1
|
Saavedra LPJ, Francisco FA, Raposo SR, Cavalcante KVN, Buttow NC, Borges SC, Gomes RM, Campos HM, Gonçalves GD, Piovan S, Ghedini PC, Prates KV, Malta A, Matafome P, Mathias PCF, Almeida DL. Maternal AGE Precursors During Lactation Alters Offspring Glycemic Homeostasis Early in Life. BIOLOGY 2025; 14:160. [PMID: 40001928 PMCID: PMC11851399 DOI: 10.3390/biology14020160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/29/2024] [Accepted: 01/03/2025] [Indexed: 02/27/2025]
Abstract
BACKGROUND Advanced glycation end-products (AGEs) are linked to the development of oxidative stress, insulin resistance, and impaired insulin secretion. Adverse early life conditions, such as exposure to AGEs and their precursors, may lead offspring to the development of metabolic dysfunction in adulthood. Nonetheless, the early impact in offspring metabolism by maternal intake of AGEs precursors during lactation is not known. OBJECTIVE Investigate early life metabolism of the offspring whose breastfeeding dams were orally exposed to AGEs precursor. METHODS Breastfeeding Wistar rats were daily treated with the glycation precursor methylglyoxal (MG-60 mg/kg of bodyweight) by gavage or saline 0.9% control (CO) until weaning. In vivo glycemic homeostasis in male offspring was assessed, followed by euthanasia for tissue sample collection for ex vivo assessments. RESULTS At weaning, MG offspring presented decreased bodyweight (p < 0.05), perigonadal (p < 0.01) and retroperitoneal (p < 0.01) fat. MG offspring presented decreased glucose tolerance (p < 0.05), lower basal insulinemia (p < 0.001), reduced high-glucose static insulin secretion (p < 0.05), and reduced pancreatic islet area (p < 0.05). Accordingly, MG offspring pancreas showed lower GSH and SOD activity (p < 0.05; p < 0.001, respectively) and increased MPO (p < 0.05) activity. CONCLUSIONS The consumption of AGE precursors by breastfeeding dams impaired offspring pancreatic function and glycemic homeostasis early in life.
Collapse
Affiliation(s)
- Lucas P. J. Saavedra
- Department of Biotechnology, Genetics, and Cellular Biology, State University of Maringá, Maringá 87020-900, PR, Brazil; (L.P.J.S.); (F.A.F.); (S.R.R.); (N.C.B.); (S.C.B.); (G.D.G.); (S.P.); (K.V.P.); (A.M.); (P.C.F.M.)
| | - Flávio A. Francisco
- Department of Biotechnology, Genetics, and Cellular Biology, State University of Maringá, Maringá 87020-900, PR, Brazil; (L.P.J.S.); (F.A.F.); (S.R.R.); (N.C.B.); (S.C.B.); (G.D.G.); (S.P.); (K.V.P.); (A.M.); (P.C.F.M.)
| | - Scarlett R. Raposo
- Department of Biotechnology, Genetics, and Cellular Biology, State University of Maringá, Maringá 87020-900, PR, Brazil; (L.P.J.S.); (F.A.F.); (S.R.R.); (N.C.B.); (S.C.B.); (G.D.G.); (S.P.); (K.V.P.); (A.M.); (P.C.F.M.)
| | - Keilah V. N. Cavalcante
- Department of Physiological Sciences, Federal University of Goiás, Goiânia 74690-900, GO, Brazil; (K.V.N.C.); (R.M.G.)
| | - Nilza C. Buttow
- Department of Biotechnology, Genetics, and Cellular Biology, State University of Maringá, Maringá 87020-900, PR, Brazil; (L.P.J.S.); (F.A.F.); (S.R.R.); (N.C.B.); (S.C.B.); (G.D.G.); (S.P.); (K.V.P.); (A.M.); (P.C.F.M.)
| | - Stephanie C. Borges
- Department of Biotechnology, Genetics, and Cellular Biology, State University of Maringá, Maringá 87020-900, PR, Brazil; (L.P.J.S.); (F.A.F.); (S.R.R.); (N.C.B.); (S.C.B.); (G.D.G.); (S.P.); (K.V.P.); (A.M.); (P.C.F.M.)
| | - Rodrigo M. Gomes
- Department of Physiological Sciences, Federal University of Goiás, Goiânia 74690-900, GO, Brazil; (K.V.N.C.); (R.M.G.)
| | - Hericles M. Campos
- Department of Pharmacology, Federal University of Goiás, Goiânia 74690-900, GO, Brazil; (H.M.C.); (P.C.G.)
