1
|
Ben Aoun S, Ibrahim SM. An engineered thermally tolerant apo-cytochrome scaffold for metal-less incorporation of heme derivative. PLoS One 2023; 18:e0293972. [PMID: 37943746 PMCID: PMC10635480 DOI: 10.1371/journal.pone.0293972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 10/20/2023] [Indexed: 11/12/2023] Open
Abstract
Cytochrome c552 from Thermus thermophilus is one of the hot topics for creating smart biomaterials as it possesses remarkable stability, is tolerant to multiple mutations and has therefore been recently reported for a number of functionalizations upon substitution of the original prosthetic group with an artificial prosthetic group. However, all of the substitutions were driven by the coordination through the axial ligands followed by complete reconstitution with a metal-porphyrin complex. This limits the scope of the cytochrome c for incorporating a metal-less non-natural heme species that could improve the versatility of cytochrome c for a new generation of engineered cytochrome proteins for further enhancement in their functionalities such as biocatalysts. In this connection, a new variant of Cytochrome c (rC552 C14A) from Thermus thermophilus was reported, where an easy approach to remove the original prosthetic group was achieved, followed by the incorporation of a number of metal-PPIX derivatives that ultimately led to the formation of artificial c-type cytochromes through covalent bonding. The apo-cytochrome was found to be thermally tolerant and to possess a distinctive overall structure as that of the wild type, as was evident from the corresponding CD spectra, which ultimately encouraged reconstitution with a metal-less protoporphyrin derivative for better understanding the role of axial ligands in the reconstitution process. Successful reconstitution was achieved, resulting in a new type of Cytochrome b-type artificial protein without the metal in its active site, indicating the non-involvement of the axial ligand. In order to prove the non-involvement of the axial ligand, a subsequent double mutant (C14A/M69A) was constructed, replacing the methionine at 69 position with non-coordinating alanine residue. Accordingly, the apo-C14A/M69A was prepared and found to be extremely stable as the earlier mutants and the WT showed no signs of denaturation, even at the elevated temperature of 98°C. Subsequently, heme b was successfully incorporated into the apo-C14A/M69A, which demonstrated itself as a highly thermally tolerant protein scaffold for incorporating a metal-less artificial prosthetic group in the absence of the axial ligand. Further improvement in the reconstitution process is achieved by replacing the methionine at 69 position with phenyl alanine (C14A/M69F mutant), resulting in further stabilization of heme species, possibly through non-covalent π-interactions, as corroborated by molecular docking.
Collapse
Affiliation(s)
- Sami Ben Aoun
- Faculty of Science, Department of Chemistry, Taibah University, Al-Madinah Al-Munawarah, Saudi Arabia
| | - Sheikh Muhammad Ibrahim
- Faculty of Science, Chemistry Department, Islamic University of Madinah, Al-Madinah Al-Munawarah, Saudi Arabia
| |
Collapse
|
2
|
Denkhaus L, Siffert F, Einsle O. An unusual active site architecture in cytochrome c nitrite reductase NrfA-1 from Geobacter metallireducens. FEMS Microbiol Lett 2023; 370:fnad068. [PMID: 37460131 DOI: 10.1093/femsle/fnad068] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 06/21/2023] [Accepted: 07/14/2023] [Indexed: 08/13/2023] Open
Abstract
Dissimilatory nitrate reduction to ammonia (DNRA) is a central pathway in the biogeochemical nitrogen cycle, allowing for the utilization of nitrate or nitrite as terminal electron acceptors. In contrast to the competing denitrification to N2, a major part of the essential nutrient nitrogen in DNRA is retained within the ecosystem and made available as ammonium to serve as a nitrogen source for other organisms. The second step of DNRA is mediated by the pentahaem cytochrome c nitrite reductase NrfA that catalyzes the six-electron reduction of nitrite to ammonium and is widely distributed among bacteria. A recent crystal structure of an NrfA ortholog from Geobacter lovleyi was the first characterized representative of a novel subclass of NrfA enzymes that lacked the canonical Ca2+ ion close to the active site haem 1. Here, we report the structural and functional characterization of NrfA from the closely related G. metallireducens. We established the recombinant production of catalytically active NrfA with its unique, lysine-coordinated active site haem heterologously in Escherichia coli and determined its three-dimensional structure by X-ray crystallography to 1.9 Å resolution. The structure confirmed GmNrfA as a further calcium-independent NrfA protein, and it also shows an altered active site that contained an unprecedented aspartate residue, D80, close to the substrate-binding site. This residue formed part of a loop that also caused a changed arrangement of the conserved substrate/product channel relative to other NrfA proteins and rendered the protein insensitive to the inhibitor sulphate. To elucidate the relevance of D80, we produced and studied the variants D80A and D80N that showed significantly reduced catalytic activity.
