1
|
Li F, Zhao H, Liu Y, Zhang J, Yu H. Chitin Biodegradation by Lytic Polysaccharide Monooxygenases from Streptomyces coelicolor In Vitro and In Vivo. Int J Mol Sci 2022; 24:ijms24010275. [PMID: 36613716 PMCID: PMC9820598 DOI: 10.3390/ijms24010275] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/17/2022] [Accepted: 12/19/2022] [Indexed: 12/28/2022] Open
Abstract
Lytic polysaccharide monooxygenases (LPMOs) have the potential to improve recalcitrant polysaccharide hydrolysis by the oxidizing cleavage of glycosidic bond. Streptomyces species are major chitin decomposers in soil ecological environments and encode multiple lpmo genes. In this study, we demonstrated that transcription of the lpmo gene, Sclpmo10G, in the Streptomyces coelicolor A3(2) (ScA3(2)) strain is strongly induced by chitin. The ScLPMO10G protein was further expressed in Escherichia coli and characterized in vitro. The ScLPMO10G protein showed oxidation activity towards chitin. Chitinase synergy experiments demonstrated that the addition of ScLPMO10G resulted in a substantial in vitro increase in the reducing sugar levels. Moreover, in vivo the LPMO-overexpressing strain ScΔLPMO10G(+) showed stronger chitin-degrading ability than the wild-type, leading to a 2.97-fold increase in reducing sugar level following chitin degradation. The total chitinase activity of ScΔLPMO10G(+) was 1.5-fold higher than that of ScA3(2). In summary, ScLPMO10G may play a role in chitin biodegradation in S. coelicolor, which could have potential applications in biorefineries.
Collapse
Affiliation(s)
- Fei Li
- Department of Bioengineering, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Honglu Zhao
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yuxin Liu
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jiaqi Zhang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hongbo Yu
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Correspondence:
| |
Collapse
|
2
|
Otto-Hanson LK, Kinkel LL. Densities and inhibitory phenotypes among indigenous Streptomyces spp. vary across native and agricultural habitats. MICROBIAL ECOLOGY 2020; 79:694-705. [PMID: 31656973 DOI: 10.1007/s00248-019-01443-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 09/20/2019] [Indexed: 06/10/2023]
Abstract
Streptomyces spp. perform vital roles in natural and agricultural soil ecosystems including in decomposition and nutrient cycling, promotion of plant growth and fitness, and plant disease suppression. Streptomyces densities can vary across the landscape, and inhibitory phenotypes are often a result of selection mediated by microbial competitive interactions in soil communities. Diverse environmental factors, including those specific to habitat, are likely to determine microbial densities in the soil and the outcomes of microbial species interactions. Here, we characterized indigenous Streptomyces densities and inhibitory phenotypes from soil samples (n = 82) collected in 6 distinct habitats across the Cedar Creek Ecosystem Science Reserve (CCESR; agricultural, prairie, savanna, wetland, wet-woodland, and forest). Significant variation in Streptomyces density and the frequency of antagonistic Streptomyces were observed among habitats. There was also significant variation in soil chemical properties among habitats, including percent carbon, percent nitrogen, available phosphorus, extractable potassium, and pH. Density and frequency of antagonists were significantly correlated with one or more environmental parameters across all habitats, though relationships with some parameters differed among habitats. In addition, we found that habitat rather than spatial proximity was a better predictor of variation in Streptomyces density and inhibitory phenotypes. Moreover, habitats least conducive for Streptomyces growth and proliferation, as determined by population density, had increased frequencies of inhibitory phenotypes. Identifying environmental parameters that structure variation in density and frequency of antagonistic Streptomyces can provide insight for determining factors that mediate selection for inhibitory phenotypes across the landscape.
