1
|
Cai W, Chen L, Zhang M, Ouyang J, Wu P, Tong J, Gao G, Yan S, Tao F, Huang K. Association Between Maternal Thyroid Hormone Concentration with Normal Thyroid Function During Pregnancy and Preschoolers' Glycolipid Metabolism: A Birth Cohort Study. Thyroid 2025; 35:444-456. [PMID: 40053446 DOI: 10.1089/thy.2024.0334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/09/2025]
Abstract
Background: Thyroid hormones (THs) are essential endocrine hormones that play key roles in individual's growth and development. There is limited knowledge about the association between maternal TH concentrations variations with normal thyroid function during pregnancy and offspring's glycolipid metabolism. Methods: A total of 1130 mother-child pairs from the Ma'anshan birth cohort were included in this prospective study. Maternal TH levels and thyroid peroxidase antibodies were measured in the 1st, 2nd, and 3rd trimesters of pregnancy during the childhood follow-up period. Fasting venous blood was collected from children at 4-6 years of age and glycolipid metabolic indicators were assayed. Analyses were performed using Binary logistic regression models, linear regression models, and Generalized linear regression model. Results: Maternal TH trajectories were fitted via latent category growth models. During the 1st trimester of pregnancy, maternal T3 and free thyroxine (fT4) levels were positively associated with children's blood glucose levels (β = 0.007 [CI 0.028-0.181]; β = 0.022 [CI 0.004-0.040]), whereas high levels of fT4 may be associated with decreased risk of children's hypercholesterolemia (OR = 0.870 [CI 0.768-0.986]). Maternal T4 concentrations during the 3rd trimester of pregnancy were negatively associated with children's cholesterol levels (β = -0.002 [CI -0.003-0.00]). High maternal TH levels were associated with high fasting glucose level and low low-density lipoprotein concentrations in children. Conclusions: Maternal TH dynamic variations may be associated with glycolipid metabolism in preschoolers, even when women do not have clinically diagnosed thyroid disorders. The exact associations between maternal THs in specific trimesters of pregnancy under normal thyroid function conditions and glycolipid metabolism in offspring require further investigation.
Collapse
Affiliation(s)
- Wenjin Cai
- School of Public Health, Anhui Medical University, Hefei, China
- Ministry of Education of the People's Republic of China, Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, China
- Anhui Provincial Key Laboratory of Environment and Population Health Across the Life Courset, Hefei, China
| | - Lu Chen
- School of Public Health, Anhui Medical University, Hefei, China
- Ministry of Education of the People's Republic of China, Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, China
- Anhui Provincial Key Laboratory of Environment and Population Health Across the Life Courset, Hefei, China
| | - Manyu Zhang
- School of Public Health, Anhui Medical University, Hefei, China
- Ministry of Education of the People's Republic of China, Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, China
- Anhui Provincial Key Laboratory of Environment and Population Health Across the Life Courset, Hefei, China
| | - Jiajun Ouyang
- School of Public Health, Anhui Medical University, Hefei, China
- Ministry of Education of the People's Republic of China, Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, China
- Anhui Provincial Key Laboratory of Environment and Population Health Across the Life Courset, Hefei, China
| | - Penggui Wu
- School of Public Health, Anhui Medical University, Hefei, China
- Ministry of Education of the People's Republic of China, Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, China
- Anhui Provincial Key Laboratory of Environment and Population Health Across the Life Courset, Hefei, China
| | - Juan Tong
- School of Public Health, Anhui Medical University, Hefei, China
- Ministry of Education of the People's Republic of China, Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, China
- Anhui Provincial Key Laboratory of Environment and Population Health Across the Life Courset, Hefei, China
| | - Guopeng Gao
- Maternal and Child Health Center in Ma'anshan, Ma'anshan, China
| | - Shuangqin Yan
- Maternal and Child Health Center in Ma'anshan, Ma'anshan, China
| | - Fangbiao Tao
- School of Public Health, Anhui Medical University, Hefei, China
- Ministry of Education of the People's Republic of China, Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, China
- Anhui Provincial Key Laboratory of Environment and Population Health Across the Life Courset, Hefei, China
| | - Kun Huang
- School of Public Health, Anhui Medical University, Hefei, China
- Ministry of Education of the People's Republic of China, Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, China
- Anhui Provincial Key Laboratory of Environment and Population Health Across the Life Courset, Hefei, China
| |
Collapse
|
2
|
Clemente-Suárez VJ, Martín-Rodríguez A, Redondo-Flórez L, Villanueva-Tobaldo CV, Yáñez-Sepúlveda R, Tornero-Aguilera JF. Epithelial Transport in Disease: An Overview of Pathophysiology and Treatment. Cells 2023; 12:2455. [PMID: 37887299 PMCID: PMC10605148 DOI: 10.3390/cells12202455] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 10/28/2023] Open
Abstract
Epithelial transport is a multifaceted process crucial for maintaining normal physiological functions in the human body. This comprehensive review delves into the pathophysiological mechanisms underlying epithelial transport and its significance in disease pathogenesis. Beginning with an introduction to epithelial transport, it covers various forms, including ion, water, and nutrient transfer, followed by an exploration of the processes governing ion transport and hormonal regulation. The review then addresses genetic disorders, like cystic fibrosis and Bartter syndrome, that affect epithelial transport. Furthermore, it investigates the involvement of epithelial transport in the pathophysiology of conditions such as diarrhea, hypertension, and edema. Finally, the review analyzes the impact of renal disease on epithelial transport and highlights the potential for future research to uncover novel therapeutic interventions for conditions like cystic fibrosis, hypertension, and renal failure.
Collapse
Affiliation(s)
- Vicente Javier Clemente-Suárez
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain;
- Group de Investigación en Cultura, Educación y Sociedad, Universidad de la Costa, Barranquilla 080002, Colombia
| | | | - Laura Redondo-Flórez
- Department of Health Sciences, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, C/Tajo s/n, Villaviciosa de Odón, 28670 Madrid, Spain; (L.R.-F.); (C.V.V.-T.)
| | - Carlota Valeria Villanueva-Tobaldo
- Department of Health Sciences, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, C/Tajo s/n, Villaviciosa de Odón, 28670 Madrid, Spain; (L.R.-F.); (C.V.V.-T.)
| | - Rodrigo Yáñez-Sepúlveda
- Faculty of Education and Social Sciences, Universidad Andres Bello, Viña del Mar 2520000, Chile;
| | | |
Collapse
|
3
|
Lu K, Liang XF, Liu T, Cai W, Zhuang W, Zhang Y, Bibi A. DNA methylation of pck1 might contribute to the programming effects of early high-carbohydrate diets feeding to the glucose metabolism across two generations in zebrafish (Danio rerio). FISH PHYSIOLOGY AND BIOCHEMISTRY 2022; 48:1619-1633. [PMID: 36481836 DOI: 10.1007/s10695-022-01149-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 11/19/2022] [Indexed: 06/17/2023]
Abstract
The purpose of this study is to assess the effects of early high-carbohydrate stimulus on glucose metabolism in zebrafish (Danio rerio) over two generations and explore the mechanisms that explain those nutritional programming effects via epigenetic modifications. The larvae were delivered a high-carbohydrate diet (53.66%) that was used as an early nutritional stimulus from the first feeding to the end of the yolk sac (FF) and 5 days after yolk-sac exhaustion (YE). The larvae (F0) and their offspring (F1) were then both fed the control diet (22.69%) until adulthood (15 weeks), and they were challenged with a high-carbohydrate diet (35.36%) at the 16th week. The results indicated that early stimulus immediately raised the mRNA levels of genes involved in glycolysis and gluconeogenesis. At the end of F0 challenge, both treatment groups decreased the plasma glucose levels, increased the expression levels of glucokinase (gck), and inhibited the mRNA during gluconeogenesis. When challenged in F1, the glucose levels were lower in FF (F1), and the mRNA levels of phosphoenolpyruvate carboxykinase 1 (pck1) were decreased in FF (F1) and YE (F1). Besides, in both experimental groups (F0 and F1), the CpG island of pck1 maintained lower levels of hypermethylated expression from F0 adult, 24 h post-fertilization embryo, to F1 adult. In conclusion, these results indicated that an early high-carbohydrate stimulus could significantly reprogram glucose metabolism in adult zebrafish, that those modifications could be partially transmitted to the next generation, and that the DNA methylation of pck1 might work as a stable epigenetic marker to contribute to those processes.
Collapse
Affiliation(s)
- Ke Lu
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan, 430070, Hubei Province, China
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China
| | - Xu-Fang Liang
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan, 430070, Hubei Province, China.
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China.
| | - Tong Liu
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan, 430070, Hubei Province, China
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China
| | - Wenjing Cai
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan, 430070, Hubei Province, China
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China
| | - Wuyuan Zhuang
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan, 430070, Hubei Province, China
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China
| | - Yanpeng Zhang
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan, 430070, Hubei Province, China
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China
| | - Asima Bibi
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan, 430070, Hubei Province, China
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China
| |
Collapse
|
4
|
Callet T, Li H, Surget A, Terrier F, Sandres F, Lanuque A, Panserat S, Marandel L. No adverse effect of a maternal high carbohydrate diet on their offspring, in rainbow trout ( Oncorhynchus mykiss). PeerJ 2021; 9:e12102. [PMID: 34589301 PMCID: PMC8434805 DOI: 10.7717/peerj.12102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 08/11/2021] [Indexed: 01/09/2023] Open
Abstract
In order to develop a sustainable salmonid aquaculture, it is essential to continue to reduce the use of the protein-rich fishmeal. One promising solution to do so is the use of plant-derived carbohydrates in diet destined to broodstock. However, in mammals, the reduction of protein content (replaced by carbohydrates) in parental diet is known to have strong adverse effects on offspring phenotypes and metabolism. For the first time, the effect of a paternal and a maternal high carbohydrate-low protein diet was assessed on progeny at long term in the rainbow trout. A 30% protein diminution in both males and females broodstock diet during 10 month and 5 months, respectively, did not trigger adverse consequences on their offspring. At the molecular level, offspring transcriptomes were not significantly altered, emphasizing no effect on metabolism. Tenuous differences in the biochemical composition of the liver and the viscera were observed. The recorded effects remained in the normal range of value and accordingly offspring growth were not negatively affected over the long term. Overall, we demonstrated here that a 30% protein diminution during gametogenesis is feasible, confirming the possibility to increase the proportion of plant-derived carbohydrates in female broodstock diets to replace fishmeal proteins.
