1
|
Ifejeokwu OV, Do A, El Khatib SM, Ho NH, Zavala A, Othy S, Acharya MM. Immune Checkpoint Inhibition Perturbs Neuro-immune Homeostasis and Impairs Cognitive Function. RESEARCH SQUARE 2025:rs.3.rs-6389488. [PMID: 40313772 PMCID: PMC12045354 DOI: 10.21203/rs.3.rs-6389488/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
Background Blockade of Cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and Programmed Cell Death Protein 1 (PD-1) significantly improves progression-free survival of individuals with cancers, including melanoma. In addition to unleashing antitumor immunity, immune checkpoint inhibition (ICI) therapies disrupt immune regulatory networks critical for maintaining homeostasis in various tissues, including the central nervous system (CNS). Despite growing reports of cancer- and ICI-related cognitive impairments among survivors, our understanding of the pathophysiology of ICI-related neurodegenerative effects is limited. Methods In this study, using a murine model of melanoma, cognitive function tests, and neuroimmunological assays, we investigate the cellular mechanisms and impact of combinatorial blockade of CTLA-4 and PD-1 on brain function. Syngeneic melanoma was induced in a C57Bl6 mouse model using D4M-3A.UV2 melanoma cells. After confirmation of tumor growth, cancer-bearing and non-cancer mice received combinatorial treatment of anti-CTLA-4 (two doses per week) and anti-PD-1 (three doses per week) for three weeks. One month after completing ICI treatment, mice were administered learning, memory, and memory consolidation cognitive function tasks. Neuroinflammation, synaptic, and myelin integrity analyses and immune cell status in the brain were conducted to analyze neuroimmunological changes post-ICI treatment. Results While tumor-related alterations in brain function were evident, combination ICI specifically disrupted synaptic integrity and reduced myelin levels independent of neurogenesis and neuronal plasticity in both cancer-bearing and non-cancer mice brains. Combination ICI selectively impaired hippocampal-dependent cognitive function. This is associated with two-fold increase in T cell numbers within the brain along with immune activation of myeloid cells, especially microglia. Furthermore, an experimental autoimmune encephalomyelitis model revealed that combination ICI predisposes the CNS to exacerbated autoimmunity, highlighting neuroinflammation-related, and tumor-independent, neurodegenerative sequelae of combination ICI. Conclusion Our results demonstrate that combinatorial blockade of CTLA-4 and PD-1 destabilizes neuroimmune-regulatory networks and activates microglia, contributing to long-term neurodegeneration and cognitive impairments. Therefore, selectively limiting microglial activation could be a potential avenue to preserve CNS functions while maintaining the therapeutic benefits of rapidly evolving ICIs and their combinations.
Collapse
Affiliation(s)
| | - An Do
- University of California Irvine
| | | | | | | | | | | |
Collapse
|
2
|
Munc18-1 Contributes to Hippocampal Injury in Septic Rats Through Regulation of Syntanxin1A and Synaptophysin and Glutamate Levels. Neurochem Res 2023; 48:791-803. [PMID: 36335177 PMCID: PMC9638283 DOI: 10.1007/s11064-022-03806-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 10/07/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022]
Abstract
Sepsis-associated encephalopathy (SAE) is a diffuse brain dysfunction closely associated with mortality in the acute phase of sepsis. Abnormal neurotransmitters release, such as glutamate, plays a crucial role in the pathological mechanism of SAE. Munc18-1 is a key protein regulating neurotransmission. However, whether Munc18-1 plays a role in SAE by regulating glutamate transmission is still unclear. In this study, a septic rat model was established by the cecal ligation and perforation. We found an increase in the content of glutamate in the hippocampus of septic rat, the number of synaptic vesicles in the synaptic active area and the expression of the glutamate receptor NMDAR1. Meanwhile, it was found that the expressions of Munc18-1, Syntaxin1A and Synaptophysin increased, which are involved in neurotransmission. The expression levels of Syntaxin1A and Synaptophysin in hippocampus of septic rats decreased after interference using Munc18-1siRNA. We observed a decrease in the content of glutamate in the hippocampus of septic rats, the number of synaptic vesicles in the synaptic activity area and the expression of NMDAR1. Interestingly, it was also found that the down-regulation of Munc18-1 improved the vital signs of septic rats. This study shows that CLP induced the increased levels of glutamate in rat hippocampus, and Munc18-1 may participate in the process of hippocampal injury in septic rats by affecting the levels of glutamate via regulating Syntaxin1A and Synaptophysin. Munc18-1 may serve as a potential target for SAE therapy.
Collapse
|
3
|
Li Q, Wang X, Wang ZH, Lin Z, Yang J, Chen J, Wang R, Ye W, Li Y, Wu Y, Xuan A. Changes in dendritic complexity and spine morphology following BCG immunization in APP/PS1 mice. Hum Vaccin Immunother 2022; 18:2121568. [PMID: 36113067 DOI: 10.1080/21645515.2022.2121568] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Bacillus Calmette - Guerin (BCG) is an immune regulator that can enhance hippocampal synaptic plasticity in rats; however, it is unclear whether it can improve synaptic function in a mouse model with Alzheimer's disease (AD). We hypothesized that BCG plays a protective role in AD mice and investigated its effect on dendritic morphology. The results obtained show that BCG immunization significantly increases dendritic complexity, as indicated by the increased number of dendritic intersections and branch points, as well as the increase in the fractal dimension. Furthermore, the number of primary neurites and dendritic length also increased following BCG immunization, which increased the number of spines and promoted maturation. IFN-γ and IL-4 levels increased, while TNF-α levels decreased following BCG immunization; expression levels of p-JAK2, P-STAT3, SYN, and PSD-95 also increased. Therefore, this study demonstrates that BCG immunization in APP/PS1 mice mitigated hippocampal dendritic spine pathology, especially after the third round of immunization. This effect could possibly be attributed to; changes in dendritic arborization and spine morphology or increases in SYN and PSD-95 expression levels. It could also be related to mechanisms of BCG-induced increases in IFN-γ or IL-4/JAK2/STAT3 levels.
Collapse
Affiliation(s)
| | | | | | - Zhenzong Lin
- Department of Anatomy and Neurobiology, Guangzhou Medical University, Guangzhou, PR China
| | - Jieyi Yang
- Department of Anatomy and Neurobiology, Guangzhou Medical University, Guangzhou, PR China
| | - Jichun Chen
- Department of Anatomy and Neurobiology, Guangzhou Medical University, Guangzhou, PR China
| | - Rui Wang
- Department of Anatomy and Neurobiology, Guangzhou Medical University, Guangzhou, PR China
| | - Wenfeng Ye
- Department of Anatomy and Neurobiology, Guangzhou Medical University, Guangzhou, PR China
| | - Ya Li
- Department of Anatomy and Neurobiology, Guangzhou Medical University, Guangzhou, PR China
| | - Yingying Wu
- Department of Anatomy and Neurobiology, Guangzhou Medical University, Guangzhou, PR China
| | - Aiguo Xuan
- Department of Anatomy and Neurobiology, Guangzhou Medical University, Guangzhou, PR China
| |
Collapse
|
4
|
Chen D, Zhang Y, Qiao R, Kong X, Zhong H, Wang X, Zhu J, Li B. Integrated bioinformatics-based identification of diagnostic markers in Alzheimer disease. Front Aging Neurosci 2022; 14:988143. [PMID: 36437991 PMCID: PMC9686423 DOI: 10.3389/fnagi.2022.988143] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 10/28/2022] [Indexed: 08/09/2023] Open
Abstract
Alzheimer disease (AD) is a progressive neurodegenerative disease resulting from the accumulation of extracellular amyloid beta (Aβ) and intracellular neurofibrillary tangles. There are currently no objective diagnostic measures for AD. The aim of this study was to identify potential diagnostic markers for AD and evaluate the role of immune cell infiltration in disease pathogenesis. AD expression profiling data for human hippocampus tissue (GSE48350 and GSE5281) were downloaded from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) were identified using R software and the Human Protein Atlas database was used to screen AD-related DEGs. We performed functional enrichment analysis and established a protein-protein interaction (PPI) network to identify disease-related hub DEGs. The fraction of infiltrating immune cells in samples was determined with the Microenvironment Cell Populations-counter method. The random forest algorithm was used to develop a prediction model and receiver operating characteristic (ROC) curve analysis was performed to validate the diagnostic utility of the candidate AD markers. The correlation between expression of the diagnostic markers and immune cell infiltration was also analyzed. A total of 107 AD-related DEGs were screened in this study, including 28 that were upregulated and 79 that were downregulated. The DEGs were enriched in the Gene Ontology terms GABAergic synapse, Morphine addiction, Nicotine addiction, Phagosome, and Synaptic vesicle cycle. We identified 10 disease-related hub genes and 20 candidate diagnostic genes. Synaptophysin (SYP) and regulator of G protein signaling 4 (RGS4) (area under the ROC curve = 0.909) were verified as potential diagnostic markers for AD in the GSE28146 validation dataset. Natural killer cells, B lineage cells, monocytic lineage cells, endothelial cells, and fibroblasts were found to be involved in AD; additionally, the expression levels of both SYP and RGS4 were negatively correlated with the infiltration of these immune cell types. These results suggest that SYP and RGS4 are potential diagnostic markers for AD and that immune cell infiltration plays an important role in AD development and progression.
Collapse
Affiliation(s)
- Danmei Chen
- Research Center for Clinical Medicine, Jinshan Hospital Affiliated to Fudan University, Shanghai, China
- Department of Integrative Medicine, Huashan Hospital Affiliated to Fudan University, Shanghai, China
| | - Yunpeng Zhang
- Department of Neurology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Rui Qiao
- College of Acupuncture-Massage and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Xiangyu Kong
- Research Center for Clinical Medicine, Jinshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Hequan Zhong
- Research Center for Clinical Medicine, Jinshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Xiaokun Wang
- Research Center for Clinical Medicine, Jinshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Jie Zhu
- Department of Rehabilitation, Jinshan Hospital, Fudan University, Shanghai, China
| | - Bing Li
- Research Center for Clinical Medicine, Jinshan Hospital Affiliated to Fudan University, Shanghai, China
| |
Collapse
|
5
|
Cakir A, Ocalan B, Cansu C, Suyen GG, Cansev M, Kahveci N. Effects of citicoline administration on synaptic proteins in rapid eye movement sleep-deprived rats. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2022; 25:562-568. [PMID: 35911643 PMCID: PMC9282749 DOI: 10.22038/ijbms.2022.60756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 04/20/2022] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Sleep has a pivotal role in learning-memory and sleep deprivation (SD) negatively affects synaptic functioning. Cytidine-5-diphosphocholine (Citicoline) has been known to improve learning and memory functions. Our objective was to explore the effects of Citicoline on hippocampal and cortical synaptic proteins in rapid eye movement (REM) sleep-deprived rats. MATERIALS AND METHODS Rats (n=36) were randomly divided into 6 groups. Environmental control or sleep deprivation was done by placing the rat on a 13 cm diameter platform (Large Platform [LP] group) or on a 6.5 cm diameter platform (REMSD group), respectively, for 96 hours. Rats randomized for controls (Home Cage [HC] group) were followed up in home cages. Rats in each of the REMSD, LP or HC group were randomized to receive either saline (0,9%NaCl) or Citicoline (600 μmol/kg) intraperitoneally twice a day for four days. After the experiments, rats were sacrificed; their cerebral cortices and hippocampi were dissected for analyzing the levels of pre-synaptic proteins synaptophysin and synapsin I, and the post-synaptic density protein-95 (PSD-95) by Western-blotting. RESULTS Hippocampal levels of PSD-95, but not the pre-synaptic proteins, were reduced by REM sleep deprivation. Citicoline treatment ameliorated the reduction in PSD-95 levels in REM sleep-deprived rats. On the other hand, REM sleep deprivation was not found to be significantly effective on pre- or post-synaptic proteins in cerebral cortex. CONCLUSION REM sleep deprivation reduces hippocampal PSD-95 levels which are enhanced by Citicoline treatment. These data propose that Citicoline may ameliorate the adverse effects of SD on hippocampal synaptic functioning.