Collapse
Affiliation(s)
- L K Otto-Hanson
- University of Minnesota-Twin Cities, 1991 Upper Buford Circle, 495 Borlaug Hall, Saint Paul, MN, 55108, USA.
| | - L L Kinkel
- University of Minnesota-Twin Cities, 1991 Upper Buford Circle, 495 Borlaug Hall, Saint Paul, MN, 55108, USA
| |
Collapse
|
3
|
Elucidating biochemical features and biological roles of Streptomyces proteins recognizing crystalline chitin- and cellulose-types and their soluble derivatives. Carbohydr Res 2017; 448:220-226. [PMID: 28712648 DOI: 10.1016/j.carres.2017.06.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 06/19/2017] [Indexed: 12/19/2022]
Abstract
Pioneering biochemical, immunological, physiological and microscopic studies in combination with gene cloning allowed uncovering previously unknown genes encoding proteins of streptomycetes to target crystalline chitin and cellulose as well as their soluble degradation-compounds via binding protein dependent transporters. Complementary analyses provoked an understanding of novel regulators governing transcription of selected genes. These discoveries induced detecting close and distant homologues of former orphan proteins encoded by genes from different bacteria. Grounded on structure-function-relationships, several researchers identified a few of these proteins as novel members of the growing family for lytic polysaccharides monooxygenases. Exemplary, the ecological significance of the characterized proteins including their role to promote interactions among organisms is outlined and discussed.
Collapse
|
4
|
Pinheiro GL, de Azevedo-Martins AC, Albano RM, de Souza W, Frases S. Comprehensive analysis of the cellulolytic system reveals its potential for deconstruction of lignocellulosic biomass in a novel Streptomyces sp. Appl Microbiol Biotechnol 2016; 101:301-319. [DOI: 10.1007/s00253-016-7851-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 08/21/2016] [Accepted: 09/07/2016] [Indexed: 12/30/2022]
|
5
|
Pinheiro GL, Correa RF, Cunha RS, Cardoso AM, Chaia C, Clementino MM, Garcia ES, de Souza W, Frasés S. Isolation of aerobic cultivable cellulolytic bacteria from different regions of the gastrointestinal tract of giant land snail Achatina fulica. Front Microbiol 2015; 6:860. [PMID: 26347735 PMCID: PMC4542579 DOI: 10.3389/fmicb.2015.00860] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 08/06/2015] [Indexed: 11/22/2022] Open
Abstract
The enzymatic hydrolysis of cellulose by cellulases is one of the major limiting steps in the conversion of lignocellulosic biomass to yield bioethanol. To overcome this hindrance, significant efforts are underway to identify novel cellulases. The snail Achatina fulica is a gastropod with high cellulolytic activity, mainly due to the abundance of glycoside hydrolases produced by both the animal and its resident microbiota. In this study, we partially assessed the cellulolytic aerobic bacterial diversity inside the gastrointestinal tract of A. fulica by culture-dependent methods and evaluated the hydrolytic repertoire of the isolates. Forty bacterial isolates were recovered from distinct segments of the snail gut and identified to the genus level by 16S rRNA gene sequence analysis. Additional phenotypic characterization was performed using biochemical tests provided by the Vitek2 identification system. The overall enzymatic repertoire of the isolated strains was investigated by enzymatic plate assays, containing the following substrates: powdered sugarcane bagasse, carboxymethylcellulose (CMC), p-nitrophenyl-β-D-glucopyranoside (pNPG), p-nitrophenyl-β-D-cellobioside (pNPC), 4-methylumbelliferyl-β-D-glucopyranoside (MUG), 4-methylumbelliferyl-β-D-cellobioside (MUC), and 4-methylumbelliferyl-β-D-xylopyranoside (MUX). Our results indicate that the snail A. fulica is an attractive source of cultivable bacteria that showed to be valuable resources for the production of different types of biomass-degrading enzymes.
