.E., F.B., J.J.H., B.H., T.W.S.), Section for Metabolic Receptology and Enteroendocrinology; Laboratory for Molecular Pharmacology (K.V.G., C.F.R., M.S.E., A.N.M., M.K.N., K.L.E., B.H., T.W.S.), Department of Neuroscience and Pharmacology; and Department of Biomedical Sciences (B.S., J.P., S.S.P., J.J.H.), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark; Department of Molecular and Clinical Medicine (F.S., F.B.), Sahlgrenska Center for Cardiovascular and Metabolic Research/Wallenberg Laboratory, University of Gothenburg, 413 45 Gothenburg, Sweden; Danish Diabetes Academy (M.S.E.), 5000 Odense, Denmark; Merck Research Laboratories (A.R.N., T.K., A.D.H.), Kenilworth, NJ 07033; and Department of Pharmacology (S.O.), Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Andreas N Madsen
- Novo Nordisk Foundation Center for Basic Metabolic Research (K.V.G., C.F.R., B.S., M.S.E., A.N.M., J.P., M.K.N., K.L.E., F.B., J.J.H., B.H., T.W.S.), Section for Metabolic Receptology and Enteroendocrinology; Laboratory for Molecular Pharmacology (K.V.G., C.F.R., M.S.E., A.N.M., M.K.N., K.L.E., B.H., T.W.S.), Department of Neuroscience and Pharmacology; and Department of Biomedical Sciences (B.S., J.P., S.S.P., J.J.H.), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark; Department of Molecular and Clinical Medicine (F.S., F.B.), Sahlgrenska Center for Cardiovascular and Metabolic Research/Wallenberg Laboratory, University of Gothenburg, 413 45 Gothenburg, Sweden; Danish Diabetes Academy (M.S.E.), 5000 Odense, Denmark; Merck Research Laboratories (A.R.N., T.K., A.D.H.), Kenilworth, NJ 07033; and Department of Pharmacology (S.O.), Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Jens Pedersen
- Novo Nordisk Foundation Center for Basic Metabolic Research (K.V.G., C.F.R., B.S., M.S.E., A.N.M., J.P., M.K.N., K.L.E., F.B., J.J.H., B.H., T.W.S.), Section for Metabolic Receptology and Enteroendocrinology; Laboratory for Molecular Pharmacology (K.V.G., C.F.R., M.S.E., A.N.M., M.K.N., K.L.E., B.H., T.W.S.), Department of Neuroscience and Pharmacology; and Department of Biomedical Sciences (B.S., J.P., S.S.P., J.J.H.), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark; Department of Molecular and Clinical Medicine (F.S., F.B.), Sahlgrenska Center for Cardiovascular and Metabolic Research/Wallenberg Laboratory, University of Gothenburg, 413 45 Gothenburg, Sweden; Danish Diabetes Academy (M.S.E.), 5000 Odense, Denmark; Merck Research Laboratories (A.R.N., T.K., A.D.H.), Kenilworth, NJ 07033; and Department of Pharmacology (S.O.), Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Mark K Nøhr
- Novo Nordisk Foundation Center for Basic Metabolic Research (K.V.G., C.F.R., B.S., M.S.E., A.N.M., J.P., M.K.N., K.L.E., F.B., J.J.H., B.H., T.W.S.), Section for Metabolic Receptology and Enteroendocrinology; Laboratory for Molecular Pharmacology (K.V.G., C.F.R., M.S.E., A.N.M., M.K.N., K.L.E., B.H., T.W.S.), Department of Neuroscience and Pharmacology; and Department of Biomedical Sciences (B.S., J.P., S.S.P., J.J.H.), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark; Department of Molecular and Clinical Medicine (F.S., F.B.), Sahlgrenska Center for Cardiovascular and Metabolic Research/Wallenberg Laboratory, University of Gothenburg, 413 45 Gothenburg, Sweden; Danish Diabetes Academy (M.S.E.), 5000 Odense, Denmark; Merck Research Laboratories (A.R.N., T.K., A.D.H.), Kenilworth, NJ 07033; and Department of Pharmacology (S.O.), Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Kristoffer L Egerod
