1
|
Niu J, Qiao Y, Yang X, Chen X, Li H, Guo Y, Zhang W, Wang Z. Protease and Bacillus coagulans Supplementation in a Low-Protein Diet Improves Broiler Growth, Promotes Amino Acid Transport Gene Activity, Strengthens Intestinal Barriers, and Alters the Cecal Microbial Composition. Animals (Basel) 2025; 15:170. [PMID: 39858172 PMCID: PMC11758613 DOI: 10.3390/ani15020170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 12/11/2024] [Accepted: 01/06/2025] [Indexed: 01/27/2025] Open
Abstract
Low-protein (LPRO) diets can effectively reduce feed costs and decrease environmental pollution, making them an important pathway to enhance the sustainability of livestock production. However, they may have adverse effects on the growth performance of broiler chickens, which has limited their widespread application. This study aims to explore the impact of adding protease (PRO) to LPRO diets on the growth performance of broiler chickens, especially under conditions with or without the presence of Bacillus coagulans (BC), in order to provide theoretical support for the scientific application and promotion of LPRO feeds. We selected 432 one-day-old broiler chickens and divided them into four treatment groups, which were fed with the control (CON) diet, the LPRO diet, the PRO diet (LPRO diet with added protease), and the PAB diet (PRO diet with added BC). The LPRO group demonstrated decreased growth performance while both PRO and PAB diets resulted in a significant increase (p < 0.05). Both PRO and PAB diets significantly enhanced the expression of amino acid transport genes and tight junction genes (p < 0.05) and optimized the composition of the intestinal microbiota. Overall, LPRO diets have a detrimental effect on the growth of broiler chickens, while the PRO and PAB diets effectively counteract these negative effects by improving protein digestion, amino acid absorption, and intestinal health.
Collapse
Affiliation(s)
- Junlong Niu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (J.N.); (X.Y.); (X.C.); (H.L.); (Y.G.)
| | - Yingying Qiao
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou 450003, China;
| | - Xiaopeng Yang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (J.N.); (X.Y.); (X.C.); (H.L.); (Y.G.)
| | - Xiaoshuang Chen
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (J.N.); (X.Y.); (X.C.); (H.L.); (Y.G.)
| | - Hongfei Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (J.N.); (X.Y.); (X.C.); (H.L.); (Y.G.)
| | - Yongpeng Guo
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (J.N.); (X.Y.); (X.C.); (H.L.); (Y.G.)
| | - Wei Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (J.N.); (X.Y.); (X.C.); (H.L.); (Y.G.)
| | - Zhixiang Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (J.N.); (X.Y.); (X.C.); (H.L.); (Y.G.)
| |
Collapse
|
2
|
Bröer A, Hu Z, Kukułowicz J, Yadav A, Zhang T, Dai L, Bajda M, Yan R, Bröer S. Cryo-EM structure of ACE2-SIT1 in complex with tiagabine. J Biol Chem 2024; 300:107687. [PMID: 39159813 PMCID: PMC11414674 DOI: 10.1016/j.jbc.2024.107687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 08/03/2024] [Accepted: 08/07/2024] [Indexed: 08/21/2024] Open
Abstract
The pharmacology of amino acid transporters in the SLC6 family is poorly developed compared to that of the neurotransmitter transporters. To identify new inhibitors of the proline transporter SIT1 (SLC6A20), its expression in Xenopus laevis oocytes was optimized. Trafficking of SIT1 was augmented by co-expression of angiotensin-converting enzyme 2 (ACE2) in oocytes but there was no strict requirement for co-expression of ACE2. A pharmacophore-guided screen identified tiagabine as a potent non-competitive inhibitor of SIT1. To understand its binding mode, we determined the cryo-electron microscopy (cryo-EM) structure of ACE2-SIT1 bound with tiagabine. The inhibitor binds close to the orthosteric proline binding site, but due to its size extends into the cytosolic vestibule. This causes the transporter to adopt an inward-open conformation, in which the intracellular gate is blocked. This study provides the first structural insight into inhibition of SIT1 and generates tools for a better understanding of the ACE2-SIT1 complex. These findings may have significance for SARS-CoV-2 binding to its receptor ACE2 in human lung alveolar cells where SIT1 and ACE2 are functionally expressed.
Collapse
Affiliation(s)
- Angelika Bröer
- Research School of Biology, Australian National University, Canberra, Australia
| | - Ziwei Hu
- Department of Biochemistry, Key University Laboratory of Metabolism and Health of Guangdong, School of Medicine, Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Jędrzej Kukułowicz
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Cracow, Poland
| | - Aditya Yadav
- Research School of Biology, Australian National University, Canberra, Australia
| | - Ting Zhang
- Department of Biochemistry, Key University Laboratory of Metabolism and Health of Guangdong, School of Medicine, Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Lu Dai
- Department of Biochemistry, Key University Laboratory of Metabolism and Health of Guangdong, School of Medicine, Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Marek Bajda
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Cracow, Poland
| | - Renhong Yan
- Department of Biochemistry, Key University Laboratory of Metabolism and Health of Guangdong, School of Medicine, Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, Guangdong, China.
| | - Stefan Bröer
- Research School of Biology, Australian National University, Canberra, Australia.
| |
Collapse
|
3
|
Abstract
Amino acids derived from protein digestion are important nutrients for the growth and maintenance of organisms. Approximately half of the 20 proteinogenic amino acids can be synthesized by mammalian organisms, while the other half are essential and must be acquired from the nutrition. Absorption of amino acids is mediated by a set of amino acid transporters together with transport of di- and tripeptides. They provide amino acids for systemic needs and for enterocyte metabolism. Absorption is largely complete at the end of the small intestine. The large intestine mediates the uptake of amino acids derived from bacterial metabolism and endogenous sources. Lack of amino acid transporters and peptide transporter delays the absorption of amino acids and changes sensing and usage of amino acids by the intestine. This can affect metabolic health through amino acid restriction, sensing of amino acids, and production of antimicrobial peptides.
Collapse
Affiliation(s)
- Stefan Bröer
- Research School of Biology, Australian National University, Canberra, Australia;
| |
Collapse
|
4
|
Gauthier-Coles G, Fairweather SJ, Bröer A, Bröer S. Do Amino Acid Antiporters Have Asymmetric Substrate Specificity? Biomolecules 2023; 13:biom13020301. [PMID: 36830670 PMCID: PMC9953452 DOI: 10.3390/biom13020301] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/31/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
Amino acid antiporters mediate the 1:1 exchange of groups of amino acids. Whether substrate specificity can be different for the inward and outward facing conformation has not been investigated systematically, although examples of asymmetric transport have been reported. Here we used LC-MS to detect the movement of 12C- and 13C-labelled amino acid mixtures across the plasma membrane of Xenopus laevis oocytes expressing a variety of amino acid antiporters. Differences of substrate specificity between transporter paralogs were readily observed using this method. Our results suggest that antiporters are largely symmetric, equalizing the pools of their substrate amino acids. Exceptions are the antiporters y+LAT1 and y+LAT2 where neutral amino acids are co-transported with Na+ ions, favouring their import. For the antiporters ASCT1 and ASCT2 glycine acted as a selective influx substrate, while proline was a selective influx substrate of ASCT1. These data show that antiporters can display non-canonical modes of transport.
Collapse
|
5
|
Ma Z, Wang W, Zhang D, Zhang Y, Zhao Y, Li X, Zhao L, Lin C, Wang J, Zhou B, Cheng J, Xu D, Li W, Yang X, Huang Y, Cui P, Liu J, Zeng X, Zhai R, Zhang X. Ovine RAP1GAP and rBAT gene polymorphisms and their association with tail fat deposition in Hu sheep. Front Vet Sci 2022; 9:974513. [PMID: 36090178 PMCID: PMC9453205 DOI: 10.3389/fvets.2022.974513] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Excessive fat deposition in the tail of sheep will affect its feed efficiency, which will increase the feeding cost. The purpose of this study was to identify the single nucleotide polymorphisms (SNPs) of RAP1GAP and rBAT genes by PCR amplification and Sanger sequencing, the SNPs were genotyped by KASP genotyping assays to evaluate their association with tail fat deposition traits. The results showed that two intronic mutations of g.13561 G > A and g.1460 T > C were found in RAP1GAP and rBAT, respectively. There were three genotypes of GG, AG, AA and CC, CT and TT at these two loci, respectively. Association analysis showed that g.13561 G > A of RAP1GAP was associated with tail width, tail fat weight and relative tail fat weight (P < 0.05). The g.1460 T > C of rBAT was associated with tail width and tail fat weight (P < 0.05). Different combinations of genotypes also differed significantly with tail fat deposition traits. In the tail fat tissue, the expression levels of RAP1GAP gene was significantly higher in small-tailed sheep than in big-tailed sheep, and the expression levels of rBAT gene was significantly higher in big-tailed sheep than in small-tailed sheep. In the liver, the expression levels of RAP1GAP and rBAT gene was significantly higher at 6 months than at 0 and 3 months. In conclusion, RAP1GAP and rBAT polymorphisms can be used as a candidate molecular marker to reduce tail fat deposition in sheep.