| | - Gessica D. Gonçalves
- Department of Biotechnology, Genetics, and Cellular Biology, State University of Maringá, Maringá 87020-900, PR, Brazil; (L.P.J.S.); (F.A.F.); (S.R.R.); (N.C.B.); (S.C.B.); (G.D.G.); (S.P.); (K.V.P.); (A.M.); (P.C.F.M.)
| | - Silvano Piovan
- Department of Biotechnology, Genetics, and Cellular Biology, State University of Maringá, Maringá 87020-900, PR, Brazil; (L.P.J.S.); (F.A.F.); (S.R.R.); (N.C.B.); (S.C.B.); (G.D.G.); (S.P.); (K.V.P.); (A.M.); (P.C.F.M.)
| | - Paulo C. Ghedini
- Department of Pharmacology, Federal University of Goiás, Goiânia 74690-900, GO, Brazil; (H.M.C.); (P.C.G.)
| | - Kelly V. Prates
- Department of Biotechnology, Genetics, and Cellular Biology, State University of Maringá, Maringá 87020-900, PR, Brazil; (L.P.J.S.); (F.A.F.); (S.R.R.); (N.C.B.); (S.C.B.); (G.D.G.); (S.P.); (K.V.P.); (A.M.); (P.C.F.M.)
| | - Ananda Malta
- Department of Biotechnology, Genetics, and Cellular Biology, State University of Maringá, Maringá 87020-900, PR, Brazil; (L.P.J.S.); (F.A.F.); (S.R.R.); (N.C.B.); (S.C.B.); (G.D.G.); (S.P.); (K.V.P.); (A.M.); (P.C.F.M.)
| | - Paulo Matafome
- Institute of Physiology and Institute of Clinical and Biomedical Research, Faculty of Medicine and Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3000-447 Coimbra, Portugal;
- Coimbra Health School, ESTeSC, Instituto Politécnico de Coimbra, 3000-447 Coimbra, Portugal
- Clinical Academic Center of Coimbra, 3000-447 Coimbra, Portugal
| | - Paulo C. F. Mathias
- Department of Biotechnology, Genetics, and Cellular Biology, State University of Maringá, Maringá 87020-900, PR, Brazil; (L.P.J.S.); (F.A.F.); (S.R.R.); (N.C.B.); (S.C.B.); (G.D.G.); (S.P.); (K.V.P.); (A.M.); (P.C.F.M.)
| | - Douglas L. Almeida
- Department of Biotechnology, Genetics, and Cellular Biology, State University of Maringá, Maringá 87020-900, PR, Brazil; (L.P.J.S.); (F.A.F.); (S.R.R.); (N.C.B.); (S.C.B.); (G.D.G.); (S.P.); (K.V.P.); (A.M.); (P.C.F.M.)
| |
Collapse
|
2
|
Tanaka M, Kanazashi M, Kondo H, Fujino H. Methylglyoxal reduces resistance exercise-induced protein synthesis and anabolic signaling in rat tibialis anterior muscle. J Muscle Res Cell Motil 2024; 45:263-273. [PMID: 39085712 DOI: 10.1007/s10974-024-09680-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 07/15/2024] [Indexed: 08/02/2024]
Abstract
Resistance exercise provides significant benefits to skeletal muscle, including hypertrophy and metabolic enhancements, supporting overall health and disease management. However, skeletal muscle responsiveness to resistance exercise is significantly reduced in conditions such as aging and diabetes. Recent reports suggest that glycation stress contributes to muscle atrophy and impaired exercise-induced muscle adaptation; however, its role in the muscle response to resistance exercise remains unclear. Therefore, in this study, we investigated whether methylglyoxal (MGO), a key factor in glycation stress, affects the acute responsiveness of skeletal muscles to resistance exercise, focusing on protein synthesis and the key signaling molecules. This study included 12 8-week-old male Sprague-Dawley rats divided into two groups: one received 0.5% MGO-supplemented drinking water (MGO group) and the other received regular water (control group). After 10 weeks, the left tibialis anterior muscle of each rat was subjected to electrical stimulation (ES) to mimic resistance exercise, with the right muscle serving as a non-stimulated control. Muscle protein-synthesis rates were evaluated with SUnSET, and phosphorylation levels of key signaling molecules (p70S6K and S6rp) were quantified using western blotting. In the control group, stimulated muscles exhibited significantly increased muscle protein synthesis and phosphorylation levels of p70S6K and S6rp. In the MGO group, these increases were attenuated, indicating that MGO treatment suppresses the adaptive response to resistance exercise. MGO diminishes the skeletal muscle's adaptive response to ES-simulated resistance exercise, affecting both muscle protein synthesis and key signaling molecules. The potential influence of glycation stress on the effectiveness of resistance exercise or ES emphasizes the need for individualized interventions in conditions of elevated glycation stress, such as diabetes and aging.
