1
|
Guequen A, Tapia-Balladares B, Apablaza T, Guidone D, Cárcamo-Lemus N, Villanueva S, Sandoval PY, Galietta LJV, Flores CA. Sodium-Coupled Monocarboxylate Absorption in the Airway Epithelium Is Facilitated by the SLC5A8 Co-Transporter. Acta Physiol (Oxf) 2025; 241:e70051. [PMID: 40326639 DOI: 10.1111/apha.70051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/27/2025] [Accepted: 04/17/2025] [Indexed: 05/07/2025]
Abstract
AIM Amino acids, sugars, short-chain fatty acids (SCFA), vitamins, and other small molecules compose the extracellular metabolome on the airway lumen surface, but how the airway epithelium deals with these molecules has not been deeply studied. Due to the broad spectrum of metabolites transported by SLC5A8 and SLC5A12, we aim to determine if they are functionally expressed and participate in the absorption of Na+, short-chain fatty acids, and monocarboxylates in mouse and human airway epithelium. METHODS Tracheas isolated from male or female mice and human bronchial epithelial cells (HBECs) were used for electrophysiological studies in the Ussing chamber and to detect members of the SLC16 family by RT-PCR and bulk RNAseq. Additionally, cell lines expressing the human and murine SLC5A8 transporter were employed for uptake studies using a fluorescent lactate probe. RESULTS We showed for the first time that human and murine airway epithelium express a functional SLC5A8 transporter, facilitating the absorption of glucose metabolites and SCFAs. The Na+-coupled monocarboxylate transport was not additive with ENaC-mediated Na+ absorption in mouse trachea. We observed that valproate acts as an inhibitor of the murine but not of the human SLC5A8 transporter. CONCLUSIONS Our results demonstrate that several metabolites derived from bacterial and cellular metabolism can be transported from the airway lumen into the epithelial cells, participating in a homeostatic relation of the tissue with its environment.
Collapse
Affiliation(s)
- Anita Guequen
- Centro de Estudios Científicos (CECs), Valdivia, Chile
- Universidad Austral de Chile, Valdivia, Chile
| | | | - Tábata Apablaza
- Centro de Estudios Científicos (CECs), Valdivia, Chile
- Estudiante Programa de Doctorado en Enfermedades Crónicas, Facultad de Medicina, Universidad San Sebastián, Valdivia, Chile
| | - Daniela Guidone
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | | | - Sandra Villanueva
- Centro de Estudios Científicos (CECs), Valdivia, Chile
- Facultad de Medicina, Universidad San Sebastián, Valdivia, Chile
| | - Pamela Y Sandoval
- Centro de Estudios Científicos (CECs), Valdivia, Chile
- Facultad de Medicina, Universidad San Sebastián, Valdivia, Chile
| | - Luis J V Galietta
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
- Department of Translational Medical Sciences (DISMET), University of Napoli "Federico II", Napoli, Italy
| | - Carlos A Flores
- Centro de Estudios Científicos (CECs), Valdivia, Chile
- Facultad de Medicina, Universidad San Sebastián, Valdivia, Chile
| |
Collapse
|
2
|
Ruan D, Hu T, Yang X, Mo X, Ju Q. Lactate in skin homeostasis: metabolism, skin barrier, and immunomodulation. Front Immunol 2025; 16:1510559. [PMID: 40046050 PMCID: PMC11879785 DOI: 10.3389/fimmu.2025.1510559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 01/27/2025] [Indexed: 05/13/2025] Open
Abstract
Lactate, once considered merely a byproduct of glycolysis, is now increasingly recognized as a multifunctional signaling molecule with roles beyond energy metabolism. It functions as an enzyme cofactor and binds to specific receptors to modulate cellular functions. In the skin, lactate is produced by various cell types. It is then transferred between cells or to the extracellular space, helping to balance cellular pH and to provide signals that regulate skin barrier and skin immunity. Additionally, lactate/lactate-related genes hold promising therapeutic potential for the treatment of skin tumors, inflammatory skin diseases, hair loss, and in cosmetic dermatology. This article highlights the latest advances in our understanding of lactate's biological effects on the skin and explores its therapeutic potential, offering insights into future research directions.
Collapse
Affiliation(s)
| | | | | | - Xiaohui Mo
- Department of Dermatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiang Ju
- Department of Dermatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
3
|
Combs JE, Murray AB, Lomelino CL, Mboge MY, Mietzsch M, Horenstein NA, Frost SC, McKenna R, Becker HM. Disruption of the Physical Interaction Between Carbonic Anhydrase IX and the Monocarboxylate Transporter 4 Impacts Lactate Transport in Breast Cancer Cells. Int J Mol Sci 2024; 25:11994. [PMID: 39596062 PMCID: PMC11593560 DOI: 10.3390/ijms252211994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/02/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
It has been previously established that breast cancer cells exhibit high expression of the monocarboxylate (lactate) transporters (MCT1 and/or MCT4) and carbonic anhydrase IX (CAIX) and form a functional metabolon for proton-coupled lactate export, thereby stabilizing intracellular pH. CD147 is the MCT accessory protein that facilitates the creation of the MCT/CAIX complex. This study describes how the small molecule Beta-Galactose 2C (BGal2C) blocks the physical and functional interaction between CAIX and either MCT1 or MCT4 in Xenopus oocytes, which reduces the rate of proton and lactate flux with an IC50 of ~90 nM. This value is similar to the Ki for inhibition of CAIX activity. Furthermore, it is shown that BGal2C blocks hypoxia-induced lactate transport in MDA-MB-231 and MCF-7 breast cancer cells, both of which express CAIX. As in oocytes, BGal2C interferes with the physical interaction between CAIX and MCTs in both cell types. Finally, X-ray crystallographic studies highlight unique interactions between BGal2C and a CAIX-mimic that are not observed within the CAII active site and which may underlie the strong specificity of BGal2C for CAIX. These studies demonstrate the utility of a novel sulfonamide in interfering with elevated proton and lactate flux, a hallmark of many solid tumors.
Collapse
Affiliation(s)
- Jacob E. Combs
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32611, USA (M.M.); (S.C.F.)
| | - Akilah B. Murray
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32611, USA (M.M.); (S.C.F.)
| | - Carrie L. Lomelino
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32611, USA (M.M.); (S.C.F.)
| | - Mam Y. Mboge
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32611, USA (M.M.); (S.C.F.)
| | - Mario Mietzsch
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32611, USA (M.M.); (S.C.F.)
| | | | - Susan C. Frost
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32611, USA (M.M.); (S.C.F.)
| | - Robert McKenna
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32611, USA (M.M.); (S.C.F.)
| | - Holger M. Becker
- Institute of Physiological Chemistry, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, 30625 Hannover, Germany
| |
Collapse
|
4
|
Li Y, Cao Q, Hu Y, He B, Cao T, Tang Y, Zhou XP, Lan XP, Liu SQ. Advances in the interaction of glycolytic reprogramming with lactylation. Biomed Pharmacother 2024; 177:116982. [PMID: 38906019 DOI: 10.1016/j.biopha.2024.116982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/03/2024] [Accepted: 06/15/2024] [Indexed: 06/23/2024] Open
Abstract
Lactylation is a novel post-translational modification (PTM) involving proteins that is induced by lactate accumulation. Histone lysine lactylation alters chromatin spatial configuration, influencing gene transcription and regulating the expression of associated genes. This modification plays a crucial role as an epigenetic regulatory factor in the progression of various diseases. Glycolytic reprogramming is one of the most extensively studied forms of metabolic reprogramming, recognized as a key hallmark of cancer cells. It is characterized by an increase in glycolysis and the inhibition of the tricarboxylic acid (TCA) cycle, accompanied by significant lactate production and accumulation. The two processes are closely linked by lactate, which interacts in various physiological and pathological processes. On the one hand, lactylation levels generally correlate positively with the extent of glycolytic reprogramming, being directly influenced by the lactate concentration produced during glycolytic reprogramming. On the other hand, lactylation can also regulate glycolytic pathways by affecting the transcription and structural functions of essential glycolytic enzymes. This review comprehensively outlines the mechanisms of lactylation and glycolytic reprogramming and their interactions in tumor progression, immunity, and inflammation, with the aim of elucidating the relationship between glycolytic reprogramming and lactylation.
Collapse
Affiliation(s)
- Yue Li
- Department of Clinical Laboratory Medicine, Institution of microbiology and infectious diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Qian Cao
- Department of Clinical Laboratory Medicine, Institution of microbiology and infectious diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Yibao Hu
- Department of Clinical Laboratory Medicine, Institution of microbiology and infectious diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Bisha He
- Department of Clinical Laboratory Medicine, Institution of microbiology and infectious diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Ting Cao
- Department of Clinical Laboratory Medicine, Institution of microbiology and infectious diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Yun Tang
- Department of Clinical Laboratory Medicine, Institution of microbiology and infectious diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Xiang Ping Zhou
- Department of Clinical Laboratory Medicine, Institution of microbiology and infectious diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Xiao Peng Lan
- Department of Clinical Laboratory Medicine, Institution of microbiology and infectious diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Shuang Quan Liu
- Department of Clinical Laboratory Medicine, Institution of microbiology and infectious diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
5
|
Denker N, Dringen R. Modulation of Pyruvate Export and Extracellular Pyruvate Concentration in Primary Astrocyte Cultures. Neurochem Res 2024; 49:1331-1346. [PMID: 38376749 PMCID: PMC10991036 DOI: 10.1007/s11064-024-04120-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/02/2024] [Accepted: 02/02/2024] [Indexed: 02/21/2024]
Abstract
Astrocyte-derived pyruvate is considered to have neuroprotective functions. In order to investigate the processes that are involved in astrocytic pyruvate release, we used primary rat astrocyte cultures as model system. Depending on the incubation conditions and medium composition, astrocyte cultures established extracellular steady state pyruvate concentrations in the range between 150 µM and 300 µM. During incubations for up to 2 weeks in DMEM culture medium, the extracellular pyruvate concentration remained almost constant for days, while the extracellular lactate concentration increased continuously during the incubation into the millimolar concentration range as long as glucose was present. In an amino acid-free incubation buffer, glucose-fed astrocytes released pyruvate with an initial rate of around 60 nmol/(h × mg) and after around 5 h an almost constant extracellular pyruvate concentration was established that was maintained for several hours. Extracellular pyruvate accumulation was also observed, if glucose had been replaced by mannose, fructose, lactate or alanine. Glucose-fed astrocyte cultures established similar extracellular steady state concentrations of pyruvate by releasing pyruvate into pyruvate-free media or by consuming excess of extracellular pyruvate. Inhibition of the monocarboxylate transporter MCT1 by AR-C155858 lowered extracellular pyruvate accumulation, while inhibition of mitochondrial pyruvate uptake by UK5099 increased the extracellular pyruvate concentration. Finally, the presence of the uncoupler BAM15 or of the respiratory chain inhibitor antimycin A almost completely abolished extracellular pyruvate accumulation. The data presented demonstrate that cultured astrocytes establish a transient extracellular steady state concentration of pyruvate which is strongly affected by modulation of the mitochondrial pyruvate metabolism.
Collapse
Affiliation(s)
- Nadine Denker
- Centre for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry) and Centre for Environmental Research and Sustainable Technologies, University of Bremen, P.O. Box 330440, 28334, Bremen, Germany
| | - Ralf Dringen
- Centre for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry) and Centre for Environmental Research and Sustainable Technologies, University of Bremen, P.O. Box 330440, 28334, Bremen, Germany.
| |
Collapse
|
6
|
Deepa SS, Thadathil N, Corral J, Mohammed S, Pham S, Rose H, Kinter MT, Richardson A, Díaz-García CM. MLKL overexpression leads to Ca 2+ and metabolic dyshomeostasis in a neuronal cell model. Cell Calcium 2024; 119:102854. [PMID: 38430790 PMCID: PMC10990772 DOI: 10.1016/j.ceca.2024.102854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 01/25/2024] [Accepted: 02/05/2024] [Indexed: 03/05/2024]
Abstract
The necroptotic effector molecule MLKL accumulates in neurons over the lifespan of mice, and its downregulation has the potential to improve cognition through neuroinflammation, and changes in the abundance of synaptic proteins and enzymes in the central nervous system. Notwithstanding, direct evidence of cell-autonomous effects of MLKL expression on neuronal physiology and metabolism are lacking. Here, we tested whether the overexpression of MLKL in the absence of cell death in the neuronal cell line Neuro-2a recapitulates some of the hallmarks of aging at the cellular level. Using genetically-encoded fluorescent biosensors, we monitored the cytosolic and mitochondrial Ca2+ levels, along with the cytosolic concentrations of several metabolites involved in energy metabolism (lactate, glucose, ATP) and oxidative stress (oxidized/reduced glutathione). We found that MLKL overexpression marginally decreased cell viability, however, it led to reduced cytosolic and mitochondrial Ca2+ elevations in response to Ca2+ influx from the extracellular space. On the contrary, Ca2+ signals were elevated after mobilizing Ca2+ from the endoplasmic reticulum. Transient elevations in cytosolic Ca2+, mimicking neuronal stimulation, lead to higher lactate levels and lower glucose concentrations in Neuro-2a cells when overexpressing MLKL, which suggest enhanced neuronal glycolysis. Despite these alterations, energy levels and glutathione redox state in the cell bodies remained largely preserved after inducing MLKL overexpression for 24-48 h. Taken together, our proof-of-concept experiments are consistent with the hypothesis that MLKL overexpression in the absence of cell death contributes to both Ca2+ and metabolic dyshomeostasis, which are cellular hallmarks of brain aging.
