1
|
Bharti J, Gogu P, Pandey SK, Verma A, Yadav JP, Singh AK, Kumar P, Dwivedi AR, Pathak P. BRAF V600E in cancer: Exploring structural complexities, mutation profiles, and pathway dysregulation. Exp Cell Res 2025; 446:114440. [PMID: 39961465 DOI: 10.1016/j.yexcr.2025.114440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/14/2024] [Accepted: 02/10/2025] [Indexed: 02/23/2025]
Abstract
BRAF, a fundamental component of cellular signaling pathways regulating growth and survival, is frequently mutated in cancer development. Among entire BRAF mutations, the V600E substitution stands out as a dominant alteration in various malignancies, including melanoma, colorectal cancer, and thyroid cancer. Understanding the structural differences between wild-type BRAF and BRAFV600E is crucial for elucidating the molecular mechanisms underpinnings tumorigenesis and identifying dysregulation associated with the same. V600E mutation results in a constitutively active kinase domain, leading to dysregulated downstream signaling independent of extracellular stimuli. This sustained activation promotes cell proliferation, survival, angiogenesis, and hallmark features of the cancer cells. The study describes three distinct classes of BRAF mutations where Class 1 mutations predominantly involve point mutations within the BRAF gene, while Class 2 encompasses in-frame insertions and deletions, and Class 3 comprises gene fusions with large-scale chromosomal rearrangements. Further, we have discussed dysregulated pathways associated with mutation of BRAFV600E, which includes MAPK/ERK, PI3K/AKT/mTOR, TP53, DNA damage response, and WNT/β-Catenin from schematic representation. In the current review, we have shown how these dysregulated pathways play pivotal roles in tumorigenesis, tumor progression in BRAF-mutant cancers and highlighted the critical role of BRAF dysregulation in cancer development followed by its therapeutic implications of targeting dysregulated pathways in BRAF-driven malignancies.
Collapse
Affiliation(s)
- Jayhind Bharti
- Drug Discovery Laboratory, School of Pharmacy, GITAM (Deemed to be) University, Hyderabad Campus, 502329, India
| | - Priyadharshini Gogu
- Drug Discovery Laboratory, School of Pharmacy, GITAM (Deemed to be) University, Hyderabad Campus, 502329, India
| | | | - Amita Verma
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, 211007, India; School of Pharmacy, Graphic Era Hill University, Dehradun-248002, India
| | - Jagat Pal Yadav
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, 211007, India
| | - Ankit Kumar Singh
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, 211007, India; Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda, India
| | - Pradeep Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda, India
| | - Ashish Ranjan Dwivedi
- Drug Discovery Laboratory, School of Pharmacy, GITAM (Deemed to be) University, Hyderabad Campus, 502329, India.
| | - Prateek Pathak
- Drug Discovery Laboratory, School of Pharmacy, GITAM (Deemed to be) University, Hyderabad Campus, 502329, India.
| |
Collapse
|
2
|
Kaade E, Mausbach S, Erps N, Sylvester M, Shakeri F, Jachimowicz RD, Gieselmann V, Thelen M. Starvation-induced metabolic rewiring affects mTORC1 composition in vivo. Sci Rep 2024; 14:28296. [PMID: 39550382 PMCID: PMC11569187 DOI: 10.1038/s41598-024-78873-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 11/04/2024] [Indexed: 11/18/2024] Open
Abstract
Lysosomes play a crucial role in metabolic adaptation to starvation, but detailed in vivo studies are scarce. Therefore, we investigated the changes of the proteome of liver lysosomes in mice starved short-term for 6h or long-term for 24h. We verified starvation-induced catabolism by weight loss, ketone body production, drop in blood glucose and an increase of 3-methylhistidine. Deactivation of mTORC1 in vivo after short-term starvation causes a depletion of mTORC1 and the associated Ragulator complex in hepatic lysosomes, resulting in diminished phosphorylation of mTORC1 target proteins. While mTORC1 lysosomal protein levels and activity in liver were restored after long-term starvation, the lysosomal levels of Ragulator remained constantly reduced. To determine whether this mTORC1 activity pattern may be organ-specific, we further investigated the key metabolic organs muscle and brain. mTORC1 inactivation, but not re-activation, occurred in muscle after a starvation of 12 h or longer. In brain, mTORC1 activity remained unchanged during starvation. As mTORC1 deactivation is known to induce autophagy, we further investigated the more than 150 non-lysosomal proteins enriched in the lysosomal fraction upon starvation. Proteasomal, cytosolic and peroxisomal proteins dominated after short-term starvation, while after long-term starvation, mainly proteasomal and mitochondrial proteins accumulated, indicating ordered autophagic protein degradation.
Collapse
Affiliation(s)
- Edgar Kaade
- Institute for Biochemistry and Molecular Biology, Medical Faculty, Rheinische Friedrich-Wilhelms-University of Bonn, 53115, Bonn, Germany
| | - Simone Mausbach
- Institute for Biochemistry and Molecular Biology, Medical Faculty, Rheinische Friedrich-Wilhelms-University of Bonn, 53115, Bonn, Germany
| | - Nina Erps
- Max-Planck Institute for Biology of Ageing, Joseph Stelzmann Str. 9B, 50931, Cologne, Germany
| | - Marc Sylvester
- Institute for Biochemistry and Molecular Biology, Medical Faculty, Rheinische Friedrich-Wilhelms-University of Bonn, 53115, Bonn, Germany
- Core Facility Analytical Proteomics, Medical Faculty , Rheinische Friedrich-Wilhelms-University of Bonn, 53115, Bonn, Germany
| | - Farhad Shakeri
- Institute for Medical Biometry, Informatics and Epidemiology, Medical Faculty, Rheinische Friedrich-Wilhelms-University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
- Institute for Genomic Statistics and Bioinformatics, Medical Faculty, Rheinische Friedrich-Wilhelms-University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Ron D Jachimowicz
- Max-Planck Institute for Biology of Ageing, Joseph Stelzmann Str. 9B, 50931, Cologne, Germany
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Volkmar Gieselmann
- Institute for Biochemistry and Molecular Biology, Medical Faculty, Rheinische Friedrich-Wilhelms-University of Bonn, 53115, Bonn, Germany
| | - Melanie Thelen
- Institute for Biochemistry and Molecular Biology, Medical Faculty, Rheinische Friedrich-Wilhelms-University of Bonn, 53115, Bonn, Germany.
- Max-Planck Institute for Biology of Ageing, Joseph Stelzmann Str. 9B, 50931, Cologne, Germany.
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), University of Cologne, Cologne, Germany.
| |
Collapse
|
3
|
Marqués P, Burillo J, González-Blanco C, Jiménez B, García G, García-Aguilar A, Iglesias-Fortes S, Lockwood Á, Guillén C. Regulation of TSC2 lysosome translocation and mitochondrial turnover by TSC2 acetylation status. Sci Rep 2024; 14:12521. [PMID: 38822085 PMCID: PMC11143182 DOI: 10.1038/s41598-024-63525-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 05/29/2024] [Indexed: 06/02/2024] Open
Abstract
Sirtuin1 (SIRT1) activity decreases the tuberous sclerosis complex 2 (TSC2) lysine acetylation status, inhibiting the mechanistic target of rapamycin complex 1 (mTORC1) signalling and concomitantly, activating autophagy. This study analyzes the role of TSC2 acetylation levels in its translocation to the lysosome and the mitochondrial turnover in both mouse embryonic fibroblast (MEF) and in mouse insulinoma cells (MIN6) as a model of pancreatic β cells. Resveratrol (RESV), an activator of SIRT1 activity, promotes TSC2 deacetylation and its translocation to the lysosome, inhibiting mTORC1 activity. An improvement in mitochondrial turnover was also observed in cells treated with RESV, associated with an increase in the fissioned mitochondria, positive autophagic and mitophagic fluxes and an enhancement of mitochondrial biogenesis. This study proves that TSC2 in its deacetylated form is essential for regulating mTORC1 signalling and the maintenance of the mitochondrial quality control, which is involved in the homeostasis of pancreatic beta cells and prevents from several metabolic disorders such as Type 2 Diabetes Mellitus.
Collapse
Affiliation(s)
- Patricia Marqués
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
| | - Jesús Burillo
- CIBER of Diabetes and Associated Metabolic Disorders, Instituto de Salud Carlos III, Madrid, Spain
| | - Carlos González-Blanco
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
- CIBER of Diabetes and Associated Metabolic Disorders, Instituto de Salud Carlos III, Madrid, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, IdISSC, Madrid, Spain
- P2022/BMD-7227, MOIR-ACTOME-CM, Dirección General de Investigación e Innovación Tecnológica (DGIIT), Consejería de Educación y Universidades, Comunidad de Madrid, Madrid, Spain
| | - Beatriz Jiménez
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
- CIBER of Diabetes and Associated Metabolic Disorders, Instituto de Salud Carlos III, Madrid, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, IdISSC, Madrid, Spain
| | - Gema García
- CIBER of Diabetes and Associated Metabolic Disorders, Instituto de Salud Carlos III, Madrid, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, IdISSC, Madrid, Spain
| | - Ana García-Aguilar
- CIBER of Diabetes and Associated Metabolic Disorders, Instituto de Salud Carlos III, Madrid, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, IdISSC, Madrid, Spain
- Department of Pharmacology, Pharmacognosy and Botany, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
| | - Sarai Iglesias-Fortes
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
| | - Ángela Lockwood
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
- CIBER of Diabetes and Associated Metabolic Disorders, Instituto de Salud Carlos III, Madrid, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, IdISSC, Madrid, Spain
- P2022/BMD-7227, MOIR-ACTOME-CM, Dirección General de Investigación e Innovación Tecnológica (DGIIT), Consejería de Educación y Universidades, Comunidad de Madrid, Madrid, Spain
| | - Carlos Guillén
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain.
- CIBER of Diabetes and Associated Metabolic Disorders, Instituto de Salud Carlos III, Madrid, Spain.
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, IdISSC, Madrid, Spain.
- P2022/BMD-7227, MOIR-ACTOME-CM, Dirección General de Investigación e Innovación Tecnológica (DGIIT), Consejería de Educación y Universidades, Comunidad de Madrid, Madrid, Spain.
| |
Collapse
|
4
|
Ge MK, Zhang C, Zhang N, He P, Cai HY, Li S, Wu S, Chu XL, Zhang YX, Ma HM, Xia L, Yang S, Yu JX, Yao SY, Zhou XL, Su B, Chen GQ, Shen SM. The tRNA-GCN2-FBXO22-axis-mediated mTOR ubiquitination senses amino acid insufficiency. Cell Metab 2023; 35:2216-2230.e8. [PMID: 37979583 DOI: 10.1016/j.cmet.2023.10.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 07/26/2023] [Accepted: 10/26/2023] [Indexed: 11/20/2023]
Abstract
Mammalian target of rapamycin complex 1 (mTORC1) monitors cellular amino acid changes for function, but the molecular mediators of this process remain to be fully defined. Here, we report that depletion of cellular amino acids, either alone or in combination, leads to the ubiquitination of mTOR, which inhibits mTORC1 kinase activity by preventing substrate recruitment. Mechanistically, amino acid depletion causes accumulation of uncharged tRNAs, thereby stimulating GCN2 to phosphorylate FBXO22, which in turn accrues in the cytoplasm and ubiquitinates mTOR at Lys2066 in a K27-linked manner. Accordingly, mutation of mTOR Lys2066 abolished mTOR ubiquitination in response to amino acid depletion, rendering mTOR insensitive to amino acid starvation both in vitro and in vivo. Collectively, these data reveal a novel mechanism of amino acid sensing by mTORC1 via a previously unknown GCN2-FBXO22-mTOR pathway that is uniquely controlled by uncharged tRNAs.
Collapse
Affiliation(s)
- Meng-Kai Ge
- Institute of Aging & Tissue Regeneration, State Key Laboratory of Systems Medicine for Cancer and Stress and Cancer Research Unit of Chinese Academy of Medical Sciences (No. 2019RU043), Ren-Ji Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200127, China; Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, SJTU-SM, Shanghai 200025, China
| | - Cheng Zhang
- Institute of Aging & Tissue Regeneration, State Key Laboratory of Systems Medicine for Cancer and Stress and Cancer Research Unit of Chinese Academy of Medical Sciences (No. 2019RU043), Ren-Ji Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200127, China
| | - Na Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, SJTU-SM, Shanghai 200025, China
| | - Ping He
- Institute of Aging & Tissue Regeneration, State Key Laboratory of Systems Medicine for Cancer and Stress and Cancer Research Unit of Chinese Academy of Medical Sciences (No. 2019RU043), Ren-Ji Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200127, China
| | - Hai-Yan Cai
- Department of Hematology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Song Li
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, SJTU-SM, Shanghai 200025, China
| | - Shuai Wu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, SJTU-SM, Shanghai 200025, China
| | - Xi-Li Chu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, SJTU-SM, Shanghai 200025, China
| | - Yu-Xue Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, SJTU-SM, Shanghai 200025, China
| | - Hong-Ming Ma
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, SJTU-SM, Shanghai 200025, China
| | - Li Xia
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, SJTU-SM, Shanghai 200025, China
| | - Shuo Yang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, SJTU-SM, Shanghai 200025, China
| | - Jian-Xiu Yu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, SJTU-SM, Shanghai 200025, China
| | - Shi-Ying Yao
- State Key Laboratory of Molecular Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiao-Long Zhou
- State Key Laboratory of Molecular Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Bing Su
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, SJTU-SM, Shanghai 200025, China.
| | - Guo-Qiang Chen
- Institute of Aging & Tissue Regeneration, State Key Laboratory of Systems Medicine for Cancer and Stress and Cancer Research Unit of Chinese Academy of Medical Sciences (No. 2019RU043), Ren-Ji Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200127, China; Hainan Academy of Medical Sciences, Hainan Medical University, Hainan 571199, China.
| | - Shao-Ming Shen
- Institute of Aging & Tissue Regeneration, State Key Laboratory of Systems Medicine for Cancer and Stress and Cancer Research Unit of Chinese Academy of Medical Sciences (No. 2019RU043), Ren-Ji Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200127, China; Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, SJTU-SM, Shanghai 200025, China.
| |
Collapse
|
5
|
Jiang J, Zhang L, Zou J, Liu J, Yang J, Jiang Q, Duan P, Jiang B. Phosphorylated S6K1 and 4E-BP1 play different roles in constitutively active Rheb-mediated retinal ganglion cell survival and axon regeneration after optic nerve injury. Neural Regen Res 2023; 18:2526-2534. [PMID: 37282486 PMCID: PMC10360084 DOI: 10.4103/1673-5374.371372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023] Open
Abstract
Ras homolog enriched in brain (Rheb) is a small GTPase that activates mammalian target of rapamycin complex 1 (mTORC1). Previous studies have shown that constitutively active Rheb can enhance the regeneration of sensory axons after spinal cord injury by activating downstream effectors of mTOR. S6K1 and 4E-BP1 are important downstream effectors of mTORC1. In this study, we investigated the role of Rheb/mTOR and its downstream effectors S6K1 and 4E-BP1 in the protection of retinal ganglion cells. We transfected an optic nerve crush mouse model with adeno-associated viral 2-mediated constitutively active Rheb and observed the effects on retinal ganglion cell survival and axon regeneration. We found that overexpression of constitutively active Rheb promoted survival of retinal ganglion cells in the acute (14 days) and chronic (21 and 42 days) stages of injury. We also found that either co-expression of the dominant-negative S6K1 mutant or the constitutively active 4E-BP1 mutant together with constitutively active Rheb markedly inhibited axon regeneration of retinal ganglion cells. This suggests that mTORC1-mediated S6K1 activation and 4E-BP1 inhibition were necessary components for constitutively active Rheb-induced axon regeneration. However, only S6K1 activation, but not 4E-BP1 knockdown, induced axon regeneration when applied alone. Furthermore, S6K1 activation promoted the survival of retinal ganglion cells at 14 days post-injury, whereas 4E-BP1 knockdown unexpectedly slightly decreased the survival of retinal ganglion cells at 14 days post-injury. Overexpression of constitutively active 4E-BP1 increased the survival of retinal ganglion cells at 14 days post-injury. Likewise, co-expressing constitutively active Rheb and constitutively active 4E-BP1 markedly increased the survival of retinal ganglion cells compared with overexpression of constitutively active Rheb alone at 14 days post-injury. These findings indicate that functional 4E-BP1 and S6K1 are neuroprotective and that 4E-BP1 may exert protective effects through a pathway at least partially independent of Rheb/mTOR. Together, our results show that constitutively active Rheb promotes the survival of retinal ganglion cells and axon regeneration through modulating S6K1 and 4E-BP1 activity. Phosphorylated S6K1 and 4E-BP1 promote axon regeneration but play an antagonistic role in the survival of retinal ganglion cells.