Collapse
Affiliation(s)
- Masayuki Tanaka
- Department of Physical Therapy, Faculty of Health Sciences, Okayama Healthcare Professional University, 3-2-18 Daiku, Kita-ku, Okayama-shi, Okayama, 700-0913, Japan
- Department of Physical Therapy, Faculty of Human Sciences, Osaka University of Human Sciences, 1-4-1 Shojaku, Settsu-shi, Osaka, 566-8501, Japan
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma-ku, Kobe-shi, Hyogo, 654-0142, Japan
| | - Miho Kanazashi
- Department of Health and Welfare, Faculty of Health and Welfare, Prefectural University of Hiroshima, 1-1 Gakuen- cho, Mihara-shi, Hiroshima, 723-0053, Japan.
| | - Hiroyo Kondo
- Department of Nutrition, Faculty of Health and Nutrition, Shubun University, 6 Nikko-cho, Ichinomiya, Aichi, 491- 0938, Japan
| | - Hidemi Fujino
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma-ku, Kobe-shi, Hyogo, 654-0142, Japan
| |
Collapse
|
3
|
Oliveira AL, de Oliveira MG, Mónica FZ, Antunes E. Methylglyoxal and Advanced Glycation End Products (AGEs): Targets for the Prevention and Treatment of Diabetes-Associated Bladder Dysfunction? Biomedicines 2024; 12:939. [PMID: 38790901 PMCID: PMC11118115 DOI: 10.3390/biomedicines12050939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/11/2024] [Accepted: 04/17/2024] [Indexed: 05/26/2024] Open
Abstract
Methylglyoxal (MGO) is a highly reactive α-dicarbonyl compound formed endogenously from 3-carbon glycolytic intermediates. Methylglyoxal accumulated in plasma and urine of hyperglycemic and diabetic individuals acts as a potent peptide glycation molecule, giving rise to advanced glycation end products (AGEs) like arginine-derived hydroimidazolone (MG-H1) and carboxyethyl-lysine (CEL). Methylglyoxal-derived AGEs exert their effects mostly via activation of RAGE, a cell surface receptor that initiates multiple intracellular signaling pathways, favoring a pro-oxidant environment through NADPH oxidase activation and generation of high levels of reactive oxygen species (ROS). Diabetic bladder dysfunction is a bothersome urological complication in patients with poorly controlled diabetes mellitus and may comprise overactive bladder, urge incontinence, poor emptying, dribbling, incomplete emptying of the bladder, and urinary retention. Preclinical models of type 1 and type 2 diabetes have further confirmed the relationship between diabetes and voiding dysfunction. Interestingly, healthy mice supplemented with MGO for prolonged periods exhibit in vivo and in vitro bladder dysfunction, which is accompanied by increased AGE formation and RAGE expression, as well as by ROS overproduction in bladder tissues. Drugs reported to scavenge MGO and to inactivate AGEs like metformin, polyphenols, and alagebrium (ALT-711) have shown favorable outcomes on bladder dysfunction in diabetic obese leptin-deficient and MGO-exposed mice. Therefore, MGO, AGEs, and RAGE levels may be critically involved in the pathogenesis of bladder dysfunction in diabetic individuals. However, there are no clinical trials designed to test drugs that selectively inhibit the MGO-AGEs-RAGE signaling, aiming to reduce the manifestations of diabetes-associated bladder dysfunction. This review summarizes the current literature on the role of MGO-AGEs-RAGE-ROS axis in diabetes-associated bladder dysfunction. Drugs that directly inactivate MGO and ameliorate bladder dysfunction are also reviewed here.
Collapse
Affiliation(s)
| | | | | | - Edson Antunes
- Department of Translational Medicine, Pharmacology Area, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas 13084-971, SP, Brazil; (A.L.O.); (M.G.d.O.); (F.Z.M.)
| |
Collapse
|
4
|
Berdowska I, Matusiewicz M, Fecka I. Methylglyoxal in Cardiometabolic Disorders: Routes Leading to Pathology Counterbalanced by Treatment Strategies. Molecules 2023; 28:7742. [PMID: 38067472 PMCID: PMC10708463 DOI: 10.3390/molecules28237742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/13/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
Methylglyoxal (MGO) is the major compound belonging to reactive carbonyl species (RCS) responsible for the generation of advanced glycation end products (AGEs). Its upregulation, followed by deleterious effects at the cellular and systemic levels, is associated with metabolic disturbances (hyperglycemia/hyperinsulinemia/insulin resistance/hyperlipidemia/inflammatory processes/carbonyl stress/oxidative stress/hypoxia). Therefore, it is implicated in a variety of disorders, including metabolic syndrome, diabetes mellitus, and cardiovascular diseases. In this review, an interplay between pathways leading to MGO generation and scavenging is addressed in regard to this system's impairment in pathology. The issues associated with mechanistic MGO involvement in pathological processes, as well as the discussion on its possible causative role in cardiometabolic diseases, are enclosed. Finally, the main strategies aimed at MGO and its AGEs downregulation with respect to cardiometabolic disorders treatment are addressed. Potential glycation inhibitors and MGO scavengers are discussed, as well as the mechanisms of their action.