Collapse
Affiliation(s)
- Sathyaseelan S Deepa
- Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, OK, USA; Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, OK, USA; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| | - Nidheesh Thadathil
- Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, OK, USA
| | - Jorge Corral
- Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, OK, USA; Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, OK, USA
| | - Sabira Mohammed
- Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, OK, USA; Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, OK, USA; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Sophia Pham
- Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, OK, USA; Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, OK, USA
| | - Hadyn Rose
- Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, OK, USA; Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, OK, USA
| | - Michael T Kinter
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Arlan Richardson
- Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, OK, USA; Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, OK, USA; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Oklahoma City VA Medical Center, Oklahoma City, OK, USA
| | - Carlos Manlio Díaz-García
- Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, OK, USA; Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, OK, USA; Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, OK, USA.
| |
Collapse
|
7
|
Tamura Y, Jee E, Kouzaki K, Kotani T, Nakazato K. Monocarboxylate transporter 4 deficiency enhances high-intensity interval training-induced metabolic adaptations in skeletal muscle. J Physiol 2024; 602:1313-1340. [PMID: 38513062 DOI: 10.1113/jp285719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 02/29/2024] [Indexed: 03/23/2024] Open
Abstract
High-intensity exercise stimulates glycolysis, subsequently leading to elevated lactate production within skeletal muscle. While lactate produced within the muscle is predominantly released into the circulation via the monocarboxylate transporter 4 (MCT4), recent research underscores lactate's function as an intercellular and intertissue signalling molecule. However, its specific intracellular roles within muscle cells remains less defined. In this study, our objective was to elucidate the effects of increased intramuscular lactate accumulation on skeletal muscle adaptation to training. To achieve this, we developed MCT4 knockout mice and confirmed that a lack of MCT4 indeed results in pronounced lactate accumulation in skeletal muscle during high-intensity exercise. A key finding was the significant enhancement in endurance exercise capacity at high intensities when MCT4 deficiency was paired with high-intensity interval training (HIIT). Furthermore, metabolic adaptations supportive of this enhanced exercise capacity were evident with the combination of MCT4 deficiency and HIIT. Specifically, we observed a substantial uptick in the activity of glycolytic enzymes, notably hexokinase, glycogen phosphorylase and pyruvate kinase. The mitochondria also exhibited heightened pyruvate oxidation capabilities, as evidenced by an increase in oxygen consumption when pyruvate served as the substrate. This mitochondrial adaptation was further substantiated by elevated pyruvate dehydrogenase activity, increased activity of isocitrate dehydrogenase - the rate-limiting enzyme in the TCA cycle - and enhanced function of cytochrome c oxidase, pivotal to the electron transport chain. Our findings provide new insights into the physiological consequences of lactate accumulation in skeletal muscle during high-intensity exercises, deepening our grasp of the molecular intricacies underpinning exercise adaptation. KEY POINTS: We pioneered a unique line of monocarboxylate transporter 4 (MCT4) knockout mice specifically tailored to the ICR strain, an optimal background for high-intensity exercise studies. A deficiency in MCT4 exacerbates the accumulation of lactate in skeletal muscle during high-intensity exercise. Pairing MCT4 deficiency with high-intensity interval training (HIIT) results in a synergistic boost in high-intensity exercise capacity, observable both at the organismal level (via a treadmill running test) and at the muscle tissue level (through an ex vivo muscle contractile function test). Coordinating MCT4 deficiency with HIIT enhances both the glycolytic enzyme activities and mitochondrial capacity to oxidize pyruvate.
Collapse
Affiliation(s)
- Yuki Tamura
- Faculty of Sport Science, Nippon Sport Science University, Tokyo, Japan
- Graduate School of Health and Sport Science, Nippon Sport Science University, Tokyo, Japan
- Research Institute for Sport Science, Nippon Sport Science University, Tokyo, Japan
- Sport Training Center, Nippon Sport Science University, Tokyo, Japan
- High Performance Center, Nippon Sport Science University, Tokyo, Japan
- Center for Coaching Excellence, Nippon Sport Science University, Tokyo, Japan
| | - Eunbin Jee
- Graduate School of Health and Sport Science, Nippon Sport Science University, Tokyo, Japan
| | - Karina Kouzaki
- Research Institute for Sport Science, Nippon Sport Science University, Tokyo, Japan
- Faculty of Medical Science, Nippon Sport Science University, Tokyo, Japan
- Graduate School of Medical and Health Science, Nippon Sport Science University, Tokyo, Japan
| | - Takaya Kotani
- Research Institute for Sport Science, Nippon Sport Science University, Tokyo, Japan
| | - Koichi Nakazato
- Graduate School of Health and Sport Science, Nippon Sport Science University, Tokyo, Japan
- Research Institute for Sport Science, Nippon Sport Science University, Tokyo, Japan
- Faculty of Medical Science, Nippon Sport Science University, Tokyo, Japan
- Graduate School of Medical and Health Science, Nippon Sport Science University, Tokyo, Japan
| |
Collapse
|
8
|
Koltai T, Fliegel L. Exploring monocarboxylate transporter inhibition for cancer treatment. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2024; 5:135-169. [PMID: 38464385 PMCID: PMC10918235 DOI: 10.37349/etat.2024.00210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/01/2023] [Indexed: 03/12/2024] Open
Abstract
Cells are separated from the environment by a lipid bilayer membrane that is relatively impermeable to solutes. The transport of ions and small molecules across this membrane is an essential process in cell biology and metabolism. Monocarboxylate transporters (MCTs) belong to a vast family of solute carriers (SLCs) that facilitate the transport of certain hydrophylic small compounds through the bilipid cell membrane. The existence of 446 genes that code for SLCs is the best evidence of their importance. In-depth research on MCTs is quite recent and probably promoted by their role in cancer development and progression. Importantly, it has recently been realized that these transporters represent an interesting target for cancer treatment. The search for clinically useful monocarboxylate inhibitors is an even more recent field. There is limited pre-clinical and clinical experience with new inhibitors and their precise mechanism of action is still under investigation. What is common to all of them is the inhibition of lactate transport. This review discusses the structure and function of MCTs, their participation in cancer, and old and newly developed inhibitors. Some suggestions on how to improve their anticancer effects are also discussed.
Collapse
Affiliation(s)
- Tomas Koltai
- Hospital del Centro Gallego de Buenos Aires, Buenos Aires 2199, Argentina
| | - Larry Fliegel
- Department of Biochemistry, Faculty of Medicine, University of Alberta, Edmonton T6G 2R3, Alberta, Canada
| |
Collapse
|
9
|
Uebanso T, Fukui M, Naito C, Shimohata T, Mawatari K, Takahashi A. SLC16a6, mTORC1, and Autophagy Regulate Ketone Body Excretion in the Intestinal Cells. BIOLOGY 2023; 12:1467. [PMID: 38132294 PMCID: PMC10740559 DOI: 10.3390/biology12121467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023]
Abstract
Ketone bodies serve several functions in the intestinal epithelium, such as stem cell maintenance, cell proliferation and differentiation, and cancer growth. Nevertheless, there is limited understanding of the mechanisms governing the regulation of intestinal ketone body concentration. In this study, we elucidated the factors responsible for ketone body production and excretion using shRNA-mediated or pharmacological inhibition of specific genes or functions in the intestinal cells. We revealed that a fasting-mimicked culture medium, which excluded glucose, pyruvate, and glutamine, augmented ketone body production and excretion in the Caco2 and HT29 colorectal cells. This effect was attenuated by glucose or glutamine supplementation. On the other hand, the inhibition of the mammalian target of rapamycin complex1 (mTORC1) recovered a fraction of the excreted ketone bodies. In addition, the pharmacological or shbeclin1-mediated inhibition of autophagy suppressed ketone body excretion. The knockdown of basigin, a transmembrane protein responsible for targeting monocarboxylate transporters (MCTs), such as MCT1 and MCT4, suppressed lactic acid and pyruvic acid excretion but increased ketone body excretion. Finally, we found that MCT7 (SLC16a6) knockdown suppressed ketone body excretion. Our findings indicate that the mTORC1-autophagy axis and MCT7 are potential targets to regulate ketone body excretion from the intestinal epithelium.
Collapse
Affiliation(s)
- Takashi Uebanso
- Department of Preventive Environment and Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Moeka Fukui
- Department of Preventive Environment and Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Chisato Naito
- Department of Preventive Environment and Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Takaaki Shimohata
- Department of Preventive Environment and Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
- Faculty of Marine Biosciences, Fukui Prefectural University, Fukui 917-0003, Japan
| | - Kazuaki Mawatari
- Department of Preventive Environment and Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Akira Takahashi
- Department of Preventive Environment and Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| |
Collapse
|
10
|
Orsi JB, Araujo LS, Scariot PPM, Polisel EEC, Cardoso LO, Gobatto CA, Manchado-Gobatto FB. Critical Velocity, Maximal Lactate Steady State, and Muscle MCT1 and MCT4 after Exhaustive Running in Mice. Int J Mol Sci 2023; 24:15753. [PMID: 37958736 PMCID: PMC10648804 DOI: 10.3390/ijms242115753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/30/2023] [Accepted: 10/12/2023] [Indexed: 11/15/2023] Open
Abstract
Although the critical velocity (CV) protocol has been used to determine the aerobic capacity in rodents, there is a lack of studies that compare CV with maximal lactate steady state intensity (iMLSS) in mice. As a consequence, their physiological and molecular responses after exercise until exhaustion at CV intensity remain unclear. Thus, we aimed to compare and correlate CV with iMLSS in running mice, following different mathematical models for CV estimation. We also evaluated their physiological responses and muscle MCT1 and MCT4 after running until exhaustion at CV. Thirty C57BL/6J mice were divided into two groups (exercised-E and control-C). Group E was submitted to a CV protocol (4 days), using linear (lin1 and lin2) and hyperbolic (hyp) mathematical models to determine the distance, velocity, and time to exhaustion (tlim) of each predictive CV trial, followed by an MLSS protocol. After a running effort until exhaustion at CV intensity, the mice were immediately euthanized, while group C was euthanized at rest. No differences were observed between iMLSS (21.1 ± 1.1 m.min-1) and CV estimated by lin1 (21.0 ± 0.9 m.min-1, p = 0.415), lin2 (21.3 ± 0.9 m.min-1, p = 0.209), and hyp (20.6 ± 0.9 m.min-1, p = 0.914). According to the results, CV was significantly correlated with iMLSS. After running until exhaustion at CV (tlim = 28.4 ± 8,29 min), group E showed lower concentrations of hepatic and gluteal glycogen than group C, but no difference in the content of MCT1 (p = 0.933) and MCT4 (p = 0.123) in soleus muscle. Significant correlations were not found between MCT1 and MCT4 and tlim at CV intensity. Our results reinforce that CV is a valid and non-invasive protocol to estimate the maximal aerobic capacity in mice and that the content of MCT1 and MCT4 was not decisive in determining the tlim at CV, at least when measured immediately after the running effort.
Collapse
Affiliation(s)
- Juan B Orsi
- Laboratory of Applied Sport Physiology, School of Applied Sciences, University of Campinas, Pedro Zaccaria Street, 1.300, Jardim Santa Luíza, Limeira 13484-350, São Paulo, Brazil
| | - Lara S Araujo
- Laboratory of Applied Sport Physiology, School of Applied Sciences, University of Campinas, Pedro Zaccaria Street, 1.300, Jardim Santa Luíza, Limeira 13484-350, São Paulo, Brazil
| | - Pedro P M Scariot
- Laboratory of Applied Sport Physiology, School of Applied Sciences, University of Campinas, Pedro Zaccaria Street, 1.300, Jardim Santa Luíza, Limeira 13484-350, São Paulo, Brazil
| | - Emanuel E C Polisel
- Laboratory of Applied Sport Physiology, School of Applied Sciences, University of Campinas, Pedro Zaccaria Street, 1.300, Jardim Santa Luíza, Limeira 13484-350, São Paulo, Brazil
| | - Luisa O Cardoso
- Laboratory of Applied Sport Physiology, School of Applied Sciences, University of Campinas, Pedro Zaccaria Street, 1.300, Jardim Santa Luíza, Limeira 13484-350, São Paulo, Brazil
| | - Claudio A Gobatto
- Laboratory of Applied Sport Physiology, School of Applied Sciences, University of Campinas, Pedro Zaccaria Street, 1.300, Jardim Santa Luíza, Limeira 13484-350, São Paulo, Brazil
| | - Fúlvia B Manchado-Gobatto
- Laboratory of Applied Sport Physiology, School of Applied Sciences, University of Campinas, Pedro Zaccaria Street, 1.300, Jardim Santa Luíza, Limeira 13484-350, São Paulo, Brazil
| |
Collapse
|
11
|
Cauli B, Dusart I, Li D. Lactate as a determinant of neuronal excitability, neuroenergetics and beyond. Neurobiol Dis 2023:106207. [PMID: 37331530 DOI: 10.1016/j.nbd.2023.106207] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 06/20/2023] Open
Abstract
Over the last decades, lactate has emerged as important energy substrate for the brain fueling of neurons. A growing body of evidence now indicates that it is also a signaling molecule modulating neuronal excitability and activity as well as brain functions. In this review, we will briefly summarize how different cell types produce and release lactate. We will further describe different signaling mechanisms allowing lactate to fine-tune neuronal excitability and activity, and will finally discuss how these mechanisms could cooperate to modulate neuroenergetics and higher order brain functions both in physiological and pathological conditions.
Collapse
Affiliation(s)
- Bruno Cauli
- Sorbonne Université, CNRS, INSERM, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS-IBPS), 9 quai Saint Bernard, 75005 Paris, France.
| | - Isabelle Dusart
- Sorbonne Université, CNRS, INSERM, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS-IBPS), 9 quai Saint Bernard, 75005 Paris, France
| | - Dongdong Li
- Sorbonne Université, CNRS, INSERM, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS-IBPS), 9 quai Saint Bernard, 75005 Paris, France
| |
Collapse
|
12
|
Villegas-Vázquez EY, Quintas-Granados LI, Cortés H, González-Del Carmen M, Leyva-Gómez G, Rodríguez-Morales M, Bustamante-Montes LP, Silva-Adaya D, Pérez-Plasencia C, Jacobo-Herrera N, Reyes-Hernández OD, Figueroa-González G. Lithium: A Promising Anticancer Agent. Life (Basel) 2023; 13:537. [PMID: 36836894 PMCID: PMC9966411 DOI: 10.3390/life13020537] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/08/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
Lithium is a therapeutic cation used to treat bipolar disorders but also has some important features as an anti-cancer agent. In this review, we provide a general overview of lithium, from its transport into cells, to its innovative administration forms, and based on genomic, transcriptomic, and proteomic data. Lithium formulations such as lithium acetoacetate (LiAcAc), lithium chloride (LiCl), lithium citrate (Li3C6H5O7), and lithium carbonate (Li2CO3) induce apoptosis, autophagy, and inhibition of tumor growth and also participate in the regulation of tumor proliferation, tumor invasion, and metastasis and cell cycle arrest. Moreover, lithium is synergistic with standard cancer therapies, enhancing their anti-tumor effects. In addition, lithium has a neuroprotective role in cancer patients, by improving their quality of life. Interestingly, nano-sized lithium enhances its anti-tumor activities and protects vital organs from the damage caused by lipid peroxidation during tumor development. However, these potential therapeutic activities of lithium depend on various factors, such as the nature and aggressiveness of the tumor, the type of lithium salt, and its form of administration and dosage. Since lithium has been used to treat bipolar disorder, the current study provides an overview of its role in medicine and how this has changed. This review also highlights the importance of this repurposed drug, which appears to have therapeutic cancer potential, and underlines its molecular mechanisms.