Collapse
Affiliation(s)
- Therese Callet
- Institut National de la Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Saint-Pée-sur-Nivelle, France
| | - Hongyan Li
- Institut National de la Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Saint-Pée-sur-Nivelle, France.,State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Anne Surget
- Institut National de la Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Saint-Pée-sur-Nivelle, France
| | - Frederic Terrier
- Institut National de la Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Saint-Pée-sur-Nivelle, France
| | - Franck Sandres
- Institut National de la Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Saint-Pée-sur-Nivelle, France
| | - Anthony Lanuque
- Institut National de la Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Saint-Pée-sur-Nivelle, France
| | - Stephane Panserat
- Institut National de la Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Saint-Pée-sur-Nivelle, France
| | - Lucie Marandel
- Institut National de la Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Saint-Pée-sur-Nivelle, France
| |
Collapse
|
5
|
Long JM, Trubenbach LA, Pryor JH, Long CR, Wickersham TA, Sawyer JE, Satterfield MC. Maternal nutrient restriction alters endocrine pancreas development in fetal heifers. Domest Anim Endocrinol 2021; 74:106580. [PMID: 33160154 DOI: 10.1016/j.domaniend.2020.106580] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/24/2020] [Accepted: 10/02/2020] [Indexed: 01/21/2023]
Abstract
Maternal nutrient restriction during pregnancy alters fetal programming, which modifies the growth and health of the offspring in postnatal life. In cattle, nutrient restriction during pregnancy can be a result of environmental or economic factors, but little is known about how it alters the physiology of the fetus and affects future reproductive or growth efficiency. This study used female monozygotic twins, produced through in vitro fertilization and embryo splitting, to determine the effect of moderate maternal nutrient restriction on fetal development. Recipient Angus cross heifers pregnant with one twin were fed a diet meeting 100% National Research Council (NRC) total energy requirements (n = 4; control), whereas recipient heifers pregnant with the second twin were fed at 70% of NRC total energy requirements (n = 4; restricted) from gestational day (GD) 158 to GD 265 in Calan gate feeders. Recipient heifers were killed at GD 265. Change in maternal metabolic body weight was greater from zero in restricted heifers than controls (P < 0.05); restricted heifers lost weight during the nutrient restriction period. There was no difference in last rib back fat or rib eye area between groups (P > 0.10). There was no difference in fetal weight, uterine weight, or total placentome weight between groups (P > 0.10). The pancreas weight was reduced in restricted fetuses compared with control fetuses (P < 0.01), but there were no other differences in fetal organ weights (P > 0.10). Plasma insulin concentrations were reduced in restricted fetuses compared with controls (P < 0.01), but there was no effect of maternal diet on plasma glucose or glucagon concentrations in the fetus (P > 0.10). Histological analyses of the fetal pancreas revealed no differences in endocrine cell number or localization. Results indicate that a modest late gestation nutritional restriction impairs development of the fetal pancreas in the cow. Additional research will be needed to determine if these developmental changes lead to altered glucose and insulin homeostasis in the adult.
Collapse
Affiliation(s)
- J M Long
- Department of Animal Science, Texas A&M University, 2471 TAMUS, College Station, TX 77843, USA
| | - L A Trubenbach
- Department of Animal Science, Texas A&M University, 2471 TAMUS, College Station, TX 77843, USA
| | - J H Pryor
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, USA
| | - C R Long
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, USA
| | - T A Wickersham
- Department of Animal Science, Texas A&M University, 2471 TAMUS, College Station, TX 77843, USA
| | - J E Sawyer
- King Ranch® Institute for Ranch Management, Texas A&M University - Kingsville, Kingsville, TX 78363, USA
| | - M C Satterfield
- Department of Animal Science, Texas A&M University, 2471 TAMUS, College Station, TX 77843, USA.
| |
Collapse
|
6
|
Katsuragi S, Okamura T, Kokubo Y, Watanabe M, Higashiyama A, Ikeda T, Miyamoto Y. Relationship between thin physique at 6 years and metabolic disease risks in middle-aged Japanese women: The Suita study. J Obstet Gynaecol Res 2020; 46:517-526. [PMID: 31960522 DOI: 10.1111/jog.14206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 12/31/2019] [Indexed: 11/30/2022]
Abstract
AIM We previously reported that female babies born small developed cardiovascular risks in middle age. The present study was conducted using the same cohort to examine the relationship between physique at 6 years and the metabolic disease risk in middle age. METHODS Data collected from 721 women aged 41-69 years who underwent a medical examination at a single institution between 2007 and 2008 were retrospectively examined. We collected data from medical examinations and a questionnaire on physique (thin, normal, and fat) at 6 years. The relationship between birthweight and physique at 6 years was investigated. RESULTS Among females who were born small (< 2500 g), 80%, 16%, and 4% became thin, normal, or fat, respectively, by 6 years. Physique at 6 years had a negative relationship with future triglyceride, fasting glucose, HbA1C , insulin, and homeostasis model assessment of insulin resistance (HOMA-IR) levels and a positive relationship with high-density lipoprotein cholesterol levels. CONCLUSION Although our findings may be specific to the study population, physique at 6 years had a negative relationship with the metabolic disease risk in middle-aged Japanese women. Insulin and MOMA-IR levels negatively correlated with physique at 6 years, and development from low birthweight infants to childhood obesity was rare in this cohort.
Collapse
Affiliation(s)
- Shinji Katsuragi
- Department of Obstetrics and Gynecology, Sakakibara Heart Institute, Fuchu, Japan.,Department of Perinatology and Gynecology, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Tomonori Okamura
- Department of Preventive Medicine and Public Health, Keio University, Tokyo, Japan
| | - Yoshihiro Kokubo
- Department of Preventive Cardiology, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Makoto Watanabe
- Department of Preventive Cardiology, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Aya Higashiyama
- Department of Preventive Cardiology, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Tomoaki Ikeda
- Department of Obstetrics and Gynecology, Mie University, Tsu, Japan
| | - Yoshihiro Miyamoto
- Department of Preventive Cardiology, National Cerebral and Cardiovascular Center, Osaka, Japan
| |
Collapse
|
7
|
Abstract
‘Life is a country that the old have seen, and lived in. Those who have to travel through it can only learn the way from them.’Joseph Joubert, 1842This quotation is perhaps especially appropriate when considering the extensive contributions made by Professor McCance and Dr Widdowson to the field of early nutrition and later development. A detailed knowledge of their work in this area is of undoubted value both in interpreting many recent findings and in the design of new investigations. The first part of this paper presents a brief overview of some of their most significant studies. Their implications at both the fundamental and applied levels are then discussed, especially in relation to the role of nutrition in health and disease. Finally, potential mechanisms by which development may be modified by early nutrition are considered.
Collapse
|
8
|
Tipton JE, Ricks RE, LeMaster CT, Long NM. The effects of late gestation nutrient restriction of dams on beef heifer intake, metabolites and hormones during an ad libitum feeding trial. J Anim Physiol Anim Nutr (Berl) 2018; 102:e877-e884. [DOI: 10.1111/jpn.12849] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 11/14/2017] [Indexed: 01/03/2023]
Affiliation(s)
- J. E. Tipton
- Department of Animal and Veterinary Sciences; Clemson University; Clemson SC USA
| | - R. E. Ricks
- Department of Animal and Veterinary Sciences; Clemson University; Clemson SC USA
| | - C. T. LeMaster
- Department of Animal and Veterinary Sciences; Clemson University; Clemson SC USA
| | - N. M. Long
- Department of Animal and Veterinary Sciences; Clemson University; Clemson SC USA
| |
Collapse
|
9
|
Abstract
Developmental programming resulting from maternal malnutrition can lead to an increased risk of metabolic disorders such as obesity, insulin resistance, type 2 diabetes and cardiovascular disorders in the offspring in later life. Furthermore, many conditions linked with developmental programming are also known to be associated with the aging process. This review summarizes the available evidence about the molecular mechanisms underlying these effects, with the potential to identify novel areas of therapeutic intervention. This could also lead to the discovery of new treatment options for improved patient outcomes.
Collapse
|
10
|
Sosa-Larios TC, A Miliar-Garcia A, Reyes-Castro LA, Morimoto S, Jaramillo-Flores ME. Alterations in lipid metabolism due to a protein-restricted diet in rats during gestation and/or lactation. Food Funct 2017. [PMID: 29099131 DOI: 10.1039/c7fo01513e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Perinatal malnutrition affects not only fetal and neonatal growth, but also the health of offspring in adulthood, as suggested by the concept of metabolic programming. The impact of maternal protein malnutrition on the metabolism of offspring is demonstrated with the current data. One group of pregnant/lactating female rats was fed with an isocaloric diet having normal protein content. Three other groups were provided 50% of this protein level during pregnancy and/or lactation. The growth and metabolic state of the offspring was monitored. The expression of genes regulating lipid metabolism was determined, including SREBP-1c and SIRT-1 in liver and retroperitoneal adipose tissue. Blood cholesterol and triglycerides were higher in the adult offspring (at 110 days of age) fed a protein-restricted diet than in the adult offspring fed a normal diet. Protein restriction likely leads to inadequate detection of glucose levels, as suggested by the reduced expression of the gene for GCK, the sensor of glucose in the liver. The effects of a protein-restricted diet were highly dependent on the window in which this limitation occurred. There was a more adverse effect when the rats underwent protein restriction during gestation than lactation, leading to lower body weight and alterations in lipid metabolism in adult offspring.
Collapse
Affiliation(s)
- T C Sosa-Larios
- Departamento de Ing, Bioquímica, Escuela Nacional de Ciencias Biológica, Instituto Politécnico Nacional, Ciudad de México 07738, México.
| | - A A Miliar-Garcia
- Departamento de Ing, Bioquímica, Escuela Nacional de Ciencias Biológica, Instituto Politécnico Nacional, Ciudad de México 07738, México.
| | - L A Reyes-Castro
- Departamento de Ing, Bioquímica, Escuela Nacional de Ciencias Biológica, Instituto Politécnico Nacional, Ciudad de México 07738, México.
| | - S Morimoto
- Departamento de Ing, Bioquímica, Escuela Nacional de Ciencias Biológica, Instituto Politécnico Nacional, Ciudad de México 07738, México.
| | - M E Jaramillo-Flores
- Departamento de Ing, Bioquímica, Escuela Nacional de Ciencias Biológica, Instituto Politécnico Nacional, Ciudad de México 07738, México.
| |
Collapse
|
11
|
Confortim HD, Jerônimo LC, Centenaro LA, Pinheiro PFF, Matheus SMM, Torrejais MM. Maternal protein restriction during pregnancy and lactation affects the development of muscle fibers and neuromuscular junctions in rats. Muscle Nerve 2016; 55:109-115. [PMID: 27171684 DOI: 10.1002/mus.25187] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 05/02/2016] [Accepted: 05/11/2016] [Indexed: 11/08/2022]
Abstract
INTRODUCTION A balanced maternal diet is a determining factor in normal fetal development. The objective of this study was to evaluate the effects of maternal protein restriction during pregnancy and lactation on muscle fiber and neuromuscular junction (NMJ) morphology of rat offspring at 21 days of age. METHODS Wistar rats were divided into a control group (CG), offspring of mothers fed a normal protein diet (17%), and a restricted group (RG), offspring of mothers fed a low-protein diet (6%). After a period of lactation, the animals were euthanized, and soleus muscles were obtained from pups for analysis. RESULTS The soleus muscles of the RG exhibited an increase of 133% in the number of fibers and of 79% in the amount of nuclei. Moreover, the number of NMJs was lower in the restricted group than in the CG. CONCLUSIONS Maternal protein restriction alters the normal development of the neuromuscular system. Muscle Nerve 55: 109-115, 2017.