Collapse
Affiliation(s)
- Jikuan Jiang
- Department of Ophthalmology, Second Xiangya Hospital, Central South University; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan Province, China
| | - Lusi Zhang
- Department of Ophthalmology, Second Xiangya Hospital, Central South University; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan Province, China
| | - Jingling Zou
- Department of Ophthalmology, Second Xiangya Hospital, Central South University; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan Province, China
| | - Jingyuan Liu
- Department of Ophthalmology, Second Xiangya Hospital, Central South University; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan Province, China
| | - Jia Yang
- Department of Ophthalmology, Second Xiangya Hospital, Central South University; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan Province, China
| | - Qian Jiang
- Department of Ophthalmology, Second Xiangya Hospital, Central South University; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan Province, China
| | - Peiyun Duan
- Department of Ophthalmology, Second Xiangya Hospital, Central South University; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan Province, China
| | - Bing Jiang
- Department of Ophthalmology, Second Xiangya Hospital, Central South University; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan Province, China
| |
Collapse
|
6
|
Tae K, Kim SJ, Cho SW, Lee H, Cha HS, Choi CY. L-Type Amino Acid Transporter 1 (LAT1) Promotes PMA-Induced Cell Migration through mTORC2 Activation at the Lysosome. Cells 2023; 12:2504. [PMID: 37887348 PMCID: PMC10605051 DOI: 10.3390/cells12202504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/17/2023] [Accepted: 10/20/2023] [Indexed: 10/28/2023] Open
Abstract
The mTOR signaling pathway integrates signaling inputs from nutrients, including glucose and amino acids, which are precisely regulated by transporters depending on nutrient levels. The L-type amino acid transporter 1 (LAT1) affects the activity of mTORC1 through upstream regulators that sense intracellular amino acid levels. While mTORC1 activation by LAT1 has been thoroughly investigated in cultured cells, the effects of LAT1 expression on the activity of mTORC2 has scarcely been studied. Here, we provide evidence that LAT1 recruits and activates mTORC2 on the lysosome for PMA-induced cell migration. LAT1 is translocated to the lysosomes in cells treated with PMA in a dose- and time-dependent manner. Lysosomal LAT1 interacted with mTORC2 through a direct interaction with Rictor, leading to the lysosomal localization of mTORC2. Furthermore, the depletion of LAT1 reduced PMA-induced cell migration in a wound-healing assay. Consistent with these results, the LAT1 N3KR mutant, which is defective in PMA-induced endocytosis and lysosomal localization, did not induce mTORC2 recruitment to the lysosome, with the activation of mTORC2 determined via Akt phosphorylation or the LAT1-mediated promotion of cell migration. Taken together, lysosomal LAT1 recruits and activates the mTORC2 complex and downstream Akt for PMA-mediated cell migration. These results provide insights into the development of therapeutic drugs targeting the LAT1 amino acid transporter to block metastasis, as well as disease progression in various types of cancer.
Collapse
Affiliation(s)
| | | | | | | | | | - Cheol-Yong Choi
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea; (K.T.); (S.-J.K.); (S.-W.C.); (H.L.); (H.-S.C.)
| |
Collapse
|
7
|
Jeong MH, Urquhart G, Lewis C, Chi Z, Jewell JL. Inhibition of phosphodiesterase 4D suppresses mTORC1 signaling and pancreatic cancer growth. JCI Insight 2023; 8:e158098. [PMID: 37427586 PMCID: PMC10371348 DOI: 10.1172/jci.insight.158098] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 05/23/2023] [Indexed: 07/11/2023] Open
Abstract
The mammalian target of rapamycin complex 1 (mTORC1) senses multiple upstream stimuli to orchestrate anabolic and catabolic events that regulate cell growth and metabolism. Hyperactivation of mTORC1 signaling is observed in multiple human diseases; thus, pathways that suppress mTORC1 signaling may help to identify new therapeutic targets. Here, we report that phosphodiesterase 4D (PDE4D) promotes pancreatic cancer tumor growth by increasing mTORC1 signaling. GPCRs paired to Gαs proteins activate adenylyl cyclase, which in turn elevates levels of 3',5'-cyclic adenosine monophosphate (cAMP), whereas PDEs catalyze the hydrolysis of cAMP to 5'-AMP. PDE4D forms a complex with mTORC1 and is required for mTORC1 lysosomal localization and activation. Inhibition of PDE4D and the elevation of cAMP levels block mTORC1 signaling via Raptor phosphorylation. Moreover, pancreatic cancer exhibits an upregulation of PDE4D expression, and high PDE4D levels predict the poor overall survival of patients with pancreatic cancer. Importantly, FDA-approved PDE4 inhibitors repress pancreatic cancer cell tumor growth in vivo by suppressing mTORC1 signaling. Our results identify PDE4D as an important activator of mTORC1 and suggest that targeting PDE4 with FDA-approved inhibitors may be beneficial for the treatment of human diseases with hyperactivated mTORC1 signaling.
Collapse
Affiliation(s)
- Mi-Hyeon Jeong
- Department of Molecular Biology
- Harold C. Simmons Comprehensive Cancer Center
- Hamon Center for Regenerative Science and Medicine, and
| | - Greg Urquhart
- Department of Molecular Biology
- Harold C. Simmons Comprehensive Cancer Center
- Hamon Center for Regenerative Science and Medicine, and
| | | | - Zhikai Chi
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jenna L. Jewell
- Department of Molecular Biology
- Harold C. Simmons Comprehensive Cancer Center
- Hamon Center for Regenerative Science and Medicine, and
| |
Collapse
|
8
|
Jansen G, Al M, Assaraf YG, Kammerer S, van Meerloo J, Ossenkoppele GJ, Cloos J, Peters GJ. Statins markedly potentiate aminopeptidase inhibitor activity against (drug-resistant) human acute myeloid leukemia cells. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2023; 6:430-446. [PMID: 37842233 PMCID: PMC10571057 DOI: 10.20517/cdr.2023.20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/22/2023] [Accepted: 06/25/2023] [Indexed: 09/15/2023]
Abstract
Aim: This study aimed to decipher the molecular mechanism underlying the synergistic effect of inhibitors of the mevalonate-cholesterol pathway (i.e., statins) and aminopeptidase inhibitors (APis) on APi-sensitive and -resistant acute myeloid leukemia (AML) cells. Methods: U937 cells and their sublines with low and high levels of acquired resistance to (6S)-[(R)-2-((S)-Hydroxy-hydroxycarbamoyl-methoxy-methyl)-4-methyl-pentanoylamino]-3,3 dimethyl-butyric acid cyclopentyl ester (CHR2863), an APi prodrug, served as main AML cell line models. Drug combination effects were assessed with CHR2863 and in vitro non-toxic concentrations of various statins upon cell growth inhibition, cell cycle effects, and apoptosis induction. Mechanistic studies involved analysis of Rheb prenylation required for mTOR activation. Results: A strong synergy of CHR2863 with the statins simvastatin, fluvastatin, lovastatin, and pravastatin was demonstrated in U937 cells and two CHR2863-resistant sublines. This potent synergy between simvastatin and CHR2863 was also observed with a series of other human AML cell lines (e.g., THP1, MV4-11, and KG1), but not with acute lymphocytic leukemia or multiple solid tumor cell lines. This synergistic activity was: (i) specific for APis (e.g., CHR2863 and Bestatin), rather than for other cytotoxic agents; and (ii) corroborated by enhanced induction of apoptosis and cell cycle arrest which increased the sub-G1 fraction. Consistently, statin potentiation of CHR2863 activity was abrogated by co-administration of mevalonate and/or farnesyl pyrophosphate, suggesting the involvement of protein prenylation; this was experimentally confirmed by impaired Rheb prenylation by simvastatin. Conclusion: These novel findings suggest that the combined inhibitory effect of impaired Rheb prenylation and CHR2863-dependent mTOR inhibition instigates a potent synergistic inhibition of statins and APis on human AML cells.
Collapse
Affiliation(s)
- Gerrit Jansen
- Department of Rheumatology and Clinical Immunology, Amsterdam Rheumatology and immunology Center, Amsterdam University Medical Center, location VUmc, Amsterdam 1081 HV, The Netherlands
| | - Marjon Al
- Department of Rheumatology and Clinical Immunology, Amsterdam Rheumatology and immunology Center, Amsterdam University Medical Center, location VUmc, Amsterdam 1081 HV, The Netherlands
| | - Yehuda G. Assaraf
- The Fred Wyszkowsky Cancer Research Laboratory, Faculty of Biology, The Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Sarah Kammerer
- Department of Medical Oncology, Amsterdam University Medical Center, location VUmc, Amsterdam 1081 HV, The Netherlands
- Institute of Biotechnology, Molecular Cell Biology, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg 01968, Germany
| | - Johan van Meerloo
- Department of Hematology, Amsterdam University Medical Center, location VUmc, Amsterdam 1081 HV, The Netherlands
| | - Gert J. Ossenkoppele
- Department of Hematology, Amsterdam University Medical Center, location VUmc, Amsterdam 1081 HV, The Netherlands
| | - Jacqueline Cloos
- Department of Hematology, Amsterdam University Medical Center, location VUmc, Amsterdam 1081 HV, The Netherlands
| | - Godefridus J. Peters
- Department of Medical Oncology, Amsterdam University Medical Center, location VUmc, Amsterdam 1081 HV, The Netherlands
- Department of Biochemistry, Medical University of Gdansk, Gdansk 80-210, Poland
| |
Collapse
|
9
|
Regulation of mTORC1 by the Rag GTPases. Biochem Soc Trans 2023; 51:655-664. [PMID: 36929165 DOI: 10.1042/bst20210038] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/18/2023]
Abstract
The Rag GTPases are an evolutionarily conserved family that play a crucial role in amino acid sensing by the mammalian target of rapamycin complex 1 (mTORC1). mTORC1 is often referred to as the master regulator of cell growth. mTORC1 hyperactivation is observed in multiple diseases such as cancer, obesity, metabolic disorders, and neurodegeneration. The Rag GTPases sense amino acid levels and form heterodimers, where RagA or RagB binds to RagC or RagD, to recruit mTORC1 to the lysosome where it becomes activated. Here, we review amino acid signaling to mTORC1 through the Rag GTPases.
Collapse
|
10
|
Rudar M, Suryawan A, Nguyen HV, Chacko SK, Vonderohe C, Stoll B, Burrin DG, Fiorotto ML, Davis TA. Regulation of skeletal muscle protein synthesis in the preterm pig by intermittent leucine pulses during continuous parenteral feeding. JPEN J Parenter Enteral Nutr 2023; 47:276-286. [PMID: 36128996 PMCID: PMC10621874 DOI: 10.1002/jpen.2450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/31/2022] [Accepted: 09/15/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND Extrauterine growth restriction is a common complication of preterm birth. Leucine (Leu) is an agonist for the mechanistic target of rapamycin (mTOR) complex 1 (mTORC1) signaling pathway that regulates translation initiation and protein synthesis in skeletal muscle. Previously, we showed that intermittent intravenous pulses of Leu to neonatal pigs born at term receiving continuous enteral nutrition increases muscle protein synthesis and lean mass accretion. Our objective was to determine the impact of intermittent intravenous pulses of Leu on muscle protein anabolism in preterm neonatal pigs administered continuous parenteral nutrition. METHODS Following preterm delivery (on day 105 of 115 gestation), pigs were fitted with umbilical artery and jugular vein catheters and provided continuous parenteral nutrition. Four days after birth, pigs were assigned to receive intermittent Leu (1600 µmol kg-1 h-1 ; n = 8) or alanine (1600 µmol kg-1 h-1 ; n = 8) parenteral pulses every 4 h for 28 h. Anabolic signaling and fractional protein synthesis were determined in skeletal muscle. RESULTS Leu concentration in the longissimus dorsi and gastrocnemius muscles increased in the leucine (LEU) group compared with the alanine (ALA) group (P < 0.0001). Despite the Leu-induced disruption of the Sestrin2·GATOR2 complex, which inhibits mTORC1 activation, in these muscles (P < 0.01), the abundance of mTOR·RagA and mTOR·RagC was not different. Accordingly, mTORC1-dependent activation of 4EBP1, S6K1, eIF4E·eIF4G, and protein synthesis were not different in any muscle between the LEU and ALA groups. CONCLUSION Intermittent pulses of Leu do not enhance muscle protein anabolism in preterm pigs supplied continuous parenteral nutrition.
Collapse
Affiliation(s)
- Marko Rudar
- Department of Animal Sciences, Auburn University, Auburn, Alabama, USA
| | - Agus Suryawan
- USDA/ARS Children’s Nutrition Research Center, Baylor College of Medicine, Houston, Texas, USA
| | - Hanh V. Nguyen
- USDA/ARS Children’s Nutrition Research Center, Baylor College of Medicine, Houston, Texas, USA
| | - Shaji K. Chacko
- USDA/ARS Children’s Nutrition Research Center, Baylor College of Medicine, Houston, Texas, USA
| | - Caitlin Vonderohe
- USDA/ARS Children’s Nutrition Research Center, Baylor College of Medicine, Houston, Texas, USA
| | - Barbara Stoll
- USDA/ARS Children’s Nutrition Research Center, Baylor College of Medicine, Houston, Texas, USA
| | - Douglas G. Burrin
- USDA/ARS Children’s Nutrition Research Center, Baylor College of Medicine, Houston, Texas, USA
| | - Marta L. Fiorotto
- USDA/ARS Children’s Nutrition Research Center, Baylor College of Medicine, Houston, Texas, USA
| | - Teresa A. Davis
- USDA/ARS Children’s Nutrition Research Center, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
11
|
Jiang W, Ou Z, Zhu Q, Zai H. RagC GTPase regulates mTOR to promote chemoresistance in senescence-like HepG2 cells. Front Physiol 2022; 13:949737. [PMID: 36267578 PMCID: PMC9577253 DOI: 10.3389/fphys.2022.949737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 09/20/2022] [Indexed: 11/23/2022] Open
Abstract
Radiotherapy and chemotherapy can arrest cancer cells in a senescence-like state, which can lead to therapy resistance and cancer relapse. mTOR is hyperactivated in senescent cells but the mechanisms remain unclear. In this study, we examine the roles of several mTOR-regulated GTPases in senescence-like liver cancer cells and the mechanisms in drug resistance. We show that although RagC, Rheb, Rab1A, Rab5 and Arf1 GTPases were required for optimal mTOR activation in proliferating HepG2 cells, only RagC and Rheb are required in the senescence-like counterparts. Consistently, the drug resistance of the senescence-like HepG2 can be reduced by knocking down RagC and Rheb but not the other GTPases. Autophagic and lysosomal activity were increased in senescence-like cells; pharmacological inhibition of autophagy-lysosome decreased mTOR activity and preferentially sensitized senescence-like HepG2 cells to chemotherapy drugs including trametinib, cisplatin, and doxorubicin. In liver cancer patients, expression of RagC and Rheb but not other GTPases examined was associated with unfavorable prognosis. Our study therefore has defined a key role of Rag-Rheb GTPase in mediating mTOR activation and drug resistance in senescence-like HepG2 cells, which could have important implications in developing second-line treatments for liver cancer patients.