- Novo Nordisk Foundation Center for Basic Metabolic Research (K.V.G., C.F.R., B.S., M.S.E., A.N.M., J.P., M.K.N., K.L.E., F.B., J.J.H., B.H., T.W.S.), Section for Metabolic Receptology and Enteroendocrinology; Laboratory for Molecular Pharmacology (K.V.G., C.F.R., M.S.E., A.N.M., M.K.N., K.L.E., B.H., T.W.S.), Department of Neuroscience and Pharmacology; and Department of Biomedical Sciences (B.S., J.P., S.S.P., J.J.H.), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark; Department of Molecular and Clinical Medicine (F.S., F.B.), Sahlgrenska Center for Cardiovascular and Metabolic Research/Wallenberg Laboratory, University of Gothenburg, 413 45 Gothenburg, Sweden; Danish Diabetes Academy (M.S.E.), 5000 Odense, Denmark; Merck Research Laboratories (A.R.N., T.K., A.D.H.), Kenilworth, NJ 07033; and Department of Pharmacology (S.O.), Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Andrea R Nawrocki
- Novo Nordisk Foundation Center for Basic Metabolic Research (K.V.G., C.F.R., B.S., M.S.E., A.N.M., J.P., M.K.N., K.L.E., F.B., J.J.H., B.H., T.W.S.), Section for Metabolic Receptology and Enteroendocrinology; Laboratory for Molecular Pharmacology (K.V.G., C.F.R., M.S.E., A.N.M., M.K.N., K.L.E., B.H., T.W.S.), Department of Neuroscience and Pharmacology; and Department of Biomedical Sciences (B.S., J.P., S.S.P., J.J.H.), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark; Department of Molecular and Clinical Medicine (F.S., F.B.), Sahlgrenska Center for Cardiovascular and Metabolic Research/Wallenberg Laboratory, University of Gothenburg, 413 45 Gothenburg, Sweden; Danish Diabetes Academy (M.S.E.), 5000 Odense, Denmark; Merck Research Laboratories (A.R.N., T.K., A.D.H.), Kenilworth, NJ 07033; and Department of Pharmacology (S.O.), Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Timothy Kowalski
- Novo Nordisk Foundation Center for Basic Metabolic Research (K.V.G., C.F.R., B.S., M.S.E., A.N.M., J.P., M.K.N., K.L.E., F.B., J.J.H., B.H., T.W.S.), Section for Metabolic Receptology and Enteroendocrinology; Laboratory for Molecular Pharmacology (K.V.G., C.F.R., M.S.E., A.N.M., M.K.N., K.L.E., B.H., T.W.S.), Department of Neuroscience and Pharmacology; and Department of Biomedical Sciences (B.S., J.P., S.S.P., J.J.H.), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark; Department of Molecular and Clinical Medicine (F.S., F.B.), Sahlgrenska Center for Cardiovascular and Metabolic Research/Wallenberg Laboratory, University of Gothenburg, 413 45 Gothenburg, Sweden; Danish Diabetes Academy (M.S.E.), 5000 Odense, Denmark; Merck Research Laboratories (A.R.N., T.K., A.D.H.), Kenilworth, NJ 07033; and Department of Pharmacology (S.O.), Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Andrew D Howard
- Novo Nordisk Foundation Center for Basic Metabolic Research (K.V.G., C.F.R., B.S., M.S.E., A.N.M., J.P., M.K.N., K.L.E., F.B., J.J.H., B.H., T.W.S.), Section for Metabolic Receptology and Enteroendocrinology; Laboratory for Molecular Pharmacology (K.V.G., C.F.R., M.S.E., A.N.M., M.K.N., K.L.E., B.H., T.W.S.), Department of Neuroscience and Pharmacology; and Department of Biomedical Sciences (B.S., J.P., S.S.P., J.J.H.), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark; Department of Molecular and Clinical Medicine (F.S., F.B.), Sahlgrenska Center for Cardiovascular and Metabolic Research/Wallenberg Laboratory, University of Gothenburg, 413 45 Gothenburg, Sweden; Danish Diabetes Academy (M.S.E.), 5000 Odense, Denmark; Merck Research Laboratories (A.R.N., T.K., A.D.H.), Kenilworth, NJ 07033; and Department of Pharmacology (S.O.), Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Steen Seier Poulsen