Collapse
Affiliation(s)
- Heloisa Deola Confortim
- Programa de Pós-Graduação em Biociências e Saúde, Universidade Estadual do Oeste do Paraná, Cascavel, Paraná, Brazil
| | - Leslie Cazetta Jerônimo
- Programa de Pós-Graduação em Biociências e Saúde, Universidade Estadual do Oeste do Paraná, Cascavel, Paraná, Brazil
| | - Lígia Aline Centenaro
- Centro de Ciências Médicas e Farmacêuticas, Universidade Estadual do Oeste do Paraná, Cascavel, Paraná, Brazil
| | - Patrícia Fernanda Felipe Pinheiro
- Departamento de Anatomia, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho, Botucatu, São Paulo, Brazil
| | - Selma Maria Michelin Matheus
- Departamento de Anatomia, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho, Botucatu, São Paulo, Brazil
| | - Marcia Miranda Torrejais
- Centro de Ciências Médicas e Farmacêuticas, Universidade Estadual do Oeste do Paraná, Cascavel, Paraná, Brazil
| |
Collapse
|
12
|
Abstract
The Developmental Origins of Health and Disease (DOHaD) hypothesis proposes that several non-communicable diseases have their origins in prenatal life and in early childhood. This is believed to work through programming, an insult, taking place at a sensitive period of development, may have lifelong consequences, increasing and programming disease risk later in life. The Helsinki Birth Cohort Study (HBCS) has been focusing upon the importance of factors active during periods in early life and their influence on later health in 20,431 people born 1924-44. This review will focus upon findings from the HBCS over the past 20 years. Early growth patterns associated with coronary heart disease, type 2 diabetes and other health outcomes are described. The long-term health impact of maternal adiposity is also discussed. Potential underlying mechanisms explaining the associations are discussed including epigenetic factors. Key messages Several non-communicable diseases - including coronary heart disease and type 2 diabetes - have their origins in early life. Early life programming during sensitive periods of development may permanently program future health and disease risk. Optimizing the health and lifestyle of women of reproductive age will have positive health consequences for their offspring.
Collapse
Affiliation(s)
- Johan G Eriksson
- a Department of Chronic Disease Prevention , National Institute for Health and Welfare , Helsinki , Finland.,b Folkhälsan Research Center , Helsinki , Finland.,c Department of General Practice and Primary Health Care, University of Helsinki and Helsinki University Hospital , Helsinki , Finland
| |
Collapse
|
13
|
Abstract
The observation that low birth weight is associated with cardiovascular disease and its risk factors has formed the basis for the ‘developmental origins' hypothesis. This hypothesis suggests that the operation of adverse influences during intrauterine life leads to permanent alterations in structure and physiology of the adult phenotype which predispose to a range of common adult diseases. The process is known as developmental plasticity or programming and is strongly supported by studies in experimental animals. Recent evidence suggests that the same processes may affect the development of the immune system and play a part in the pathogenesis of autoimmune disease. Animal studies show that the intrauterine environment has powerful and long-lasting effects on many aspects of immune function. The corresponding human evidence, though preliminary, suggests that birth weight or other markers of the early environment are associated with a range of autoimmune diseases.
Collapse
Affiliation(s)
- D I W Phillips
- MRC Resource Centre, Southampton General Hospital, Southampton, UK.
| |
Collapse
|
14
|
Abstract
In 2012 there were 135,943 infants of multiple pregnancies born in the United States, nearly a 2-fold increase since 1980, with twins accounting for 96% of all multiple births. To date, most perinatal morbidities associated with multiple births have proven resistant to technological or pharmaceutical interventions. Maternal nutrition can have a profound effect on the course and outcome of multiple pregnancy, with the goal of achieving optimal intrauterine growth and birthweights, and minimizing prenatal and perinatal complications for the mother and her children.
Collapse
Affiliation(s)
- Barbara Luke
- Michigan State University College of Human Medicine, East Lansing, Michigan
| |
Collapse
|
15
|
Sutton EF, Gilmore LA, Dunger DB, Heijmans BT, Hivert MF, Ling C, Martinez JA, Ozanne SE, Simmons RA, Szyf M, Waterland RA, Redman LM, Ravussin E. Developmental programming: State-of-the-science and future directions-Summary from a Pennington Biomedical symposium. Obesity (Silver Spring) 2016; 24:1018-26. [PMID: 27037645 PMCID: PMC4846483 DOI: 10.1002/oby.21487] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 01/20/2016] [Accepted: 02/02/2016] [Indexed: 12/15/2022]
Abstract
OBJECTIVE On December 8-9, 2014, the Pennington Biomedical Research Center convened a scientific symposium to review the state-of-the-science and future directions for the study of developmental programming of obesity and chronic disease. The objectives of the symposium were to discuss: (i) past and current scientific advances in animal models, population-based cohort studies, and human clinical trials, (ii) the state-of-the-science of epigenetic-based research, and (iii) considerations for future studies. RESULTS This symposium provided a comprehensive assessment of the state of the scientific field and identified research gaps and opportunities for future research in order to understand the mechanisms contributing to the developmental programming of health and disease. CONCLUSIONS Identifying the mechanisms which cause or contribute to developmental programming of future generations will be invaluable to the scientific and medical community. The ability to intervene during critical periods of prenatal and early postnatal life to promote lifelong health is the ultimate goal. Considerations for future research including the use of animal models, the study design in human cohorts with considerations about the timing of the intrauterine exposure, and the resulting tissue-specific epigenetic signature were extensively discussed and are presented in this meeting summary.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Robert A. Waterland
- USDA/ARS Children’s Nutrition Research Center, Baylor College of Medicine, USA
| | | | | |
Collapse
|
16
|
Espín S, Ruiz S, Sánchez-Virosta P, Salminen JP, Eeva T. Effects of experimental calcium availability and anthropogenic metal pollution on eggshell characteristics and yolk carotenoid and vitamin levels in two passerine birds. CHEMOSPHERE 2016; 151:189-201. [PMID: 26943740 DOI: 10.1016/j.chemosphere.2016.02.074] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 02/14/2016] [Accepted: 02/16/2016] [Indexed: 06/05/2023]
Abstract
The maternal investment into egg quality depends on the condition of the female, the quality of the mate, and the quality of the environment. In that sense, availability of nutrients and exposure to pollutants are essential parameters to consider. The main aim of this study is to assess the effects of calcium (Ca) availability and anthropogenic metal pollution on early-stage reproduction in two passerine species, great tits (Parus major) and pied flycatchers (Ficedula hypoleuca), inhabiting a Ca-poor and metal-polluted area in SW Finland. Both species were able to obtain sufficient Ca for eggshell formation, and metal pollution was below the level of having negative effects in the egg size and eggshell characteristics. However, metal polluted environment negatively affected yolk lutein and vitamin D3 levels in both species, probably because of a lower access to carotenoid-rich diet and higher metal interference with vitamin D3 metabolism. The higher levels of vitamin D3 in yolks in the unpolluted zone could also be due to upregulated D3 levels as a response to the lower natural Ca availability. Yolk carotenoids and vitamin D3 were positively associated with nestling growth and size, supporting their importance for the appropriate chick development. The interspecific differences in yolk nutrient concentrations possibly reflect the different growth rate of these species. Pied flycatchers are likely adapted to low Ca availability through an efficient vitamin D3 metabolism, but their Ca intake could be close to a deficient level.
Collapse
Affiliation(s)
- Silvia Espín
- Section of Ecology, Department of Biology, University of Turku, 20014, Turku, Finland.
| | - Sandra Ruiz
- Section of Ecology, Department of Biology, University of Turku, 20014, Turku, Finland.
| | - Pablo Sánchez-Virosta
- Section of Ecology, Department of Biology, University of Turku, 20014, Turku, Finland.
| | - Juha-Pekka Salminen
- Laboratory of Organic Chemistry and Chemical Biology, Department of Chemistry, University of Turku, 20014, Turku, Finland.
| | - Tapio Eeva
- Section of Ecology, Department of Biology, University of Turku, 20014, Turku, Finland.
| |
Collapse
|
17
|
de Oliveira JC, Gomes RM, Miranda RA, Barella LF, Malta A, Martins IP, Franco CCDS, Pavanello A, Torrezan R, Natali MRM, Lisboa PC, Mathias PCDF, de Moura EG. Protein Restriction During the Last Third of Pregnancy Malprograms the Neuroendocrine Axes to Induce Metabolic Syndrome in Adult Male Rat Offspring. Endocrinology 2016; 157:1799-812. [PMID: 27007071 PMCID: PMC5393358 DOI: 10.1210/en.2015-1883] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Metabolic malprogramming has been associated with low birth weight; however, the interplay between insulin secretion disruption and adrenal function upon lipid metabolism is unclear in adult offspring from protein-malnourished mothers during the last third of gestation. Thus, we aimed to study the effects of a maternal low-protein diet during the last third of pregnancy on adult offspring metabolism, including pancreatic islet function and morphophysiological aspects of the liver, adrenal gland, white adipose tissue, and pancreas. Virgin female Wistar rats (age 70 d) were mated and fed a protein-restricted diet (4%, intrauterine protein restricted [IUPR]) from day 14 of pregnancy until delivery, whereas control dams were fed a 20.5% protein diet. At age 91 d, their body composition, glucose-insulin homeostasis, ACTH, corticosterone, leptin, adiponectin, lipid profile, pancreatic islet function and liver, adrenal gland, and pancreas morphology were assessed. The birth weights of the IUPR rats were 20% lower than the control rats (P < .001). Adult IUPR rats were heavier, hyperphagic, hyperglycemic, hyperinsulinemic, hyperleptinemic, and hypercorticosteronemic (P < .05) with higher low-density lipoprotein cholesterol and lower high-density lipoprotein cholesterol, adiponectin, ACTH, and insulin sensitivity index levels (P < .01). The insulinotropic action of glucose and acetylcholine as well as muscarinic and adrenergic receptor function were impaired in the IUPR rats (P < .05). Maternal undernutrition during the last third of gestation disrupts the pancreatic islet insulinotropic response and induces obesity-associated complications. Such alterations lead to a high risk of metabolic syndrome, characterized by insulin resistance, visceral obesity, and lower high-density lipoprotein cholesterol.