Collapse
Affiliation(s)
- Guilherme L Pinheiro
- Diretoria de Metrologia Aplicada às Ciências da Vida, Instituto Nacional de Metrologia, Qualidade e Tecnologia Rio de Janeiro, Brazil ; Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil
| | - Raquel F Correa
- Diretoria de Metrologia Aplicada às Ciências da Vida, Instituto Nacional de Metrologia, Qualidade e Tecnologia Rio de Janeiro, Brazil
| | - Raquel S Cunha
- Diretoria de Metrologia Aplicada às Ciências da Vida, Instituto Nacional de Metrologia, Qualidade e Tecnologia Rio de Janeiro, Brazil
| | - Alexander M Cardoso
- Diretoria de Metrologia Aplicada às Ciências da Vida, Instituto Nacional de Metrologia, Qualidade e Tecnologia Rio de Janeiro, Brazil ; Centro Universitário Estadual da Zona Oeste, Unidade Universitária de Biologia Rio de Janeiro, Brazil
| | - Catia Chaia
- Departamento de Microbiologia, Instituto Nacional de Controle da Qualidade em Saúde, Fundação Oswaldo Cruz Rio de Janeiro, Brazil
| | - Maysa M Clementino
- Departamento de Microbiologia, Instituto Nacional de Controle da Qualidade em Saúde, Fundação Oswaldo Cruz Rio de Janeiro, Brazil
| | - Eloi S Garcia
- Diretoria de Metrologia Aplicada às Ciências da Vida, Instituto Nacional de Metrologia, Qualidade e Tecnologia Rio de Janeiro, Brazil ; Departamento de Bioquímica e Biologia Molecular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz Rio de Janeiro, Brazil
| | - Wanderley de Souza
- Diretoria de Metrologia Aplicada às Ciências da Vida, Instituto Nacional de Metrologia, Qualidade e Tecnologia Rio de Janeiro, Brazil ; Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil
| | - Susana Frasés
- Diretoria de Metrologia Aplicada às Ciências da Vida, Instituto Nacional de Metrologia, Qualidade e Tecnologia Rio de Janeiro, Brazil ; Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil
| |
Collapse
|
6
|
Structural and functional characterization of a conserved pair of bacterial cellulose-oxidizing lytic polysaccharide monooxygenases. Proc Natl Acad Sci U S A 2014; 111:8446-51. [PMID: 24912171 DOI: 10.1073/pnas.1402771111] [Citation(s) in RCA: 218] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
For decades, the enzymatic conversion of cellulose was thought to rely on the synergistic action of hydrolytic enzymes, but recent work has shown that lytic polysaccharide monooxygenases (LPMOs) are important contributors to this process. We describe the structural and functional characterization of two functionally coupled cellulose-active LPMOs belonging to auxiliary activity family 10 (AA10) that commonly occur in cellulolytic bacteria. One of these LPMOs cleaves glycosidic bonds by oxidation of the C1 carbon, whereas the other can oxidize both C1 and C4. We thus demonstrate that C4 oxidation is not confined to fungal AA9-type LPMOs. X-ray crystallographic structures were obtained for the enzyme pair from Streptomyces coelicolor, solved at 1.3 Å (ScLPMO10B) and 1.5 Å (CelS2 or ScLPMO10C) resolution. Structural comparisons revealed differences in active site architecture that could relate to the ability to oxidize C4 (and that also seem to apply to AA9-type LPMOs). Despite variation in active site architecture, the two enzymes exhibited similar affinities for Cu(2+) (12-31 nM), redox potentials (242 and 251 mV), and electron paramagnetic resonance spectra, with only the latter clearly different from those of chitin-active AA10-type LPMOs. We conclude that substrate specificity depends not on copper site architecture, but rather on variation in substrate binding and orientation. During cellulose degradation, the members of this LPMO pair act in synergy, indicating different functional roles and providing a rationale for the abundance of these enzymes in biomass-degrading organisms.
Collapse
|
7
|
TOMOTSUNE K, KASUGA K, TSUCHIDA M, SHIMURA Y, KOBAYASHI M, AGEMATSU H, IKEDA H, ISHIKAWA J, KOJIMA I. Cloning and Sequence Analysis of the Cellulase Genes Isolated from Two Cellulolytic Streptomycetes and Their Heterologous Expression in Streptomyces lividans . ACTA ACUST UNITED AC 2014. [DOI: 10.5188/ijsmer.20.213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
| | - Kano KASUGA
- Department of Biotechnology, Akita Prefectural University
| | - Miho TSUCHIDA
- Department of Biotechnology, Akita Prefectural University
| | | | | | - Hitoshi AGEMATSU
- Department of Applied Chemistry, Akita National College of Technology
| | - Haruo IKEDA
- Kitasato Institute for Life Sciences, Kitasato University
| | - Jun ISHIKAWA
- Department of Bioactive Molecules, National Institute of Infectious Diseases
| | - Ikuo KOJIMA
- Department of Biotechnology, Akita Prefectural University
| |
Collapse
|
8
|
Forsberg Z, Vaaje-Kolstad G, Westereng B, Bunæs AC, Stenstrøm Y, MacKenzie A, Sørlie M, Horn SJ, Eijsink VGH. Cleavage of cellulose by a CBM33 protein. Protein Sci 2011; 20:1479-83. [PMID: 21748815 DOI: 10.1002/pro.689] [Citation(s) in RCA: 273] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 07/01/2011] [Indexed: 11/07/2022]
Abstract
Bacterial proteins categorized as family 33 carbohydrate-binding modules (CBM33) were recently shown to cleave crystalline chitin, using a mechanism that involves hydrolysis and oxidation. We show here that some members of the CBM33 family cleave crystalline cellulose as demonstrated by chromatographic and mass spectrometric analyses of soluble products released from Avicel or filter paper on incubation with CelS2, a CBM33-containing protein from Streptomyces coelicolor A3(2). These enzymes act synergistically with cellulases and may thus become important tools for efficient conversion of lignocellulosic biomass. Fungal proteins classified as glycoside hydrolase family 61 that are known to act synergistically with cellulases are likely to use a similar mechanism.