Collapse
Affiliation(s)
- Lukas Denkhaus
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg im Breisgau, Germany
| | - Fanny Siffert
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg im Breisgau, Germany
| | - Oliver Einsle
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg im Breisgau, Germany
| |
Collapse
|
3
|
Chen G, Tong L, Huang S, Huang S, Zhu F, Ouyang G. Hydrogen-bonded organic framework biomimetic entrapment allowing non-native biocatalytic activity in enzyme. Nat Commun 2022; 13:4816. [PMID: 35974100 PMCID: PMC9381776 DOI: 10.1038/s41467-022-32454-2] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 08/01/2022] [Indexed: 11/30/2022] Open
Abstract
Nature programs the structural folding of an enzyme that allows its on-demand biofunctionality; however, it is still a long-standing challenge to manually modulate an enzyme’s conformation. Here, we design an exogenous hydrogen-bonded organic framework to modulate the conformation of cytochrome c, and hence allow non-native bioactivity for the enzyme. The rigid hydrogen-bonded organic framework, with net-arranged carboxylate inner cage, is in situ installed onto the native cytochrome c. The resultant hydrogen-bonded nano-biointerface changes the conformation to a previously not achieved catalase-like species within the reported cytochrome c-porous organic framework systems. In addition, the preserved hydrogen-bonded organic framework can stabilize the encapsulated enzyme and its channel-like pores also guarantee the free entrance of catalytic substrates. This work describes a conceptual nanotechnology for manoeuvring the flexible conformations of an enzyme, and also highlights the advantages of artificial hydrogen-bonded scaffolds to modulate enzyme activity. Heme units are immobilised in diverse heme enzymes for oxidation, and have been immobilised also in hydrogen-bonded organic frameworks. Here, the authors show the use of hydrogen-bonded organic framework to modulate the enzyme’s conformation and show different biofunction from the original.
Collapse
Affiliation(s)
- Guosheng Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Linjing Tong
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Siming Huang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Shuyao Huang
- Instrumental Analysis and Research Center, Sun Yat-sen University, Guangzhou, 510275, China
| | - Fang Zhu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Gangfeng Ouyang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China. .,Instrumental Analysis and Research Center, Sun Yat-sen University, Guangzhou, 510275, China.
| |
Collapse
|
4
|
Arai Y, Yamamoto T, Minamikawa T, Takamatsu T, Nagai T. Spectral fingerprinting of individual cells visualized by cavity-reflection-enhanced light-absorption microscopy. PLoS One 2015; 10:e0125733. [PMID: 25950513 PMCID: PMC4423951 DOI: 10.1371/journal.pone.0125733] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 03/21/2015] [Indexed: 11/18/2022] Open
Abstract
The absorption spectrum of light is known to be a "molecular fingerprint" that enables analysis of the molecular type and its amount. It would be useful to measure the absorption spectrum in single cell in order to investigate the cellular status. However, cells are too thin for their absorption spectrum to be measured. In this study, we developed an optical-cavity-enhanced absorption spectroscopic microscopy method for two-dimensional absorption imaging. The light absorption is enhanced by an optical cavity system, which allows the detection of the absorption spectrum with samples having an optical path length as small as 10 μm, at a subcellular spatial resolution. Principal component analysis of various types of cultured mammalian cells indicates absorption-based cellular diversity. Interestingly, this diversity is observed among not only different species but also identical cell types. Furthermore, this microscopy technique allows us to observe frozen sections of tissue samples without any staining and is capable of label-free biopsy. Thus, our microscopy method opens the door for imaging the absorption spectra of biological samples and thereby detecting the individuality of cells.