Collapse
Affiliation(s)
- Edgar Yebrán Villegas-Vázquez
- Unidad Multidisciplinaria de Investigación Experimental Zaragoza, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Ciudad de México 09230, Mexico
| | | | - Hernán Cortés
- Laboratorio de Medicina Genómica, Departamento de Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México 14389, Mexico
| | | | - Gerardo Leyva-Gómez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Miguel Rodríguez-Morales
- Licenciatura en Médico Cirujano, Facultad de Ciencias de la Salud Universidad Anáhuac Norte, Academia de Genética Médica, Naucalpan de Juárez 52786, Mexico
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico
| | | | - Daniela Silva-Adaya
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México 14269, Mexico
| | - Carlos Pérez-Plasencia
- Laboratorio de Genómica, Instituto Nacional de Cancerología (INCan), Ciudad de México 14080, Mexico
- Laboratorio de Genómica, Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico
| | - Nadia Jacobo-Herrera
- Unidad de Bioquímica, Instituto Nacional de Ciencias Medicas y Nutrición Salvador Zubirán (INCMNSZ), Ciudad de México 14080, Mexico
| | - Octavio Daniel Reyes-Hernández
- Laboratorio de Biología Molecular del Cáncer, Unidad Multidisciplinaria de Investigación Experimental Zaragoza, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Ciudad de México 09230, Mexico
| | - Gabriela Figueroa-González
- Laboratorio de Farmacogenética, Unidad Multidisciplinaria de Investigación Experimental Zaragoza, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Ciudad de México 09230, Mexico
| |
Collapse
|
13
|
Geistlinger K, Schmidt JDR, Beitz E. Human monocarboxylate transporters accept and relay protons via the bound substrate for selectivity and activity at physiological pH. PNAS NEXUS 2023; 2:pgad007. [PMID: 36874278 PMCID: PMC9982067 DOI: 10.1093/pnasnexus/pgad007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/16/2022] [Accepted: 01/03/2023] [Indexed: 01/20/2023]
Abstract
Human monocarboxylate/H+ transporters, MCT, facilitate the transmembrane translocation of vital weak acid metabolites, mainly l-lactate. Tumors exhibiting a Warburg effect rely on MCT activity for l-lactate release. Recently, high-resolution MCT structures revealed binding sites for anticancer drug candidates and the substrate. Three charged residues, Lys 38, Asp 309, and Arg 313 (MCT1 numbering) are essential for substrate binding and initiation of the alternating access conformational change. However, the mechanism by which the proton cosubstrate binds and traverses MCTs remained elusive. Here, we report that substitution of Lys 38 by neutral residues maintained MCT functionality in principle, yet required strongly acidic pH conditions for wildtype-like transport velocity. We determined pH-dependent biophysical transport properties, Michaelis-Menten kinetics, and heavy water effects for MCT1 wildtype and Lys 38 mutants. Our experimental data provide evidence for the bound substrate itself to accept and shuttle a proton from Lys 38 to Asp 309 initiating transport. We have shown before that substrate protonation is a pivotal step in the mechanisms of other MCT-unrelated weak acid translocating proteins. In connection with this study, we conclude that utilization of the proton binding and transfer capabilities of the transporter-bound substrate is probably a universal theme for weak acid anion/H+ cotransport.
Collapse
Affiliation(s)
- Katharina Geistlinger
- Department of Pharmaceutical and Medicinal Chemistry, Christian-Albrechts-University of Kiel, Gutenbergstraße 76, Kiel 24118, Germany
| | - Jana D R Schmidt
- Department of Pharmaceutical and Medicinal Chemistry, Christian-Albrechts-University of Kiel, Gutenbergstraße 76, Kiel 24118, Germany
| | - Eric Beitz
- Department of Pharmaceutical and Medicinal Chemistry, Christian-Albrechts-University of Kiel, Gutenbergstraße 76, Kiel 24118, Germany
| |
Collapse
|
14
|
Tumor lactic acid: a potential target for cancer therapy. Arch Pharm Res 2023; 46:90-110. [PMID: 36729274 DOI: 10.1007/s12272-023-01431-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/27/2023] [Indexed: 02/03/2023]
Abstract
Tumor development is influenced by circulating metabolites and most tumors are exposed to substantially elevated levels of lactic acid and low levels of nutrients, such as glucose and glutamine. Tumor-derived lactic acid, the major circulating carbon metabolite, regulates energy metabolism and cancer cell signaling pathways, while also acting as an energy source and signaling molecule. Recent studies have yielded new insights into the pro-tumorigenic action of lactic acid and its metabolism. These insights suggest an anti-tumor therapeutic strategy targeting the oncometabolite lactic acid, with the aim of improving the efficacy and clinical safety of tumor metabolism inhibitors. This review describes the current understanding of the multifunctional roles of tumor lactic acid, as well as therapeutic approaches targeting lactic acid metabolism, including lactate dehydrogenase and monocarboxylate transporters, for anti-cancer therapy.
Collapse
|
15
|
Consumption and Metabolism of Extracellular Pyruvate by Cultured Rat Brain Astrocytes. Neurochem Res 2022; 48:1438-1454. [PMID: 36495387 PMCID: PMC10066139 DOI: 10.1007/s11064-022-03831-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 11/14/2022] [Accepted: 11/17/2022] [Indexed: 12/14/2022]
Abstract
AbstractBrain astrocytes are considered as glycolytic cell type, but these cells also produce ATP via mitochondrial oxidative phosphorylation. Exposure of cultured primary astrocytes in a glucose-free medium to extracellular substrates that are known to be metabolised by mitochondrial pathways, including pyruvate, lactate, beta-hydroxybutyrate, alanine and acetate, revealed that among the substrates investigated extracellular pyruvate was most efficiently consumed by astrocytes. Extracellular pyruvate was consumed by the cells almost proportional to time over hours in a concentration-dependent manner with apparent Michaelis–Menten kinetics [Km = 0.6 ± 0.1 mM, Vmax = 5.1 ± 0.8 nmol/(min × mg protein)]. The astrocytic consumption of pyruvate was strongly impaired in the presence of the monocarboxylate transporter 1 (MCT1) inhibitor AR-C155858 or by application of a 10-times excess of the MCT1 substrates lactate or beta-hydroxybutyrate. Pyruvate consumption by viable astrocytes was inhibited in the presence of UK5099, an inhibitor of the mitochondrial pyruvate carrier, or after application of the respiratory chain inhibitor antimycin A. In contrast, the mitochondrial uncoupler BAM15 strongly accelerated cellular pyruvate consumption. Lactate and alanine accounted after 3 h of incubation with pyruvate for around 60% and 10%, respectively, of the pyruvate consumed by the cells. These results demonstrate that consumption of extracellular pyruvate by astrocytes involves uptake via MCT1 and that the velocity of pyruvate consumption is strongly modified by substances that affect the entry of pyruvate into mitochondria or the activity of mitochondrial respiration.
Collapse
|
16
|
Cai Z, Li W, Brenner M, Bahiraii S, Heiss EH, Weckwerth W. Branched-chain ketoacids derived from cancer cells modulate macrophage polarization and metabolic reprogramming. Front Immunol 2022; 13:966158. [PMID: 36311795 PMCID: PMC9606345 DOI: 10.3389/fimmu.2022.966158] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 09/12/2022] [Indexed: 11/18/2022] Open
Abstract
Macrophages are prominent immune cells in the tumor microenvironment that can be educated into pro-tumoral phenotype by tumor cells to favor tumor growth and metastasis. The mechanisms that mediate a mutualistic relationship between tumor cells and macrophages remain poorly characterized. Here, we have shown in vitro that different human and murine cancer cell lines release branched-chain α-ketoacids (BCKAs) into the extracellular milieu, which influence macrophage polarization in an monocarboxylate transporter 1 (MCT1)-dependent manner. We found that α-ketoisocaproate (KIC) and α-keto-β-methylvalerate (KMV) induced a pro-tumoral macrophage state, whereas α-ketoisovalerate (KIV) exerted a pro-inflammatory effect on macrophages. This process was further investigated by a combined metabolomics/proteomics platform. Uptake of KMV and KIC fueled macrophage tricarboxylic acid (TCA) cycle intermediates and increased polyamine metabolism. Proteomic and pathway analyses revealed that the three BCKAs, especially KMV, exhibited divergent effects on the inflammatory signal pathways, phagocytosis, apoptosis and redox balance. These findings uncover cancer-derived BCKAs as novel determinants for macrophage polarization with potential to be selectively exploited for optimizing antitumor immune responses.
Collapse
Affiliation(s)
- Zhengnan Cai
- Molecular Systems Biology (MOSYS), Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Wan Li
- Molecular Systems Biology (MOSYS), Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Martin Brenner
- Molecular Systems Biology (MOSYS), Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| | - Sheyda Bahiraii
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| | - Elke H. Heiss
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| | - Wolfram Weckwerth
- Molecular Systems Biology (MOSYS), Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
- Vienna Metabolomics Center (VIME), University of Vienna, Vienna, Austria
| |
Collapse
|
17
|
Monocarboxylate transporters (MCTs) in skeletal muscle and hypothalamus of less or more physically active mice exposed to aerobic training. Life Sci 2022; 307:120872. [PMID: 35948119 DOI: 10.1016/j.lfs.2022.120872] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/27/2022] [Accepted: 08/04/2022] [Indexed: 11/22/2022]
Abstract
AIMS The synthesis of monocarboxylate transporters (MCTs) can be stimulated by aerobic training, but few is known about this effect associated or not with non-voluntary daily activities. We examined the effect of eight weeks of aerobic training in MCTs on the skeletal muscle and hypothalamus of less or more physically active mice, which can be achieved by keeping them in two different housing models, a small cage (SC) and a large cage (LC). MAIN METHODS Forty male C57BL/6J mice were divided into four groups. In each housing condition, mice were divided into untrained (N) and trained (T). For 8 weeks, the trained animals ran on a treadmill with an intensity equivalent to 80 % of the individual critical velocity (CV), considered aerobic capacity, 40 min/day, 5 times/week. Protein expression of MCTs was determined with fluorescence Western Blot. KEY FINDINGS T groups had higher hypothalamic MCT2 than N groups (ANOVA, P = 0.032). Significant correlations were detected between hypothalamic MCT2 and CV. There was a difference between the SC and LC groups in relation to MCT4 in the hypothalamus (LC > SC, P = 0.044). Trained mice housed in LC (but not SC-T) exhibited a reduction in MCT4 muscle (P < 0.001). SIGNIFICANCE Our findings indicate that aerobically trained mice increased the expression of MCT2 protein in the hypothalamus, which has been related to the uptake of lactate in neurons. Changes in energy metabolism in physically active mice (kept in LC) may be related to upregulation of hypothalamic MCT4, probably participating in the regulation of satiety.
Collapse
|
18
|
Macchi C, Moregola A, Greco M, Svecla M, Bonacina F, Dhup S, Dadhich R, Audano M, Sonveaux P, Mauro C, Mitro N, Ruscica M, Norata G. Monocarboxylate transporter 1 deficiency impacts CD8 + T lymphocytes proliferation and recruitment to adipose tissue during obesity. iScience 2022; 25:104435. [PMID: 35707720 PMCID: PMC9189020 DOI: 10.1016/j.isci.2022.104435] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 04/13/2022] [Accepted: 05/17/2022] [Indexed: 12/11/2022] Open
Abstract
Lactate sits at the crossroad of metabolism, immunity, and inflammation. The expression of cellular lactate transporter MCT1 (known as Slc16a1) increases during immune cell activation to cope with the metabolic reprogramming. We investigated the impact of MCT1 deficiency on CD8+ T cell function during obesity-related inflammatory conditions. The absence of MCT1 impaired CD8+ T cell proliferation with a shift of ATP production to mitochondrial oxidative phosphorylation. In Slc16a1 f/f Tcell cre mice fed a high-fat diet, a reduction in the number of CD8+ T cells, which infiltrated epididymal visceral adipose tissue (epiWAT) or subcutaneous adipose tissue, was observed. Adipose tissue weight and adipocyte area were significantly reduced together with downregulation of adipogenic genes only in the epiWAT. Our findings highlight a distinct effect of MCT1 deficiency in CD8+ T cells in the crosstalk with adipocytes and reinforce the concept that targeting immunometabolic reprogramming in lymphocyte could impact the immune-adipose tissue axis in obesity.
Collapse
Affiliation(s)
- C. Macchi
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - A. Moregola
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - M.F. Greco
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - M. Svecla
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - F. Bonacina
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - S. Dhup
- Pole of Pharmacology, Institut de Recherche Experimentale et Clinique (IREC), Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - R.K. Dadhich
- Pole of Pharmacology, Institut de Recherche Experimentale et Clinique (IREC), Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - M. Audano
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - P. Sonveaux
- Pole of Pharmacology, Institut de Recherche Experimentale et Clinique (IREC), Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - C. Mauro
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - N. Mitro
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - M. Ruscica
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - G.D. Norata
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
- SISA Center for the Study of Atherosclerosis, Bassini Hospital, Via M. Gorki 50, 20092 Milan, Cinisello Balsamo, Italy
| |
Collapse
|
19
|
Zhang M, Wang Y, Bai Y, Dai L, Guo H. Monocarboxylate Transporter 1 May Benefit Cerebral Ischemia via Facilitating Lactate Transport From Glial Cells to Neurons. Front Neurol 2022; 13:781063. [PMID: 35547368 PMCID: PMC9081727 DOI: 10.3389/fneur.2022.781063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 03/15/2022] [Indexed: 11/13/2022] Open
Abstract
Monocarboxylate transporter 1 (MCT1) is expressed in glial cells and some populations of neurons. MCT1 facilitates astrocytes or oligodendrocytes (OLs) in the energy supplement of neurons, which is crucial for maintaining the neuronal activity and axonal function. It is suggested that MCT1 upregulation in cerebral ischemia is protective to ischemia/reperfusion (I/R) injury. Otherwise, its underlying mechanism has not been clearly discussed. In this review, it provides a novel insight that MCT1 may protect brain from I/R injury via facilitating lactate transport from glial cells (such as, astrocytes and OLs) to neurons. It extensively discusses (1) the structure and localization of MCT1; (2) the regulation of MCT1 in lactate transport among astrocytes, OLs, and neurons; and (3) the regulation of MCT1 in the cellular response of lactate accumulation under ischemic attack. At last, this review concludes that MCT1, in cerebral ischemia, may improve lactate transport from glial cells to neurons, which subsequently alleviates cellular damage induced by lactate accumulation (mostly in glial cells), and meets the energy metabolism of neurons.