Collapse
Affiliation(s)
- Wei Jiang
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, Hunan, China
| | - Zhenglin Ou
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, Hunan, China
| | - Qin Zhu
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, Hunan, China
| | - Hongyan Zai
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, Hunan, China
- *Correspondence: Hongyan Zai,
| |
Collapse
|
12
|
Luo Q, Liang W, Zhang Z, Zhu Z, Chen Z, Hu J, Yang K, Chi Q, Ding G. Compromised glycolysis contributes to foot process fusion of podocytes in diabetic kidney disease: Role of ornithine catabolism. Metabolism 2022; 134:155245. [PMID: 35780908 DOI: 10.1016/j.metabol.2022.155245] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/16/2022] [Accepted: 06/22/2022] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Compromised glycolysis in podocytes contributes to the initiation of diabetic kidney disease (DKD). Podocyte injury is characterized by cytoskeletal remodeling and foot process fusion. Compromised glycolysis in diabetes likely leads to switch of energy supply in podocyte. However, the underlying mechanism by which disturbed energy supply in podocytes affects the cytoskeletal structure of podocytes remains unclear. METHODS Metabolomic and transcriptomic analyses were performed on the glomeruli of db/db mice to examine the catabolism of glucose, fatty, and amino acids. Ornithine catabolism was targeted in db/db and podocyte-specific pyruvate kinase M2 knockout (PKM2-podoKO) mice. In vitro, expression of ornithine decarboxylase (ODC1) was modulated to investigate the effect of ornithine catabolism on mammalian target of rapamycin (mTOR) signaling and cytoskeletal remodeling in cultured podocytes. RESULTS Multi-omic analyses of the glomeruli revealed that ornithine metabolism was enhanced in db/db mice compared with that in db/m mice under compromised glycolytic conditions. Additionally, ornithine catabolism was exaggerated in podocytes of diabetic PKM2-podoKO mice compared with that in diabetic PKM2flox/flox mice. In vivo, difluoromethylornithine (DFMO, inhibitor of ODC1) administration reduced urinary albumin excretion and alleviated podocyte foot process fusion in db/db mice. In vitro, 2-deoxy-d-glucose (2-DG) exposure induced mTOR signaling activation and cytoskeletal remodeling in podocytes, which was alleviated by ODC1-knockdown. Mechanistically, a small GTPase Ras homolog enriched in the brain (Rheb), a sensor of mTOR signaling, was activated by exposure to putrescine, a metabolic product of ornithine catabolism. CONCLUSION These findings demonstrate that compromised glycolysis in podocytes under diabetic conditions enhances ornithine catabolism. The metabolites of ornithine catabolism contribute to mTOR signaling activation via Rheb and cytoskeletal remodeling in podocytes in DKD.
Collapse
Affiliation(s)
- Qiang Luo
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Nephrology and Urology Research Institute of Wuhan University, Wuhan, Hubei, China
| | - Wei Liang
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Nephrology and Urology Research Institute of Wuhan University, Wuhan, Hubei, China.
| | - Zongwei Zhang
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Nephrology and Urology Research Institute of Wuhan University, Wuhan, Hubei, China
| | - Zijing Zhu
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Nephrology and Urology Research Institute of Wuhan University, Wuhan, Hubei, China
| | - Zhaowei Chen
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Nephrology and Urology Research Institute of Wuhan University, Wuhan, Hubei, China
| | - Jijia Hu
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Nephrology and Urology Research Institute of Wuhan University, Wuhan, Hubei, China
| | - Keju Yang
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Nephrology and Urology Research Institute of Wuhan University, Wuhan, Hubei, China
| | - Qingjia Chi
- Department of Mechanics and Engineering Structure, Wuhan University of Technology, China
| | - Guohua Ding
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Nephrology and Urology Research Institute of Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
13
|
Bakouny Z, Sadagopan A, Ravi P, Metaferia NY, Li J, AbuHammad S, Tang S, Denize T, Garner ER, Gao X, Braun DA, Hirsch L, Steinharter JA, Bouchard G, Walton E, West D, Labaki C, Dudani S, Gan CL, Sethunath V, Carvalho FLF, Imamovic A, Ricker C, Vokes NI, Nyman J, Berchuck JE, Park J, Hirsch MS, Haq R, Mary Lee GS, McGregor BA, Chang SL, Feldman AS, Wu CJ, McDermott DF, Heng DYC, Signoretti S, Van Allen EM, Choueiri TK, Viswanathan SR. Integrative clinical and molecular characterization of translocation renal cell carcinoma. Cell Rep 2022; 38:110190. [PMID: 34986355 PMCID: PMC9127595 DOI: 10.1016/j.celrep.2021.110190] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 09/01/2021] [Accepted: 12/08/2021] [Indexed: 02/08/2023] Open
Abstract
Translocation renal cell carcinoma (tRCC) is a poorly characterized subtype of kidney cancer driven by MiT/TFE gene fusions. Here, we define the landmarks of tRCC through an integrative analysis of 152 patients with tRCC identified across genomic, clinical trial, and retrospective cohorts. Most tRCCs harbor few somatic alterations apart from MiT/TFE fusions and homozygous deletions at chromosome 9p21.3 (19.2% of cases). Transcriptionally, tRCCs display a heightened NRF2-driven antioxidant response that is associated with resistance to targeted therapies. Consistently, we find that outcomes for patients with tRCC treated with vascular endothelial growth factor receptor inhibitors (VEGFR-TKIs) are worse than those treated with immune checkpoint inhibitors (ICI). Using multiparametric immunofluorescence, we find that the tumors are infiltrated with CD8+ T cells, though the T cells harbor an exhaustion immunophenotype distinct from that of clear cell RCC. Our findings comprehensively define the clinical and molecular features of tRCC and may inspire new therapeutic hypotheses.
Collapse
Affiliation(s)
- Ziad Bakouny
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Harvard Medical School, Boston, MA, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Ananthan Sadagopan
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Praful Ravi
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Nebiyou Y Metaferia
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Jiao Li
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Shatha AbuHammad
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Stephen Tang
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Thomas Denize
- Harvard Medical School, Boston, MA, USA; Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Emma R Garner
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Xin Gao
- Harvard Medical School, Boston, MA, USA; Department of Internal Medicine, Division of Hematology and Oncology, Massachusetts General Hospital, Boston, MA, USA
| | - David A Braun
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Harvard Medical School, Boston, MA, USA; Yale Cancer Center / Department of Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Laure Hirsch
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA; Harvard Medical School, Boston, MA, USA
| | - John A Steinharter
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Gabrielle Bouchard
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Emily Walton
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Destiny West
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Chris Labaki
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Shaan Dudani
- Division of Medical Oncology/Hematology, William Osler Health System, Brampton, ON, Canada
| | - Chun-Loo Gan
- Division of Medical Oncology, Tom Baker Cancer Centre, University of Calgary, Calgary, AB, Canada
| | - Vidyalakshmi Sethunath
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA
| | | | - Alma Imamovic
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Cora Ricker
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Natalie I Vokes
- Department of Thoracic/Head and Neck Medical Oncology, Department of Genomic Medicine, MD Anderson Cancer Center, Houston, TX, USA
| | - Jackson Nyman
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Jacob E Berchuck
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Jihye Park
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Michelle S Hirsch
- Harvard Medical School, Boston, MA, USA; Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Rizwan Haq
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Gwo-Shu Mary Lee
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Bradley A McGregor
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Steven L Chang
- Harvard Medical School, Boston, MA, USA; Division of Urology, Brigham and Women's Hospital, Boston, MA, USA
| | - Adam S Feldman
- Department of Urology, Massachusetts General Hospital, Boston, MA, USA
| | - Catherine J Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | | | - Daniel Y C Heng
- Division of Medical Oncology, Tom Baker Cancer Centre, University of Calgary, Calgary, AB, Canada
| | - Sabina Signoretti
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA; Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Eliezer M Van Allen
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Toni K Choueiri
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA; Harvard Medical School, Boston, MA, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.
| | - Srinivas R Viswanathan
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
14
|
Heikkinen T, Bragge T, Kuosmanen J, Parkkari T, Gustafsson S, Kwan M, Beltran J, Ghavami A, Subramaniam S, Shahani N, Ramírez-Jarquín UN, Park L, Muñoz-Sanjuán I, Marchionini DM. Global Rhes knockout in the Q175 Huntington's disease mouse model. PLoS One 2021; 16:e0258486. [PMID: 34648564 PMCID: PMC8516231 DOI: 10.1371/journal.pone.0258486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 09/28/2021] [Indexed: 12/02/2022] Open
Abstract
Huntington's disease (HD) results from an expansion mutation in the polyglutamine tract in huntingtin. Although huntingtin is ubiquitously expressed in the body, the striatum suffers the most severe pathology. Rhes is a Ras-related small GTP-binding protein highly expressed in the striatum that has been reported to modulate mTOR and sumoylation of mutant huntingtin to alter HD mouse model pathogenesis. Reports have varied on whether Rhes reduction is desirable for HD. Here we characterize multiple behavioral and molecular endpoints in the Q175 HD mouse model with genetic Rhes knockout (KO). Genetic RhesKO in the Q175 female mouse resulted in both subtle attenuation of Q175 phenotypic features, and detrimental effects on other kinematic features. The Q175 females exhibited measurable pathogenic deficits, as measured by MRI, MRS and DARPP32, however, RhesKO had no effect on these readouts. Additionally, RhesKO in Q175 mixed gender mice deficits did not affect mTOR signaling, autophagy or mutant huntingtin levels. We conclude that global RhesKO does not substantially ameliorate or exacerbate HD mouse phenotypes in Q175 mice.
Collapse
Affiliation(s)
| | - Timo Bragge
- Charles River Discovery Services, Kuopio, Finland
| | | | | | | | - Mei Kwan
- Psychogenics, Paramus, New Jersey, United States of America
| | - Jose Beltran
- Psychogenics, Paramus, New Jersey, United States of America
| | - Afshin Ghavami
- Psychogenics, Paramus, New Jersey, United States of America
| | - Srinivasa Subramaniam
- The Scripps Research Institute, Department of Neuroscience, Jupiter, Florida, United States of America
| | - Neelam Shahani
- The Scripps Research Institute, Department of Neuroscience, Jupiter, Florida, United States of America
| | | | - Larry Park
- CHDI Management/CHDI Foundation, New York, New York, United States of America
| | | | | |
Collapse
|
15
|
Wang X, Wei Z, Jiang Y, Meng Z, Lu M. mTOR Signaling: The Interface Linking Cellular Metabolism and Hepatitis B Virus Replication. Virol Sin 2021; 36:1303-1314. [PMID: 34580816 PMCID: PMC8692646 DOI: 10.1007/s12250-021-00450-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 08/24/2021] [Indexed: 01/05/2023] Open
Abstract
Mammalian target of rapamycin (mTOR) is a conserved Ser/Thr kinase that includes mTOR complex (mTORC) 1 and mTORC2. The mTOR pathway is activated in viral hepatitis, including hepatitis B virus (HBV) infection-induced hepatitis. Currently, chronic HBV infection remains one of the most serious public health issues worldwide. The unavailability of effective therapeutic strategies for HBV suggests that clarification of the pathogenesis of HBV infection is urgently required. Increasing evidence has shown that HBV infection can activate the mTOR pathway, indicating that HBV utilizes or hijacks the mTOR pathway to benefit its own replication. Therefore, the mTOR signaling pathway might be a crucial target for controlling HBV infection. Here, we summarize and discuss the latest findings from model biology research regarding the interaction between the mTOR signaling pathway and HBV replication.
Collapse
Affiliation(s)
- Xueyu Wang
- Department of Infectious Diseases, The Second Xiangya Hospital, Central South University, Changsha, 410011, China.,Institute of Virology, University Hospital Essen, University of Duisburg-Essen, 45122, Essen, Germany
| | - Zhiqiang Wei
- Institute of Biomedical Research, Hubei Clinical Research Center for Precise Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China
| | - Yongfang Jiang
- Department of Infectious Diseases, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Zhongji Meng
- Institute of Biomedical Research, Hubei Clinical Research Center for Precise Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China. .,Department of Infectious Diseases, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China.
| | - Mengji Lu
- Institute of Virology, University Hospital Essen, University of Duisburg-Essen, 45122, Essen, Germany.
| |
Collapse
|
16
|
Suryawan A, El-Kadi SW, Nguyen HV, Fiorotto ML, Davis TA. Intermittent Bolus Compared With Continuous Feeding Enhances Insulin and Amino Acid Signaling to Translation Initiation in Skeletal Muscle of Neonatal Pigs. J Nutr 2021; 151:2636-2645. [PMID: 34159368 PMCID: PMC8417931 DOI: 10.1093/jn/nxab190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Nutrition administered as intermittent bolus feeds rather than continuously promotes greater protein synthesis rates in skeletal muscle and enhances lean growth in a neonatal piglet model. The molecular mechanisms responsible remain unclear. OBJECTIVES We aimed to identify the insulin- and/or amino acid-signaling components involved in the enhanced stimulation of skeletal muscle by intermittent bolus compared to continuous feeding in neonatal pigs born at term. METHODS Term piglets (2-3 days old) were fed equal amounts of sow milk replacer [12.8 g protein and 155 kcal/(kg body weight · d)] by orogastric tube as intermittent bolus meals every 4 hours (INT) or by continuous infusion (CTS). After 21 days, gastrocnemius muscle samples were collected from CTS, INT-0 (before a meal), and INT-60 (60 minutes after a meal) groups (n = 6/group). Insulin- and amino acid-signaling components relevant to mechanistic target of rapamycin complex (mTORC) 1 activation and protein translation were measured. RESULTS Phosphorylation of the insulin receptor, IRS-1, PDK1, mTORC2, pan-Akt, Akt1, Akt2, and TSC2 was 106% to 273% higher in the skeletal muscle of INT-60 piglets than in INT-0 and CTS piglets (P < 0.05), but phosphorylation of PTEN, PP2A, Akt3, ERK1/2, and AMPK did not differ among groups, nor did abundances of PHLPP, SHIP2, and Ubl4A. The association of GATOR2 with Sestrin1/2, but not CASTOR1, was 51% to 52% lower in INT-60 piglets than in INT-0 and CTS piglets (P < 0.05), but the abundances of SLC7A5/LAT1, SLC38A2/SNAT2, SLC38A9, Lamtor1/2, and V-ATPase did not differ. Associations of mTOR with RagA, RagC, and Rheb and phosphorylation of S6K1 and 4EBP1, but not eIF2α and eEF2, were 101% to 176% higher in INT-60 piglets than in INT-0 and CTS piglets (P < 0.05). CONCLUSIONS The enhanced rates of muscle protein synthesis and growth with intermittent bolus compared to continuous feeding in a neonatal piglet model can be explained by enhanced activation of both the insulin- and amino acid-signaling pathways that regulate translation initiation.