Collapse
Affiliation(s)
- Aysen Cakir
- Department of Physiology, Bursa Uludag University School of Medicine, Bursa, Turkey
| | - Busra Ocalan
- Department of Physiology, Bursa Uludag University School of Medicine, Bursa, Turkey
| | - Cansu Cansu
- Department of Pharmacology, Bursa Uludag University School of Medicine, Bursa, Turkey
| | - Guldal Gulec Suyen
- Department of Physiology, Acibadem Mehmet Ali Aydinlar University School of Medicine, Istanbul, Turkey
| | - Mehmet Cansev
- Department of Pharmacology, Bursa Uludag University School of Medicine, Bursa, Turkey
| | - Nevzat Kahveci
- Department of Physiology, Bursa Uludag University School of Medicine, Bursa, Turkey,Corresponding author: Nevzat Kahveci. Bursa Uludag University School of Medicine, Department of Physiology, Bursa, Turkey. Tel/Fax: +90-2242954015;
| |
Collapse
|
6
|
Nikkar R, Esmaeili-Bandboni A, Badrikoohi M, Babaei P. Effects of inhibiting astrocytes and BET/BRD4 chromatin reader on spatial memory and synaptic proteins in rats with Alzheimer's disease. Metab Brain Dis 2022; 37:1119-1131. [PMID: 35244824 DOI: 10.1007/s11011-022-00940-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 02/21/2022] [Indexed: 10/18/2022]
Abstract
Communication between astrocytes and neurons has a profound effect on the pathophysiology of Alzheimer's disease (AD). Astrocytes regulate homeostasis and increase synaptic plasticity in physiological situations, however, they become activated during the progression of AD. Whether or not these reactions are supportive or detrimental for the central nervous system have not been understood yet. Considering epigenetic regulation of neuroinflammatory genes by chromatin readers, particularly bromodomain and extraterminal domain (BET) family, here we examined the effect of chronic co-inhibition of astrocytes metabolism (with fluorocitrate) and also BRD4 (with JQ1) on cognition deficit at early stages of AD. Forty adult male Wistar rats underwent stereotaxic cannulation for inducing AD by intrahippocampal injection of Aβ1-42 (4 μg/8 μl/rat). Then animals were divided into five groups of Saline+DMSO, Aβ + saline+DMSO, Aβ + JQ1, Aβ + FC (fluorocitrate), and Aβ + JQ1 + FC and received the related treatments. Two weeks later, spatial memory was recorded by Morris Water Maze (MWM), and the levels of phosphorylated cyclic-AMP response element binding protein (CREB), postsynaptic density 95 (PSD95), synaptophysin (SYP), and tumor necrosis factor-alpha (TNF-α) were measured in the hippocampus by western blotting and RT-qPCR. Administration of JQ1 significantly improved both acquisition and retrieval of spatial memory, which were evident by decreased escape latency and increased total time spent (TTS) in target quadrant, and significant rise in p-CREB, PSD95, and synaptophysin compared with Aβ + saline+DMSO group. In contrast, both groups receiving FC demonstrated memory decline, and reduction in p-CREB, PSD95 and synaptophysin in parallel with increase in TNF-α. Our data indicate that chronic inhibition of BRD4 significantly restores memory impaired by amyloid β partly via CREB signaling and upregulating synaptic proteins of PSD95 and synaptophysin. However, inhibition of astrocytes nullifies the memory-boosting effects of JQ1 and reduces CREB/PSD95/synaptophysin levels in hippocampus.
Collapse
Affiliation(s)
- Rastin Nikkar
- Cellular &Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
- Neuroscience Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Aghil Esmaeili-Bandboni
- Department of Medical Genetics, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
- Medical Biotechnology Research Center, School of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Mahshid Badrikoohi
- Cellular &Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
- Department of Physiology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Parvin Babaei
- Cellular &Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.
- Neuroscience Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.
- Department of Physiology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
7
|
Mesenchymal Stem Cell-Derived Neuron-Like Cell Transplantation Combined with Electroacupuncture Improves Synaptic Plasticity in Rats with Intracerebral Hemorrhage via mTOR/p70S6K Signaling. Stem Cells Int 2022; 2022:6450527. [PMID: 35211177 PMCID: PMC8863490 DOI: 10.1155/2022/6450527] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 12/24/2021] [Accepted: 01/11/2022] [Indexed: 01/01/2023] Open
Abstract
Previous studies have shown that the combination of mesenchymal stem cell (MSC) transplantation and electroacupuncture (EA) stimulation is a neuroprotective strategy for treating intracerebral hemorrhage (ICH). However, the underlying mechanisms by which the combined treatment promotes neuroprotection remain unclear. This study was designed to investigate the effects of the combined treatment on synaptic plasticity and elucidate their underlying mechanisms. Therefore, rat ICH models were established by injecting collagenase and heparin, and the animals were randomly divided into model control (MC), EA stimulation (EA), MSC-derived neuron-like cell transplantation (MSC-dNLCs), and MSC-dNLC transplantation combined with EA stimulation (MSC-dNLCs+EA) groups. We observed the ultrastructure of the brain and measured the brain water content (BWC) and the levels of the microtubule-associated protein 2 (MAP2), galactocerebrosidase (GALC), and glial fibrillary acidic protein (GFAP) proteins. We also measured the levels of the phosphorylated mammalian target of rapamycin (mTOR) and 70 kDa ribosomal protein S6 kinase (p70S6K) proteins, as well as the expression of synapse-related proteins. The BWC increased in rats after ICH and decreased significantly in ICH rats treated with MSC-dNLC transplantation, EA stimulation, or combined therapy. Meanwhile, after ICH, the number of blood vessels increased more evidently, but only the combined treatment reduced the number of blood vessels among rats receiving the three treatments. Moreover, the levels of MAP2, GALC, postsynaptic density 95 (PSD95), and synaptophysin (SYP) proteins, as well as the levels of the phosphorylated mTOR and p70S6k proteins, increased in the MSC-dNLCs+EA group compared with those in the MSC-dNLCs and EA groups. Compared with the MC group, GFAP expression was significantly reduced in the MSC-dNLCs, EA, and MSC-dNLCs+EA groups, but the differences among the three treatment groups were not significant. In addition, the number of synapses increased only in the MSC-dNLCs+EA group compared to the MC group. Based on these data, the combination of MSC-dNLC transplantation and EA stimulation exerts a synergistic effect on improving the consequences of ICH by relieving cerebral edema and glial scarring, promoting the survival of neurons and oligodendrocytes, and activating mTOR/p70S6K signaling to enhance synaptic plasticity.
Collapse
|
8
|
LEE TM, LEE CC, HARN HJ, Chiou TW, CHUANG MH, CHEN CH, CHUANG CH, LIN PC, LIN SZ. Intramyocardial injection of human adipose-derived stem cells ameliorates cognitive deficit by regulating oxidative stress-mediated hippocampal damage after myocardial infarction. J Mol Med (Berl) 2021; 99:1815-1827. [PMID: 34633469 PMCID: PMC8599314 DOI: 10.1007/s00109-021-02135-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/17/2021] [Accepted: 09/03/2021] [Indexed: 11/24/2022]
Abstract
Cognitive impairment is a serious side effect of post-myocardial infarction (MI) course. We have recently demonstrated that human adipose-derived stem cells (hADSCs) ameliorated myocardial injury after MI by attenuating reactive oxygen species (ROS) levels. Here, we studied whether the beneficial effects of intramyocardial hADSC transplantation can extend to the brain and how they may attenuate cognitive dysfunction via modulating ROS after MI. After coronary ligation, male Wistar rats were randomized via an intramyocardial route to receive either vehicle, hADSC transplantation (1 × 106 cells), or the combination of hADSCs and 3-Morpholinosydnonimine (SIN-1, a peroxynitrite donor). Whether hADSCs migrated into the hippocampus was assessed by using human-specific primers in qPCR reactions. Passive avoidance test was used to assess cognitive performance. Postinfarction was associated with increased oxidative stress in the myocardium, circulation, and hippocampus. This was coupled with decreased numbers of dendritic spines as well as a significant downregulation of synaptic plasticity consisting of synaptophysin and PSD95. Step-through latency during passive avoidance test was impaired in vehicle-treated rats after MI. Intramyocardial hADSC injection exerted therapeutic benefits in improving cardiac function and cognitive impairment. None of hADSCs was detected in rat's hippocampus at the 3rd day after intramyocardial injection. The beneficial effects of hADSCs on MI-induced histological and cognitive changes were abolished after adding SIN-1. MI-induced ROS attacked the hippocampus to induce neurodegeneration, resulting in cognitive deficit. The remotely intramyocardial administration of hADSCs has the capacity of improved synaptic neuroplasticity in the hippocampus mediated by ROS, not the cell engraftment, after MI. KEY MESSAGES: Human adipose-derived stem cells (hADSCs) ameliorated injury after myocardial infarction by attenuating reactive oxygen species (ROS) levels. Intramyocardial administration of hADSCs remotely exerted therapeutic benefits in improving cognitive impairment after myocardial infarction. The improved synaptic neuroplasticity in the hippocampus was mediated by hADSC-inhibiting ROS, not by the stem cell engraftment.
Collapse
Affiliation(s)
| | | | - Horng-Jyh HARN
- Bioinnovation Center, Tzu Chi Foundation, Department of Pathology, Buddhist Tzu Chi General Hospital, Tzu Chi University, Hualien, Taiwan
| | - Tzyy-Wen Chiou
- Department of Life Science and Graduate Institute of Biotechnology, National Dong Hwa University, Hualien, Taiwan
| | - Ming-Hsi CHUANG
- Department of Technology Management, Chung Hua University, Hsinchu City, Taiwan
- Gwo Xi Stem Cell Applied Technology, Hsinchu, Taiwan
| | | | | | - Po-Cheng LIN
- Gwo Xi Stem Cell Applied Technology, Hsinchu, Taiwan
| | - Shinn-Zong LIN
- Bioinnovation Center, Tzu Chi Foundation, Department of Neurosurgery, Buddhist Tzu Chi General Hospital, Tzu Chi University, No.707, Sec. 3, Chung Yang Rd. 970, Hualien, Taiwan
| |
Collapse
|
9
|
Xingnao Jieyu Decoction Reduces Neuroinflammation through the NF- κB Pathway to Improve Poststroke Depression. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:8629714. [PMID: 34725556 PMCID: PMC8557073 DOI: 10.1155/2021/8629714] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/29/2021] [Accepted: 10/06/2021] [Indexed: 11/22/2022]
Abstract
The neuroinflammatory pathway regulated by nuclear factor kappa-B (NF-κB) plays an important role in the occurrence, development, and prognosis of poststroke depression (PSD). The regulatory effect of the traditional Chinese medicine compound Xingnao Jieyu decoction (XNJY) on the NF-κB pathway of PSD is still unclear. This study aimed to observe the effect of XNJY on PSD and explore the molecular mechanism of its intervention in the NF-κB pathway. Middle cerebral artery occlusion (MCAO) and chronic unpredictable mild stress were used to establish a PSD rat model. Body mass measurement, behavioral testing, Nissl staining, ELISA, and Western blot were also performed. XNJY and fluoxetine hydrochloride (Flu) treatment of PSD model rats showed significant antidepressant effects. XNJY and Flu treatment could reduce cortical and hippocampal neuronal damage. XNJY reduced inflammation and restored the levels of IL-4, IL-10, and BDNF. In addition, XNJY showed a significant regulatory effect on the NF-κB pathway and the expression of synapse-related proteins PSD-95 and SYN. These results showed that XNJY could significantly reduce the depressive symptoms of PSD rats, and this reduction may be related to the regulation of the NF-κB signaling pathway to improve neuroinflammation and synaptic function.