Collapse
Affiliation(s)
- Mao Zhang
- Department of Medical Genetics, College of Basic Medical Sciences, Army Medical University, Chongqing, China
| | - Yanyan Wang
- Department of Medical Genetics, College of Basic Medical Sciences, Army Medical University, Chongqing, China
| | - Yun Bai
- Department of Medical Genetics, College of Basic Medical Sciences, Army Medical University, Chongqing, China
| | - Limeng Dai
- Department of Medical Genetics, College of Basic Medical Sciences, Army Medical University, Chongqing, China
| | - Hong Guo
- Department of Medical Genetics, College of Basic Medical Sciences, Army Medical University, Chongqing, China
| |
Collapse
|
20
|
Geistlinger K, Schmidt JDR, Beitz E. Lactic Acid Permeability of Aquaporin-9 Enables Cytoplasmic Lactate Accumulation via an Ion Trap. Life (Basel) 2022; 12:life12010120. [PMID: 35054513 PMCID: PMC8779662 DOI: 10.3390/life12010120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/08/2022] [Accepted: 01/12/2022] [Indexed: 11/16/2022] Open
Abstract
(1) Background: Human aquaporin-9 (AQP9) conducts several small uncharged metabolites, such as glycerol, urea, and lactic acid. Certain brain tumors were shown to upregulate AQP9 expression, and the putative increase in lactic acid permeability was assigned to severity. (2) Methods: We expressed AQP9 and human monocarboxylate transporter 1 (MCT1) in yeast to determine the uptake rates and accumulation of radiolabeled l-lactate/l-lactic acid in different external pH conditions. (3) Results: The AQP9-mediated uptake of l-lactic acid was slow compared to MCT1 at neutral and slightly acidic pH, due to low concentrations of the neutral substrate species. At a pH corresponding to the pKa of l-lactic acid, uptake via AQP9 was faster than via MCT1. Substrate accumulation was fundamentally different between AQP9 and MCT1. With MCT1, an equilibrium was reached, at which the intracellular and extracellular l-lactate/H+ concentrations were balanced. Uptake via AQP9 was linear, theoretically yielding orders of magnitude of higher substrate accumulation than MCT1. (4) Conclusions: The selectivity of AQP9 for neutral l-lactic acid establishes an ion trap for l-lactate after dissociation. This may be physiologically relevant if the transmembrane proton gradient is steep, and AQP9 acts as the sole uptake path on at least one side of a polarized cell.
Collapse
|
21
|
Aref M, Ranjbari E, García-Guzmán JJ, Hu K, Lork A, Crespo GA, Ewing AG, Cuartero M. Potentiometric pH Nanosensor for Intracellular Measurements: Real-Time and Continuous Assessment of Local Gradients. Anal Chem 2021; 93:15744-15751. [PMID: 34783529 PMCID: PMC8637545 DOI: 10.1021/acs.analchem.1c03874] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
![]()
We present a pH nanosensor
conceived for single intracellular measurements.
The sensing architecture consisted of a two-electrode system evaluated
in the potentiometric mode. We used solid-contact carbon nanopipette
electrodes tailored to produce both the indicator (pH nanosensor)
and reference electrodes. The indicator electrode was a membrane-based
ion-selective electrode containing a receptor for hydrogen ions that
provided a favorable selectivity for intracellular measurements. The
analytical features of the pH nanosensor revealed a Nernstian response
(slope of −59.5 mV/pH unit) with appropriate repeatability
and reproducibility (variation coefficients of <2% for the calibration
parameters), a fast response time (<5 s), adequate medium-term
drift (0.7 mV h–1), and a linear range of response
including physiological and abnormal cell pH levels (6.0–8.5).
In addition, the position and configuration of the reference electrode
were investigated in cell-based experiments to provide unbiased pH
measurements, in which both the indicator and reference electrodes
were located inside the same cell, each of them inside two neighboring
cells, or the indicator electrode inside the cell and the reference
electrode outside of (but nearby) the studied cell. Finally, the pH
nanosensor was applied to two cases: (i) the tracing of the pH gradient
from extra-to intracellular media over insertion into a single PC12
cell and (ii) the monitoring of variations in intracellular pH in
response to exogenous administration of pharmaceuticals. It is anticipated
that the developed pH nanosensor, which is a label-free analytical
tool, has high potential to aid in the investigation of pathological
states that manifest in cell pH misregulation, with no restriction
in the type of targeted cells.
Collapse
Affiliation(s)
- Mohaddeseh Aref
- Department of Chemistry, School of Engineering Science in Chemistry, Biochemistry and Health, Royal Institute of Technology, KTH, Stockholm SE-100 44, Sweden
| | - Elias Ranjbari
- Department of Chemistry and Molecular Biology, University of Gothenburg, Kemivägen 10, Gothenburg 41296, Sweden
| | - Juan José García-Guzmán
- Department of Chemistry, School of Engineering Science in Chemistry, Biochemistry and Health, Royal Institute of Technology, KTH, Stockholm SE-100 44, Sweden
| | - Keke Hu
- Department of Chemistry and Molecular Biology, University of Gothenburg, Kemivägen 10, Gothenburg 41296, Sweden
| | - Alicia Lork
- Department of Chemistry and Molecular Biology, University of Gothenburg, Kemivägen 10, Gothenburg 41296, Sweden
| | - Gaston A Crespo
- Department of Chemistry, School of Engineering Science in Chemistry, Biochemistry and Health, Royal Institute of Technology, KTH, Stockholm SE-100 44, Sweden
| | - Andrew G Ewing
- Department of Chemistry and Molecular Biology, University of Gothenburg, Kemivägen 10, Gothenburg 41296, Sweden
| | - Maria Cuartero
- Department of Chemistry, School of Engineering Science in Chemistry, Biochemistry and Health, Royal Institute of Technology, KTH, Stockholm SE-100 44, Sweden
| |
Collapse
|
22
|
Karagiannis A, Gallopin T, Lacroix A, Plaisier F, Piquet J, Geoffroy H, Hepp R, Naudé J, Le Gac B, Egger R, Lambolez B, Li D, Rossier J, Staiger JF, Imamura H, Seino S, Roeper J, Cauli B. Lactate is an energy substrate for rodent cortical neurons and enhances their firing activity. eLife 2021; 10:e71424. [PMID: 34766906 PMCID: PMC8651295 DOI: 10.7554/elife.71424] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 11/09/2021] [Indexed: 12/12/2022] Open
Abstract
Glucose is the mandatory fuel for the brain, yet the relative contribution of glucose and lactate for neuronal energy metabolism is unclear. We found that increased lactate, but not glucose concentration, enhances the spiking activity of neurons of the cerebral cortex. Enhanced spiking was dependent on ATP-sensitive potassium (KATP) channels formed with KCNJ11 and ABCC8 subunits, which we show are functionally expressed in most neocortical neuronal types. We also demonstrate the ability of cortical neurons to take-up and metabolize lactate. We further reveal that ATP is produced by cortical neurons largely via oxidative phosphorylation and only modestly by glycolysis. Our data demonstrate that in active neurons, lactate is preferred to glucose as an energy substrate, and that lactate metabolism shapes neuronal activity in the neocortex through KATP channels. Our results highlight the importance of metabolic crosstalk between neurons and astrocytes for brain function.
Collapse
Affiliation(s)
- Anastassios Karagiannis
- Sorbonne Université, CNRS, INSERM, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS-IBPS)ParisFrance
| | - Thierry Gallopin
- Brain Plasticity Unit, CNRS UMR 8249, CNRS, ESPCI ParisParisFrance
| | - Alexandre Lacroix
- Sorbonne Université, CNRS, INSERM, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS-IBPS)ParisFrance
| | - Fabrice Plaisier
- Sorbonne Université, CNRS, INSERM, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS-IBPS)ParisFrance
| | - Juliette Piquet
- Sorbonne Université, CNRS, INSERM, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS-IBPS)ParisFrance
| | - Hélène Geoffroy
- Brain Plasticity Unit, CNRS UMR 8249, CNRS, ESPCI ParisParisFrance
| | - Régine Hepp
- Sorbonne Université, CNRS, INSERM, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS-IBPS)ParisFrance
| | - Jérémie Naudé
- Sorbonne Université, CNRS, INSERM, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS-IBPS)ParisFrance
| | - Benjamin Le Gac
- Sorbonne Université, CNRS, INSERM, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS-IBPS)ParisFrance
| | - Richard Egger
- Institute for Neurophysiology, Goethe University FrankfurtFrankfurtGermany
| | - Bertrand Lambolez
- Sorbonne Université, CNRS, INSERM, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS-IBPS)ParisFrance
| | - Dongdong Li
- Sorbonne Université, CNRS, INSERM, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS-IBPS)ParisFrance
| | - Jean Rossier
- Sorbonne Université, CNRS, INSERM, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS-IBPS)ParisFrance
- Brain Plasticity Unit, CNRS UMR 8249, CNRS, ESPCI ParisParisFrance
| | - Jochen F Staiger
- Institute for Neuroanatomy, University Medical Center Göttingen, Georg-August- University GöttingenGoettingenGermany
| | - Hiromi Imamura
- Graduate School of Biostudies, Kyoto UniversityKyotoJapan
| | - Susumu Seino
- Division of Molecular and Metabolic Medicine, Kobe University Graduate School of MedicineHyogoJapan
| | - Jochen Roeper
- Institute for Neurophysiology, Goethe University FrankfurtFrankfurtGermany
| | - Bruno Cauli
- Sorbonne Université, CNRS, INSERM, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS-IBPS)ParisFrance
| |
Collapse
|
23
|
Rawat A, Morrison BM. Metabolic Transporters in the Peripheral Nerve-What, Where, and Why? Neurotherapeutics 2021; 18:2185-2199. [PMID: 34773210 PMCID: PMC8804006 DOI: 10.1007/s13311-021-01150-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2021] [Indexed: 12/18/2022] Open
Abstract
Cellular metabolism is critical not only for cell survival, but also for cell fate, function, and intercellular communication. There are several different metabolic transporters expressed in the peripheral nervous system, and they each play important roles in maintaining cellular energy. The major source of energy in the peripheral nervous system is glucose, and glucose transporters 1 and 3 are expressed and allow blood glucose to be imported and utilized by peripheral nerves. There is also increasing evidence that other sources of energy, particularly monocarboxylates such as lactate that are transported primarily by monocarboxylate transporters 1 and 2 in peripheral nerves, can be efficiently utilized by peripheral nerves. Finally, emerging evidence supports an important role for connexins and possibly pannexins in the supply and regulation of metabolic energy. In this review, we will first define these critical metabolic transporter subtypes and then examine their localization in the peripheral nervous system. We will subsequently discuss the evidence, which comes both from experiments in animal models and observations from human diseases, supporting critical roles played by these metabolic transporters in the peripheral nervous system. Despite progress made in understanding the function of these transporters, many questions and some discrepancies remain, and these will also be addressed throughout this review. Peripheral nerve metabolism is fundamentally important and renewed interest in these pathways should help to answer many of these questions and potentially provide new treatments for neurologic diseases that are partly, or completely, caused by disruption of metabolism.
Collapse
Affiliation(s)
- Atul Rawat
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Brett M Morrison
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
24
|
Coskun D, Deshmukh R, Shivaraj SM, Isenring P, Bélanger RR. Lsi2: A black box in plant silicon transport. PLANT AND SOIL 2021; 466:1-20. [PMID: 34720209 PMCID: PMC8550040 DOI: 10.1007/s11104-021-05061-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/22/2021] [Indexed: 05/12/2023]
Abstract
BACKGROUND Silicon (Si) is widely considered a non-essential but beneficial element for higher plants, providing broad protection against various environmental stresses (both biotic and abiotic), particularly in species that can readily absorb the element. Two plasma-membrane proteins are known to coordinate the radial transport of Si (in the form of Si(OH)4) from soil to xylem within roots: the influx channel Lsi1 and the efflux transporter Lsi2. From a structural and mechanistic perspective, much more is known about Lsi1 (a member of the NIP-III subgroup of the Major Intrinsic Proteins) compared to Lsi2 (a putative Si(OH)4/H+ antiporter, with some homology to bacterial anion transporters). SCOPE Here, we critically review the current state of understanding regarding the physiological role and molecular characteristics of Lsi2. We demonstrate that the structure-function relationship of Lsi2 is largely uncharted and that the standing transport model requires much better supportive evidence. We also provide (to our knowledge) the most current and extensive phylogenetic analysis of Lsi2 from all fully sequenced higher-plant genomes. We end by suggesting research directions and hypotheses to elucidate the properties of Lsi2. CONCLUSIONS Given that Lsi2 is proposed to mediate xylem Si loading and thus root-to-shoot translocation and biosilicification, it is imperative that the field of Si transport focus its efforts on a better understanding of this important topic. With this review, we aim to stimulate and advance research in the field of Si transport and thus better exploit Si to improve crop resilience and agricultural output. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s11104-021-05061-1.
Collapse
Affiliation(s)
- Devrim Coskun
- Département de Phytologie, Faculté Des Sciences de L’Agriculture Et de L’Alimentation (FSAA), Université Laval, Québec, Québec Canada
| | - Rupesh Deshmukh
- National Agri-Food Biotechnology Institute (NABI), Mohali, India
| | - S. M. Shivaraj
- National Agri-Food Biotechnology Institute (NABI), Mohali, India
- CSIR-National Chemical Laboratory, Pune, India
| | - Paul Isenring
- Département de Médecine, Faculté de Médecine, Université Laval, Québec, Québec Canada
| | - Richard R. Bélanger
- Département de Phytologie, Faculté Des Sciences de L’Agriculture Et de L’Alimentation (FSAA), Université Laval, Québec, Québec Canada
| |
Collapse
|
25
|
Schumann T, König J, von Loeffelholz C, Vatner DF, Zhang D, Perry RJ, Bernier M, Chami J, Henke C, Kurzbach A, El-Agroudy NN, Willmes DM, Pesta D, de Cabo R, O Sullivan JF, Simon E, Shulman GI, Hamilton BS, Birkenfeld AL. Deletion of the diabetes candidate gene Slc16a13 in mice attenuates diet-induced ectopic lipid accumulation and insulin resistance. Commun Biol 2021; 4:826. [PMID: 34211098 PMCID: PMC8249653 DOI: 10.1038/s42003-021-02279-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 05/20/2021] [Indexed: 12/12/2022] Open
Abstract
Genome-wide association studies have identified SLC16A13 as a novel susceptibility gene for type 2 diabetes. The SLC16A13 gene encodes SLC16A13/MCT13, a member of the solute carrier 16 family of monocarboxylate transporters. Despite its potential importance to diabetes development, the physiological function of SLC16A13 is unknown. Here, we validate Slc16a13 as a lactate transporter expressed at the plasma membrane and report on the effect of Slc16a13 deletion in a mouse model. We show that Slc16a13 increases mitochondrial respiration in the liver, leading to reduced hepatic lipid accumulation and increased hepatic insulin sensitivity in high-fat diet fed Slc16a13 knockout mice. We propose a mechanism for improved hepatic insulin sensitivity in the context of Slc16a13 deficiency in which reduced intrahepatocellular lactate availability drives increased AMPK activation and increased mitochondrial respiration, while reducing hepatic lipid content. Slc16a13 deficiency thereby attenuates hepatic diacylglycerol-PKCε mediated insulin resistance in obese mice. Together, these data suggest that SLC16A13 is a potential target for the treatment of type 2 diabetes and non-alcoholic fatty liver disease.