Collapse
Affiliation(s)
- Zongwu Ma
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Weimin Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- The State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Deyin Zhang
- The State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Yukun Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Yuan Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xiaolong Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Liming Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Changchun Lin
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Jianghui Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Bubo Zhou
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Jiangbo Cheng
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Dan Xu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Wenxin Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xiaobin Yang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Yongliang Huang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Panpan Cui
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Jia Liu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xiwen Zeng
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Rui Zhai
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xiaoxue Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- *Correspondence: Xiaoxue Zhang
| |
Collapse
|
6
|
Ca 2+-mediated higher-order assembly of heterodimers in amino acid transport system b 0,+ biogenesis and cystinuria. Nat Commun 2022; 13:2708. [PMID: 35577790 PMCID: PMC9110406 DOI: 10.1038/s41467-022-30293-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 04/22/2022] [Indexed: 02/06/2023] Open
Abstract
Cystinuria is a genetic disorder characterized by overexcretion of dibasic amino acids and cystine, causing recurrent kidney stones and kidney failure. Mutations of the regulatory glycoprotein rBAT and the amino acid transporter b0,+AT, which constitute system b0,+, are linked to type I and non-type I cystinuria respectively and they exhibit distinct phenotypes due to protein trafficking defects or catalytic inactivation. Here, using electron cryo-microscopy and biochemistry, we discover that Ca2+ mediates higher-order assembly of system b0,+. Ca2+ stabilizes the interface between two rBAT molecules, leading to super-dimerization of b0,+AT-rBAT, which in turn facilitates N-glycan maturation and protein trafficking. A cystinuria mutant T216M and mutations of the Ca2+ site of rBAT cause the loss of higher-order assemblies, resulting in protein trapping at the ER and the loss of function. These results provide the molecular basis of system b0,+ biogenesis and type I cystinuria and serve as a guide to develop new therapeutic strategies against it. More broadly, our findings reveal an unprecedented link between transporter oligomeric assembly and protein-trafficking diseases.
Collapse
|
7
|
Kurz A, Seifert J. Factors Influencing Proteolysis and Protein Utilization in the Intestine of Pigs: A Review. Animals (Basel) 2021; 11:3551. [PMID: 34944326 PMCID: PMC8698117 DOI: 10.3390/ani11123551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/03/2021] [Accepted: 12/11/2021] [Indexed: 11/16/2022] Open
Abstract
Pigs are among the most important farm animals for meat production worldwide. In order to meet the amino acid requirements of the animals, pigs rely on the regular intake of proteins and amino acids with their feed. Unfortunately, pigs excrete about two thirds of the used protein, and production of pork is currently associated with a high emission of nitrogen compounds resulting in negative impacts on the environment. Thus, improving protein efficiency in pigs is a central aim to decrease the usage of protein carriers in feed and to lower nitrogen emissions. This is necessary as the supply of plant protein sources is limited by the yield and the cultivable acreage for protein plants. Strategies to increase protein efficiency that go beyond the known feeding options have to be investigated considering the characteristics of the individual animals. This requires a deep understanding of the intestinal processes including enzymatic activities, capacities of amino acid transporters and the microbiome. This review provides an overview of these physiological factors and the respective analyses methods.
Collapse
Affiliation(s)
- Alina Kurz
- HoLMIR—Hohenheim Center for Livestock Microbiome Research, University of Hohenheim, 70599 Stuttgart, Germany;
- Institute of Animal Science, University of Hohenheim, Emil-Wolff-Str. 8, 70599 Stuttgart, Germany
| | - Jana Seifert
- HoLMIR—Hohenheim Center for Livestock Microbiome Research, University of Hohenheim, 70599 Stuttgart, Germany;
- Institute of Animal Science, University of Hohenheim, Emil-Wolff-Str. 8, 70599 Stuttgart, Germany
| |
Collapse
|
8
|
Fort J, Nicolàs-Aragó A, Palacín M. The Ectodomains of rBAT and 4F2hc Are Fake or Orphan α-Glucosidases. Molecules 2021; 26:6231. [PMID: 34684812 PMCID: PMC8537225 DOI: 10.3390/molecules26206231] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 11/22/2022] Open
Abstract
It is known that 4F2hc and rBAT are the heavy subunits of the heteromeric amino acid transporters (HATs). These heavy subunits are N-glycosylated proteins, with an N-terminal domain, one transmembrane domain and a bulky extracellular domain (ectodomain) that belongs to the α-amylase family. The heavy subunits are covalently linked to a light subunit from the SLC7 family, which is responsible for the amino acid transport activity, forming a heterodimer. The functions of 4F2hc and rBAT are related mainly to the stability and trafficking of the HATs in the plasma membrane of vertebrates, where they exert the transport activity. Moreover, 4F2hc is a modulator of integrin signaling, has a role in cell fusion and it is overexpressed in some types of cancers. On the other hand, some mutations in rBAT are found to cause the malfunctioning of the b0,+ transport system, leading to cystinuria. The ectodomains of 4F2hc and rBAT share both sequence and structure homology with α-amylase family members. Very recently, cryo-EM has revealed the structure of several HATs, including the ectodomains of rBAT and 4F2hc. Here, we analyze available data on the ectodomains of rBAT and 4Fhc and their relationship with the α-amylase family. The physiological relevance of this relationship remains largely unknown.
Collapse
Affiliation(s)
- Joana Fort
- Laboratory of Amino Acid Transporters and Disease, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, 08028 Barcelona, Spain; (A.N.-A.); (M.P.)
- CIBERER (Centro Español en Red de Biomedicina de Enfermedades Raras), 08028 Barcelona, Spain
- Department of Biochemistry and Molecular Biomedicine, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Adrià Nicolàs-Aragó
- Laboratory of Amino Acid Transporters and Disease, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, 08028 Barcelona, Spain; (A.N.-A.); (M.P.)
| | - Manuel Palacín
- Laboratory of Amino Acid Transporters and Disease, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, 08028 Barcelona, Spain; (A.N.-A.); (M.P.)
- CIBERER (Centro Español en Red de Biomedicina de Enfermedades Raras), 08028 Barcelona, Spain
- Department of Biochemistry and Molecular Biomedicine, Universitat de Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
9
|
Ellingsen S, Narawane S, Fjose A, Verri T, Rønnestad I. The zebrafish cationic amino acid transporter/glycoprotein-associated family: sequence and spatiotemporal distribution during development of the transport system b 0,+ (slc3a1/slc7a9). FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:1507-1525. [PMID: 34338990 PMCID: PMC8478756 DOI: 10.1007/s10695-021-00984-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 06/29/2021] [Indexed: 06/12/2023]
Abstract
System b0,+ absorbs lysine, arginine, ornithine, and cystine, as well as some (large) neutral amino acids in the mammalian kidney and intestine. It is a heteromeric amino acid transporter made of the heavy subunit SLC3A1/rBAT and the light subunit SLC7A9/b0,+AT. Mutations in these two genes can cause cystinuria in mammals. To extend information on this transport system to teleost fish, we focused on the slc3a1 and slc7a9 genes by performing comparative and phylogenetic sequence analysis, investigating gene conservation during evolution (synteny), and defining early expression patterns during zebrafish (Danio rerio) development. Notably, we found that slc3a1 and slc7a9 are non-duplicated in the zebrafish genome. Whole-mount in situ hybridization detected co-localized expression of slc3a1 and slc7a9 in pronephric ducts at 24 h post-fertilization and in the proximal convoluted tubule at 3 days post-fertilization (dpf). Notably, both the genes showed co-localized expression in epithelial cells in the gut primordium at 3 dpf and in the intestine at 5 dpf (onset of exogenous feeding). Taken together, these results highlight the value of slc3a1 and slc7a9 as markers of zebrafish kidney and intestine development and show promise for establishing new zebrafish tools that can aid in the rapid screening(s) of substrates. Importantly, such studies will help clarify the complex interplay between the absorption of dibasic amino acids, cystine, and (large) neutral amino acids and the effect(s) of such nutrients on organismal growth.
Collapse
Affiliation(s)
- Ståle Ellingsen
- Department of Molecular Biology, University of Bergen, Postbox 7803, N-5020, Bergen, Norway
- Department of Biological Sciences, University of Bergen, Postbox 7803, N-5020, Bergen, Norway
| | - Shailesh Narawane
- Department of Molecular Biology, University of Bergen, Postbox 7803, N-5020, Bergen, Norway
| | - Anders Fjose
- Department of Molecular Biology, University of Bergen, Postbox 7803, N-5020, Bergen, Norway
- Department of Biological Sciences, University of Bergen, Postbox 7803, N-5020, Bergen, Norway
| | - Tiziano Verri
- Department of Biological and Environmental Sciences and Technologies, University of Salento, via Prov.le Lecce-Monteroni, 73100, Lecce, Italy
| | - Ivar Rønnestad
- Department of Biological Sciences, University of Bergen, Postbox 7803, N-5020, Bergen, Norway.
| |
Collapse
|
10
|
Fairweather SJ, Shah N, Brӧer S. Heteromeric Solute Carriers: Function, Structure, Pathology and Pharmacology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 21:13-127. [PMID: 33052588 DOI: 10.1007/5584_2020_584] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Solute carriers form one of three major superfamilies of membrane transporters in humans, and include uniporters, exchangers and symporters. Following several decades of molecular characterisation, multiple solute carriers that form obligatory heteromers with unrelated subunits are emerging as a distinctive principle of membrane transporter assembly. Here we comprehensively review experimentally established heteromeric solute carriers: SLC3-SLC7 amino acid exchangers, SLC16 monocarboxylate/H+ symporters and basigin/embigin, SLC4A1 (AE1) and glycophorin A exchanger, SLC51 heteromer Ost α-Ost β uniporter, and SLC6 heteromeric symporters. The review covers the history of the heteromer discovery, transporter physiology, structure, disease associations and pharmacology - all with a focus on the heteromeric assembly. The cellular locations, requirements for complex formation, and the functional role of dimerization are extensively detailed, including analysis of the first complete heteromer structures, the SLC7-SLC3 family transporters LAT1-4F2hc, b0,+AT-rBAT and the SLC6 family heteromer B0AT1-ACE2. We present a systematic analysis of the structural and functional aspects of heteromeric solute carriers and conclude with common principles of their functional roles and structural architecture.