Collapse
|
10
|
Li X, Zhong H, Wang Z, Xiao R, Antonson P, Liu T, Wu C, Zou J, Wang L, Nalvarte I, Xu H, Warner M, Gustafsson JA, Fan X. Loss of liver X receptor β in astrocytes leads to anxiety-like behaviors via regulating synaptic transmission in the medial prefrontal cortex in mice. Mol Psychiatry 2021; 26:6380-6393. [PMID: 33963286 DOI: 10.1038/s41380-021-01139-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 04/08/2021] [Accepted: 04/19/2021] [Indexed: 02/03/2023]
Abstract
Astrocytes are integral components of synaptic transmission, and their dysfunction leads to neuropsychiatric disorders such as anxiety and depression. Liver X receptor β (LXRβ) is expressed in astrocytes, and LXRβ global knockout mice shows impaired synaptic formation. In order to define the role of LXRβ in astrocytes, we used a conditional Cre-loxP system to specifically remove LXRβ from astrocytes. We found that this deletion caused anxiety-like but not depressive-like behaviors in adult male mice. This behavioral phenotype could be completely reproduced by selective deletion of LXRβ in astrocytes in the medial prefrontal cortex (mPFC). Pyramidal neurons in layer V of mPFC are involved in mood behaviors. We found that there was an increased spontaneous excitatory synaptic transmission in layer V pyramidal neurons of the mPFC of these mice. This was concurrent with increased dendritic complexity, despite normal appearance and number of dendritic spines. In addition, gene ontology analysis of RNA sequencing revealed that deletion of astrocytic LXRβ led to the enrichment of the process of synaptic transmission in mPFC. Finally, we also confirmed that renormalized excitatory synaptic transmission in layer V pyramidal neurons alleviated the anxiety in mice with astrocytic LXRβ deletion in mPFC. Together, our findings reveal that astrocytic LXRβ in mPFC is critical in the regulation of synaptic transmission, and this provides a potential new target for treatment of anxiety-like behavior.
Collapse
Affiliation(s)
- Xin Li
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Hongyu Zhong
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Zhongke Wang
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Rui Xiao
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Per Antonson
- Department of Biosciences and Nutrition, Karolinska Institute, Huddinge, Sweden
| | - Tianyao Liu
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Chuan Wu
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Jiao Zou
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Lian Wang
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Ivan Nalvarte
- Department of Biosciences and Nutrition, Karolinska Institute, Huddinge, Sweden
| | - Haiwei Xu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Margaret Warner
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Jan-Ake Gustafsson
- Department of Biosciences and Nutrition, Karolinska Institute, Huddinge, Sweden. .,Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX, USA.
| | - Xiaotang Fan
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, PR China.
| |
Collapse
|
11
|
Abstract
Effective regulation of immune-cell activation is critical for ensuring that the immune response, and inflammation generated for the purpose of pathogen elimination, are limited in space and time to minimize tissue damage. Autoimmune disease can occur when immunoreceptor signaling is dysregulated, leading to unrestrained inflammation and organ damage. Conversely, tumors can coopt the tissue healing and immunosuppressive functions of hematopoietic cells to promote metastasis and evade therapy. The Src-family kinase Lyn is an essential regulator of immunoreceptor signaling, initiating both proinflammatory and suppressive signaling pathways in myeloid immune cells (eg, neutrophils, dendritic cells, monocytes, macrophages) and in B lymphocytes. Defects in Lyn signaling are implicated in autoimmune disease, but mechanisms by which Lyn, expressed along with a battery of other Src-family kinases, may uniquely direct both positive and negative signaling remain incompletely defined. This review describes our current understanding of the activating and inhibitory contributions of Lyn to immunoreceptor signaling and how these processes contribute to myeloid and B-cell function. We also highlight recent work suggesting that the 2 proteins generated by alternative splicing of lyn, LynA and LynB, differentially regulate both immune and cancer-cell signaling. These principles may also extend to other Lyn-expressing cells, such as neuronal and endocrine cells. Unraveling the common and cell-specific aspects of Lyn function could lead to new approaches to therapeutically target dysregulated pathways in pathologies ranging from autoimmune and neurogenerative disease to cancer.
Collapse
Affiliation(s)
- Ben F Brian
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA
- Current Affiliation: Current affiliation for B.F.B.: Division of Immunology & Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Tanya S Freedman
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA
- Center for Immunology, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Center for Autoimmune Diseases Research, University of Minnesota, Minneapolis, MN, USA
- Correspondence: Tanya S. Freedman, PhD, University of Minnesota Twin Cities Campus: University of Minnesota, 6-120 Jackson Hall, 321 Church St. S.E., Minneapolis, MN 55455, USA. E-mail:
| |
Collapse
|
12
|
Kim G, Lee SE, Jeong S, Lee J, Park D, Chang S. Multivalent electrostatic pi-cation interaction between synaptophysin and synapsin is responsible for the coacervation. Mol Brain 2021; 14:137. [PMID: 34496937 PMCID: PMC8424992 DOI: 10.1186/s13041-021-00846-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/24/2021] [Indexed: 12/26/2022] Open
Abstract
We recently showed that synaptophysin (Syph) and synapsin (Syn) can induce liquid-liquid phase separation (LLPS) to cluster small synaptic-like microvesicles in living cells which are highly reminiscent of SV cluster. However, as there is no physical interaction between them, the underlying mechanism for their coacervation remains unknown. Here, we showed that the coacervation between Syph and Syn is primarily governed by multivalent pi-cation electrostatic interactions among tyrosine residues of Syph C-terminal (Ct) and positively charged Syn. We found that Syph Ct is intrinsically disordered and it alone can form liquid droplets by interactions among themselves at high concentration in a crowding environment in vitro or when assisted by additional interactions by tagging with light-sensitive CRY2PHR or subunits of a multimeric protein in living cells. Syph Ct contains 10 repeated sequences, 9 of them start with tyrosine, and mutating 9 tyrosine to serine (9YS) completely abolished the phase separating property of Syph Ct, indicating tyrosine-mediated pi-interactions are critical. We further found that 9YS mutation failed to coacervate with Syn, and since 9YS retains Syph's negative charge, the results indicate that pi-cation interactions rather than simple charge interactions are responsible for their coacervation. In addition to revealing the underlying mechanism of Syph and Syn coacervation, our results also raise the possibility that physiological regulation of pi-cation interactions between Syph and Syn during synaptic activity may contribute to the dynamics of synaptic vesicle clustering.
Collapse
Affiliation(s)
- Goeun Kim
- Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, South Korea
| | - Sang-Eun Lee
- Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, South Korea
- UK Dementia Research Institute, University College London, Cruciform Building, Gower St, London, WC1E 6BT, UK
| | - Seonyoung Jeong
- Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, South Korea
| | - Jeongkun Lee
- Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, South Korea
| | - Daehun Park
- Departments of Neuroscience and Cell Biology, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Sunghoe Chang
- Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, South Korea.
| |
Collapse
|
13
|
Sufleţel RT, Melincovici CS, Gheban BA, Toader Z, Mihu CM. Hepatic stellate cells - from past till present: morphology, human markers, human cell lines, behavior in normal and liver pathology. ROMANIAN JOURNAL OF MORPHOLOGY AND EMBRYOLOGY 2021; 61:615-642. [PMID: 33817704 PMCID: PMC8112759 DOI: 10.47162/rjme.61.3.01] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Hepatic stellate cell (HSC), initially analyzed by von Kupffer, in 1876, revealed to be an extraordinary mesenchymal cell, essential for both hepatocellular function and lesions, being the hallmark of hepatic fibrogenesis and carcinogenesis. Apart from their implications in hepatic injury, HSCs play a vital role in liver development and regeneration, xenobiotic response, intermediate metabolism, and regulation of immune response. In this review, we discuss the current state of knowledge regarding HSCs morphology, human HSCs markers and human HSC cell lines. We also summarize the latest findings concerning their roles in normal and liver pathology, focusing on their impact in fibrogenesis, chronic viral hepatitis and liver tumors.
Collapse
Affiliation(s)
- Rada Teodora Sufleţel
- Discipline of Histology, Department of Morphological Sciences, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania;
| | | | | | | | | |
Collapse
|
14
|
Jensen BK, Schuldi MH, McAvoy K, Russell KA, Boehringer A, Curran BM, Krishnamurthy K, Wen X, Westergard T, Ma L, Haeusler AR, Edbauer D, Pasinelli P, Trotti D. Synaptic dysfunction induced by glycine-alanine dipeptides in C9orf72-ALS/FTD is rescued by SV2 replenishment. EMBO Mol Med 2020; 12:e10722. [PMID: 32347002 PMCID: PMC7207170 DOI: 10.15252/emmm.201910722] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 03/23/2020] [Accepted: 03/26/2020] [Indexed: 12/16/2022] Open
Abstract
The most common cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) is an intronic hexanucleotide repeat expansion in the C9orf72 gene. In disease, RNA transcripts containing this expanded region undergo repeat-associated non-AUG translation to produce dipeptide repeat proteins (DPRs), which are detected in brain and spinal cord of patients and are neurotoxic both in vitro and in vivo paradigms. We reveal here a novel pathogenic mechanism for the most abundantly detected DPR in ALS/FTD autopsy tissues, poly-glycine-alanine (GA). Previously, we showed motor dysfunction in a GA mouse model without loss of motor neurons. Here, we demonstrate that mobile GA aggregates are present within neurites, evoke a reduction in synaptic vesicle-associated protein 2 (SV2), and alter Ca2+ influx and synaptic vesicle release. These phenotypes could be corrected by restoring SV2 levels. In GA mice, loss of SV2 was observed without reduction of motor neuron number. Notably, reduction in SV2 was seen in cortical and motor neurons derived from patient induced pluripotent stem cell lines, suggesting synaptic alterations also occur in patients.
Collapse
Affiliation(s)
- Brigid K Jensen
- Jefferson Weinberg ALS CenterDepartment of NeuroscienceVickie and Jack Farber Institute for NeuroscienceThomas Jefferson UniversityPhiladelphiaPAUSA
| | - Martin H Schuldi
- German Center for Neurodegenerative Diseases (DZNE)MunichGermany
| | - Kevin McAvoy
- Jefferson Weinberg ALS CenterDepartment of NeuroscienceVickie and Jack Farber Institute for NeuroscienceThomas Jefferson UniversityPhiladelphiaPAUSA
| | - Katelyn A Russell
- Jefferson Weinberg ALS CenterDepartment of NeuroscienceVickie and Jack Farber Institute for NeuroscienceThomas Jefferson UniversityPhiladelphiaPAUSA
| | - Ashley Boehringer
- Jefferson Weinberg ALS CenterDepartment of NeuroscienceVickie and Jack Farber Institute for NeuroscienceThomas Jefferson UniversityPhiladelphiaPAUSA
| | - Bridget M Curran
- Department of NeuroscienceVickie and Jack Farber Institute for NeuroscienceThomas Jefferson UniversityPhiladelphiaPAUSA
| | - Karthik Krishnamurthy
- Jefferson Weinberg ALS CenterDepartment of NeuroscienceVickie and Jack Farber Institute for NeuroscienceThomas Jefferson UniversityPhiladelphiaPAUSA
| | - Xinmei Wen
- Jefferson Weinberg ALS CenterDepartment of NeuroscienceVickie and Jack Farber Institute for NeuroscienceThomas Jefferson UniversityPhiladelphiaPAUSA
| | - Thomas Westergard
- Jefferson Weinberg ALS CenterDepartment of NeuroscienceVickie and Jack Farber Institute for NeuroscienceThomas Jefferson UniversityPhiladelphiaPAUSA
| | - Le Ma
- Department of NeuroscienceVickie and Jack Farber Institute for NeuroscienceThomas Jefferson UniversityPhiladelphiaPAUSA
| | - Aaron R Haeusler
- Jefferson Weinberg ALS CenterDepartment of NeuroscienceVickie and Jack Farber Institute for NeuroscienceThomas Jefferson UniversityPhiladelphiaPAUSA
| | - Dieter Edbauer
- German Center for Neurodegenerative Diseases (DZNE)MunichGermany
| | - Piera Pasinelli
- Jefferson Weinberg ALS CenterDepartment of NeuroscienceVickie and Jack Farber Institute for NeuroscienceThomas Jefferson UniversityPhiladelphiaPAUSA
| | - Davide Trotti
- Jefferson Weinberg ALS CenterDepartment of NeuroscienceVickie and Jack Farber Institute for NeuroscienceThomas Jefferson UniversityPhiladelphiaPAUSA
| |
Collapse
|
15
|
Raja MK, Preobraschenski J, Del Olmo-Cabrera S, Martinez-Turrillas R, Jahn R, Perez-Otano I, Wesseling JF. Elevated synaptic vesicle release probability in synaptophysin/gyrin family quadruple knockouts. eLife 2019; 8:40744. [PMID: 31090538 PMCID: PMC6519982 DOI: 10.7554/elife.40744] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 04/18/2019] [Indexed: 01/05/2023] Open
Abstract
Synaptophysins 1 and 2 and synaptogyrins 1 and 3 constitute a major family of synaptic vesicle membrane proteins. Unlike other widely expressed synaptic vesicle proteins such as vSNAREs and synaptotagmins, the primary function has not been resolved. Here, we report robust elevation in the probability of release of readily releasable vesicles with both high and low release probabilities at a variety of synapse types from knockout mice missing all four family members. Neither the number of readily releasable vesicles, nor the timing of recruitment to the readily releasable pool was affected. The results suggest that family members serve as negative regulators of neurotransmission, acting directly at the level of exocytosis to dampen connection strength selectively when presynaptic action potentials fire at low frequency. The widespread expression suggests that chemical synapses may play a frequency filtering role in biological computation that is more elemental than presently envisioned. Editorial note This article has been through an editorial process in which the authors decide how to respond to the issues raised during peer review. The Reviewing Editor's assessment is that all the issues have been addressed (see decision letter).