Collapse
Affiliation(s)
- Izabela Berdowska
- Department of Medical Biochemistry, Wroclaw Medical University, 50-368 Wroclaw, Poland;
| | | | - Izabela Fecka
- Department of Pharmacognosy and Herbal Medicines, Wroclaw Medical University, 50-556 Wroclaw, Poland
| |
Collapse
|
5
|
Abstract
Diabetes mellitus is the ninth leading cause of mortality worldwide. It is a complex disease that manifests as chronic hyperglycemia. Glucose exposure causes biochemical changes at the proteome level as reflected in accumulation of glycated proteins. A prominent example is hemoglobin A1c (HbA1c), a glycated protein widely accepted as a diabetic indicator. Another emerging biomarker is glycated albumin which has demonstrated utility in situations where HbA1c cannot be used. Other proteins undergo glycation as well thus impacting cellular function, transport and immune response. Accordingly, these glycated counterparts may serve as predictors for diabetic complications and thus warrant further inquiry. Fortunately, modern proteomics has provided unique analytic capability to enable improved and more comprehensive exploration of glycating agents and glycated proteins. This review broadly covers topics from epidemiology of diabetes to modern analytical tools such as mass spectrometry to facilitate a better understanding of diabetes pathophysiology. This serves as an attempt to connect clinically relevant questions with findings of recent proteomic studies to suggest future avenues of diabetes research.
Collapse
Affiliation(s)
- Aleks Shin
- Department of Pathology & Anatomical Sciences, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Shawn Connolly
- Department of Pathology & Anatomical Sciences, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Kuanysh Kabytaev
- Department of Pathology & Anatomical Sciences, School of Medicine, University of Missouri, Columbia, MO, United States.
| |
Collapse
|
6
|
Dorenkamp M, Nasiry M, Semo D, Koch S, Löffler I, Wolf G, Reinecke H, Godfrey R. Pharmacological Targeting of the RAGE-NFκB Signalling Axis Impedes Monocyte Activation under Diabetic Conditions through the Repression of SHP-2 Tyrosine Phosphatase Function. Cells 2023; 12:cells12030513. [PMID: 36766855 PMCID: PMC9914555 DOI: 10.3390/cells12030513] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/19/2022] [Accepted: 09/23/2022] [Indexed: 02/09/2023] Open
Abstract
Monocytes play a vital role in the development of cardiovascular diseases. Type 2 diabetes mellitus (T2DM) is a major CVD risk factor, and T2DM-induced aberrant activation and enhanced migration of monocytes is a vital pathomechanism that leads to atherogenesis. We recently reported the upregulation of SHP-2 phosphatase expression in mediating the VEGF resistance of T2DM patient-derived monocytes or methylglyoxal- (MG, a glucose metabolite and advanced glycation end product (AGE) precursor) treated monocytes. However, the exact mechanisms leading to SHP-2 upregulation in hyperglycemic monocytes are unknown. Since inflammation and accumulation of AGEs is a hallmark of T2DM, we hypothesise that inflammation and AGE-RAGE (Receptor-for-AGEs) signalling drive SHP-2 expression in monocytes and blockade of these pathways will repress SHP-2 function. Indeed, monocytes from T2DM patients revealed an elevated SHP-2 expression. Under normoglycemic conditions, the serum from T2DM patients strongly induced SHP-2 expression, indicating that the T2DM serum contains critical factors that directly regulate SHP-2 expression. Activation of pro-inflammatory TNFα signalling cascade drove SHP-2 expression in monocytes. In line with this, linear regression analysis revealed a significant positive correlation between TNFα expression and SHP-2 transcript levels in T2DM monocytes. Monocytes exposed to MG or AGE mimetic AGE-BSA, revealed an elevated SHP-2 expression and co-treatment with an NFκB inhibitor or genetic inhibition of p65 reversed it. The pharmacological inhibition of RAGE was sufficient to block MG- or AGE-BSA-induced SHP-2 expression and activity. Confirming the importance of RAGE-NFκB signalling in regulating SHP-2 expression, the elevated binding of NFκB to the SHP-2 promoter-induced by MG or AGE-BSA-was reversed by RAGE and NFκB inhibition. Besides, we detected elevated RAGE levels in human and murine T2DM monocytes and monocytes exposed to MG or AGE-BSA. Importantly, MG and AGE-BSA treatment of non-T2DM monocytes phenocopied the aberrant pro-migratory phenotype of T2DM monocytes, which was reversed entirely by either SHP-2- or RAGE inhibition. In conclusion, these findings suggest a new therapeutic approach to prevent accelerated atherosclerosis in T2DM patients since inhibiting the RAGE-NFκB-SHP-2 axis impeded the T2DM-driven, SHP-2-dependent monocyte activation.