Collapse
Affiliation(s)
- Tina Schumann
- Section of Metabolic and Vascular Medicine, Medical Clinic III, Dresden University School of Medicine, Technische Universität Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden of the Helmholtz Center Munich at University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Jörg König
- Clinical Pharmacology and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | | | - Daniel F Vatner
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Dongyan Zhang
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Rachel J Perry
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT, USA
| | - Michel Bernier
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Jason Chami
- Heart Research Institute, Newtown, NSW, Australia
| | - Christine Henke
- Section of Metabolic and Vascular Medicine, Medical Clinic III, Dresden University School of Medicine, Technische Universität Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden of the Helmholtz Center Munich at University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Anica Kurzbach
- Section of Metabolic and Vascular Medicine, Medical Clinic III, Dresden University School of Medicine, Technische Universität Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden of the Helmholtz Center Munich at University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Nermeen N El-Agroudy
- Section of Metabolic and Vascular Medicine, Medical Clinic III, Dresden University School of Medicine, Technische Universität Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden of the Helmholtz Center Munich at University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Diana M Willmes
- Section of Metabolic and Vascular Medicine, Medical Clinic III, Dresden University School of Medicine, Technische Universität Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden of the Helmholtz Center Munich at University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Dominik Pesta
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
- Centre for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Cologne, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Rafael de Cabo
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - John F O Sullivan
- Heart Research Institute, Newtown, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
- Department of Cardiology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Eric Simon
- Computational Biology, Boehringer-Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Gerald I Shulman
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT, USA
| | - Bradford S Hamilton
- CardioMetabolic Diseases Research, Boehringer-Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Andreas L Birkenfeld
- Section of Metabolic and Vascular Medicine, Medical Clinic III, Dresden University School of Medicine, Technische Universität Dresden, Dresden, Germany.
- German Center for Diabetes Research (DZD), Neuherberg, Germany.
- King's College London, Department of Diabetes, School of Life Course Science, London, UK.
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen, Tübingen, Germany.
- Department of Endocrinology, Diabetology and Nephrology, University Hospital of Tübingen, Tübingen, Germany.
| |
Collapse
|
26
|
van Rijt WJ, Van Hove JLK, Vaz FM, Havinga R, Allersma DP, Zijp TR, Bedoyan JK, Heiner‐Fokkema MR, Reijngoud D, Geraghty MT, Wanders RJA, Oosterveer MH, Derks TGJ. Enantiomer-specific pharmacokinetics of D,L-3-hydroxybutyrate: Implications for the treatment of multiple acyl-CoA dehydrogenase deficiency. J Inherit Metab Dis 2021; 44:926-938. [PMID: 33543789 PMCID: PMC8359440 DOI: 10.1002/jimd.12365] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/09/2021] [Accepted: 02/03/2021] [Indexed: 12/18/2022]
Abstract
D,L-3-hydroxybutyrate (D,L-3-HB, a ketone body) treatment has been described in several inborn errors of metabolism, including multiple acyl-CoA dehydrogenase deficiency (MADD; glutaric aciduria type II). We aimed to improve the understanding of enantiomer-specific pharmacokinetics of D,L-3-HB. Using UPLC-MS/MS, we analyzed D-3-HB and L-3-HB concentrations in blood samples from three MADD patients, and blood and tissue samples from healthy rats, upon D,L-3-HB salt administration (patients: 736-1123 mg/kg/day; rats: 1579-6317 mg/kg/day of salt-free D,L-3-HB). D,L-3-HB administration caused substantially higher L-3-HB concentrations than D-3-HB. In MADD patients, both enantiomers peaked at 30 to 60 minutes, and approached baseline after 3 hours. In rats, D,L-3-HB administration significantly increased Cmax and AUC of D-3-HB in a dose-dependent manner (controls vs ascending dose groups for Cmax : 0.10 vs 0.30-0.35-0.50 mmol/L, and AUC: 14 vs 58-71-106 minutes*mmol/L), whereas for L-3-HB the increases were significant compared to controls, but not dose proportional (Cmax : 0.01 vs 1.88-1.92-1.98 mmol/L, and AUC: 1 vs 380-454-479 minutes*mmol/L). L-3-HB concentrations increased extensively in brain, heart, liver, and muscle, whereas the most profound rise in D-3-HB was observed in heart and liver. Our study provides important knowledge on the absorption and distribution upon oral D,L-3-HB. The enantiomer-specific pharmacokinetics implies differential metabolic fates of D-3-HB and L-3-HB.
Collapse
Affiliation(s)
- Willemijn J. van Rijt
- University of Groningen, University Medical Center Groningen, Beatrix Children's Hospital, Section of Metabolic DiseasesGroningenThe Netherlands
| | - Johan L. K. Van Hove
- Section of Clinical Genetics and Metabolism, Department of PediatricsUniversity of Colorado, Children's Hospital ColoradoAuroraColoradoUSA
| | - Frédéric M. Vaz
- Departments of Clinical Chemistry and Pediatrics, Amsterdam Gastroenterology Endocrinology MetabolismLaboratory Genetic Metabolic Diseases, Amsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
- Core Facility Metabolomics, Amsterdam UMCAmsterdamThe Netherlands
| | - Rick Havinga
- Department of Pediatrics GroningenUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
| | - Derk P. Allersma
- Department of Clinical Pharmacy and PharmacologyUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
| | - Tanja R. Zijp
- Department of Clinical Pharmacy and PharmacologyUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
| | - Jirair K. Bedoyan
- Department of Genetics and Genome Sciences, Case Western Reserve University and Center for Inherited Disorders of Energy MetabolismUniversity Hospitals, Cleveland Medical CenterClevelandOhioUSA
| | - M. R. Heiner‐Fokkema
- Laboratory of Metabolic Diseases, Department of Laboratory MedicineUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
| | - Dirk‐Jan Reijngoud
- Department of Pediatrics GroningenUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
| | - Michael T. Geraghty
- Division of Metabolics and Newborn Screening, Department of PediatricsChildren's Hospital of Eastern OntarioOttawaCanada
| | - Ronald J. A. Wanders
- Departments of Clinical Chemistry and Pediatrics, Amsterdam Gastroenterology Endocrinology MetabolismLaboratory Genetic Metabolic Diseases, Amsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
| | - Maaike H. Oosterveer
- Department of Pediatrics GroningenUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
| | - Terry G. J. Derks
- University of Groningen, University Medical Center Groningen, Beatrix Children's Hospital, Section of Metabolic DiseasesGroningenThe Netherlands
| |
Collapse
|
27
|
The Acidic Brain-Glycolytic Switch in the Microenvironment of Malignant Glioma. Int J Mol Sci 2021; 22:ijms22115518. [PMID: 34073734 PMCID: PMC8197239 DOI: 10.3390/ijms22115518] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 05/16/2021] [Accepted: 05/19/2021] [Indexed: 12/15/2022] Open
Abstract
Malignant glioma represents a fatal disease with a poor prognosis and development of resistance mechanisms against conventional therapeutic approaches. The distinct tumor zones of this heterogeneous neoplasm develop their own microenvironment, in which subpopulations of cancer cells communicate. Adaptation to hypoxia in the center of the expanding tumor mass leads to the glycolytic and angiogenic switch, accompanied by upregulation of different glycolytic enzymes, transporters, and other metabolites. These processes render the tumor microenvironment more acidic, remodel the extracellular matrix, and create energy gradients for the metabolic communication between different cancer cells in distinct tumor zones. Escape mechanisms from hypoxia-induced cell death and energy deprivation are the result. The functional consequences are more aggressive and malignant behavior with enhanced proliferation and survival, migration and invasiveness, and the induction of angiogenesis. In this review, we go from the biochemical principles of aerobic and anaerobic glycolysis over the glycolytic switch, regulated by the key transcription factor hypoxia-inducible factor (HIF)-1α, to other important metabolic players like the monocarboxylate transporters (MCTs)1 and 4. We discuss the metabolic symbiosis model via lactate shuttling in the acidic tumor microenvironment and highlight the functional consequences of the glycolytic switch on glioma malignancy. Furthermore, we illustrate regulation by micro ribonucleic acids (miRNAs) and the connection between isocitrate dehydrogenase (IDH) mutation status and glycolytic metabolism. Finally, we give an outlook about the diagnostic and therapeutic implications of the glycolytic switch and the relation to tumor immunity in malignant glioma.
Collapse
|
28
|
Becker HM, Deitmer JW. Proton Transport in Cancer Cells: The Role of Carbonic Anhydrases. Int J Mol Sci 2021; 22:ijms22063171. [PMID: 33804674 PMCID: PMC8003680 DOI: 10.3390/ijms22063171] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 02/06/2023] Open
Abstract
Intra- and extracellular pH regulation is a pivotal function of all cells and tissues. Net outward transport of H+ is a prerequisite for normal physiological function, since a number of intracellular processes, such as metabolism and energy supply, produce acid. In tumor tissues, distorted pH regulation results in extracellular acidification and the formation of a hostile environment in which cancer cells can outcompete healthy local host cells. Cancer cells employ a variety of H+/HCO3−-coupled transporters in combination with intra- and extracellular carbonic anhydrase (CA) isoforms, to alter intra- and extracellular pH to values that promote tumor progression. Many of the transporters could closely associate to CAs, to form a protein complex coined “transport metabolon”. While transport metabolons built with HCO3−-coupled transporters require CA catalytic activity, transport metabolons with monocarboxylate transporters (MCTs) operate independently from CA catalytic function. In this article, we assess some of the processes and functions of CAs for tumor pH regulation and discuss the role of intra- and extracellular pH regulation for cancer pathogenesis and therapeutic intervention.
Collapse
Affiliation(s)
- Holger M. Becker
- Zoology and Animal Physiology, Institute of Zoology, TU Dresden, D-01217 Dresden, Germany
- Correspondence:
| | - Joachim W. Deitmer
- Department of Biology, University of Kaiserslautern, D-67653 Kaiserslautern, Germany;
| |
Collapse
|
29
|
Fairweather SJ, Shah N, Brӧer S. Heteromeric Solute Carriers: Function, Structure, Pathology and Pharmacology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 21:13-127. [PMID: 33052588 DOI: 10.1007/5584_2020_584] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Solute carriers form one of three major superfamilies of membrane transporters in humans, and include uniporters, exchangers and symporters. Following several decades of molecular characterisation, multiple solute carriers that form obligatory heteromers with unrelated subunits are emerging as a distinctive principle of membrane transporter assembly. Here we comprehensively review experimentally established heteromeric solute carriers: SLC3-SLC7 amino acid exchangers, SLC16 monocarboxylate/H+ symporters and basigin/embigin, SLC4A1 (AE1) and glycophorin A exchanger, SLC51 heteromer Ost α-Ost β uniporter, and SLC6 heteromeric symporters. The review covers the history of the heteromer discovery, transporter physiology, structure, disease associations and pharmacology - all with a focus on the heteromeric assembly. The cellular locations, requirements for complex formation, and the functional role of dimerization are extensively detailed, including analysis of the first complete heteromer structures, the SLC7-SLC3 family transporters LAT1-4F2hc, b0,+AT-rBAT and the SLC6 family heteromer B0AT1-ACE2. We present a systematic analysis of the structural and functional aspects of heteromeric solute carriers and conclude with common principles of their functional roles and structural architecture.
Collapse
Affiliation(s)
- Stephen J Fairweather
- Research School of Biology, Australian National University, Canberra, ACT, Australia. .,Resarch School of Chemistry, Australian National University, Canberra, ACT, Australia.
| | - Nishank Shah
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Stefan Brӧer
- Research School of Biology, Australian National University, Canberra, ACT, Australia.
| |
Collapse
|
30
|
Leu M, Kitz J, Pilavakis Y, Hakroush S, Wolff HA, Canis M, Rieken S, Schirmer MA. Monocarboxylate transporter-1 (MCT1) protein expression in head and neck cancer affects clinical outcome. Sci Rep 2021; 11:4578. [PMID: 33633176 PMCID: PMC7907348 DOI: 10.1038/s41598-021-84019-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 02/04/2021] [Indexed: 01/31/2023] Open
Abstract
Treatment of locally advanced, unresectable head and neck squamous cell carcinoma (HNSCC) often yields only modest results with radiochemotherapy (RCT) as standard of care. Prognostic features related to outcome upon RCT might be highly valuable to improve treatment. Monocarboxylate transporters-1 and -4 (MCT1/MCT4) were evaluated as potential biomarkers. A cohort of HNSCC patients without signs for distant metastases was assessed eliciting 82 individuals eligible whereof 90% were diagnosed with locally advanced stage IV. Tumor specimens were stained for MCT1 and MCT4 in the cell membrane by immunohistochemistry. Obtained data were evaluated with respect to overall (OS) and progression-free survival (PFS). Protein expression of MCT1 and MCT4 in cell membrane was detected in 16% and 85% of the tumors, respectively. Expression of both transporters was not statistically different according to the human papilloma virus (HPV) status. Positive staining for MCT1 (n = 13, negative in n = 69) strongly worsened PFS with a hazard ratio (HR) of 3.1 (95%-confidence interval 1.6-5.7, p < 0.001). OS was likewise affected with a HR of 3.8 (2.0-7.3, p < 0.001). Multivariable Cox regression confirmed these findings. We propose MCT1 as a promising biomarker in HNSCC treated by primary RCT.
Collapse
Affiliation(s)
- Martin Leu
- grid.411984.10000 0001 0482 5331Clinic of Radiotherapy and Radiation Oncology, University Medical Center Göttingen, Robert-Koch-Strasse 40, 37075 Göttingen, Germany
| | - J. Kitz
- grid.411984.10000 0001 0482 5331Institute of Pathology, University Medical Center Göttingen, Robert-Koch-Strasse 40, 37075 Göttingen, Germany
| | - Y. Pilavakis
- grid.411984.10000 0001 0482 5331Clinic of Otorhinolaryngology, University Medical Center Göttingen, Robert-Koch-Strasse 40, 37075 Göttingen, Germany
| | - S. Hakroush
- grid.411984.10000 0001 0482 5331Institute of Pathology, University Medical Center Göttingen, Robert-Koch-Strasse 40, 37075 Göttingen, Germany
| | - H. A. Wolff
- Department of Radiology, Nuclear Medicine and Radiotherapy, Radiology Munich, Maximiliansplatz 2, 80333 Munich, Germany ,grid.7727.50000 0001 2190 5763Department of Radiation Oncology, Medical Center, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | - M. Canis
- grid.5252.00000 0004 1936 973XDepartment of Otorhinolaryngology, Head and Neck Surgery, Ludwig-Maximilians-University Munich, Marchioninistrasse 15, 81377 Munich, Germany
| | - S. Rieken
- grid.411984.10000 0001 0482 5331Clinic of Radiotherapy and Radiation Oncology, University Medical Center Göttingen, Robert-Koch-Strasse 40, 37075 Göttingen, Germany
| | - M. A. Schirmer
- grid.411984.10000 0001 0482 5331Clinic of Radiotherapy and Radiation Oncology, University Medical Center Göttingen, Robert-Koch-Strasse 40, 37075 Göttingen, Germany
| |
Collapse
|
31
|
Hewton KG, Johal AS, Parker SJ. Transporters at the Interface between Cytosolic and Mitochondrial Amino Acid Metabolism. Metabolites 2021; 11:metabo11020112. [PMID: 33669382 PMCID: PMC7920303 DOI: 10.3390/metabo11020112] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/07/2021] [Accepted: 02/12/2021] [Indexed: 02/06/2023] Open
Abstract
Mitochondria are central organelles that coordinate a vast array of metabolic and biologic functions important for cellular health. Amino acids are intricately linked to the bioenergetic, biosynthetic, and homeostatic function of the mitochondrion and require specific transporters to facilitate their import, export, and exchange across the inner mitochondrial membrane. Here we review key cellular metabolic outputs of eukaryotic mitochondrial amino acid metabolism and discuss both known and unknown transporters involved. Furthermore, we discuss how utilization of compartmentalized amino acid metabolism functions in disease and physiological contexts. We examine how improved methods to study mitochondrial metabolism, define organelle metabolite composition, and visualize cellular gradients allow for a more comprehensive understanding of how transporters facilitate compartmentalized metabolism.