Collapse
Affiliation(s)
- Agus Suryawan
- USDA/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Samer W El-Kadi
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Hanh V Nguyen
- USDA/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Marta L Fiorotto
- USDA/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Teresa A Davis
- USDA/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
17
|
Sanvee GM, Hitzfeld L, Bouitbir J, Krähenbühl S. mTORC2 is an important target for simvastatin-associated toxicity in C2C12 cells and mouse skeletal muscle - Roles of Rap1 geranylgeranylation and mitochondrial dysfunction. Biochem Pharmacol 2021; 192:114750. [PMID: 34461118 DOI: 10.1016/j.bcp.2021.114750] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 12/25/2022]
Abstract
Statins decrease the serum LDL-cholesterol concentration and reduce the risk for cardiovascular diseases but can cause myopathy, which may be related to mTORC inhibition. In the current study, we investigated which mTORC is inhibited by simvastatin and by which mechanisms. In C2C12 myoblasts and myotubes and mouse gastrocnemius, simvastatin was cytotoxic and inhibited S6rp and Akt Ser473 phosphorylation, indicating inhibition of mTORC1 and mTORC2, respectively. In contrast to simvastatin, the mTORC1 inhibitor rapamycin did not inhibit mTORC2 activity and was not cytotoxic. Like simvastatin, knock-down of Rictor, an essential component of mTORC2, impaired Akt Ser473 and S6rp phosphorylation and was cytotoxic for C2C12 myoblasts, suggesting that mTORC2 inhibition is an important myotoxic mechanism. The investigation of the mechanism of mTORC2 inhibition showed that simvastatin impaired Ras farnesylation, which was prevented by farnesol but without restoring mTORC2 activity. In comparison, Rap1 knock-down reduced mTORC2 activity and was cytotoxic for C2C12 myoblasts. Simvastatin impaired Rap1 geranylgeranylation and function, which was prevented by geranylgeraniol. In addition, simvastatin and the complex III inhibitor antimycin A caused mitochondrial superoxide accumulation and impaired the activity of mTORC2, which could partially be prevented by the antioxidant MitoTEMPO. In conclusion, mTORC2 inhibition is an important mechanism of simvastatin-induced myotoxicity. Simvastatin inhibits mTORC2 by impairing geranylgeranylation of Rap1 and by inducing mitochondrial dysfunction.
Collapse
Affiliation(s)
- Gerda M Sanvee
- Division of Clinical Pharmacology & Toxicology, University Hospital, Basel, Switzerland; Department of Biomedicine, University of Basel, Switzerland
| | - Leonie Hitzfeld
- Division of Clinical Pharmacology & Toxicology, University Hospital, Basel, Switzerland
| | - Jamal Bouitbir
- Division of Clinical Pharmacology & Toxicology, University Hospital, Basel, Switzerland; Department of Biomedicine, University of Basel, Switzerland; Division of Molecular and Systemic Toxicology, Department of Pharmaceutical Sciences, University of Basel, Switzerland; Swiss Centre for Applied Human Research (SCAHT), Switzerland
| | - Stephan Krähenbühl
- Division of Clinical Pharmacology & Toxicology, University Hospital, Basel, Switzerland; Department of Biomedicine, University of Basel, Switzerland; Swiss Centre for Applied Human Research (SCAHT), Switzerland.
| |
Collapse
|
18
|
Amino Acids in Autophagy: Regulation and Function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1332:51-66. [PMID: 34251638 DOI: 10.1007/978-3-030-74180-8_4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Autophagy is a dynamic process in which the eukaryotic cells break down intracellular components by lysosomal degradation. Under the normal condition, the basal level of autophagy removes damaged organelles, misfolded proteins, or protein aggregates to keep cells in a homeostatic condition. Deprivation of nutrients (e.g., removal of amino acids) stimulates autophagy activity, promoting lysosomal degradation and the recycling of cellular components for cell survival. Importantly, insulin and amino acids are two main inhibitors of autophagy. They both activate the mTOR complex 1 (mTORC1) signaling pathway to inhibit the autophagy upstream of the uncoordinated-51 like kinase 1/2 (ULK1/2) complex that triggers autophagosome formation. In particular, insulin activates mTORC1 via the PI3K class I-AKT pathway; while amino acids activate mTORC1 either through the PI3K class III (hVps34) pathway or through a variety of amino acid sensors located in the cytosol or lysosomal membrane. These amino acid sensors control the translocation of mTORC1 from the cytosol to the lysosomal surface where mTORC1 is activated by Rheb GTPase, therefore regulating autophagy and the lysosomal protein degradation.
Collapse
|
19
|
Dai DL, Hasan SMN, Woollard G, Abbas YM, Bueler SA, Julien JP, Rubinstein JL, Mazhab-Jafari MT. Structural Characterization of Endogenous Tuberous Sclerosis Protein Complex Revealed Potential Polymeric Assembly. Biochemistry 2021; 60:1808-1821. [PMID: 34080844 DOI: 10.1021/acs.biochem.1c00269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Tuberous sclerosis protein complex (pTSC) nucleates a proteinaceous signaling hub that integrates information about the internal and external energy status of the cell in the regulation of growth and energy consumption. Biochemical and cryo-electron microscopy studies of recombinant pTSC have revealed its structure and stoichiometry and hinted at the possibility that the complex may form large oligomers. Here, we have partially purified endogenous pTSC from fasted mammalian brains of rat and pig by leveraging a recombinant antigen binding fragment (Fab) specific for the TSC2 subunit of pTSC. We demonstrate Fab-dependent purification of pTSC from membrane-solubilized fractions of the brain homogenates. Negative stain electron microscopy of the samples purified from pig brain demonstrates rod-shaped protein particles with a width of 10 nm, a variable length as small as 40 nm, and a high degree of conformational flexibility. Larger filaments are evident with a similar 10 nm width and a ≤1 μm length in linear and weblike organizations prepared from pig brain. Immunogold labeling experiments demonstrate linear aggregates of pTSC purified from mammalian brains. These observations suggest polymerization of endogenous pTSC into filamentous superstructures.
Collapse
Affiliation(s)
- David L Dai
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - S M Naimul Hasan
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Geoffrey Woollard
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Yazan M Abbas
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
| | - Stephanie A Bueler
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
| | - Jean-Philippe Julien
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada.,Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - John L Rubinstein
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada.,Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Mohammad T Mazhab-Jafari
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada.,Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada
| |
Collapse
|
20
|
Romero-Pozuelo J, Figlia G, Kaya O, Martin-Villalba A, Teleman AA. Cdk4 and Cdk6 Couple the Cell-Cycle Machinery to Cell Growth via mTORC1. Cell Rep 2021; 31:107504. [PMID: 32294430 DOI: 10.1016/j.celrep.2020.03.068] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 03/03/2020] [Accepted: 03/20/2020] [Indexed: 12/20/2022] Open
Abstract
Cell growth is coupled to cell-cycle progression in mitotically proliferating mammalian cells, but the underlying molecular mechanisms are not well understood. CyclinD-Cdk4/6 is known to phosphorylate RB to promote S-phase entry, but recent work suggests they have additional functions. We show here that CyclinD-Cdk4/6 activates mTORC1 by binding and phosphorylating TSC2 on Ser1217 and Ser1452. Pharmacological inhibition of Cdk4/6 leads to a rapid, TSC2-dependent reduction of mTORC1 activity in multiple human and mouse cell lines, including breast cancer cells. By simultaneously driving mTORC1 and E2F, CyclinD-Cdk4/6 couples cell growth to cell-cycle progression. Consistent with this, we see that mTORC1 activity is cell cycle dependent in proliferating neural stem cells of the adult rodent brain. We find that Cdk4/6 inhibition reduces cell proliferation partly via TSC2 and mTORC1. This is of clinical relevance, because Cdk4/6 inhibitors are used for breast cancer therapy.
Collapse
Affiliation(s)
- Jesús Romero-Pozuelo
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Heidelberg University, 69120 Heidelberg, Germany
| | - Gianluca Figlia
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Heidelberg University, 69120 Heidelberg, Germany
| | - Oguzhan Kaya
- Heidelberg University, 69120 Heidelberg, Germany; Molecular Neurobiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ana Martin-Villalba
- Molecular Neurobiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Aurelio A Teleman
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Heidelberg University, 69120 Heidelberg, Germany.
| |
Collapse
|
21
|
Melnik BC. Lifetime Impact of Cow's Milk on Overactivation of mTORC1: From Fetal to Childhood Overgrowth, Acne, Diabetes, Cancers, and Neurodegeneration. Biomolecules 2021; 11:404. [PMID: 33803410 PMCID: PMC8000710 DOI: 10.3390/biom11030404] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/04/2021] [Accepted: 03/04/2021] [Indexed: 02/07/2023] Open
Abstract
The consumption of cow's milk is a part of the basic nutritional habits of Western industrialized countries. Recent epidemiological studies associate the intake of cow's milk with an increased risk of diseases, which are associated with overactivated mechanistic target of rapamycin complex 1 (mTORC1) signaling. This review presents current epidemiological and translational evidence linking milk consumption to the regulation of mTORC1, the master-switch for eukaryotic cell growth. Epidemiological studies confirm a correlation between cow's milk consumption and birthweight, body mass index, onset of menarche, linear growth during childhood, acne vulgaris, type 2 diabetes mellitus, prostate cancer, breast cancer, hepatocellular carcinoma, diffuse large B-cell lymphoma, neurodegenerative diseases, and all-cause mortality. Thus, long-term persistent consumption of cow's milk increases the risk of mTORC1-driven diseases of civilization. Milk is a highly conserved, lactation genome-controlled signaling system that functions as a maternal-neonatal relay for optimized species-specific activation of mTORC1, the nexus for regulation of eukaryotic cell growth, and control of autophagy. A deeper understanding of milk´s impact on mTORC1 signaling is of critical importance for the prevention of common diseases of civilization.
Collapse
Affiliation(s)
- Bodo C Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, Am Finkenhügel 7a, D-49076 Osnabrück, Germany
| |
Collapse
|
22
|
Solsona R, Pavlin L, Bernardi H, Sanchez AMJ. Molecular Regulation of Skeletal Muscle Growth and Organelle Biosynthesis: Practical Recommendations for Exercise Training. Int J Mol Sci 2021; 22:2741. [PMID: 33800501 PMCID: PMC7962973 DOI: 10.3390/ijms22052741] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/04/2021] [Accepted: 03/04/2021] [Indexed: 12/18/2022] Open
Abstract
The regulation of skeletal muscle mass and organelle homeostasis is dependent on the capacity of cells to produce proteins and to recycle cytosolic portions. In this investigation, the mechanisms involved in skeletal muscle mass regulation-especially those associated with proteosynthesis and with the production of new organelles-are presented. Thus, the critical roles of mammalian/mechanistic target of rapamycin complex 1 (mTORC1) pathway and its regulators are reviewed. In addition, the importance of ribosome biogenesis, satellite cells involvement, myonuclear accretion, and some major epigenetic modifications related to protein synthesis are discussed. Furthermore, several studies conducted on the topic of exercise training have recognized the central role of both endurance and resistance exercise to reorganize sarcomeric proteins and to improve the capacity of cells to build efficient organelles. The molecular mechanisms underlying these adaptations to exercise training are presented throughout this review and practical recommendations for exercise prescription are provided. A better understanding of the aforementioned cellular pathways is essential for both healthy and sick people to avoid inefficient prescriptions and to improve muscle function with emergent strategies (e.g., hypoxic training). Finally, current limitations in the literature and further perspectives, notably on epigenetic mechanisms, are provided to encourage additional investigations on this topic.
Collapse
Affiliation(s)
- Robert Solsona
- Laboratoire Interdisciplinaire Performance Santé Environnement de Montagne (LIPSEM), Faculty of Sports Sciences, University of Perpignan Via Domitia, UR 4640, 7 Avenue Pierre de Coubertin, 66120 Font-Romeu, France;
| | - Laura Pavlin
- DMEM, University of Montpellier, INRAE UMR866, 2 Place Pierre Viala, 34060 Montpellier, France; (L.P.); (H.B.)
| | - Henri Bernardi
- DMEM, University of Montpellier, INRAE UMR866, 2 Place Pierre Viala, 34060 Montpellier, France; (L.P.); (H.B.)
| | - Anthony MJ Sanchez
- Laboratoire Interdisciplinaire Performance Santé Environnement de Montagne (LIPSEM), Faculty of Sports Sciences, University of Perpignan Via Domitia, UR 4640, 7 Avenue Pierre de Coubertin, 66120 Font-Romeu, France;
| |
Collapse
|
23
|
Ryu HH, Ha SH. HSP70 interacts with Rheb, inhibiting mTORC1 signaling. Biochem Biophys Res Commun 2020; 533:1198-1203. [DOI: 10.1016/j.bbrc.2020.07.053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 07/13/2020] [Indexed: 12/25/2022]
|
24
|
Sainani SR, Pansare PA, Rode K, Bhalchim V, Doke R, Desai S. Emendation of autophagic dysfuction in neurological disorders: a potential therapeutic target. Int J Neurosci 2020; 132:466-482. [PMID: 32924706 DOI: 10.1080/00207454.2020.1822356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Neurological disorders have been continuously contributing to the global disease burden and affect millions of people worldwide. Researchers strive hard to extract out the ultimate cure and serve for the betterment of the society, and yet the treatments available provide only symptomatic relief. Aging and abnormal mutations seem to be the major culprits responsible for neurotoxicity and neuronal death. One of the major causes of these neurological disorders that has been paid utmost attention recently, is Autophagic Dysfunction. AIM The aim of the study was to understand the autophagic process, its impairment in neurological disorders and targeting the impairments as a therapeutic option for the said disorders. METHODS For the purpose of review, we carried out an extensive literature study to excerpt the series of steps involved in autophagy and to understand the mechanism of autophagic impairment occurring in a range of neurodegenerative and neuropsychiatric disorders like Parkinson, Alzheimer, Depression, Schizophrenia, Autism etc. The review also involved the exploration of certain molecules that can help in triggering the compromised autophagic members. RESULTS We found that, a number of genes, proteins, receptors and transcription factors interplay to bring about autophagy and plethora of neurological disorders are associated with the diminished expression of one or more autophagic member leading to inhibition of autophagy. CONCLUSION Autophagy is a significant process for the removal of misfolded, abnormal, damaged protein aggregates and nonfunctional cell organelles in order to suppress neurodegeneration. Therefore, triggering autophagy could serve as an important therapeutic target to treat neurological disorders.
Collapse
Affiliation(s)
- Shivani R Sainani
- Department of Pharmacology, Dr D Y Patil Institute of Pharmaceutical Sciences and Research, Pune, India
| | - Prajakta A Pansare
- Department of Pharmacology, Dr D Y Patil Institute of Pharmaceutical Sciences and Research, Pune, India
| | - Ketki Rode
- Department of Pharmacology, Dr D Y Patil Institute of Pharmaceutical Sciences and Research, Pune, India
| | - Vrushali Bhalchim
- Department of Pharmacology, Dr D Y Patil Institute of Pharmaceutical Sciences and Research, Pune, India
| | - Rohit Doke
- Department of Pharmacology, Dr D Y Patil Institute of Pharmaceutical Sciences and Research, Pune, India
| | - Shivani Desai
- Department of Pharmacology, Dr D Y Patil Institute of Pharmaceutical Sciences and Research, Pune, India
| |
Collapse
|
25
|
Persistent Rheb-induced mTORC1 activation in spinal cord neurons induces hypersensitivity in neuropathic pain. Cell Death Dis 2020; 11:747. [PMID: 32920594 PMCID: PMC7487067 DOI: 10.1038/s41419-020-02966-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 08/21/2020] [Accepted: 08/31/2020] [Indexed: 12/21/2022]
Abstract
The small GTPase Ras homolog enriched in the brain (Rheb) can activate mammalian target of rapamycin (mTOR) and regulate the growth and cell cycle progression. We investigated the role of Rheb-mediated mTORC1 signaling in neuropathic pain. A chronic constriction injury (CCI) model was dopted. CCI induced obvious spinal Rheb expression and phosphorylation of mTOR, S6, and 4-E-BP1. Blocking mTORC1 signal with rapamycin alleviated the neuropathic pain and restored morphine efficacy in CCI model. Immunofluoresence showed a neuronal co-localization of CCI-induced Rheb and pS6. Rheb knockin mouse showed a similar behavioral phenotype as CCI. In spinal slice recording, CCI increased the firing frequency of neurons expressing HCN channels; inhibition of mTORC1 with rapamycin could reverse the increased spinal neuronal activity in neuropathic pain. Spinal Rheb is induced in neuropathic pain, which in turn active the mTORC1 signaling in CCI. Spinal Rheb-mTOR signal plays an important role in regulation of spinal sensitization in neuropathic pain, and targeting mTOR may give a new strategy for pain management.