Collapse
Affiliation(s)
- Zarah Forsberg
- Department of Chemistry Biotechnology and Food Science, Norwegian University of Life Sciences, Aas, Norway
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Characteristics of the surface-located carbohydrate-binding protein CbpC from Streptomyces coelicolor A3(2). Arch Microbiol 2008; 190:119-27. [DOI: 10.1007/s00203-008-0373-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2008] [Revised: 04/08/2008] [Accepted: 04/09/2008] [Indexed: 11/26/2022]
|
10
|
Craney A, Hohenauer T, Xu Y, Navani NK, Li Y, Nodwell J. A synthetic luxCDABE gene cluster optimized for expression in high-GC bacteria. Nucleic Acids Res 2007; 35:e46. [PMID: 17337439 PMCID: PMC1874620 DOI: 10.1093/nar/gkm086] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The luxCDABE operon of the bioluminescent bacterium Photorhabdus luminescens has proven to be a superb transcriptional reporter. It encodes a luciferase (LuxA and LuxB) and the enzymes that produce its substrate (LuxC, LuxD and LuxE) so cells that express the cluster emit the 490-nm light spontaneously. The sequence of these genes is AT-rich (>69%) and for this and other reasons, they are not expressed efficiently in high-GC bacteria like Streptomyces coelicolor. We therefore constructed a synthetic luxCDABE operon encoding the P. luminescens Lux proteins optimized for expression in high-GC bacteria. We tested the genes using transcriptional fusions to S. coelicolor promoters having well-established expression profiles during this organism's life cycle. The hrdB gene encodes a housekeeping sigma factor; while ramC is important for the formation of the spore-forming cells called aerial hyphae and whiE is required for the production of a grey, spore-associated pigment that is deposited in the walls of developing spores. Using these fusions we demonstrated that our synthetic lux genes are functional in S. coelicolor and that they accurately report complex developmental gene expression patterns. We suggest that this lux operon and our procedure for generating synthetic high-GC genes will be widely useful for research on high-GC bacteria.
Collapse
Affiliation(s)
| | | | | | | | | | - Justin Nodwell
- *To whom correspondence should be addressed. +1-905 525 9140+1-905 522 9033
| |
Collapse
|
11
|
Tamburini E, Perito B, Mastromei G. Growth phase-dependent expression of an endoglucanase encoding gene (eglS) in Streptomyces rochei A2. FEMS Microbiol Lett 2004. [DOI: 10.1111/j.1574-6968.2004.tb09706.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
12
|
Brunati M, Marinelli F, Bertolini C, Gandolfi R, Daffonchio D, Molinari F. Biotransformations of cinnamic and ferulic acid with actinomycetes. Enzyme Microb Technol 2004. [DOI: 10.1016/j.enzmictec.2003.04.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Fernández-Abalos JM, Reviejo V, Díaz M, Rodríguez S, Leal F, Santamaría RI. Posttranslational processing of the xylanase Xys1L from Streptomyces halstedii JM8 is carried out by secreted serine proteases. MICROBIOLOGY (READING, ENGLAND) 2003; 149:1623-1632. [PMID: 12855715 DOI: 10.1099/mic.0.26113-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The xylanase Xys1L from Streptomyces halstedii JM8 is known to be processed extracellularly, to produce a protein of 33.7 kDa, Xys1S, that retains catalytic activity but not its cellulose-binding capacity. This paper demonstrates that at least five serine proteases isolated from Streptomyces spp. have the ability to process the xylanase Xys1L. The genes of two of these extracellular serine proteases, denominated SpB and SpC, were cloned from Streptomyces lividans 66 (a strain commonly used as a host for protein secretion), sequenced, and overexpressed in S. lividans; both purified proteases were able to process Xys1L in vitro. Three other previously reported purified Streptomyces serine proteases, SAM-P20, SAM-P26 and SAM-P45, also processed Xys1L in vitro. The involvement of serine proteases in xylanase processing-degradation in vivo was demonstrated by co-expression of the xylanase gene (xysA) and the gene encoding the serine protease inhibitor (SLPI) from S. lividans. Co-expression prevented processing and degradation of Xys1L and resulted in a threefold increase in the xylanase activity present in the culture supernatant. SpB and SpC also have the capacity to process other secreted proteins such as p40, a cellulose-binding protein from S. halstedii JM8, but do not have any clear effect on other secreted proteins such as amylase (Amy) from Streptomyces griseus and xylanase Xyl30 from Streptomyces avermitilis.