Collapse
Affiliation(s)
- Stephen J Fairweather
- Research School of Biology, Australian National University, Canberra, ACT, Australia. .,Resarch School of Chemistry, Australian National University, Canberra, ACT, Australia.
| | - Nishank Shah
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Stefan Brӧer
- Research School of Biology, Australian National University, Canberra, ACT, Australia.
| |
Collapse
|
11
|
Morales A, Gómez T, Villalobos YD, Bernal H, Htoo JK, González-Vega JC, Espinoza S, Yáñez J, Cervantes M. Dietary protein-bound or free amino acids differently affect intestinal morphology, gene expression of amino acid transporters, and serum amino acids of pigs exposed to heat stress. J Anim Sci 2020; 98:5739008. [PMID: 32064529 DOI: 10.1093/jas/skaa056] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 02/12/2020] [Indexed: 01/10/2023] Open
Abstract
Pigs exposed to heat stress (HS) increase body temperature in which can damage the intestinal epithelia and affect the absorption and availability of amino acids (AA). Protein digestion and metabolism further increase body temperature. An experiment was conducted with six pairs of pigs (of 47.3 ± 1.3 kg initial body weight) exposed to natural HS to assess the effect of substituting dietary protein-bound AA by free AA on morphology and gene expression of intestinal epithelial and serum concentration (SC) of free AA. Treatments were: high protein, 21.9% crude protein (CP) diet (HShp) and low protein, 13.5% CP diet supplemented with crystalline Lys, Thr, Met, Trp, His, Ile, Leu, Phe, and Val (HSaa). The HShp diet met or exceeded all AA requirements. The HSaa diet was formulated on the basis of ideal protein. Pigs were fed the same amount at 0700 and 1900 hours during the 21-d study. Blood samples were collected at 1700 hours (2.0 h before the evening meal), 2030 hours, and 2130 hours (1.5 and 2.5 h after the evening meal). At the end, all pigs were sacrificed to collect intestinal mucosa and a 5-cm section from each segment of the small intestine from each pig. Villi measures, expression of AA transporters (y+L and B0) in mucosa, and SC of AA were analyzed. Ambient temperature fluctuated daily from 24.5 to 42.6 °C. Weight gain and G.F were not affected by dietary treatment. Villi height tended to be larger (P ≤ 0.10) and the villi height:crypt depth ratio was higher in duodenum and jejunum of pigs fed the HSaa diet (P < 0.05). Gene expression of transporter y+L in jejunum tended to be lower (P < 0.10) and transporter B0 in the ileum was lower (P < 0.05) in HSaa pigs. Preprandial (1700 hours) SC of Arg, His, Ile, Leu, Thr, Trp, and Val was higher (P < 0.05), and Phe tended to be higher (P < 0.10) in HShp pigs. At 2030 hours (1.5 h postprandial), serum Lys, Met, and Thr were higher in the HSaa pigs (P < 0.05). At 2130 hours (2.5 h), Arg, His, Ile, Phe, and Trp were lower (P < 0.05); Met was higher (P < 0.05); and Lys tended to be higher (P < 0.10) in HSaa pigs. In conclusion, feeding HS pigs with low protein diets supplemented with free AA reduces the damage of the intestinal epithelia and seems to improve its absorption capacity, in comparison with HS pigs fed diets containing solely protein-bound AA. This information is useful to formulate diets that correct the reduced AA consumption associated with the decreased voluntary feed intake of pigs under HS.
Collapse
Affiliation(s)
- Adriana Morales
- Instituto de Ciencias Agrícolas, Universidad Autónoma de Baja California, Mexicali, BC, México
| | - Tania Gómez
- Instituto de Ciencias Agrícolas, Universidad Autónoma de Baja California, Mexicali, BC, México
| | - Yuri D Villalobos
- Facultad de Agronomía, Universidad Autónoma de Nuevo León, Monterrey, NL, México
| | - Hugo Bernal
- Facultad de Agronomía, Universidad Autónoma de Nuevo León, Monterrey, NL, México
| | - John K Htoo
- Evonik Nutrition & Care GmbH, Hanau, Germany
| | | | - Salvador Espinoza
- Instituto de Ciencias Agrícolas, Universidad Autónoma de Baja California, Mexicali, BC, México
| | - Jorge Yáñez
- Universidad Autónoma de Tlaxcala, Tlaxcala, México
| | - Miguel Cervantes
- Instituto de Ciencias Agrícolas, Universidad Autónoma de Baja California, Mexicali, BC, México
| |
Collapse
|
12
|
Pandey B, Aarthy M, Sharma M, Singh SK, Kumar V. Computational analysis identifies druggable mutations in human rBAT mediated Cystinuria. J Biomol Struct Dyn 2020; 39:5058-5067. [PMID: 32602810 DOI: 10.1080/07391102.2020.1784792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Culex quinquefasciatus Cqm1 protein acts as the receptor for Lysinibacillus sphaericus mosquito-larvicidal binary (BinAB) toxin that is used worldwide for mosquito control. We found amino acid transporter protein, rBAT, as phylogenetically closest Cqm1 homolog in humans. The present study reveals large evolutionary distance between Cqm1 and rBAT, and rBAT ectodomain lacks the sequence motif which serves as binding-site for the BinAB toxin. Thus, BinAB toxin can be expected to remain safe for humans. rBAT (heavy subunit; SLC3A1) and catalytic b0,+AT (light subunit; SLC7A9), linked by single disulfide bond, mediate renal reabsorption of cystine and dibasic amino acids in Na+ independent manner. Mutations in rBAT cause type I Cystinuria disease which shows global prevalence, and rBAT can be thought as an important pharmacological target. However, 3D structures of rBAT and b0,+AT, the two components of b0,+ heteromeric amino acid transporter systems, are not available. We constructed a reliable homology model of rBAT using Cqm1 coordinates and that of transmembrane b0,+AT subunit using LAT1 coordinates. Mapping of pathogenic mutations onto rBAT ectodomain revealed their scattered distribution throughout the rBAT protein. Further, our computational simulations-based scoring of several known deleterious mutations of rBAT revealed that mutations those do not compromise the protein fold and stability, are localized on the same face of the molecule. These residues are expected to interact with the b0,+AT transporter. The present study thus identifies druggable sites on rBAT that could be targeted for the treatment of type I Cystinuria.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Bharati Pandey
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Murali Aarthy
- Computer-aided drug design Lab, Department of Bioinformatics, Alagappa University, Karaikudi, India
| | - Mahima Sharma
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Sanjeev Kumar Singh
- Computer-aided drug design Lab, Department of Bioinformatics, Alagappa University, Karaikudi, India
| | - Vinay Kumar
- Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
13
|
Liu G, Mo W, Cao W, Jia G, Zhao H, Chen X, Wu C, Zhang R, Wang J. Digestive abilities, amino acid transporter expression, and metabolism in the intestines of piglets fed with spermine. J Food Biochem 2020; 44:e13167. [PMID: 32155674 DOI: 10.1111/jfbc.13167] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 01/18/2020] [Accepted: 01/21/2020] [Indexed: 12/11/2022]
Abstract
This study evaluated the effects of spermine supplementation on the digestion, transport, and metabolism of nutrients in the jejuna of piglets. Of the 80 piglets examined, 40 received 0.4 mmol/kg body weight spermine, and the other half were randomly distributed such that the restricted nutrient intake supplemented with the saline solution for 7 hr and 3, 6, or 9 days in pairs. Spermine supplementation increased the lipase and trypsin activities (p < .05), and spermine increased the mRNA levels of maltase, sucrase, and aminopeptidase N (APN) but decreased the lactase gene expression (p < .05). Moreover, spermine increased the mRNA expression levels of amino acid transporters (p < .05). Spermine increased the jejunum glycerolphosphocholine, lipid, and taurine levels and decreased the choline and amino acids levels (p < .05). In summary, spermine can promote the digestion, transport, and metabolism of nutrients in piglets. PRACTICAL APPLICATIONS: Meat, fish, dairy products, and fruits contain polyamines (i.e., spermine, spermidine, and putrescine). Spermine plays an important role in the cell proliferation, growth, and differentiation, and spermine supplementation can improve the growth of broilers, growth performance of early weaning piglets, and intestinal maturation. The results of this study suggest that spermine can improve the digestion, transport, and metabolism of nutrients in piglets.
Collapse
Affiliation(s)
- Guangmang Liu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu, China.,Key Laboratory of Animal Disease-Resistance Nutrition, Sichuan Province, Chengdu, China
| | - Weiwei Mo
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu, China.,Key Laboratory of Animal Disease-Resistance Nutrition, Sichuan Province, Chengdu, China
| | - Wei Cao
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu, China.,Key Laboratory of Animal Disease-Resistance Nutrition, Sichuan Province, Chengdu, China
| | - Gang Jia
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu, China.,Key Laboratory of Animal Disease-Resistance Nutrition, Sichuan Province, Chengdu, China
| | - Hua Zhao
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu, China.,Key Laboratory of Animal Disease-Resistance Nutrition, Sichuan Province, Chengdu, China
| | - Xiaoling Chen
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu, China.,Key Laboratory of Animal Disease-Resistance Nutrition, Sichuan Province, Chengdu, China
| | - Caimei Wu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu, China.,Key Laboratory of Animal Disease-Resistance Nutrition, Sichuan Province, Chengdu, China
| | - Ruinan Zhang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu, China.,Key Laboratory of Animal Disease-Resistance Nutrition, Sichuan Province, Chengdu, China
| | - Jing Wang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
14
|
Abstract
The small intestine mediates the absorption of amino acids after ingestion of protein and sustains the supply of amino acids to all tissues. The small intestine is an important contributor to plasma amino acid homeostasis, while amino acid transport in the large intestine is more relevant for bacterial metabolites and fluid secretion. A number of rare inherited disorders have contributed to the identification of amino acid transporters in epithelial cells of the small intestine, in particular cystinuria, lysinuric protein intolerance, Hartnup disorder, iminoglycinuria, and dicarboxylic aminoaciduria. These are most readily detected by analysis of urine amino acids, but typically also affect intestinal transport. The genes underlying these disorders have all been identified. The remaining transporters were identified through molecular cloning techniques to the extent that a comprehensive portrait of functional cooperation among transporters of intestinal epithelial cells is now available for both the basolateral and apical membranes. Mouse models of most intestinal transporters illustrate their contribution to amino acid homeostasis and systemic physiology. Intestinal amino acid transport activities can vary between species, but these can now be explained as differences of amino acid transporter distribution along the intestine. © 2019 American Physiological Society. Compr Physiol 9:343-373, 2019.