Collapse
|
26
|
Mykles DL, Chang ES. Hormonal control of the crustacean molting gland: Insights from transcriptomics and proteomics. Gen Comp Endocrinol 2020; 294:113493. [PMID: 32339519 DOI: 10.1016/j.ygcen.2020.113493] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 04/21/2020] [Indexed: 01/17/2023]
Abstract
Endocrine control of molting in decapod crustaceans involves the eyestalk neurosecretory center (X-organ/sinus gland complex), regenerating limbs, and a pair of Y-organs (YOs), as molting is induced by eyestalk ablation or multiple leg autotomy and suspended in early premolt by limb bud autotomy. Molt-inhibiting hormone (MIH) and crustacean hyperglycemic hormone (CHH), produced in the X-organ/sinus gland complex, inhibit the YO. The YO transitions through four physiological states over the molt cycle: basal in intermolt; activated in early premolt; committed in mid- and late premolt; and repressed in postmolt. We assembled the first comprehensive YO transcriptome over the molt cycle in the land crab, Gecarcinus lateralis, showing that as many as 23 signaling pathways may interact in controlling ecdysteroidogenesis. A proposed model of the MIH/cyclic nucleotide pathway, which maintains the basal YO, consists of cAMP/Ca2+ triggering and nitric oxide (NO)/cGMP summation phases. Mechanistic target of rapamycin (mTOR) signaling is required for YO activation in early premolt and affects the mRNA levels of thousands of genes. Transforming Growth Factor-β (TGFβ)/Activin signaling is required for YO commitment in mid-premolt and high ecdysteroid titers at the end of premolt may trigger YO repression. The G. lateralis YO expresses 99 G protein-coupled receptors, three of which are putative receptors for MIH/CHH. Proteomic analysis shows the importance of radical oxygen species scavenging, cytoskeleton, vesicular secretion, immune response, and protein homeostasis and turnover proteins associated with YO function over the molt cycle. In addition to eyestalk ganglia, MIH mRNA and protein are present in brain, optic nerve, ventral nerve cord, and thoracic ganglion, suggesting that they are secondary sources of MIH. Down-regulation of mTOR signaling genes, in particular Ras homolog enriched in brain or Rheb, compensates for the effects of elevated temperature in the YO, heart, and eyestalk ganglia in juvenile Metacarcinus magister. Rheb expression increases in the activated and committed YO. These data suggest that mTOR plays a central role in mediating molt regulation by physiological and environmental factors.
Collapse
Affiliation(s)
- Donald L Mykles
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA; University of California-Davis Bodega Marine Laboratory, Bodega Bay, CA 94923, USA
| | - Ernest S Chang
- University of California-Davis Bodega Marine Laboratory, Bodega Bay, CA 94923, USA
| |
Collapse
|
27
|
Han S, Jeong YY, Sheshadri P, Su X, Cai Q. Mitophagy regulates integrity of mitochondria at synapses and is critical for synaptic maintenance. EMBO Rep 2020; 21:e49801. [PMID: 32627320 DOI: 10.15252/embr.201949801] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 06/01/2020] [Accepted: 06/05/2020] [Indexed: 01/25/2023] Open
Abstract
Synaptic mitochondria are particularly vulnerable to physiological insults, and defects in synaptic mitochondria are linked to early pathophysiology of Alzheimer's disease (AD). Mitophagy, a cargo-specific autophagy for elimination of dysfunctional mitochondria, constitutes a key quality control mechanism. However, how mitophagy ensures synaptic mitochondrial integrity remains largely unknown. Here, we reveal Rheb and Snapin as key players regulating mitochondrial homeostasis at synapses. Rheb initiates mitophagy to target damaged mitochondria for autophagy, whereas dynein-Snapin-mediated retrograde transport promotes clearance of mitophagosomes from synaptic terminals. We demonstrate that synaptic accumulation of mitophagosomes is a feature in AD-related mutant hAPP mouse brains, which is attributed to increased mitophagy initiation coupled with impaired removal of mitophagosomes from AD synapses due to defective retrograde transport. Furthermore, while deficiency in dynein-Snapin-mediated retrograde transport recapitulates synaptic mitophagy stress and induces synaptic degeneration, elevated Snapin expression attenuates mitochondrial defects and ameliorates synapse loss in AD mouse brains. Taken together, our study provides new insights into mitophagy regulation of synaptic mitochondrial integrity, establishing a foundation for mitigating AD-associated mitochondria deficits and synaptic damage through mitophagy enhancement.
Collapse
Affiliation(s)
- Sinsuk Han
- Division of Life Science, Department of Cell Biology and Neuroscience, School of Arts and Sciences, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Yu Young Jeong
- Division of Life Science, Department of Cell Biology and Neuroscience, School of Arts and Sciences, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Preethi Sheshadri
- Division of Life Science, Department of Cell Biology and Neuroscience, School of Arts and Sciences, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Xiao Su
- Division of Life Science, Department of Cell Biology and Neuroscience, School of Arts and Sciences, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Qian Cai
- Division of Life Science, Department of Cell Biology and Neuroscience, School of Arts and Sciences, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| |
Collapse
|
28
|
Moldogazieva NT, Mokhosoev IM, Terentiev AA. Metabolic Heterogeneity of Cancer Cells: An Interplay between HIF-1, GLUTs, and AMPK. Cancers (Basel) 2020; 12:E862. [PMID: 32252351 PMCID: PMC7226606 DOI: 10.3390/cancers12040862] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 02/06/2023] Open
Abstract
It has been long recognized that cancer cells reprogram their metabolism under hypoxia conditions due to a shift from oxidative phosphorylation (OXPHOS) to glycolysis in order to meet elevated requirements in energy and nutrients for proliferation, migration, and survival. However, data accumulated over recent years has increasingly provided evidence that cancer cells can revert from glycolysis to OXPHOS and maintain both reprogrammed and oxidative metabolism, even in the same tumor. This phenomenon, denoted as cancer cell metabolic plasticity or hybrid metabolism, depends on a tumor micro-environment that is highly heterogeneous and influenced by an intensity of vasculature and blood flow, oxygen concentration, and nutrient and energy supply, and requires regulatory interplay between multiple oncogenes, transcription factors, growth factors, and reactive oxygen species (ROS), among others. Hypoxia-inducible factor-1 (HIF-1) and AMP-activated protein kinase (AMPK) represent key modulators of a switch between reprogrammed and oxidative metabolism. The present review focuses on cross-talks between HIF-1, glucose transporters (GLUTs), and AMPK with other regulatory proteins including oncogenes such as c-Myc, p53, and KRAS; growth factor-initiated protein kinase B (PKB)/Akt, phosphatydyl-3-kinase (PI3K), and mTOR signaling pathways; and tumor suppressors such as liver kinase B1 (LKB1) and TSC1 in controlling cancer cell metabolism. The multiple switches between metabolic pathways can underlie chemo-resistance to conventional anti-cancer therapy and should be taken into account in choosing molecular targets to discover novel anti-cancer drugs.
Collapse
Affiliation(s)
- Nurbubu T. Moldogazieva
- Laboratory of Bioinformatics, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Innokenty M. Mokhosoev
- Department of Biochemistry and Molecular Biology, N.I. Pirogov Russian National Research Medical University, 117997 Moscow, Russia; (I.M.M.); (A.A.T.)
| | - Alexander A. Terentiev
- Department of Biochemistry and Molecular Biology, N.I. Pirogov Russian National Research Medical University, 117997 Moscow, Russia; (I.M.M.); (A.A.T.)
| |
Collapse
|
29
|
Moon GJ, Shin M, Kim SR. Upregulation of Neuronal Rheb(S16H) for Hippocampal Protection in the Adult Brain. Int J Mol Sci 2020; 21:E2023. [PMID: 32188096 PMCID: PMC7139780 DOI: 10.3390/ijms21062023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/14/2020] [Accepted: 03/16/2020] [Indexed: 12/20/2022] Open
Abstract
Ras homolog protein enriched in brain (Rheb) is a key activator of mammalian target of rapamycin complex 1 (mTORC1). The activation of mTORC1 by Rheb is associated with various processes such as protein synthesis, neuronal growth, differentiation, axonal regeneration, energy homeostasis, autophagy, and amino acid uptake. In addition, Rheb-mTORC1 signaling plays a crucial role in preventing the neurodegeneration of hippocampal neurons in the adult brain. Increasing evidence suggests that the constitutive activation of Rheb has beneficial effects against neurodegenerative diseases such as Alzheimer's disease (AD) and Parkinson's disease (PD). Our recent studies revealed that adeno-associated virus serotype 1 (AAV1) transduction with Rheb(S16H), a constitutively active form of Rheb, exhibits neuroprotective properties through the induction of various neurotrophic factors, promoting neurotrophic interactions between neurons and astrocytes in the hippocampus of the adult brain. This review provides compelling evidence for the therapeutic potential of AAV1-Rheb(S16H) transduction in the hippocampus of the adult brain by exploring its neuroprotective effects and mechanisms.
Collapse
Affiliation(s)
- Gyeong Joon Moon
- BK21 plus KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu 41566, Korea;
| | - Minsang Shin
- Brain Science and Engineering Institute, Kyungpook National University, Daegu 41566, Korea;
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Sang Ryong Kim
- BK21 plus KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu 41566, Korea;
- Brain Science and Engineering Institute, Kyungpook National University, Daegu 41566, Korea;
| |
Collapse
|
30
|
Abstract
Phagocytosis is a pivotal immunological process, and its discovery by Elia Metchnikoff in 1882 was a step toward the establishment of the innate immune system as a separate branch of immunology. Elia Metchnikoff received the Nobel Prize in physiology and medicine for this discovery in 1908. Since its discovery almost 140 years before, phagocytosis remains the hot topic of research in immunology. The phagocytosis research has seen a great advancement since its first discovery. Functionally, phagocytosis is a simple immunological process required to engulf and remove pathogens, dead cells and tumor cells to maintain the immune homeostasis. However, mechanistically, it is a very complex process involving different mechanisms, induced and regulated by several pattern recognition receptors, soluble pattern recognition molecules, scavenger receptors (SRs) and opsonins. These mechanisms involve the formation of phagosomes, their maturation into phagolysosomes causing pathogen destruction or antigen synthesis to present them to major histocompatibility complex molecules for activating an adaptive immune response. Any defect in this mechanism may predispose the host to certain infections and inflammatory diseases (autoinflammatory and autoimmune diseases) along with immunodeficiency. The article is designed to discuss its mechanistic complexity at each level, varying from phagocytosis induction to phagolysosome resolution.
Collapse
Affiliation(s)
- Vijay Kumar
- Faculty of Medicine, Children's Health Queensland Clinical Unit, School of Clinical Medicine, Mater Research, University of Queensland, ST Lucia, Brisbane, Queensland, Australia.,Faculty of Medicine, School of Biomedical Sciences, University of Queensland, St Lucia, Brisbane, Queensland, Australia
| |
Collapse
|
31
|
Oxidative-Antioxidant Imbalance and Impaired Glucose Metabolism in Schizophrenia. Biomolecules 2020; 10:biom10030384. [PMID: 32121669 PMCID: PMC7175146 DOI: 10.3390/biom10030384] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/24/2020] [Accepted: 02/26/2020] [Indexed: 02/07/2023] Open
Abstract
Schizophrenia is a neurodevelopmental disorder featuring chronic, complex neuropsychiatric features. The etiology and pathogenesis of schizophrenia are not fully understood. Oxidative-antioxidant imbalance is a potential determinant of schizophrenia. Oxidative, nitrosative, or sulfuric damage to enzymes of glycolysis and tricarboxylic acid cycle, as well as calcium transport and ATP biosynthesis might cause impaired bioenergetics function in the brain. This could explain the initial symptoms, such as the first psychotic episode and mild cognitive impairment. Another concept of the etiopathogenesis of schizophrenia is associated with impaired glucose metabolism and insulin resistance with the activation of the mTOR mitochondrial pathway, which may contribute to impaired neuronal development. Consequently, cognitive processes requiring ATP are compromised and dysfunctions in synaptic transmission lead to neuronal death, preceding changes in key brain areas. This review summarizes the role and mutual interactions of oxidative damage and impaired glucose metabolism as key factors affecting metabolic complications in schizophrenia. These observations may be a premise for novel potential therapeutic targets that will delay not only the onset of first symptoms but also the progression of schizophrenia and its complications.
Collapse
|
32
|
Duong T, Rasmussen NR, Ballato E, Mote FS, Reiner DJ. The Rheb-TORC1 signaling axis functions as a developmental checkpoint. Development 2020; 147:dev.181727. [PMID: 32041790 DOI: 10.1242/dev.181727] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 01/22/2020] [Indexed: 12/12/2022]
Abstract
In many eukaryotes, the small GTPase Rheb functions as a switch to toggle activity of TOR complex 1 (TORC1) between anabolism and catabolism, thus controlling lifespan, development and autophagy. Our CRISPR-generated, fluorescently tagged endogenous Caenorhabditis elegans RHEB-1 and DAF-15/Raptor are expressed ubiquitously and localize to lysosomes. LET-363/TOR and DAF-15/Raptor are required for development beyond the third larval stage (L3). We observed that deletion of RHEB-1 similarly conferred L3 arrest. Unexpectedly, robust RNAi-mediated depletion of TORC1 components caused arrest at stages prior to L3. Accordingly, conditional depletion of endogenous DAF-15/Raptor in the soma revealed that TORC1 is required at each stage of the life cycle to progress to the next stage. Reversal of DAF-15 depletion permits arrested animals to recover to continue development. Our results are consistent with TORC1 functioning as a developmental checkpoint that governs the decision of the animal to progress through development.
Collapse
Affiliation(s)
- Tam Duong
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M Health Science Center, Texas A&M University, Houston, TX 77030, USA
| | - Neal R Rasmussen
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M Health Science Center, Texas A&M University, Houston, TX 77030, USA
| | - Elliot Ballato
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M Health Science Center, Texas A&M University, Houston, TX 77030, USA
| | - F Sefakor Mote
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M Health Science Center, Texas A&M University, Houston, TX 77030, USA
| | - David J Reiner
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M Health Science Center, Texas A&M University, Houston, TX 77030, USA
| |
Collapse
|
33
|
Kim KH, Kim EY, Ko JJ, Lee KA. Gas6 is a reciprocal regulator of mitophagy during mammalian oocyte maturation. Sci Rep 2019; 9:10343. [PMID: 31316104 PMCID: PMC6637152 DOI: 10.1038/s41598-019-46459-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 06/28/2019] [Indexed: 01/07/2023] Open
Abstract
Previously, we found that the silencing of growth arrest-specific gene 6 (Gas6) expression in oocytes impairs cytoplasmic maturation through mitochondrial overactivation with concurrent failure of pronuclear formation after fertilization. In this study, we report that Gas6 regulates mitophagy and safeguards mitochondrial activity by regulating mitophagy-related genes essential to the complete competency of oocytes. Based on RNA-Seq and RT-PCR analysis, in Gas6-silenced MII oocytes, expressions of mitophagy-related genes were decreased in Gas6-silenced MII oocytes, while mitochondrial proteins and Ptpn11, the downstream target of Gas6, was increased. Interestingly, GAS6 depletion induced remarkable MTOR activation. Gas6-depleted MII oocytes exhibited mitochondrial accumulation and aggregation caused by mitophagy inhibition. Gas6-depleted MII oocytes had a markedly lower mtDNA copy number. Rapamycin treatment rescued mitophagy, blocked the increase in MTOR and phosphorylated-MTOR, and increased the mitophagy-related gene expression in Gas6-depleted MII oocytes. After treatment with Mdivi-1, a mitochondrial division/mitophagy inhibitor, all oocytes matured and these MII oocytes showed mitochondrial accumulation but reduced Gas6 expression and failure of fertilization, showing phenomena very similar to the direct targeting of Gas6 by RNAi. Taken together, we conclude that the Gas6 signaling plays a crucial role in control of oocytes cytoplasmic maturation by modulating the dynamics and activity of oocyte mitochondria.