Collapse
|
18
|
Geurden I, Mennigen J, Plagnes-Juan E, Veron V, Cerezo T, Mazurais D, Zambonino-Infante J, Gatesoupe J, Skiba-Cassy S, Panserat S. High or low dietary carbohydrate:protein ratios during first-feeding affect glucose metabolism and intestinal microbiota in juvenile rainbow trout. ACTA ACUST UNITED AC 2015; 217:3396-406. [PMID: 25274323 DOI: 10.1242/jeb.106062] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Based on the concept of nutritional programming in mammals, we tested whether an acute hyperglucidic-hypoproteic stimulus during first feeding could induce long-term changes in nutrient metabolism in rainbow trout. Trout alevins received during the five first days of exogenous feeding either a hyperglucidic (40% gelatinized starch + 20% glucose) and hypoproteic (20%) diet (VLP diet) or a high-protein (60%) glucose-free diet (HP diet, control). Following a common 105-day period on a commercial diet, both groups were then challenged (65 days) with a carbohydrate-rich diet (28%). Short- and long-term effects of the early stimuli were evaluated in terms of metabolic marker gene expressions and intestinal microbiota as initial gut colonisation is essential for regulating the development of the digestive system. In whole alevins (short term), diet VLP relative to HP rapidly increased gene expressions of glycolytic enzymes, while those involved in gluconeogenesis and amino acid catabolism decreased. However, none of these genes showed persistent molecular adaptation in the liver of challenged juveniles (long term). By contrast, muscle of challenged juveniles subjected previously to the VLP stimulus displayed downregulated expression of markers of glycolysis and glucose transport (not seen in the short term). These fish also had higher plasma glucose (9 h postprandial), suggesting impaired glucose homeostasis induced by the early stimulus. The early stimulus did not modify the expression of the analysed metabolism-related microRNAs, but had short- and long-term effects on intestinal fungi (not bacteria) profiles. In summary, our data show that a short hyperglucidic-hypoproteic stimulus during early life may have a long-term influence on muscle glucose metabolism and intestinal microbiota in trout.
Collapse
Affiliation(s)
- I Geurden
- INRA, UR1067 Nutrition Metabolism and Aquaculture, F-64310 Saint-Pée-sur-Nivelle, France
| | - J Mennigen
- INRA, UR1067 Nutrition Metabolism and Aquaculture, F-64310 Saint-Pée-sur-Nivelle, France
| | - E Plagnes-Juan
- INRA, UR1067 Nutrition Metabolism and Aquaculture, F-64310 Saint-Pée-sur-Nivelle, France
| | - V Veron
- INRA, UR1067 Nutrition Metabolism and Aquaculture, F-64310 Saint-Pée-sur-Nivelle, France
| | - T Cerezo
- INRA, UR1067 Nutrition Metabolism and Aquaculture, F-64310 Saint-Pée-sur-Nivelle, France
| | - D Mazurais
- IFREMER, Laboratoire d'Adaptation, Reproduction et Nutrition des Poissons (ARN), UMR 6539 LEMAR (Laboratoire des Sciences de l'Environnement Marin), Technopôle Brest-Iroise, BP 10070, 29280 Plouzané, France
| | - J Zambonino-Infante
- IFREMER, Laboratoire d'Adaptation, Reproduction et Nutrition des Poissons (ARN), UMR 6539 LEMAR (Laboratoire des Sciences de l'Environnement Marin), Technopôle Brest-Iroise, BP 10070, 29280 Plouzané, France
| | - J Gatesoupe
- INRA, UR1067 Nutrition Metabolism and Aquaculture, F-64310 Saint-Pée-sur-Nivelle, France IFREMER, Laboratoire d'Adaptation, Reproduction et Nutrition des Poissons (ARN), UMR 6539 LEMAR (Laboratoire des Sciences de l'Environnement Marin), Technopôle Brest-Iroise, BP 10070, 29280 Plouzané, France
| | - S Skiba-Cassy
- INRA, UR1067 Nutrition Metabolism and Aquaculture, F-64310 Saint-Pée-sur-Nivelle, France
| | - S Panserat
- INRA, UR1067 Nutrition Metabolism and Aquaculture, F-64310 Saint-Pée-sur-Nivelle, France
| |
Collapse
|
19
|
Matthiesen CF, Casañas MAA, Tauson AH. Foetal life protein provision of mink (Neovison vison) changes the relative mRNA abundance of some hepatic enzymes regulating fat metabolism. Arch Anim Nutr 2014; 68:159-69. [PMID: 24646153 DOI: 10.1080/1745039x.2014.889506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The nutrient provision to pregnant females has high impact on the growth and metabolism of their offspring. The objective was to investigate if the expression of hepatic enzymes regulating the fat metabolism was affected in foetuses and adult female mink born by dams fed either a low or an adequate level of protein during late gestation. The relative abundances of acetyl coenzyme A carboxylase (ACC), fatty acid synthase (FAS) and carnitine palmitoyl transferase 1 (CPT1) mRNA were determined by qualitative polymerase chain reaction in the livers of F₀- and F₁-generation dams and in F₁-generation foetuses. Low protein provision during foetal life resulted in a lower expression of FAS in foetal liver but a tendency towards increased expression in the liver of adult dams. There was a tendency towards an effect of life stage of the animal on the expression of ACC resulting in a higher expression among F₁ foetuses exposed to low protein during foetal life than F₀ dams fed a low protein diet during late gestation. The expression of CPT1 was significantly lower among dams exposed to low protein provision during foetal life than controls, possibly indicating a lower rate of mitochondrial β-oxidation. Further investigations are needed to clarify the consequences of these changes for the fat metabolism.
Collapse
Affiliation(s)
- Connie Frank Matthiesen
- a Department of Veterinary Clinical and Animal Sciences , Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| | | | | |
Collapse
|
20
|
Ashwal E, Hadar E, Hod M. Diabetes in low-resourced countries. Best Pract Res Clin Obstet Gynaecol 2014; 29:91-101. [PMID: 25182507 DOI: 10.1016/j.bpobgyn.2014.05.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 05/02/2014] [Indexed: 11/30/2022]
Abstract
Maternal and newborn health poses one of the greatest health challenges in the developing world. Many low-income countries are now experiencing a demographic and epidemiological transition and changing of lifestyles. Thus, apparent "Western" diseases such as diabetes and obesity have been reaching the Third World countries. There is a paucity of reliable data on diabetes in pregnancy in many low-income countries. Adequate information about maternal and perinatal mortality and morbidity as a consequence of diabetes in pregnancy is scarce. This chapter presents evidence of the magnitude and impact of diabetes in pregnancy. Additionally, we discuss interventions in screening and managing diabetes in pregnancy in these specific patient populations.
Collapse
Affiliation(s)
- Eran Ashwal
- Helen Schneider Hospital for Women, Rabin Medical Center, Petach Tikva, and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Eran Hadar
- Helen Schneider Hospital for Women, Rabin Medical Center, Petach Tikva, and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Moshe Hod
- Helen Schneider Hospital for Women, Rabin Medical Center, Petach Tikva, and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
21
|
Kruse M, Seki Y, Vuguin PM, Du XQ, Fiallo A, Glenn AS, Singer S, Breuhahn K, Katz EB, Charron MJ. High-fat intake during pregnancy and lactation exacerbates high-fat diet-induced complications in male offspring in mice. Endocrinology 2013; 154:3565-76. [PMID: 23861375 PMCID: PMC3776861 DOI: 10.1210/en.2012-1877] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Altered fetal environments, such as a high-fat milieu, induce metabolic abnormalities in offspring. Different postnatal environments reveal the predisposition for adult diseases that occur during the fetal period. This study investigates the ability of a maternal high-fat diet (HFD) to program metabolic responses to HFD reexposure in offspring after consuming normal chow for 23 weeks after weaning. Wild-type CD1 females were fed a HFD (H) or control (C) chow during pregnancy and lactation. At 26 weeks of age, offspring were either reexposed (H-C-H) or newly exposed (C-C-H) to the HFD for 19 weeks. Body weight was measured weekly, and glucose and insulin tolerance were measured after 10 and 18 weeks on the HFD. The metabolic profile of offspring on a HFD or C diet during pregnancy and lactation and weaned onto a low-fat diet was similar at 26 weeks. H-C-H offspring gained more weight and developed larger adipocytes after being reintroduced to the HFD later in life than C-C-H. H-C-H mice were glucose and insulin intolerant and showed reduced gene expression of cox6a2 and atp5i in muscle, indicating mitochondrial dysfunction. In adipocytes, the expression of slc2a4, srebf1, and adipoq genes was decreased in H-C-H mice compared with C-C-C, indicating insulin resistance. H-C-H showed extensive hepatosteatosis, accompanied by increased gene expression for cd36 and serpin1, compared with C-C-H. Perinatal exposure to a HFD programs a more deleterious response to a HFD challenge later in life even after an interval of normal diet in mice.
Collapse
Affiliation(s)
- Michael Kruse
- Department of Biochemistry, 1300 Morris Park Avenue, New York, The Bronx, New York 10461.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Vesterdorf K, Blache D, Harrison A, Matthiesen CF, Tauson AH. Low protein provision during the first year of life, but not during foetal life, affects metabolic traits, organ mass development and growth in male mink (Neovison vison). J Anim Physiol Anim Nutr (Berl) 2013; 98:357-72. [PMID: 23909380 DOI: 10.1111/jpn.12108] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 06/27/2013] [Indexed: 11/26/2022]
Abstract
Low protein provision in utero and post-partum may induce metabolic disorders in adulthood. Studies in mink have mainly focused on short-term consequences of low protein provision in utero whereas the long-term responses to low protein (LP) provision in metabolically programmed mink are unknown. We investigated whether low protein provision in utero affects the long-term response to adequate (AP) or LP provision after weaning in male mink. Eighty-six male mink were exposed to low (19% of ME from CP; crude protein) or adequate (31% of ME from CP) protein provision in utero, and to LP (~20% of ME from CP) or AP (30-42% of ME from CP) provision post-weaning. Being metabolically programmed by low protein provision in utero did not affect the response to post-weaning diets. Dietary protein content in the LP feed after weaning was below requirements; evidenced by lower nitrogen retention (p < 0.001) preventing LP mink from attaining their growth potential (p < 0.02). LP mink had a lower liver, pancreas and kidney weight (p < 0.05) as well as lower plasma IGF-1 concentrations at 8 and 25 (p < 0.05) weeks, and a higher incidence of hepatic lipidosis at 25 weeks (p < 0.05). Furthermore, LP mink had a higher body fat (p < 0.05) and lower body CP content (p < 0.05) at 50 weeks of age. It is concluded that some effects of low protein provision in utero can be alleviated by an adequate nutrient supply post-partum. However, long-term exposure to low protein provision in mink reduces their growth potential and induces transient hepatic lipidosis and modified body composition.
