1
|
Li ZK, Wang LB, Wang LY, Sun XH, Ren ZH, Ma SN, Zhao YL, Liu C, Feng GH, Liu T, Pan TS, Shan QT, Xu K, Luo GZ, Zhou Q, Li W. Adult bi-paternal offspring generated through direct modification of imprinted genes in mammals. Cell Stem Cell 2025; 32:361-374.e6. [PMID: 39879989 DOI: 10.1016/j.stem.2025.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/24/2024] [Accepted: 01/06/2025] [Indexed: 01/31/2025]
Abstract
Imprinting abnormalities pose a significant challenge in applications involving embryonic stem cells, induced pluripotent stem cells, and animal cloning, with no universal correction method owing to their complexity and stochastic nature. In this study, we targeted these defects at their source-embryos from same-sex parents-aiming to establish a stable, maintainable imprinting pattern de novo in mammalian cells. Using bi-paternal mouse embryos, which exhibit severe imprinting defects and are typically non-viable, we introduced frameshift mutations, gene deletions, and regulatory edits at 20 key imprinted loci, ultimately achieving the development of fully adult animals, albeit with a relatively low survival rate. The findings provide strong evidence that imprinting abnormalities are a primary barrier to unisexual reproduction in mammals. Moreover, this approach can significantly improve developmental outcomes for embryonic stem cells and cloned animals, opening promising avenues for advancements in regenerative medicine.
Collapse
Affiliation(s)
- Zhi-Kun Li
- State Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Bejing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China.
| | - Li-Bin Wang
- State Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Bejing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Le-Yun Wang
- State Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Bejing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Xue-Han Sun
- State Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ze-Hui Ren
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Si-Nan Ma
- State Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Yu-Long Zhao
- State Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao Liu
- State Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Bejing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Gui-Hai Feng
- State Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Bejing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Tao Liu
- Beijing SeqWisdom Biotechnology Co., Ltd., Beijing 100176, China
| | - Tian-Shi Pan
- State Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Qing-Tong Shan
- State Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Kai Xu
- State Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Bejing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Guan-Zheng Luo
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China.
| | - Qi Zhou
- State Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Bejing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China.
| | - Wei Li
- State Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Bejing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China.
| |
Collapse
|
2
|
Mattingly Z, Chetty S. Untangling the Molecular Mechanisms Contributing to Autism Spectrum Disorder Using Stem Cells. Autism Res 2025; 18:476-485. [PMID: 39989339 DOI: 10.1002/aur.70005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 02/06/2025] [Accepted: 02/08/2025] [Indexed: 02/25/2025]
Abstract
Autism spectrum disorder (ASD) is a complex neuro developmental condition characterized by significant genetic and phenotypic variability, making diagnosis and treatment challenging. The heterogeneity of ASD-associated genetic variants and the absence of clear causal factors in many cases complicate personalized care. Traditional models, such as postmortem brain tissue and animal studies, have provided valuable insights but are limited in capturing the dynamic processes and human-specific aspects of ASD pathology. Recent advances in human induced pluripotent stem cell (iPSC) technology have transformed ASD research by enabling the generation of patient-derived neural cells in both two-dimensional cultures and three-dimensional brain organoid models. These models retain the donor's genetic background, allowing researchers to investigate disease-specific cellular and molecular mechanisms while identifying potential therapeutic targets tailored to individual patients. This commentary highlights how stem cell-based approaches are advancing our understanding of ASD and paving the way for more personalized diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Zoe Mattingly
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Sundari Chetty
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
- Lurie Center for Autism, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
3
|
Smith A. Propagating pluripotency - The conundrum of self-renewal. Bioessays 2024; 46:e2400108. [PMID: 39180242 PMCID: PMC11589686 DOI: 10.1002/bies.202400108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/29/2024] [Accepted: 08/06/2024] [Indexed: 08/26/2024]
Abstract
The discovery of mouse embryonic stem cells in 1981 transformed research in mammalian developmental biology and functional genomics. The subsequent generation of human pluripotent stem cells (PSCs) and the development of molecular reprogramming have opened unheralded avenues for drug discovery and cell replacement therapy. Here, I review the history of PSCs from the perspective that long-term self-renewal is a product of the in vitro signaling environment, rather than an intrinsic feature of embryos. I discuss the relationship between pluripotent states captured in vitro to stages of epiblast in the embryo and suggest key considerations for evaluation of PSCs. A remaining fundamental challenge is to determine whether naïve pluripotency can be propagated from the broad range of mammals by exploiting common principles in gene regulatory architecture.
Collapse
Affiliation(s)
- Austin Smith
- Living Systems InstituteUniversity of ExeterExeterUK
| |
Collapse
|
4
|
Edri S, Rosenthal V, Ginsburg O, Newman Frisch A, Pierreux CE, Sharon N, Levenberg S. 3D model of mouse embryonic pancreas and endocrine compartment using stem cell-derived mesoderm and pancreatic progenitors. iScience 2024; 27:109959. [PMID: 38832019 PMCID: PMC11144751 DOI: 10.1016/j.isci.2024.109959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/21/2024] [Accepted: 05/08/2024] [Indexed: 06/05/2024] Open
Abstract
The developing mouse pancreas is surrounded by mesoderm compartments providing signals that induce pancreas formation. Most pancreatic organoid protocols lack this mesoderm niche and only partially capture the pancreatic cell repertoire. This work aims to generate pancreatic aggregates by differentiating mouse embryonic stem cells (mESCs) into mesoderm progenitors (MPs) and pancreas progenitors (PPs), without using Matrigel. First, mESCs were differentiated into epiblast stem cells (EpiSCs) to enhance the PP differentiation rate. Next, PPs and MPs aggregated together giving rise to various pancreatic cell types, including endocrine, acinar, and ductal cells, and to endothelial cells. Single-cell RNA sequencing analysis revealed a larger endocrine population within the PP + MP aggregates, as compared to PPs alone or PPs in Matrigel aggregates. The PP + MP aggregate gene expression signatures and its endocrine population percentage closely resembled those of the endocrine population found in the mouse embryonic pancreas, which holds promise for studying pancreas development.
Collapse
Affiliation(s)
- Shlomit Edri
- Faculty of Biomedical Engineering, Technion – Israel Institute of Technology, Haifa 3200003, Israel
| | - Vardit Rosenthal
- Faculty of Biomedical Engineering, Technion – Israel Institute of Technology, Haifa 3200003, Israel
| | - Or Ginsburg
- Faculty of Biomedical Engineering, Technion – Israel Institute of Technology, Haifa 3200003, Israel
| | - Abigail Newman Frisch
- Faculty of Biomedical Engineering, Technion – Israel Institute of Technology, Haifa 3200003, Israel
| | | | - Nadav Sharon
- Faculty of Biology, Technion – Israel Institute of Technology, Haifa 3200003, Israel
| | - Shulamit Levenberg
- Faculty of Biomedical Engineering, Technion – Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
5
|
Montibus B, Ragheb R, Diamanti E, Dunn SJ, Reynolds N, Hendrich B. The Nucleosome Remodelling and Deacetylation complex coordinates the transcriptional response to lineage commitment in pluripotent cells. Biol Open 2024; 13:bio060101. [PMID: 38149716 PMCID: PMC10836651 DOI: 10.1242/bio.060101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 12/18/2023] [Indexed: 12/28/2023] Open
Abstract
As cells exit the pluripotent state and begin to commit to a specific lineage they must activate genes appropriate for that lineage while silencing genes associated with pluripotency and preventing activation of lineage-inappropriate genes. The Nucleosome Remodelling and Deacetylation (NuRD) complex is essential for pluripotent cells to successfully undergo lineage commitment. NuRD controls nucleosome density at regulatory sequences to facilitate transcriptional responses, and also has been shown to prevent unscheduled transcription (transcriptional noise) in undifferentiated pluripotent cells. How these activities combine to ensure cells engage a gene expression program suitable for successful lineage commitment has not been determined. Here, we show that NuRD is not required to silence all genes. Rather, it restricts expression of genes primed for activation upon exit from the pluripotent state, but maintains them in a transcriptionally permissive state in self-renewing conditions, which facilitates their subsequent activation upon exit from naïve pluripotency. We further show that NuRD coordinates gene expression changes, which acts to maintain a barrier between different stable states. Thus NuRD-mediated chromatin remodelling serves multiple functions, including reducing transcriptional noise, priming genes for activation and coordinating the transcriptional response to facilitate lineage commitment.
Collapse
Affiliation(s)
- Bertille Montibus
- Wellcome – MRC Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, United Kingdom
| | - Ramy Ragheb
- Wellcome – MRC Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, United Kingdom
| | - Evangelia Diamanti
- Wellcome – MRC Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge CB2 0AW, UK
| | - Sara-Jane Dunn
- Microsoft Research, 21 Station Road, Cambridge CB1 2FB, UK
| | - Nicola Reynolds
- Wellcome – MRC Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, United Kingdom
| | - Brian Hendrich
- Wellcome – MRC Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, United Kingdom
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QR, UK
| |
Collapse
|
6
|
Wu Q, Zhou Z, Yan Z, Connel M, Garzo G, Yeo A, Zhang W, Su HI, Zhong S. A temporal extracellular transcriptome atlas of human pre-implantation development. CELL GENOMICS 2024; 4:100464. [PMID: 38216281 PMCID: PMC10794780 DOI: 10.1016/j.xgen.2023.100464] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/09/2023] [Accepted: 11/19/2023] [Indexed: 01/14/2024]
Abstract
Non-invasively evaluating gene expression products in human pre-implantation embryos remains a significant challenge. Here, we develop a non-invasive method for comprehensive characterization of the extracellular RNAs (exRNAs) in a single droplet of spent media that was used to culture human in vitro fertilization embryos. We generate the temporal extracellular transcriptome atlas (TETA) of human pre-implantation development. TETA consists of 245 exRNA sequencing datasets for five developmental stages. These data reveal approximately 4,000 exRNAs at each stage. The exRNAs of the developmentally arrested embryos are enriched with the genes involved in negative regulation of the cell cycle, revealing an exRNA signature of developmental arrest. Furthermore, a machine-learning model can approximate the morphology-based rating of embryo quality based on the exRNA levels. These data reveal the widespread presence of coding gene-derived exRNAs at every stage of human pre-implantation development, and these exRNAs provide rich information on the physiology of the embryo.
Collapse
Affiliation(s)
- Qiuyang Wu
- Shu Chien-Gene Ley Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Zixu Zhou
- Genemo, Inc., San Diego, CA 92130, USA
| | - Zhangming Yan
- Shu Chien-Gene Ley Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Megan Connel
- Reproductive Partners San Diego, La Jolla, CA 92037, USA
| | - Gabriel Garzo
- Reproductive Partners San Diego, La Jolla, CA 92037, USA
| | - Analisa Yeo
- Reproductive Partners San Diego, La Jolla, CA 92037, USA
| | - Wei Zhang
- Reproductive Partners San Diego, La Jolla, CA 92037, USA
| | - H Irene Su
- Reproductive Partners San Diego, La Jolla, CA 92037, USA; Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Sheng Zhong
- Shu Chien-Gene Ley Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA; Genemo, Inc., San Diego, CA 92130, USA.
| |
Collapse
|
7
|
Teague S, Yao L, Heemskerk I. The many dimensions of germline competence. Curr Opin Cell Biol 2023; 85:102259. [PMID: 37852152 PMCID: PMC11123554 DOI: 10.1016/j.ceb.2023.102259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/15/2023] [Accepted: 09/17/2023] [Indexed: 10/20/2023]
Abstract
Primordial germ cell (PGC) specification is the first step in the development of the germline. Recent work has elucidated human-mouse differences in PGC differentiation and identified cell states with enhanced competency for PGC-like cell (PGCLC) differentiation in vitro in both species. However, it remains a subject of debate how different PGC competent states in vitro relate to each other, to embryonic development, and to the origin of PGCs in vivo. Here we review recent literature on human PGCLC differentiation in the context of mouse and non-human primate models. In contrast to what was previously thought, recent work suggests human pluripotent stem cells (hPSCs) are highly germline competent. We argue that paradoxical observations regarding the origin and signaling requirements of hPGCLCs may be due to local cell interactions. These confound assays of competence by generating endogenous signaling gradients and spatially modulating the ability to receive exogenous inductive signals. Furthermore, combinatorial signaling suggests that there is no unique germline competent state: rather than a one-dimensional spectrum of developmental progression, competence should be considered in a higher dimensional landscape of cell states.
Collapse
Affiliation(s)
- Seth Teague
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - LiAng Yao
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Idse Heemskerk
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA; Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA; Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, USA; Center for Cell Plasticity and Organ Design, University of Michigan Medical School, Ann Arbor, MI, USA; Department of Physics, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
8
|
Perera M, Brickman JM. In vitro models of human hypoblast and mouse primitive endoderm. Curr Opin Genet Dev 2023; 83:102115. [PMID: 37783145 DOI: 10.1016/j.gde.2023.102115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/28/2023] [Accepted: 08/24/2023] [Indexed: 10/04/2023]
Abstract
The primitive endoderm (PrE, also named hypoblast), a predominantly extraembryonic epithelium that arises from the inner cell mass (ICM) of the mammalian pre-implantation blastocyst, plays a fundamental role in embryonic development, giving rise to the yolk sac, establishing the anterior-posterior axis and contributing to the gut. PrE is specified from the ICM at the same time as the epiblast (Epi) that will form the embryo proper. While in vitro cell lines resembling the pluripotent Epi have been derived from a variety of conditions, only one model system currently exists for the PrE, naïve extraembryonic endoderm (nEnd). As a result, considerably more is known about the gene regulatory networks and signalling requirements of pluripotent stem cells than nEnd. In this review, we describe the ontogeny and differentiation of the PrE or hypoblast in mouse and primate and then discuss in vitro cell culture models for different extraembryonic endodermal cell types.