Collapse
Affiliation(s)
- Mathan K Raja
- Department of Neuroscience, Universidad de Navarra, Pamplona, Spain
| | - Julia Preobraschenski
- Department of Neurobiology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | | | | | - Reinhard Jahn
- Department of Neurobiology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Isabel Perez-Otano
- Department of Neuroscience, Universidad de Navarra, Pamplona, Spain.,Institute for Neurosciences CSIC-UMH, San Juan de Alicante, Spain
| | - John F Wesseling
- Department of Neuroscience, Universidad de Navarra, Pamplona, Spain.,Institute for Neurosciences CSIC-UMH, San Juan de Alicante, Spain
| |
Collapse
|
16
|
Hansen SN, Schou-Pedersen AMV, Lykkesfeldt J, Tveden-Nyborg P. Spatial Memory Dysfunction Induced by Vitamin C Deficiency Is Associated with Changes in Monoaminergic Neurotransmitters and Aberrant Synapse Formation. Antioxidants (Basel) 2018; 7:antiox7070082. [PMID: 29966224 PMCID: PMC6070945 DOI: 10.3390/antiox7070082] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 06/21/2018] [Accepted: 06/27/2018] [Indexed: 01/11/2023] Open
Abstract
Vitamin C (vitC) is important in the developing brain, acting both as an essential antioxidant and as co-factor in the synthesis and metabolism of monoaminergic neurotransmitters. In guinea pigs, vitC deficiency results in increased oxidative stress, reduced hippocampal volume and neuronal numbers, and deficits in spatial memory. This study investigated the effects of 8 weeks of either sufficient (923 mg vitC/kg feed) or deficient (100 mg vitC/kg feed) levels of dietary vitC on hippocampal monoaminergic neurotransmitters and markers of synapse formation in young guinea pigs with spatial memory deficits. Western blotting and high performance liquid chromatography (HPLC) were used to quantify the selected markers. VitC deficiency resulted in significantly reduced protein levels of synaptophysin (p = 0.016) and a decrease in 5-hydroxyindoleacetic acid/5-hydroxytryptamine ratio (p = 0.0093). Protein expression of the N-methyl-d-aspartate receptor subunit 1 and monoamine oxidase A were reduced, albeit not reaching statistical significance (p = 0.0898 and p = 0.067, respectively). Our findings suggest that vitC deficiency induced spatial memory deficits might be mediated by impairments in neurotransmission and synaptic development.
Collapse
Affiliation(s)
- Stine Normann Hansen
- Section for Experimental Animal Models, Department of Veterinary and Animal Sciences, University of Copenhagen, Thorvaldensvej 57, Ground Floor, 1870 Frederiksberg C, Denmark.
| | - Anne Marie V Schou-Pedersen
- Section for Experimental Animal Models, Department of Veterinary and Animal Sciences, University of Copenhagen, Thorvaldensvej 57, Ground Floor, 1870 Frederiksberg C, Denmark.
| | - Jens Lykkesfeldt
- Section for Experimental Animal Models, Department of Veterinary and Animal Sciences, University of Copenhagen, Thorvaldensvej 57, Ground Floor, 1870 Frederiksberg C, Denmark.
| | - Pernille Tveden-Nyborg
- Section for Experimental Animal Models, Department of Veterinary and Animal Sciences, University of Copenhagen, Thorvaldensvej 57, Ground Floor, 1870 Frederiksberg C, Denmark.
| |
Collapse
|
17
|
Calahorro F, Izquierdo PG. The presynaptic machinery at the synapse of C. elegans. INVERTEBRATE NEUROSCIENCE : IN 2018; 18:4. [PMID: 29532181 PMCID: PMC5851683 DOI: 10.1007/s10158-018-0207-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 02/22/2018] [Indexed: 11/17/2022]
Abstract
Synapses are specialized contact sites that mediate information flow between neurons and their targets. Important physical interactions across the synapse are mediated by synaptic adhesion molecules. These adhesions regulate formation of synapses during development and play a role during mature synaptic function. Importantly, genes regulating synaptogenesis and axon regeneration are conserved across the animal phyla. Genetic screens in the nematode Caenorhabditis elegans have identified a number of molecules required for synapse patterning and assembly. C. elegans is able to survive even with its neuronal function severely compromised. This is in comparison with Drosophila and mice where increased complexity makes them less tolerant to impaired function. Although this fact may reflect differences in the function of the homologous proteins in the synapses between these organisms, the most likely interpretation is that many of these components are equally important, but not absolutely essential, for synaptic transmission to support the relatively undemanding life style of laboratory maintained C. elegans. Here, we review research on the major group of synaptic proteins, involved in the presynaptic machinery in C. elegans, showing a strong conservation between higher organisms and highlight how C. elegans can be used as an informative tool for dissecting synaptic components, based on a simple nervous system organization.
Collapse
Affiliation(s)
- Fernando Calahorro
- Biological Sciences, University of Southampton, Life Sciences Building 85, Southampton, SO17 1BJ, UK.
| | - Patricia G Izquierdo
- Biological Sciences, University of Southampton, Life Sciences Building 85, Southampton, SO17 1BJ, UK
| |
Collapse
|
18
|
Mao LM, Geosling R, Penman B, Wang JQ. Local substrates of non-receptor tyrosine kinases at synaptic sites in neurons. SHENG LI XUE BAO : [ACTA PHYSIOLOGICA SINICA] 2017; 69:657-665. [PMID: 29063113 PMCID: PMC5672811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Several non-receptor tyrosine kinase (nRTK) members are expressed in neurons of mammalian brains. Among these neuron-enriched nRTKs, two Src family kinase members (Src and Fyn) are particularly abundant at synaptic sites and have been most extensively studied for their roles in the regulation of synaptic activity and plasticity. Increasing evidence shows that the synaptic subpool of nRTKs interacts with a number of local substrates, including glutamate receptors (both ionotropic and metabotropic glutamate receptors), postsynaptic scaffold proteins, presynaptic proteins, and synapse-enriched enzymes. By phosphorylating specific tyrosine residues in the intracellular domains of these synaptic proteins either constitutively or in an activity-dependent manner, nRTKs regulate these substrates in trafficking, surface expression, and function. Given the high sensitivity of nRTKs to changing synaptic input, nRTKs are considered to act as a critical regulator in the determination of the strength and efficacy of synaptic transmission.
Collapse
Affiliation(s)
- Li-Min Mao
- Department of Basic Medical Science, School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - Ryan Geosling
- Department of Anesthesiology, School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - Brian Penman
- Department of Anesthesiology, School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - John Q Wang
- Department of Basic Medical Science, School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA
- Department of Anesthesiology, School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA.
| |
Collapse
|
19
|
Han Q, Lin Q, Huang P, Chen M, Hu X, Fu H, He S, Shen F, Zeng H, Deng Y. Microglia-derived IL-1β contributes to axon development disorders and synaptic deficit through p38-MAPK signal pathway in septic neonatal rats. J Neuroinflammation 2017; 14:52. [PMID: 28288671 PMCID: PMC5348817 DOI: 10.1186/s12974-017-0805-x] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 01/26/2017] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Axon development plays a pivotal role in the formation of synapse, nodes of Ranvier, and myelin sheath. Interleukin-1β (IL-1β) produced by microglia may cause myelination disturbances through suppression of oligodendrocyte progenitor cell maturation in the septic neonatal rats. Here, we explored if a microglia-derived IL-1β would disturb axon development in the corpus callosum (CC) following lipopolysaccharide (LPS) administration, and if so, whether it is associated with disorder of synapse formation in the cerebral cortex and node of Ranvier. METHODS Sprague-Dawley rats (1-day old) in the septic model group were intraperitoneally administrated with lipopolysaccharide (1 mg/kg) and then sacrificed for detection of IL-1β, interleukin-1 receptor (IL-1R1), neurofilament-68, neurofilament-160, and neurofilament-200, proteolipid, synaptophysin, and postsynaptic density 95 (PSD95) expression by western blotting and immunofluorescence. Electron microscopy was conducted to observe alterations of axonal myelin sheath and synapses in the cortex, and proteolipid expression was assessed using in situ hybridization. The effect of IL-1β on neurofilament and synaptophysin expression in primary neuron cultures was determined by western blotting and immunofluorescence. P38-MAPK signaling pathway was investigated to determine whether it was involved in the inhibition of IL-1β on neurofilament and synaptophysin expression. RESULTS In 1-day old septic rats, IL-1β expression was increased in microglia coupled with upregulated expression of IL-1R1 on the axons. The expression of neurofilament-68, neurofilament-160, and neurofilament-200 (NFL, NFM, NFH) and proteolipid (PLP) was markedly reduced in the CC at 7, 14, and 28 days after LPS administration. Simultaneously, cortical synapses and mature oligodendrocytes were significantly reduced. By electron microscopy, some axons showed smaller diameter and thinner myelin sheath with damaged ultrastructure of node of Ranvier compared with the control rats. In the cerebral cortex of LPS-injected rats, some axo-dendritic synapses appeared abnormal looking as manifested by the presence of swollen and clumping of synaptic vesicles near the presynaptic membrane. In primary cultured neurons incubated with IL-1β, expression of NFL, NFM, and synaptophysin was significantly downregulated. Furthermore, p38-MAPK signaling pathway was implicated in disorder of axon development and synaptic deficit caused by IL-1β treatment. CONCLUSIONS The present results suggest that microglia-derived IL-1β might suppress axon development through activation of p38-MAPK signaling pathway that would contribute to formation disorder of cortical synapses and node of Ranvier following LPS exposure.