Collapse
Affiliation(s)
- Yoshiyuki Arai
- The Institute of Scientific and Industrial Research, Osaka University, Osaka, Japan
| | - Takayuki Yamamoto
- The Institute of Scientific and Industrial Research, Osaka University, Osaka, Japan
| | - Takeo Minamikawa
- Department of Pathology and Cell Regulation, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tetsuro Takamatsu
- Department of Pathology and Cell Regulation, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Takeharu Nagai
- The Institute of Scientific and Industrial Research, Osaka University, Osaka, Japan
| |
Collapse
|
5
|
Zaidi S, Hassan MI, Islam A, Ahmad F. The role of key residues in structure, function, and stability of cytochrome-c. Cell Mol Life Sci 2014; 71:229-55. [PMID: 23615770 PMCID: PMC11113841 DOI: 10.1007/s00018-013-1341-1] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 04/05/2013] [Accepted: 04/08/2013] [Indexed: 02/06/2023]
Abstract
Cytochrome-c (cyt-c), a multi-functional protein, plays a significant role in the electron transport chain, and thus is indispensable in the energy-production process. Besides being an important component in apoptosis, it detoxifies reactive oxygen species. Two hundred and eighty-five complete amino acid sequences of cyt-c from different species are known. Sequence analysis suggests that the number of amino acid residues in most mitochondrial cyts-c is in the range 104 ± 10, and amino acid residues at only few positions are highly conserved throughout evolution. These highly conserved residues are Cys14, Cys17, His18, Gly29, Pro30, Gly41, Asn52, Trp59, Tyr67, Leu68, Pro71, Pro76, Thr78, Met80, and Phe82. These are also known as "key residues", which contribute significantly to the structure, function, folding, and stability of cyt-c. The three-dimensional structure of cyt-c from ten eukaryotic species have been determined using X-ray diffraction studies. Structure analysis suggests that the tertiary structure of cyt-c is almost preserved along the evolutionary scale. Furthermore, residues of N/C-terminal helices Gly6, Phe10, Leu94, and Tyr97 interact with each other in a specific manner, forming an evolutionary conserved interface. To understand the role of evolutionary conserved residues on structure, stability, and function, numerous studies have been performed in which these residues were substituted with different amino acids. In these studies, structure deals with the effect of mutation on secondary and tertiary structure measured by spectroscopic techniques; stability deals with the effect of mutation on T m (midpoint of heat denaturation), ∆G D (Gibbs free energy change on denaturation) and folding; and function deals with the effect of mutation on electron transport, apoptosis, cell growth, and protein expression. In this review, we have compiled all these studies at one place. This compilation will be useful to biochemists and biophysicists interested in understanding the importance of conservation of certain residues throughout the evolution in preserving the structure, function, and stability in proteins.