Collapse
Affiliation(s)
- Marta Perera
- reNEW UCPH - The Novo Nordisk Foundation Center for Stem Cell Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark. https://twitter.com/@MartaPrera
| | - Joshua M Brickman
- reNEW UCPH - The Novo Nordisk Foundation Center for Stem Cell Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark.
| |
Collapse
|
9
|
Vaswani BK, Mundada BP, Bhola N, Paul P, Reche A, Ahuja KP. Stem-Cell Therapy: Filling Gaps in Oro-Maxillofacial Region. Cureus 2023; 15:e47171. [PMID: 38022051 PMCID: PMC10652057 DOI: 10.7759/cureus.47171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 10/14/2023] [Indexed: 12/01/2023] Open
Abstract
How do stem cells function? Why should we, as dentists, care about stem cells? How might dental procedures be substituted by stem cells? Are stem cells capable of regenerating a tooth or temporomandibular joint (TMJ)? Although the ability to regenerate a destroyed tissue has been known for a while, research into regenerative medicine and dentistry has made significant strides in molecular biology. A paradigm shift in the therapeutic toolbox for dental and oral diseases is likely to result from a growing understanding of biological concepts in the regeneration of oral/dental tissues along with stem cell research, leading to an intense search for "biological solutions to biological problems." Among other tissues, orofacial tissues effectively separate stem cells from human tissues. Because they can self-renew and produce different cell types, stem cells offer novel techniques for regenerating damaged tissues and curing illnesses. A number of significant milestone successes have shown their practical applicability, traditional biomaterial-based treatments in regenerative dentistry as therapeutic alternatives that offer regeneration of damaged oral tissues rather than merely "filling the gaps." In order to use these innovative accomplishments for patient well-being, the ultimate goal of this ground-breaking technology, well-designed clinical studies must be implemented as a crucial next step. The review's objective is to briefly synthesize the literature on stem cells in terms of their traits, subtypes, and uses for dental stem cells. It has been highlighted that stem cell therapy has the ability to treat craniofacial abnormalities and regenerate teeth in the oral and maxillofacial regions.
Collapse
Affiliation(s)
- Bhumika K Vaswani
- Public Health Dentistry, Sharad Pawar Dental College and Hospital, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Bhushan P Mundada
- Oral and Maxillofacial Surgery, Sharad Pawar Dental College and Hospital, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Nitin Bhola
- Oral and Maxillofacial Surgery, Sharad Pawar Dental College and Hospital, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Priyanka Paul
- Public Health Dentistry, Sharad Pawar Dental College and Hospital, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Amit Reche
- Public Health Dentistry, Sharad Pawar Dental College and Hospital, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Kajal P Ahuja
- Public Health Dentistry, Sharad Pawar Dental College and Hospital, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
10
|
Okamoto K, Fujita H, Okada Y, Shinkai S, Onami S, Abe K, Fujimoto K, Sasaki K, Shioi G, Watanabe TM. Single-molecule tracking of Nanog and Oct4 in living mouse embryonic stem cells uncovers a feedback mechanism of pluripotency maintenance. EMBO J 2023; 42:e112305. [PMID: 37609947 PMCID: PMC10505915 DOI: 10.15252/embj.2022112305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 06/13/2023] [Accepted: 06/22/2023] [Indexed: 08/24/2023] Open
Abstract
Nanog and Oct4 are core transcription factors that form part of a gene regulatory network to regulate hundreds of target genes for pluripotency maintenance in mouse embryonic stem cells (ESCs). To understand their function in the pluripotency maintenance, we visualised and quantified the dynamics of single molecules of Nanog and Oct4 in a mouse ESCs during pluripotency loss. Interestingly, Nanog interacted longer with its target loci upon reduced expression or at the onset of differentiation, suggesting a feedback mechanism to maintain the pluripotent state. The expression level and interaction time of Nanog and Oct4 correlate with their fluctuation and interaction frequency, respectively, which in turn depend on the ESC differentiation status. The DNA viscoelasticity near the Oct4 target locus remained flexible during differentiation, supporting its role either in chromatin opening or a preferred binding to uncondensed chromatin regions. Based on these results, we propose a new negative feedback mechanism for pluripotency maintenance via the DNA condensation state-dependent interplay of Nanog and Oct4.
Collapse
Affiliation(s)
- Kazuko Okamoto
- Laboratory for Comprehensive BioimagingRIKEN Center for Biosystems Dynamics Research (BDR)KobeJapan
- Amphibian Research CenterHiroshima UniversityHiroshimaJapan
| | - Hideaki Fujita
- Department of Stem Cell Biology, Research Institute for Radiation Biology and MedicineHiroshima UniversityHigashi‐HiroshimaJapan
| | - Yasushi Okada
- Laboratory for Cell Polarity RegulationRIKEN Center for Biosystems Dynamics Research (BDR)OsakaJapan
- Department of Cell BiologyGraduate School of Medicine, The University of TokyoTokyoJapan
- Department of PhysicsUniversal Biology Institute (UBI)Graduate School of Science, The University of TokyoTokyoJapan
- International Research Center for Neurointelligence (WPI‐IRCN)Institutes for Advanced Study, The University of TokyoTokyoJapan
| | - Soya Shinkai
- Laboratory for Developmental DynamicsRIKEN Center for Biosystems Dynamics Research (BDR)KobeJapan
- Research Center for the Mathematics on Chromatin Live Dynamics (RcMcD)Hiroshima UniversityHiroshimaJapan
| | - Shuichi Onami
- Laboratory for Developmental DynamicsRIKEN Center for Biosystems Dynamics Research (BDR)KobeJapan
| | - Kuniya Abe
- Technology and Development Team for Mammalian Genome DynamicsRIKEN BioResource Research Center (BRC)TsukubaJapan
| | - Kenta Fujimoto
- Department of Stem Cell Biology, Research Institute for Radiation Biology and MedicineHiroshima UniversityHigashi‐HiroshimaJapan
| | - Kensuke Sasaki
- Laboratory for Comprehensive BioimagingRIKEN Center for Biosystems Dynamics Research (BDR)KobeJapan
| | - Go Shioi
- Laboratory for Comprehensive BioimagingRIKEN Center for Biosystems Dynamics Research (BDR)KobeJapan
| | - Tomonobu M Watanabe
- Laboratory for Comprehensive BioimagingRIKEN Center for Biosystems Dynamics Research (BDR)KobeJapan
- Department of Stem Cell Biology, Research Institute for Radiation Biology and MedicineHiroshima UniversityHigashi‐HiroshimaJapan
| |
Collapse
|
11
|
Kohler TN, De Jonghe J, Ellermann AL, Yanagida A, Herger M, Slatery EM, Weberling A, Munger C, Fischer K, Mulas C, Winkel A, Ross C, Bergmann S, Franze K, Chalut K, Nichols J, Boroviak TE, Hollfelder F. Plakoglobin is a mechanoresponsive regulator of naive pluripotency. Nat Commun 2023; 14:4022. [PMID: 37419903 PMCID: PMC10329048 DOI: 10.1038/s41467-023-39515-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 06/09/2023] [Indexed: 07/09/2023] Open
Abstract
Biomechanical cues are instrumental in guiding embryonic development and cell differentiation. Understanding how these physical stimuli translate into transcriptional programs will provide insight into mechanisms underlying mammalian pre-implantation development. Here, we explore this type of regulation by exerting microenvironmental control over mouse embryonic stem cells. Microfluidic encapsulation of mouse embryonic stem cells in agarose microgels stabilizes the naive pluripotency network and specifically induces expression of Plakoglobin (Jup), a vertebrate homolog of β-catenin. Overexpression of Plakoglobin is sufficient to fully re-establish the naive pluripotency gene regulatory network under metastable pluripotency conditions, as confirmed by single-cell transcriptome profiling. Finally, we find that, in the epiblast, Plakoglobin was exclusively expressed at the blastocyst stage in human and mouse embryos - further strengthening the link between Plakoglobin and naive pluripotency in vivo. Our work reveals Plakoglobin as a mechanosensitive regulator of naive pluripotency and provides a paradigm to interrogate the effects of volumetric confinement on cell-fate transitions.
Collapse
Affiliation(s)
- Timo N Kohler
- Department of Biochemistry, University of Cambridge, Hopkins Building, Tennis Court Road, Cambridge, CB2 1QW, UK
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - Joachim De Jonghe
- Department of Biochemistry, University of Cambridge, Hopkins Building, Tennis Court Road, Cambridge, CB2 1QW, UK
| | - Anna L Ellermann
- Department of Biochemistry, University of Cambridge, Hopkins Building, Tennis Court Road, Cambridge, CB2 1QW, UK
| | - Ayaka Yanagida
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge, CB2 0AW, UK
- Department of Veterinary Anatomy, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
- Stem Cell Therapy Laboratory, Advanced Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Michael Herger
- Department of Biochemistry, University of Cambridge, Hopkins Building, Tennis Court Road, Cambridge, CB2 1QW, UK
| | - Erin M Slatery
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3DY, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, CB2 3EG, UK
| | - Antonia Weberling
- Department of Biochemistry, University of Cambridge, Hopkins Building, Tennis Court Road, Cambridge, CB2 1QW, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3DY, UK
| | - Clara Munger
- Department of Biochemistry, University of Cambridge, Hopkins Building, Tennis Court Road, Cambridge, CB2 1QW, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3DY, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, CB2 3EG, UK
| | - Katrin Fischer
- Department of Biochemistry, University of Cambridge, Hopkins Building, Tennis Court Road, Cambridge, CB2 1QW, UK
| | - Carla Mulas
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge, CB2 0AW, UK
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, SE1 1UL, UK
- Altos Labs, Cambridge Institute of Science, Cambridge, UK
| | - Alex Winkel
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3DY, UK
| | - Connor Ross
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge, CB2 0AW, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3DY, UK
- MRC Human Genetics Unit, Institute of Genetics and Cancer, The University of Edinburgh, Crewe Road, Edinburgh, EH4 2XU, UK
| | - Sophie Bergmann
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3DY, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, CB2 3EG, UK
| | - Kristian Franze
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3DY, UK
- Institute of Medical Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Henkestr. 91, 91052, Erlangen, Germany
- Max-Planck-Zentrum für Physik und Medizin, 91054, Erlangen, Germany
| | - Kevin Chalut
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge, CB2 0AW, UK
- Altos Labs, Cambridge Institute of Science, Cambridge, UK
| | - Jennifer Nichols
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge, CB2 0AW, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3DY, UK
- MRC Human Genetics Unit, Institute of Genetics and Cancer, The University of Edinburgh, Crewe Road, Edinburgh, EH4 2XU, UK
| | - Thorsten E Boroviak
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge, CB2 0AW, UK.
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3DY, UK.
- Centre for Trophoblast Research, University of Cambridge, Cambridge, CB2 3EG, UK.
| | - Florian Hollfelder
- Department of Biochemistry, University of Cambridge, Hopkins Building, Tennis Court Road, Cambridge, CB2 1QW, UK.
| |
Collapse
|
12
|
Dinarello A, Betto RM, Diamante L, Tesoriere A, Ghirardo R, Cioccarelli C, Meneghetti G, Peron M, Laquatra C, Tiso N, Martello G, Argenton F. STAT3 and HIF1α cooperatively mediate the transcriptional and physiological responses to hypoxia. Cell Death Discov 2023; 9:226. [PMID: 37407568 DOI: 10.1038/s41420-023-01507-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/04/2023] [Accepted: 06/20/2023] [Indexed: 07/07/2023] Open
Abstract
STAT3 and HIF1α are two fundamental transcription factors involved in many merging processes, like angiogenesis, metabolism, and cell differentiation. Notably, under pathological conditions, the two factors have been shown to interact genetically, but both the molecular mechanisms underlying such interactions and their relevance under physiological conditions remain unclear. In mouse embryonic stem cells (ESCs) we manage to determine the specific subset of hypoxia-induced genes that need STAT3 to be properly transcribed and, among them, fundamental genes like Vegfa, Hk1, Hk2, Pfkp and Hilpda are worth mentioning. Unexpectedly, we also demonstrated that the absence of STAT3 does not affect the expression of Hif1α mRNA nor the stabilization of HIF1α protein, but the STAT3-driven regulation of the hypoxia-dependent subset of gene could rely on the physical interaction between STAT3 and HIF1α. To further elucidate the physiological roles of this STAT3 non-canonical nuclear activity, we used a CRISPR/Cas9 zebrafish stat3 knock-out line. Notably, hypoxia-related fluorescence of the hypoxia zebrafish reporter line (HRE:mCherry) cannot be induced when Stat3 is not active and, while Stat3 Y705 phosphorylation seems to have a pivotal role in this process, S727 does not affect the Stat3-dependent hypoxia response. Hypoxia is fundamental for vascularization, angiogenesis and immune cells mobilization; all processes that, surprisingly, cannot be induced by low oxygen levels when Stat3 is genetically ablated. All in all, here we report the specific STAT3/HIF1α-dependent subset of genes in vitro and, for the first time with an in vivo model, we determined some of the physiological roles of STAT3-hypoxia crosstalk.
Collapse
Affiliation(s)
| | | | - Linda Diamante
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | | | | | | | | | | | - Claudio Laquatra
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Natascia Tiso
- Department of Biology, University of Padova, Padova, Italy
| | | | | |
Collapse
|
13
|
Suppinger S, Zinner M, Aizarani N, Lukonin I, Ortiz R, Azzi C, Stadler MB, Vianello S, Palla G, Kohler H, Mayran A, Lutolf MP, Liberali P. Multimodal characterization of murine gastruloid development. Cell Stem Cell 2023; 30:867-884.e11. [PMID: 37209681 PMCID: PMC10241222 DOI: 10.1016/j.stem.2023.04.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/16/2023] [Accepted: 04/25/2023] [Indexed: 05/22/2023]
Abstract
Gastruloids are 3D structures generated from pluripotent stem cells recapitulating fundamental principles of embryonic pattern formation. Using single-cell genomic analysis, we provide a resource mapping cell states and types during gastruloid development and compare them with the in vivo embryo. We developed a high-throughput handling and imaging pipeline to spatially monitor symmetry breaking during gastruloid development and report an early spatial variability in pluripotency determining a binary response to Wnt activation. Although cells in the gastruloid-core revert to pluripotency, peripheral cells become primitive streak-like. These two populations subsequently break radial symmetry and initiate axial elongation. By performing a compound screen, perturbing thousands of gastruloids, we derive a phenotypic landscape and infer networks of genetic interactions. Finally, using a dual Wnt modulation, we improve the formation of anterior structures in the existing gastruloid model. This work provides a resource to understand how gastruloids develop and generate complex patterns in vitro.