Collapse
Affiliation(s)
- K Vesterdorf
- Department of Veterinary Clinical and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | | | | | | | | |
Collapse
|
23
|
Vo TX, Revesz A, Sohi G, Ma N, Hardy DB. Maternal protein restriction leads to enhanced hepatic gluconeogenic gene expression in adult male rat offspring due to impaired expression of the liver X receptor. J Endocrinol 2013; 218:85-97. [PMID: 23633563 DOI: 10.1530/joe-13-0055] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Epidemiological studies demonstrate that the link between impaired fetal development and glucose intolerance in later life is exacerbated by postnatal catch-up growth. Maternal protein restriction (MPR) during pregnancy and lactation in the rat has been previously demonstrated to lead to impaired glucose tolerance in adulthood, however the effects of protein restoration during weaning on glucose homeostasis are largely unknown. Recent in vitro studies have identified that the liver X receptor α (LXRα) maintains glucose homeostasis by inhibiting critical genes involved in gluconeogenesis including G6pase (G6pc), 11β-Hsd1 (Hsd11b1) and Pepck (Pck1). Therefore, we hypothesized that MPR with postnatal catch-up growth would impair LXRα in vivo, which in turn would lead to augmented gluconeogenic LXRα-target gene expression and glucose intolerance. To examine this hypothesis, pregnant Wistar rats were fed a control (20%) protein diet (C) or a low (8%) protein diet during pregnancy and switched to a control diet at birth (LP). At 4 months, the LP offspring had impaired glucose tolerance. In addition, LP offspring had decreased LXRα expression, while hepatic expression of 11β-HSD1 and G6Pase was significantly higher. This was concomitant with decreased binding of LXRα to the putative LXRE on 11β-Hsd1 and G6pase. Finally, we demonstrated that the acetylation of histone H3 (K9,14) surrounding the transcriptional start site of hepatic Lxrα (Nr1h3) was decreased in LP offspring, suggesting MPR-induced epigenetic silencing of the Lxrα promoter. In summary, our study demonstrates for the first time the important role of LXRα in mediating enhanced hepatic gluconeogenic gene expression and consequent glucose intolerance in adult MPR offspring.
Collapse
Affiliation(s)
- Thin Xuan Vo
- Department of Physiology and Pharmacology, The University of Western Ontario, London, Ontario, Canada N6A 5C1
| | | | | | | | | |
Collapse
|
24
|
Lee S, Lee KA, Choi GY, Desai M, Lee SH, Pang MG, Jo I, Kim YJ. Feed restriction during pregnancy/lactation induces programmed changes in lipid, adiponectin and leptin levels with gender differences in rat offspring. J Matern Fetal Neonatal Med 2013; 26:908-14. [PMID: 23327414 DOI: 10.3109/14767058.2013.766686] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE We investigated the effects of fetal undernutrition during pregnancy/lactation on visceral fat, lipid profiles, leptin and adiponectin, and examined the gender differences between males and females. STUDY DESIGN From 10 d to term gestation and through lactation, control pregnant rats were fed ad libitum (AdLib) food, whereas study rats were 50% food restricted (FR). Cross-fostering techniques were used to examine the effects of FR during pregnancy and lactation periods. Lipid profiles, leptin and adiponectin were determined in offspring at ages 3 weeks and 6 months. We also measured the amount of visceral fat in the offspring. RESULTS The amount of visceral fat in the 6-month-old FR/AdLib offspring was higher than that in the control (p < 0.05). Among the 6-month-old offspring, triglyceride and leptin levels were higher in FR/AdLib offspring than those in the controls (p < 0.05). The female offspring had higher levels of triglyceride, HDL-cholesterol, and adiponectin and the male offspring had higher levels of LDL cholesterol and leptin. CONCLUSION Fetal undernutrition only during pregnancy resulted in obese offspring, higher levels of plasma triglyceride and leptin with gender differences.
Collapse
Affiliation(s)
- Sangmi Lee
- Department of Molecular Medicine, School of Medicine, Ewha Womans University, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Blumfield M, Hure A, MacDonald-Wicks L, Smith R, Simpson S, Raubenheimer D, Collins C. The association between the macronutrient content of maternal diet and the adequacy of micronutrients during pregnancy in the Women and Their Children’s Health (WATCH) study. Nutrients 2012; 4:1958-76. [PMID: 23222964 PMCID: PMC3546616 DOI: 10.3390/nu4121958] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Revised: 11/23/2012] [Accepted: 11/29/2012] [Indexed: 12/30/2022] Open
Abstract
Nutrition during pregnancy can induce alterations in offspring phenotype. Maternal ratio of protein to non-protein (P:NP) energy has been linked to variations in offspring body composition and adult risk of metabolic disease. This study describes the dietary patterns of pregnant women by tertiles of the P:NP ratio and compares diet to Australian recommendations. Data are from 179 Australian women enrolled in the Women and Their Children's Health Study. Diet was assessed using a validated 74-item food frequency questionnaire. Food group servings and nutrient intakes were compared to the Australian Guide to Healthy Eating and Australian Nutrient Reference Values. Higher maternal P:NP tertile was positively associated with calcium (P = 0.003), zinc (P = 0.001) and servings of dairy (P = 0.001) and meat (P = 0.001) food groups, and inversely associated with the energy dense, nutrient poor non-core (P = 0.003) food group. Micronutrient intakes were optimized with intermediate protein (18%E-20%E), intermediate fat (28%E-30%E) and intermediate carbohydrate (50%E-54%E) intakes, as indicated in tertile two. Results suggest a moderate protein intake may support pregnant women to consume the largest variety of nutrients across all food groups.
Collapse
Affiliation(s)
- Michelle Blumfield
- School of Health Sciences, University of Newcastle, Callaghan, New South Wales 2308, Australia; E-Mails: (M.B.); (L.M.-W.)
- Mothers and Babies Research Centre, Hunter Medical Research Institute, John Hunter Hospital, Level 3, Endocrinology, Locked Bag 1, Hunter Region Mail Centre, New South Wales 2310, Australia; E-Mail:
| | - Alexis Hure
- School of Medicine and Public Health, Faculty of Health, University of Newcastle, Callaghan, New South Wales 2308, Australia; E-Mail:
| | - Lesley MacDonald-Wicks
- School of Health Sciences, University of Newcastle, Callaghan, New South Wales 2308, Australia; E-Mails: (M.B.); (L.M.-W.)
| | - Roger Smith
- Mothers and Babies Research Centre, Hunter Medical Research Institute, John Hunter Hospital, Level 3, Endocrinology, Locked Bag 1, Hunter Region Mail Centre, New South Wales 2310, Australia; E-Mail:
- School of Medicine and Public Health, Faculty of Health, University of Newcastle, Callaghan, New South Wales 2308, Australia; E-Mail:
| | - Stephen Simpson
- School of Biological Sciences, University of Sydney, Sydney, New South Wales 2006, Australia; E-Mail:
| | - David Raubenheimer
- Institute of Natural Sciences, Massey University, Albany 0632, New Zealand; E-Mail:
| | - Clare Collins
- School of Health Sciences, University of Newcastle, Callaghan, New South Wales 2308, Australia; E-Mails: (M.B.); (L.M.-W.)
- Mothers and Babies Research Centre, Hunter Medical Research Institute, John Hunter Hospital, Level 3, Endocrinology, Locked Bag 1, Hunter Region Mail Centre, New South Wales 2310, Australia; E-Mail:
| |
Collapse
|
26
|
Abstract
The obesity epidemic, including a marked increase in the prevalence of obesity among pregnant women, represents a critical public health problem in the United States and throughout the world. Over the past two decades, it has been increasingly recognized that the risk of adult health disorders, particularly metabolic syndrome, can be markedly influenced by prenatal and infant environmental exposures (ie, developmental programming). Low birth weight, together with infant catch-up growth, is associated with a significant risk of adult obesity and cardiovascular disease, as well as adverse effects on pulmonary, renal, and cerebral function. Conversely, exposure to maternal obesity or high birth weight also represents an increased risk for childhood and adult obesity. In addition, fetal exposure to select chemicals (eg, phytoestrogens) or environmental pollutants (eg, tobacco smoke) may affect the predisposition to adult disease. Animal models have confirmed human epidemiologic findings and provided insight into putative programming mechanisms, including altered organ development, cellular signaling responses, and epigenetic modifications (ie, control of gene expression without modification of DNA sequence). Prenatal care is transitioning to incorporate goals of optimizing maternal, fetal, and neonatal health to prevent or reduce adult-onset diseases. Guidelines regarding optimal pregnancy nutrition and weight gain, management of low- and high-fetal-weight pregnancies, use of maternal glucocorticoids, and newborn feeding strategies, among others, have yet to fully integrate long-term consequences on adult health.
Collapse
|
27
|
Programmed changes in the adult rat offspring caused by maternal protein restriction during gestation and lactation are attenuated by maternal moderate–low physical training. Br J Nutr 2012; 109:449-56. [DOI: 10.1017/s0007114512001316] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The effects of maternal moderate–low physical training on postnatal development, glucose homeostasis and leptin concentration in adult offspring subjected to a low-protein diet during the perinatal period were investigated. Male Wistar rats (aged 150 d old) were divided into four groups according to maternal group: untrained (NTp, n 8); trained (Tp, n 8); untrained with a low-protein diet (NT+LPp, n 8); trained with a low-protein diet (T+LPp, n 8). The trained mothers were subjected to a protocol of moderate physical training over a period of 4 weeks (treadmill, 5 d/week, 60 min/d, at 65 % VO2max) before mating. At pregnancy, the intensity and duration of exercise was progressively reduced (50–20 min/d, at 65–30 % VO2max). The low-protein diet groups received an 8 % casein diet, and their peers received a 17 % casein diet during gestation and lactation. The pups' birth weight and somatic growth were recorded weekly up to the 150th day. Fasting blood glucose, cholesterol, serum leptin concentration, glucose and insulin tolerance tests were evaluated. The Tp animals showed no changes in somatic and biochemical parameters, while the NT+LPp group showed a greater abdominal circumference, hyperglycaemia, hypercholesterolaemia, glucose intolerance and lower plasma leptin. In the T+LPp animals, all of those alterations were reversed except for plasma leptin concentration. In conclusion, the effects of a perinatal low-protein diet on growth and development, glucose homeostasis and serum leptin concentration in the offspring were attenuated in pups from trained mothers.
Collapse
|
28
|
Reusens B, Theys N, Remacle C. Alteration of mitochondrial function in adult rat offspring of malnourished dams. World J Diabetes 2011; 2:149-57. [PMID: 21954419 PMCID: PMC3180527 DOI: 10.4239/wjd.v2.i9.149] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 08/16/2011] [Accepted: 08/21/2011] [Indexed: 02/05/2023] Open
Abstract
Under-nutrition as well as over-nutrition during pregnancy has been associated with the development of adult diseases such as diabetes and obesity. Both epigenetic modifications and programming of the mitochondrial function have been recently proposed to explain how altered intrauterine metabolic environment may produce such a phenotype. This review aims to report data reported in several animal models of fetal malnutrition due to maternal low protein or low calorie diet, high fat diet as well as reduction in placental blood flow. We focus our overview on the β cell. We highlight that, notwithstanding early nutritional events, mitochondrial dysfunctions resulting from different alteration by diet or gender are programmed. This may explain the higher propensity to develop obesity and diabetes in later life.