Collapse
Affiliation(s)
- Qianpeng Han
- Southern Medical University, Guangzhou, 510515 People’s Republic of China
- Department of Critical Care and Emergency, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080 People’s Republic of China
- Department of Critical Care Medicine, Yueyang First People’s Hospital, Yueyang, 414000 People’s Republic of China
| | - Qiongyu Lin
- Southern Medical University, Guangzhou, 510515 People’s Republic of China
- Department of Critical Care and Emergency, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080 People’s Republic of China
| | - Peixian Huang
- Department of Critical Care and Emergency, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080 People’s Republic of China
- Shantou University Medical College, Shantou, Guangdong 515063 People’s Republic of China
| | - Mengmeng Chen
- Department of Critical Care and Emergency, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080 People’s Republic of China
- Shantou University Medical College, Shantou, Guangdong 515063 People’s Republic of China
| | - Xin Hu
- Department of Anatomy, Basic medical school of Wuhan University, Wuhan, Hubei 430071 People’s Republic of China
| | - Hui Fu
- Department of Anatomy, Basic medical school of Wuhan University, Wuhan, Hubei 430071 People’s Republic of China
| | - Shaoru He
- Department of Neonatology, Guangzhou General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080 People’s Republic of China
| | - Fengcai Shen
- Department of Critical Care and Emergency, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080 People’s Republic of China
- Shantou University Medical College, Shantou, Guangdong 515063 People’s Republic of China
| | - Hongke Zeng
- Southern Medical University, Guangzhou, 510515 People’s Republic of China
- Department of Critical Care and Emergency, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080 People’s Republic of China
| | - Yiyu Deng
- Southern Medical University, Guangzhou, 510515 People’s Republic of China
- Department of Critical Care and Emergency, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080 People’s Republic of China
| |
Collapse
|
20
|
Lai SM, Gu ZT, Zhao MM, Li XX, Ma YX, Luo L, Liu J. Toxic effect of acrylamide on the development of hippocampal neurons of weaning rats. Neural Regen Res 2017; 12:1648-1654. [PMID: 29171430 PMCID: PMC5696846 DOI: 10.4103/1673-5374.217345] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Although numerous studies have examined the neurotoxicity of acrylamide in adult animals, the effects on neuronal development in the embryonic and lactational periods are largely unknown. Thus, we examined the toxicity of acrylamide on neuronal development in the hippocampus of fetal rats during pregnancy. Sprague-Dawley rats were mated with male rats at a 1:1 ratio. Rats were administered 0, 5, 10 or 20 mg/kg acrylamide intragastrically from embryonic days 6–21. The gait scores were examined in pregnant rats in each group to analyze maternal toxicity. Eight weaning rats from each group were also euthanized on postnatal day 21 for follow-up studies. Nissl staining was used to observe histological change in the hippocampus. Immunohistochemistry was conducted to observe the condition of neurites, including dendrites and axons. Western blot assay was used to measure the expression levels of the specific nerve axon membrane protein, growth associated protein 43, and the presynaptic vesicle membrane specific protein, synaptophysin. The gait scores of gravid rats significantly increased, suggesting that acrylamide induced maternal motor dysfunction. The number of neurons, as well as expression of growth associated protein 43 and synaptophysin, was reduced with increasing acrylamide dose in postnatal day 21 weaning rats. These data suggest that acrylamide exerts dose-dependent toxic effects on the growth and development of hippocampal neurons of weaning rats.
Collapse
Affiliation(s)
- Sheng-Min Lai
- Department of Human Anatomy and Histoembryology, School of Basic Courses, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China
| | - Zi-Ting Gu
- Department of Human Anatomy and Histoembryology, School of Basic Courses, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China
| | - Meng-Meng Zhao
- Department of Human Anatomy and Histoembryology, School of Basic Courses, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China
| | - Xi-Xia Li
- Department of Human Anatomy and Histoembryology, School of Basic Courses, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China
| | - Yu-Xin Ma
- Department of Human Anatomy and Histoembryology, School of Basic Courses, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China
| | - Li Luo
- Department of Human Anatomy and Histoembryology, School of Basic Courses, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China
| | - Jing Liu
- Department of Human Anatomy and Histoembryology, School of Basic Courses, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China
| |
Collapse
|
21
|
Nie J, Yang X. Modulation of Synaptic Plasticity by Exercise Training as a Basis for Ischemic Stroke Rehabilitation. Cell Mol Neurobiol 2017; 37:5-16. [PMID: 26910247 PMCID: PMC11482112 DOI: 10.1007/s10571-016-0348-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 02/11/2016] [Indexed: 12/23/2022]
Abstract
In recent years, rehabilitation of ischemic stroke draws more and more attention in the world, and has been linked to changes of synaptic plasticity. Exercise training improves motor function of ischemia as well as cognition which is associated with formation of learning and memory. The molecular basis of learning and memory might be synaptic plasticity. Research has therefore been conducted in an attempt to relate effects of exercise training to neuroprotection and neurogenesis adjacent to the ischemic injury brain. The present paper reviews the current literature addressing this question and discusses the possible mechanisms involved in modulation of synaptic plasticity by exercise training. This review shows the pathological process of synaptic dysfunction in ischemic roughly and then discusses the effects of exercise training on scaffold proteins and regulatory protein expression. The expression of scaffold proteins generally increased after training, but the effects on regulatory proteins were mixed. Moreover, the compositions of postsynaptic receptors were changed and the strength of synaptic transmission was enhanced after training. Finally, the recovery of cognition is critically associated with synaptic remodeling in an injured brain, and the remodeling occurs through a number of local regulations including mRNA translation, remodeling of cytoskeleton, and receptor trafficking into and out of the synapse. We do provide a comprehensive knowledge of synaptic plasticity enhancement obtained by exercise training in this review.
Collapse
Affiliation(s)
- Jingjing Nie
- Department of Neurology, Xiang Ya Hospital, Central South University, Xiang Ya Road 87, Changsha, 410008, Hunan, China
| | - Xiaosu Yang
- Department of Neurology, Xiang Ya Hospital, Central South University, Xiang Ya Road 87, Changsha, 410008, Hunan, China.
| |
Collapse
|
22
|
McInnis CM, Bonthuis PJ, Rissman EF, Park JH. Inheritance of steroid-independent male sexual behavior in male offspring of B6D2F1 mice. Horm Behav 2016; 80:132-138. [PMID: 26940434 PMCID: PMC4818728 DOI: 10.1016/j.yhbeh.2016.02.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 02/23/2016] [Accepted: 02/24/2016] [Indexed: 01/28/2023]
Abstract
The importance of gonadal steroids in modulating male sexual behavior is well established. Individual differences in male sexual behavior, independent of gonadal steroids, are prevalent across a wide range of species, including man. However, the genetic mechanisms underlying steroid-independent male sexual behavior are poorly understood. A high proportion of B6D2F1 hybrid male mice demonstrates steroid-independent male sexual behavior (identified as "maters"), providing a mouse model that opens up avenues of investigation into the mechanisms regulating male sexual behavior in the absence of gonadal hormones. Recent studies have revealed several proteins that play a significant factor in regulating steroid-independent male sexual behavior in B6D2F1 male mice, including amyloid precursor protein (APP), tau, and synaptophysin. The specific goals of our study were to determine whether steroid-independent male sexual behavior was a heritable trait by determining if it was dependent upon the behavioral phenotype of the B6D2F1 sire, and whether the differential expression of APP, tau, and synaptophysin in the medial preoptic area found in the B6D2F1 sires that did and did not mate after gonadectomy was similar to those found in their male offspring. After adult B6D2F1 male mice were bred with C57BL/6J female mice, they and their male offspring (BXB1) were orchidectomized and identified as either maters or "non-maters". A significant proportion of the BXB1 maters was sired only from B6D2F1 maters, indicating that the steroid-independent male sexual behavior behavioral phenotype of the B6D2F1 hybrid males, when crossed with C57BL/6J female mice, is inherited by their male offspring. Additionally, APP, tau, and synaptophysin were elevated in in the medial preoptic area in both the B6D2F1 and BXB1 maters relative to the B6D2F1 and BXB1 non-maters, respectively, suggesting a potential genetic mechanism for the inheritance of steroid-independent male sexual behavior.
Collapse
Affiliation(s)
- Christine M McInnis
- Psychology Department, University of Massachusetts, Boston, Boston, MA 02125, United States.
| | - Paul J Bonthuis
- Department of Biochemistry & Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, United States
| | - Emilie F Rissman
- Department of Biochemistry & Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, United States
| | - Jin Ho Park
- Psychology Department, University of Massachusetts, Boston, Boston, MA 02125, United States; Department of Biochemistry & Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, United States
| |
Collapse
|
23
|
Keenan S, Lewis PA, Wetherill SJ, Dunning CJR, Evans GJO. The N2-Src neuronal splice variant of C-Src has altered SH3 domain ligand specificity and a higher constitutive activity than N1-Src. FEBS Lett 2015; 589:1995-2000. [PMID: 26026271 PMCID: PMC4509517 DOI: 10.1016/j.febslet.2015.05.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 03/18/2015] [Accepted: 05/19/2015] [Indexed: 10/25/2022]
Abstract
N2-Src is a poorly understood neuronal splice variant of the ubiquitous C-Src tyrosine kinase, containing a 17 amino acid insert in its Src homology 3 (SH3) domain. To characterise the properties of N2-Src we directly compared its SH3 domain specificity and kinase activity with C- and N1-Src in vitro. N2- and N1-Src had a similar low affinity for the phosphorylation of substrates containing canonical C-Src SH3 ligands and synaptophysin, an established neuronal substrate for C-Src. N2-Src also had a higher basal kinase activity than N1- and C-Src in vitro and in cells, which could be explained by weakened intramolecular interactions. Therefore, N2-Src is a highly active kinase that is likely to phosphorylate alternative substrates to C-Src in the brain.
Collapse
Affiliation(s)
- Sarah Keenan
- Department of Biology and Hull York Medical School, University of York, Wentworth Way, York YO10 5DD, UK
| | - Philip A Lewis
- Department of Biology and Hull York Medical School, University of York, Wentworth Way, York YO10 5DD, UK
| | - Sarah J Wetherill
- Department of Biology and Hull York Medical School, University of York, Wentworth Way, York YO10 5DD, UK
| | - Christopher J R Dunning
- Department of Biology and Hull York Medical School, University of York, Wentworth Way, York YO10 5DD, UK
| | - Gareth J O Evans
- Department of Biology and Hull York Medical School, University of York, Wentworth Way, York YO10 5DD, UK.
| |
Collapse
|
24
|
Gordon SL, Cousin MA. The Sybtraps: control of synaptobrevin traffic by synaptophysin, α-synuclein and AP-180. Traffic 2013; 15:245-54. [PMID: 24279465 PMCID: PMC3992847 DOI: 10.1111/tra.12140] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 11/22/2013] [Accepted: 11/26/2013] [Indexed: 01/18/2023]
Abstract
Synaptobrevin II (sybII) is a key fusogenic molecule on synaptic vesicles (SVs) therefore the active maintenance of both its conformation and location in sufficient numbers on this organelle is critical in both mediating and sustaining neurotransmitter release. Recently three proteins have been identified having key roles in the presentation, trafficking and retrieval of sybII during the fusion and endocytosis of SVs. The nerve terminal protein α-synuclein catalyses sybII entry into SNARE complexes, whereas the monomeric adaptor protein AP-180 is required for sybII retrieval during SV endocytosis. Overarching these events is the tetraspan SV protein synaptophysin, which is a major sybII interaction partner on the SV. This review will evaluate recent studies to propose working models for the control of sybII traffic by synaptophysin and other Sybtraps (sybII trafficking partners) and suggest how dysfunction in sybII traffic may contribute to human disease.
Collapse
Affiliation(s)
- Sarah L Gordon
- Membrane Biology Group, Centre for Integrative Physiology, George Square, University of Edinburgh, Scotland, EH8 9XD, UK
| | | |
Collapse
|
25
|
Aerobic exercise attenuates inhibitory avoidance memory deficit induced by paradoxical sleep deprivation in rats. Brain Res 2013; 1529:66-73. [DOI: 10.1016/j.brainres.2013.07.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 07/10/2013] [Accepted: 07/11/2013] [Indexed: 12/19/2022]
|
26
|
Bharadwaj P, McInnis C, Madden AMK, Bonthuis PJ, Zup S, Rissman EF, Park JH. Increased dendritic spine density and tau expression are associated with individual differences in steroidal regulation of male sexual behavior. PLoS One 2013; 8:e69672. [PMID: 23874981 PMCID: PMC3713039 DOI: 10.1371/journal.pone.0069672] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 06/11/2013] [Indexed: 11/19/2022] Open
Abstract
Male sexual behavior (MSB) is modulated by gonadal steroids, yet this relationship is highly variable across species and between individuals. A significant percentage (~30%) of B6D2F1 hybrid male mice demonstrate MSB after long-term orchidectomy (herein after referred to as "maters"), providing an opportunity to examine the mechanisms that underlie individual differences in steroidal regulation of MSB. Use of gene expression arrays comparing maters and non-maters has provided a first pass look at the genetic underpinnings of steroid-independent MSB. Surprisingly, of the ~500 genes in the medial preoptic area (MPOA) that differed between maters and non-maters, no steroid hormone or receptor genes were differentially expressed between the two groups. Interestingly, best known for their association with Alzheimer's disease, amyloid precursor protein (APP) and the microtubule-associated protein tau (MAPT) were elevated in maters. Increased levels of their protein products (APP and tau) in their non-pathological states have been implicated in cell survival, neuroprotection, and supporting synaptic integrity. Here we tested transgenic mice that overexpress tau and found facilitated mounting and intromission behavior after long-term orchidectomy relative to littermate controls. In addition, levels of synaptophysin and spinophilin, proteins generally enriched in synapses and dendritic spines respectively, were elevated in the MPOA of maters. Dendritic morphology was also assessed in Golgi-impregnated brains of orchidectomized B6D2F1 males, and hybrid maters exhibited greater dendritic spine density in MPOA neurons. In sum, we show for the first time that retention of MSB in the absence of steroids is correlated with morphological differences in neurons.