Collapse
Affiliation(s)
- Keeley G. Hewton
- Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (K.G.H.); (A.S.J.)
| | - Amritpal S. Johal
- Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (K.G.H.); (A.S.J.)
| | - Seth J. Parker
- Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (K.G.H.); (A.S.J.)
- British Columbia Children’s Hospital Research Institute, Vancouver, BC V6H 0B3, Canada
- Correspondence: ; Tel.: +1-604-875-3121
| |
Collapse
|
32
|
To VPTH, Masagounder K, Loewen ME. Critical transporters of methionine and methionine hydroxyl analogue supplements across the intestine: What we know so far and what can be learned to advance animal nutrition. Comp Biochem Physiol A Mol Integr Physiol 2021; 255:110908. [PMID: 33482339 DOI: 10.1016/j.cbpa.2021.110908] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/15/2020] [Accepted: 01/11/2021] [Indexed: 11/19/2022]
Abstract
DL-methionine (DL-Met) and its analogue DL-2-hydroxy-4-(methylthio) butanoic acid (DL-methionine hydroxyl analogue or DL-MHA) have been used as nutritional supplements in the diets of farmed raised animals. Knowledge of the intestinal transport mechanisms involved in these products is important for developing dietary strategies. This review provides updated information of the expression, function, and transport kinetics in the intestine of known Met-linked transporters along with putative MHA-linked transporters. As a neutral amino acid (AA), the transport of DL-Met is facilitated by multiple apical sodium-dependent/-independent high-/low-affinity transporters such as ASCT2, B0AT1 and rBAT/b0,+AT. The basolateral transport largely relies on the rate-limiting uniporter LAT4, while the presence of the basolateral antiporter y+LAT1 is probably necessary for exchanging intracellular cationic AAs and Met in the blood. In contrast, the intestinal transport kinetics of DL-MHA have been scarcely studied. DL-MHA transport is generally accepted to be mediated simply by the proton-dependent monocarboxylate transporter MCT1. However, in-depth mechanistic studies have indicated that DL-MHA transport is also achieved through apical sodium monocarboxylate transporters (SMCTs). In any case, reliance on either a proton or sodium gradient would thus require energy input for both Met and MHA transport. This expanding knowledge of the specific transporters involved now allows us to assess the effect of dietary ingredients on the expression and function of these transporters. Potentially, the resulting information could be furthered with selective breeding to reduce overall feed costs.
Collapse
Affiliation(s)
- Van Pham Thi Ha To
- Veterinary Biomedical Science, University of Saskatchewan, Saskatoon, SK, Canada
| | | | - Matthew E Loewen
- Veterinary Biomedical Science, University of Saskatchewan, Saskatoon, SK, Canada.
| |
Collapse
|
33
|
Chornyi S, IJlst L, van Roermund CWT, Wanders RJA, Waterham HR. Peroxisomal Metabolite and Cofactor Transport in Humans. Front Cell Dev Biol 2021; 8:613892. [PMID: 33505966 PMCID: PMC7829553 DOI: 10.3389/fcell.2020.613892] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 12/10/2020] [Indexed: 12/20/2022] Open
Abstract
Peroxisomes are membrane-bound organelles involved in many metabolic pathways and essential for human health. They harbor a large number of enzymes involved in the different pathways, thus requiring transport of substrates, products and cofactors involved across the peroxisomal membrane. Although much progress has been made in understanding the permeability properties of peroxisomes, there are still important gaps in our knowledge about the peroxisomal transport of metabolites and cofactors. In this review, we discuss the different modes of transport of metabolites and essential cofactors, including CoA, NAD+, NADP+, FAD, FMN, ATP, heme, pyridoxal phosphate, and thiamine pyrophosphate across the peroxisomal membrane. This transport can be mediated by non-selective pore-forming proteins, selective transport proteins, membrane contact sites between organelles, and co-import of cofactors with proteins. We also discuss modes of transport mediated by shuttle systems described for NAD+/NADH and NADP+/NADPH. We mainly focus on current knowledge on human peroxisomal metabolite and cofactor transport, but also include knowledge from studies in plants, yeast, fruit fly, zebrafish, and mice, which has been exemplary in understanding peroxisomal transport mechanisms in general.
Collapse
Affiliation(s)
- Serhii Chornyi
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC Location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - Lodewijk IJlst
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC Location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - Carlo W T van Roermund
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC Location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - Ronald J A Wanders
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC Location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - Hans R Waterham
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC Location AMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
34
|
Roosterman D, Cottrell GS. Rethinking the Citric Acid Cycle: Connecting Pyruvate Carboxylase and Citrate Synthase to the Flow of Energy and Material. Int J Mol Sci 2021; 22:ijms22020604. [PMID: 33435350 PMCID: PMC7827294 DOI: 10.3390/ijms22020604] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 12/22/2022] Open
Abstract
In 1937, Sir H. A Krebs first published the Citric Acid Cycle, a unidirectional cycle with carboxylic acids. The original concept of the Citric Acid Cycle from Krebs’ 1953 Nobel Prize lecture illustrates the unidirectional degradation of lactic acid to water, carbon dioxide and hydrogen. Here, we add the heart lactate dehydrogenase•proton-linked monocarboxylate transporter 1 complex, connecting the original Citric Acid Cycle to the flow of energy and material. The heart lactate dehydrogenase•proton-linked monocarboxylate transporter 1 complex catalyses the first reaction of the Citric Acid Cycle, the oxidation of lactate to pyruvate, and thus secures the provision of pyruvic acid. In addition, we modify Krebs’ original concept by feeding the cycle with oxaloacetic acid. Our concept enables the integration of anabolic processes and allows adaption of the organism to recover ATP faster.
Collapse
|
35
|
Sonnay S, Christinat N, Thevenet J, Wiederkehr A, Chakrabarti A, Masoodi M. Exploring Valine Metabolism in Astrocytic and Liver Cells: Lesson from Clinical Observation in TBI Patients for Nutritional Intervention. Biomedicines 2020; 8:biomedicines8110487. [PMID: 33182557 PMCID: PMC7697144 DOI: 10.3390/biomedicines8110487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 10/30/2020] [Accepted: 11/06/2020] [Indexed: 01/06/2023] Open
Abstract
The utilization of alternative energy substrates to glucose could be beneficial in traumatic brain injury (TBI). Recent clinical data obtained in TBI patients reported valine, β-hydroxyisobutyrate (ibHB) and 2-ketoisovaleric acid (2-KIV) as three of the main predictors of TBI outcome. In particular, higher levels of ibHB, 2-KIV, and valine in cerebral microdialysis (CMD) were associated with better clinical outcome. In this study, we investigate the correlations between circulating and CMD levels of these metabolites. We hypothesized that the liver can metabolize valine and provide a significant amount of intermediate metabolites, which can be further metabolized in the brain. We aimed to assess the metabolism of valine in human-induced pluripotent stem cell (iPSC)-derived astrocytes and HepG2 cells using 13C-labeled substrate to investigate potential avenues for increasing the levels of downstream metabolites of valine via valine supplementation. We observed that 94 ± 12% and 84 ± 16% of ibHB, and 94 ± 12% and 87 ± 15% of 2-KIV, in the medium of HepG2 cells and in iPSC-derived astrocytes, respectively, came directly from valine. Overall, these findings suggest that both ibHB and 2-KIV are produced from valine to a large extent in both cell types, which could be of interest in the design of optimal nutritional interventions aiming at stimulating valine metabolism.
Collapse
Affiliation(s)
- Sarah Sonnay
- Lipid metabolism, Nestlé Research, Nestlé Institute of Health Sciences,1015 Lausanne, Switzerland; (S.S.); (N.C.); (A.C.)
| | - Nicolas Christinat
- Lipid metabolism, Nestlé Research, Nestlé Institute of Health Sciences,1015 Lausanne, Switzerland; (S.S.); (N.C.); (A.C.)
| | - Jonathan Thevenet
- Mitochondrial Function, Nestlé Research, Nestlé Institute of Health Sciences, 1015 Lausanne, Switzerland; (J.T.); (A.W.)
| | - Andreas Wiederkehr
- Mitochondrial Function, Nestlé Research, Nestlé Institute of Health Sciences, 1015 Lausanne, Switzerland; (J.T.); (A.W.)
| | - Anirikh Chakrabarti
- Lipid metabolism, Nestlé Research, Nestlé Institute of Health Sciences,1015 Lausanne, Switzerland; (S.S.); (N.C.); (A.C.)
| | - Mojgan Masoodi
- Lipid metabolism, Nestlé Research, Nestlé Institute of Health Sciences,1015 Lausanne, Switzerland; (S.S.); (N.C.); (A.C.)
- Institute of Clinical Chemistry, Inselspital, Bern University Hospital, 3010 Bern, Switzerland
- Correspondence: ; Tel.: +41-31-664-05-32
| |
Collapse
|
36
|
Reddy A, Bozi LHM, Yaghi OK, Mills EL, Xiao H, Nicholson HE, Paschini M, Paulo JA, Garrity R, Laznik-Bogoslavski D, Ferreira JCB, Carl CS, Sjøberg KA, Wojtaszewski JFP, Jeppesen JF, Kiens B, Gygi SP, Richter EA, Mathis D, Chouchani ET. pH-Gated Succinate Secretion Regulates Muscle Remodeling in Response to Exercise. Cell 2020; 183:62-75.e17. [PMID: 32946811 DOI: 10.1016/j.cell.2020.08.039] [Citation(s) in RCA: 162] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/05/2020] [Accepted: 08/17/2020] [Indexed: 12/23/2022]
Abstract
In response to skeletal muscle contraction during exercise, paracrine factors coordinate tissue remodeling, which underlies this healthy adaptation. Here we describe a pH-sensing metabolite signal that initiates muscle remodeling upon exercise. In mice and humans, exercising skeletal muscle releases the mitochondrial metabolite succinate into the local interstitium and circulation. Selective secretion of succinate is facilitated by its transient protonation, which occurs upon muscle cell acidification. In the protonated monocarboxylic form, succinate is rendered a transport substrate for monocarboxylate transporter 1, which facilitates pH-gated release. Upon secretion, succinate signals via its cognate receptor SUCNR1 in non-myofibrillar cells in muscle tissue to control muscle-remodeling transcriptional programs. This succinate-SUCNR1 signaling is required for paracrine regulation of muscle innervation, muscle matrix remodeling, and muscle strength in response to exercise training. In sum, we define a bioenergetic sensor in muscle that utilizes intracellular pH and succinate to coordinate tissue adaptation to exercise.
Collapse
Affiliation(s)
- Anita Reddy
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Luiz H M Bozi
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Cell Biology, Harvard Medical School, Boston, MA, USA; Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Omar K Yaghi
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Evanna L Mills
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Haopeng Xiao
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Hilary E Nicholson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Margherita Paschini
- Stem Cell Program, Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Ryan Garrity
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | - Julio C B Ferreira
- Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Christian S Carl
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Kim A Sjøberg
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Jørgen F P Wojtaszewski
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | | | - Bente Kiens
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Erik A Richter
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Diane Mathis
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Edward T Chouchani
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Cell Biology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
37
|
Allen AE, Martin EA, Greenwood K, Grant C, Vince P, Lucas RJ, Redfern WS. Effects of a monocarboxylate transport 1 inhibitor, AZD3965, on retinal and visual function in the rat. Br J Pharmacol 2020; 177:4734-4749. [PMID: 32833237 DOI: 10.1111/bph.15239] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 07/21/2020] [Accepted: 07/24/2020] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Inhibition of monocarboxylate transport 1 (MCT1) is of interest in targeting highly glycolytic tumours. However, MCT1 is expressed in retina, and so inhibition of MCT1 could affect retinal function. EXPERIMENTAL APPROACH AZD3965, an MCT1 inhibitor selected for clinical development, and two additional MCT1 inhibitors were evaluated for effects on visual acuity in albino (Han Wistar) rats. The effects of AZD3965 on visual acuity and electroretinography (ERG) were further investigated in pigmented (Long-Evans) rats, with dosing for up to 7 days. KEY RESULTS All three MCT1 inhibitors reduced visual acuity within 2 h of dosing, suggesting a class effect. The deficit caused by AZD3965 (1,000 mg·kg-1 p.o. per day for 4 days) in Long Evans rats recovered to pre-dose levels 7 days after cessation of dosing. AZD3965 (50 to 1,000 mg·kg-1 p.o.) reduced the amplitude of scotopic a- and b-waves, and photopic b-wave of the ERG in a dose-related fashion, within 2 h of dosing. The effects on the scotopic ERG had diminished by Day 7 of dosing, demonstrating partial restoration of function despite continued treatment. Seven days after cessation of dosing at the highest dose tested (1,000 mg·kg-1 ), there was recovery of both scotopic a- and b- waves and, to a lesser extent, photopic b-wave. ERG was affected at lower plasma exposures than was visual function. CONCLUSIONS AND IMPLICATIONS This study clarifies the role of the MCT1 transporter in retinal function. The monitorability of the functional effects on the retina enabled safe clinical use of AZD3965.
Collapse
Affiliation(s)
- Annette E Allen
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Elizabeth A Martin
- Regulatory Safety Centre of Excellence, Clinical Pharmacology & Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Katherine Greenwood
- Regulatory Safety Centre of Excellence, Clinical Pharmacology & Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK.,Gentronix Limited, Cheshire, UK
| | - Claire Grant
- Regulatory Safety Centre of Excellence, Clinical Pharmacology & Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Peter Vince
- Regulatory Safety Centre of Excellence, Clinical Pharmacology & Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Robert J Lucas
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - William S Redfern
- Regulatory Safety Centre of Excellence, Clinical Pharmacology & Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK.,Certara UK Limited, Sheffield, UK
| |
Collapse
|
38
|
Schmidt C, Seibel R, Wehsling M, Le Mignon M, Wille G, Fischer M, Zimmer A. Keto leucine and keto isoleucine are bioavailable precursors of their respective amino acids in cell culture media. J Biotechnol 2020; 321:1-12. [DOI: 10.1016/j.jbiotec.2020.06.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/16/2020] [Accepted: 06/17/2020] [Indexed: 01/13/2023]
|
39
|
Bosshart PD, Charles RP, Garibsingh RAA, Schlessinger A, Fotiadis D. SLC16 Family: From Atomic Structure to Human Disease. Trends Biochem Sci 2020; 46:28-40. [PMID: 32828650 DOI: 10.1016/j.tibs.2020.07.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/30/2020] [Accepted: 07/21/2020] [Indexed: 12/14/2022]
Abstract
The solute carrier 16 (SLC16) family represents a diverse group of membrane proteins mediating the transport of monocarboxylates across biological membranes. Family members show a variety of functional roles ranging from nutrient transport and intracellular pH regulation to thyroid hormone homeostasis. Changes in the expression levels and transport function of certain SLC16 transporters are manifested in severe health disorders including cancer, diabetes, and neurological disorders. L-Lactate-transporting SLC16 family members play essential roles in the metabolism of certain tumors and became validated drug targets. This review illuminates the SLC16 family under a new light using structural information obtained from a SLC16 homolog. Furthermore, the role of these transporters in cancer metabolism and how their inhibition can contribute to anticancer therapy are discussed.