Collapse
Affiliation(s)
- Stefan Bröer
- Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| | - Stephen J Fairweather
- Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
15
|
Osmanyan AK, Ghazi Harsini S, Mahdavi R, Fisinin VI, Arkhipova AL, Glazko TT, Kovalchuk SN, Kosovsky GY. Intestinal amino acid and peptide transporters in broiler are modulated by dietary amino acids and protein. Amino Acids 2017; 50:353-357. [DOI: 10.1007/s00726-017-2510-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Accepted: 11/04/2017] [Indexed: 01/05/2023]
|
16
|
Morales A, Buenabad L, Castillo G, Vázquez L, Espinoza S, Htoo JK, Cervantes M. Dietary levels of protein and free amino acids affect pancreatic proteases activities, amino acids transporters expression and serum amino acid concentrations in starter pigs. J Anim Physiol Anim Nutr (Berl) 2016; 101:723-732. [PMID: 27121753 DOI: 10.1111/jpn.12515] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 03/12/2016] [Indexed: 12/17/2022]
Abstract
The dietary contents of crude protein and free amino acids (AA) may affect the protein digestion and AA absorption in pigs. Trypsin and chymotrypsin activities, AA serum concentrations and expression of AA transporters in the small intestine of pigs fed a low protein, AA-supplemented (19.2%, LPAA) or a high protein (28.1%, HP), wheat-soybean meal diet were measured in two 14-d trials. The LPAA diet contained free L-Lys, L-Thr, DL-Met, L-Leu, L-Ile, L-Val, L-His, L-Trp and L-Phe. All pigs were fed the same amount of feed (890 and 800 g/d for trial 1 and 2 respectively). In trial 1, samples of mucosa (duodenum, jejunum and ileum) and digesta (duodenum and jejunum) were collected from 14 pigs (17.2 ± 0.4 kg); in trial 2, blood samples were collected from 12 pigs (12.7 ± 0.3 kg). The trypsin and chymotrypsin activities in both intestinal segments were higher in pigs fed the HP diet (p < 0.01). Trypsin activity was higher in jejunum than in duodenum regardless the dietary treatment (p < 0.05). Pigs fed the LPAA diet expressed more b0,+ AT in duodenum, B0 AT1 in ileum (p < 0.05), and tended to express more y+ LAT1 in duodenum (p = 0.10). In pigs fed the LPAA diet, the expression of b0,+ AT was higher in duodenum than in jejunum and ileum (p < 0.01), but no difference was observed in pigs fed the HP diet. Ileum had the lowest b0,+ AT expression regardless the diet. The serum concentrations of Lys, Thr and Met were higher in LPAA pigs while serum Arg was higher in HP pigs (p < 0.05). Serum concentrations of AA appear to reflect the AA absorption. In conclusion, these data indicate that the dietary protein contents affect the extent of protein digestion and that supplemental free AA may influence the intestinal site of AA release and absorption, which may impact their availability for growth of young pigs.
Collapse
Affiliation(s)
- A Morales
- Instituto de Ciencias Agrícolas, Universidad Autónoma de Baja California, Mexicali, México
| | - L Buenabad
- Instituto de Ciencias Agrícolas, Universidad Autónoma de Baja California, Mexicali, México
| | - G Castillo
- Instituto de Ciencias Agrícolas, Universidad Autónoma de Baja California, Mexicali, México
| | - L Vázquez
- Instituto de Ciencias Agrícolas, Universidad Autónoma de Baja California, Mexicali, México
| | - S Espinoza
- Instituto de Ciencias Agrícolas, Universidad Autónoma de Baja California, Mexicali, México
| | - J K Htoo
- Evonik Industries AG, Nutrition Research, Hanau-Wolfgang, Germany
| | - M Cervantes
- Instituto de Ciencias Agrícolas, Universidad Autónoma de Baja California, Mexicali, México
| |
Collapse
|
17
|
Morales A, Buenabad L, Castillo G, Arce N, Araiza BA, Htoo JK, Cervantes M. Low-protein amino acid-supplemented diets for growing pigs: effect on expression of amino acid transporters, serum concentration, performance, and carcass composition. J Anim Sci 2015; 93:2154-64. [PMID: 26020311 DOI: 10.2527/jas.2014-8834] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
Pigs fed protein-bound AA appear to have a higher abundance of AA transporters for their absorption in the jejunum compared with the duodenum. However, there is limited data about the effect of dietary free AA, readily available in the duodenum, on the duodenal abundance of AA transporters and its impact on pig performance. Forty-eight pigs (24.3 kg initial BW) distributed in 4 treatments were used to evaluate the effect of the CP level and form (free vs. protein bound) in which AA are added to diets on the expression of AA transporters in the 3 small intestine segments, serum concentration of AA, and performance. Dietary treatments based on wheat and soybean meal (SBM) were 1) low-CP (14%) diet supplemented with L-Lys, L-Thr, DL-Met, L-Leu, L-Ile, L-Val, L-His, L-Trp, and L-Phe (LPAA); 2) as in the LPAA but with added L-Gly as a N source (LPAA+N); 3) intermediate CP content (16%) supplemented with L-Lys HCl, L-Thr, and DL-Met (MPAA); and 4) high-CP (22%) diet (HP) without free AA. At the end of the experiment, 8 pigs from LPAA and HP were sacrificed to collect intestinal mucosa and blood samples and to dissect the carcasses. There were no differences in ADG, ADFI, G:F, and weights of carcass components and some visceral organs between treatments. Weights of the large intestine and kidney were higher in HP pigs (P < 0.01). Expression of b(0,+) in the duodenum was higher in pigs fed the LPAA compared with the HP diet (P= 0.036) but there was no difference in the jejunum and ileum. In the ileum, y+ L expression tended to be higher in pigs fed the LPAA diet (P = 0.098). Expression of b(0,+) in LPAA pigs did not differ between the duodenum and the jejunum, but in HP pigs, the expression of all AA transporters was higher in the jejunum than in the duodenum or ileum (P < 0.05). The serum concentration of Arg, His, Ile, Leu, Phe, and Val was higher but serum Lys and Met were lower in pigs fed the HP diet (P < 0.05). These results indicate that LPAA can substitute up to 8 percentage units of protein in HP wheat-SBM diets without affecting pig performance; nonessential N does not seem to be limiting in very low-protein wheat-SBM diets for growing pigs. Also, the inclusion of free AA in the diet appears to affect their serum concentration and the expression of the AA transporter b0,+ in the duodenum of pigs.
Collapse
|
18
|
Morales A, Arce N, Cota M, Buenabad L, Avelar E, Htoo JK, Cervantes M. Effect of dietary excess of branched-chain amino acids on performance and serum concentrations of amino acids in growing pigs. J Anim Physiol Anim Nutr (Berl) 2015; 100:39-45. [DOI: 10.1111/jpn.12327] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 03/03/2015] [Indexed: 12/21/2022]
Affiliation(s)
- A. Morales
- ICA; Universidad Autónoma de Baja California; Mexicali México
| | - N. Arce
- ICA; Universidad Autónoma de Baja California; Mexicali México
| | - M. Cota
- ICA; Universidad Autónoma de Baja California; Mexicali México
| | - L. Buenabad
- ICA; Universidad Autónoma de Baja California; Mexicali México
| | - E. Avelar
- ICA; Universidad Autónoma de Baja California; Mexicali México
| | - J. K. Htoo
- Nutrition Research; Evonik Industries AG; Hanau Germany
| | - M. Cervantes
- ICA; Universidad Autónoma de Baja California; Mexicali México
| |
Collapse
|
19
|
Giacopo AD, Rubio-Aliaga I, Cantone A, Artunc F, Rexhepaj R, Frey-Wagner I, Font-Llitjós M, Gehring N, Stange G, Jaenecke I, Mohebbi N, Closs EI, Palacín M, Nunes V, Daniel H, Lang F, Capasso G, Wagner CA. Differential cystine and dibasic amino acid handling after loss of function of the amino acid transporter b0,+AT (Slc7a9) in mice. Am J Physiol Renal Physiol 2013; 305:F1645-55. [DOI: 10.1152/ajprenal.00221.2013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cystinuria is an autosomal recessive disease caused by mutations in SLC3A1 ( rBAT) and SLC7A9 ( b 0,+ AT). Gene targeting of the catalytic subunit ( Slc7a9) in mice leads to excessive excretion of cystine, lysine, arginine, and ornithine. Here, we studied this non-type I cystinuria mouse model using gene expression analysis, Western blotting, clearance, and brush-border membrane vesicle (BBMV) uptake experiments to further characterize the renal and intestinal consequences of losing Slc7a9 function. The electrogenic and BBMV flux studies in the intestine suggested that arginine and ornithine are transported via other routes apart from system b0,+. No remarkable gene expression changes were observed in other amino acid transporters and the peptide transporters in the intestine and kidney. Furthermore, the glomerular filtration rate (GFR) was reduced by 30% in knockout animals compared with wild-type animals. The fractional excretion of arginine was increased as expected (∼100%), but fractional excretions of lysine (∼35%), ornithine (∼16%), and cystine (∼11%) were less affected. Loss of function of b0,+AT reduced transport of cystine and arginine in renal BBMVs and completely abolished the exchanger activity of dibasic amino acids with neutral amino acids. In conclusion, loss of Slc7a9 function decreases the GFR and increases the excretion of several amino acids to a lesser extent than expected with no clear regulation at the mRNA and protein level of alternative transporters and no increased renal epithelial uptake. These observations indicate that transporters located in distal segments of the kidney and/or metabolic pathways may partially compensate for Slc7a9 loss of function.