Collapse
Affiliation(s)
- Pranay Bharadwaj
- Psychology Department, University of Massachusetts, Boston, Boston, Massachusetts, United States of America
| | - Christine McInnis
- Department of Biology, Brandeis University, Waltham, Massachusetts, United States of America
| | - Amanda M. K. Madden
- Psychology Department, University of Massachusetts, Boston, Boston, Massachusetts, United States of America
| | - Paul J. Bonthuis
- Department of Neurobiology and Anatomy, University of Utah, School of Medicine, Salt Lake City, Utah, United States of America
| | - Susan Zup
- Psychology Department, University of Massachusetts, Boston, Boston, Massachusetts, United States of America
| | - Emilie F. Rissman
- Department of Biochemistry & Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia, United States of America
| | - Jin Ho Park
- Psychology Department, University of Massachusetts, Boston, Boston, Massachusetts, United States of America
| |
Collapse
|
27
|
Lee I, Viberg H. A single neonatal exposure to perfluorohexane sulfonate (PFHxS) affects the levels of important neuroproteins in the developing mouse brain. Neurotoxicology 2013; 37:190-6. [DOI: 10.1016/j.neuro.2013.05.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 05/02/2013] [Accepted: 05/02/2013] [Indexed: 12/09/2022]
|
28
|
Mallozzi C, D'Amore C, Camerini S, Macchia G, Crescenzi M, Petrucci TC, Di Stasi AMM. Phosphorylation and nitration of tyrosine residues affect functional properties of Synaptophysin and Dynamin I, two proteins involved in exo-endocytosis of synaptic vesicles. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:110-21. [DOI: 10.1016/j.bbamcr.2012.10.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 10/08/2012] [Accepted: 10/21/2012] [Indexed: 12/14/2022]
|
29
|
Zhang HH, Zhang XQ, Wang WY, Xue QS, Lu H, Huang JL, Gui T, Yu BW. Increased synaptophysin is involved in inflammation-induced heat hyperalgesia mediated by cyclin-dependent kinase 5 in rats. PLoS One 2012; 7:e46666. [PMID: 23056393 PMCID: PMC3462774 DOI: 10.1371/journal.pone.0046666] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2012] [Accepted: 09/02/2012] [Indexed: 01/05/2023] Open
Abstract
Mechanisms associated with cyclin-dependent kinase 5 (Cdk5)-mediated heat hyperalgesia induced by inflammation remain undefined. This study was designed to examine whether Cdk5 mediates heat hyperalgesia resulting from peripheral injection of complete Freund's adjuvant (CFA) in the spinal dorsal horns of rats by interacting with synaptophysin, a well known membrane protein mediating the endocytosis-exocytosis cycle of synaptic vesicles as a molecular marker associated with presynaptic vesicle membranes. The role of Cdk5 in mediating synaptophysin was examined through the combined use of behavioral approaches, imaging studies, and immunoprecipitation following CFA-induced inflammatory pain. Results showed that Cdk5 colocalized with both synaptophysin and soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein receptors (SNAREs) consisting of VAMP-2, SNAP-25, and syntaxin 1A in spinal dorsal horn of rats. Increased synaptophysin expression of spinal cord horn neurons post intraplantar injection of CFA coincided with increased duration of heat hyperalgesia lasting from 6 h to 3 d. Intrathecal administration of roscovitine, a Cdk5 specific inhibitor, significantly depressed synaptophysin expression during peak heat hyperalgesia and heat hyperalgesia induced by peripheral injection of CFA. Data presented in this report indicated that calpain activity was transiently upregulated 6 h post CFA-treatment despite previous reports suggesting that calpain was capable of cleaving p35 into p25. Results from previous studies obtained by other laboratories demonstrated that significant changes in p35 expression levels within spinal cord horn neurons were not observed in the CFA-treated inflammatory pain model although significant upregulation of Cdk5 kinase was observed between 2 h to 7 d. Therefore, generation of p25 occurred in a calpain-independent fashion in a CFA-treated inflammatory pain model. Our results demonstrated that increased synaptophysin levels were involved in heat hyperalgesia mediated by Cdk5 in spinal cord dorsal horns of CFA-treated rats, suggesting that inhibiting abnormal activation of Cdk5-synaptophysin may present a novel target for diminishing inflammatory pain.
Collapse
Affiliation(s)
- Hong-Hai Zhang
- Department of Anesthesiology Ruijin Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P.R. China
| | - Xiao-Qin Zhang
- Department of Anesthesiology Ruijin Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P.R. China
| | - Wen-Yuan Wang
- Department of Anesthesiology Ruijin Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P.R. China
| | - Qing-Sheng Xue
- Department of Anesthesiology Ruijin Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P.R. China
| | - Han Lu
- Department of Anesthesiology Ruijin Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P.R. China
| | - Jin-Lu Huang
- Department of Pharmacy, the Sixth Affiliated Hospital of Shanghai JiaoTong University School of Medicine, Shanghai, P.R. China
| | - Ting Gui
- Department of Anatomy, Institutes of Medical Sciences, Shanghai JiaoTong University School of Medicine, Shanghai, P.R. China
| | - Bu-Wei Yu
- Department of Anesthesiology Ruijin Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P.R. China
| |
Collapse
|
30
|
Age-related changes in the hippocampus (loss of synaptophysin and glial-synaptic interaction) are modified by systemic treatment with an NCAM-derived peptide, FGL. Brain Behav Immun 2012; 26:778-88. [PMID: 21986303 DOI: 10.1016/j.bbi.2011.09.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 09/24/2011] [Accepted: 09/27/2011] [Indexed: 12/21/2022] Open
Abstract
Altered synaptic morphology, progressive loss of synapses and glial (astrocyte and microglial) cell activation are considered as characteristic hallmarks of aging. Recent evidence suggests that there is a concomitant age-related decrease in expression of the presynaptic protein, synaptophysin, and the neuronal glycoprotein CD200, which, by interacting with its receptor, plays a role in maintaining microglia in a quiescent state. These age-related changes may be indicative of reduced neuroglial support of synapses. FG Loop (FGL) peptide synthesized from the second fibronectin type III module of neural cell adhesion molecule (NCAM), has previously been shown to attenuate age-related glial cell activation, and to 'restore' cognitive function in aged rats. The mechanisms by which FGL exerts these neuroprotective effects remain unclear, but could involve regulation of CD200, modifying glial-synaptic interactions (affecting neuroglial 'support' at synapses), or impacting directly on synaptic function. Light and electron microscopic (EM) analyses were undertaken to investigate whether systemic treatment with FGL (i) alters CD200, synaptophysin (presynaptic) and PSD-95 (postsynaptic) immunohistochemical expression levels, (ii) affects synaptic number, or (iii) exerts any effects on glial-synaptic interactions within young (4 month-old) and aged (22 month-old) rat hippocampus. Treatment with FGL attenuated the age-related loss of synaptophysin immunoreactivity (-ir) within CA3 and hilus (with no major effect on PSD-95-ir), and of CD200-ir specifically in the CA3 region. Ultrastructural morphometric analyses showed that FGL treatment (i) prevented age-related loss in astrocyte-synaptic contacts, (ii) reduced microglia-synaptic contacts in the CA3 stratum radiatum, but (iii) had no effect on the mean number of synapses in this region. These data suggest that FGL mediates its neuroprotective effects by regulating glial-synaptic interaction.
Collapse
|
31
|
Prisila Dulcy C, Singh HK, Preethi J, Emmanuvel Rajan K. Standardized extract of Bacopa monniera (BESEB CDRI-08) attenuates contextual associative learning deficits in the aging rat's brain induced by D-galactose. J Neurosci Res 2012; 90:2053-64. [DOI: 10.1002/jnr.23080] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 03/20/2012] [Accepted: 04/12/2012] [Indexed: 12/22/2022]
|
32
|
Kellom M, Basselin M, Keleshian VL, Chen M, Rapoport SI, Rao JS. Dose-dependent changes in neuroinflammatory and arachidonic acid cascade markers with synaptic marker loss in rat lipopolysaccharide infusion model of neuroinflammation. BMC Neurosci 2012; 13:50. [PMID: 22621398 PMCID: PMC3464147 DOI: 10.1186/1471-2202-13-50] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 05/08/2012] [Indexed: 11/16/2022] Open
Abstract
Background Neuroinflammation, caused by six days of intracerebroventricular infusion of bacterial lipopolysaccharide (LPS), stimulates rat brain arachidonic acid (AA) metabolism. The molecular changes associated with increased AA metabolism are not clear. We examined effects of a six-day infusion of a low-dose (0.5 ng/h) and a high-dose (250 ng/h) of LPS on neuroinflammatory, AA cascade, and pre- and post-synaptic markers in rat brain. We used artificial cerebrospinal fluid-infused brains as controls. Results Infusion of low- or high-dose LPS increased brain protein levels of TNFα, and iNOS, without significantly changing GFAP. High-dose LPS infusion upregulated brain protein and mRNA levels of AA cascade markers (cytosolic cPLA2-IVA, secretory sPLA2-V, cyclooxygenase-2 and 5-lipoxygenase), and of transcription factor NF-κB p50 DNA binding activity. Both LPS doses increased cPLA2 and p38 mitogen-activated protein kinase levels, while reducing protein levels of the pre-synaptic marker, synaptophysin. Post-synaptic markers drebrin and PSD95 protein levels were decreased with high- but not low-dose LPS. Conclusions Chronic LPS infusion has differential effects, depending on dose, on inflammatory, AA and synaptic markers in rat brain. Neuroinflammation associated with upregulated brain AA metabolism can lead to synaptic dysfunction.
Collapse
Affiliation(s)
- Matthew Kellom
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, 9000 Rockville Pike, Bldg. 9, 1S-126, Bethesda, MD, USA
| | | | | | | | | | | |
Collapse
|
33
|
Rao JS, Kellom M, Kim HW, Rapoport SI, Reese EA. Neuroinflammation and synaptic loss. Neurochem Res 2012; 37:903-10. [PMID: 22311128 PMCID: PMC3478877 DOI: 10.1007/s11064-012-0708-2] [Citation(s) in RCA: 183] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Revised: 01/08/2012] [Accepted: 01/11/2012] [Indexed: 01/14/2023]
Abstract
Neuroinflammation plays a critical role in the progression of many neurodegenerative, neuropsychiatric and viral diseases. In neuroinflammation, activated microglia and astrocytes release cytokines and chemokines as well as nitric oxide, which in turn activate many signal transduction pathways. The cytokines, interleukin-1 beta and tumor necrosis factor alpha, regulate transcription of a number of genes within the brain, which can lead to the formation of pro-inflammatory products of the arachidonic acid cascade. Formation of pro-inflammatory agents and associated cytotoxic products during neuroinflammation can be detrimental to neurons by altering synaptic proteins. Neuroinflammation as well as excitotoxic insults reduce synaptic markers such as synaptophysin and drebrin. Neurodegenerative, neuropsychiatric illnesses and viral infections are accompanied by loss of both pre- and post-synaptic proteins. These synaptic changes may contribute to the progressive cognitive decline and behavioral changes associated with these illnesses.