Collapse
Affiliation(s)
- Kyeoung-Hwa Kim
- Institute of Reproductive Medicine, Department of Biomedical Science, College of Life Science, CHA University, Pangyo-Ro 335, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Korea
| | - Eun-Young Kim
- Institute of Reproductive Medicine, Department of Biomedical Science, College of Life Science, CHA University, Pangyo-Ro 335, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Korea
| | - Jung-Jae Ko
- Institute of Reproductive Medicine, Department of Biomedical Science, College of Life Science, CHA University, Pangyo-Ro 335, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Korea
| | - Kyung-Ah Lee
- Institute of Reproductive Medicine, Department of Biomedical Science, College of Life Science, CHA University, Pangyo-Ro 335, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Korea.
| |
Collapse
|
34
|
Abstract
BACKGROUND Molecular switches in phosphatidylinositol 3-kinase (PI3K)-AKT signaling pathway may serve as potential targets for the treatment of colorectal cancer (CRC). This study aims to profile the gene alterations involved in PI3K-AKT signaling pathway in patients with CRC. METHODS Tumoral and matched peritumoral tissues were collected from 15 CRC patients who went routine surgery. A human PI3K-AKT signaling pathway polymerase chain reaction (PCR) array, which profiled the transcriptional changes of a total number of 84 genes involved in the PI3K-AKT pathway, was then applied to determine the gene alterations in CRC tumoral tissue with matched peritumoral tissue as a healthy control. Subsequent real-time reverse transcription PCR and western blot (WB) with different subgroups of CRC patients were then performed to further validate the array findings. RESULTS The PCR array identified 14 aberrantly expressed genes involved in the PI3K-AKT signaling pathway in CRC tumoral tissue, among which 12 genes, CCND1, CSNK2A1, EIF4E, EIF4EBP1, EIF4G1, FOS, GRB10, GSK3B, ILK, PTK2, PTPN11, and PHEB were significantly up-modulated (> two fold) while the remaining two, PDK1 and PIK3CG, were down-regulated (> two fold). These genes involve in the regulation of gene transcription and translation, cell cycle, and cell growth, proliferation, and differentiation. The real-time reverse transcription PCR validation agreed with the array data towards the tested genes, CCND1, EIF4E, FOS, and PIK3CG, while it failed to obtain similar result for PDK1. Interestingly, the WB analyses were further consistent with the PCR results that the protein levels of CCND1, EIF4E, and FOS were apparently up-regulated and that protein PIK3CG was down-modulated. CONCLUSION Taken together, the present study identified a deregulated PI3K-AKT signaling pathway in CRC patients, which might serve as therapeutic target(s).
Collapse
|
35
|
Recent Data on Cellular Component Turnover: Focus on Adaptations to Physical Exercise. Cells 2019; 8:cells8060542. [PMID: 31195688 PMCID: PMC6627613 DOI: 10.3390/cells8060542] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 05/31/2019] [Accepted: 06/02/2019] [Indexed: 12/22/2022] Open
Abstract
Significant progress has expanded our knowledge of the signaling pathways coordinating muscle protein turnover during various conditions including exercise. In this manuscript, the multiple mechanisms that govern the turnover of cellular components are reviewed, and their overall roles in adaptations to exercise training are discussed. Recent studies have highlighted the central role of the energy sensor (AMP)-activated protein kinase (AMPK), forkhead box class O subfamily protein (FOXO) transcription factors and the kinase mechanistic (or mammalian) target of rapamycin complex (MTOR) in the regulation of autophagy for organelle maintenance during exercise. A new cellular trafficking involving the lysosome was also revealed for full activation of MTOR and protein synthesis during recovery. Other emerging candidates have been found to be relevant in organelle turnover, especially Parkin and the mitochondrial E3 ubiquitin protein ligase (Mul1) pathways for mitochondrial turnover, and the glycerolipids diacylglycerol (DAG) for protein translation and FOXO regulation. Recent experiments with autophagy and mitophagy flux assessment have also provided important insights concerning mitochondrial turnover during ageing and chronic exercise. However, data in humans are often controversial and further investigations are needed to clarify the involvement of autophagy in exercise performed with additional stresses, such as hypoxia, and to understand the influence of exercise modality. Improving our knowledge of these pathways should help develop therapeutic ways to counteract muscle disorders in pathological conditions.
Collapse
|
36
|
Delaidelli A, Jan A, Herms J, Sorensen PH. Translational control in brain pathologies: biological significance and therapeutic opportunities. Acta Neuropathol 2019; 137:535-555. [PMID: 30739199 DOI: 10.1007/s00401-019-01971-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 01/30/2019] [Accepted: 02/04/2019] [Indexed: 12/13/2022]
Abstract
Messenger RNA (mRNA) translation is the terminal step in protein synthesis, providing a crucial regulatory checkpoint for this process. Translational control allows specific cell types to respond to rapid changes in the microenvironment or to serve specific functions. For example, neurons use mRNA transport to achieve local protein synthesis at significant distances from the nucleus, the site of RNA transcription. Altered expression or functions of the various components of the translational machinery have been linked to several pathologies in the central nervous system. In this review, we provide a brief overview of the basic principles of mRNA translation, and discuss alterations of this process relevant to CNS disease conditions, with a focus on brain tumors and chronic neurological conditions. Finally, synthesizing this knowledge, we discuss the opportunities to exploit the biology of altered mRNA translation for novel therapies in brain disorders, as well as how studying these alterations can shed new light on disease mechanisms.
Collapse
Affiliation(s)
- Alberto Delaidelli
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC, V5Z 1L3, Canada.
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
| | - Asad Jan
- Department of Biomedicine, Aarhus Institute of Advanced Studies, Aarhus University, Høegh-Guldbergs Gade 6B, 8000, Aarhus C, Denmark
| | - Jochen Herms
- Department for Translational Brain Research, German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Center for Neuropathology and Prion Research, Ludwig-Maximilians-University, Munich, Germany
- Munich Cluster of Systems Neurology (SyNergy), Ludwig-Maximilians-University Munich, Schillerstraße 44, 80336, Munich, Germany
| | - Poul H Sorensen
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC, V5Z 1L3, Canada.
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
37
|
Saleeb RS, Kavanagh DM, Dun AR, Dalgarno PA, Duncan RR. A VPS33A-binding motif on syntaxin 17 controls autophagy completion in mammalian cells. J Biol Chem 2019; 294:4188-4201. [PMID: 30655294 PMCID: PMC6422071 DOI: 10.1074/jbc.ra118.005947] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 12/21/2018] [Indexed: 01/24/2023] Open
Abstract
Autophagy is an intracellular degradation pathway that transports cytoplasmic material to the lysosome for hydrolysis. It is completed by SNARE-mediated fusion of the autophagosome and endolysosome membranes. This process must be carefully regulated to maintain the organization of the membrane system and prevent mistargeted degradation. As yet, models of autophagosomal fusion have not been verified within a cellular context because of difficulties with assessing protein interactions in situ Here, we used high-resolution fluorescence lifetime imaging (FLIM)-FRET of HeLa cells to identify protein interactions within the spatiotemporal framework of the cell. We show that autophagosomal syntaxin 17 (Stx17) heterotrimerizes with synaptosome-associated protein 29 (SNAP29) and vesicle-associated membrane protein 7 (VAMP7) in situ, highlighting a functional role for VAMP7 in autophagosome clearance that has previously been sidelined in favor of a role for VAMP8. Additionally, we identified multimodal regulation of SNARE assembly by the Sec1/Munc18 (SM) protein VPS33A, mirroring other syntaxin-SM interactions and therefore suggesting a unified model of SM regulation. Contrary to current theoretical models, we found that the Stx17 N-peptide appears to interact in a positionally conserved, but mechanistically divergent manner with VPS33A, providing a late "go, no-go" step for autophagic fusion via a phosphoserine master-switch. Our findings suggest that Stx17 fusion competency is regulated by a phosphosite in its N-peptide, representing a previously unknown regulatory step in mammalian autophagy.
Collapse
Affiliation(s)
- Rebecca S Saleeb
- From the Edinburgh Super-Resolution Imaging Consortium, Institute of Biological Chemistry, Biophysics, and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - Deirdre M Kavanagh
- From the Edinburgh Super-Resolution Imaging Consortium, Institute of Biological Chemistry, Biophysics, and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - Alison R Dun
- From the Edinburgh Super-Resolution Imaging Consortium, Institute of Biological Chemistry, Biophysics, and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - Paul A Dalgarno
- From the Edinburgh Super-Resolution Imaging Consortium, Institute of Biological Chemistry, Biophysics, and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - Rory R Duncan
- From the Edinburgh Super-Resolution Imaging Consortium, Institute of Biological Chemistry, Biophysics, and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| |
Collapse
|
38
|
Ahmed AR, Owens RJ, Stubbs CD, Parker AW, Hitchman R, Yadav RB, Dumoux M, Hawes C, Botchway SW. Direct imaging of the recruitment and phosphorylation of S6K1 in the mTORC1 pathway in living cells. Sci Rep 2019; 9:3408. [PMID: 30833605 PMCID: PMC6399282 DOI: 10.1038/s41598-019-39410-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 01/23/2019] [Indexed: 01/11/2023] Open
Abstract
Knowledge of protein signalling pathways in the working cell is seen as a primary route to identifying and developing targeted medicines. In recent years there has been a growing awareness of the importance of the mTOR pathway, making it an attractive target for therapeutic intervention in several diseases. Within this pathway we have focused on S6 kinase 1 (S6K1), the downstream phosphorylation substrate of mTORC1, and specifically identify its juxtaposition with mTORC1. When S6K1 is co-expressed with raptor we show that S6K1 is translocated from the nucleus to the cytoplasm. By developing a novel biosensor we demonstrate in real-time, that phosphorylation and de-phosphorylation of S6K1 occurs mainly in the cytoplasm of living cells. Furthermore, we show that the scaffold protein raptor, that typically recruits mTOR substrates, is not always involved in S6K1 phosphorylation. Overall, we demonstrate how FRET-FLIM imaging technology can be used to show localisation of S6K1 phosphorylation in living cells and hence a key site of action of inhibitors targeting mTOR phosphorylation.
Collapse
Affiliation(s)
- Abdullah R Ahmed
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Harwell Campus, Didcot, OX11 0FA, UK
| | - Raymond J Owens
- Protein Production UK, Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Campus, Didcot, OX11 0FA, UK.,The Wellcome Centre for Human Genetics, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Christopher D Stubbs
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Harwell Campus, Didcot, OX11 0FA, UK
| | - Anthony W Parker
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Harwell Campus, Didcot, OX11 0FA, UK
| | - Richard Hitchman
- Evotec (UK) Ltd, 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire, OX14 4RZ, UK
| | - Rahul B Yadav
- Evotec (UK) Ltd, 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire, OX14 4RZ, UK
| | - Maud Dumoux
- Protein Production UK, Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Campus, Didcot, OX11 0FA, UK.,Diamond Light Source, Harwell Campus, Didcot, OX11 0DE, UK
| | - Chris Hawes
- Oxford Brookes University, Headington Campus, Oxford, OX3 0BP, UK
| | - Stanley W Botchway
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Harwell Campus, Didcot, OX11 0FA, UK.
| |
Collapse
|
39
|
Lima RT, Sousa D, Gomes AS, Mendes N, Matthiesen R, Pedro M, Marques F, Pinto MM, Sousa E, Vasconcelos MH. The Antitumor Activity of a Lead Thioxanthone is Associated with Alterations in Cholesterol Localization. Molecules 2018; 23:molecules23123301. [PMID: 30545153 PMCID: PMC6321308 DOI: 10.3390/molecules23123301] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/04/2018] [Accepted: 12/06/2018] [Indexed: 12/19/2022] Open
Abstract
The search for novel anticancer small molecules and strategies remains a challenge. Our previous studies have identified TXA1 (1-{[2-(diethylamino)ethyl]amino}-4-propoxy-9H- thioxanthen-9-one) as a hit compound, with in vitro antitumor potential by modulating autophagy and apoptosis in human tumor cell lines. In the present study, the mechanism of action and antitumor potential of the soluble salt of this molecule (TXA1.HCl) was further investigated using in vitro and mouse xenograft tumor models of NSCLC. Our results showed that TXA1.HCl affected steroid biosynthesis, increased RagD expression, and caused abnormal cellular cholesterol localization. In addition, TXA1.HCl treatment presented no toxicity to nude mice and significantly reduced the growth of human NSCLC cells xenografts in mice. Overall, this work provides new insights into the mechanism of action of TXA1, which may be relevant for the development of anticancer therapeutic strategies, which target cholesterol transport.
Collapse
Affiliation(s)
- Raquel T Lima
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal.
- Cancer Drug Resistance Group-IPATIMUP-Institute of Molecular Pathology and Immunology of the University of Porto; Rua Júlio Amaral de Carvalho, 45, 4200-135 Porto, Portugal.
- Department of Pathology, Faculty of Medicine of the University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal.
| | - Diana Sousa
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal.
- Cancer Drug Resistance Group-IPATIMUP-Institute of Molecular Pathology and Immunology of the University of Porto; Rua Júlio Amaral de Carvalho, 45, 4200-135 Porto, Portugal.
- Laboratory of Microbiology, Department of Biological Sciences, FFUP-Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal.
| | - Ana Sara Gomes
- Laboratory of Microbiology, Department of Biological Sciences, FFUP-Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal.
- UCIBIO, REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Nuno Mendes
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal.
- HEMS-Histology and Electron Microscopy-i3S, Rua Júlio Amaral de Carvalho, 45, 4200-135 Porto, Portugal.
| | - Rune Matthiesen
- Computational and Experimental Biology Group, The Chronic Diseases Research Center (CEDOC), Nova Medical School, Faculdade de Ciencias Medicas Universidade Nova De Lisboa, Rua Câmara Pestana 61150-082 Lisboa, Portugal.
| | - Madalena Pedro
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, IUCS-Instituto Universitário de Ciências da Saúde, Rua Central de Gandra 1317, 4585-116 Gandra, Portugal.
| | - Franklim Marques
- UCIBIO, REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Madalena M Pinto
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, FFUP-Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal.
- CIIMAR/CIMAR-Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal.
| | - Emília Sousa
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, FFUP-Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal.
- CIIMAR/CIMAR-Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal.
| | - M Helena Vasconcelos
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal.
- Cancer Drug Resistance Group-IPATIMUP-Institute of Molecular Pathology and Immunology of the University of Porto; Rua Júlio Amaral de Carvalho, 45, 4200-135 Porto, Portugal.