Collapse
Affiliation(s)
- Andrea Di Giacopo
- Institute of Physiology-Zürich Center for Integrative Human Physiology (ZIHP), University of Zürich, Zürich, Switzerland
| | - Isabel Rubio-Aliaga
- Institute of Physiology-Zürich Center for Integrative Human Physiology (ZIHP), University of Zürich, Zürich, Switzerland
| | - Alessandra Cantone
- Department of Internal Medicine, Chair of Nephrology, Second University of Naples, Naples, Italy
| | - Ferruh Artunc
- Department of Physiology, University of Tübingen, Tübingen, Germany
| | - Rexhep Rexhepaj
- Department of Physiology, University of Tübingen, Tübingen, Germany
| | | | - Mariona Font-Llitjós
- Medical and Molecular Genetics Center, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Spain
- U730 CIBERER, Barcelona, Spain
| | - Nicole Gehring
- Institute of Physiology-Zürich Center for Integrative Human Physiology (ZIHP), University of Zürich, Zürich, Switzerland
| | - Gerti Stange
- Institute of Physiology-Zürich Center for Integrative Human Physiology (ZIHP), University of Zürich, Zürich, Switzerland
| | - Isabel Jaenecke
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Nilufar Mohebbi
- Institute of Physiology-Zürich Center for Integrative Human Physiology (ZIHP), University of Zürich, Zürich, Switzerland
| | - Ellen I. Closs
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Manuel Palacín
- IRB Barcelona, Department of Biochemistry and Molecular Biology, University of Barcelona and U731 CIBERER, Barcelona, Spain
| | - Virginia Nunes
- Medical and Molecular Genetics Center, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Spain
- Department of Physiological Sciences II, University of Barcelona, Spain; and
- U730 CIBERER, Barcelona, Spain
| | - Hannelore Daniel
- Molecular Nutrition Unit, Technical University of Munich, Freising, Germany
| | - Florian Lang
- Department of Physiology, University of Tübingen, Tübingen, Germany
| | - Giovambattista Capasso
- Department of Internal Medicine, Chair of Nephrology, Second University of Naples, Naples, Italy
| | - Carsten A. Wagner
- Institute of Physiology-Zürich Center for Integrative Human Physiology (ZIHP), University of Zürich, Zürich, Switzerland
| |
Collapse
|
20
|
Cervantes-Ramírez M, Mendez-Trujillo V, Araiza-Piña B, Barrera-Silva M, González-Mendoza D, Morales-Trejo A. Supplemental leucine and isoleucine affect expression of cationic amino acid transporters and myosin, serum concentration of amino acids, and growth performance of pigs. GENETICS AND MOLECULAR RESEARCH 2013; 12:115-26. [DOI: 10.4238/2013.january.24.3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
21
|
García-Villalobos H, Morales-Trejo A, Araiza-Piña BA, Htoo JK, Cervantes-Ramírez M. Effects of dietary protein and amino acid levels on the expression of selected cationic amino acid transporters and serum amino acid concentration in growing pigs. Arch Anim Nutr 2012; 66:257-70. [DOI: 10.1080/1745039x.2012.697351] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
22
|
Rius M, Chillarón J. Carrier subunit of plasma membrane transporter is required for oxidative folding of its helper subunit. J Biol Chem 2012; 287:18190-200. [PMID: 22493502 DOI: 10.1074/jbc.m111.321943] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
We study the amino acid transport system b(0,+) as a model for folding, assembly, and early traffic of membrane protein complexes. System b(0,+) is made of two disulfide-linked membrane subunits: the carrier, b(0,+) amino acid transporter (b(0,+)AT), a polytopic protein, and the helper, related to b(0,+) amino acid transporter (rBAT), a type II glycoprotein. rBAT ectodomain mutants display folding/trafficking defects that lead to type I cystinuria. Here we show that, in the presence of b(0,+)AT, three disulfides were formed in the rBAT ectodomain. Disulfides Cys-242-Cys-273 and Cys-571-Cys-666 were essential for biogenesis. Cys-673-Cys-685 was dispensable, but the single mutants C673S, and C685S showed compromised stability and trafficking. Cys-242-Cys-273 likely was the first disulfide to form, and unpaired Cys-242 or Cys-273 disrupted oxidative folding. Strikingly, unassembled rBAT was found as an ensemble of different redox species, mainly monomeric. The ensemble did not change upon inhibition of rBAT degradation. Overall, these results indicated a b(0,+)AT-dependent oxidative folding of the rBAT ectodomain, with the initial and probably cotranslational formation of Cys-242-Cys-273, followed by the oxidation of Cys-571-Cys-666 and Cys-673-Cys-685, that was completed posttranslationally.
Collapse
Affiliation(s)
- Mònica Rius
- Department of Physiology and Immunology, Faculty of Biology, University of Barcelona, E-08028 Barcelona, Spain
| | | |
Collapse
|
23
|
Morales A, Barrera MA, Araiza AB, Zijlstra RT, Bernal H, Cervantes M. Effect of excess levels of lysine and leucine in wheat-based, amino acid-fortified diets on the mRNA expression of two selected cationic amino acid transporters in pigs. J Anim Physiol Anim Nutr (Berl) 2012; 97:263-70. [PMID: 22211733 DOI: 10.1111/j.1439-0396.2011.01266.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An experiment was conducted to evaluate the effect of excess levels of Leu and Lys on the expression of b(0,+) and CAT-1 mRNA in jejunum, liver and the muscles Longissimus dorsi (LDM) and Semitendinosus (STM). Twenty pigs with an average initial BW of 16.4 ± 1.7 kg were used in a Randomized Complete Block. Dietary treatments (T) were as follows: T1, basal diet; T2, basal plus 3.5 g l-Lys/kg diet; T3, basal plus 1.5 g l-Leu/kg diet; T4, basal plus 3.5 g l-Lys plus 1.5 g l-Leu/kg diet. Diets in T1 and T3 met 100% the requirement of Lys for pigs within the 10 to 20 kg body weight range; diets in T2 and T4 contained 35% excess of Lys. Also, diets in T1 and T2 supplied 104%, whereas diets in T3 and T4 supplied 116% the requirement of Leu. The expression of b(0,+) in jejunum was reduced (p = 0.002) because of the supplementation of l-Leu, but l-Lys supplementation had no effect (p = 0.738). In contrast, the expression of b(0,+) in STM (p = 0.012) and liver (p = 0.095) was reduced by the high level of Lys, but Leu had no effect (p > 0.100). CAT-1 expression in STM increased by high Lys (p = 0.023) and Leu (p = 0.007) levels. In liver, the expression of CAT-1 substantially increased (p = 0.001) because of Lys. In conclusion, excess levels of dietary Lys and Leu affect the expression of cationic amino acid transporters, and this effect varies depending on the studied tissue.
Collapse
Affiliation(s)
- A Morales
- Instituto de Ciencias Agrícolas, UABC, Mexicali, México
| | | | | | | | | | | |
Collapse
|
24
|
|
25
|
Zhu J, Li S, Marshall ZM, Whorton AR. A cystine-cysteine shuttle mediated by xCT facilitates cellular responses toS-nitrosoalbumin. Am J Physiol Cell Physiol 2008; 294:C1012-20. [DOI: 10.1152/ajpcell.00411.2007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We have shown previously that extracellular cysteine is necessary for cellular responses to S-nitrosoalbumin. In this study we have investigated mechanisms involved in accumulation of extracellular cysteine outside vascular smooth muscle cells and characterized the role of cystine-cysteine release in transfer of nitric oxide (NO)-bioactivity. Incubation of cells with cystine led to cystine uptake, reduction, and cysteine release. The process was inhibitable by extracellular glutamate, suggesting a role for system xc−amino acid transporters. Smooth muscle cells express this transporter constitutively and induction of the light chain component (xCT) by either diethyl maleate or 3-morpholino-sydnonimine (SIN-1) led to glutamate-inhibitable cystine uptake and an increased rate of cysteine release from cells. Likewise, overexpression of xCT in smooth muscle cells or endothelial cells led to glutamate-inhibitable cysteine release. The resulting extracellular cysteine was found to be required for transfer of NO from extracellular S-nitrosothiols into cells via system L transporters leading to formation of cellular S-nitrosothiols. Cysteine release coupled to cystine uptake was also found to be required for cellular responses to S-nitrosoalbumin and facilitated S-nitrosoalbumin-mediated inhibition of epidermal growth factor signaling. These data show that xCT expression can constitute a cystine-cysteine shuttle whereby cystine uptake drives cysteine release. Furthermore, we show that extracellular cysteine provided by this shuttle mechanism is necessary for transfer of NO equivalents and cellular responses to S-nitrosoablumin.