Collapse
Affiliation(s)
- Sobia Zaidi
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025 India
| | - Md. Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025 India
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025 India
| | - Faizan Ahmad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025 India
| |
Collapse
|
6
|
Characterization of axial and proximal histidine mutations of the decaheme cytochrome MtrA from Shewanella sp. strain ANA-3 and implications for the electron transport system. J Bacteriol 2012; 194:5840-7. [PMID: 22923588 DOI: 10.1128/jb.00890-12] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Extracellular respiration of solid-phase electron acceptors in some microorganisms requires a complex chain of multiheme c-type cytochromes that span the inner and outer membranes. In Shewanella species, MtrA, an ~35-kDa periplasmic decaheme c-type cytochrome, is an essential component for extracellular respiration of iron(III). The exact mechanism of electron transport has not yet been resolved, but the arrangement of the polypeptide chain may have a strong influence on the capability of the MtrA cytochrome to transport electrons. The iron hemes of MtrA are bound to its polypeptide chain via proximal (CXXCH) and distal histidine residues. In this study, we show the effects of mutating histidine residues of MtrA to arginine on protein expression and extracellular respiration using Shewanella sp. strain ANA-3 as a model organism. Individual mutations to six out of nine proximal histidines in CXXCH of MtrA led to decreased protein expression. However, distal histidine mutations resulted in various degrees of protein expression. In addition, the effects of histidine mutations on extracellular respiration were tested using ferrihydrite and current production in microbial fuel cells. These results show that proximal histidine mutants were unable to reduce ferrihydrite. Mutations to the distal histidine residues resulted in various degrees of ferrihydrite reduction. These findings indicate that mutations to the proximal histidine residues affect MtrA expression, leading to loss of extracellular respiration ability. In contrast, mutations to the distal histidine residues are less detrimental to protein expression, and extracellular respiration can proceed.
Collapse
|
7
|
Mavridou DAI, Stevens JM, Mönkemeyer L, Daltrop O, di Gleria K, Kessler BM, Ferguson SJ, Allen JWA. A pivotal heme-transfer reaction intermediate in cytochrome c biogenesis. J Biol Chem 2011; 287:2342-52. [PMID: 22121193 PMCID: PMC3268396 DOI: 10.1074/jbc.m111.313692] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
c-Type cytochromes are widespread proteins, fundamental for respiration or photosynthesis in most cells. They contain heme covalently bound to protein in a highly conserved, highly stereospecific post-translational modification. In many bacteria, mitochondria, and archaea this heme attachment is catalyzed by the cytochrome c maturation (Ccm) proteins. Here we identify and characterize a covalent, ternary complex between the heme chaperone CcmE, heme, and cytochrome c. Formation of the complex from holo-CcmE occurs in vivo and in vitro and involves the specific heme-binding residues of both CcmE and apocytochrome c. The enhancement and attenuation of the amounts of this complex correlates completely with known consequences of mutations in genes for other Ccm proteins. We propose the complex is a trapped catalytic intermediate in the cytochrome c biogenesis process, at the point of heme transfer from CcmE to the cytochrome, the key step in the maturation pathway.
Collapse
Affiliation(s)
- Despoina A I Mavridou
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Aghofack-Nguemezi J, Fuchs C, Yeh SY, Huang FC, Hoffmann T, Schwab W. An oxygenase inhibitor study in Solanum lycopersicum combined with metabolite profiling analysis revealed a potent peroxygenase inactivator. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:1313-1323. [PMID: 21115664 DOI: 10.1093/jxb/erq368] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Plant genomes contain a vast number of oxygenase genes, but only very few have been functionally characterized. To devise an alternative method for the detection of novel oxygenase-catalysed reactions the effects of the cytochrome P450 oxygenase inhibitors 1-aminobenzotriazole (ABT) and tetcyclacis (TET) have been examined by metabolite profiling analysis in tomato fruit (Solanum lycopersicum). Treatment with TET resulted in significant increases in the levels of certain flavonoids, whereas ABT strongly inhibited their formation during fruit ripening. Injections of buffered solutions of ABT into tomato fruits led rather to an accumulation of 9,12,13-trihydroxy-10(E)-octadecenoic acid probably due to retarded metabolism of the hydroxylated acid, while TET completely repressed its formation. Peroxygenase, a hydroperoxide-dependent hydroxylase involved in the formation of the trihydroxy fatty acid, is strongly inhibited by TET (IC(50) 2.6 μM) as was demonstrated by studies with the recombinant tomato enzyme expressed in yeast. The data show that ABT and TET affect oxygenases differently in tomato fruit and reveal that these enzymes catalyse distinct reactions in different metabolic pathways, among which C(18)-trihydroxy fatty acid and flavonoid metabolism involve novel oxygenase-catalysed reactions. The method is suitable to identify potential substrates and products of ripening-related, putative oxygenases and can support functional analyses of recombinant enzymes.