Collapse
Affiliation(s)
- Brigitte Reusens
- Brigitte Reusens, Nicolas Theys, Claude Remacle, Laboratory of Cell Biology, Institute of Life Science, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| | | | | |
Collapse
|
29
|
Corrêa CL, Lisboa PC, Oliveira ED, Moura EGD, Oliveira RMFD, Gomes AC, Machado-Silva JR. The outcome of acute schistosomiasis infection in adult mice with postnatal exposure to maternal malnutrition. Mem Inst Oswaldo Cruz 2011; 106:584-93. [DOI: 10.1590/s0074-02762011000500011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2011] [Accepted: 05/24/2011] [Indexed: 11/22/2022] Open
|
30
|
Soya protein- and casein-based nutritionally complete diets fed during gestation and lactation differ in effects on characteristics of the metabolic syndrome in male offspring of Wistar rats. Br J Nutr 2011; 107:284-94. [PMID: 21733315 DOI: 10.1017/s0007114511002686] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The AIN-93G diets based on soya protein or casein were fed to pregnant Wistar rats from day 3 of gestation and compared for their effects on characteristics of the metabolic syndrome in male offspring. Pregnant rats were randomised to either a casein (C) or soya protein (S) diet (n 12) during gestation only (Expt 1) or during gestation and lactation (Expt 2). Male offspring were weaned to either a C or S diet for 9 weeks (Expt 1) or 15 weeks (Expt 2). In Expt 1, pups born to S-fed dams had higher fasting blood glucose (BG), systolic blood pressure (SBP) and diastolic blood pressure (DBP) at week 4, higher blood glucose (BG) response to a glucose administration (P < 0·001) and higher body weight (BW) at week 8 (P < 0·05). In Expt 2, consumption of the S diet throughout gestation and lactation resulted in higher BW (P < 0·05), DBP (P < 0·005) and SBP (P < 0·005) in the offspring. They also had higher homeostasis model assessment of insulin resistance (HOMA-IR; P < 0·05) and plasma homocysteine (P < 0·05) at weaning, higher fasting BG and glucose response to glucose administration (P < 0·005) at week 12 and higher HOMA-IR (P < 0·01) at week 15. Although composition of the weaning diets interacted with the diet of the dams, the latter was the dominant factor in determining metabolic outcomes in the offspring. In conclusion, the S diet, compared with the C diet, when consumed during gestation or throughout gestation and lactation increased the presence of characteristics of the metabolic syndrome in the offspring.
Collapse
|
31
|
Marino M, Masella R, Bulzomi P, Campesi I, Malorni W, Franconi F. Nutrition and human health from a sex-gender perspective. Mol Aspects Med 2011; 32:1-70. [PMID: 21356234 DOI: 10.1016/j.mam.2011.02.001] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 01/25/2011] [Accepted: 02/18/2011] [Indexed: 02/07/2023]
Abstract
Nutrition exerts a life-long impact on human health, and the interaction between nutrition and health has been known for centuries. The recent literature has suggested that nutrition could differently influence the health of male and female individuals. Until the last decade of the 20th century, research on women has been neglected, and the results obtained in men have been directly translated to women in both the medicine and nutrition fields. Consequently, most modern guidelines are based on studies predominantly conducted on men. However, there are many sex-gender differences that are the result of multifactorial inputs, including gene repertoires, sex steroid hormones, and environmental factors (e.g., food components). The effects of these different inputs in male and female physiology will be different in different periods of ontogenetic development as well as during pregnancy and the ovarian cycle in females, which are also age dependent. As a result, different strategies have evolved to maintain male and female body homeostasis, which, in turn, implies that there are important differences in the bioavailability, metabolism, distribution, and elimination of foods and beverages in males and females. This article will review some of these differences underlying the impact of food components on the risk of developing diseases from a sex-gender perspective.
Collapse
Affiliation(s)
- Maria Marino
- Department of Biology, University Roma Tre, Viale Guglielmo Marconi 446, I-00146 Roma, Italy
| | | | | | | | | | | |
Collapse
|
32
|
Messiah SE, Miller TL, Lipshultz SE, Bandstra ES. Potential latent effects of prenatal cocaine exposure on growth and the risk of cardiovascular and metabolic disease in childhood. PROGRESS IN PEDIATRIC CARDIOLOGY 2011; 31:59-65. [PMID: 21318092 DOI: 10.1016/j.ppedcard.2010.11.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The literature strongly suggests that prenatal exposure to certain medications and substances does not cause major malformations in early childhood. However, these exposures may have far-reaching latent health effects, such as restricted growth, hypertension, and cardiovascular events in adulthood. We reviewed the literature to identify the effects of prenatal cocaine exposure on growth and the risk of cardiovascular and metabolic disease in late adolescence and early adulthood by examining studies that were published in peer-reviewed English-language journals from 1990 through 2009 and indexed in MEDLINE. We found that animal and clinical studies of the influence of prenatal cocaine exposure on child and adolescent growth and the subsequent development of myocardial and cardiometabolic disease risk factors are few and inconclusive. Studies support the hypothesis that vascular and hemodynamic functions are partially programmed in early life and thus substantially influence vascular aging and arterial stiffening in later life. Sub-optimal fetal nutrition and growth may increase blood pressure and the development of cardiovascular and metabolic disease in late life. How prenatal cocaine and other drug exposure effects this relationship is currently unknown. Despite high rates of cocaine and other drug use during pregnancy (up to 18% in some studies), little is known about the health effects of prenatal cocaine exposure in adolescence and early adulthood. The few studies of early growth deficits persisting into adolescence are inconclusive. The literature provides little information on how exposed children grow into adulthood and about their subsequent risk of cardiometabolic and vascular disease.
Collapse
Affiliation(s)
- Sarah E Messiah
- Division of Pediatric Clinical Research, Department of Pediatrics, University of Miami Leonard M. Miller School of Medicine, Miami, FL, USA
| | | | | | | |
Collapse
|
33
|
Barnes SK, Ozanne SE. Pathways linking the early environment to long-term health and lifespan. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2010; 106:323-36. [PMID: 21147148 DOI: 10.1016/j.pbiomolbio.2010.12.005] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Revised: 11/30/2010] [Accepted: 12/01/2010] [Indexed: 12/21/2022]
Abstract
The intrauterine environment is a major contributor to normal physiological growth and development of an individual. Disturbances at this critical time can affect the long-term health of the offspring. Low birth weight individuals have strong correlations with increased susceptibility to type 2 diabetes and cardiovascular disease in later-life. These observations led to the Thrifty Phenotype Hypothesis which suggested that these associations arose because of the response of a growing fetus to a suboptimal environment such as poor nutrition. Animal models have shown that environmentally induced intrauterine growth restriction increases the risk of a variety of diseases later in life. These detrimental features are also observed in high birth weight offspring from mothers who were obese or consumed a high fat diet during gestation. Recent advances in our understanding of the mechanisms underlying this phenomenon have elucidated several potential candidates for the long-term effects of the early environment on the function and metabolism of a cell. These include: (1) Epigenetic alterations (e.g. DNA methylation and histone modifications), which regulate specific gene expression and can be influenced by the environment, both during gestation and early postnatal life and (2) Oxidative stress that changes the balance between reactive oxygen species generation (e.g. through mitochondrial dysfunction) and antioxidant defense capacity. This has permanent effects on cellular ageing such as regulation of telomere length. Further understanding of these processes will help in the development of therapeutic strategies to increase healthspan and reduced the burden of age-associated diseases.
Collapse
Affiliation(s)
- S K Barnes
- Metabolic Research Laboratories, University of Cambridge, Level 4, Institute of Metabolic Science, Box 289, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK.
| | | |
Collapse
|
34
|
Maternal dietary restriction during lactation influences postnatal growth and behavior in the offspring of mice. Neurochem Int 2010; 57:43-50. [DOI: 10.1016/j.neuint.2010.04.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Revised: 04/08/2010] [Accepted: 04/09/2010] [Indexed: 12/16/2022]
|
35
|
Insulin-requiring diabetes in Ethiopia: associations with poverty, early undernutrition and anthropometric disproportion. Eur J Clin Nutr 2010; 64:1192-8. [PMID: 20664624 DOI: 10.1038/ejcn.2010.143] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND/OBJECTIVES Most insulin-requiring diabetes patients in Ethiopia have an atypical form of the disease, which resembles previous descriptions of malnutrition-related diabetes. As so little is known about its aetiology, we have carried out a case-control study to evaluate its social and nutritional determinants. SUBJECTS/METHODS Men and women with insulin-requiring diabetes (n=107), aged 18-40 years, were recruited in two centres, Gondar and Jimma, 750 km northwest and 330 km southwest of the capital, Addis Ababa, respectively. Controls of similar age and sex (n=110) were recruited from patients attending other hospital clinics. RESULTS Diabetes was strongly associated with subsistence farming, odds ratio=3.5 (95% confidence interval: 1.5-7.8) and illiteracy/low levels of education, odds ratio=4.0 (2.0-8.0). Diabetes was also linked with a history of childhood malnutrition, odds ratio=5.5 (1.0-29.0) the mother's death during childhood, odds ratio=3.9 (1.0-14.8), and markers of poverty including poorer access to sanitation (P=0.004), clean water (P=0.009), greater overcrowding (P=0.04), increased distance from the clinic (P=0.01) and having fewer possessions (P=0.01). Compared with controls, people with diabetes had low mid upper arm circumference, body mass index (BMI) and fat/lean body mass (P<0.01). In addition, men with the disease tended to be shorter, were lighter (P=0.001), with reduced sitting height (P=0.015) and reduced biacromial (P=0.003) and bitrochanteric (P=0.008) diameters. CONCLUSIONS Insulin-requiring diabetes in Ethiopia is strongly linked with poor education and markers of poverty. Men with the disease have associated disproportionate skeletal growth. These findings point towards a nutritional aetiology for this condition although the nature of the nutritional deficiency and its timing during growth and development remains obscure.
Collapse
|
36
|
Luo ZC, Xiao L, Nuyt AM. Mechanisms of developmental programming of the metabolic syndrome and related disorders. World J Diabetes 2010; 1:89-98. [PMID: 21537432 PMCID: PMC3083886 DOI: 10.4239/wjd.v1.i3.89] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Revised: 06/22/2010] [Accepted: 06/29/2010] [Indexed: 02/05/2023] Open
Abstract
There is consistent epidemiological evidence linking low birth weight, preterm birth and adverse fetal growth to an elevated risk of the metabolic syndrome (obesity, raised blood pressure, raised serum triglycerides, lowered serum high-density lipoprotein cholesterol and impaired glucose tolerance or insulin resistance) and related disorders. This “fetal or developmental origins/programming of disease” concept is now well accepted but the “programming” mechanisms remain poorly understood. We reviewed the major evidence, implications and limitations of current hypotheses in interpreting developmental programming and discuss future research directions. Major current hypotheses to interpret developmental programming include: (1) thrifty phenotype; (2) postnatal accelerated or catch-up growth; (3) glucocorticoid effects; (4) epigenetic changes; (5) oxidative stress; (6) prenatal hypoxia; (7) placental dysfunction; and (8) reduced stem cell number. Some hypothetical mechanisms (2, 4 and 8) could be driven by other upstream “driver” mechanisms. There is a lack of animal studies addressing multiple mechanisms simultaneously and a lack of strong evidence linking clinical outcomes to biomarkers of the proposed programming mechanisms in humans. There are needs for (1) experimental studies addressing multiple hypothetical mechanisms simultaneously; and (2) prospective pregnancy cohort studies linking biomarkers of the proposed mechanisms to clinical outcomes or surrogate biomarker endpoints. A better understanding of the programming mechanisms is a prerequisite for developing early life interventions to arrest the increasing epidemic of the metabolic syndrome, type 2 diabetes and other related disorders.