Collapse
Affiliation(s)
- Simon Suppinger
- Friedrich Miescher Institute for Biomedical Research (FMI), 4058 Basel, Switzerland; University of Basel, 4001 Basel, Switzerland
| | - Marietta Zinner
- Friedrich Miescher Institute for Biomedical Research (FMI), 4058 Basel, Switzerland
| | - Nadim Aizarani
- Friedrich Miescher Institute for Biomedical Research (FMI), 4058 Basel, Switzerland
| | - Ilya Lukonin
- Friedrich Miescher Institute for Biomedical Research (FMI), 4058 Basel, Switzerland; Roche Institute of Human Biology, 4058 Basel, Switzerland
| | - Raphael Ortiz
- Friedrich Miescher Institute for Biomedical Research (FMI), 4058 Basel, Switzerland
| | - Chiara Azzi
- Friedrich Miescher Institute for Biomedical Research (FMI), 4058 Basel, Switzerland; Babraham Institute, Cambridge CB22 3AT, UK
| | - Michael B Stadler
- Friedrich Miescher Institute for Biomedical Research (FMI), 4058 Basel, Switzerland; University of Basel, 4001 Basel, Switzerland; Swiss Institute of Bioinformatics, 4058 Basel, Switzerland
| | - Stefano Vianello
- School of Life Sciences, Federal Institute of Technology EPFL, 1015 Lausanne, Switzerland
| | - Giovanni Palla
- Institute of Computational Biology, Helmholtz Center Munich, 85764 Munich, Germany; TUM School of Life Sciences Weihenstephan, Technical University of Munich, 80333 Munich, Germany
| | - Hubertus Kohler
- Friedrich Miescher Institute for Biomedical Research (FMI), 4058 Basel, Switzerland
| | - Alexandre Mayran
- School of Life Sciences, Federal Institute of Technology EPFL, 1015 Lausanne, Switzerland
| | - Matthias P Lutolf
- Roche Institute of Human Biology, 4058 Basel, Switzerland; School of Life Sciences, Federal Institute of Technology EPFL, 1015 Lausanne, Switzerland
| | - Prisca Liberali
- Friedrich Miescher Institute for Biomedical Research (FMI), 4058 Basel, Switzerland; University of Basel, 4001 Basel, Switzerland.
| |
Collapse
|
14
|
Liu C, Sun L, Tan Y, Wang Q, Luo T, Li C, Yao N, Xie Y, Yi X, Zhu Y, Guo T, Ji J. USP7 represses lineage differentiation genes in mouse embryonic stem cells by both catalytic and noncatalytic activities. SCIENCE ADVANCES 2023; 9:eade3888. [PMID: 37196079 DOI: 10.1126/sciadv.ade3888] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 04/12/2023] [Indexed: 05/19/2023]
Abstract
USP7, a ubiquitin-specific peptidase (USP), plays an important role in many cellular processes through its catalytic deubiquitination of various substrates. However, its nuclear function that shapes the transcriptional network in mouse embryonic stem cells (mESCs) remains poorly understood. We report that USP7 maintains mESC identity through both catalytic activity-dependent and -independent repression of lineage differentiation genes. Usp7 depletion attenuates SOX2 levels and derepresses lineage differentiation genes thereby compromising mESC pluripotency. Mechanistically, USP7 deubiquitinates and stabilizes SOX2 to repress mesoendodermal (ME) lineage genes. Moreover, USP7 assembles into RYBP-variant Polycomb repressive complex 1 and contributes to Polycomb chromatin-mediated repression of ME lineage genes in a catalytic activity-dependent manner. USP7 deficiency in its deubiquitination function is able to maintain RYBP binding to chromatin for repressing primitive endoderm-associated genes. Our study demonstrates that USP7 harbors both catalytic and noncatalytic activities to repress different lineage differentiation genes, thereby revealing a previously unrecognized role in controlling gene expression for maintaining mESC identity.
Collapse
Affiliation(s)
- Chao Liu
- Center of Stem Cell and Regenerative Medicine, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining 314400, China
| | - Lingang Sun
- Center of Stem Cell and Regenerative Medicine, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yijun Tan
- Center of Stem Cell and Regenerative Medicine, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Qi Wang
- Center of Stem Cell and Regenerative Medicine, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Tao Luo
- Center of Stem Cell and Regenerative Medicine, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Chenlu Li
- Center of Stem Cell and Regenerative Medicine, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Nan Yao
- Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310030, China
- Center for Infectious Disease Research, Hangzhou 310030, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310030, China
| | - Yuting Xie
- Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310030, China
- Center for Infectious Disease Research, Hangzhou 310030, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310030, China
| | - Xiao Yi
- Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310030, China
- Center for Infectious Disease Research, Hangzhou 310030, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310030, China
| | - Yi Zhu
- Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310030, China
- Center for Infectious Disease Research, Hangzhou 310030, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310030, China
| | - Tiannan Guo
- Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310030, China
- Center for Infectious Disease Research, Hangzhou 310030, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310030, China
| | - Junfeng Ji
- Center of Stem Cell and Regenerative Medicine, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Institute of Hematology, Zhejiang University, Hangzhou 310058, China
- Department of Geriatrics, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
- Eye Center, The 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, Zhejiang 310009, China
| |
Collapse
|
15
|
Carbognin E, Carlini V, Panariello F, Chieregato M, Guerzoni E, Benvegnù D, Perrera V, Malucelli C, Cesana M, Grimaldi A, Mutarelli M, Carissimo A, Tannenbaum E, Kugler H, Hackett JA, Cacchiarelli D, Martello G. Esrrb guides naive pluripotent cells through the formative transcriptional programme. Nat Cell Biol 2023; 25:643-657. [PMID: 37106060 PMCID: PMC7614557 DOI: 10.1038/s41556-023-01131-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 03/15/2023] [Indexed: 04/29/2023]
Abstract
During embryonic development, naive pluripotent epiblast cells transit to a formative state. The formative epiblast cells form a polarized epithelium, exhibit distinct transcriptional and epigenetic profiles and acquire competence to differentiate into all somatic and germline lineages. However, we have limited understanding of how the transition to a formative state is molecularly controlled. Here we used murine embryonic stem cell models to show that ESRRB is both required and sufficient to activate formative genes. Genetic inactivation of Esrrb leads to illegitimate expression of mesendoderm and extra-embryonic markers, impaired formative expression and failure to self-organize in 3D. Functionally, this results in impaired ability to generate formative stem cells and primordial germ cells in the absence of Esrrb. Computational modelling and genomic analyses revealed that ESRRB occupies key formative genes in naive cells and throughout the formative state. In so doing, ESRRB kickstarts the formative transition, leading to timely and unbiased capacity for multi-lineage differentiation.
Collapse
Affiliation(s)
- Elena Carbognin
- Department of Molecular Medicine, Medical School, University of Padua, Padua, Italy
- Department of Biology, University of Padua, Padua, Italy
| | - Valentina Carlini
- Epigenetics & Neurobiology Unit, European Molecular Biology Laboratory (EMBL)-Rome, Adriano Buzzati-Traverso Campus, Rome, Italy
- Collaboration for joint PhD degree between EMBL and Heidelberg University, Faculty of Biosciences, Heidelberg, Germany
| | - Francesco Panariello
- Telethon Institute of Genetics and Medicine (TIGEM), Armenise/Harvard Laboratory of Integrative Genomics, Pozzuoli, Italy
| | | | - Elena Guerzoni
- Department of Biology, University of Padua, Padua, Italy
| | | | - Valentina Perrera
- Department of Molecular Medicine, Medical School, University of Padua, Padua, Italy
| | - Cristina Malucelli
- Department of Molecular Medicine, Medical School, University of Padua, Padua, Italy
| | - Marcella Cesana
- Telethon Institute of Genetics and Medicine (TIGEM), Armenise/Harvard Laboratory of Integrative Genomics, Pozzuoli, Italy
- Department of Advanced Biomedical Sciences, University of Naples 'Federico II', Naples, Italy
| | - Antonio Grimaldi
- Telethon Institute of Genetics and Medicine (TIGEM), Armenise/Harvard Laboratory of Integrative Genomics, Pozzuoli, Italy
| | - Margherita Mutarelli
- Telethon Institute of Genetics and Medicine (TIGEM), Armenise/Harvard Laboratory of Integrative Genomics, Pozzuoli, Italy
- Istituto di Scienze Applicate e Sistemi Intelligenti 'Eduardo Caianiello', Consiglio Nazionale delle Ricerche, Pozzuoli, Italy
| | - Annamaria Carissimo
- Telethon Institute of Genetics and Medicine (TIGEM), Armenise/Harvard Laboratory of Integrative Genomics, Pozzuoli, Italy
- Istituto per le Applicazioni del Calcolo 'Mauro Picone,' Consiglio Nazionale delle Ricerche, Naples, Italy
| | - Eitan Tannenbaum
- The Faculty of Engineering, Bar-Ilan University, Ramat Gan, Israel
| | - Hillel Kugler
- The Faculty of Engineering, Bar-Ilan University, Ramat Gan, Israel
| | - Jamie A Hackett
- Epigenetics & Neurobiology Unit, European Molecular Biology Laboratory (EMBL)-Rome, Adriano Buzzati-Traverso Campus, Rome, Italy.
| | - Davide Cacchiarelli
- Telethon Institute of Genetics and Medicine (TIGEM), Armenise/Harvard Laboratory of Integrative Genomics, Pozzuoli, Italy.
- Department of Translational Medicine, University of Naples 'Federico II', Naples, Italy.
- School for Advanced Studies, Genomics and Experimental Medicine Program, University of Naples 'Federico II', Naples, Italy.
| | | |
Collapse
|
16
|
Déjosez M, Marin A, Hughes GM, Morales AE, Godoy-Parejo C, Gray JL, Qin Y, Singh AA, Xu H, Juste J, Ibáñez C, White KM, Rosales R, Francoeur NJ, Sebra RP, Alcock D, Volkert TL, Puechmaille SJ, Pastusiak A, Frost SDW, Hiller M, Young RA, Teeling EC, García-Sastre A, Zwaka TP. Bat pluripotent stem cells reveal unusual entanglement between host and viruses. Cell 2023; 186:957-974.e28. [PMID: 36812912 PMCID: PMC10085545 DOI: 10.1016/j.cell.2023.01.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/06/2022] [Accepted: 01/09/2023] [Indexed: 02/23/2023]
Abstract
Bats are distinctive among mammals due to their ability to fly, use laryngeal echolocation, and tolerate viruses. However, there are currently no reliable cellular models for studying bat biology or their response to viral infections. Here, we created induced pluripotent stem cells (iPSCs) from two species of bats: the wild greater horseshoe bat (Rhinolophus ferrumequinum) and the greater mouse-eared bat (Myotis myotis). The iPSCs from both bat species showed similar characteristics and had a gene expression profile resembling that of cells attacked by viruses. They also had a high number of endogenous viral sequences, particularly retroviruses. These results suggest that bats have evolved mechanisms to tolerate a large load of viral sequences and may have a more intertwined relationship with viruses than previously thought. Further study of bat iPSCs and their differentiated progeny will provide insights into bat biology, virus host relationships, and the molecular basis of bats' special traits.
Collapse
Affiliation(s)
- Marion Déjosez
- Huffington Center for Cell-Based Research in Parkinson's disease, Icahn School of Medicine at Mount Sinai, New York, NY 10502, USA; Department of Cell, Developmental, and Regenerative Biology, and Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10502, USA; Paratus Sciences, 430 East 29th Street, Suite 600, New York, NY 10016, USA
| | - Arturo Marin
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Graham M Hughes
- School of Biology and Environmental Science, University College Dublin, Ireland
| | - Ariadna E Morales
- Senckenberg Research Institute, Senckenberganlage 25, 60325 Frankfurt, Germany; Faculty of Biosciences, Goethe University, Max-von-Laue-Str, 60438 Frankfurt, Germany
| | - Carlos Godoy-Parejo
- Huffington Center for Cell-Based Research in Parkinson's disease, Icahn School of Medicine at Mount Sinai, New York, NY 10502, USA; Department of Cell, Developmental, and Regenerative Biology, and Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10502, USA
| | - Jonathan L Gray
- Huffington Center for Cell-Based Research in Parkinson's disease, Icahn School of Medicine at Mount Sinai, New York, NY 10502, USA; Department of Cell, Developmental, and Regenerative Biology, and Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10502, USA
| | - Yiren Qin
- Huffington Center for Cell-Based Research in Parkinson's disease, Icahn School of Medicine at Mount Sinai, New York, NY 10502, USA; Department of Cell, Developmental, and Regenerative Biology, and Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10502, USA
| | - Arun A Singh
- Huffington Center for Cell-Based Research in Parkinson's disease, Icahn School of Medicine at Mount Sinai, New York, NY 10502, USA; Department of Cell, Developmental, and Regenerative Biology, and Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10502, USA
| | - Hui Xu
- Huffington Center for Cell-Based Research in Parkinson's disease, Icahn School of Medicine at Mount Sinai, New York, NY 10502, USA; Department of Cell, Developmental, and Regenerative Biology, and Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10502, USA
| | - Javier Juste
- Estación biológica de doñana (CSIC), Avda. Américo Vespucio 26, Seville 41092, Spain; CIBER Epidemiology and Public Health, CIBERESP, Madrid, Spain
| | - Carlos Ibáñez
- Estación biológica de doñana (CSIC), Avda. Américo Vespucio 26, Seville 41092, Spain
| | - Kris M White
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Romel Rosales
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | - Robert P Sebra
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Icahn Institute for Genomics, New York, NY, USA
| | - Dominic Alcock
- School of Biology and Environmental Science, University College Dublin, Ireland
| | - Thomas L Volkert
- Paratus Sciences, 430 East 29th Street, Suite 600, New York, NY 10016, USA
| | | | - Andrzej Pastusiak
- Microsoft Premonition, Microsoft Building 99, 14820 NE 36th Street, Redmond, WA 98052, USA
| | - Simon D W Frost
- Microsoft Premonition, Microsoft Building 99, 14820 NE 36th Street, Redmond, WA 98052, USA; Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Michael Hiller
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberganlage 25, 60325 Frankfurt, Germany; Senckenberg Research Institute, Senckenberganlage 25, 60325 Frankfurt, Germany; Faculty of Biosciences, Goethe University, Max-von-Laue-Str, 60438 Frankfurt, Germany
| | - Richard A Young
- Whitehead Institute for Biomedical Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Emma C Teeling
- School of Biology and Environmental Science, University College Dublin, Ireland.