- Novo Nordisk Foundation Center for Basic Metabolic Research (K.V.G., C.F.R., B.S., M.S.E., A.N.M., J.P., M.K.N., K.L.E., F.B., J.J.H., B.H., T.W.S.), Section for Metabolic Receptology and Enteroendocrinology; Laboratory for Molecular Pharmacology (K.V.G., C.F.R., M.S.E., A.N.M., M.K.N., K.L.E., B.H., T.W.S.), Department of Neuroscience and Pharmacology; and Department of Biomedical Sciences (B.S., J.P., S.S.P., J.J.H.), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark; Department of Molecular and Clinical Medicine (F.S., F.B.), Sahlgrenska Center for Cardiovascular and Metabolic Research/Wallenberg Laboratory, University of Gothenburg, 413 45 Gothenburg, Sweden; Danish Diabetes Academy (M.S.E.), 5000 Odense, Denmark; Merck Research Laboratories (A.R.N., T.K., A.D.H.), Kenilworth, NJ 07033; and Department of Pharmacology (S.O.), Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Stefan Offermanns
- Novo Nordisk Foundation Center for Basic Metabolic Research (K.V.G., C.F.R., B.S., M.S.E., A.N.M., J.P., M.K.N., K.L.E., F.B., J.J.H., B.H., T.W.S.), Section for Metabolic Receptology and Enteroendocrinology; Laboratory for Molecular Pharmacology (K.V.G., C.F.R., M.S.E., A.N.M., M.K.N., K.L.E., B.H., T.W.S.), Department of Neuroscience and Pharmacology; and Department of Biomedical Sciences (B.S., J.P., S.S.P., J.J.H.), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark; Department of Molecular and Clinical Medicine (F.S., F.B.), Sahlgrenska Center for Cardiovascular and Metabolic Research/Wallenberg Laboratory, University of Gothenburg, 413 45 Gothenburg, Sweden; Danish Diabetes Academy (M.S.E.), 5000 Odense, Denmark; Merck Research Laboratories (A.R.N., T.K., A.D.H.), Kenilworth, NJ 07033; and Department of Pharmacology (S.O.), Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Fredrik Bäckhed
- Novo Nordisk Foundation Center for Basic Metabolic Research (K.V.G., C.F.R., B.S., M.S.E., A.N.M., J.P., M.K.N., K.L.E., F.B., J.J.H., B.H., T.W.S.), Section for Metabolic Receptology and Enteroendocrinology; Laboratory for Molecular Pharmacology (K.V.G., C.F.R., M.S.E., A.N.M., M.K.N., K.L.E., B.H., T.W.S.), Department of Neuroscience and Pharmacology; and Department of Biomedical Sciences (B.S., J.P., S.S.P., J.J.H.), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark; Department of Molecular and Clinical Medicine (F.S., F.B.), Sahlgrenska Center for Cardiovascular and Metabolic Research/Wallenberg Laboratory, University of Gothenburg, 413 45 Gothenburg, Sweden; Danish Diabetes Academy (M.S.E.), 5000 Odense, Denmark; Merck Research Laboratories (A.R.N., T.K., A.D.H.), Kenilworth, NJ 07033; and Department of Pharmacology (S.O.), Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Jens J Holst
- Novo Nordisk Foundation Center for Basic Metabolic Research (K.V.G., C.F.R., B.S., M.S.E., A.N.M., J.P., M.K.N., K.L.E., F.B., J.J.H., B.H., T.W.S.), Section for Metabolic Receptology and Enteroendocrinology; Laboratory for Molecular Pharmacology (K.V.G., C.F.R., M.S.E., A.N.M., M.K.N., K.L.E., B.H., T.W.S.), Department of Neuroscience and Pharmacology; and Department of Biomedical Sciences (B.S., J.P., S.S.P., J.J.H.), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark; Department of Molecular and Clinical Medicine (F.S., F.B.), Sahlgrenska Center for Cardiovascular and Metabolic Research/Wallenberg Laboratory, University of Gothenburg, 413 45 Gothenburg, Sweden; Danish Diabetes Academy (M.S.E.), 5000 Odense, Denmark; Merck Research Laboratories (A.R.N., T.K., A.D.H.), Kenilworth, NJ 07033; and Department of Pharmacology (S.O.), Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Birgitte Holst