Collapse
Affiliation(s)
- Zhong-Cheng Luo
- Zhong-Cheng Luo, Lin Xiao, Department of Obstetrics and Gynecology, CHU Sainte Justine, University of Montreal, Quebec H3T 1C5, Canada
| | | | | |
Collapse
|
37
|
Funston RN, Larson DM, Vonnahme KA. Effects of maternal nutrition on conceptus growth and offspring performance: Implications for beef cattle production1. J Anim Sci 2010; 88:E205-15. [DOI: 10.2527/jas.2009-2351] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
38
|
Franko KL, Forhead AJ, Fowden AL. Effects of maternal dietary manipulation during different periods of pregnancy on hepatic glucogenic capacity in fetal and pregnant rats near term. Nutr Metab Cardiovasc Dis 2009; 19:555-562. [PMID: 19179059 DOI: 10.1016/j.numecd.2008.11.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2008] [Revised: 10/23/2008] [Accepted: 11/05/2008] [Indexed: 10/21/2022]
Abstract
BACKGROUND AND AIM Low birth weight is associated with an increased incidence of adult glucose intolerance, type 2 diabetes and cardiovascular disease in humans. In pregnant rats, dietary calorie or protein deprivation results in growth retarded pups, which become glucose intolerant adults with abnormal hepatic glucose metabolism and gluconeogenic enzyme activities. However, whether these abnormalities are present before birth remain unknown. METHODS AND RESULTS This study examined the effects of manipulating dietary protein and carbohydrate intake during rat pregnancy on the fetal and maternal hepatic activities of the gluconeogenic enzymes, glucose-6-phosphatase (G6Pase) and phosphoenolpyruvate carboxykinase (PEPCK). Wistar rats were fed ad libitum with either standard chow throughout pregnancy (25% protein, 57% carbohydrate, n=6) or an isocaloric, low protein, high carbohydrate diet (LPHC, 8% protein, 81% carbohydrate) for different periods of pregnancy (early, 0-10 days, n=6; late, 10-20 days, n=7; throughout, 0-20 days, n=6) before tissue collection at day 20. The LPHC diet had no effect on fetal or placental weights, or on fetal hepatic activities of G6Pase and PEPCK in the early LPHC group. In contrast, fetuses of dams fed the LPHC diet in late or throughout pregnancy had lower body and placental weights, and higher hepatic G6Pase and PEPCK activities than controls. Maternal hepatic G6Pase activity was elevated in all LPHC groups, while maternal PEPCK activity was only increased significantly in the late LPHC group. CONCLUSIONS Feeding a LPHC diet, particularly during late pregnancy, therefore, up-regulates fetal and maternal hepatic glucogenic capacity.
Collapse
Affiliation(s)
- K L Franko
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB23EG, UK
| | | | | |
Collapse
|
39
|
Zhao L, Xu S, Zhao R, Peng Z, Pan X. Effects of Selenium and Methionine Supplementation of Breeder Hen Diets on Selenium Concentration and Oxidative Stability of Lipids in the Thigh Muscles of Progeny. J Food Sci 2009; 74:C569-74. [DOI: 10.1111/j.1750-3841.2009.01296.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
40
|
Milanski M, Souza KLA, Reis SRL, Feres NH, de Souza LMI, Arantes VC, Carneiro EM, Boschero AC, Reis MAB, Latorraca MQ. Soybean diet modulates acetyl-coenzyme A carboxylase expression in livers of rats recovering from early-life malnutrition. Nutrition 2009; 25:774-81. [PMID: 19251398 DOI: 10.1016/j.nut.2008.12.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2008] [Revised: 10/25/2008] [Accepted: 12/08/2008] [Indexed: 01/14/2023]
Abstract
OBJECTIVE The present study evaluated the effect of nutritional recovery with a soybean diet on the gene and protein expressions and protein phosphorylation of several enzymes and transcription factors involved in hepatic lipid metabolism. METHODS Rats from mothers fed with 17% or 6% protein (casein) during pregnancy and lactation were maintained with a 17% casein (CC and LC groups) or soybean (CS and LS groups) diet and with a 6% casein (LL group) diet until 90 d of life. RESULTS The soybean diet enhanced serum insulin levels but decreased body and liver weights and hepatic lipid and glycogen concentrations. Liver peroxisome proliferator receptor-alpha mRNA abundance was higher in the LS and CS groups than in the LC and CC groups, but the protein content was similar in all groups. Hepatic acetyl-coenzyme A carboxylase (ACC)-alpha and ACCbeta mRNA expression was markedly lower in the LS and CS rats than in the LC and CC rats. ACC protein expression was lower in the CS group than in the CC, LC, and LS groups. Phospho-[Ser(79)]2-ACC content was similar in the CS, LC, and LS groups and lower than the CC group. In the CS rats this reduction paralleled the decrease in total ACC protein. Messenger RNA and protein expression of sterol regulatory element-binding protein 1c, adenosine monophosphate-activated protein kinase, and phospho-[Thr(172)]-adenosine monophosphate-activated protein kinase was not modified by the soybean diet. CONCLUSION Thus, the soybean diet reduced the liver lipid concentration through downregulation of the ACC gene and protein expressions rather than by phosphorylation status, which possibly resulted in decreased lipogenesis and increased beta-oxidation.
Collapse
|
41
|
McNeil CJ, Hay SM, Rucklidge GJ, Reid MD, Duncan GJ, Rees WD. Gene and protein expression profiles in the foetal liver of the pregnant rat fed a low protein diet. GENES AND NUTRITION 2009; 4:189-94. [PMID: 19484284 DOI: 10.1007/s12263-009-0125-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Accepted: 05/13/2009] [Indexed: 10/20/2022]
Abstract
Foetal growth is particularly sensitive to the protein content of the mother's diet. Microarray data from the foetal liver of pregnant rats fed normal (HP) or reduced protein diets (LP) were compared by gene set enrichment analysis. Soluble proteins from a second portion of the liver were analysed by two-dimensional gel electrophoresis. Genes associated with progesterone, insulin-like growth factor-1 and vascular endothelial growth factor were upregulated in HP compared to LP, in addition to genes associated with cell differentiation and signalling from the extracellular matrix. In contrast, cytokine signalling was downregulated. Proteomics showed that proteins associated with amino acid metabolism, mitochondrial function and cell motility were differentially abundant in the HP compared to the LP groups. These growth factor and extracellular matrix signalling pathways linked to cell motility may be important mediators of the changes in liver structure that occur in utero and persist into adult life.
Collapse
Affiliation(s)
- Christopher J McNeil
- Rowett Institute of Nutrition and Health, The University of Aberdeen, Greenburn Road, Bucksburn, Aberdeen, AB21 9SB, Scotland, UK
| | | | | | | | | | | |
Collapse
|
42
|
Berthouly A, Cassier A, Richner H. Carotenoid-induced maternal effects interact with ectoparasite burden and brood size to shape the trade-off between growth and immunity in nestling great tits. Funct Ecol 2008. [DOI: 10.1111/j.1365-2435.2008.01439.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
43
|
Criscuolo F, Monaghan P, Nasir L, Metcalfe NB. Early nutrition and phenotypic development: 'catch-up' growth leads to elevated metabolic rate in adulthood. Proc Biol Sci 2008; 275:1565-70. [PMID: 18397870 DOI: 10.1098/rspb.2008.0148] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Resting metabolic rate (RMR) is responsible for up to 50% of total energy expenditure, and so should be under strong selection pressure, yet it shows extensive intraspecific variation and a low heritability. Environmental conditions during growth are thought to have long-term effects through 'metabolic programming'. Here we investigate whether nutritional conditions early in life can alter RMR in adulthood, and whether this is due to growth acceleration or the change in diet quality that prompts it. We manipulated dietary protein levels during the main growth period of zebra finches (Taeniopygia guttata) such that an episode of poor nutrition occurred with and without growth acceleration. This produced different growth trajectories but a similar adult body mass. Only the diet that induced growth acceleration resulted in a significant (19%) elevation of RMR at adulthood, despite all the birds having been on the same diet after the first month. This is the first study to show that dietary-induced differences in growth trajectories can have a long-term effect on adult metabolic rate. It suggests that modification of metabolic efficiency may be one of the mechanisms mediating the observed long-term costs of accelerated growth, and indicates links between early nutrition and the metabolic syndrome.
Collapse
Affiliation(s)
- François Criscuolo
- Ornithology Group, Division of Environmental and Evolutionary Biology, Institute of Biomedical and Life Sciences, Graham Kerr Building, University of Glasgow, Glasgow G12 8QQ, UK
| | | | | | | |
Collapse
|
44
|
Garcia-Souza EP, da Silva SV, Félix GB, Rodrigues AL, de Freitas MS, Moura AS, Barja-Fidalgo C. Maternal protein restriction during early lactation induces GLUT4 translocation and mTOR/Akt activation in adipocytes of adult rats. Am J Physiol Endocrinol Metab 2008; 295:E626-36. [PMID: 18559980 DOI: 10.1152/ajpendo.00439.2007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Epidemiological and experimental studies have demonstrated that early postnatal nutrition has been associated with long-term effects on glucose homeostasis in adulthood. Recently, our group demonstrated that undernutrition during early lactation affects the expression and activation of key proteins of the insulin signaling cascade in rat skeletal muscle during postnatal development. To elucidate the molecular mechanisms by which undernutrition during early life leads to changes in insulin sensitivity in peripheral tissues, we investigated the insulin signaling in adipose tissue. Adipocytes were isolated from epididymal fat pads of adult male rats that were the offspring of dams fed either a normal or a protein-free diet during the first 10 days of lactation. The cells were incubated with 100 nM insulin before the assays for immunoblotting analysis, 2-deoxyglucose uptake, immunocytochemistry for GLUT4, and/or actin filaments. Following insulin stimulation, adipocytes isolated from undernourished rats presented reduced tyrosine phosphorylation of IR and IRS-1 and increased basal phosphorylation of IRS-2, Akt, and mTOR compared with controls. Basal glucose uptake was increased in adipocytes from the undernourished group, and the treatment with LY294002 induced only a partial inhibition both in basal and in insulin-stimulated glucose uptake, suggesting an involvement of phosphoinositide 3-kinase activity. These alterations were accompanied by higher GLUT4 content in the plasma membrane and alterations in the actin cytoskeleton dynamics. These data suggest that early postnatal undernutrition impairs insulin sensitivity in adulthood by promoting changes in critical steps of insulin signaling in adipose tissue, which may contribute to permanent changes in glucose homeostasis.