Collapse
Affiliation(s)
- Marc Dorenkamp
- Vascular Signalling, Molecular Cardiology, Department of Cardiology I—Coronary and Peripheral Vascular Disease, Heart Failure, University Hospital Münster, 48149 Münster, Germany
| | - Madina Nasiry
- Vascular Signalling, Molecular Cardiology, Department of Cardiology I—Coronary and Peripheral Vascular Disease, Heart Failure, University Hospital Münster, 48149 Münster, Germany
| | - Dilvin Semo
- Vascular Signalling, Molecular Cardiology, Department of Cardiology I—Coronary and Peripheral Vascular Disease, Heart Failure, University Hospital Münster, 48149 Münster, Germany
| | - Sybille Koch
- Vascular Signalling, Molecular Cardiology, Department of Cardiology I—Coronary and Peripheral Vascular Disease, Heart Failure, University Hospital Münster, 48149 Münster, Germany
| | - Ivonne Löffler
- Department of Internal Medicine III, University Hospital Jena, 07743 Jena, Germany
| | - Gunter Wolf
- Department of Internal Medicine III, University Hospital Jena, 07743 Jena, Germany
| | - Holger Reinecke
- Vascular Signalling, Molecular Cardiology, Department of Cardiology I—Coronary and Peripheral Vascular Disease, Heart Failure, University Hospital Münster, 48149 Münster, Germany
| | - Rinesh Godfrey
- Vascular Signalling, Molecular Cardiology, Department of Cardiology I—Coronary and Peripheral Vascular Disease, Heart Failure, University Hospital Münster, 48149 Münster, Germany
- Correspondence: ; Tel.: +49-251-83-57089; Fax: +49-251-83-55747
| |
Collapse
|
7
|
Mechanism of inactivation of glyceraldehyde-3-phosphate dehydrogenase in the presence of methylglyoxal. Arch Biochem Biophys 2023; 733:109485. [PMID: 36481268 DOI: 10.1016/j.abb.2022.109485] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/02/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022]
Abstract
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is known to be one of the targets of methylglyoxal (MGO), a metabolite of glycolysis that increased in diabetes. However, the mechanism of GAPDH inactivation in the presence of MGO is unclear. The purpose of the work was to study the reaction of GAPDH with MGO and to identify the products of the reaction. It was shown that incubation of recombinant human GAPDH with MGO leads to irreversible inactivation of the enzyme, which is accompanied by a decrease in SH-group content by approximately 3.3 per tetramer GAPDH. MALDI-TOF MS analysis showed that the modification of GAPDH with MGO results in the oxidation of the catalytic cysteine residues (Cys152) to form cysteine-sulfinic acid. In addition, 2 arginine residues (R80 and R234) were identified that react with MGO to form hydroimidazolones. Incubation of SH-SY5Y neuroblastoma cells with MGO resulted in the inactivation of GAPDH and inhibition of glycolysis. The mechanism of GAPDH oxidation in the presence of MGO suggests the participation of superoxide anion, which is formed during the reaction of amino groups with methylglyoxal. The role of GAPDH in protection against the damaging effect of ROS in cells in the case of inefficiency of MGO removal by the GSH-dependent glyoxalase system is discussed.
Collapse
|
8
|
Al-Robaiy S, Navarrete Santos A, Simm A. RAGE-Dependent Effect of Exogenous Methylglyoxal Intake on Lung Biomechanics in Mice. Nutrients 2022; 15:nu15010023. [PMID: 36615680 PMCID: PMC9823870 DOI: 10.3390/nu15010023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/13/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Methylglyoxal (MG) is a known highly reactive dicarbonyl and precursor to free radicals and advanced glycation end-products (AGEs). It is discussed to be involved in tissue aging and in the pathogenesis of different degenerative diseases. The effect of long-term oral administration of MG, simulating dietary MG intake, on the lung biomechanics of wild type (WT) and receptor for advanced glycation end-products knockout (RAGE-KO) mice was studied using an ex vivo ventilation system starting at the age of 6 months and after feeding for 6 and 12 months with MG. Our results showed that MG was taken up in the circulation and efficiently excreted with urine. The amount of free urinary MG measured after 12 months of feeding was lowered. After 12 months feeding, a significant airway resistance increase accompanied by a decrease of the maximal inspiratory airflow was observed in WT animals. No effect of MG in lung function of RAGE-KO mice could be detected. Despite the evidence that MG entered the systemic circulation, no MG-derived AGE accumulation was detected in the lung lysates in dependency on MG-feeding. Our data indicate that the short-term feeding of MG has little effect in vivo. Only after long-term treatment was MG secretion reduced, leading to tissue impairment.