- Novo Nordisk Foundation Center for Basic Metabolic Research (K.V.G., C.F.R., B.S., M.S.E., A.N.M., J.P., M.K.N., K.L.E., F.B., J.J.H., B.H., T.W.S.), Section for Metabolic Receptology and Enteroendocrinology; Laboratory for Molecular Pharmacology (K.V.G., C.F.R., M.S.E., A.N.M., M.K.N., K.L.E., B.H., T.W.S.), Department of Neuroscience and Pharmacology; and Department of Biomedical Sciences (B.S., J.P., S.S.P., J.J.H.), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark; Department of Molecular and Clinical Medicine (F.S., F.B.), Sahlgrenska Center for Cardiovascular and Metabolic Research/Wallenberg Laboratory, University of Gothenburg, 413 45 Gothenburg, Sweden; Danish Diabetes Academy (M.S.E.), 5000 Odense, Denmark; Merck Research Laboratories (A.R.N., T.K., A.D.H.), Kenilworth, NJ 07033; and Department of Pharmacology (S.O.), Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Thue W Schwartz
- Novo Nordisk Foundation Center for Basic Metabolic Research (K.V.G., C.F.R., B.S., M.S.E., A.N.M., J.P., M.K.N., K.L.E., F.B., J.J.H., B.H., T.W.S.), Section for Metabolic Receptology and Enteroendocrinology; Laboratory for Molecular Pharmacology (K.V.G., C.F.R., M.S.E., A.N.M., M.K.N., K.L.E., B.H., T.W.S.), Department of Neuroscience and Pharmacology; and Department of Biomedical Sciences (B.S., J.P., S.S.P., J.J.H.), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark; Department of Molecular and Clinical Medicine (F.S., F.B.), Sahlgrenska Center for Cardiovascular and Metabolic Research/Wallenberg Laboratory, University of Gothenburg, 413 45 Gothenburg, Sweden; Danish Diabetes Academy (M.S.E.), 5000 Odense, Denmark; Merck Research Laboratories (A.R.N., T.K., A.D.H.), Kenilworth, NJ 07033; and Department of Pharmacology (S.O.), Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| |
Collapse
|
43
|
Chantreau V, Taddese B, Munier M, Gourdin L, Henrion D, Rodien P, Chabbert M. Molecular Insights into the Transmembrane Domain of the Thyrotropin Receptor. PLoS One 2015; 10:e0142250. [PMID: 26545118 PMCID: PMC4636318 DOI: 10.1371/journal.pone.0142250] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 10/20/2015] [Indexed: 12/12/2022] Open
Abstract
The thyrotropin receptor (TSHR) is a G protein-coupled receptor (GPCR) that is member of the leucine-rich repeat subfamily (LGR). In the absence of crystal structure, the success of rational design of ligands targeting the receptor internal cavity depends on the quality of the TSHR models built. In this subfamily, transmembrane helices (TM) 2 and 5 are characterized by the absence of proline compared to most receptors, raising the question of the structural conformation of these helices. To gain insight into the structural properties of these helices, we carried out bioinformatics and experimental studies. Evolutionary analysis of the LGR family revealed a deletion in TM5 but provided no information on TM2. Wild type residues at positions 2.58, 2.59 or 2.60 in TM2 and/or at position 5.50 in TM5 were substituted to proline. Depending on the position of the proline substitution, different effects were observed on membrane expression, glycosylation, constitutive cAMP activity and responses to thyrotropin. Only proline substitution at position 2.59 maintained complex glycosylation and high membrane expression, supporting occurrence of a bulged TM2. The TSHR transmembrane domain was modeled by homology with the orexin 2 receptor, using a protocol that forced the deletion of one residue in the TM5 bulge of the template. The stability of the model was assessed by molecular dynamics simulations. TM5 straightened during the equilibration phase and was stable for the remainder of the simulations. Our data support a structural model of the TSHR transmembrane domain with a bulged TM2 and a straight TM5 that is specific of glycoprotein hormone receptors.