Collapse
Affiliation(s)
- Jean Aghofack-Nguemezi
- Department of Plant Biology, Faculty of Sciences, University of Dschang, PO Box 67, Dschang, Cameroon
| | | | | | | | | | | |
Collapse
|
9
|
Goddard AD, Stevens JM, Rao F, Mavridou DAI, Chan W, Richardson DJ, Allen JWA, Ferguson SJ. c-Type cytochrome biogenesis can occur via a natural Ccm system lacking CcmH, CcmG, and the heme-binding histidine of CcmE. J Biol Chem 2010; 285:22882-9. [PMID: 20466730 DOI: 10.1074/jbc.m110.133421] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Ccm cytochrome c maturation System I catalyzes covalent attachment of heme to apocytochromes c in many bacterial species and some mitochondria. A covalent, but transient, bond between heme and a conserved histidine in CcmE along with an interaction between CcmH and the apocytochrome have been previously indicated as core aspects of the Ccm system. Here, we show that in the Ccm system from Desulfovibrio desulfuricans, no CcmH is required, and the holo-CcmE covalent bond occurs via a cysteine residue. These observations call for reconsideration of the accepted models of System I-mediated c-type cytochrome biogenesis.
Collapse
Affiliation(s)
- Alan D Goddard
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Medema MH, Zhou M, van Hijum SAFT, Gloerich J, Wessels HJCT, Siezen RJ, Strous M. A predicted physicochemically distinct sub-proteome associated with the intracellular organelle of the anammox bacterium Kuenenia stuttgartiensis. BMC Genomics 2010; 11:299. [PMID: 20459862 PMCID: PMC2881027 DOI: 10.1186/1471-2164-11-299] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Accepted: 05/12/2010] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Anaerobic ammonium-oxidizing (anammox) bacteria perform a key step in global nitrogen cycling. These bacteria make use of an organelle to oxidize ammonia anaerobically to nitrogen (N2) and so contribute approximately 50% of the nitrogen in the atmosphere. It is currently unknown which proteins constitute the organellar proteome and how anammox bacteria are able to specifically target organellar and cell-envelope proteins to their correct final destinations. Experimental approaches are complicated by the absence of pure cultures and genetic accessibility. However, the genome of the anammox bacterium Candidatus "Kuenenia stuttgartiensis" has recently been sequenced. Here, we make use of these genome data to predict the organellar sub-proteome and address the molecular basis of protein sorting in anammox bacteria. RESULTS Two training sets representing organellar (30 proteins) and cell envelope (59 proteins) proteins were constructed based on previous experimental evidence and comparative genomics. Random forest (RF) classifiers trained on these two sets could differentiate between organellar and cell envelope proteins with ~89% accuracy using 400 features consisting of frequencies of two adjacent amino acid combinations. A physicochemically distinct organellar sub-proteome containing 562 proteins was predicted with the best RF classifier. This set included almost all catabolic and respiratory factors encoded in the genome. Apparently, the cytoplasmic membrane performs no catabolic functions. We predict that the Tat-translocation system is located exclusively in the organellar membrane, whereas the Sec-translocation system is located on both the organellar and cytoplasmic membranes. Canonical signal peptides were predicted and validated experimentally, but a specific (N- or C-terminal) signal that could be used for protein targeting to the organelle remained elusive. CONCLUSIONS A physicochemically distinct organellar sub-proteome was predicted from the genome of the anammox bacterium K. stuttgartiensis. This result provides strong in silico support for the existing experimental evidence for the existence of an organelle in this bacterium, and is an important step forward in unravelling a geochemically relevant case of cytoplasmic differentiation in bacteria. The predicted dual location of the Sec-translocation system and the apparent absence of a specific N- or C-terminal signal in the organellar proteins suggests that additional chaperones may be necessary that act on an as-yet unknown property of the targeted proteins.