Collapse
Affiliation(s)
- Samiya Al-Robaiy
- Center for Basic Medical Research (ZMG), University Hospital Halle (Saale), Martin Luther University Halle-Wittenberg, 06108 Halle (Saale), Germany
- Department of Cardiac Surgery, Middle German Heart Center, University Hospital Halle (Saale), Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
- Correspondence: ; Tel.: +49-3455571339; Fax: +49-3455575524
| | - Alexander Navarrete Santos
- Center for Basic Medical Research (ZMG), University Hospital Halle (Saale), Martin Luther University Halle-Wittenberg, 06108 Halle (Saale), Germany
| | - Andreas Simm
- Center for Basic Medical Research (ZMG), University Hospital Halle (Saale), Martin Luther University Halle-Wittenberg, 06108 Halle (Saale), Germany
- Department of Cardiac Surgery, Middle German Heart Center, University Hospital Halle (Saale), Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| |
Collapse
|
9
|
Maasen K, Eussen SJPM, Dagnelie PC, Houben AJHM, Webers CAB, Schram MT, Berendschot TTJM, Stehouwer CDA, Opperhuizen A, van Greevenbroek MMJ, Schalkwijk CG. Habitual intake of dietary methylglyoxal is associated with less low-grade inflammation: the Maastricht Study. Am J Clin Nutr 2022; 116:1715-1728. [PMID: 36055771 PMCID: PMC9761753 DOI: 10.1093/ajcn/nqac195] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 07/08/2022] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Dicarbonyls are major reactive precursors of advanced glycation endproducts (AGEs). Dicarbonyls are formed endogenously and also during food processing. Circulating dicarbonyls and AGEs are associated with inflammation and microvascular complications of diabetes, but for dicarbonyls from the diet these associations are currently unknown. OBJECTIVES We sought to examine the associations of dietary dicarbonyl intake with low-grade inflammation and microvascular function. METHODS In 2792 participants (mean ± SD age: 60 ± 8 y; 50% men; 26% type 2 diabetes) of the population-based cohort the Maastricht Study, we estimated the habitual intake of the dicarbonyls methylglyoxal (MGO), glyoxal (GO), and 3-deoxyglucosone (3-DG) by linking FFQ outcome data to our food composition database of the MGO, GO, and 3-DG content of >200 foods. Low-grade inflammation was assessed as six plasma biomarkers, which were compiled in a z score. Microvascular function was assessed as four plasma biomarkers, compiled in a zscore; as diameters and flicker light-induced dilation in retinal microvessels; as heat-induced skin hyperemic response; and as urinary albumin excretion. Cross-sectional associations of dietary dicarbonyls with low-grade inflammation and microvascular function were investigated using linear regression with adjustments for age, sex, potential confounders related to cardiometabolic risk factors, and lifestyle and dietary factors. RESULTS Fully adjusted analyses revealed that higher intake of MGO was associated with a lower z score for inflammation [standardized β coefficient (STD β): -0.05; 95% CI: -0.09 to -0.01, with strongest inverse associations for hsCRP and TNF-α: both -0.05; -0.10 to -0.01]. In contrast, higher dietary MGO intake was associated with impaired retinal venular dilation after full adjustment (STD β: -0.07; 95% CI: -0.12 to -0.01), but not with the other features of microvascular function. GO and 3-DG intakes were not consistently associated with any of the outcomes. CONCLUSION Higher habitual intake of MGO was associated with less low-grade inflammation. This novel, presumably beneficial, association is the first observation of an association between MGO intake and health outcomes in humans and warrants further investigation.