Collapse
MESH Headings
- Amino Acid Sequence
- Amino Acid Substitution
- Computational Biology
- Cyclic AMP/metabolism
- Evolution, Molecular
- Glycosylation
- HEK293 Cells
- Humans
- Models, Molecular
- Molecular Dynamics Simulation
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Phylogeny
- Protein Structure, Tertiary
- Receptors, G-Protein-Coupled/chemistry
- Receptors, G-Protein-Coupled/classification
- Receptors, G-Protein-Coupled/genetics
- Receptors, Thyrotropin/chemistry
- Receptors, Thyrotropin/genetics
- Receptors, Thyrotropin/metabolism
- Recombinant Proteins/chemistry
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Sequence Deletion
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- Vanessa Chantreau
- UMR CNRS 6214 –INSERM 1083, Laboratory of Integrated Neurovascular and Mitochondrial Biology, University of Angers, Angers, France
| | - Bruck Taddese
- UMR CNRS 6214 –INSERM 1083, Laboratory of Integrated Neurovascular and Mitochondrial Biology, University of Angers, Angers, France
| | - Mathilde Munier
- UMR CNRS 6214 –INSERM 1083, Laboratory of Integrated Neurovascular and Mitochondrial Biology, University of Angers, Angers, France
| | - Louis Gourdin
- UMR CNRS 6214 –INSERM 1083, Laboratory of Integrated Neurovascular and Mitochondrial Biology, University of Angers, Angers, France
- Reference Centre for the pathologies of hormonal receptivity, Department of Endocrinology, Centre Hospitalier Universitaire of Angers, Angers, France
| | - Daniel Henrion
- UMR CNRS 6214 –INSERM 1083, Laboratory of Integrated Neurovascular and Mitochondrial Biology, University of Angers, Angers, France
| | - Patrice Rodien
- UMR CNRS 6214 –INSERM 1083, Laboratory of Integrated Neurovascular and Mitochondrial Biology, University of Angers, Angers, France
- Reference Centre for the pathologies of hormonal receptivity, Department of Endocrinology, Centre Hospitalier Universitaire of Angers, Angers, France
| | - Marie Chabbert
- UMR CNRS 6214 –INSERM 1083, Laboratory of Integrated Neurovascular and Mitochondrial Biology, University of Angers, Angers, France
| |
Collapse
|
44
|
Robinson JD, McDonald PH. The orexin 1 receptor modulates kappa opioid receptor function via a JNK-dependent mechanism. Cell Signal 2015; 27:1449-56. [PMID: 25857454 PMCID: PMC5549559 DOI: 10.1016/j.cellsig.2015.03.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 03/23/2015] [Accepted: 03/30/2015] [Indexed: 10/23/2022]
Abstract
The orexin 1 receptor (OX1R) and the kappa opioid receptor (KOR) are two G protein-coupled receptors (GPCRs) previously demonstrated to play important roles in modulating the rewarding effects of drugs of abuse such as cocaine. Using cells heterologously expressing both receptors, we investigated whether OX1R can regulate the function of KOR and vice versa. Activation of OX1R was found to attenuate agonist-activated KOR-mediated inhibition of cAMP production. In contrast, agonist-activated KOR-mediated β-arrestin recruitment and p38 activation were enhanced in the presence of activated OX1R. These effects are independent of OX1R internalization but are blocked in the presence of the JNK inhibitor SP-600125. OX1R signaling does not affect ligand binding by KOR. Taken together, these data suggest that OX1R signaling can modulate KOR function in a JNK-dependent manner, promoting preferential signaling of KOR via β-arrestin/p38 rather than Gαi. Conversely, Gαq coupling of OX1R is unaffected by activation of KOR, suggesting that this crosstalk is unidirectional. Given that KOR Gαi-mediated signaling events and β-arrestin-mediated signaling events are thought to promote distinct cellular responses and physiological outcomes downstream of KOR activation, this mechanism may have important implications on the behavioral effects of KOR activity.