Collapse
Affiliation(s)
- Patrick D Bosshart
- Institute of Biochemistry and Molecular Medicine and Swiss National Centre of Competence in Research (NCCR) TransCure, University of Bern, CH-3012 Bern, Switzerland
| | - Roch-Philippe Charles
- Institute of Biochemistry and Molecular Medicine and Swiss National Centre of Competence in Research (NCCR) TransCure, University of Bern, CH-3012 Bern, Switzerland
| | - Rachel-Ann A Garibsingh
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Avner Schlessinger
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dimitrios Fotiadis
- Institute of Biochemistry and Molecular Medicine and Swiss National Centre of Competence in Research (NCCR) TransCure, University of Bern, CH-3012 Bern, Switzerland.
| |
Collapse
|
40
|
van Rijt WJ, Jager EA, Allersma DP, Aktuğlu Zeybek AÇ, Bhattacharya K, Debray FG, Ellaway CJ, Gautschi M, Geraghty MT, Gil-Ortega D, Larson AA, Moore F, Morava E, Morris AA, Oishi K, Schiff M, Scholl-Bürgi S, Tchan MC, Vockley J, Witters P, Wortmann SB, van Spronsen F, Van Hove JLK, Derks TGJ. Efficacy and safety of D,L-3-hydroxybutyrate (D,L-3-HB) treatment in multiple acyl-CoA dehydrogenase deficiency. Genet Med 2020; 22:908-916. [PMID: 31904027 PMCID: PMC7200590 DOI: 10.1038/s41436-019-0739-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 12/18/2019] [Indexed: 12/14/2022] Open
Abstract
PURPOSE Multiple acyl-CoA dehydrogenase deficiency (MADD) is a life-threatening, ultrarare inborn error of metabolism. Case reports described successful D,L-3-hydroxybutyrate (D,L-3-HB) treatment in severely affected MADD patients, but systematic data on efficacy and safety is lacking. METHODS A systematic literature review and an international, retrospective cohort study on clinical presentation, D,L-3-HB treatment method, and outcome in MADD(-like) patients. RESULTS Our study summarizes 23 MADD(-like) patients, including 14 new cases. Median age at clinical onset was two months (interquartile range [IQR]: 8 months). Median age at starting D,L-3-HB was seven months (IQR: 4.5 years). D,L-3-HB doses ranged between 100 and 2600 mg/kg/day. Clinical improvement was reported in 16 patients (70%) for cardiomyopathy, leukodystrophy, liver symptoms, muscle symptoms, and/or respiratory failure. D,L-3-HB appeared not effective for neuropathy. Survival appeared longer upon D,L-3-HB compared with historical controls. Median time until first clinical improvement was one month, and ranged up to six months. Reported side effects included abdominal pain, constipation, dehydration, diarrhea, and vomiting/nausea. Median D,L-3-HB treatment duration was two years (IQR: 6 years). D,L-3-HB treatment was discontinued in 12 patients (52%). CONCLUSION The strength of the current study is the international pooling of data demonstrating that D,L-3-HB treatment can be effective and safe in MADD(-like) patients.
Collapse
Affiliation(s)
- Willemijn J van Rijt
- Section of Metabolic Diseases, University of Groningen, University Medical Center Groningen, Beatrix Children's Hospital, Groningen, The Netherlands
| | - Emmalie A Jager
- Section of Metabolic Diseases, University of Groningen, University Medical Center Groningen, Beatrix Children's Hospital, Groningen, The Netherlands
| | - Derk P Allersma
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - A Çiğdem Aktuğlu Zeybek
- Division of Nutrition and Metabolism, Department of Pediatrics, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Kaustuv Bhattacharya
- Genetic Metabolic Disorders Service, Sydney Children's Hospital Network, Disciplines of Genetic Medicine and Child and Adolescent Health, University of Sydney, Sydney, Australia
| | | | - Carolyn J Ellaway
- Genetic Metabolic Disorders Service, Sydney Children's Hospital Network, Disciplines of Genetic Medicine and Child and Adolescent Health, University of Sydney, Sydney, Australia
| | - Matthias Gautschi
- University Hospital Bern, Department of Pediatric Endocrinology, Diabetology and Metabolism and University Institute of Clinical Chemistry, Inselspital, University of Bern, Bern, Switzerland
| | - Michael T Geraghty
- Division of Metabolics and Newborn Screening, Department of Pediatrics, Children's Hospital of Eastern Ontario, Ottawa, ON, Canada
| | - David Gil-Ortega
- Department of Pediatric Gastroenterology, Hospital Universitario Virgen de la Arrixaca, Murcia, Spain
| | - Austin A Larson
- Section of Clinical Genetics and Metabolism, Department of Pediatrics, University of Colorado, Aurora, CO, USA
| | - Francesca Moore
- Biochemical Genetics Laboratory, The Children's Hospital at Westmead, Sydney, Australia
| | - Eva Morava
- Center of Individualized Medicine, Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA
- Metabolic Disease Center, University Hospitals Leuven, Leuven, Belgium
| | - Andrew A Morris
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, United Kingdom
- Division of Evolution and Genomic Sciences, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | - Kimihiko Oishi
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Manuel Schiff
- Reference Centre for Inborn Errors of Metabolism, Robert Debré Univ. Hospital, APHP, INSERM U1141 and Paris Diderot University, Paris, France
| | - Sabine Scholl-Bürgi
- Department of Pediatrics I, Inherited Metabolic Disorders, Medical University of Innsbruck, Innsbruck, Austria
| | - Michel C Tchan
- Westmead Hospital, University of Sydney, Sydney, Australia
| | - Jerry Vockley
- Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA, USA
| | - Peter Witters
- Metabolic Disease Center, University Hospitals Leuven, Leuven, Belgium
| | - Saskia B Wortmann
- University Childrens Hospital, Paracelcus Medical University (PMU), Salzburg, Austria
- Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany
- Institute of Human Genetics, Technische Universität München, Munich, Germany
| | - Francjan van Spronsen
- Section of Metabolic Diseases, University of Groningen, University Medical Center Groningen, Beatrix Children's Hospital, Groningen, The Netherlands
| | - Johan L K Van Hove
- Section of Clinical Genetics and Metabolism, Department of Pediatrics, University of Colorado, Aurora, CO, USA
| | - Terry G J Derks
- Section of Metabolic Diseases, University of Groningen, University Medical Center Groningen, Beatrix Children's Hospital, Groningen, The Netherlands.
| |
Collapse
|
41
|
Sadeghzadeh M, Moldovan RP, Fischer S, Wenzel B, Ludwig FA, Teodoro R, Deuther-Conrad W, Jonnalagadda S, Jonnalagadda SK, Gudelis E, Šačkus A, Higuchi K, Ganapathy V, Mereddy VR, Drewes LR, Brust P. Development and radiosynthesis of the first 18 F-labeled inhibitor of monocarboxylate transporters (MCTs). J Labelled Comp Radiopharm 2020; 62:411-424. [PMID: 31017677 DOI: 10.1002/jlcr.3739] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/27/2019] [Accepted: 04/14/2019] [Indexed: 01/22/2023]
Abstract
Monocarboxylate transporters 1 and 4 (MCT1 and MCT4) are involved in tumor development and progression. Their expression levels are related to clinical disease prognosis. Accordingly, both MCTs are promising drug targets for treatment of a variety of human cancers. The noninvasive imaging of these MCTs in cancers is regarded to be advantageous for assessing MCT-mediated effects on chemotherapy and radiosensitization using specific MCT inhibitors. Herein, we describe a method for the radiosynthesis of [18 F]FACH ((E)-2-cyano-3-{4-[(3-[18 F]fluoropropyl)(propyl)amino]-2-methoxyphenyl}acrylic acid), as a novel radiolabeled MCT1/4 inhibitor for imaging with PET. A fluorinated analog of α-cyano-4-hydroxycinnamic acid (FACH) was synthesized, and the inhibition of MCT1 and MCT4 was measured via an L-[14 C]lactate uptake assay. Radiolabeling was performed by a two-step protocol comprising the radiosynthesis of the intermediate (E)/(Z)-[18 F]tert-Bu-FACH (tert-butyl (E)/(Z)-2-cyano-3-{4-[(3-[18 F]fluoropropyl)(propyl)amino]-2-methoxyphenyl}acrylate) followed by deprotection of the tert-butyl group. The radiofluorination was successfully implemented using either K[18 F]F-K2.2.2 -carbonate or [18 F]TBAF. The final deprotected product [18 F]FACH was only obtained when [18 F]tert-Bu-FACH was formed by the latter procedure. After optimization of the deprotection reaction, [18 F]FACH was obtained in high radiochemical yields (39.6 ± 8.3%, end of bombardment (EOB) and radiochemical purity (greater than 98%).
Collapse
Affiliation(s)
- Masoud Sadeghzadeh
- Department of Neuroradiopharmaceuticals, Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Research Site Leipzig, Leipzig, Germany
| | - Rareş-Petru Moldovan
- Department of Neuroradiopharmaceuticals, Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Research Site Leipzig, Leipzig, Germany
| | - Steffen Fischer
- Department of Neuroradiopharmaceuticals, Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Research Site Leipzig, Leipzig, Germany
| | - Barbara Wenzel
- Department of Neuroradiopharmaceuticals, Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Research Site Leipzig, Leipzig, Germany
| | - Friedrich-Alexander Ludwig
- Department of Neuroradiopharmaceuticals, Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Research Site Leipzig, Leipzig, Germany
| | - Rodrigo Teodoro
- Department of Neuroradiopharmaceuticals, Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Research Site Leipzig, Leipzig, Germany
| | - Winnie Deuther-Conrad
- Department of Neuroradiopharmaceuticals, Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Research Site Leipzig, Leipzig, Germany
| | - Shirisha Jonnalagadda
- Department of Chemistry and Biochemistry, Department of Pharmacy Practice and Pharmaceutical Sciences, University of Minnesota, Duluth, Minnesota, USA
| | - Sravan K Jonnalagadda
- Department of Chemistry and Biochemistry, Department of Pharmacy Practice and Pharmaceutical Sciences, University of Minnesota, Duluth, Minnesota, USA
| | - Emilis Gudelis
- Institute of Synthetic Chemistry, Kaunas University of Technology, Kaunas, Lithuania
| | - Algirdas Šačkus
- Institute of Synthetic Chemistry, Kaunas University of Technology, Kaunas, Lithuania
| | - Kei Higuchi
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - Vadivel Ganapathy
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - Venkatram R Mereddy
- Department of Chemistry and Biochemistry, Department of Pharmacy Practice and Pharmaceutical Sciences, University of Minnesota, Duluth, Minnesota, USA
| | - Lester R Drewes
- Department of Biomedical Sciences, University of Minnesota Medical School Duluth, Duluth, Minnesota, USA
| | - Peter Brust
- Department of Neuroradiopharmaceuticals, Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Research Site Leipzig, Leipzig, Germany
| |
Collapse
|
42
|
Roosterman D, Cottrell GS. Astrocytes and neurons communicate via a monocarboxylic acid shuttle. AIMS Neurosci 2020; 7:94-106. [PMID: 32607414 PMCID: PMC7321766 DOI: 10.3934/neuroscience.2020007] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/13/2020] [Indexed: 01/21/2023] Open
Abstract
Since formulation of the Astrocyte-Neuron Lactate Shuttle (ANLS) hypothesis in 1994, the hypothesis has provoked criticism and debate. Our review does not criticise, but rather integrates experimental data characterizing proton-linked monocarboxylate transporters (MCTs) into the ANLS. MCTs have wide substrate specificity and are discussed to be in protein complex with a proton donor (PD). We particularly focus on the proton-driven transfer of l-lactic acid (l-lacH) and pyruvic acid (pyrH), were PDs link MCTs to a flow of energy. The precise nature of the PD predicts the activity and catalytic direction of MCTs. By doing so, we postulate that the MCT4·phosphoglycerate kinase complex exports and at the same time in the same astrocyte, MCT1·carbonic anhydrase II complex imports monocarboxylic acids. Similarly, neuronal MCT2 preferentially imports pyrH. The repertoire of MCTs in astrocytes and neurons allows them to communicate via monocarboxylic acids. A change in imported pyrH/l-lacH ratio in favour of l-lacH encodes signals stabilizing the transit of glucose from astrocytes to neurons. The presented astrocyte neuron communication hypothesis has the potential to unite the community by suggesting that the exchange of monocarboxylic acids paves the path of glucose provision.
Collapse
Affiliation(s)
- Dirk Roosterman
- Ruhr Universität Bochum, LWL-Hospital of Psychiatry, Bochum, Germany
| | | |
Collapse
|
43
|
Becker HM, Deitmer JW. Transport Metabolons and Acid/Base Balance in Tumor Cells. Cancers (Basel) 2020; 12:cancers12040899. [PMID: 32272695 PMCID: PMC7226098 DOI: 10.3390/cancers12040899] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/03/2020] [Accepted: 04/04/2020] [Indexed: 02/07/2023] Open
Abstract
Solid tumors are metabolically highly active tissues, which produce large amounts of acid. The acid/base balance in tumor cells is regulated by the concerted interplay between a variety of membrane transporters and carbonic anhydrases (CAs), which cooperate to produce an alkaline intracellular, and an acidic extracellular, environment, in which cancer cells can outcompete their adjacent host cells. Many acid/base transporters form a structural and functional complex with CAs, coined "transport metabolon". Transport metabolons with bicarbonate transporters require the binding of CA to the transporter and CA enzymatic activity. In cancer cells, these bicarbonate transport metabolons have been attributed a role in pH regulation and cell migration. Another type of transport metabolon is formed between CAs and monocarboxylate transporters, which mediate proton-coupled lactate transport across the cell membrane. In this complex, CAs function as "proton antenna" for the transporter, which mediate the rapid exchange of protons between the transporter and the surroundings. These transport metabolons do not require CA catalytic activity, and support the rapid efflux of lactate and protons from hypoxic cancer cells to allow sustained glycolytic activity and cell proliferation. Due to their prominent role in tumor acid/base regulation and metabolism, transport metabolons might be promising drug targets for new approaches in cancer therapy.