Collapse
Affiliation(s)
- José M Fernández-Abalos
- Instituto de Microbiología Bioquímica/Departamento de Microbiología y Genética, Consejo Superior de Investigaciones Científicas (CSIC)/Universidad de Salamanca, Edificio Departamental, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | - Verónica Reviejo
- Instituto de Microbiología Bioquímica/Departamento de Microbiología y Genética, Consejo Superior de Investigaciones Científicas (CSIC)/Universidad de Salamanca, Edificio Departamental, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | - Margarita Díaz
- Instituto de Microbiología Bioquímica/Departamento de Microbiología y Genética, Consejo Superior de Investigaciones Científicas (CSIC)/Universidad de Salamanca, Edificio Departamental, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | - Sonia Rodríguez
- Instituto de Microbiología Bioquímica/Departamento de Microbiología y Genética, Consejo Superior de Investigaciones Científicas (CSIC)/Universidad de Salamanca, Edificio Departamental, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | - Fernando Leal
- Instituto de Microbiología Bioquímica/Departamento de Microbiología y Genética, Consejo Superior de Investigaciones Científicas (CSIC)/Universidad de Salamanca, Edificio Departamental, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | - Ramón I Santamaría
- Instituto de Microbiología Bioquímica/Departamento de Microbiología y Genética, Consejo Superior de Investigaciones Científicas (CSIC)/Universidad de Salamanca, Edificio Departamental, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| |
Collapse
|
14
|
Trepanier NK, Jensen SE, Alexander DC, Leskiw BK. The positive activator of cephamycin C and clavulanic acid production in Streptomyces clavuligerus is mistranslated in a bldA mutant. MICROBIOLOGY (READING, ENGLAND) 2002; 148:643-656. [PMID: 11882698 DOI: 10.1099/00221287-148-3-643] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In Streptomyces coelicolor bldA encodes the principal leucyl tRNA for translation of UUA codons and controls pigmented antibiotic production by the presence of TTA codons in the genes encoding the pathway-specific activators of actinorhodin and undecylprodigiosin biosynthesis. In Streptomyces clavuligerus the gene encoding the pathway-specific activator of both cephamycin C and clavulanic acid production, ccaR, also contains a TTA codon and was expected to exhibit bldA-dependence. A cloned S. clavuligerus DNA fragment containing a sequence showing 91% identity to the S. coelicolor bldA-encoded tRNA was able to restore antibiotic production and sporulation to bldA mutants of S. coelicolor and the closely related Streptomyces lividans. A null mutation of the bldA gene in S. clavuligerus resulted in the expected sporulation defective phenotype, but unexpectedly had no effect on antibiotic production. Transcript analysis showed no difference in the levels of ccaR transcripts in the wild-type and bldA mutant strains, ruling out any effect of elevated levels of the ccaR mRNA. Furthermore, when compared to the wild-type strain, the bldA mutant showed no differences in the levels of CcaR, suggesting that the single TTA codon in ccaR is mistranslated efficiently. The role of codon context in bldA dependence is discussed.