Collapse
Affiliation(s)
- James D Robinson
- Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Patricia H McDonald
- Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, FL 33458, USA.
| |
Collapse
|
45
|
Hierarchical feedback modules and reaction hubs in cell signaling networks. PLoS One 2015; 10:e0125886. [PMID: 25951347 PMCID: PMC4424001 DOI: 10.1371/journal.pone.0125886] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 03/24/2015] [Indexed: 11/20/2022] Open
Abstract
Despite much effort, identification of modular structures and study of their organizing and functional roles remain a formidable challenge in molecular systems biology, which, however, is essential in reaching a systematic understanding of large-scale cell regulation networks and hence gaining capacity of exerting effective interference to cell activity. Combining graph theoretic methods with available dynamics information, we successfully retrieved multiple feedback modules of three important signaling networks. These feedbacks are structurally arranged in a hierarchical way and dynamically produce layered temporal profiles of output signals. We found that global and local feedbacks act in very different ways and on distinct features of the information flow conveyed by signal transduction but work highly coordinately to implement specific biological functions. The redundancy embodied with multiple signal-relaying channels and feedback controls bestow great robustness and the reaction hubs seated at junctions of different paths announce their paramount importance through exquisite parameter management. The current investigation reveals intriguing general features of the organization of cell signaling networks and their relevance to biological function, which may find interesting applications in analysis, design and control of bio-networks.
Collapse
|
46
|
Ha JY, Lee YC, Park SJ, Jang YH, Kim JH. Remifentanil postconditioning has cross talk with adenosine receptors in the ischemic-reperfused rat heart. J Surg Res 2015; 195:37-43. [DOI: 10.1016/j.jss.2015.01.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 12/31/2014] [Accepted: 01/08/2015] [Indexed: 12/31/2022]
|
47
|
Infection by Toxoplasma gondii, a severe parasite in neonates and AIDS patients, causes impaired anion secretion in airway epithelia. Proc Natl Acad Sci U S A 2015; 112:4435-40. [PMID: 25831498 DOI: 10.1073/pnas.1503474112] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The airway epithelia initiate and modulate the inflammatory responses to various pathogens. The cystic fibrosis transmembrane conductance regulator-mediated Cl(-) secretion system plays a key role in mucociliary clearance of inhaled pathogens. We have explored the effects of Toxoplasma gondii, an opportunistic intracellular protozoan parasite, on Cl(-) secretion of the mouse tracheal epithelia. In this study, ATP-induced Cl(-) secretion indicated the presence of a biphasic short-circuit current (Isc) response, which was mediated by a Ca(2+)-activated Cl(-) channel (CaCC) and the cystic fibrosis transmembrane conductance regulator. However, the ATP-evoked Cl(-) secretion in T. gondii-infected mouse tracheal epithelia and the elevation of [Ca(2+)]i in T. gondii-infected human airway epithelial cells were suppressed. Quantitative reverse transcription-PCR revealed that the mRNA expression level of the P2Y2 receptor (P2Y2-R) increased significantly in T. gondii-infected mouse tracheal cells. This revealed the influence that pathological changes in P2Y2-R had on the downstream signal, suggesting that P2Y2-R was involved in the mechanism underlying T. gondii infection in airways. These results link T. gondii infection as well as other pathogen infections to Cl(-) secretion, via P2Y2-R, which may provide new insights for the treatment of pneumonia caused by pathogens including T. gondii.