Collapse
Affiliation(s)
- Marnix H Medema
- Department of Microbiology, Radboud University Nijmegen, Toernooiveld 1, 6525 ED Nijmegen, the Netherlands
| | | | | | | | | | | | | |
Collapse
|
11
|
Cytochrome c biogenesis: mechanisms for covalent modifications and trafficking of heme and for heme-iron redox control. Microbiol Mol Biol Rev 2009; 73:510-28, Table of Contents. [PMID: 19721088 DOI: 10.1128/mmbr.00001-09] [Citation(s) in RCA: 211] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Heme is the prosthetic group for cytochromes, which are directly involved in oxidation/reduction reactions inside and outside the cell. Many cytochromes contain heme with covalent additions at one or both vinyl groups. These include farnesylation at one vinyl in hemes o and a and thioether linkages to each vinyl in cytochrome c (at CXXCH of the protein). Here we review the mechanisms for these covalent attachments, with emphasis on the three unique cytochrome c assembly pathways called systems I, II, and III. All proteins in system I (called Ccm proteins) and system II (Ccs proteins) are integral membrane proteins. Recent biochemical analyses suggest mechanisms for heme channeling to the outside, heme-iron redox control, and attachment to the CXXCH. For system II, the CcsB and CcsA proteins form a cytochrome c synthetase complex which specifically channels heme to an external heme binding domain; in this conserved tryptophan-rich "WWD domain" (in CcsA), the heme is maintained in the reduced state by two external histidines and then ligated to the CXXCH motif. In system I, a two-step process is described. Step 1 is the CcmABCD-mediated synthesis and release of oxidized holoCcmE (heme in the Fe(+3) state). We describe how external histidines in CcmC are involved in heme attachment to CcmE, and the chemical mechanism to form oxidized holoCcmE is discussed. Step 2 includes the CcmFH-mediated reduction (to Fe(+2)) of holoCcmE and ligation of the heme to CXXCH. The evolutionary and ecological advantages for each system are discussed with respect to iron limitation and oxidizing environments.
Collapse
|
12
|
Iida S, Asakura N, Tabata K, Okura I, Kamachi T. Incorporation of Unnatural Amino Acids into Cytochrome c3 and Specific Viologen Binding to the Unnatural Amino Acid. Chembiochem 2006; 7:1853-5. [PMID: 17131373 DOI: 10.1002/cbic.200600347] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Shin Iida
- Department of Bioengineering, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Yokohama 226-8501, Japan
| | | | | | | | | |
Collapse
|
13
|
Allen JWA, Ferguson SJ. What is the substrate specificity of the System I cytochrome c biogenesis apparatus? Biochem Soc Trans 2006; 34:150-1. [PMID: 16417507 DOI: 10.1042/bst0340150] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
c-Type cytochromes are characterized by covalent attachment of haem to protein through thioether bonds between the vinyl groups of the haem and the thiols of a CXXCH motif. Proteins of this type play crucial roles in the biochemistry of the nitrogen cycle. Many Gram-negative bacteria use the Ccm (cytochrome c maturation) proteins for the post-translational haem attachment to their c-type cytochromes; in the present paper, we discuss the substrate specificity of the Ccm apparatus. The main conclusion is that the feature recognized and required in the apocytochrome is simply the two cysteines and the histidine of the haem-binding motif.