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Pathology, Molecular and Cell-Based Medicine and the Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Thomas P Zwaka
- Huffington Center for Cell-Based Research in Parkinson's disease, Icahn School of Medicine at Mount Sinai, New York, NY 10502, USA; Department of Cell, Developmental, and Regenerative Biology, and Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10502, USA; Paratus Sciences, 430 East 29th Street, Suite 600, New York, NY 10016, USA.
| |
Collapse
|
17
|
Baral I, Shirude MB, Jothi DL, Mukherjee A, Dutta D. Characterization of a Distinct State in the Continuum of Pluripotency Facilitated by Inhibition of PKCζ in Mouse Embryonic Stem Cells. Stem Cell Rev Rep 2023; 19:1098-1115. [PMID: 36781773 DOI: 10.1007/s12015-023-10513-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2023] [Indexed: 02/15/2023]
Abstract
Inhibition of PKC (PKCi) signaling maintains pluripotency of embryonic stem cells (ESCs) across different mammalian species. However, the position of PKCi maintained ESCs in the pluripotency continuum is largely unknown. Here we demonstrate that mouse ESCs when cultured continuously, with PKCi, for 75 days are retained in naïve state of pluripotency. Gene expression analysis and proteomics studies demonstrated enhanced naïve character of PKCi maintained ESCs in comparison to classical serum/LIF (S/L) supported ESCs. Molecular analysis revealed that activation of PKCζ isoform associate with primed state of pluripotency, present in epiblast-like stem cells generated in vitro while inhibition of PKCζ phosphorylation associated with naïve state of pluripotency in vitro and in vivo. Phosphoproteomics and chromatin modification enzyme array based studies showed loss in DNA methyl transferase 3B (DNMT3B) and its phosphorylation level upon functional inhibition of PKCζ as one of the crucial components of this regulatory pathway. Unlike ground state of pluripotency maintained by MEK/GSK3 inhibitor in addition to LIF (2i/LIF), loss in DNMT3B is a reversible phenomenon in PKCi maintained ESCs. Absence of phosphorylation of c-MYC, RAF1, SPRY4 while presence of ERF, DUSP6, CIC and YAP1 phosphorylation underlined the phosphoproteomics signature of PKCi mediated maintenance of naïve pluripotency. States of pluripotency represent the developmental continuum and the existence of PKCi mediated mouse ESCs in a distinct state in the continuum of pluripotency (DiSCo) might contribute to the establishment of stages of murine embryonic development that were non-permissible till date.
Collapse
Affiliation(s)
- Ishita Baral
- Regenerative Biology Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, 695014, Kerala, India.,Manipal Academy of Higher Education, Karnataka State, Manipal, 576104, India
| | - Mayur Balkrishna Shirude
- Regenerative Biology Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, 695014, Kerala, India.,Manipal Academy of Higher Education, Karnataka State, Manipal, 576104, India
| | - Dhana Lakshmi Jothi
- Regenerative Biology Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, 695014, Kerala, India
| | - Ananda Mukherjee
- Cancer Biology Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, 695014, Kerala, India
| | - Debasree Dutta
- Regenerative Biology Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, 695014, Kerala, India.
| |
Collapse
|
18
|
Correia B, Sousa MI, Branco AF, Rodrigues AS, Ramalho-Santos J. Leucine and Arginine Availability Modulate Mouse Embryonic Stem Cell Proliferation and Metabolism. Int J Mol Sci 2022; 23:ijms232214286. [PMID: 36430764 PMCID: PMC9694364 DOI: 10.3390/ijms232214286] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 11/19/2022] Open
Abstract
Amino acids are crucial nutrients involved in several cellular and physiological processes, including fertilization and early embryo development. In particular, Leucine and Arginine have been shown to stimulate implantation, as lack of both in a blastocyst culture system is able to induce a dormant state in embryos. The aim of this work was to evaluate the effects of Leucine and Arginine withdrawal on pluripotent mouse embryonic stem cell status, notably, their growth, self-renewal, as well as glycolytic and oxidative metabolism. Our results show that the absence of both Leucine and Arginine does not affect mouse embryonic stem cell pluripotency, while reducing cell proliferation through cell-cycle arrest. Importantly, these effects are not related to Leukemia Inhibitory Factor (LIF) and are reversible when both amino acids are reconstituted in the culture media. Moreover, a lack of these amino acids is related to a reduction in glycolytic and oxidative metabolism and decreased protein translation in mouse embryonic stem cells (mESCs), while maintaining their pluripotent status.
Collapse
Affiliation(s)
- Bibiana Correia
- Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
- CNC—Center for Neuroscience and Cell Biology, CIBB, University of Coimbra, Azinhaga de Santa Comba, Polo 3, 3000-354 Coimbra, Portugal
| | - Maria Inês Sousa
- Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
- CNC—Center for Neuroscience and Cell Biology, CIBB, University of Coimbra, Azinhaga de Santa Comba, Polo 3, 3000-354 Coimbra, Portugal
| | - Ana Filipa Branco
- CNC—Center for Neuroscience and Cell Biology, CIBB, University of Coimbra, Azinhaga de Santa Comba, Polo 3, 3000-354 Coimbra, Portugal
| | - Ana Sofia Rodrigues
- CNC—Center for Neuroscience and Cell Biology, CIBB, University of Coimbra, Azinhaga de Santa Comba, Polo 3, 3000-354 Coimbra, Portugal
| | - João Ramalho-Santos
- Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
- CNC—Center for Neuroscience and Cell Biology, CIBB, University of Coimbra, Azinhaga de Santa Comba, Polo 3, 3000-354 Coimbra, Portugal
- Correspondence:
| |
Collapse
|
19
|
Kale HT, Rajpurohit RS, Jana D, Vishnu VV, Srivastava M, Mourya PR, Srinivas G, Shekar PC. A NANOG‐pERK reciprocal regulatory circuit regulates
Nanog
autoregulation and ERK signaling dynamics. EMBO Rep 2022; 23:e54421. [PMID: 36066347 PMCID: PMC9638859 DOI: 10.15252/embr.202154421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 08/09/2022] [Accepted: 08/17/2022] [Indexed: 11/29/2022] Open
Abstract
The self‐renewal and differentiation potential of embryonic stem cells (ESCs) is maintained by the regulated expression of core pluripotency factors. Expression levels of the core pluripotency factor Nanog are tightly regulated by a negative feedback autorepression loop. However, it remains unclear how ESCs perceive NANOG levels and execute autorepression. Here, we show that a dose‐dependent induction of Fgfbp1 and Fgfr2 by NANOG activates autocrine‐mediated ERK signaling in Nanog‐high cells to trigger autorepression. pERK recruits NONO to the Nanog locus to repress transcription by preventing POL2 loading. This Nanog autorepression process establishes a self‐perpetuating reciprocal NANOG‐pERK regulatory circuit. We further demonstrate that this reciprocal regulatory circuit induces pERK heterogeneity and ERK signaling dynamics in pluripotent stem cells. Collectively our data suggest that NANOG induces Fgfr2 and Fgfbp1 to activate ERK signaling in Nanog‐high cells to establish a NANOG‐pERK reciprocal regulatory circuit. This circuit regulates ERK signaling dynamics and Nanog autoregulation in pluripotent cells.
Collapse
Affiliation(s)
- Hanuman T Kale
- CSIR‐Centre for Cellular and Molecular Biology Hyderabad India
| | | | - Debabrata Jana
- CSIR‐Centre for Cellular and Molecular Biology Hyderabad India
| | - Vijay V Vishnu
- CSIR‐Centre for Cellular and Molecular Biology Hyderabad India
| | - Mansi Srivastava
- CSIR‐Centre for Cellular and Molecular Biology Hyderabad India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad India
| | - Preeti R Mourya
- CSIR‐Centre for Cellular and Molecular Biology Hyderabad India
| | - Gunda Srinivas
- CSIR‐Centre for Cellular and Molecular Biology Hyderabad India
| | - P Chandra Shekar
- CSIR‐Centre for Cellular and Molecular Biology Hyderabad India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad India
| |
Collapse
|
20
|
Sandoval AGW, Maden M, Bates LE, Silva JC. Tumor suppressors inhibit reprogramming of African spiny mouse ( Acomys) fibroblasts to induced pluripotent stem cells. Wellcome Open Res 2022; 7:215. [PMID: 36060301 PMCID: PMC9437536 DOI: 10.12688/wellcomeopenres.18034.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2022] [Indexed: 12/15/2022] Open
Abstract
Background: The African spiny mouse ( Acomys) is an emerging mammalian model for scar-free regeneration, and further study of Acomys could advance the field of regenerative medicine. Isolation of pluripotent stem cells from Acomys would allow for development of transgenic or chimeric animals and in vitro study of regeneration; however, the reproductive biology of Acomys is not well characterized, complicating efforts to derive embryonic stem cells. Thus, we sought to generate Acomys induced pluripotent stem cells (iPSCs) by reprogramming somatic cells back to pluripotency. Methods: To generate Acomys iPSCs, we attempted to adapt established protocols developed in Mus. We utilized a PiggyBac transposon system to genetically modify Acomys fibroblasts to overexpress the Yamanaka reprogramming factors as well as mOrange fluorescent protein under the control of a doxycycline-inducible TetON operon system. Results: Reprogramming factor overexpression caused Acomys fibroblasts to undergo apoptosis or senescence. When SV40 Large T antigen (SV40 LT) was added to the reprogramming cocktail, Acomys cells were able to dedifferentiate into pre-iPSCs. Although use of 2iL culture conditions induced formation of colonies resembling Mus PSCs, these Acomys iPS-like cells lacked pluripotency marker expression and failed to form embryoid bodies. An EOS-GiP system was unsuccessful in selecting for bona fide Acomys iPSCs; however, inclusion of Nanog in the reprogramming cocktail along with 5-azacytidine in the culture medium allowed for generation of Acomys iPSC-like cells with increased expression of several naïve pluripotency markers. Conclusions: There are significant roadblocks to reprogramming Acomys cells, necessitating future studies to determine Acomys-specific reprogramming factor and/or culture condition requirements. The requirement for SV40 LT during Acomys dedifferentiation may suggest that tumor suppressor pathways play an important role in Acomys regeneration and that Acomys may possess unreported cancer resistance.
Collapse
Affiliation(s)
- Aaron Gabriel W. Sandoval
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, CB2 0AW, UK
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1GA, UK
- Department of Biology & UF Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Malcolm Maden
- Department of Biology & UF Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Lawrence E. Bates
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, CB2 0AW, UK
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1GA, UK
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Jose C.R. Silva
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, CB2 0AW, UK
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1GA, UK
- Guangzhou Laboratory, Guangzhou International Bio Island, Guangzhou 510005, Guangdong Province, China
| |
Collapse
|
21
|
Wang X, Wu Q. The Divergent Pluripotent States in Mouse and Human Cells. Genes (Basel) 2022; 13:genes13081459. [PMID: 36011370 PMCID: PMC9408542 DOI: 10.3390/genes13081459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/12/2022] [Accepted: 06/16/2022] [Indexed: 11/17/2022] Open
Abstract
Pluripotent stem cells (PSCs), which can self-renew and give rise to all cell types in all three germ layers, have great potential in regenerative medicine. Recent studies have shown that PSCs can have three distinct but interrelated pluripotent states: naive, formative, and primed. The PSCs of each state are derived from different stages of the early developing embryo and can be maintained in culture by different molecular mechanisms. In this review, we summarize the current understanding on features of the three pluripotent states and review the underlying molecular mechanisms of maintaining their identities. Lastly, we discuss the interrelation and transition among these pluripotency states. We believe that comprehending the divergence of pluripotent states is essential to fully harness the great potential of stem cells in regenerative medicine.
Collapse
Affiliation(s)
| | - Qiang Wu
- Correspondence: ; Tel.: +853-8897-2708
| |
Collapse
|
22
|
Brookes O, Thorpe SD, Rigby Evans O, Keeling MC, Lee DA. Covariation of Pluripotency Markers and Biomechanical Properties in Mouse Embryonic Stem Cells. Front Cell Dev Biol 2022; 10:858884. [PMID: 35652102 PMCID: PMC9149596 DOI: 10.3389/fcell.2022.858884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 04/20/2022] [Indexed: 12/01/2022] Open
Abstract
Pluripotent cells are subject to much interest as a source of differentiated cellular material for research models, regenerative medical therapies and novel applications such as lab-cultured meat. Greater understanding of the pluripotent state and control over its differentiation is therefore desirable. The role of biomechanical properties in directing cell fate and cell behavior has been increasingly well described in recent years. However, many of the mechanisms which control cell morphology and mechanical properties in somatic cells are absent from pluripotent cells. We leveraged naturally occurring variation in biomechanical properties and expression of pluripotency genes in murine ESCs to investigate the relationship between these parameters. We observed considerable variation in a Rex1-GFP expression reporter line and found that this variation showed no apparent correlation to cell spreading morphology as determined by circularity, Feret ratio, phase contrast brightness or cell spread area, either on a parameter-by-parameter basis, or when evaluated using a combined metric derived by principal component analysis from the four individual criteria. We further confirmed that cell volume does not co-vary with Rex1-GFP expression. Interestingly, we did find that a subpopulation of cells that were readily detached by gentle agitation collectively exhibited higher expression of Nanog, and reduced LmnA expression, suggesting that elevated pluripotency gene expression may correlate with reduced adhesion to the substrate. Furthermore, atomic force microscopy and quantitative fluorescent imaging revealed a connection between cell stiffness and Rex1-GFP reporter expression. Cells expressing high levels of Rex1-GFP are consistently of a relatively low stiffness, while cells with low levels of Rex1-GFP tend toward higher stiffness values. These observations indicate some interaction between pluripotency gene expression and biomechanical properties, but also support a strong role for other interactions between the cell culture regime and cellular biomechanical properties, occurring independently of the core transcriptional network that supports pluripotency.