- Laboratory of Microbiology, Department of Biological Sciences, FFUP-Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal.
| |
Collapse
|
40
|
Chen M, Lu J, Wei W, Lv Y, Zhang X, Yao Y, Wang L, Ling T, Zou X. Effects of proton pump inhibitors on reversing multidrug resistance via downregulating V-ATPases/PI3K/Akt/mTOR/HIF-1α signaling pathway through TSC1/2 complex and Rheb in human gastric adenocarcinoma cells in vitro and in vivo. Onco Targets Ther 2018; 11:6705-6722. [PMID: 30349304 PMCID: PMC6188003 DOI: 10.2147/ott.s161198] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Background Our study aimed to explore the effects of PPIs on reversing multidrug resistance (MDR) to chemotherapy in gastric cancer by inhibiting the expression of V-ATPases and the PI3K/Akt/mTOR/HIF-1α signal pathway. Methods The gastric cancer cell lines SGC7901 and the multidrug resistance cell lines SGC7901/MDR were pretreated by the pantoprazole or the esomeprazole, respectively. Real-time PCR was used to determine mRNA levels, and western blotting and immunofluorescent staining analyses were employed to determine the protein expressions and intracellular distributions of the V-ATPases, PI3K, Akt, mTOR, HIF-1α, P-gp and MRP1 before and after PPIs pretreatment. SGC7901/MDR cells were planted on the athymic nude mice. Then the effects of PPZ pretreatment and/or ADR were compared by determining the tumor size, tumor weight and nude mice weight. Results PPIs pretreatment could inhibit mRNA levels of V-ATPases, MDR1 and MRP1, PI3K, Akt, mTOR and HIF-1α. PPIs inhibited V-ATPases and down-regulated the expressions of P-gp and MRP1. And further to block the expression of mTOR by Rapamycin could obviously inhibit the expressions of HIF-1α, P-gp and MRP1 in a dose-dependent manner. Therefore, PPIs inhibited the expressions of V-ATPases and then reversed MDR of the chemotherapy in gastric cancer by inhibiting P-gp and MRP1, and it could be speculated that the mechanism might be closely related to down-regulating the PI3K/Akt/mTOR/HIF-1α signaling pathway. Meanwhile, PPIs also could inhibit the expressions of TSC1/TSC2 complex and Rheb which might be involved into regulating the signaling pathway intermediately. The weight growth rate of the mice bearing tumor in the treatment group was lower than that of the nude mice in the normal group, while the weight growth rate of the mice in control group was significantly lower than that of the normal group and the treatment group, presenting a downward trend. Conclusion Therefore, PPIs inhibited the expressions of V-ATPases and then reversed MDR of the chemotherapy in gastric cancer by inhibiting P-gp and MRP1, and it could be speculated that the mechanism might be closely related to down-regulating the PI3K/Akt/mTOR/HIF-1α signaling pathway, and also to inhibiting the expressions of TSC1/TSC2 complex and Rheb which might be involved into regulating the signaling pathway intermediately.
Collapse
Affiliation(s)
- Min Chen
- Department of Gastroenterology the Affiliated Drum Tower Hospital of Nanjing University, Medical School, Nanjing 210008, People's Republic of China, ;
| | - Jian Lu
- Department of Gastroenterology the Affiliated Drum Tower Hospital of Nanjing University, Medical School, Nanjing 210008, People's Republic of China, ; .,Department of Gastroenterology, the Affiliated Drum Tower Clinical Medical School of Nanjing Medical University, Nanjing 210008, People's Republic of China.,Department of Gastroenterology, the affiliated Wuxi Second Hospital of Nanjing Medical University, Wuxi 214002, People's Republic of China
| | - Wei Wei
- Department of Gastrointestinal Surgery, the Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, People's Republic of China
| | - Ying Lv
- Department of Gastroenterology the Affiliated Drum Tower Hospital of Nanjing University, Medical School, Nanjing 210008, People's Republic of China, ;
| | - Xiaoqi Zhang
- Department of Gastroenterology the Affiliated Drum Tower Hospital of Nanjing University, Medical School, Nanjing 210008, People's Republic of China, ;
| | - Yuling Yao
- Department of Gastroenterology the Affiliated Drum Tower Hospital of Nanjing University, Medical School, Nanjing 210008, People's Republic of China, ;
| | - Lei Wang
- Department of Gastroenterology the Affiliated Drum Tower Hospital of Nanjing University, Medical School, Nanjing 210008, People's Republic of China, ;
| | - Tingsheng Ling
- Department of Gastroenterology the Affiliated Drum Tower Hospital of Nanjing University, Medical School, Nanjing 210008, People's Republic of China, ; .,Department of Gastroenterology, Nanjing Gaochun People's Hospital, Nanjing 211300, People's Republic of China,
| | - Xiaoping Zou
- Department of Gastroenterology the Affiliated Drum Tower Hospital of Nanjing University, Medical School, Nanjing 210008, People's Republic of China, ;
| |
Collapse
|
41
|
Shu Y, Xia J, Yu Q, Wang G, Zhang J, He J, Wang H, Zhang L, Wu H. Integrated analysis of mRNA and miRNA expression profiles reveals muscle growth differences between adult female and male Chinese concave-eared frogs (Odorrana tormota). Gene 2018; 678:241-251. [PMID: 30103010 DOI: 10.1016/j.gene.2018.08.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 07/24/2018] [Accepted: 08/02/2018] [Indexed: 02/07/2023]
Abstract
The Chinese concave-eared torrent frog (Odorrana tormota) is the first known non-mammalian vertebrate that can communicate using ultrasound. In this species, females are approximately four times as large as males, in which the female growth rate is obviously higher than that of male. Until now, the molecular mechanisms underlying muscle growth development differences between male and female frogs have not been reported. Here, we integrated mRNA and miRNA expression profiles to reveal growth differences in the hindlimb muscles of 2-year-old frogs. Among 569 differentially expressed genes (DEGs), 69 were associated with muscle growth and regeneration. Fifty-one up-regulated genes in females were potentially involved in promoting muscle growth and regeneration, whereas 18 up-regulated genes in males may lead to muscle growth inhibition and fast-twitch muscle fiber contraction. 244 DEGs were enriched in mTOR and other protein synthesis signaling pathways, and protein degradation pathways, including lysosomal protease, calpain, caspase, and ubiquitin-proteasome system pathways. It may interpret why female muscles grow faster than males. Based on expression differences of genes involved in glycolysis and oxidative metabolism, we speculated that the proportion of slow muscle fiber was higher and that of fast muscle fiber was lower in female compared with male muscle. Additionally, 767 miRNAs were identified, including 217 new miRNAs, and 6248 miRNA-negatively regulated mRNAs were predicted. The miRNA target genes were enriched in pathways related to muscle growth, protein synthesis, and degradation. Thus, in addition to the identified mRNA differential expressions, miRNAs may play other important roles in the differential regulation of hindlimb muscle growth between female and male O. tormota.
Collapse
Affiliation(s)
- Yilin Shu
- Key Laboratory for the Conservation and Utilization of Important Biological Resources of Anhui Province, Wuhu 241000, China; College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Jinquan Xia
- Key Laboratory for the Conservation and Utilization of Important Biological Resources of Anhui Province, Wuhu 241000, China; College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Qiang Yu
- Key Laboratory for the Conservation and Utilization of Important Biological Resources of Anhui Province, Wuhu 241000, China; College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Gang Wang
- Key Laboratory for the Conservation and Utilization of Important Biological Resources of Anhui Province, Wuhu 241000, China; College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Jihui Zhang
- Key Laboratory for the Conservation and Utilization of Important Biological Resources of Anhui Province, Wuhu 241000, China; College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Jun He
- Key Laboratory for the Conservation and Utilization of Important Biological Resources of Anhui Province, Wuhu 241000, China; College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Huan Wang
- Key Laboratory for the Conservation and Utilization of Important Biological Resources of Anhui Province, Wuhu 241000, China; College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Ling Zhang
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University of Science and Technology, China; Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, China.
| | - Hailong Wu
- Key Laboratory for the Conservation and Utilization of Important Biological Resources of Anhui Province, Wuhu 241000, China; College of Life Sciences, Anhui Normal University, Wuhu 241000, China.
| |
Collapse
|
42
|
Abstract
Background The protein kinase Target Of Rapamycin (TOR) is a nexus for the regulation of eukaryotic cell growth. TOR assembles into one of two distinct signalling complexes, TOR complex 1 (TORC1) and TORC2 (mTORC1/2 in mammals), with a set of largely non-overlapping protein partners. (m)TORC1 activation occurs in response to a series of stimuli relevant to cell growth, including nutrient availability, growth factor signals and stress, and regulates much of the cell's biosynthetic activity, from proteins to lipids, and recycling through autophagy. mTORC1 regulation is of great therapeutic significance, since in humans many of these signalling complexes, alongside subunits of mTORC1 itself, are implicated in a wide variety of pathophysiologies, including multiple types of cancer, neurological disorders, neurodegenerative diseases and metabolic disorders including diabetes. Methodology Recent years have seen numerous structures determined of (m)TOR, which have provided mechanistic insight into (m)TORC1 activation in particular, however the integration of cellular signals occurs upstream of the kinase and remains incompletely understood. Here we have collected and analysed in detail as many as possible of the molecular and structural studies which have shed light on (m)TORC1 repression, activation and signal integration. Conclusions A molecular understanding of this signal integration pathway is required to understand how (m)TORC1 activation is reconciled with the many diverse and contradictory stimuli affecting cell growth. We discuss the current level of molecular understanding of the upstream components of the (m)TORC1 signalling pathway, recent progress on this key biochemical frontier, and the future studies necessary to establish a mechanistic understanding of this master-switch for eukaryotic cell growth.
Collapse
Affiliation(s)
- Kailash Ramlaul
- Section of Structural Biology, Department of Medicine, Imperial College London, SW7 2AZ, UK
| | - Christopher H S Aylett
- Section of Structural Biology, Department of Medicine, Imperial College London, SW7 2AZ, UK
| |
Collapse
|
43
|
Suryawan A, Davis TA. Amino Acid- and Insulin-Induced Activation of mTORC1 in Neonatal Piglet Skeletal Muscle Involves Sestin2-GATOR2, Rag A/C-mTOR, and RHEB-mTOR Complex Formation. J Nutr 2018; 148:825-833. [PMID: 29796625 PMCID: PMC6669959 DOI: 10.1093/jn/nxy044] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 02/14/2018] [Indexed: 12/18/2022] Open
Abstract
Background Feeding stimulates protein synthesis in skeletal muscle of neonates and this response is regulated through activation of mechanistic target of rapamycin complex 1 (mTORC1). The identity of signaling components that regulate mTORC1 activation in neonatal muscle has not been fully elucidated. Objective We investigated the independent effects of the rise in amino acids (AAs) and insulin after a meal on the abundance and activation of potential regulators of mTORC1 in muscle and whether the responses are modified by development. Methods Overnight-fasted 6- and 26-d-old pigs were infused for 2 h with saline (control group) or with a balanced AA mixture (AA group) or insulin (INS group) to achieve fed levels while insulin or AAs, respectively, and glucose were maintained at fasting levels. Muscles were analyzed for potential mTORC1 regulatory mechanisms and results were analyzed by 2-factor ANOVA followed by Tukey's post hoc test. Results The abundances of DEP domain-containing mTOR-interacting protein (DEPTOR), growth factor receptor bound protein 10 (GRB10), and regulated in development and DNA damage response 2 (REDD2) were lower (65%, 73%, and 53%, respectively; P < 0.05) and late endosomal/lysosomal adaptor, MAPK and mTOR activator 1/2 (LAMTOR1/2), vacuolar H+-ATPase (V-ATPase), and Sestrin2 were higher (94%, 141%, 145%, and 127%, respectively; P < 0.05) in 6- than in 26-d-old pigs. Both AA and INS groups increased phosphorylation of GRB10 (P < 0.05) compared with control in 26- but not in 6-d-old pigs. Formation of Ras-related GTP-binding protein A (RagA)-mTOR, RagC-mTOR, and Ras homolog enriched in brain (RHEB)-mTOR complexes was increased (P < 0.05) and Sestrin2-GTPase activating protein activity towards Rags 2 (GATOR2) complex was decreased (P < 0.05) by both AA and INS groups and these responses were greater (P < 0.05) in 6- than in 26-d-old pigs. Conclusion The results suggest that formation of RagA-mTOR, RagC-mTOR, RHEB-mTOR, and Sestrin2-GATOR2 complexes may be involved in the AA- and INS-induced activation of mTORC1 in skeletal muscle of neonates after a meal and that enhanced activation of the mTORC1 signaling pathway in neonatal muscle is in part due to regulation by DEPTOR, GRB10, REDD2, LAMTOR1/2, V-ATPase, and Sestrin2.
Collapse
Affiliation(s)
- Agus Suryawan
- US Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - Teresa A Davis
- US Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX,Address correspondence to TAD (e-mail: )
| |
Collapse
|
44
|
Sahm A, Bens M, Szafranski K, Holtze S, Groth M, Görlach M, Calkhoven C, Müller C, Schwab M, Kraus J, Kestler HA, Cellerino A, Burda H, Hildebrandt T, Dammann P, Platzer M. Long-lived rodents reveal signatures of positive selection in genes associated with lifespan. PLoS Genet 2018; 14:e1007272. [PMID: 29570707 PMCID: PMC5884551 DOI: 10.1371/journal.pgen.1007272] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 04/04/2018] [Accepted: 02/22/2018] [Indexed: 12/11/2022] Open
Abstract
The genetics of lifespan determination is poorly understood. Most research has been done on short-lived animals and it is unclear if these insights can be transferred to long-lived mammals like humans. Some African mole-rats (Bathyergidae) have life expectancies that are multiple times higher than similar sized and phylogenetically closely related rodents. To gain new insights into genetic mechanisms determining mammalian lifespans, we obtained genomic and transcriptomic data from 17 rodent species and scanned eleven evolutionary branches associated with the evolution of enhanced longevity for positively selected genes (PSGs). Indicating relevance for aging, the set of 250 identified PSGs showed in liver of long-lived naked mole-rats and short-lived rats an expression pattern that fits the antagonistic pleiotropy theory of aging. Moreover, we found the PSGs to be enriched for genes known to be related to aging. Among these enrichments were “cellular respiration” and “metal ion homeostasis”, as well as functional terms associated with processes regulated by the mTOR pathway: translation, autophagy and inflammation. Remarkably, among PSGs are RHEB, a regulator of mTOR, and IGF1, both central components of aging-relevant pathways, as well as genes yet unknown to be aging-associated but representing convincing functional candidates, e.g. RHEBL1, AMHR2, PSMG1 and AGER. Exemplary protein homology modeling suggests functional consequences for amino acid changes under positive selection. Therefore, we conclude that our results provide a meaningful resource for follow-up studies to mechanistically link identified genes and amino acids under positive selection to aging and lifespan determination. As an adaption to different environments rodents have evolved a wide range of lifespans. While most rodents are short-lived, along several phylogenetic branches long-lived species evolved. This provided us a unique opportunity to search for genes that are associated with enhanced longevity in mammals. Towards this, we computationally compared gene sequences of exceptional long-lived rodent species (like the naked mole-rat and chinchilla) and short-lived rodents (like rat and mouse) and identified those which evolved exceptional fast. As natural selection acts in parallel on a multitude of phenotypes, only a subset of the identified genes is probably associated with enhanced longevity. Applying several tests, we ensured that the dataset is related to aging. We conclude that lifespan extension in rodents can be attributed to changes in their defense against free radicals, iron homeostasis as well as cellular respiration and translation as central parts of the growth program. This confirms aging theories assuming a tradeoff between fast growth and long lifespan. Moreover, our study offers a meaningful resource of targets, i.e. genes and specific positions therein, for functional follow-up studies on their potential roles in the determination of lifespan–regardless whether they are currently known to be aging-related or not.