Collapse
|
26
|
Bartoccioni P, Rius M, Zorzano A, Palacín M, Chillarón J. Distinct classes of trafficking rBAT mutants cause the type I cystinuria phenotype. Hum Mol Genet 2008; 17:1845-54. [PMID: 18332091 DOI: 10.1093/hmg/ddn080] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Most mutations in the rBAT subunit of the heterodimeric cystine transporter rBAT-b(0,+)AT cause type I cystinuria. Trafficking of the transporter requires the intracellular assembly of the two subunits. Without its partner, rBAT, but not b(0,+)AT, is rapidly degraded. We analyzed the initial biogenesis of wild-type rBAT and type I cystinuria rBAT mutants. rBAT was degraded, at least in part, via the ERAD pathway. Assembly with b(0,+)AT within the endoplasmic reticulum (ER) blocked rBAT degradation and could be independent of the calnexin chaperone system. This system was, however, necessary for post-assembly maturation of the heterodimer. Without b(0,+)AT, wild-type and rBAT mutants were degraded with similar kinetics. In its presence, rBAT mutants showed strongly reduced (L89P) or no transport activity, failed to acquire complex N-glycosylation and to oligomerize, suggesting assembly and/or folding defects. Most of the transmembrane domain mutant L89P did not heterodimerize with b(0,+)AT and was degraded. However, the few [L89P]rBAT-b(0,+)AT heterodimers were stable, consistent with assembly, but not folding, defects. Mutants of the rBAT extracellular domain (T216M, R365W, M467K and M467T) efficiently assembled with b(0,+)AT but were subsequently degraded. Together with earlier results, the data suggest a two-step biogenesis model, with the early assembly of the subunits followed by folding of the rBAT extracellular domain. Defects on either of these steps lead to the type I cystinuria phenotype.
Collapse
Affiliation(s)
- Paola Bartoccioni
- Department of Biochemistry and Molecular Biology, University of Barcelona, Barcelona, Spain
| | | | | | | | | |
Collapse
|
27
|
Bröer S. Amino acid transport across mammalian intestinal and renal epithelia. Physiol Rev 2008; 88:249-86. [PMID: 18195088 DOI: 10.1152/physrev.00018.2006] [Citation(s) in RCA: 647] [Impact Index Per Article: 38.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The transport of amino acids in kidney and intestine is critical for the supply of amino acids to all tissues and the homeostasis of plasma amino acid levels. This is illustrated by a number of inherited disorders affecting amino acid transport in epithelial cells, such as cystinuria, lysinuric protein intolerance, Hartnup disorder, iminoglycinuria, dicarboxylic aminoaciduria, and some other less well-described disturbances of amino acid transport. The identification of most epithelial amino acid transporters over the past 15 years allows the definition of these disorders at the molecular level and provides a clear picture of the functional cooperation between transporters in the apical and basolateral membranes of mammalian epithelial cells. Transport of amino acids across the apical membrane not only makes use of sodium-dependent symporters, but also uses the proton-motive force and the gradient of other amino acids to efficiently absorb amino acids from the lumen. In the basolateral membrane, antiporters cooperate with facilitators to release amino acids without depleting cells of valuable nutrients. With very few exceptions, individual amino acids are transported by more than one transporter, providing backup capacity for absorption in the case of mutational inactivation of a transport system.
Collapse
Affiliation(s)
- Stefan Bröer
- School of Biochemistry and Molecular Biology, Australian National University, Canberra, Australian Capital Territory, Australia.
| |
Collapse
|
28
|
Rexhepaj R, Grahammer F, Völkl H, Remy C, Wagner CA, Sandulache D, Artunc F, Henke G, Nammi S, Capasso G, Alessi DR, Lang F. Reduced intestinal and renal amino acid transport in PDK1 hypomorphic mice. FASEB J 2006; 20:2214-22. [PMID: 17077298 DOI: 10.1096/fj.05-5676com] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The phosphoinositide-dependent kinase PDK1 activates the serum- and glucocorticoid-inducible kinase isoforms SGK1, SGK2, and SGK3 and protein kinase B, which in turn are known to up-regulate a variety of sodium-coupled transporters. The present study was performed to explore the role of PDK1 in amino acid transport. As mice completely lacking functional PDK1 are not viable, mice expressing 10-25% of PDK1 (pdk1(hm)) were compared with their wild-type (WT) littermates (pdk1(wt)). Body weight was significantly less in pdk1(hm) than in pdk1(wt) mice. Despite lower body weight of pdk1(hm) mice, food and water intake were similar in pdk1(hm) and pdk1(wt) mice. According to Ussing chamber experiments, electrogenic transport of phenylalanine, cysteine, glutamine, proline, leucine, and tryptophan was significantly smaller in jejunum of pdk1(hm) mice than in pdk1(wt) mice. Similarly, electrogenic transport of phenylalanine, glutamine, and proline was significantly decreased in isolated perfused proximal tubules of pdk1(hm) mice. The urinary excretion of proline, valine, guanidinoacetate, methionine, phenylalanine, citrulline, glutamine/glutamate, and tryptophan was significantly larger in pdk1(hm) than in pdk1(wt) mice. According to immunoblotting of brush border membrane proteins prepared from kidney, expression of the Na+-dependent neutral amino acid transporter B(0)AT1 (SLC6A19), the glutamate transporter EAAC1/EAAT3 (SLC1A1), and the transporter for cationic amino acids and cystine b(0,+)AT (SLC7A9) was decreased but the Na+/proline cotransporter SIT (SLC6A20) was increased in pdk1(hm) mice. In conclusion, reduction of functional PDK1 leads to impairment of intestinal absorption and renal reabsorption of amino acids. The combined intestinal and renal loss of amino acids may contribute to the growth defect of PDK1-deficient mice.
Collapse
Affiliation(s)
- Rexhep Rexhepaj
- Department of Physiology I, University of Tübingen, Gmelinstr. 5, D-72076 Tübingen, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Malakauskas SM, Quan H, Fields TA, McCall SJ, Yu MJ, Kourany WM, Frey CW, Le TH. Aminoaciduria and altered renal expression of luminal amino acid transporters in mice lacking novel gene collectrin. Am J Physiol Renal Physiol 2006; 292:F533-44. [PMID: 16985211 DOI: 10.1152/ajprenal.00325.2006] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Defects in renal proximal tubule transport manifest in a number of human diseases. Although variable in clinical presentation, disorders such as Hartnup disease, Dent's disease, and Fanconi syndrome are characterized by wasting of solutes commonly recovered by the proximal tubule. One common feature of these disorders is aminoaciduria. There are distinct classes of amino acid transporters located in the apical and basal membranes of the proximal tubules that reabsorb >95% of filtered amino acids, yet few details are known about their regulation. We present our physiological characterization of a mouse line with targeted deletion of the gene collectrin that is highly expressed in the kidney. Collectrin-deficient mice display a reduced urinary concentrating capacity due to enhanced solute clearance resulting from profound aminoaciduria. The aminoaciduria is generalized, characterized by loss of nearly every amino acid, and results in marked crystalluria. Furthermore, in the kidney, collectrin-deficient mice have decreased plasma membrane populations of amino acid transporter subtypes B(0)AT1, rBAT, and b(0,+)AT, as well as altered cellular distribution of EAAC1. Our data suggest that collectrin is a novel mediator of renal amino acid transport and may provide further insight into the pathogenesis of a number of human disease correlates.
Collapse
|
30
|
Fernández E, Jiménez-Vidal M, Calvo M, Zorzano A, Tebar F, Palacín M, Chillarón J. The Structural and Functional Units of Heteromeric Amino Acid Transporters. J Biol Chem 2006; 281:26552-61. [PMID: 16825196 DOI: 10.1074/jbc.m604049200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Heteromeric amino acid transporters are composed of a catalytic light subunit and a heavy subunit linked by a disulfide bridge. We analyzed the structural and functional units of systems b0,+ and xC-, formed by the heterodimers b0,+ AT-rBAT and xCT-4F2hc, respectively. Blue Native gel electrophoresis, cross-linking, and fluorescence resonance energy transfer in vivo indicate that system b0,+ is a heterotetramer [b0,+ AT-rBAT]2, whereas xCT-4F2hc seems not to stably or efficiently oligomerize. However, substitution of the heavy subunit 4F2hc for rBAT was sufficient to form a heterotetrameric [xCT-rBAT]2 structure. The functional expression of concatamers of two light subunits (which differ only in their sensitivity to inactivation by a sulfhydryl reagent) suggests that a single heterodimer is the functional unit of systems b0,+ and xC-.
Collapse
Affiliation(s)
- Esperanza Fernández
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
31
|
Chubb S, Kingsland AL, Bröer A, Bröer S. Mutation of the 4F2 heavy-chain carboxy terminus causes y+ LAT2 light-chain dysfunction. Mol Membr Biol 2006; 23:255-67. [PMID: 16785209 DOI: 10.1080/09687860600652968] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Heteromeric amino acid transporters are composed of two subunits--a multipass membrane protein called the 'light chain'--and a single pass glycoprotein called the 'heavy chain'. The light chain contains the transport pore, while the heavy chain appears to be necessary for trafficking the light chain to the plasma membrane. In this study, the role of the 4F2hc heavy chain in the function of the y+ LAT2 light chain was investigated. Carboxy terminal truncations and site specific mutants of 4F2hc were co-expressed in Xenopus laevis oocytes with the y+ LAT2 light chain, and the oocytes were analysed for transport activity and surface expression. Truncations of the 4F2hc carboxy terminus ranging between 15 and 404 residues caused a complete loss of light chain function, although all heterodimers were expressed at the cell surface. This indicated that the 15 carboxy-terminal residues of 4F2hc are required for the transport function of the heterodimer. Mutation of the conserved residue leucine 523 to glutamine in the carboxy terminus reduced the Vmax of arginine and leucine uptake. The affinity of the transporter for both arginine and leucine remained unaltered, but the Km-value of Na+, being cotransported with leucine, increased about three-fold. The change of the Na+ Km caused a specific defect of leucine efflux, whereas uptake of leucine at high extracellular NaCl concentration was unaffected.