Collapse
Affiliation(s)
- Oliver Brookes
- School of Engineering and Materials Science, Queen Mary University of London, London, United Kingdom
| | - Stephen D. Thorpe
- School of Engineering and Materials Science, Queen Mary University of London, London, United Kingdom
- UCD School of Medicine, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Olga Rigby Evans
- School of Engineering and Materials Science, Queen Mary University of London, London, United Kingdom
| | - Michael C. Keeling
- School of Engineering and Materials Science, Queen Mary University of London, London, United Kingdom
| | - David A. Lee
- School of Engineering and Materials Science, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
23
|
Beth Payne L, Tewari BP, Dunkenberger L, Bond S, Savelli A, Darden J, Zhao H, Willi C, Kanodia R, Gude R, Powell MD, Oestreich KJ, Sontheimer H, Dal-Pra S, Chappell JC. Pericyte Progenitor Coupling to the Emerging Endothelium During Vasculogenesis via Connexin 43. Arterioscler Thromb Vasc Biol 2022; 42:e96-e114. [PMID: 35139658 PMCID: PMC8957572 DOI: 10.1161/atvbaha.121.317324] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 01/24/2022] [Indexed: 01/23/2023]
Abstract
BACKGROUND Vascular pericytes stabilize blood vessels and contribute to their maturation, while playing other key roles in microvascular function. Nevertheless, relatively little is known about involvement of their precursors in the earliest stages of vascular development, specifically during vasculogenesis. METHODS We combined high-power, time-lapse imaging with transcriptional profiling of emerging pericytes and endothelial cells in reporter mouse and cell lines. We also analyzed conditional transgenic animals deficient in Cx43/Gja1 (connexin 43/gap junction alpha-1) expression within Ng2+ cells. RESULTS A subset of Ng2-DsRed+ cells, likely pericyte/mural cell precursors, arose alongside endothelial cell differentiation and organization and physically engaged vasculogenic endothelium in vivo and in vitro. We found no overlap between this population of differentiating pericyte/mural progenitors and other lineages including hemangiogenic and neuronal/glial cell types. We also observed cell-cell coupling and identified Cx43-based gap junctions contributing to pericyte-endothelial cell precursor communication during vascular assembly. Genetic loss of Cx43/Gja1 in Ng2+ pericyte progenitors compromised embryonic blood vessel formation in a subset of animals, while surviving mutants displayed little-to-no vessel abnormalities, suggesting a resilience to Cx43/Gja1 loss in Ng2+ cells or potential compensation by additional connexin isoforms. CONCLUSIONS Together, our data suggest that a distinct pericyte lineage emerges alongside vasculogenesis and directly communicates with the nascent endothelium via Cx43 during early vessel formation. Cx43/Gja1 loss in pericyte/mural cell progenitors can induce embryonic vessel dysmorphogenesis, but alternate connexin isoforms may be able to compensate. These data provide insight that may reshape the current framework of vascular development and may also inform tissue revascularization/vascularization strategies.
Collapse
Affiliation(s)
- Laura Beth Payne
- Center for Vascular and Heart Research, Fralin Biomedical Research Institute at Virginia Tech-Carilion, Roanoke, VA 24016, USA
| | - Bhanu P. Tewari
- Department of Neuroscience, University of Virginia, Charlottesville, VA 22903, USA
| | - Logan Dunkenberger
- Center for Vascular and Heart Research, Fralin Biomedical Research Institute at Virginia Tech-Carilion, Roanoke, VA 24016, USA
| | - Samantha Bond
- Center for Vascular and Heart Research, Fralin Biomedical Research Institute at Virginia Tech-Carilion, Roanoke, VA 24016, USA
| | - Alyssa Savelli
- Center for Vascular and Heart Research, Fralin Biomedical Research Institute at Virginia Tech-Carilion, Roanoke, VA 24016, USA
- Virginia Tech Carilion School of Medicine, Roanoke, VA 24016, USA
| | - Jordan Darden
- Center for Vascular and Heart Research, Fralin Biomedical Research Institute at Virginia Tech-Carilion, Roanoke, VA 24016, USA
- Graduate Program in Translational Biology, Medicine and Health, Virginia Tech, Blacksburg, VA 24061, USA
| | - Huaning Zhao
- Center for Vascular and Heart Research, Fralin Biomedical Research Institute at Virginia Tech-Carilion, Roanoke, VA 24016, USA
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA 24061, USA
| | - Caroline Willi
- Center for Vascular and Heart Research, Fralin Biomedical Research Institute at Virginia Tech-Carilion, Roanoke, VA 24016, USA
| | - Ronak Kanodia
- Center for Vascular and Heart Research, Fralin Biomedical Research Institute at Virginia Tech-Carilion, Roanoke, VA 24016, USA
| | - Rosalie Gude
- Center for Vascular and Heart Research, Fralin Biomedical Research Institute at Virginia Tech-Carilion, Roanoke, VA 24016, USA
| | - Michael D. Powell
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Kenneth J. Oestreich
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Harald Sontheimer
- Department of Neuroscience, University of Virginia, Charlottesville, VA 22903, USA
| | - Sophie Dal-Pra
- Division of Cardiovascular Medicine and Mandel Center for Hypertension Research and Division of Cardiovascular Medicine, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - John C. Chappell
- Center for Vascular and Heart Research, Fralin Biomedical Research Institute at Virginia Tech-Carilion, Roanoke, VA 24016, USA
- Virginia Tech Carilion School of Medicine, Roanoke, VA 24016, USA
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
24
|
Yeh CY, Huang WH, Chen HC, Meir YJJ. Capturing Pluripotency and Beyond. Cells 2021; 10:cells10123558. [PMID: 34944066 PMCID: PMC8700150 DOI: 10.3390/cells10123558] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 11/16/2022] Open
Abstract
During the development of a multicellular organism, the specification of different cell lineages originates in a small group of pluripotent cells, the epiblasts, formed in the preimplantation embryo. The pluripotent epiblast is protected from premature differentiation until exposure to inductive cues in strictly controlled spatially and temporally organized patterns guiding fetus formation. Epiblasts cultured in vitro are embryonic stem cells (ESCs), which recapitulate the self-renewal and lineage specification properties of their endogenous counterparts. The characteristics of totipotency, although less understood than pluripotency, are becoming clearer. Recent studies have shown that a minor ESC subpopulation exhibits expanded developmental potential beyond pluripotency, displaying a characteristic reminiscent of two-cell embryo blastomeres (2CLCs). In addition, reprogramming both mouse and human ESCs in defined media can produce expanded/extended pluripotent stem cells (EPSCs) similar to but different from 2CLCs. Further, the molecular roadmaps driving the transition of various potency states have been clarified. These recent key findings will allow us to understand eutherian mammalian development by comparing the underlying differences between potency network components during development. Using the mouse as a paradigm and recent progress in human PSCs, we review the epiblast's identity acquisition during embryogenesis and their ESC counterparts regarding their pluripotent fates and beyond.
Collapse
Affiliation(s)
- Chih-Yu Yeh
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (C.-Y.Y.); (W.-H.H.)
| | - Wei-Han Huang
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (C.-Y.Y.); (W.-H.H.)
| | - Hung-Chi Chen
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (C.-Y.Y.); (W.-H.H.)
- Limbal Stem Cell Laboratory, Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou 333, Taiwan
- Correspondence: (H.-C.C.); (Y.-J.J.M.)
| | - Yaa-Jyuhn James Meir
- Limbal Stem Cell Laboratory, Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou 333, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Correspondence: (H.-C.C.); (Y.-J.J.M.)
| |
Collapse
|
25
|
Jiang Z, Generoso SF, Badia M, Payer B, Carey LB. A conserved expression signature predicts growth rate and reveals cell & lineage-specific differences. PLoS Comput Biol 2021; 17:e1009582. [PMID: 34762642 PMCID: PMC8610284 DOI: 10.1371/journal.pcbi.1009582] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 11/23/2021] [Accepted: 10/21/2021] [Indexed: 12/23/2022] Open
Abstract
Isogenic cells cultured together show heterogeneity in their proliferation rate. To determine the differences between fast and slow-proliferating cells, we developed a method to sort cells by proliferation rate, and performed RNA-seq on slow and fast proliferating subpopulations of pluripotent mouse embryonic stem cells (mESCs) and mouse fibroblasts. We found that slowly proliferating mESCs have a more naïve pluripotent character. We identified an evolutionarily conserved proliferation-correlated transcriptomic signature that is common to all eukaryotes: fast cells have higher expression of genes for protein synthesis and protein degradation. This signature accurately predicted growth rate in yeast and cancer cells, and identified lineage-specific proliferation dynamics during development, using C. elegans scRNA-seq data. In contrast, sorting by mitochondria membrane potential revealed a highly cell-type specific mitochondria-state related transcriptome. mESCs with hyperpolarized mitochondria are fast proliferating, while the opposite is true for fibroblasts. The mitochondrial electron transport chain inhibitor antimycin affected slow and fast subpopulations differently. While a major transcriptional-signature associated with cell-to-cell heterogeneity in proliferation is conserved, the metabolic and energetic dependency of cell proliferation is cell-type specific. By performing RNA sequencing on cells sorted by their proliferation rate, this study identifies a gene expression signature capable of predicting proliferation rates in diverse eukaryotic cell types and species. This signature, applied to single-cell RNA sequencing data from embryos of the roundworm C. elegans, reveals lineage-specific proliferation differences during development. In contrast to the universality of the proliferation signature, mitochondria and metabolism related genes show a high degree of cell-type specificity; mouse pluripotent stem cells (mESCs) and differentiated cells (fibroblasts) exhibit opposite relations between mitochondria state and proliferation. Furthermore, we identified a slow proliferating subpopulation of mESCs with higher expression of pluripotency genes. Finally, we show that fast and slow proliferating subpopulations are differentially sensitive to mitochondria inhibitory drugs in different cell types. Highlights:
A FACS-based method to determine the transcriptomes of fast and slow proliferating subpopulations. A universal proliferation-correlated transcriptional signature indicates high protein synthesis and degradation in fast proliferating cells across cell types and species. Applied to scRNA-seq, the expression signature predicts the global proliferation slowdown during C. elegans development. Mitochondria membrane potential predicts proliferation rate in a cell-type specific manner, with ETC complex III inhibitor having distinct effects on fibroblasts vs mESCs.
Collapse
Affiliation(s)
- Zhisheng Jiang
- Center for Quantitative Biology and Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Serena F. Generoso
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Marta Badia
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Bernhard Payer
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- * E-mail: (BP); (LBC)
| | - Lucas B. Carey
- Center for Quantitative Biology and Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- * E-mail: (BP); (LBC)
| |
Collapse
|
26
|
Labouesse C, Tan BX, Agley CC, Hofer M, Winkel AK, Stirparo GG, Stuart HT, Verstreken CM, Mulas C, Mansfield W, Bertone P, Franze K, Silva JCR, Chalut KJ. StemBond hydrogels control the mechanical microenvironment for pluripotent stem cells. Nat Commun 2021; 12:6132. [PMID: 34675200 PMCID: PMC8531294 DOI: 10.1038/s41467-021-26236-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 09/22/2021] [Indexed: 12/12/2022] Open
Abstract
Studies of mechanical signalling are typically performed by comparing cells cultured on soft and stiff hydrogel-based substrates. However, it is challenging to independently and robustly control both substrate stiffness and extracellular matrix tethering to substrates, making matrix tethering a potentially confounding variable in mechanical signalling investigations. Moreover, unstable matrix tethering can lead to poor cell attachment and weak engagement of cell adhesions. To address this, we developed StemBond hydrogels, a hydrogel in which matrix tethering is robust and can be varied independently of stiffness. We validate StemBond hydrogels by showing that they provide an optimal system for culturing mouse and human pluripotent stem cells. We further show how soft StemBond hydrogels modulate stem cell function, partly through stiffness-sensitive ERK signalling. Our findings underline how substrate mechanics impact mechanosensitive signalling pathways regulating self-renewal and differentiation, indicating that optimising the complete mechanical microenvironment will offer greater control over stem cell fate specification.
Collapse
Affiliation(s)
- Céline Labouesse
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - Bao Xiu Tan
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, CB3 0HE, UK
| | - Chibeza C Agley
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - Moritz Hofer
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - Alexander K Winkel
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, UK
| | - Giuliano G Stirparo
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - Hannah T Stuart
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - Christophe M Verstreken
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, CB3 0HE, UK
| | - Carla Mulas
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - William Mansfield
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - Paul Bertone
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK
- Department of Medicine, Alpert Medical School, Brown University, Providence, IR, USA
| | - Kristian Franze
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, UK
- Institute of Medical Physics, Friedrich-Alexander University Erlangen-Nuremberg, 91052, Erlangen, Germany
- Max-Planck-Zentrum für Physik und Medizin, 91054, Erlangen, Germany
| | - José C R Silva
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK.
- Center for Cell Lineage and Atlas, Guangzhou Laboratory, Guangzhou International Bio Island, 510005, Guangzhou, Guangdong Province, China.
| | - Kevin J Chalut
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK.
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, CB3 0HE, UK.
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, UK.
| |
Collapse
|
27
|
Balbasi E, Guven G, Terzi Cizmecioglu N. Mouse Embryonic Stem Cell Culture in Serum-Containing or 2i Conditions. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2021; 2520:275-294. [PMID: 34661879 DOI: 10.1007/7651_2021_438] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
With their unique capabilities of self-renewal and differentiation into three germ layers, mouse embryonic stem cells (mESCs) are widely used as an in vitro cellular model for early mammalian developmental studies. mESCs are traditionally cultured in high-serum and LIF-containing medium on a growth-deficient mouse embryonic fibroblast layer. A more recent culturing system with two inhibitors (for GSK3β (CHIR99021) and MEK1/2 (PD0325901)) and LIF enables the derivation of mESC lines from various mouse strains. Here we describe methods for the mESC growth and maintenance in each medium composition as well as their adaptation to either condition.