Collapse
Affiliation(s)
- Arne Sahm
- Leibniz Institute on Aging–Fritz Lipmann Institute, Jena, Germany
- * E-mail:
| | - Martin Bens
- Leibniz Institute on Aging–Fritz Lipmann Institute, Jena, Germany
| | - Karol Szafranski
- Leibniz Institute on Aging–Fritz Lipmann Institute, Jena, Germany
| | - Susanne Holtze
- Department of Reproduction Management, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | - Marco Groth
- Leibniz Institute on Aging–Fritz Lipmann Institute, Jena, Germany
| | - Matthias Görlach
- Leibniz Institute on Aging–Fritz Lipmann Institute, Jena, Germany
| | - Cornelis Calkhoven
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Christine Müller
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Matthias Schwab
- Department of Neurology; Jena University Hospital-Friedrich Schiller University, Jena, Germany
| | - Johann Kraus
- Institute of Medical Systems Biology, Ulm University, Ulm, Germany
| | - Hans A. Kestler
- Leibniz Institute on Aging–Fritz Lipmann Institute, Jena, Germany
- Institute of Medical Systems Biology, Ulm University, Ulm, Germany
| | - Alessandro Cellerino
- Leibniz Institute on Aging–Fritz Lipmann Institute, Jena, Germany
- Laboratory of Biology Bio@SNS, Scuola Normale Superiore, Pisa, Italy
| | - Hynek Burda
- Department of General Zoology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Thomas Hildebrandt
- Department of Reproduction Management, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | - Philip Dammann
- Department of General Zoology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
- University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Matthias Platzer
- Leibniz Institute on Aging–Fritz Lipmann Institute, Jena, Germany
| |
Collapse
|
45
|
Li Z, Wu Y, Chen HP, Zhu C, Dong L, Wang Y, Liu H, Xu X, Zhou J, Wu Y, Li W, Ying S, Shen H, Chen ZH. MTOR Suppresses Environmental Particle-Induced Inflammatory Response in Macrophages. THE JOURNAL OF IMMUNOLOGY 2018; 200:2826-2834. [PMID: 29563176 DOI: 10.4049/jimmunol.1701471] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 02/21/2018] [Indexed: 11/19/2022]
Abstract
Increasing toxicological and epidemiological studies have demonstrated that ambient particulate matter (PM) could cause adverse health effects including inflammation in the lung. Alveolar macrophages represent a major type of innate immune responses to foreign substances. However, the detailed mechanisms of inflammatory responses induced by PM exposure in macrophages are still unclear. We observed that coarse PM treatment rapidly activated mechanistic target of rapamycin (MTOR) in mouse alveolar macrophages in vivo, and in cultured mouse bone marrow-derived macrophages, mouse peritoneal macrophages, and RAW264.7 cells. Pharmacological inhibition or genetic knockdown of MTOR in bone marrow-derived macrophages leads to an amplified cytokine production upon PM exposure, and mice with specific knockdown of MTOR or ras homolog enriched in brain in myeloid cells exhibit significantly aggregated airway inflammation. Mechanistically, PM activated MTOR through modulation of ERK, AKT serine/threonine kinase 1, and tuberous sclerosis complex signals, whereas MTOR deficiency further enhanced the PM-induced necroptosis and activation of subsequent NF κ light-chain-enhancer of activated B cells (NFKB) signaling. Inhibition of necroptosis or NFKB pathways significantly ameliorated PM-induced inflammatory response in MTOR-deficient macrophages. The present study thus demonstrates that MTOR serves as an early adaptive signal that suppresses the PM-induced necroptosis, NFKB activation, and inflammatory response in lung macrophages, and suggests that activation of MTOR or inhibition of necroptosis in macrophages may represent novel therapeutic strategies for PM-related airway disorders.
Collapse
Affiliation(s)
- Zhouyang Li
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease of Zhejiang Province, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China; and
| | - Yinfang Wu
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease of Zhejiang Province, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China; and
| | - Hai-Pin Chen
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease of Zhejiang Province, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China; and
| | - Chen Zhu
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease of Zhejiang Province, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China; and
| | - Lingling Dong
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease of Zhejiang Province, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China; and
| | - Yong Wang
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease of Zhejiang Province, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China; and
| | - Huiwen Liu
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease of Zhejiang Province, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China; and
| | - Xuchen Xu
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease of Zhejiang Province, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China; and
| | - Jiesen Zhou
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease of Zhejiang Province, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China; and
| | - Yanping Wu
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease of Zhejiang Province, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China; and
| | - Wen Li
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease of Zhejiang Province, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China; and
| | - Songmin Ying
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease of Zhejiang Province, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China; and
| | - Huahao Shen
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease of Zhejiang Province, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China; and .,State Key Laboratory of Respiratory Disease, Guangzhou 510120, China
| | - Zhi-Hua Chen
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease of Zhejiang Province, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China; and
| |
Collapse
|
46
|
Pai GM, Zielinski A, Koalick D, Ludwig K, Wang ZQ, Borgmann K, Pospiech H, Rubio I. TSC loss distorts DNA replication programme and sensitises cells to genotoxic stress. Oncotarget 2018; 7:85365-85380. [PMID: 27863419 PMCID: PMC5356742 DOI: 10.18632/oncotarget.13378] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 10/26/2016] [Indexed: 01/14/2023] Open
Abstract
Tuberous Sclerosis (TSC) is characterized by exorbitant mTORC1 signalling and manifests as non-malignant, apoptosis-prone neoplasia. Previous reports have shown that TSC-/- cells are highly susceptible to mild, innocuous doses of genotoxic stress, which drive TSC-/- cells into apoptotic death. It has been argued that this hypersensitivity to stress derives from a metabolic/energetic shortfall in TSC-/- cells, but how metabolic dysregulation affects the DNA damage response and cell cycle alterations in TSC-/- cells exposed to genotoxic stress is not understood. We report here the occurrence of futile checkpoint responses and an unusual type of replicative stress (RS) in TSC1-/- fibroblasts exposed to low-dose genotoxins. This RS is characterized by elevated nucleotide incorporation rates despite only modest origin over-firing. Strikingly, an increased propensity for asymmetric fork progression and profuse chromosomal aberrations upon mild DNA damage confirmed that TSC loss indeed proved detrimental to stress adaptation. We conclude that low stress tolerance of TSC-/- cells manifests at the level of DNA replication control, imposing strong negative selection on genomic instability that could in turn detain TSC-mutant tumours benign.
Collapse
Affiliation(s)
- Govind M Pai
- Institute of Molecular Cell Biology, Center for Molecular Biomedicine, University Hospital, 07745 Jena, Germany
| | - Alexandra Zielinski
- Laboratory of Radiobiology & Experimental Radiooncology, Department of Radiotherapy and Radiooncology, Center of Oncology, University Medical Center Hamburg-Eppendorf, Germany, 20246 Hamburg, Germany
| | - Dennis Koalick
- Leibniz Institute on Aging - Fritz Lipmann Institute, 07745 Jena, Germany
| | - Kristin Ludwig
- Institute of Molecular Cell Biology, Center for Molecular Biomedicine, University Hospital, 07745 Jena, Germany
| | - Zhao-Qi Wang
- Leibniz Institute on Aging - Fritz Lipmann Institute, 07745 Jena, Germany
| | - Kerstin Borgmann
- Laboratory of Radiobiology & Experimental Radiooncology, Department of Radiotherapy and Radiooncology, Center of Oncology, University Medical Center Hamburg-Eppendorf, Germany, 20246 Hamburg, Germany
| | - Helmut Pospiech
- Leibniz Institute on Aging - Fritz Lipmann Institute, 07745 Jena, Germany.,Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90014 Oulu, Finland
| | - Ignacio Rubio
- Institute of Molecular Cell Biology, Center for Molecular Biomedicine, University Hospital, 07745 Jena, Germany
| |
Collapse
|
47
|
Roy S, Saha TT, Zou Z, Raikhel AS. Regulatory Pathways Controlling Female Insect Reproduction. ANNUAL REVIEW OF ENTOMOLOGY 2018; 63:489-511. [PMID: 29058980 DOI: 10.1146/annurev-ento-020117-043258] [Citation(s) in RCA: 358] [Impact Index Per Article: 51.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The synthesis of vitellogenin and its uptake by maturing oocytes during egg maturation are essential for successful female reproduction. These events are regulated by the juvenile hormones and ecdysteroids and by the nutritional signaling pathway regulated by neuropeptides. Juvenile hormones act as gonadotropins, regulating vitellogenesis in most insects, but ecdysteroids control this process in Diptera and some Hymenoptera and Lepidoptera. The complex crosstalk between the juvenile hormones, ecdysteroids, and nutritional signaling pathways differs distinctly depending on the reproductive strategies adopted by various insects. Molecular studies within the past decade have revealed much about the relationships among, and the role of, these pathways with respect to regulation of insect reproduction. Here, we review the role of juvenile hormones, ecdysteroids, and nutritional signaling, along with that of microRNAs, in regulating female insect reproduction at the molecular level.
Collapse
Affiliation(s)
- Sourav Roy
- Department of Entomology, Institute for Integrative Genome Biology, and Center for Disease Vector Research, University of California, Riverside, California 92521, USA; , ,
| | - Tusar T Saha
- Department of Entomology, Institute for Integrative Genome Biology, and Center for Disease Vector Research, University of California, Riverside, California 92521, USA; , ,
| | - Zhen Zou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China;
| | - Alexander S Raikhel
- Department of Entomology, Institute for Integrative Genome Biology, and Center for Disease Vector Research, University of California, Riverside, California 92521, USA; , ,
| |
Collapse
|
48
|
De Cicco M, Kiss L, Dames SA. NMR analysis of the backbone dynamics of the small GTPase Rheb and its interaction with the regulatory protein FKBP38. FEBS Lett 2017; 592:130-146. [PMID: 29194576 DOI: 10.1002/1873-3468.12925] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 10/06/2017] [Accepted: 11/17/2017] [Indexed: 12/19/2022]
Abstract
Ras homolog enriched in brain (Rheb) is a small GTPase that regulates mammalian/mechanistic target of rapamycin complex 1 (mTORC1) and, thereby, cell growth and metabolism. Here we show that cycling between the inactive GDP- and the active GTP-bound state modulates the backbone dynamics of a C-terminal truncated form, RhebΔCT, which is suggested to influence its interactions. We further investigated the interactions between RhebΔCT and the proposed Rheb-binding domain of the regulatory protein FKBP38. The observed weak interactions with the GTP-analogue- (GppNHp-) but not the GDP-bound state, appear to accelerate the GDP to GTP exchange, but only very weakly compared to a genuine GEF. Thus, FKBP38 is most likely not a GEF but a Rheb effector that may function in membrane targeting of Rheb.
Collapse
Affiliation(s)
- Maristella De Cicco
- Technische Universität München, Department of Chemistry, Biomolecular NMR Spectroscopy, Garching, Germany
| | - Leo Kiss
- Technische Universität München, Department of Chemistry, Biomolecular NMR Spectroscopy, Garching, Germany
| | - Sonja A Dames
- Technische Universität München, Department of Chemistry, Biomolecular NMR Spectroscopy, Garching, Germany.,Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany
| |
Collapse
|
49
|
Hong Z, Pedersen NM, Wang L, Torgersen ML, Stenmark H, Raiborg C. PtdIns3P controls mTORC1 signaling through lysosomal positioning. J Cell Biol 2017; 216:4217-4233. [PMID: 29030394 PMCID: PMC5716264 DOI: 10.1083/jcb.201611073] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 07/04/2017] [Accepted: 08/21/2017] [Indexed: 01/06/2023] Open
Abstract
mTORC1 is activated by lysosome positioning and by amino acid–induced phosphatidylinositol 3-phosphate (PtdIns3P). Hong et al. show that amino acids stimulate recruitment of the PtdIns3P-binding protein FYCO1 to lysosomes and promote contacts between FYCO1 lysosomes and ER that contains the PtdIns3P effector Protrudin, mediating lysosome translocation and facilitating mTORC1 activation. The mechanistic target of rapamycin complex 1 (mTORC1) is a protein kinase complex that localizes to lysosomes to up-regulate anabolic processes and down-regulate autophagy. Although mTORC1 is known to be activated by lysosome positioning and by amino acid–stimulated production of phosphatidylinositol 3-phosphate (PtdIns3P) by the lipid kinase VPS34/PIK3C3, the mechanisms have been elusive. Here we present results that connect these seemingly unrelated pathways for mTORC1 activation. Amino acids stimulate recruitment of the PtdIns3P-binding protein FYCO1 to lysosomes and promote contacts between FYCO1 lysosomes and endoplasmic reticulum that contain the PtdIns3P effector Protrudin. Upon overexpression of Protrudin and FYCO1, mTORC1–positive lysosomes translocate to the cell periphery, thereby facilitating mTORC1 activation. This requires the ability of Protrudin to bind PtdIns3P. Conversely, upon VPS34 inhibition, or depletion of Protrudin or FYCO1, mTORC1-positive lysosomes cluster perinuclearly, accompanied by reduced mTORC1 activity under nutrient-rich conditions. Consequently, the transcription factor EB enters the nucleus, and autophagy is up-regulated. We conclude that PtdIns3P-dependent lysosome translocation to the cell periphery promotes mTORC1 activation.
Collapse
Affiliation(s)
- Zhi Hong
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Montebello, Oslo, Norway.,Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, Oslo, Norway
| | - Nina Marie Pedersen
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Montebello, Oslo, Norway.,Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, Oslo, Norway
| | - Ling Wang
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Montebello, Oslo, Norway.,Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, Oslo, Norway
| | - Maria Lyngaas Torgersen
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Montebello, Oslo, Norway.,Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, Oslo, Norway
| | - Harald Stenmark
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Montebello, Oslo, Norway.,Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, Oslo, Norway
| | - Camilla Raiborg
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Montebello, Oslo, Norway .,Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, Oslo, Norway
| |
Collapse
|
50
|
Potheraveedu VN, Schöpel M, Stoll R, Heumann R. Rheb in neuronal degeneration, regeneration, and connectivity. Biol Chem 2017; 398:589-606. [PMID: 28212107 DOI: 10.1515/hsz-2016-0312] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Accepted: 02/02/2017] [Indexed: 01/31/2023]
Abstract
The small GTPase Rheb was originally detected as an immediate early response protein whose expression was induced by NMDA-dependent synaptic activity in the brain. Rheb's activity is highly regulated by its GTPase activating protein (GAP), the tuberous sclerosis complex protein, which stimulates the conversion from the active, GTP-loaded into the inactive, GDP-loaded conformation. Rheb has been established as an evolutionarily conserved molecular switch protein regulating cellular growth, cell volume, cell cycle, autophagy, and amino acid uptake. The subcellular localization of Rheb and its interacting proteins critically regulate its activity and function. In stem cells, constitutive activation of Rheb enhances differentiation at the expense of self-renewal partially explaining the adverse effects of deregulated Rheb in the mammalian brain. In the context of various cellular stress conditions such as oxidative stress, ER-stress, death factor signaling, and cellular aging, Rheb activation surprisingly enhances rather than prevents cellular degeneration. This review addresses cell type- and cell state-specific function(s) of Rheb and mainly focuses on neurons and their surrounding glial cells. Mechanisms will be discussed in the context of therapy that interferes with Rheb's activity using the antibiotic rapamycin or low molecular weight compounds.
Collapse
Affiliation(s)
- Veena Nambiar Potheraveedu
- Molecular Neurobiochemistry, Faculty of Chemistry and Biochemistry, Ruhr University of Bochum, Universitätstr. 150, D-44780 Bochum
| | - Miriam Schöpel
- Biomolecular NMR, Ruhr University of Bochum, D-44780 Bochum
| | - Raphael Stoll
- Biomolecular NMR, Ruhr University of Bochum, D-44780 Bochum
| | - Rolf Heumann
- Molecular Neurobiochemistry, Faculty of Chemistry and Biochemistry, Ruhr University of Bochum, Universitätstr. 150, D-44780 Bochum
| |
Collapse
|