Collapse
Affiliation(s)
- J W A Allen
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.
| | | |
Collapse
|
14
|
Allen J, Leach N, Ferguson S. The histidine of the c-type cytochrome CXXCH haem-binding motif is essential for haem attachment by the Escherichia coli cytochrome c maturation (Ccm) apparatus. Biochem J 2005; 389:587-92. [PMID: 15801911 PMCID: PMC1175137 DOI: 10.1042/bj20041894] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
c-type cytochromes are characterized by covalent attachment of haem to the protein by two thioether bonds formed between the haem vinyl groups and the cysteine sulphurs in a CXXCH peptide motif. In Escherichia coli and many other Gram-negative bacteria, this post-translational haem attachment is catalysed by the Ccm (cytochrome c maturation) system. The features of the apocytochrome substrate required and recognized by the Ccm apparatus are uncertain. In the present study, we report investigations of maturation of cytochrome b562 variants containing CXXCR, CXXCK or CXXCM haem-binding motifs. None of them showed any evidence for correct maturation by the Ccm system. However, we have determined, for each variant, that the proteins (i) were expressed in large amounts, (ii) could bind haem in vivo and/or in vitro and (iii) were not degraded in the cell. Together with previous observations, these results strongly suggest that the apocytochrome substrate feature recognized by the Ccm system is simply the two cysteine residues and the histidine of the CXXCH haem-binding motif. Using the same experimental approach, we have also investigated a cytochrome b562 variant containing the special CWSCK motif that binds the active-site haem of E. coli nitrite reductase NrfA. Whereas a CWSCH analogue was matured by the Ccm apparatus in large amounts, the CWSCK form was not detectably matured either by the Ccm system or by the dedicated Nrf biogenesis proteins, implying that the substrate recognition features for haem attachment in NrfA may be more extensive than the CWSCK motif.
Collapse
Affiliation(s)
- James W. A. Allen
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K
| | - Nicholas Leach
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K
| | - Stuart J. Ferguson
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K
- To whom correspondence should be addressed (email )
| |
Collapse
|
15
|
Allen J, Ginger M, Ferguson S. Maturation of the unusual single-cysteine (XXXCH) mitochondrial c-type cytochromes found in trypanosomatids must occur through a novel biogenesis pathway. Biochem J 2005; 383:537-42. [PMID: 15500440 PMCID: PMC1133747 DOI: 10.1042/bj20040832] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The c-type cytochromes are characterized by the covalent attachment of haem to the polypeptide via thioether bonds formed from haem vinyl groups and, normally, the thiols of two cysteines in a CXXCH motif. Intriguingly, the mitochondrial cytochromes c and c1 from two euglenids and the Trypanosomatidae contain only a single cysteine within the haem-binding motif (XXXCH). There are three known distinct pathways by which c-type cytochromes are matured post-translationally in different organisms. The absence of genes encoding any of these c-type cytochrome biogenesis machineries is established here by analysis of six trypanosomatid genomes, and correlates with the presence of single-cysteine cytochromes c and c1. In contrast, we have identified a comprehensive catalogue of proteins required for a typical mitochondrial oxidative phosphorylation apparatus. Neither spontaneous nor catalysed maturation of the single-cysteine Trypanosoma brucei cytochrome c occurred in Escherichia coli. However, a CXXCH variant was matured by the E. coli cytochrome c maturation machinery, confirming the proposed requirement of the latter for two cysteines in the haem-binding motif and indicating that T. brucei cytochrome c can accommodate a second cysteine in a CXXCH motif. The single-cysteine haem attachment conserved in cytochromes c and c1 of the trypanosomatids is suggested to be related to their cytochrome c maturation machinery, and the environment in the mitochondrial intermembrane space. Our genomic and biochemical studies provide very persuasive evidence that the trypanosomatid mitochondrial cytochromes c are matured by a novel biogenesis system.