Collapse
Affiliation(s)
- Erica Patrícia Garcia-Souza
- Departament of Pharmacology, Institute of Biology, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, 20551-030, Brasil
| | | | | | | | | | | | | |
Collapse
|
45
|
Torre P, Ladaki C, Scirè G, Spadoni GL, Cianfarani S. Catch-up growth in body mass index is associated neither with reduced insulin sensitivity nor with altered lipid profile in children born small for gestational age. J Endocrinol Invest 2008; 31:760-4. [PMID: 18997486 DOI: 10.1007/bf03349254] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVE Low birth weight is a risk factor for coronary heart disease. Persons who have coronary events as adults tend to have been small at birth and thin at 2 yr of age, after which they tended to increase their body mass index (BMI). Our aim was to determine whether BMI gain is associated to alterations in insulin sensitivity and/or lipid profile in children born small for gestational age (SGA). DESIGN Retrospective case-control study. METHODS We studied 78 children (mean age 7.8+/-2.5 yr): 26 SGA children with catch-up growth in BMI (CGB-SGA) (BMI= 10th to 75th centile), 26 SGA without catch-up growth (NCGB-SGA) (BMI<10th centile), and 26 appropriate for gestational age (AGA) control children (BMI: 10th to 75th centile). For each CGB-SGA child, we selected an NCGB-SGA and an AGA child of the same gender, age (within 1 yr), and pubertal status. SGA children were also subdivided into 2 groups according to post-natal catch-up growth in height (CGH). RESULTS Glucose was significantly lower in NCGBSGA than AGA group (p=0.02). No significant differences in fasting insulin, fasting glucose/insulin ratio, homeostasis model assessment, quantitative insulin-sensitivity check index, and lipid profile were found among the 3 groups. HDL-cholesterol proved significantly reduced in SGA children with post-natal CGH (p=0.02). CONCLUSIONS Our findings do not support the hypothesis of early alterations in insulin sensitivity and lipid metabolism in CGB-SGA subjects during childhood provided that BMI remains within the normal range. Finally, the finding of reduced HDL-cholesterol levels in CGH-SGA children suggests detrimental metabolic effects of the height gain.
Collapse
Affiliation(s)
- P Torre
- Rina Balducci Center of Pediatric Endocrinology, Department of Public Health and Cell Biology, Tor Vergata University, Rome, Italy
| | | | | | | | | |
Collapse
|
46
|
Fraser A, Hughes R, McCarthy A, Tilling K, Davies D, Rumley A, Lowe GDO, Smith GD, Ben-Shlomo Y. Early life growth and hemostatic factors: the Barry Caerphilly Growth study. Am J Epidemiol 2008; 168:179-87. [PMID: 18495627 DOI: 10.1093/aje/kwn106] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Associations between early life growth trajectories and a range of adult (aged approximately 25 years) hemostatic factors were assessed in the Barry Caerphilly Growth study (N = 517) in South Wales, 1974-1999. Associations of birth weight, birth length, and weight and height velocities during three periods ("immediate": 0-<5 months, "infant": 5 months-<1 year 9 months, and "childhood": 1 year 9 months-5 years) with adult levels of hemostatic factors were assessed. Birth weight was inversely associated with fibrinogen (beta per 1-unit change in z score = -0.08, 95% confidence interval (CI): -0.15, -0.02). Immediate weight velocity was inversely associated with factor VII (beta = -1.88, 95% CI: -3.84, 0.09), factor VIII (beta = -2.58, 95% CI: -4.07, -0.45), and von Willebrand factor antigen (beta = -4.07, 95% CI: -7.25, -0.89). Birth length was inversely associated with fibrinogen (beta = -0.07, 95% CI: -0.14, -0.01). Evidence was weaker for an inverse association of immediate height velocity with factor VIII (beta = -2.16, 95% CI: -4.62, 0.29) and von Willebrand factor antigen (beta = -2.85, 95% CI: -6.52, 0.81). Childhood height velocity was positively associated with D-dimer (ratio of geometric means = 1.11, 95% CI: 1.01, 1.23). Results support the view that the immediate postnatal period may be particularly important, possibly through impaired liver development and/or infection in early life, in determining cardiovascular disease risk.
Collapse
Affiliation(s)
- A Fraser
- Department of Social Medicine, University of Bristol, Bristol, United Kingdom.
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Govic A, Kent S, Levay EA, Hazi A, Penman J, Paolini AG. Testosterone, social and sexual behavior of perinatally and lifelong calorie restricted offspring. Physiol Behav 2008; 94:516-22. [PMID: 18456293 DOI: 10.1016/j.physbeh.2008.03.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2007] [Revised: 02/22/2008] [Accepted: 03/12/2008] [Indexed: 11/17/2022]
Abstract
Calorie restriction (CR) during sensitive perinatal periods has consistently been demonstrated to alter the development of a variety of physiological systems, which consequently affect behavior. This study compared the social behavior and sexual behavior of the adult male offspring of mothers administered a 25% CR at one of four times in the perinatal period: a brief period preconception, during gestation, during lactation, or a lifelong restriction (beginning at conception and continuing throughout life). Levels of serum testosterone were also determined in these animals. Social interaction increased in the gestation and lifelong CR groups. The lifelong group also exhibited more dominant type behaviors. CR during preconception and lactation resulted in offspring that displayed an enhanced and more efficient copulatory pattern compared to all other conditions. This was demonstrated by a reduced frequency of intromissions, shorter latency to ejaculation, and a greater frequency of ejaculations by the preconception and lactation group compared to some, if not all of the other CR groups and controls. Serum testosterone was significantly higher in the preconception group compared to controls. These findings indicate that CR during specific periods of development can differentially alter the social behavioral phenotype and hormone levels in adulthood.
Collapse
Affiliation(s)
- Antonina Govic
- School of Psychological Science, La Trobe University, Bundoora, VIC 3086, Australia
| | | | | | | | | | | |
Collapse
|
48
|
Berthouly A, Helfenstein F, Tanner M, Richner H. Sex-related effects of maternal egg investment on offspring in relation to carotenoid availability in the great tit. J Anim Ecol 2008; 77:74-82. [PMID: 18177329 DOI: 10.1111/j.1365-2656.2007.01309.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
1. Maternal carotenoids in the egg yolk have been hypothesized to promote maturation of the immune system and protect against free radical damages. Depending on availability, mothers may thus influence offspring quality by depositing variable amounts of carotenoids into the eggs. Sex allocation theory predicts that in good quality environments, females should invest into offspring of the sex that will provide larger fitness return, generally males. 2. In a field experiment we tested whether female great tits bias their investment towards males when carotenoid availability is increased, and whether male offspring of carotenoid-supplemented mothers show higher body condition. We partially cross-fostered hatchlings to disentangle maternal effects from post-hatching effects, and manipulated hen flea Ceratophyllus gallinae infestation to investigate the relationship between carotenoid availability and resistance to ectoparasites. 3. As predicted, we found that carotenoid-supplemented mothers produced males that were heavier than their sisters at hatching, while the reverse was true for control mothers. This suggests that carotenoid availability during egg production affects male and female hatchlings differentially, possibly via a differential allocation to male and female eggs. 4. A main effect of maternal supplementation became visible 14 days after hatching when nestlings hatched from eggs laid by carotenoid-supplemented mothers had gained significantly more mass than control nestlings. Independently of the carotenoid treatment, fleas impaired mass gain of nestlings during the first 9 days in large broods only and reduced tarsus length of male nestlings at an age of 14 days, suggesting a cost to mount a defence against parasites. 5. Overall, our results suggest that pre-laying availability of carotenoids affects nestling condition in a sex-specific way with potentially longer-lasting effects on offspring fitness.
Collapse
Affiliation(s)
- Anne Berthouly
- Evolutionary Ecology Group, Zoological Institute, University of Bern, 3012 Bern, Switzerland.
| | | | | | | |
Collapse
|
49
|
Fraser A, Ebrahim S, Smith GD, Lawlor DA. The associations between birthweight and adult markers of liver damage and function. Paediatr Perinat Epidemiol 2008; 22:12-21. [PMID: 18173779 DOI: 10.1111/j.1365-3016.2007.00876.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Evidence suggesting an effect of fetal growth on liver development and function stems from both animal and human studies. The association of birthweight with adult markers of liver damage and function was examined in a random sample of 2101 British women aged 60-79 years. Age-adjusted natural logged levels of alanine aminotransferase (ALT) and gamma glutamyltransferase (GGT) decreased linearly across increasing thirds of birthweight. Alkaline phosphatase (ALP) levels were higher in women of the lowest third of the birthweight distribution compared with other women. No evidence was found for associations of birthweight with aspartate aminotransferase (AST), total bilirubin and albumin. After full adjustment for social class, physical activity, smoking and alcohol consumption, an increase in one standard deviation of birthweight (691 g) was associated with a 2% ([95% CI 0%, 4%], P = 0.021) decrease in the geometric mean of ALT, a 4% decrease in GGT ([95% CI 1%, 6%], P = 0.008) and a 2% decrease in ALP ([95% CI 0%, 3%], P = 0.001). Associations of birthweight with ALT and GGT, but not with ALP, were attenuated when adjusting for components of the metabolic syndrome. These findings suggest that factors affecting intrauterine growth may increase the propensity for adult liver damage. The attenuation of associations with adjustment for components of the metabolic syndrome is in line with non-alcoholic fatty liver disease, indicated by elevated ALT and GGT, being the hepatic manifestation of the metabolic syndrome, and of the influence of perinatal factors on this syndrome.
Collapse
Affiliation(s)
- Abigail Fraser
- Department of Social Medicine, University of Bristol, Bristol, UK.
| | | | | | | |
Collapse
|
50
|
Khan NA. Role of lipids and fatty acids in macrosomic offspring of diabetic pregnancy. Cell Biochem Biophys 2007; 48:79-88. [PMID: 17709877 DOI: 10.1007/s12013-007-0019-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 12/21/2022]
Abstract
Diabetic pregnancy frequently results in macrosomia or fetal obesity. It seems that the anomalies in carbohydrate and lipid metabolism in macrosomic infants of diabetic mothers are due to maternal hyperglycemia, which leads to fetal hyperinsulinemia. We have developed a rat model of macrosomic offspring and assessed the onset of obesity in these animals. The macrosomic offspring born to diabetic mothers are prone to the development of glucose intolerance and obesity as a function of age. It seems that in utero programming during diabetic pregnancy creates a "metabolic memory" which is responsible for the development of obesity in macrosomic offspring. We have demonstrated that the metabolism of lipids, and altered anti-oxidant status and immune system are implicated in the etiopathology of obesity in these animals. We have reported beneficial effects of n-3 polyunsaturated fatty acids (PUFAs) in obese animals, born to diabetic dams.
Collapse
Affiliation(s)
- Naim Akhtar Khan
- Department of Physiology, UPRES Lipides & Signalisation Cellulaire, Université de Bourgogne, Dijon, France.
| |
Collapse
|