Collapse
|
48
|
Baker SA, Hennig GW, Ward SM, Sanders KM. Temporal sequence of activation of cells involved in purinergic neurotransmission in the colon. J Physiol 2015; 593:1945-63. [PMID: 25627983 DOI: 10.1113/jphysiol.2014.287599] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 01/21/2015] [Indexed: 12/27/2022] Open
Abstract
KEY POINTS Platelet derived growth factor receptor α (PDGFRα(+) ) cells in colonic muscles are innervated by enteric inhibitory motor neurons. PDGFRα(+) cells generate Ca(2+) transients in response to exogenous purines and these responses were blocked by MRS-2500. Stimulation of enteric neurons, with cholinergic and nitrergic components blocked, evoked Ca(2+) transients in PDGFRα(+) and smooth muscle cells (SMCs). Responses to nerve stimulation were abolished by MRS-2500 and not observed in muscles with genetic deactivation of P2Y1 receptors. Ca(2+) transients evoked by nerve stimulation in PDGFRα(+) cells showed the same temporal characteristics as electrophysiological responses. PDGFRα(+) cells express gap junction genes, and drugs that inhibit gap junctions blocked neural responses in SMCs, but not in nerve processes or PDGFRα(+) cells. PDGFRα(+) cells are directly innervated by inhibitory motor neurons and purinergic responses are conducted to SMCs via gap junctions. ABSTRACT Interstitial cells, known as platelet derived growth factor receptor α (PDGFRα(+) ) cells, are closely associated with varicosities of enteric motor neurons and suggested to mediate purinergic hyperpolarization responses in smooth muscles of the gastrointestinal tract (GI), but this concept has not been demonstrated directly in intact muscles. We used confocal microscopy to monitor Ca(2+) transients in neurons and post-junctional cells of the murine colon evoked by exogenous purines or electrical field stimulation (EFS) of enteric neurons. EFS (1-20 Hz) caused Ca(2+) transients in enteric motor nerve processes and then in PDGFRα(+) cells shortly after the onset of stimulation (latency from EFS was 280 ms at 10 Hz). Responses in smooth muscle cells (SMCs) were typically a small decrease in Ca(2+) fluorescence just after the initiation of Ca(2+) transients in PDGFRα(+) cells. Upon cessation of EFS, several fast Ca(2+) transients were noted in SMCs (rebound excitation). Strong correlation was noted in the temporal characteristics of Ca(2+) transients evoked in PDGFRα(+) cells by EFS and inhibitory junction potentials (IJPs) recorded with intracellular microelectrodes. Ca(2+) transients and IJPs elicited by EFS were blocked by MRS-2500, a P2Y1 antagonist, and absent in P2ry1((-/-)) mice. PDGFRα(+) cells expressed gap junction genes, and gap junction uncouplers, 18β-glycyrrhetinic acid (18β-GA) and octanol blocked Ca(2+) transients in SMCs but not in neurons or PDGFRα(+) cells. IJPs recorded from SMCs were also blocked. These findings demonstrate direct innervation of PDGFRα(+) cells by motor neurons. PDGFRα(+) cells are primary targets for purinergic neurotransmitter(s) in enteric inhibitory neurotransmission. Hyperpolarization responses are conducted to SMCs via gap junctions.
Collapse
Affiliation(s)
- Salah A Baker
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA
| | | | | | | |
Collapse
|
49
|
Prazeres DMF, Martins SAM. G protein-coupled receptors: an overview of signaling mechanisms and screening assays. Methods Mol Biol 2015; 1272:3-19. [PMID: 25563173 DOI: 10.1007/978-1-4939-2336-6_1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The existence of cellular receptors, a group of specialized biomolecules to which endogenous and exogenous compounds bind and exert an effect, is one of the most exciting aspects of cell biology. Among the different receptor types recognized today, G-protein-coupled receptors (GPCRs) constitute, undoubtedly, one of the most important classes, in part due to their versatility, but particularly, due to their central role in a multitude of physiological states. The unveiling of GPCR function and mode of action is a challenging task that prevails until our days, as the full potential of these receptors is far from being established. Such an undertaking calls for a joint effort of multidisciplinary teams that must combine state-of-the-art technologies with in-depth knowledge of cell biology to probe such specialized molecules. This review provides a concise coverage of the scientific progress that has been made in GPCR research to provide researchers with an updated overview of the field. A brief outline of the historical breakthroughs is followed by a discussion of GPCR signaling mechanisms and by a description of the role played by assay technologies.
Collapse
Affiliation(s)
- Duarte Miguel F Prazeres
- IBB - Institute for Biotechnology and Bioengineering, Av. Rovisco Pais, 1049-001, Lisbon, Portugal,
| | | |
Collapse
|
50
|
Thompson A, Kanamarlapudi V. Agonist-induced internalisation of the glucagon-like peptide-1 receptor is mediated by the Gαq pathway. Biochem Pharmacol 2015; 93:72-84. [DOI: 10.1016/j.bcp.2014.10.015] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 10/27/2014] [Accepted: 10/30/2014] [Indexed: 12/12/2022]
|