Collapse
Affiliation(s)
- Sarah Chubb
- School of Biochemistry & Molecular Biology, Australian National University, Canberra, Australia
| | | | | | | |
Collapse
|
32
|
Yuen YP, Lam CW, Lai CK, Tong SF, Li PS, Tam S, Kwan EYW, Chan SY, Tsang WK, Chan KY, Mak WL, Cheng CW, Chan YW. Heterogeneous mutations in the SLC3A1 and SLC7A9 genes in Chinese patients with cystinuria. Kidney Int 2006; 69:123-8. [PMID: 16374432 DOI: 10.1038/sj.ki.5000003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cystinuria is a recessively inherited aminoaciduria that leads to recurrent urolithiasis. It is caused by the defective transport of cystine and dibasic amino acids in the proximal renal tubules and intestinal epithelium. Two genes responsible for this, SLC3A1 and SLC7A9, are known. Patients with two SLC3A1 mutations are classified as type A cystinuria, whereas patients with two SLC7A9 mutations are classified as type B cystinuria. Few clinical and molecular data have been reported for Asian cystinuria patients. In this study, we determined the molecular basis of cystinuria in eight unrelated Chinese subjects. Coding exons and flanking introns of the SLC3A1 and SLC7A9 genes were directly sequenced after amplification by polymerase chain reaction. Five different SLC3A1 mutations were found. Two missense mutations, D210G and S547L, were novel. The other three SLC3A1 mutations (IVS6+2T>C, R181Q and R365W) have been described previously. In addition, four novel SLC7A9 mutations, C137R, c.730delG, IVS10+2_3delTG and IVS12+3insT, together with two previously reported mutations (A70V and G195R) were found. All patients except one carried compound heterozygous mutations. IVS12+3insT was detected in patients from two families. This is the first molecular genetic study on Chinese cystinuria patients. Three patients with type A cystinuria, two with type B cystinuria, and three carriers of type B cystinuria were identified. Our results suggest that the molecular basis of cystinuria is heterogeneous in our local population.
Collapse
Affiliation(s)
- Y-P Yuen
- Department of Pathology, Princess Margaret Hospital, Hong Kong, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Franca R, Veljkovic E, Walter S, Wagner C, Verrey F. Heterodimeric amino acid transporter glycoprotein domains determining functional subunit association. Biochem J 2005; 388:435-43. [PMID: 15679469 PMCID: PMC1138950 DOI: 10.1042/bj20050021] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The heteromeric amino acid transporter glycoprotein subunits rBAT and 4F2hc (heavy chains) form, with different catalytic subunits (light chains), functional heterodimers that are covalently stabilized by a disulphide bridge. Whereas rBAT associates with b(0,+)AT to form the cystine and cationic amino acid transporter defective in cystinuria, 4F2hc associates with other homologous light chains, for instance with LAT1 to form a system L neutral amino acid transporter. To identify within the heavy chains the domain(s) involved in recognition of and functional interaction with partner light chains, chimaeric and truncated forms of rBAT and 4F2hc were co-expressed in Xenopus laevis oocytes with b(0,+)AT or LAT1. Heavy chain-light chain association was analysed by co-immunoprecipitation, and transport function was tested by tracer uptake experiments. The results indicate that the cytoplasmic tail and transmembrane domain of rBAT together play a dominant role in selective functional interaction with b(0,+)AT, whereas the extracellular domain of rBAT appears to facilitate specifically L-cystine uptake. For 4F2hc, functional interaction with LAT1 was mediated by the N-terminal part, comprising cytoplasmic tail, transmembrane segment and neck, even in the absence of the extracellular domain. Alternatively, functional association with LAT1 was also supported by the extracellular part of 4F2hc comprising neck and glycosidase-like domain linked to the complementary part of rBAT. In conclusion, the cytoplasmic tail and the transmembrane segment together play a determinant role for the functional interaction of rBAT with b(0,+)AT, whereas either cytoplasmic or extracellular glycosidase-like domains are dispensable for the functional interaction of 4F2hc with LAT1.
Collapse
Affiliation(s)
- Raffaella Franca
- Institute of Physiology, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Emilija Veljkovic
- Institute of Physiology, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Stefan Walter
- Institute of Physiology, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Carsten A. Wagner
- Institute of Physiology, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - François Verrey
- Institute of Physiology, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
- To whom correspondence should be addressed (email )
| |
Collapse
|
34
|
Skopková Z, Hrabincová E, Stástná S, Kozák L, Adam T. Molecular Genetic Analysis of SLC3A1 and SLC7A9 Genes in Czech and Slovak Cystinuric Patients. Ann Hum Genet 2005; 69:501-7. [PMID: 16138908 DOI: 10.1111/j.1529-8817.2005.00185.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Cystinuria is a frequently inherited metabolic disorder in the Czech population (frequency 1/5,600) caused by a defect in the renal transport of cystine and dibasic amino acids (arginine, lysine and ornithine). The disease is characterized by increased urinary excretion of the amino acids and often leads to recurrent nephrolithiasis. Cystinuria is classified into two subtypes (type I and type non-I). Type I is caused predominantly by mutations in the SLC3A1 gene (2p16.3), encoding heavy subunit (rBAT) of the heterodimeric transporter. Cystinuria non-I type is caused by mutations in the SLC7A9 gene (19q13.1). In this study, we present results of molecular genetic analysis of the SLC3A1 and the SLC7A9 genes in 24 unrelated cystinuria families. Individual exons of the SLC3A1 and SLC7A9 genes were analyzed by direct sequencing. We found ten different mutations in the SLC3A1 gene including six novel ones: three missense mutations (G140R), D179Y and R365P), one splice site mutation (1137-2A>G), one deletion (1515_1516delAA), and one nonsense mutation (Q119X). The most frequent mutation, M467T; was detected in 36% of all type I classified alleles. In the SLC7A9 gene we found six mutations including three new ones: one missense mutation (G319R), one insertion (611_612insA) and one deletion (205_206delTG). One patient was compound heterozygote for one SLC3A1 and one SLC7A9 mutation. Our results confirm that cystinuria is a heterogeneous disorder at the molecular level, and contribute to the understanding of the distribution and frequency of mutations causing cystinuria in the Caucasian population.
Collapse
Affiliation(s)
- Zuzana Skopková
- Laboratory of Inhented Metabolic Disorders, Department of Clinical Chemistry, Palacký University and Hospital, Olomouc, Czech Republic
| | | | | | | | | |
Collapse
|
35
|
Abstract
Receptors, hormones, enzymes, ion channels, and structural components of the cell are created by the act of protein synthesis. Synthesis alone is insufficient for proper function, of course; for a cell to operate effectively, its components must be correctly compartmentalized. The mechanism by which proteins maintain the fidelity of localization warrants attention in light of the large number of different molecules that must be routed to distinct subcellular loci, the potential for error, and resultant disease. This review summarizes diseases known to have etiologies based on defective protein folding or failure of the cell's quality control apparatus and presents approaches for therapeutic intervention.
Collapse
Affiliation(s)
- Cecilia Castro-Fernández
- Oregon National Primate Research Center/Oregon Health and Science University, 505 NW 185th Avenue, Beaverton, Oregon 97006, USA
| | | | | |
Collapse
|
36
|
Palacín M, Nunes V, Font-Llitjós M, Jiménez-Vidal M, Fort J, Gasol E, Pineda M, Feliubadaló L, Chillarón J, Zorzano A. The Genetics of Heteromeric Amino Acid Transporters. Physiology (Bethesda) 2005; 20:112-24. [PMID: 15772300 DOI: 10.1152/physiol.00051.2004] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Heteromeric amino acid transporters (HATs) are composed of a heavy ( SLC3 family) and a light ( SLC7 family) subunit. Mutations in system b0,+(rBAT-b0,+AT) and in system y+L (4F2hc-y+LAT1) cause the primary inherited aminoacidurias (PIAs) cystinuria and lysinuric protein intolerance, respectively. Recent developments [including the identification of the first Hartnup disorder gene (B0AT1; SLC6A19)] and knockout mouse models have begun to reveal the basis of renal and intestinal reabsorption of amino acids in mammals.
Collapse
Affiliation(s)
- Manuel Palacín
- Department of Biochemistry and Molecular Biology, Faculty of Biology and Institut de Recerca Biomedica de Barcelona, Barcelona Science Park, University of Barcelona, Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Fernández E, Torrents D, Zorzano A, Palacín M, Chillarón J. Identification and functional characterization of a novel low affinity aromatic-preferring amino acid transporter (arpAT). One of the few proteins silenced during primate evolution. J Biol Chem 2005; 280:19364-72. [PMID: 15757906 DOI: 10.1074/jbc.m412516200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have identified in silico arpAT, a gene encoding a new member of the LSHAT family, and cloned it from kidney. Co-expression of arpAT with the heavy subunits rBAT or 4F2hc elicited a sodium-independent alanine transport activity in HeLa cells. L-tyrosine, l-3,4-dihydroxyphenylalanine (L-DOPA), L-glutamine, L-serine, L-cystine, and L-arginine were also transported. Kinetic and cis-inhibition studies showed a K(m) = 1.59 +/- 0.24 mM for L-alanine or IC50 in the millimolar range for most amino acids, except L-proline, glycine, anionic and D-amino acids, which were not inhibitory. L-DOPA and L-tyrosine were the most effective competitive inhibitors of L-alanine transport, with IC50 values of 272.2 +/- 57.1 and 716.3 +/- 112.4 microM, respectively. In the small intestine, arpAT mRNA was located at the enterocytes, in a decreasing gradient from the crypts to the tip of the villi. It was also expressed in neurons from different brain areas. Finally, we show that while the arpAT gene is conserved in rat, dog, and chicken, it has become silenced in humans and chimpanzee. Actually, it has been recently reported that it is one of the 33 recently inactivated genes in the human lineage. The evolutionary implications of the silencing process and the roles of arpAT in transport of L-DOPA in the brain and in aromatic amino acid absorption are discussed.