Collapse
Affiliation(s)
- Holger M. Becker
- Institute of Physiological Chemistry, University of Veterinary Medicine Hannover, D-30559 Hannover, Germany
- Correspondence:
| | - Joachim W. Deitmer
- Department of Biology, University of Kaiserslautern, D-67653 Kaiserslautern, Germany;
| |
Collapse
|
44
|
Felmlee MA, Jones RS, Rodriguez-Cruz V, Follman KE, Morris ME. Monocarboxylate Transporters (SLC16): Function, Regulation, and Role in Health and Disease. Pharmacol Rev 2020; 72:466-485. [PMID: 32144120 PMCID: PMC7062045 DOI: 10.1124/pr.119.018762] [Citation(s) in RCA: 238] [Impact Index Per Article: 47.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The solute carrier family 16 (SLC16) is comprised of 14 members of the monocarboxylate transporter (MCT) family that play an essential role in the transport of important cell nutrients and for cellular metabolism and pH regulation. MCTs 1-4 have been extensively studied and are involved in the proton-dependent transport of L-lactate, pyruvate, short-chain fatty acids, and monocarboxylate drugs in a wide variety of tissues. MCTs 1 and 4 are overexpressed in a number of cancers, and current investigations have focused on transporter inhibition as a novel therapeutic strategy in cancers. MCT1 has also been used in strategies aimed at enhancing drug absorption due to its high expression in the intestine. Other MCT isoforms are less well characterized, but ongoing studies indicate that MCT6 transports xenobiotics such as bumetanide, nateglinide, and probenecid, whereas MCT7 has been characterized as a transporter of ketone bodies. MCT8 and MCT10 transport thyroid hormones, and recently, MCT9 has been characterized as a carnitine efflux transporter and MCT12 as a creatine transporter. Expressed at the blood brain barrier, MCT8 mutations have been associated with an X-linked intellectual disability, known as Allan-Herndon-Dudley syndrome. Many MCT isoforms are associated with hormone, lipid, and glucose homeostasis, and recent research has focused on their potential roles in disease, with MCTs representing promising novel therapeutic targets. This review will provide a summary of the current literature focusing on the characterization, function, and regulation of the MCT family isoforms and on their roles in drug disposition and in health and disease. SIGNIFICANCE STATEMENT: The 14-member solute carrier family 16 of monocarboxylate transporters (MCTs) plays a fundamental role in maintaining intracellular concentrations of a broad range of important endogenous molecules in health and disease. MCTs 1, 2, and 4 (L-lactate transporters) are overexpressed in cancers and represent a novel therapeutic target in cancer. Recent studies have highlighted the importance of MCTs in glucose, lipid, and hormone homeostasis, including MCT8 in thyroid hormone brain uptake, MCT12 in carnitine transport, and MCT11 in type 2 diabetes.
Collapse
Affiliation(s)
- Melanie A Felmlee
- Department of Pharmaceutics and Medicinal Chemistry, Thomas J. Long School of Pharmacy and Health Sciences, University of the Pacific, Stockton, California (M.A.F.); Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York (R.S.J., V.R.-C., M.E.M.); and Certara Strategic Consulting, Certara USA, Princeton, New Jersey (K.E.F.)
| | - Robert S Jones
- Department of Pharmaceutics and Medicinal Chemistry, Thomas J. Long School of Pharmacy and Health Sciences, University of the Pacific, Stockton, California (M.A.F.); Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York (R.S.J., V.R.-C., M.E.M.); and Certara Strategic Consulting, Certara USA, Princeton, New Jersey (K.E.F.)
| | - Vivian Rodriguez-Cruz
- Department of Pharmaceutics and Medicinal Chemistry, Thomas J. Long School of Pharmacy and Health Sciences, University of the Pacific, Stockton, California (M.A.F.); Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York (R.S.J., V.R.-C., M.E.M.); and Certara Strategic Consulting, Certara USA, Princeton, New Jersey (K.E.F.)
| | - Kristin E Follman
- Department of Pharmaceutics and Medicinal Chemistry, Thomas J. Long School of Pharmacy and Health Sciences, University of the Pacific, Stockton, California (M.A.F.); Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York (R.S.J., V.R.-C., M.E.M.); and Certara Strategic Consulting, Certara USA, Princeton, New Jersey (K.E.F.)
| | - Marilyn E Morris
- Department of Pharmaceutics and Medicinal Chemistry, Thomas J. Long School of Pharmacy and Health Sciences, University of the Pacific, Stockton, California (M.A.F.); Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York (R.S.J., V.R.-C., M.E.M.); and Certara Strategic Consulting, Certara USA, Princeton, New Jersey (K.E.F.)
| |
Collapse
|
45
|
Thiesen L, Belew ZM, Griem-Krey N, Pedersen SF, Crocoll C, Nour-Eldin HH, Wellendorph P. The γ-hydroxybutyric acid (GHB) analogue NCS-382 is a substrate for both monocarboxylate transporters subtypes 1 and 4. Eur J Pharm Sci 2020; 143:105203. [PMID: 31866563 DOI: 10.1016/j.ejps.2019.105203] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/11/2019] [Accepted: 12/19/2019] [Indexed: 11/20/2022]
Abstract
The small-molecule ligand (E)-2-(5-hydroxy-5,7,8,9-tetrahydro-6H-benzo[7]annulen-6-ylidene)acetic acid (NCS-382) is an analogue of γ-hydroxybutyric acid (GHB) and is widely used for probing the brain-specific GHB high-affinity binding sites. To reach these, brain uptake is imperative, and it is therefore important to understand the molecular mechanisms of NCS-382 transport in order to direct in vivo studies. In this study, we hypothesized that NCS-382 is a substrate for the monocarboxylate transporter subtype 1 (MCT1) which is known to mediate blood-brain barrier (BBB) permeation of GHB. For this purpose, we investigated NCS-382 uptake by MCT subtypes endogenously expressed in tsA201 and MDA-MB-231 cell lines in assays of radioligand-based competition and fluorescence-based intracellular pH measurements. To further verify the results, we measured NCS-382 uptake by means of mass spectrometry in Xenopus laevis oocytes heterologously expressing MCT subtypes. As expected, we found that NCS-382 is a substrate for MCT1 with half-maximal effective concentrations in the low millimolar range. Surprisingly, NCS-382 also showed substrate activity at MCT4 as well as uptake in water-injected oocytes, suggesting a component of passive diffusion. In conclusion, transport of NCS-382 across membranes differs from GHB as it also involves MCT4 and/or passive diffusion. This should be taken into consideration when designing pharmacological studies with this compound and its closely related analogues. The combination of MCT assays used here exemplifies a setup that may be suitable for a reliable characterization of MCT ligands in general.
Collapse
Affiliation(s)
- Louise Thiesen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Zeinu Mussa Belew
- DynaMo Center, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg C, Denmark
| | - Nane Griem-Krey
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Stine Falsig Pedersen
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen Ø, Denmark
| | - Christoph Crocoll
- DynaMo Center, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg C, Denmark
| | - Hussam Hassan Nour-Eldin
- DynaMo Center, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg C, Denmark
| | - Petrine Wellendorph
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
46
|
Yamaguchi A, Futagi Y, Kobayashi M, Narumi K, Furugen A, Iseki K. Extracellular lysine 38 plays a crucial role in pH-dependent transport via human monocarboxylate transporter 1. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183068. [DOI: 10.1016/j.bbamem.2019.183068] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 09/03/2019] [Accepted: 09/11/2019] [Indexed: 02/08/2023]
|
47
|
Targeting uptake transporters for cancer imaging and treatment. Acta Pharm Sin B 2020; 10:79-90. [PMID: 31993308 PMCID: PMC6977162 DOI: 10.1016/j.apsb.2019.12.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/27/2019] [Accepted: 11/17/2019] [Indexed: 12/11/2022] Open
Abstract
Cancer cells reprogram their gene expression to promote growth, survival, proliferation, and invasiveness. The unique expression of certain uptake transporters in cancers and their innate function to concentrate small molecular substrates in cells make them ideal targets for selective delivering imaging and therapeutic agents into cancer cells. In this review, we focus on several solute carrier (SLC) transporters known to be involved in transporting clinically used radiopharmaceutical agents into cancer cells, including the sodium/iodine symporter (NIS), norepinephrine transporter (NET), glucose transporter 1 (GLUT1), and monocarboxylate transporters (MCTs). The molecular and functional characteristics of these transporters are reviewed with special emphasis on their specific expressions in cancers and interaction with imaging or theranostic agents [e.g., I-123, I-131, 123I-iobenguane (mIBG), 18F-fluorodeoxyglucose (18F-FDG) and 13C pyruvate]. Current clinical applications and research areas of these transporters in cancer diagnosis and treatment are discussed. Finally, we offer our views on emerging opportunities and challenges in targeting transporters for cancer imaging and treatment. By analyzing the few clinically successful examples, we hope much interest can be garnered in cancer research towards uptake transporters and their potential applications in cancer diagnosis and treatment.
Collapse
Key Words
- CT, computed tomography
- Cancer imaging
- DDI, drug–drug interaction
- DTC, differentiated thyroid cancer
- FDA, U.S. Food and Drug Administrations
- FDG, fluorodeoxyglucose
- GLUT, glucose transporter
- IAEA, the International Atomic Energy Agency
- LACC, locally advanced cervical cancer
- LAT, large amino acid transporter
- MCT, monocarboxylate transporter
- MRI, magnetic resonance imaging
- NE, norepinephrine
- NET, norepinephrine transporter
- NIS, sodium/iodine symporter
- Neuroblastoma
- OCT, organic cation transporter
- PET, positron emission tomography
- PHEO, pheochromocytoma
- RA, retinoic acid
- RET, rearranged during transfection
- SLC, solute carrier
- SPECT, single-photon emission computed tomography
- SUV, standardized uptake value
- TFB, tetrafluoroborate
- TSH, thyroid stimulating hormones
- Thyroid cancer
- Uptake transporter
- Warburg effect
- mIBG
- mIBG, iobenguane/meta-iodobenzylguanidine
- vHL, von Hippel-Lindau
Collapse
|
48
|
Becker HM. Carbonic anhydrase IX and acid transport in cancer. Br J Cancer 2020; 122:157-167. [PMID: 31819195 PMCID: PMC7051959 DOI: 10.1038/s41416-019-0642-z] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/29/2019] [Accepted: 10/22/2019] [Indexed: 02/07/2023] Open
Abstract
Alterations in tumour metabolism and acid/base regulation result in the formation of a hostile environment, which fosters tumour growth and metastasis. Acid/base homoeostasis in cancer cells is governed by the concerted interplay between carbonic anhydrases (CAs) and various transport proteins, which either mediate proton extrusion or the shuttling of acid/base equivalents, such as bicarbonate and lactate, across the cell membrane. Accumulating evidence suggests that some of these transporters interact both directly and functionally with CAIX to form a protein complex coined the 'transport metabolon'. Transport metabolons formed between bicarbonate transporters and CAIX require CA catalytic activity and have a function in cancer cell migration and invasion. Another type of transport metabolon is formed by CAIX and monocarboxylate transporters. In this complex, CAIX functions as a proton antenna for the transporter, which drives the export of lactate and protons from the cell. Since CAIX is almost exclusively expressed in cancer cells, these transport metabolons might serve as promising targets to interfere with tumour pH regulation and energy metabolism. This review provides an overview of the current state of research on the function of CAIX in tumour acid/base transport and discusses how CAIX transport metabolons could be exploited in modern cancer therapy.
Collapse
Affiliation(s)
- Holger M Becker
- Institute of Physiological Chemistry, University of Veterinary Medicine Hannover, D-30559, Hannover, Germany.
| |
Collapse
|
49
|
Deitmer JW, Theparambil SM, Ruminot I, Noor SI, Becker HM. Energy Dynamics in the Brain: Contributions of Astrocytes to Metabolism and pH Homeostasis. Front Neurosci 2019; 13:1301. [PMID: 31866811 PMCID: PMC6909239 DOI: 10.3389/fnins.2019.01301] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 11/20/2019] [Indexed: 12/17/2022] Open
Abstract
Regulation of metabolism is complex and involves enzymes and membrane transporters, which form networks to support energy dynamics. Lactate, as a metabolic intermediate from glucose or glycogen breakdown, appears to play a major role as additional energetic substrate, which is shuttled between glycolytic and oxidative cells, both under hypoxic and normoxic conditions. Transport of lactate across the cell membrane is mediated by monocarboxylate transporters (MCTs) in cotransport with H+, which is a substrate, a signal and a modulator of metabolic processes. MCTs form a “transport metabolon” with carbonic anhydrases (CAs), which not only provide a rapid equilibrium between CO2, HCO3– and H+, but, in addition, enhances lactate transport, as found in Xenopus oocytes, employed as heterologous expression system, as well as in astrocytes and cancer cells. Functional interactions between different CA isoforms and MCTs have been found to be isoform-specific, independent of the enzyme’s catalytic activity, and they require physical interaction between the proteins. CAs mediate between different states of metabolic acidosis, induced by glycolysis and oxidative phosphorylation, and play a relay function in coupling pH regulation and metabolism. In the brain, metabolic processes in astrocytes appear to be linked to bicarbonate transport and to neuronal activity. Here, we focus on physiological processes of energy dynamics in astrocytes as well as on the transfer of energetic substrates to neurons.
Collapse
Affiliation(s)
- Joachim W Deitmer
- Department of Biology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Shefeeq M Theparambil
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | | | - Sina I Noor
- Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
| | - Holger M Becker
- Institute of Physiological Chemistry, University of Veterinary Medicine Hanover, Hanover, Germany
| |
Collapse
|
50
|
CAIX forms a transport metabolon with monocarboxylate transporters in human breast cancer cells. Oncogene 2019; 39:1710-1723. [PMID: 31723238 DOI: 10.1038/s41388-019-1098-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 10/28/2019] [Accepted: 11/04/2019] [Indexed: 02/06/2023]
Abstract
Tumor cells rely on glycolysis to meet their elevated demand for energy. Thereby they produce significant amounts of lactate and protons, which are exported via monocarboxylate transporters (MCTs), supporting the formation of an acidic microenvironment. The present study demonstrates that carbonic anhydrase IX (CAIX), one of the major acid/base regulators in cancer cells, forms a protein complex with MCT1 and MCT4 in tissue samples from human breast cancer patients, but not healthy breast tissue. Formation of this transport metabolon requires binding of CAIX to the Ig1 domain of the MCT1/4 chaperon CD147 and is required for CAIX-mediated facilitation of MCT1/4 activity. Application of an antibody, directed against the CD147-Ig1 domain, displaces CAIX from the transporter and suppresses CAIX-mediated facilitation of proton-coupled lactate transport. In cancer cells, this "metabolon disruption" results in a decrease in lactate transport, reduced glycolysis, and ultimately reduced cell proliferation. Taken together, the study shows that carbonic anhydrases form transport metabolons with acid/base transporters in human tumor tissue and that these interactions can be exploited to interfere with tumor metabolism and proliferation.
Collapse
|