Collapse
Affiliation(s)
- Kim Maasen
- Department of Internal Medicine, CARIM School for Cardiovascular Diseases, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Simone J P M Eussen
- Department of Epidemiology, CAPHRI Care and Public Health Research Institute/CARIM School for Cardiovascular Diseases, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Pieter C Dagnelie
- Department of Epidemiology, CAPHRI Care and Public Health Research Institute/CARIM School for Cardiovascular Diseases, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Alfons J H M Houben
- Department of Internal Medicine, CARIM School for Cardiovascular Diseases, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Carroll A B Webers
- University Eye Clinic Maastricht, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Miranda T Schram
- Department of Internal Medicine, Heart and Vascular Center, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Tos T J M Berendschot
- University Eye Clinic Maastricht, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Coen D A Stehouwer
- Department of Internal Medicine, CARIM School for Cardiovascular Diseases, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Antoon Opperhuizen
- Department of Pharmacology and Toxicology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands
- Office for Risk Assessment and Research, Netherlands Food and Consumer Product Safety Authority, Utrecht, The Netherlands
| | - Marleen M J van Greevenbroek
- Department of Internal Medicine, CARIM School for Cardiovascular Diseases, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Casper G Schalkwijk
- Department of Internal Medicine, CARIM School for Cardiovascular Diseases, Maastricht University Medical Center, Maastricht, The Netherlands
| |
Collapse
|
10
|
Nutraceutical Prevention of Diabetic Complications—Focus on Dicarbonyl and Oxidative Stress. Curr Issues Mol Biol 2022; 44:4314-4338. [PMID: 36135209 PMCID: PMC9498143 DOI: 10.3390/cimb44090297] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/25/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
Oxidative and dicarbonyl stress, driven by excess accumulation of glycolytic intermediates in cells that are highly permeable to glucose in the absence of effective insulin activity, appear to be the chief mediators of the complications of diabetes. The most pathogenically significant dicarbonyl stress reflects spontaneous dephosphorylation of glycolytic triose phosphates, giving rise to highly reactive methylglyoxal. This compound can be converted to harmless lactate by the sequential activity of glyoxalase I and II, employing glutathione as a catalyst. The transcription of glyoxalase I, rate-limiting for this process, is promoted by Nrf2, which can be activated by nutraceutical phase 2 inducers such as lipoic acid and sulforaphane. In cells exposed to hyperglycemia, glycine somehow up-regulates Nrf2 activity. Zinc can likewise promote glyoxalase I transcription, via activation of the metal-responsive transcription factor (MTF) that binds to the glyoxalase promoter. Induction of glyoxalase I and metallothionein may explain the protective impact of zinc in rodent models of diabetic complications. With respect to the contribution of oxidative stress to diabetic complications, promoters of mitophagy and mitochondrial biogenesis, UCP2 inducers, inhibitors of NAPDH oxidase, recouplers of eNOS, glutathione precursors, membrane oxidant scavengers, Nrf2 activators, and correction of diabetic thiamine deficiency should help to quell this.
Collapse
|
11
|
Honey: An Advanced Antimicrobial and Wound Healing Biomaterial for Tissue Engineering Applications. Pharmaceutics 2022; 14:pharmaceutics14081663. [PMID: 36015289 PMCID: PMC9414000 DOI: 10.3390/pharmaceutics14081663] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/03/2022] [Accepted: 08/08/2022] [Indexed: 01/18/2023] Open
Abstract
Honey was used in traditional medicine to treat wounds until the advent of modern medicine. The rising global antibiotic resistance has forced the development of novel therapies as alternatives to combat infections. Consequently, honey is experiencing a resurgence in evaluation for antimicrobial and wound healing applications. A range of both Gram-positive and Gram-negative bacteria, including antibiotic-resistant strains and biofilms, are inhibited by honey. Furthermore, susceptibility to antibiotics can be restored when used synergistically with honey. Honey’s antimicrobial activity also includes antifungal and antiviral properties, and in most varieties of honey, its activity is attributed to the enzymatic generation of hydrogen peroxide, a reactive oxygen species. Non-peroxide factors include low water activity, acidity, phenolic content, defensin-1, and methylglyoxal (Leptospermum honeys). Honey has also been widely explored as a tissue-regenerative agent. It can contribute to all stages of wound healing, and thus has been used in direct application and in dressings. The difficulty of the sustained delivery of honey’s active ingredients to the wound site has driven the development of tissue engineering approaches (e.g., electrospinning and hydrogels). This review presents the most in-depth and up-to-date comprehensive overview of honey’s antimicrobial and wound healing properties, commercial and medical uses, and its growing experimental use in tissue-engineered scaffolds.