Collapse
Affiliation(s)
- Emre Balbasi
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - Gozde Guven
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | | |
Collapse
|
28
|
Vega-Sendino M, Olbrich T, Tillo D, Tran AD, Domingo CN, Franco M, FitzGerald PC, Kruhlak MJ, Ruiz S. The ETS transcription factor ERF controls the exit from the naïve pluripotent state in a MAPK-dependent manner. SCIENCE ADVANCES 2021; 7:eabg8306. [PMID: 34597136 DOI: 10.1126/sciadv.abg8306] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The naïve epiblast transitions to a pluripotent primed state during embryo implantation. Despite the relevance of the FGF pathway during this period, little is known about the downstream effectors regulating this signaling. Here, we examined the molecular mechanisms coordinating the naïve to primed transition by using inducible ESC to genetically eliminate all RAS proteins. We show that differentiated RASKO ESC remain trapped in an intermediate state of pluripotency with naïve-associated features. Elimination of the transcription factor ERF overcomes the developmental blockage of RAS-deficient cells by naïve enhancer decommissioning. Mechanistically, ERF regulates NANOG expression and ensures naïve pluripotency by strengthening naïve transcription factor binding at ESC enhancers. Moreover, ERF negatively regulates the expression of the methyltransferase DNMT3B, which participates in the extinction of the naïve transcriptional program. Collectively, we demonstrated an essential role for ERF controlling the exit from naïve pluripotency in a MAPK-dependent manner during the progression to primed pluripotency.
Collapse
Affiliation(s)
- Maria Vega-Sendino
- Laboratory of Genome Integrity, CCR, NCI, National Institutes of Health, Bethesda, MD, USA
| | - Teresa Olbrich
- Laboratory of Genome Integrity, CCR, NCI, National Institutes of Health, Bethesda, MD, USA
| | - Desiree Tillo
- Genetics Branch, CCR, NCI, National Institutes of Health, National Institutes of Health, Bethesda, MD, USA
| | - Andy D Tran
- Laboratory of Cancer Biology and Genetics, CCR, NCI, National Institutes of Health, Bethesda, MD, USA
| | - Catherine N Domingo
- Laboratory of Genome Integrity, CCR, NCI, National Institutes of Health, Bethesda, MD, USA
| | - Mariajose Franco
- Laboratory of Genome Integrity, CCR, NCI, National Institutes of Health, Bethesda, MD, USA
| | - Peter C FitzGerald
- Genome Analysis Unit, CCR, NCI, National Institutes of Health, Bethesda, MD, USA
| | - Michael J Kruhlak
- Laboratory of Cancer Biology and Genetics, CCR, NCI, National Institutes of Health, Bethesda, MD, USA
| | - Sergio Ruiz
- Laboratory of Genome Integrity, CCR, NCI, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
29
|
Building Pluripotency Identity in the Early Embryo and Derived Stem Cells. Cells 2021; 10:cells10082049. [PMID: 34440818 PMCID: PMC8391114 DOI: 10.3390/cells10082049] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 07/27/2021] [Accepted: 08/06/2021] [Indexed: 12/13/2022] Open
Abstract
The fusion of two highly differentiated cells, an oocyte with a spermatozoon, gives rise to the zygote, a single totipotent cell, which has the capability to develop into a complete, fully functional organism. Then, as development proceeds, a series of programmed cell divisions occur whereby the arising cells progressively acquire their own cellular and molecular identity, and totipotency narrows until when pluripotency is achieved. The path towards pluripotency involves transcriptome modulation, remodeling of the chromatin epigenetic landscape to which external modulators contribute. Both human and mouse embryos are a source of different types of pluripotent stem cells whose characteristics can be captured and maintained in vitro. The main aim of this review is to address the cellular properties and the molecular signature of the emerging cells during mouse and human early development, highlighting similarities and differences between the two species and between the embryos and their cognate stem cells.
Collapse
|
30
|
Capparè P, Tetè G, Sberna MT, Panina-Bordignon P. The Emerging Role of Stem Cells in Regenerative Dentistry. Curr Gene Ther 2021; 20:259-268. [PMID: 32811413 DOI: 10.2174/1566523220999200818115803] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/25/2020] [Accepted: 07/29/2020] [Indexed: 02/06/2023]
Abstract
Progress of modern dentistry is accelerating at a spectacular speed in the scientific, technological and clinical areas. Practical examples are the advancement in the digital field, which has guaranteed an average level of prosthetic practices for all patients, as well as other scientific developments, including research on stem cell biology. Given their plasticity, defined as the ability to differentiate into specific cell lineages with a capacity of almost unlimited self-renewal and release of trophic/immunomodulatory factors, stem cells have gained significant scientific and commercial interest in the last 15 years. Stem cells that can be isolated from various tissues of the oral cavity have emerged as attractive sources for bone and dental regeneration, mainly due to their ease of accessibility. This review will present the current understanding of emerging conceptual and technological issues of the use of stem cells to treat bone and dental loss defects. In particular, we will focus on the clinical application of stem cells, either directly isolated from oral sources or in vitro reprogrammed from somatic cells (induced pluripotent stem cells). Research aimed at further unraveling stem cell plasticity will allow to identify optimal stem cell sources and characteristics, to develop novel regenerative tools in dentistry.
Collapse
Affiliation(s)
- Paolo Capparè
- Department of Dentistry, IRCCS San Raffaele Hospital, Milan, Italy,Dental School, Vita-Salute San Raffaele University, School of Medicine, Milan, Italy
| | - Giulia Tetè
- Department of Dentistry, IRCCS San Raffaele Hospital, Milan, Italy
| | | | - Paola Panina-Bordignon
- Neuroimmunology Unit, Institute of Experimental Neurology, IRCCS San Raffaele Hospital, Milan, Italy,Dental School, Vita-Salute San Raffaele University, School of Medicine, Milan, Italy
| |
Collapse
|
31
|
Olivieri D, Paramanathan S, Bardet AF, Hess D, Smallwood SA, Elling U, Betschinger J. The BTB-domain transcription factor ZBTB2 recruits chromatin remodelers and a histone chaperone during the exit from pluripotency. J Biol Chem 2021; 297:100947. [PMID: 34270961 PMCID: PMC8350017 DOI: 10.1016/j.jbc.2021.100947] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 06/21/2021] [Accepted: 07/08/2021] [Indexed: 12/12/2022] Open
Abstract
Transcription factors (TFs) harboring broad-complex, tramtrack, and bric-a-brac (BTB) domains play important roles in development and disease. These BTB domains are thought to recruit transcriptional modulators to target DNA regions. However, a systematic molecular understanding of the mechanism of action of this TF family is lacking. Here, we identify the zinc finger BTB-TF Zbtb2 from a genetic screen for regulators of exit from pluripotency and demonstrate that its absence perturbs embryonic stem cell differentiation and the gene expression dynamics underlying peri-implantation development. We show that ZBTB2 binds the chromatin remodeler Ep400 to mediate downstream transcription. Independently, the BTB domain directly interacts with nucleosome remodeling and deacetylase and histone chaperone histone regulator A. Nucleosome remodeling and deacetylase recruitment is a common feature of BTB TFs, and based on phylogenetic analysis, we propose that this is a conserved evolutionary property. Binding to UBN2, in contrast, is specific to ZBTB2 and requires a C-terminal extension of the BTB domain. Taken together, this study identifies a BTB-domain TF that recruits chromatin modifiers and a histone chaperone during a developmental cell state transition and defines unique and shared molecular functions of the BTB-domain TF family.
Collapse
Affiliation(s)
- Daniel Olivieri
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.
| | | | - Anaïs F Bardet
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland; CNRS, University of Strasbourg, UMR7242 Biotechnology and Cell Signaling, Illkirch, France
| | - Daniel Hess
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | | | - Ulrich Elling
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Vienna BioCenter (VBC), Vienna, Austria
| | - Joerg Betschinger
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.
| |
Collapse
|
32
|
Liu Y, Yamane J, Tanaka A, Fujibuchi W, Yamashita JK. AMPK activation reverts mouse epiblast stem cells to naive state. iScience 2021; 24:102783. [PMID: 34308289 PMCID: PMC8283141 DOI: 10.1016/j.isci.2021.102783] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 05/01/2021] [Accepted: 06/23/2021] [Indexed: 12/25/2022] Open
Abstract
Despite increasing knowledge on primed and naive pluripotency, the cell signaling that regulates the pluripotency type in stem cells remains not fully understood. Here we show that AMP kinase (AMPK) activators can induce the reversion of primed mouse epiblast stem cells (mEpiSCs) to the naive pluripotent state. The addition of AMPK activators alone or together with leukemia inhibitory factor to primed mEpiSCs induced the appearance of naive-like cells. After passaging in naive culture conditions, the colony morphology, protein expression, and global gene expression profiles indicated the naive state, as did germline transmission ability. Loss-of-function and gain-of-function studies suggested that p38 is a critical downstream target in AMPK activation. Finally, single-cell RNA sequencing analysis revealed that the reversion process through AMPK signaling passes an intermediate naive-like population. In conclusion, the AMPK pathway is a critical driving force in the reversion of primed to naive pluripotency.
Collapse
Affiliation(s)
- Yajing Liu
- The Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Junko Yamane
- The Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Akito Tanaka
- The Department of Animal Research Facility, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Wataru Fujibuchi
- The Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Jun K. Yamashita
- The Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| |
Collapse
|
33
|
Asson-Batres MA, Norwood CW. Effects of vitamin A and retinoic acid on mouse embryonic stem cells and their differentiating progeny. Methods Enzymol 2021; 637:341-365. [PMID: 32359652 DOI: 10.1016/bs.mie.2020.03.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Embryonic development is controlled by retinoids, and one approach that has been used to investigate the mechanisms for retinoid actions in developmental processes has been to study the effects of adding retinoids to cultures of pluripotent embryonic stem cells (ESC). To date, most in vitro retinoid research has been directed at deciphering the actions of all-trans retinoic acid (atRA). atRA is a derivative of all-trans retinol (a.k.a. vitamin A, VA), which mammals can generate via an enzyme-catalyzed pathway. atRA's effects on development result from its (1) activation of receptor complexes (RARs and RXRs) in the nucleus which then bind to and activate RA response elements (RAREs) in genes and (2) its interactions with processes that are initiated in the cytoplasm. While much work has focused on the impact of atRA on cell differentiation, VA, itself, has been shown to exert effects on the maintenance of ESC identity that are not dependent upon classic RA-signaling pathways. In this chapter, we present results from our laboratory and others using well-documented approaches for investigating the effects of retinoids on the differentiation of ESC in vitro and introduce a novel method that uses chemically-defined growth conditions. The merits of each approach are discussed.
Collapse
|
34
|
Kim J, T. Jakobsen S, Natarajan KN, Won KJ. TENET: gene network reconstruction using transfer entropy reveals key regulatory factors from single cell transcriptomic data. Nucleic Acids Res 2021; 49:e1. [PMID: 33170214 PMCID: PMC7797076 DOI: 10.1093/nar/gkaa1014] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 10/05/2020] [Accepted: 10/14/2020] [Indexed: 12/22/2022] Open
Abstract
Accurate prediction of gene regulatory rules is important towards understanding of cellular processes. Existing computational algorithms devised for bulk transcriptomics typically require a large number of time points to infer gene regulatory networks (GRNs), are applicable for a small number of genes and fail to detect potential causal relationships effectively. Here, we propose a novel approach 'TENET' to reconstruct GRNs from single cell RNA sequencing (scRNAseq) datasets. Employing transfer entropy (TE) to measure the amount of causal relationships between genes, TENET predicts large-scale gene regulatory cascades/relationships from scRNAseq data. TENET showed better performance than other GRN reconstructors, in identifying key regulators from public datasets. Specifically from scRNAseq, TENET identified key transcriptional factors in embryonic stem cells (ESCs) and during direct cardiomyocytes reprogramming, where other predictors failed. We further demonstrate that known target genes have significantly higher TE values, and TENET predicted higher TE genes were more influenced by the perturbation of their regulator. Using TENET, we identified and validated that Nme2 is a culture condition specific stem cell factor. These results indicate that TENET is uniquely capable of identifying key regulators from scRNAseq data.
Collapse
Affiliation(s)
- Junil Kim
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, 2200 Copenhagen N, Denmark
- Novo Nordisk Foundation Center for Stem Cell Biology, DanStem, Faculty of Health and Medical Sciences, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Simon T. Jakobsen
- Functional Genomics and Metabolism Unit, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Denmark
| | - Kedar N Natarajan
- Functional Genomics and Metabolism Unit, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Denmark
- Danish Institute of Advanced Study (D-IAS), University of Southern Denmark, Denmark
| | - Kyoung-Jae Won
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, 2200 Copenhagen N, Denmark
- Novo Nordisk Foundation Center for Stem Cell Biology, DanStem, Faculty of Health and Medical Sciences, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| |
Collapse
|
35
|
Borkowska M, Leitch HG. Mouse Primordial Germ Cells: In Vitro Culture and Conversion to Pluripotent Stem Cell Lines. Methods Mol Biol 2021; 2214:59-73. [PMID: 32944903 DOI: 10.1007/978-1-0716-0958-3_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Primordial germ cells (PGCs) are the embryonic precursors of the gametes. Despite decades of research, in vitro culture of PGCs remains a major challenge and has previously relied on undefined components such as serum and feeders. Notably, PGCs cultured for extended periods do not maintain their lineage identity but instead undergo conversion to form pluripotent stem cell lines called embryonic germ (EG) cells in response to LIF/STAT3 signaling. Here we report both established and new methodologies to derive EG cells, in a range of different conditions. We show that basic fibroblast growth factor is not required for EG cell conversion. We detail the steps taken in our laboratory to systematically remove complex components and establish a fully defined protocol that allows efficient conversion of isolated PGCs to pluripotent EG cells. In addition, we demonstrate that PGCs can adhere and proliferate in culture without the support of feeder cells or serum. This may well suggest novel approaches to establishing short-term culture of PGCs in defined conditions.
Collapse
Affiliation(s)
- Malgorzata Borkowska
- MRC London Institute of Medical Sciences (LMS), London, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
| | - Harry G Leitch
- MRC London Institute of Medical Sciences (LMS), London, UK.