Collapse
Affiliation(s)
- Jagadeesh S Rao
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bldg. 9, Rm. 1S126 MSC 0947, Bethesda, MD 20892-0947, USA.
| | | | | | | | | |
Collapse
|
34
|
Agrawal R, Gomez-Pinilla F. 'Metabolic syndrome' in the brain: deficiency in omega-3 fatty acid exacerbates dysfunctions in insulin receptor signalling and cognition. J Physiol 2012; 590:2485-99. [PMID: 22473784 DOI: 10.1113/jphysiol.2012.230078] [Citation(s) in RCA: 152] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
We pursued studies to determine the effects of the metabolic syndrome (MetS) on brain, and the possibility of modulating these effects by dietary interventions. In addition, we have assessed potential mechanisms by which brain metabolic disorders can impact synaptic plasticity and cognition. We report that high-dietary fructose consumption leads to an increase in insulin resistance index, and insulin and triglyceride levels, which characterize MetS. Rats fed on an n-3 deficient diet showed memory deficits in a Barnes maze, which were further exacerbated by fructose intake. In turn, an n-3 deficient diet and fructose interventions disrupted insulin receptor signalling in hippocampus as evidenced by a decrease in phosphorylation of the insulin receptor and its downstream effector Akt. We found that high fructose consumption with an n-3 deficient diet disrupts membrane homeostasis as evidenced by an increase in the ratio of n-6/n-3 fatty acids and levels of 4-hydroxynonenal, a marker of lipid peroxidation. Disturbances in brain energy metabolism due to n-3 deficiency and fructose treatments were evidenced by a significant decrease in AMPK phosphorylation and its upstream modulator LKB1 as well as a decrease in Sir2 levels. The decrease in phosphorylation of CREB, synapsin I and synaptophysin levels by n-3 deficiency and fructose shows the impact of metabolic dysfunction on synaptic plasticity. All parameters of metabolic dysfunction related to the fructose treatment were ameliorated by the presence of dietary n-3 fatty acid. Results showed that dietary n-3 fatty acid deficiency elevates the vulnerability to metabolic dysfunction and impaired cognitive functions by modulating insulin receptor signalling and synaptic plasticity.
Collapse
Affiliation(s)
- Rahul Agrawal
- Department of Integrative Biology and Physiology, University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | | |
Collapse
|
35
|
Spatial memory is improved by aerobic and resistance exercise through divergent molecular mechanisms. Neuroscience 2012; 202:309-17. [DOI: 10.1016/j.neuroscience.2011.11.029] [Citation(s) in RCA: 230] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 11/10/2011] [Accepted: 11/10/2011] [Indexed: 01/05/2023]
|
36
|
Synaptogyrin-dependent modulation of synaptic neurotransmission in Caenorhabditis elegans. Neuroscience 2011; 190:75-88. [DOI: 10.1016/j.neuroscience.2011.05.069] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Revised: 05/20/2011] [Accepted: 05/28/2011] [Indexed: 01/31/2023]
|
37
|
Kwon SE, Chapman ER. Synaptophysin regulates the kinetics of synaptic vesicle endocytosis in central neurons. Neuron 2011; 70:847-54. [PMID: 21658579 DOI: 10.1016/j.neuron.2011.04.001] [Citation(s) in RCA: 343] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2011] [Indexed: 01/27/2023]
Abstract
Despite being the most abundant synaptic vesicle membrane protein, the function of synaptophysin remains enigmatic. For example, synaptic transmission was reported to be completely normal in synaptophysin knockout mice; however, direct experiments to monitor the synaptic vesicle cycle have not been carried out. Here, using optical imaging and electrophysiological experiments, we demonstrate that synaptophysin is required for kinetically efficient endocytosis of synaptic vesicles in cultured hippocampal neurons. Truncation analysis revealed that distinct structural elements of synaptophysin differentially regulate vesicle retrieval during and after stimulation. Thus, synaptophysin regulates at least two phases of endocytosis to ensure vesicle availability during and after sustained neuronal activity.
Collapse
Affiliation(s)
- Sung E Kwon
- Howard Hughes Medical Institute and Department of Neuroscience, University of Wisconsin, Madison, WI 53706, USA
| | | |
Collapse
|
38
|
Abstract
We report here that the Src family tyrosine kinase Lyn negatively regulates the release of dopamine (DA) in the mesolimbic system, as well as the rewarding properties of alcohol. Specifically, we show that RNA interference-mediated knockdown of Lyn expression results in an increase in KCl-induced DA release in DAergic-like SH-SY5Y cells, whereas overexpression of a constitutively active form of Lyn (CA-Lyn) leads to a decrease of DA release. Activation of ventral tegmental area (VTA) DAergic neurons results in DA overflow in the nucleus accumbens (NAc), and we found that the evoked release of DA was higher in the NAc of Lyn knock-out (Lyn KO) mice compared with wild-type littermate (Lyn WT) controls. Acute exposure of rodents to alcohol causes a rapid increase in DA release in the NAc, and we show that overexpression of CA-Lyn in the VTA of mice blocked alcohol-induced (2 g/kg) DA release in the NAc. Increase in DA levels in the NAc is closely associated with reward-related behaviors, and overexpression of CA-Lyn in the VTA of mice led to an attenuation of alcohol reward, measured in a conditioned place preference paradigm. Conversely, alcohol place preference was increased in Lyn KO mice compared with Lyn WT controls. Together, our results suggest a novel role for Lyn kinase in the regulation of DA release in the mesolimbic system, which leads to the control of alcohol reward.
Collapse
|
39
|
Thomsen MS, Hansen HH, Mikkelsen JD. α7 nicotinic receptor agonism mitigates phencyclidine-induced changes in synaptophysin and Arc gene expression in the mouse prefrontal cortex. Neurochem Int 2010; 57:756-61. [PMID: 20817066 DOI: 10.1016/j.neuint.2010.08.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Revised: 08/02/2010] [Accepted: 08/11/2010] [Indexed: 01/08/2023]
Abstract
Repeated phencyclidine (PCP) administration in mice reproduces several histopathological features of schizophrenia, such as reduced synaptophysin and parvalbumin mRNA expression in the frontal cortex. These changes can be prevented by co-administering the α7 nicotinic acetylcholine receptor (nAChR) agonist SSR180711 with PCP, but it is not known to what extent PCP-induced changes can be normalized once they have already occurred. Here we use semi-quantitative in situ hybridization to show that repeated administration of SSR180711 (3 mg/kg b.i.d. for 5 days) subsequent to repeated PCP administration (10 mg/kg/day for 10 days) is able to mitigate the reduction of synaptophysin mRNA expression induced by PCP in two prefrontal cortical regions, the medial prefrontal cortex (mPFC) and the ventrolateral orbitofrontal cortex (VLO). This effect is accompanied by a normalization of the PCP-induced increase in Arc mRNA expression in the same regions. In contrast, subsequent administration of SSR180711 does not affect PCP-induced decreases in parvalbumin mRNA in the mPFC, and glutamate decarboxylase 67 mRNA in the mPFC or VLO. These data demonstrate that it is possible to restore some, but not all, of the molecular dysregulations induced by repeated PCP administration with an α7 nAChR agonist. They also suggest that the previously demonstrated cognitive improvement with SSR180711 subsequent to PCP treatment does not require normalization of parvalbumin expression, but may instead be related to a restoration of synaptophysin and/or Arc levels in the frontal cortex. These data lend support to the potential for development of α7 nAChR agonists for the treatment of cognitive deficits in schizophrenia.
Collapse
Affiliation(s)
- Morten S Thomsen
- Neurobiology Research Unit, Copenhagen University Hospital, Copenhagen, Denmark.
| | | | | |
Collapse
|
40
|
Detection of behavioral alterations and learning deficits in mice lacking synaptophysin. Neuroscience 2009; 162:234-43. [PMID: 19393300 DOI: 10.1016/j.neuroscience.2009.04.046] [Citation(s) in RCA: 186] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Revised: 03/24/2009] [Accepted: 04/18/2009] [Indexed: 01/18/2023]
Abstract
The integral membrane protein synaptophysin is one of the most abundant polypeptide components of synaptic vesicles. It is not essential for neurotransmission despite its abundance but is believed to modulate the efficiency of the synaptic vesicle cycle. Detailed behavioral analyses were therefore performed on synaptophysin knockout mice to test whether synaptophysin affects higher brain functions. We find that these animals are more exploratory than their wild type counterparts examining novel objects more closely and intensely in an enriched open field arena. We also detect impairments in learning and memory, most notably reduced object novelty recognition and reduced spatial learning. These deficits are unlikely caused by impaired vision, since all electroretinographic parameters measured were indistinguishable from those in wild type controls although an inverse optomotor reaction was observed. Taken together, our observations demonstrate functional consequences of synaptophysin depletion in a living organism.
Collapse
|
41
|
Henriksson R, Kuzmin A, Okvist A, Harper C, Sheedy D, Garrick T, Yakovleva T, Bakalkin G. Elevated synaptophysin I in the prefrontal cortex of human chronic alcoholics. Synapse 2009; 62:829-33. [PMID: 18720419 DOI: 10.1002/syn.20559] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Convergent lines of evidence suggest potentiation of glutamatergic synapses after chronic ethanol exposure, and indicate that the presynaptic effect hereof is on modulators of synaptic strength rather than on executors of glutamate release. To address this hypothesis in the context of ethanol dependence in humans, we used semiquantitative immunoblotting to compare the immunoreactivities of synaptophysin I, syntaxin 1A, synaptosome-associated protein 25, and vesicle-associated membrane protein in the prefrontal and motor cortices between chronic alcoholics and control subjects. We found a region-specific elevation in synaptophysin I immunoreactivity in the prefrontal cortex of alcoholics, but detected no significant differences between the groups in the immunoreactivities of the other three proteins. Our findings are consistent with an effect of repeated ethanol exposure on modulators of synaptic strength but not on executors of glutamate release, and suggest a role for synaptophysin I in the enduring neuroplasticity in the prefrontal cortical glutamate circuitry that is associated with ethanol dependence.
Collapse
Affiliation(s)
- Richard Henriksson
- Experimental Alcohol and Drug Dependence Research, Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Felkl M, Leube RE. Interaction assays in yeast and cultured cells confirm known and identify novel partners of the synaptic vesicle protein synaptophysin. Neuroscience 2008; 156:344-52. [PMID: 18706977 DOI: 10.1016/j.neuroscience.2008.07.033] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2008] [Revised: 07/16/2008] [Accepted: 07/16/2008] [Indexed: 01/15/2023]
Abstract
Synaptophysin (SYP) is a major protein of neurotransmitter-containing vesicles spanning the membrane four times and contributing to various aspects of the synaptic vesicle cycle. The split-ubiquitin yeast two-hybrid system was used to characterize molecular interactions of membrane-bound, full-length murine SYP. In this way, the known homophilic SYP-SYP association could be confirmed and heterophilic binding of SYP to other tetraspan vesicle membrane proteins of the secretory carrier-associated membrane- and synaptogyrin-type could be detected for the first time. SYP-binding was also observed for the vSNARE synaptobrevin2 and various membrane and membrane-associated proteins. Double labeling immunofluorescence microscopy of murine retina, co-immunoprecipitation experiments and fluorescence energy resonance transfer (FRET) analyses between fluorescent protein-tagged polypeptides were carried out to validate and further characterize the association of SYP with the tetraspan vesicle membrane proteins secretory carrier-associated membrane protein 1 and synaptogyrin3, with synaptobrevin2, and the newly identified binding partners phospholipase D4, stathmin-like3, Rho family GTPase2 and ADP-ribosylation factor interacting protein2. It was observed that the carboxyterminus of SYP is dispensable for association with integral membrane proteins while it is needed for binding to membrane-associated polypeptides. The latter appears to be regulated by phosphorylation, since src homology 2-domains were shown to attach to the multiple carboxyterminal phosphotyrosine residues of SYP. In conclusion, the association of SYP with different tetraspan vesicle membrane proteins suggests shared functions and the multiple other interactions identify SYP as part of a membrane platform acting as a facilitator of various steps of the synaptic vesicle cycle.