Collapse
Affiliation(s)
- Nicole K Trepanier
- Department of Biological Sciences, CW405 Biological Sciences Building, University of Alberta, Edmonton, Alberta, CanadaT6G 2E91
| | - Susan E Jensen
- Department of Biological Sciences, CW405 Biological Sciences Building, University of Alberta, Edmonton, Alberta, CanadaT6G 2E91
| | - Dylan C Alexander
- Department of Biological Sciences, CW405 Biological Sciences Building, University of Alberta, Edmonton, Alberta, CanadaT6G 2E91
| | - Brenda K Leskiw
- Department of Biological Sciences, CW405 Biological Sciences Building, University of Alberta, Edmonton, Alberta, CanadaT6G 2E91
| |
Collapse
|
15
|
Tsujibo H, Orikoshi H, Baba N, Miyahara M, Miyamoto K, Yasuda M, Inamori Y. Identification and characterization of the gene cluster involved in chitin degradation in a marine bacterium, Alteromonas sp. strain O-7. Appl Environ Microbiol 2002; 68:263-70. [PMID: 11772635 PMCID: PMC126582 DOI: 10.1128/aem.68.1.263-270.2002] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Alteromonas sp. strain O-7 secretes chitinase A (ChiA), chitinase B (ChiB), and chitinase C (ChiC) in the presence of chitin. A gene cluster involved in the chitinolytic system of the strain was cloned and sequenced upstream of and including the chiA gene. The gene cluster consisted of three different open reading frames organized in the order chiD, cbp1, and chiA. The chiD, cbp1, and chiA genes were closely linked and transcribed in the same direction. Sequence analysis indicated that Cbp1 (475 amino acids) was a chitin-binding protein composed of two discrete functional regions. ChiD (1,037 amino acids) showed sequence similarity to bacterial chitinases classified into family 18 of glycosyl hydrolases. The cbp1 and chiD genes were expressed in Escherichia coli, and the recombinant proteins were purified to homogeneity. The highest binding activities of Cbp1 and ChiD were observed when alpha-chitin was used as a substrate. Cbp1 and ChiD possessed a chitin-binding domain (ChtBD) belonging to ChtBD type 3. ChiD rapidly hydrolyzed chitin oligosaccharides in sizes from trimers to hexamers, but not chitin. However, after prolonged incubation with large amounts of ChiD, the enzyme produced a small amount of (GlcNAc)(2) from chitin. The optimum temperature and pH of ChiD were 50 degrees C and 7.0, respectively.
Collapse
Affiliation(s)
- Hiroshi Tsujibo
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan.
| | | | | | | | | | | | | |
Collapse
|
16
|
Kormos J, Johnson PE, Brun E, Tomme P, McIntosh LP, Haynes CA, Kilburn DG. Binding site analysis of cellulose binding domain CBD(N1) from endoglucanse C of Cellulomonas fimi by site-directed mutagenesis. Biochemistry 2000; 39:8844-52. [PMID: 10913296 DOI: 10.1021/bi000607s] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Endoglucanase C (CenC), a beta1,4 glucanase from the soil bacterium Cellulomonas fimi, binds to amorphous cellulose via two homologous cellulose binding domains, termed CBD(N1) and CBD(N2). In this work, the contributions of 10 amino acids within the binding cleft of CBD(N1) were evaluated by single site-directed mutations to alanine residues. Each isolated domain containing a single mutation was analyzed for binding to an insoluble amorphous preparation of cellulose, phosphoric acid swollen Avicel (PASA), and to a soluble glucopyranoside polymer, barley beta-glucan. The effect of any given mutation on CBD binding was similar for both substrates, suggesting that the mechanism of binding to soluble and insoluble substrates is the same. Tyrosines 19 and 85 were essential for tight binding by CBD(N1) as their replacement by alanine results in affinity decrements of approximately 100-fold on PASA, barley beta-glucan, and soluble cellooligosaccharides. The tertiary structures of unbound Y19A and Y85A were assessed by heteronuclear single quantum coherence (HSQC) spectroscopy. These studies indicated that the structures of both mutants were perturbed but that all perturbations are very near to the site of mutation.