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK.
| |
Collapse
|
36
|
Garbutt TA, Konganti K, Konneker T, Hillhouse A, Phelps D, Jones A, Aylor D, Threadgill DW. Derivation of stable embryonic stem cell-like, but transcriptionally heterogenous, induced pluripotent stem cells from non-permissive mouse strains. Mamm Genome 2020; 31:263-286. [PMID: 33015751 PMCID: PMC9113365 DOI: 10.1007/s00335-020-09849-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 09/22/2020] [Indexed: 11/26/2022]
Abstract
Genetic background is known to play a role in the ability to derive pluripotent, embryonic stem cells (ESC), a trait referred to as permissiveness. Previously we demonstrated that induced pluripotent stem cells (iPSC) can be readily derived from non-permissive mouse strains by addition of serum-based media supplemented with GSK3B and MEK inhibitors, termed 2iS media, 3 days into reprogramming. Here, we describe the derivation of second type of iPSC colony from non-permissive mouse strains that can be stably maintained independently of 2iS media. The resulting cells display transcriptional heterogeneity similar to that observed in ESC from permissive genetic backgrounds derived in conventional serum containing media supplemented with leukemia inhibitor factor. However, unlike previous studies that report exclusive subpopulations, we observe both exclusive and simultaneous expression of naive and primed cell surface markers. Herein, we explore shifts in pluripotency in the presence of 2iS and characterize heterogenous subpopulations to determine their pluripotent state and role in heterogenous iPSCs derived from the non-permissive NOD/ShiLtJ strain. We conclude that heterogeneity is a naturally occurring, necessary quality of stem cells that allows for the maintenance of pluripotency. This study further demonstrates the efficacy of the 2iS reprogramming technique. It is also the first study to derive stable ESC-like stem cells from the non-permissive NOD/ShiLtJ and WSB/EiJ strains, enabling easier and broader research possibilities into pluripotency for these and similar non-permissive mouse strains and species.
Collapse
Affiliation(s)
- Tiffany A Garbutt
- Program in Genetics, Department of Biological Science, North Carolina State University, Raleigh, NC, 27695, USA
| | - Kranti Konganti
- Texas A&M Institute for Genome Sciences and Society, Texas A&M University, College Station, TX, 77843, USA
- Department of Molecular and Cellular Medicine, Texas A&M University, College Station, TX, 77843, USA
| | - Thomas Konneker
- Program in Genetics, Department of Biological Science, North Carolina State University, Raleigh, NC, 27695, USA
| | - Andrew Hillhouse
- Texas A&M Institute for Genome Sciences and Society, Texas A&M University, College Station, TX, 77843, USA
- Department of Molecular and Cellular Medicine, Texas A&M University, College Station, TX, 77843, USA
| | - Drake Phelps
- Program in Genetics, Department of Biological Science, North Carolina State University, Raleigh, NC, 27695, USA
| | - Alexis Jones
- Program in Genetics, Department of Biological Science, North Carolina State University, Raleigh, NC, 27695, USA
| | - David Aylor
- Program in Genetics, Department of Biological Science, North Carolina State University, Raleigh, NC, 27695, USA
| | - David W Threadgill
- Texas A&M Institute for Genome Sciences and Society, Texas A&M University, College Station, TX, 77843, USA.
- Department of Molecular and Cellular Medicine, Texas A&M University, College Station, TX, 77843, USA.
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
37
|
Garland W, Comet I, Wu M, Radzisheuskaya A, Rib L, Vitting-Seerup K, Lloret-Llinares M, Sandelin A, Helin K, Jensen TH. A Functional Link between Nuclear RNA Decay and Transcriptional Control Mediated by the Polycomb Repressive Complex 2. Cell Rep 2020; 29:1800-1811.e6. [PMID: 31722198 PMCID: PMC6856724 DOI: 10.1016/j.celrep.2019.10.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 08/28/2019] [Accepted: 10/02/2019] [Indexed: 12/11/2022] Open
Abstract
Pluripotent embryonic stem cells (ESCs) constitute an essential cellular niche sustained by epigenomic and transcriptional regulation. Any role of post-transcriptional processes remains less explored. Here, we identify a link between nuclear RNA levels, regulated by the poly(A) RNA exosome targeting (PAXT) connection, and transcriptional control by the polycomb repressive complex 2 (PRC2). Knockout of the PAXT component ZFC3H1 impairs mouse ESC differentiation. In addition to the upregulation of bona fide PAXT substrates, Zfc3h1−/− cells abnormally express developmental genes usually repressed by PRC2. Such de-repression is paralleled by decreased PRC2 binding to chromatin and low PRC2-directed H3K27 methylation. PRC2 complex stability is compromised in Zfc3h1−/− cells with elevated levels of unspecific RNA bound to PRC2 components. We propose that excess RNA hampers PRC2 function through its sequestration from DNA. Our results highlight the importance of balancing nuclear RNA levels and demonstrate the capacity of bulk RNA to regulate chromatin-associated proteins. Depletion of ZFC3H1 in mouse ESCs results in differentiation defects PRC2 target genes are deregulated in Zfc3h1−/− cells Chromatin binding of PRC2 and H3K27me3 is reduced in Zfc3h1−/− cells Increased binding of RNA impairs PRC2 complex stability
Collapse
Affiliation(s)
- William Garland
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark; Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Itys Comet
- Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; The Novo Nordisk Foundation for Stem Cell Biology, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Mengjun Wu
- Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; The Bioinformatics Centre, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Aliaksandra Radzisheuskaya
- Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; The Novo Nordisk Foundation for Stem Cell Biology, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark; Cell Biology Program and Center for Epigenetics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Leonor Rib
- Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; The Bioinformatics Centre, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Kristoffer Vitting-Seerup
- Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; The Bioinformatics Centre, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | - Albin Sandelin
- Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; The Bioinformatics Centre, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Kristian Helin
- Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; The Novo Nordisk Foundation for Stem Cell Biology, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark; Cell Biology Program and Center for Epigenetics, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Torben Heick Jensen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
38
|
Peng T, Zhai Y, Atlasi Y, Ter Huurne M, Marks H, Stunnenberg HG, Megchelenbrink W. STARR-seq identifies active, chromatin-masked, and dormant enhancers in pluripotent mouse embryonic stem cells. Genome Biol 2020; 21:243. [PMID: 32912294 PMCID: PMC7488044 DOI: 10.1186/s13059-020-02156-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 08/26/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Enhancers are distal regulators of gene expression that shape cell identity and control cell fate transitions. In mouse embryonic stem cells (mESCs), the pluripotency network is maintained by the function of a complex network of enhancers, that are drastically altered upon differentiation. Genome-wide chromatin accessibility and histone modification assays are commonly used as a proxy for identifying putative enhancers and for describing their activity levels and dynamics. RESULTS Here, we applied STARR-seq, a genome-wide plasmid-based assay, as a read-out for the enhancer landscape in "ground-state" (2i+LIF; 2iL) and "metastable" (serum+LIF; SL) mESCs. This analysis reveals that active STARR-seq loci show modest overlap with enhancer locations derived from peak calling of ChIP-seq libraries for common enhancer marks. We unveil ZIC3-bound loci with significant STARR-seq activity in SL-ESCs. Knock-out of Zic3 removes STARR-seq activity only in SL-ESCs and increases their propensity to differentiate towards the endodermal fate. STARR-seq also reveals enhancers that are not accessible, masked by a repressive chromatin signature. We describe a class of dormant, p53 bound enhancers that gain H3K27ac under specific conditions, such as after treatment with Nocodazol, or transiently during reprogramming from fibroblasts to pluripotency. CONCLUSIONS In conclusion, loci identified as active by STARR-seq often overlap with those identified by chromatin accessibility and active epigenetic marking, yet a significant fraction is epigenetically repressed or display condition-specific enhancer activity.
Collapse
Affiliation(s)
- Tianran Peng
- Department of Molecular Biology, Radboud Institute for Molecular Life Sciences, Radboud University, Geert Grooteplein Zuid 28, 6525 GA, Nijmegen, The Netherlands
| | - Yanan Zhai
- Department of Molecular Biology, Radboud Institute for Molecular Life Sciences, Radboud University, Geert Grooteplein Zuid 28, 6525 GA, Nijmegen, The Netherlands
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Vico L. De Crecchio 7, 80138, Naples, Italy
| | - Yaser Atlasi
- Department of Molecular Biology, Radboud Institute for Molecular Life Sciences, Radboud University, Geert Grooteplein Zuid 28, 6525 GA, Nijmegen, The Netherlands
| | - Menno Ter Huurne
- Department of Molecular Biology, Radboud Institute for Molecular Life Sciences, Radboud University, Geert Grooteplein Zuid 28, 6525 GA, Nijmegen, The Netherlands
| | - Hendrik Marks
- Department of Molecular Biology, Radboud Institute for Molecular Life Sciences, Radboud University, Geert Grooteplein Zuid 28, 6525 GA, Nijmegen, The Netherlands
| | - Hendrik G Stunnenberg
- Department of Molecular Biology, Radboud Institute for Molecular Life Sciences, Radboud University, Geert Grooteplein Zuid 28, 6525 GA, Nijmegen, The Netherlands.
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands.
| | - Wout Megchelenbrink
- Department of Molecular Biology, Radboud Institute for Molecular Life Sciences, Radboud University, Geert Grooteplein Zuid 28, 6525 GA, Nijmegen, The Netherlands.
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands.
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Vico L. De Crecchio 7, 80138, Naples, Italy.
| |
Collapse
|
39
|
ZIC3 Controls the Transition from Naive to Primed Pluripotency. Cell Rep 2020; 27:3215-3227.e6. [PMID: 31189106 PMCID: PMC6581693 DOI: 10.1016/j.celrep.2019.05.026] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 03/14/2019] [Accepted: 05/06/2019] [Indexed: 01/06/2023] Open
Abstract
Embryonic stem cells (ESCs) must transition through a series of intermediate cell states before becoming terminally differentiated. Here, we investigated the early events in this transition by determining the changes in the open chromatin landscape as naive mouse ESCs transition to epiblast-like cells (EpiLCs). Motif enrichment analysis of the newly opening regions coupled with expression analysis identified ZIC3 as a potential regulator of this cell fate transition. Chromatin binding and genome-wide transcriptional profiling following Zic3 depletion confirmed ZIC3 as an important regulatory transcription factor, and among its targets are genes encoding a number of transcription factors. Among these is GRHL2, which acts through enhancer switching to maintain the expression of a subset of genes from the ESC state. Our data therefore place ZIC3 upstream of a set of pro-differentiation transcriptional regulators and provide an important advance in our understanding of the regulatory factors governing the early steps in ESC differentiation. Transcription factor ZIC3 regulates gene expression during the ESC to EpiLC transition Extensive changes occur in the open chromatin landscape as ESCs progress to EpiLCs ZIC3 activates the expression of a network of transcription factors ZIC3-activated genes in EpiLCs are upregulated in the post-implantation epiblast
Collapse
|
40
|
Gallardo A, Molina A, Asenjo HG, Martorell-Marugán J, Montes R, Ramos-Mejia V, Sanchez-Pozo A, Carmona-Sáez P, Lopez-Onieva L, Landeira D. The molecular clock protein Bmal1 regulates cell differentiation in mouse embryonic stem cells. Life Sci Alliance 2020; 3:e201900535. [PMID: 32284355 PMCID: PMC7156284 DOI: 10.26508/lsa.201900535] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 03/12/2020] [Accepted: 03/23/2020] [Indexed: 01/23/2023] Open
Abstract
Mammals optimize their physiology to the light-dark cycle by synchronization of the master circadian clock in the brain with peripheral clocks in the rest of the tissues of the body. Circadian oscillations rely on a negative feedback loop exerted by the molecular clock that is composed by transcriptional activators Bmal1 and Clock, and their negative regulators Period and Cryptochrome. Components of the molecular clock are expressed during early development, but onset of robust circadian oscillations is only detected later during embryogenesis. Here, we have used naïve pluripotent mouse embryonic stem cells (mESCs) to study the role of Bmal1 during early development. We found that, compared to wild-type cells, Bmal1-/- mESCs express higher levels of Nanog protein and altered expression of pluripotency-associated signalling pathways. Importantly, Bmal1-/- mESCs display deficient multi-lineage cell differentiation capacity during the formation of teratomas and gastrula-like organoids. Overall, we reveal that Bmal1 regulates pluripotent cell differentiation and propose that the molecular clock is an hitherto unrecognized regulator of mammalian development.
Collapse
Affiliation(s)
- Amador Gallardo
- Centre for Genomics and Oncological Research (GENYO), Granada, Spain
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria, ibs.Granada, Hospital Virgen de las Nieves, Granada, Spain
| | - Aldara Molina
- Centre for Genomics and Oncological Research (GENYO), Granada, Spain
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria, ibs.Granada, Hospital Virgen de las Nieves, Granada, Spain
| | - Helena G Asenjo
- Centre for Genomics and Oncological Research (GENYO), Granada, Spain
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria, ibs.Granada, Hospital Virgen de las Nieves, Granada, Spain
| | - Jordi Martorell-Marugán
- Centre for Genomics and Oncological Research (GENYO), Granada, Spain
- Atrys Health S.A., Barcelona, Spain
| | - Rosa Montes
- Centre for Genomics and Oncological Research (GENYO), Granada, Spain
| | | | - Antonio Sanchez-Pozo
- Centre for Genomics and Oncological Research (GENYO), Granada, Spain
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, University of Granada, Granada, Spain
| | - Pedro Carmona-Sáez
- Centre for Genomics and Oncological Research (GENYO), Granada, Spain
- Department of Statistics and Operational Research, University of Granada, Granada, Spain
| | - Lourdes Lopez-Onieva
- Centre for Genomics and Oncological Research (GENYO), Granada, Spain
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, Granada, Spain
| | - David Landeira
- Centre for Genomics and Oncological Research (GENYO), Granada, Spain
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria, ibs.Granada, Hospital Virgen de las Nieves, Granada, Spain
| |
Collapse
|
41
|
Wang X, Wang J, Cheng Y, Wang J, Tian Y, Zhang J, Xiong J, Yang Y, Wu W, He P, Liu G, Xu Y, Liu L, Ren B, Ruan Y, Jian R. Identification and functional comparison of Bcl2 splicing isoforms in mouse embryonic stem cells. Biochem Biophys Res Commun 2020; 524:502-509. [PMID: 32008743 DOI: 10.1016/j.bbrc.2020.01.140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 01/24/2020] [Indexed: 10/25/2022]
Abstract
Embryonic stem cells (ESCs) provide an ideal model for investigating developmental processes and are great sources for developing regenerative medicine. Harnessing apoptosis facilitates accurate recapitulation of signalling events during embryogenesis and allows efficient expansion of the ESCs during differentiation. Bcl2, a key regulator of intrinsic anti-apoptotic pathway, encodes two splicing isoforms. However, the identification and functional comparison of Bcl2 splicing isoforms in mouse ESCs (mESCs) remains to be elucidated. Here, we provide the evidence that both Bcl2 splicing variants are expressed in mESCs. Despite the structural difference, they have similar subcellular localisation. Both Bcl2α and Bcl2β enhance differentiation efficiency of the ESCs and effectively improve the survival and growth of ESCs under serum-free conditions. However, the functional effect of Bcl2α was more potent than that of Bcl2β. Moreover, only Bcl2α could maintain the long-term expansion and pluripotency of ESCs cultured in serum-free medium. Taken together, our results demonstrate previously unknown functional differences in Bcl2 alternative splicing isoforms in ESCs, and lay the foundation for future efforts to engineer ESCs for regenerative medicine.