Collapse
MESH Headings
- Alanine/chemistry
- Amino Acid Sequence
- Amino Acid Transport Systems
- Amino Acid Transport Systems, Neutral/biosynthesis
- Amino Acid Transport Systems, Neutral/chemistry
- Amino Acid Transport Systems, Neutral/genetics
- Amino Acids/chemistry
- Amino Acids, Aromatic/metabolism
- Animals
- Arginine/chemistry
- Biological Transport
- Blotting, Northern
- Blotting, Western
- Cell Lineage
- Chickens
- Cloning, Molecular
- Cysteine/chemistry
- DNA, Complementary/metabolism
- Dimerization
- Dogs
- Dose-Response Relationship, Drug
- Evolution, Molecular
- Gene Library
- Gene Silencing
- Glutamine/chemistry
- Glycine/chemistry
- HeLa Cells
- Humans
- In Situ Hybridization
- Inhibitory Concentration 50
- Intestine, Small/metabolism
- Kidney/metabolism
- Kinetics
- Levodopa/metabolism
- Levodopa/pharmacology
- Mice
- Molecular Sequence Data
- Open Reading Frames
- Pan troglodytes
- Phylogeny
- Proline/chemistry
- Protein Binding
- RNA, Messenger/metabolism
- Rats
- Reverse Transcriptase Polymerase Chain Reaction
- Serine/chemistry
- Sodium/chemistry
- Transfection
Collapse
Affiliation(s)
- Esperanza Fernández
- Department of Biochemistry and Molecular Biology, Faculty of Biology, and Barcelona Science Park, University of Barcelona, E-08028 Barcelona, Spain
| | | | | | | | | |
Collapse
|
38
|
Closs EI, Simon A, Vékony N, Rotmann A. Plasma membrane transporters for arginine. J Nutr 2004; 134:2752S-2759S; discussion 2765S-2767S. [PMID: 15465780 DOI: 10.1093/jn/134.10.2752s] [Citation(s) in RCA: 190] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The supply of arginine may become rate limiting for enzymatic reactions that use this semiessential amino acid as a substrate (e.g., nitric oxide, agmatine, creatine, and urea synthesis), particularly under conditions of high demand such as growth, sepsis, or wound healing. In addition, arginine acts as a signaling molecule that regulates essential cellular functions such as protein synthesis, apoptosis, and growth. In the past decade, a number of carrier proteins for amino acids have been identified on the molecular level. They belong to different gene families, exhibit overlapping but distinctive substrate specificities, and can further be distinguished by their requirement for the cotransport or countertransport of inorganic ions. A number of these transporters function as exchangers rather than uniporters. Uptake of amino acids by these transporters therefore depends largely on the intracellular substrate composition. Hence, there is a complex crosstalk between transporters for cationic and neutral amino acids as well as for peptides. This article briefly reviews current knowledge regarding mammalian plasma membrane transporters that accept arginine as a substrate.
Collapse
Affiliation(s)
- Ellen I Closs
- Department of Pharmacology, Johannes Gutenberg University, 55101 Mainz, Germany.
| | | | | | | |
Collapse
|
39
|
Seow HF, Bröer S, Bröer A, Bailey CG, Potter SJ, Cavanaugh JA, Rasko JEJ. Hartnup disorder is caused by mutations in the gene encoding the neutral amino acid transporter SLC6A19. Nat Genet 2004; 36:1003-7. [PMID: 15286788 DOI: 10.1038/ng1406] [Citation(s) in RCA: 167] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2004] [Accepted: 06/28/2004] [Indexed: 11/09/2022]
Abstract
Hartnup disorder (OMIM 234500) is an autosomal recessive abnormality of renal and gastrointestinal neutral amino acid transport noted for its clinical variability. We localized a gene causing Hartnup disorder to chromosome 5p15.33 and cloned a new gene, SLC6A19, in this region. SLC6A19 is a sodium-dependent and chloride-independent neutral amino acid transporter, expressed predominately in kidney and intestine, with properties of system B(0). We identified six mutations in SLC6A19 that cosegregated with disease in the predicted recessive manner, with most affected individuals being compound heterozygotes. The disease-causing mutations that we tested reduced neutral amino acid transport function in vitro. Population frequencies for the most common mutated SLC6A19 alleles are 0.007 for 517G --> A and 0.001 for 718C --> T. Our findings indicate that SLC6A19 is the long-sought gene that is mutated in Hartnup disorder; its identification provides the opportunity to examine the inconsistent multisystemic features of this disorder.
Collapse
Affiliation(s)
- Heng F Seow
- Gene Therapy, Centenary Institute of Cancer Medicine & Cell Biology, University of Sydney, NSW 2042, Australia
| | | | | | | | | | | | | |
Collapse
|
40
|
Gasol E, Jiménez-Vidal M, Chillarón J, Zorzano A, Palacín M. Membrane Topology of System Xc- Light Subunit Reveals a Re-entrant Loop with Substrate-restricted Accessibility. J Biol Chem 2004; 279:31228-36. [PMID: 15151999 DOI: 10.1074/jbc.m402428200] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Heteromeric amino acid transporters are composed of a heavy and a light subunit linked by a disulfide bridge. 4F2hc/xCT elicits sodium-independent exchange of anionic L-cysteine and L-glutamate (system x(c)(-)). Based on the accessibility of single cysteines to 3-(N-maleimidylpropionyl)biocytin, we propose a topological model for xCT of 12 transmembrane domains with the N and C termini located inside the cell. This location of N and C termini was confirmed by immunofluorescence. Studies of biotinylation and accessibility to sulfhydryl reagents revealed a re-entrant loop within intracellular loops 2 and 3. Residues His(110) and Thr(112), facing outside, are located at the apex of the re-entrant loop. Biotinylation of H110C was blocked by xCT substrates, by the nontransportable inhibitor (S)-4-carboxyphenylglycine, and by the impermeable reagent (2-sulfonatoethyl) methanethiosulfonate, which produced an inactivation of H110C that was protected by L-glutamate and L-cysteine with an IC(50) similar to the K(m). Protection was temperatureindependent. The data indicate that His(110) may lie close to the substrate binding/permeation pathway of xCT. The membrane topology of xCT could serve as a model for other light subunits of heteromeric amino acid transporters.
Collapse
Affiliation(s)
- Emma Gasol
- Department of Biochemistry and Molecular Biology, Faculty of Biology and Barcelona Science Park, University of Barcelona, Spain
| | | | | | | | | |
Collapse
|
41
|
Bröer A, Klingel K, Kowalczuk S, Rasko JEJ, Cavanaugh J, Bröer S. Molecular cloning of mouse amino acid transport system B0, a neutral amino acid transporter related to Hartnup disorder. J Biol Chem 2004; 279:24467-76. [PMID: 15044460 DOI: 10.1074/jbc.m400904200] [Citation(s) in RCA: 187] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Resorption of amino acids in kidney and intestine is mediated by transporters, which prefer groups of amino acids with similar physico-chemical properties. It is generally assumed that most neutral amino acids are transported across the apical membrane of epithelial cells by system B(0). Here we have characterized a novel member of the Na(+)-dependent neurotransmitter transporter family (B(0)AT1) isolated from mouse kidney, which shows all properties of system B(0). Flux experiments showed that the transporter is Na(+)-dependent, electrogenic, and actively transports most neutral amino acids but not anionic or cationic amino acids. Superfusion of mB(0)AT1-expressing oocytes with neutral amino acids generated inward currents, which were proportional to the fluxes observed with labeled amino acids. In situ hybridization showed strong expression in intestinal microvilli and in the proximal tubule of the kidney. Expression of mouse B(0)AT1 was restricted to kidney, intestine, and skin. It is generally assumed that mutations of the system B(0) transporter underlie autosomal recessive Hartnup disorder. In support of this notion mB(0)AT1 is located on mouse chromosome 13 in a region syntenic to human chromosome 5p15, the locus of Hartnup disorder. Thus, the human homologue of this transporter is an excellent functional and positional candidate for Hartnup disorder.
Collapse
MESH Headings
- Amino Acid Sequence
- Amino Acid Transport Systems/genetics
- Amino Acid Transport Systems, Neutral/genetics
- Amino Acids/chemistry
- Animals
- Anions
- Base Sequence
- Biological Transport
- Cations
- Cloning, Molecular
- DNA, Complementary/metabolism
- Electrophysiology
- Hartnup Disease/metabolism
- Hydrogen-Ion Concentration
- In Situ Hybridization
- Intestinal Mucosa/metabolism
- Ions
- Kidney/metabolism
- Leucine/chemistry
- Mice
- Mice, Inbred C57BL
- Mice, Inbred DBA
- Models, Biological
- Models, Genetic
- Molecular Sequence Data
- Mutation
- Oocytes/metabolism
- Peptides/chemistry
- Phylogeny
- Plasmids/metabolism
- Protein Structure, Tertiary
- RNA, Complementary/metabolism
- RNA, Messenger/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Skin/metabolism
- Substrate Specificity
- Time Factors
Collapse
Affiliation(s)
- Angelika Bröer
- School of Biochemistry and Molecular Biology, Australian National University, Canberra ACT 0200, Australia
| | | | | | | | | | | |
Collapse
|