Collapse
Affiliation(s)
- J Kormos
- Departments of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada, V6T 1Z3
| | | | | | | | | | | | | |
Collapse
|
17
|
Folders J, Tommassen J, van Loon LC, Bitter W. Identification of a chitin-binding protein secreted by Pseudomonas aeruginosa. J Bacteriol 2000; 182:1257-63. [PMID: 10671445 PMCID: PMC94410 DOI: 10.1128/jb.182.5.1257-1263.2000] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
One of the major proteins secreted by Pseudomonas aeruginosa is a 43-kDa protein, which is cleaved by elastase into smaller fragments, including a 30-kDa and a 23-kDa fragment. The N-terminal 23-kDa fragment was previously suggested as corresponding to a staphylolytic protease and was designated LasD (S. Park and D. R. Galloway, Mol. Microbiol. 16:263-270, 1995). However, the sequence of the gene encoding this 43-kDa protein revealed that the N-terminal half of the protein is homologous to the chitin-binding proteins CHB1 of Streptomyces olivaceoviridis and CBP21 of Serratia marcescens and to the cellulose-binding protein p40 of Streptomyces halstedii. Furthermore, a short C-terminal fragment shows homology to a part of chitinase A of Vibrio harveyi. The full-length 43-kDa protein could bind chitin and was thereby protected against the proteolytic activity of elastase, whereas the degradation products did not bind chitin. The purified 43-kDa chitin-binding protein had no staphylolytic activity, and comparison of the enzymatic activities in the extracellular medium of a wild-type strain and a chitin-binding protein-deficient mutant indicated that the 43-kDa protein supports neither chitinolytic nor staphylolytic activity. We conclude that the 43-kDa protein, which was found to be produced by many clinical isolates of P. aeruginosa, is a chitin-binding protein, and we propose to name it CbpD (chitin-binding protein D).
Collapse
Affiliation(s)
- J Folders
- Department of Molecular Microbiology and Institute of Biomembranes, Utrecht University, 3584 CH Utrecht, The Netherlands
| | | | | | | |
Collapse
|
18
|
Sunna A, Gibbs MD, Chin CW, Nelson PJ, Bergquist PL. A gene encoding a novel multidomain beta-1,4-mannanase from Caldibacillus cellulovorans and action of the recombinant enzyme on kraft pulp. Appl Environ Microbiol 2000; 66:664-70. [PMID: 10653733 PMCID: PMC91878 DOI: 10.1128/aem.66.2.664-670.2000] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Genomic walking PCR was used to obtained a 4,567-bp nucleotide sequence from Caldibacillus cellulovorans. Analysis of this sequence revealed that there were three open reading frames, designated ORF1, ORF2, and ORF3. Incomplete ORF1 encoded a putative C-terminal cellulose-binding domain (CBD) homologous to members of CBD family IIIb, while putative ORF3 encoded a protein of unknown function. The putative ManA protein encoded by complete manA ORF2 was an enzyme with a novel multidomain structure and was composed of four domains in the following order: a putative N-terminal domain (D1) of unknown function, an internal CBD (D2), a beta-mannanase catalytic domain (D3), and a C-terminal CBD (D4). All four domains were linked via proline-threonine-rich peptides. Both of the CBDs exhibited sequence similarity to family IIIb CBDs, while the mannanase catalytic domain exhibited homology to the family 5 glycosyl hydrolases. The purified recombinant enzyme ManAd3 expressed from the cloned catalytic domain (D3) exhibited optimum activity at 85 degrees C and pH 6.0 and was extremely thermostable at 70 degrees C. This enzyme exhibited high specificity with the substituted galactomannan locust bean gum, while more substituted galacto- and glucomannans were poorly hydrolyzed. Preliminary studies to determine the effect of the recombinant ManAd3 and a recombinant thermostable beta-xylanase on oxygen-delignified Pinus radiata kraft pulp revealed that there was an increase in the brightness of the bleached pulp.
Collapse
Affiliation(s)
- A Sunna
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | | | | | | | | |
Collapse
|
19
|
Kataoka M, Kosono S, Tsujimoto G. Spatial and temporal regulation of protein expression by bldA within a Streptomyces lividans colony. FEBS Lett 1999; 462:425-9. [PMID: 10622739 DOI: 10.1016/s0014-5793(99)01569-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The bldA gene encodes the only tRNA for the UUA codon that, although dispensable in genes important for primary vegetative growth of Streptomyces spp., is important in genes that serve a regulatory purpose in the differentiation. To investigate this role further, the spatial and temporal expression profiles of the bldA-regulated and unregulated genes within a Streptomyces colony were examined using modified genes for the green fluorescent protein (gfp) as an expression-tag. A comparative study, based on computer-assisted quantitative analysis of the GFP fluorescence, revealed that the presence of TTA codons in gfp results in a temporal delay of translation and, consequently, changed the spatial pattern of the GFP expression within a colony, especially during early differentiation. The delay of GFP expression was undetectable at 60 h post-inoculation. These results provide the first extensive evidence that the bldA does indeed play a significant regulatory role during colony differentiation.