Collapse
Affiliation(s)
- Xueyue Wang
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China
| | - Jiaqi Wang
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China
| | - Yuda Cheng
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China
| | - Jiali Wang
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China
| | - Yanping Tian
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China
| | - Junlei Zhang
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China
| | - Jiaxiang Xiong
- Experimental Center of Basic Medicine, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China
| | - Yi Yang
- Experimental Center of Basic Medicine, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China
| | - Wei Wu
- Thoracic Surgery Department, Southwest Hospital, The First Hospital Affiliated to Army Medical University, Chongqing, 400038, China
| | - Ping He
- Cardiac Surgery Department, Southwest Hospital, The First Hospital Affiliated to Army Medical University, Chongqing, 400038, China
| | - Gaoke Liu
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China
| | - Yixiao Xu
- Southwest Eye Hospital, Southwest Hospital, The First Hospital Affiliated to Army Medical University, Chongqing, 400038, China
| | - Lianlian Liu
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China
| | - Bangqi Ren
- Southwest Eye Hospital, Southwest Hospital, The First Hospital Affiliated to Army Medical University, Chongqing, 400038, China
| | - Yan Ruan
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China.
| | - Rui Jian
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China.
| |
Collapse
|
42
|
Bi Y, Tu Z, Zhang Y, Yang P, Guo M, Zhu X, Zhao C, Zhou J, Wang H, Wang Y, Gao S. Identification of ALPPL2 as a Naive Pluripotent State-Specific Surface Protein Essential for Human Naive Pluripotency Regulation. Cell Rep 2020; 30:3917-3931.e5. [DOI: 10.1016/j.celrep.2020.02.090] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 11/28/2019] [Accepted: 02/25/2020] [Indexed: 10/24/2022] Open
|
43
|
Ribosome and Translational Control in Stem Cells. Cells 2020; 9:cells9020497. [PMID: 32098201 PMCID: PMC7072746 DOI: 10.3390/cells9020497] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/11/2020] [Accepted: 02/17/2020] [Indexed: 12/16/2022] Open
Abstract
Embryonic stem cells (ESCs) and adult stem cells (ASCs) possess the remarkable capacity to self-renew while remaining poised to differentiate into multiple progenies in the context of a rapidly developing embryo or in steady-state tissues, respectively. This ability is controlled by complex genetic programs, which are dynamically orchestrated at different steps of gene expression, including chromatin remodeling, mRNA transcription, processing, and stability. In addition to maintaining stem cell homeostasis, these molecular processes need to be rapidly rewired to coordinate complex physiological modifications required to redirect cell fate in response to environmental clues, such as differentiation signals or tissue injuries. Although chromatin remodeling and mRNA expression have been extensively studied in stem cells, accumulating evidence suggests that stem cell transcriptomes and proteomes are poorly correlated and that stem cell properties require finely tuned protein synthesis. In addition, many studies have shown that the biogenesis of the translation machinery, the ribosome, is decisive for sustaining ESC and ASC properties. Therefore, these observations emphasize the importance of translational control in stem cell homeostasis and fate decisions. In this review, we will provide the most recent literature describing how ribosome biogenesis and translational control regulate stem cell functions and are crucial for accommodating proteome remodeling in response to changes in stem cell fate.
Collapse
|
44
|
Zylicz JJ. Defined Stem Cell Culture Conditions to Model Mouse Blastocyst Development. ACTA ACUST UNITED AC 2020; 52:e105. [PMID: 31971672 DOI: 10.1002/cpsc.105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The complex program of mouse development entails specification of the embryonic epiblast (Epi) as well as the extra-embryonic trophectoderm (TE) and primitive endoderm (PrE). These three lineages of mouse blastocyst can be modeled in vitro using stem cells derived from primary tissues. In these cultures, cells self-renew while retaining their developmental potential if put back into a developing embryo. Indeed, embryonic stem cells (ESC), when injected into a blastocyst, readily contribute to all embryonic lineages. Similarly, trophoblast stem cells (TSCs) will give rise to all TE-derived trophoblast lineages, and extraembryonic endoderm cells (XEN) will contribute to the PrE-derived yolk sack. These model systems are a powerful tool to study early development, lineage specification, and placenta formation. Only recently reproducible and chemically defined culture systems of these cells have been described. This overview discusses such novel methods for culturing ESC/TSC/XEN, as well as their molecular signatures and developmental potential. Recent strides in expanding the developmental potential of stem cells as well as achieving models more reminiscent of their in vivo counterparts are discussed. Finally, such in vitro stem cells can self-assemble into structures resembling embryos when used in novel 3D-culture systems. This article discusses the strengths and limitations of such "synthetic embryos" in studying developmental processes. © 2020 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Jan J Zylicz
- Institut Curie, PSL Research University, CNRS UMR3215, INSERM U934, UPMC Paris-Sorbonne, Paris, France.,University of Cambridge, Department of Physiology, Development and Neuroscience, Cambridge, United Kingdom
| |
Collapse
|
45
|
Serio RN, Gudas LJ. Modification of stem cell states by alcohol and acetaldehyde. Chem Biol Interact 2019; 316:108919. [PMID: 31846616 PMCID: PMC7036011 DOI: 10.1016/j.cbi.2019.108919] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 11/13/2019] [Accepted: 12/10/2019] [Indexed: 12/20/2022]
Abstract
Ethanol (EtOH) is a recreationally ingested compound that is both teratogenic and carcinogenic in humans. Because of its abundant consumption worldwide and the vital role of stem cells in the formation of birth defects and cancers, delineating the effects of EtOH on stem cell function is currently an active and urgent pursuit of scientific investigation to explicate some of the mechanisms contributing to EtOH toxicity. Stem cells represent a primordial, undifferentiated phase of development; thus encroachment on normal physiologic processes of differentiation into terminal lineages by EtOH can greatly alter the function of progenitors and terminally differentiated cells, leading to pathological consequences that manifest as fetal alcohol spectrum disorders and cancers. In this review we explore the disruptive role of EtOH in differentiation of stem cells. Our primary objective is to elucidate the mechanisms by which EtOH alters differentiation-related gene expression and lineage specifications, thus modifying stem cells to promote pathological outcomes. We additionally review the effects of a reactive metabolite of EtOH, acetaldehyde (AcH), in causing both differentiation defects in stem cells as well as genomic damage that incites cellular aging and carcinogenesis.
Collapse
Affiliation(s)
- Ryan N Serio
- Department of Pharmacology, Weill Cornell Graduate School of Medical Sciences of Cornell University, USA.
| | - Lorraine J Gudas
- Department of Pharmacology, Weill Cornell Graduate School of Medical Sciences of Cornell University, USA; Department of Pharmacology, Weill Cornell Medical College of Cornell University, USA.
| |
Collapse
|
46
|
Gordeeva O. TGFβ Family Signaling Pathways in Pluripotent and Teratocarcinoma Stem Cells' Fate Decisions: Balancing Between Self-Renewal, Differentiation, and Cancer. Cells 2019; 8:cells8121500. [PMID: 31771212 PMCID: PMC6953027 DOI: 10.3390/cells8121500] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/19/2019] [Accepted: 11/21/2019] [Indexed: 12/11/2022] Open
Abstract
The transforming growth factor-β (TGFβ) family factors induce pleiotropic effects and are involved in the regulation of most normal and pathological cellular processes. The activity of different branches of the TGFβ family signaling pathways and their interplay with other signaling pathways govern the fine regulation of the self-renewal, differentiation onset and specialization of pluripotent stem cells in various cell derivatives. TGFβ family signaling pathways play a pivotal role in balancing basic cellular processes in pluripotent stem cells and their derivatives, although disturbances in their genome integrity induce the rearrangements of signaling pathways and lead to functional impairments and malignant transformation into cancer stem cells. Therefore, the identification of critical nodes and targets in the regulatory cascades of TGFβ family factors and other signaling pathways, and analysis of the rearrangements of the signal regulatory network during stem cell state transitions and interconversions, are key issues for understanding the fundamental mechanisms of both stem cell biology and cancer initiation and progression, as well as for clinical applications. This review summarizes recent advances in our understanding of TGFβ family functions in naїve and primed pluripotent stem cells and discusses how these pathways are involved in perturbations in the signaling network of malignant teratocarcinoma stem cells with impaired differentiation potential.
Collapse
Affiliation(s)
- Olga Gordeeva
- Kol'tsov Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilov str., 119334 Moscow, Russia
| |
Collapse
|
47
|
Abstract
In this issue of Stem Cell Reports, Hastreiter et al. (2018) use continuous time-lapse imaging of mouse embryonic stem cells to investigate how the inhibition of GSK3b and MEK/ERK (2i) leads to homogeneous expression of the transcription factor Nanog. They show that both induction of Nanog expression and selection against cells expressing low levels of Nanog contribute to the homogeneous appearance of 2i cultures.
Collapse
Affiliation(s)
- Pablo Navarro
- Epigenetics of Stem Cells, Department of Developmental & Stem Cell Biology, Institut Pasteur, CNRS UMR 3738, 25 rue du docteur Roux, 75015 Paris, France.
| |
Collapse
|
48
|
Mitochondria and Female Germline Stem Cells-A Mitochondrial DNA Perspective. Cells 2019; 8:cells8080852. [PMID: 31398797 PMCID: PMC6721711 DOI: 10.3390/cells8080852] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/06/2019] [Accepted: 08/06/2019] [Indexed: 02/06/2023] Open
Abstract
Mitochondria and mitochondrial DNA have important roles to play in development. In primordial germ cells, they progress from small numbers to populate the maturing oocyte with high numbers to support post-fertilization events. These processes take place under the control of significant changes in DNA methylation and other epigenetic modifiers, as well as changes to the DNA methylation status of the nuclear-encoded mitochondrial DNA replication factors. Consequently, the differentiating germ cell requires significant synchrony between the two genomes in order to ensure that they are fit for purpose. In this review, I examine these processes in the context of female germline stem cells that are isolated from the ovary and those derived from embryonic stem cells and reprogrammed somatic cells. Although our knowledge is limited in this respect, I provide predictions based on other cellular systems of what is expected and provide insight into how these cells could be used in clinical medicine.
Collapse
|
49
|
Roles of MicroRNAs in Establishing and Modulating Stem Cell Potential. Int J Mol Sci 2019; 20:ijms20153643. [PMID: 31349654 PMCID: PMC6696000 DOI: 10.3390/ijms20153643] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 07/18/2019] [Accepted: 07/22/2019] [Indexed: 12/11/2022] Open
Abstract
Early embryonic development in mammals, from fertilization to implantation, can be viewed as a process in which stem cells alternate between self-renewal and differentiation. During this process, the fates of stem cells in embryos are gradually specified, from the totipotent state, through the segregation of embryonic and extraembryonic lineages, to the molecular and cellular defined progenitors. Most of those stem cells with different potencies in vivo can be propagated in vitro and recapitulate their differentiation abilities. Complex and coordinated regulations, such as epigenetic reprogramming, maternal RNA clearance, transcriptional and translational landscape changes, as well as the signal transduction, are required for the proper development of early embryos. Accumulated studies suggest that Dicer-dependent noncoding RNAs, including microRNAs (miRNAs) and endogenous small-interfering RNAs (endo-siRNAs), are involved in those regulations and therefore modulate biological properties of stem cells in vitro and in vivo. Elucidating roles of these noncoding RNAs will give us a more comprehensive picture of mammalian embryonic development and enable us to modulate stem cell potencies. In this review, we will discuss roles of miRNAs in regulating the maintenance and cell fate potential of stem cells in/from mouse and human early embryos.
Collapse
|
50
|
Protein Kinases and Their Inhibitors in Pluripotent Stem Cell Fate Regulation. Stem Cells Int 2019; 2019:1569740. [PMID: 31428157 PMCID: PMC6681599 DOI: 10.1155/2019/1569740] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/31/2019] [Accepted: 06/16/2019] [Indexed: 12/25/2022] Open
Abstract
Protein kinases modulate the reversible postmodifications of substrate proteins to their phosphorylated forms as an essential process in regulating intracellular signaling transduction cascades. Moreover, phosphorylation has recently been shown to tightly control the regulatory network of kinases responsible for the induction and maintenance of pluripotency, defined as the particular ability to differentiate pluripotent stem cells (PSCs) into every cell type in the adult body. In particular, emerging evidence indicates that the balance between the self-renewal and differentiation of PSCs is regulated by the small molecules that modulate kinase signaling pathways. Furthermore, new reprogramming technologies have been developed using kinase modulators, which have provided novel insight of the mechanisms underlying the kinase regulatory networks involved in the generation of induced pluripotent stem cells (iPSCs). In this review, we highlight the recent progress made in defining the roles of protein kinase signaling pathways and their small molecule modulators in regulating the pluripotent states, self-renewal, reprogramming process, and lineage differentiation of PSCs.
Collapse
|