Collapse
Affiliation(s)
- M Felkl
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Wendlingweg 2, 52074 Aachen, Germany
| | | |
Collapse
|
43
|
Douglass A, Wallace K, Parr R, Park J, Durward E, Broadbent I, Barelle C, Porter AJ, Wright MC. Antibody-targeted myofibroblast apoptosis reduces fibrosis during sustained liver injury. J Hepatol 2008; 49:88-98. [PMID: 18394744 DOI: 10.1016/j.jhep.2008.01.032] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2007] [Revised: 01/04/2008] [Accepted: 01/15/2008] [Indexed: 12/04/2022]
Abstract
BACKGROUND/AIMS Myofibroblast apoptosis promotes the resolution of liver fibrosis. However, retaining macrophages may enhance reversal. The effects of specifically stimulating myofibroblast apoptosis in vivo were assessed. METHODS A single chain antibody (C1-3) to an extracellular domain of a myofibroblast membrane protein was injected as a fluorescent- or gliotoxin conjugate into mice with liver fibrosis. RESULTS C1-3 specifically targeted alpha-smooth muscle actin positive liver myofibroblasts within scar regions of the liver in vivo and did not co-localise with liver monocytes/macrophages. Injection of free gliotoxin stimulated a 2-fold increase in non-parenchymal cell apoptosis and depleted liver myofibroblasts by 30% and monocytes/macrophages by 50% but had no effect on fibrosis severity in the sustained injury model employed. In contrast, C1-3-targeted gliotoxin stimulated a 5-fold increase in non-parenchymal cell apoptosis, depleted liver myofibroblasts by 60%, did not affect the number of monocytes/macrophages and significantly reduced fibrosis severity. Fibrosis reduction was associated with increased metalloproteinase-13 levels. CONCLUSIONS These data demonstrate that specific targeting of liver myofibroblast apoptosis is the most effective anti-fibrogenic therapy, supporting a role for liver monocytes and/or macrophages in the promotion of liver fibrosis reduction.
Collapse
Affiliation(s)
- Angela Douglass
- Institute of Cellular Medicine, School of Clinical and Laboratory Sciences, University of Newcastle Upon Tyne, Level 2 Leech Building, Institute of Cellular Medicine, Medical School, Newcastle University, Newcastle Upon Tyne, NE2 4HH, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Arthur CP, Stowell MHB. Structure of synaptophysin: a hexameric MARVEL-domain channel protein. Structure 2007; 15:707-14. [PMID: 17562317 PMCID: PMC1950735 DOI: 10.1016/j.str.2007.04.011] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2007] [Revised: 03/30/2007] [Accepted: 04/06/2007] [Indexed: 11/25/2022]
Abstract
Synaptophysin I (SypI) is an archetypal member of the MARVEL-domain family of integral membrane proteins and one of the first synaptic vesicle proteins to be identified and cloned. Most all MARVEL-domain proteins are involved in membrane apposition and vesicle-trafficking events, but their precise role in these processes is unclear. We have purified mammalian SypI and determined its three-dimensional (3D) structure by using electron microscopy and single-particle 3D reconstruction. The hexameric structure resembles an open basket with a large pore and tenuous interactions within the cytosolic domain. The structure suggests a model for Synaptophysin's role in fusion and recycling that is regulated by known interactions with the SNARE machinery. This 3D structure of a MARVEL-domain protein provides a structural foundation for understanding the role of these important proteins in a variety of biological processes.
Collapse
|
45
|
Glantz LA, Gilmore JH, Hamer RM, Lieberman JA, Jarskog LF. Synaptophysin and postsynaptic density protein 95 in the human prefrontal cortex from mid-gestation into early adulthood. Neuroscience 2007; 149:582-91. [PMID: 17916412 DOI: 10.1016/j.neuroscience.2007.06.036] [Citation(s) in RCA: 187] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2006] [Revised: 06/08/2007] [Accepted: 06/22/2007] [Indexed: 02/01/2023]
Abstract
Previous studies of postnatal synaptic development in human frontal cortex have shown that synaptic density rises after birth, reaches a plateau in childhood and then decreases to adult levels by late adolescence. A similar pattern has been seen in nonhuman primate cortex. These earlier studies in human cortex are limited, however, by significant age gaps in study subjects at critical inflection points of the developmental curve. Additionally, it is unclear if synaptic development occurs in different patterns in different cortical layers in prefrontal cortex (PFC). The purpose of this study was to examine synaptic density in human PFC across development by measuring two synaptic marker proteins: synaptophysin (presynaptic), and postsynaptic density protein 95 (PSD-95; postsynaptic). Western blotting was used to assess the relative levels of synaptophysin and PSD-95 in dorsolateral PFC of 42 subjects, distributed in age from 18 weeks gestation to 25 years. In addition, synaptophysin immunoreactivity was examined in each layer of areas 9 and 46 of PFC in 24 subjects, ranging in age from 0.1-25 years. Synaptophysin levels slowly increased from birth until age 5 and then increased more rapidly to peak in late childhood around age 10. Synaptophysin subsequently decreased until the adult level was reached by mid-adolescence, around age 16. PSD-95 levels increased postnatally to reach a stable plateau by early childhood with a slight reduction in late adolescence and early adulthood. The pattern of synaptophysin immunoreactivity seen with immunohistochemistry was similar to the Western experiments but the changes across age were more subtle, with little change by layer within and across age. The developmental patterns exhibited by these synaptic marker proteins expand upon previous studies of developmental synaptic changes in human frontal cortex; synaptic density increases steadily from birth to late childhood, then decreases in early adolescence to reach adult levels by late adolescence.
Collapse
Affiliation(s)
- L A Glantz
- Department of Psychiatry, University of North Carolina at Chapel Hill, CB# 7160, Chapel Hill, NC 27599-7160, USA.
| | | | | | | | | |
Collapse
|
46
|
Vanden Berghe P, Klingauf J. Spatial organization and dynamic properties of neurotransmitter release sites in the enteric nervous system. Neuroscience 2007; 145:88-99. [PMID: 17197103 DOI: 10.1016/j.neuroscience.2006.11.048] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2006] [Revised: 11/15/2006] [Accepted: 11/15/2006] [Indexed: 10/23/2022]
Abstract
Synaptic communication requires an efficient coupling of vesicle fusion to release neurotransmitter and vesicle retrieval to repopulate the synapse. In synapses of the CNS many proteins involved in exocytosis, endocytosis and refilling of vesicles have been identified. However, little is known about the organization and functioning of synaptic contacts in the enteric nervous system (ENS). We used fluorescent antibodies against presynaptic proteins (synaptobrevin, synaptophysin, synaptotagmin and bassoon) to identify synaptic contacts not only in guinea-pig enteric ganglia but also in the interconnecting fiber strands. Staining patterns were not altered by colchicine (100 microM), ruling out a contribution of protein transport at the time of fixation. Active release sites at fiber intersections and around neuronal cell bodies were labeled with FM1-43 (10 microM) by high K+ or electric field stimulation (EFS). During a second round of EFS, vesicles were reused, as reflected by dye loss. Destaining rates increased with stimulus frequency (2-30 Hz), reaching a maximum at about 15 Hz, likely caused by synaptic depression at higher frequencies. Tetrodotoxin (TTX, 1 microM) as well as nominally zero external Ca2+ (2 mM EGTA) prevented all destaining. The readily releasable pool (RRP, a subset of vesicles docked at the membrane and ready to fuse upon [Ca2+]i increase) can be specifically released by a hypertonic challenge (500 mM sucrose). We measured this pool to be approximately 27% of the total recycling pool, remarkably similar to synapses in the CNS. In whole-mount preparations, FM1-43 also reliably labeled active release sites in ganglia, fiber strands and in muscle bundles. The staining pattern indicated that the presynaptic antibodies mainly labeled active sites. The presence of numerous release sites suggests information processing capability within interconnecting fibers. With FM imaging, enteric synaptic function can be monitored independent of any postsynaptic modulation. Although electron microscopy data suggest that ENS synapses may not be as specialized as hippocampal synapses, remarkably similar release properties were measured.
Collapse
Affiliation(s)
- P Vanden Berghe
- Department of Membrane Biophysics, Max-Planck Institute for Biophysical Chemistry, Am Fassberg 11, D-37077, Göttingen, Germany.
| | | |
Collapse
|
47
|
Liang YJ, Wu DF, Yang LQ, Höllt V, Koch T. Interaction of the mu-opioid receptor with synaptophysin influences receptor trafficking and signaling. Mol Pharmacol 2007; 71:123-31. [PMID: 17005904 DOI: 10.1124/mol.106.026062] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
There is increasing evidence that the signal transduction of opioid receptors is modulated by receptor-associated proteins. In the search for proteins regulating mu-opioid receptor (MOPr) endocytosis, synaptophysin was found to bind to the rat micro-opioid receptor in yeast two-hybrid assay. Coimmunoprecipitation experiments and bioluminescence resonance energy transfer assays confirmed that the micro-opioid receptor constitutively interacts with synaptophysin in human embryonic kidney 293 cells overexpressing MOPr and synaptophysin. In this study, we show that overexpression of synaptophysin enhances the micro-opioid receptor endocytosis. One explanation for the observed effects is that synaptophysin recruits dynamin to the plasma membrane, facilitating fission of clathrin-coated vesicles. This suggestion is supported by our finding that overexpression of a synaptophysin truncation mutant, which breaks the interaction between synaptophysin and dynamin, prevents agonist-mediated micro-opioid receptor endocytosis. In addition, the synaptophysin-augmented micro-opioid receptor trafficking leads to attenuated agonist-induced receptor desensitization and faster receptor resensitization. Taken together, our findings strongly suggest that synaptophysin plays an important role in the regulation of micro-opioid receptor trafficking and signaling.
Collapse
Affiliation(s)
- Ying-Jian Liang
- Department of Pharmacology and Toxicology, Otto-von-Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany
| | | | | | | | | |
Collapse
|
48
|
Mielke JG, Nicolitch K, Avellaneda V, Earlam K, Ahuja T, Mealing G, Messier C. Longitudinal study of the effects of a high-fat diet on glucose regulation, hippocampal function, and cerebral insulin sensitivity in C57BL/6 mice. Behav Brain Res 2006; 175:374-82. [PMID: 17081630 DOI: 10.1016/j.bbr.2006.09.010] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2006] [Revised: 09/11/2006] [Accepted: 09/16/2006] [Indexed: 10/24/2022]
Abstract
Although the increasing rate of obesity has stimulated interest in the effects of diet composition on peripheral systems, comparatively little work has been done to examine effects upon the brain. A diet high in fat is one of many factors that can promote obesity, and previous research has shown that such a diet can produce learning and memory impairment in rodents. In the present study, C57BL/6 mice were placed on either a high-fat (45% kcal fat) or regular (5% kcal fat) diet, and examined at different points during the subsequent year. The high-fat diet led to increased weight gain, significant impairment in glucoregulation, and altered insulin-mediated signaling within the hippocampus, an area of the brain believed to be important for the acquisition of memory. Following ten months on either diet, synaptic function in ex vivo hippocampal slices was examined, and neither stimulus-response curves nor electrically induced long-term potentiation were found to be different. As well, performance in the Morris water maze, a hippocampal-dependent test of spatial memory, was not influenced by diet. However, mice consuming a high-fat diet failed to perform an operant bar-pressing task, indicating a significant impairment to procedural learning and consolidation processes. Despite causing broad peripheral changes in C57BL/6 mice, consuming a large proportion of calories from saturated fat had only a limited effect upon learning and memory, which suggests that certain aspects of brain function are selectively vulnerable to the influences of diet.
Collapse
Affiliation(s)
- John G Mielke
- Neurobiology Program, Institute for Biological Sciences, National Research Council of Canada, 1200 Montreal Road, Building M-54, Ottawa, Ont., Canada
| | | | | | | | | | | | | |
Collapse
|