Collapse
Affiliation(s)
- James W. A. Allen
- *Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K
- To whom correspondence should be addressed (email or )
| | - Michael L. Ginger
- †Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, U.K
- To whom correspondence should be addressed (email or )
| | - Stuart J. Ferguson
- *Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K
| |
Collapse
|
16
|
Braun M, Thöny-Meyer L. Biosynthesis of artificial microperoxidases by exploiting the secretion and cytochrome c maturation apparatuses of Escherichia coli. Proc Natl Acad Sci U S A 2004; 101:12830-5. [PMID: 15328415 PMCID: PMC516481 DOI: 10.1073/pnas.0402435101] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Microperoxidases were initially isolated as peptide fragments containing covalently bound heme and are derived from naturally occurring c-type cytochromes. They are not only used as model compounds but also have potential applications as biosensors, electron carriers, photoreceptors, microzymes, and drugs. In a systematic attempt to define the minimal requirements for covalent attachment of hemes to c-type cytochromes, we have succeeded to produce artificial microperoxidases with peptide sequences that do not occur naturally and can be manipulated. The in vivo production of these microperoxidases requires targeting of the peptide to the bacterial periplasm, proteolytic processing of the signal peptide, and covalent attachment of heme to the signature motif CXXCH by the cytochrome c maturation proteins CcmA-H. The peptides that bind heme carry a C-terminal histidine tag, presumably to stabilize the heme peptide. We present a heme cassette that is the basis for the de novo design of functional hemoproteins.
Collapse
Affiliation(s)
- Martin Braun
- Institut für Mikrobiologie, Eidgenössische Technische Hochschule, Wolfgang-Pauli-Strasse 10, CH-8093 Zürich, Switzerland
| | | |
Collapse
|
17
|
Allen JWA, Barker PD, Ferguson SJ. A Cytochrome b562 Variant with a c-Type Cytochrome CXXCH Heme-binding Motif as a Probe of the Escherichia coli Cytochrome c Maturation System. J Biol Chem 2003; 278:52075-83. [PMID: 14534316 DOI: 10.1074/jbc.m307196200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cytochrome b562 is a periplasmic Escherichia coli protein; previous work has shown that heme can be attached covalently in vivo as a consequence of introduction of one or two cysteines into the heme-binding pocket. A heterogeneous mixture of products was obtained, and it was not established whether the covalent bond formation was catalyzed or spontaneous. Here, we show that coexpression from plasmids of a variant of cytochrome b562 containing a CXXCH heme-binding motif with the E. coli cytochrome c maturation (Ccm) proteins results in an essentially homogeneous product that is a correctly matured c-type cytochrome. Formation of the holocytochrome was accompanied by substantial production of its apo form, in which, for the protein as isolated, there is a disulfide bond between the two cysteines in the CXXCH motif. Following addition of heme to reduced CXXCH apoprotein, spontaneous covalent addition of heme to polypeptide occurred in vitro. Strikingly, the spectral properties were very similar to those of the material obtained from cells in which presumed uncatalyzed addition of heme (i.e. in the absence of Ccm) had been observed. The major product from uncatalyzed heme attachment was an incorrectly matured cytochrome with the heme rotated by 180 degrees relative to its normal orientation. The contrast between Ccm-dependent and Ccm-independent covalent attachment of heme indicates that the Ccm apparatus presents heme to the protein only in the orientation that results in formation of the correct product and also that heme does not become covalently attached to the apocytochrome b562 CXXCH variant without being handled by the Ccm system in the periplasm. The CXXCH variant of cytochrome b562 was also expressed in E. coli strains deficient in the periplasmic reductant DsbD or oxidant DsbA. In the DsbA- strain under aerobic conditions, c-type cytochromes were made abundantly and correctly when the Ccm proteins were expressed. This contrasts with previous reports indicating that DsbA is essential for cytochrome c biogenesis in E. coli.
Collapse
Affiliation(s)
- James W A Allen
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | | | | |
Collapse
|