Collapse
Affiliation(s)
- M Kataoka
- Project Research Center, Mitsubishikasei Institute of Life Sciences, Machida, Tokyo, Japan.
| | | | | |
Collapse
|
20
|
Bauer MW, Driskill LE, Callen W, Snead MA, Mathur EJ, Kelly RM. An endoglucanase, EglA, from the hyperthermophilic archaeon Pyrococcus furiosus hydrolyzes beta-1,4 bonds in mixed-linkage (1-->3),(1-->4)-beta-D-glucans and cellulose. J Bacteriol 1999; 181:284-90. [PMID: 9864341 PMCID: PMC103560 DOI: 10.1128/jb.181.1.284-290.1999] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The eglA gene, encoding a thermostable endoglucanase from the hyperthermophilic archaeon Pyrococcus furiosus, was cloned and expressed in Escherichia coli. The nucleotide sequence of the gene predicts a 319-amino-acid protein with a calculated molecular mass of 35.9 kDa. The endoglucanase has a 19-amino-acid signal peptide but not cellulose-binding domain. The P. furiosus endoglucanase has significant amino acid sequence similarities, including the conserved catalytic nucleophile and proton donor, with endoglucanases from glucosyl hydrolase family 12. The purified recombinant enzyme hydrolyzed beta-1,4 but not beta-1,3 glucosidic linkages and had the highest specific activity on cellopentaose (degree of polymerization [DP] = 5) and cellohexaose (DP = 6) oligosaccharides. To a lesser extent, EglA also hydrolyzed shorter cellodextrins (DP < 5) as well as the amorphous portions of polysaccharides which contain only beta-1,4 bonds such as carboxymethyl cellulose, microcrystalline cellulose, Whatman paper, and cotton linter. The highest specific activity toward polysaccharides occurred with mixed-linkage beta-glucans such as barley beta-glucan and lichenan. Kinetics studies with cellooliogsaccharides and p-nitrophenyl-cellooligosaccharides indicated that the enzyme had three glucose binding subsites (-I, -II, and -III) for the nonreducing end and two glucose binding subsites (+I and +II) for the reducing end from the scissile glycosidic linkage. The enzyme had temperature and pH optima of 100 degreesC and 6.0, respectively; a half-life of 40 h at 95 degreesC; and a denaturing temperature of 112 degreesC as determined by differential scanning calorimetry. The discovery of a thermostable enzyme with this substrate specificity has implications for both the evolution of enzymes involved in polysaccharide hydrolysis and the occurrence of growth substrates in hydrothermal vent environments.
Collapse
Affiliation(s)
- M W Bauer
- Department of Chemical Engineering, North Carolina State University, Raleigh, North Carolina 27695, USA
| | | | | | | | | | | |
Collapse
|
21
|
Ruiz-Arribas A, Sánchez P, Calvete JJ, Raida M, Fernández-Abalos JM, Santamaría RI. Analysis of xysA, a gene from Streptomyces halstedii JM8 that encodes a 45-kilodalton modular xylanase, Xys1. Appl Environ Microbiol 1997; 63:2983-8. [PMID: 9251186 PMCID: PMC168597 DOI: 10.1128/aem.63.8.2983-2988.1997] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The gene xysA from Streptomyces halstedii JM8 encodes a protein of 461 amino acids (Xys1) which is secreted into the culture supernatant as a protein of 45 kDa (Xys1L). Later, this form is proteolytically processed after residue D-362 to produce the protein Xys1S, which conserves the same xylanolytic activity. The cleavage removes a domain of 99 amino acids that shows similarity to bacterial cellulose binding domains and that allows the protein Xys1L to bind to crystalline cellulose (Avicel). Expression of this monocistronic gene is affected by the carbon source present in the culture medium, xylan being the best inducer. By using an anti-Xys1L serum, we have been able to detect xylanases similar in size to Xys1L and Xys1S in most of the different Streptomyces species analyzed, suggesting the ubiquity of these types of xylanases and their processing mechanism.
Collapse
Affiliation(s)
- A Ruiz-Arribas
- Instituto de Microbiología Bioquímica, Consejo Superior de Investigaciones Científicas (CSIC)/Universidad de Salamanca, Spain
| | | | | | | | | | | |
Collapse
|