Collapse
|
12
|
Stratmann B. Dicarbonyl Stress in Diabetic Vascular Disease. Int J Mol Sci 2022; 23:6186. [PMID: 35682865 PMCID: PMC9181283 DOI: 10.3390/ijms23116186] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 02/07/2023] Open
Abstract
Late vascular complications play a prominent role in the diabetes-induced increase in morbidity and mortality. Diabetes mellitus is recognised as a risk factor driving atherosclerosis and cardiovascular mortality; even after the normalisation of blood glucose concentration, the event risk is amplified-an effect called "glycolytic memory". The hallmark of this glycolytic memory and diabetic pathology are advanced glycation end products (AGEs) and reactive glucose metabolites such as methylglyoxal (MGO), a highly reactive dicarbonyl compound derived mainly from glycolysis. MGO and AGEs have an impact on vascular and organ structure and function, contributing to organ damage. As MGO is not only associated with hyperglycaemia in diabetes but also with other risk factors for diabetic vascular complications such as obesity, dyslipidaemia and hypertension, MGO is identified as a major player in the development of vascular complications in diabetes both on micro- as well as macrovascular level. In diabetes mellitus, the detoxifying system for MGO, the glyoxalase system, is diminished, accounting for the increased MGO concentration and glycotoxic load. This overview will summarise current knowledge on the effect of MGO and AGEs on vascular function.
Collapse
Affiliation(s)
- Bernd Stratmann
- Herz- und Diabeteszentrum NRW, Diabeteszentrum, Ruhr Universität Bochum, 32545 Bad Oeynhausen, Germany
| |
Collapse
|
13
|
Takanche JS, Kim JE, Jang S, Yi HK. Insulin growth factor binding protein-3 enhances dental implant osseointegration against methylglyoxal-induced bone deterioration in a rat model. J Periodontal Implant Sci 2022; 52:155-169. [PMID: 35505576 PMCID: PMC9064780 DOI: 10.5051/jpis.2101200060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 07/08/2021] [Accepted: 07/09/2021] [Indexed: 11/08/2022] Open
Abstract
PURPOSE The aim of this study was to determine the effect of insulin growth factor binding protein-3 (IGFBP-3) on the inhibition of glucose oxidative stress and promotion of bone formation near the implant site in a rat model of methylglyoxal (MGO)-induced bone loss. METHODS An in vitro study was performed in MC3T3 E1 cells treated with chitosan gold nanoparticles (Ch-GNPs) conjugated with IGFBP-3 cDNA followed by MGO. An in vivo study was conducted in a rat model induced by MGO administration after the insertion of a dental implant coated with IGFBP-3. RESULTS MGO treatment downregulated molecules involved in osteogenic differentiation and bone formation in MC3T3 E1 cells and influenced the bone mineral density and bone volume of the femur and alveolar bone. In contrast, IGFBP-3 inhibited oxidative stress and inflammation and enhanced osteogenesis in MGO-treated MC3T3 E1 cells. In addition, IGFBP-3 promoted bone formation by reducing inflammatory proteins in MGO-administered rats. The application of Ch-GNPs conjugated with IGFBP-3 as a coating of titanium implants enhanced osteogenesis and the osseointegration of dental implants. CONCLUSIONS This study demonstrated that IGFBP-3 could be applied as a therapeutic component in dental implants to promote the osseointegration of dental implants in patients with diabetes, which affects MGO levels.
Collapse
Affiliation(s)
- Jyoti Shrestha Takanche
- Department of Oral Biochemistry, Institute of Oral Bioscience, School of Dentistry, Jeonbuk National University, Jeonju, Korea.,Department of Biochemistry, School of Medical Sciences, Kathmandu University, Nepal
| | - Ji-Eun Kim
- Department of Oral Biochemistry, Institute of Oral Bioscience, School of Dentistry, Jeonbuk National University, Jeonju, Korea
| | - Sungil Jang
- Department of Oral Biochemistry, Institute of Oral Bioscience, School of Dentistry, Jeonbuk National University, Jeonju, Korea
| | - Ho-Keun Yi
- Department of Oral Biochemistry, Institute of Oral Bioscience, School of Dentistry, Jeonbuk National University, Jeonju, Korea.
| |
Collapse
|
14
|
Early postnatal exposure of rat pups to methylglyoxal induces oxidative stress, inflammation and dysmetabolism at adulthood. J Dev Orig Health Dis 2022; 13:617-625. [PMID: 35057878 DOI: 10.1017/s204017442100074x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Abstract
This work aimed to investigate the effects of early progeny exposure to methylglyoxal (MG), programming for metabolic dysfunction and diabetes-like complications later in life. At delivery (PN1), the animals were separated into two groups: control group (CO), treated with saline, and MG group, treated with MG (20 mg/kg of BW; i.p.) during the first 2 weeks of the lactation period. In vivo experiments and tissue collection were done at PN90. Early MG exposure decreased body weight, adipose tissue, liver and kidney weight at adulthood. On the other hand, MG group showed increased relative food intake, blood fructosamine, blood insulin and HOMA-IR, which is correlated with insulin resistance. Besides, MG-treated animals presented dyslipidaemia, increased oxidative stress and inflammation. Likewise, MG group showed steatosis and perivascular fibrosis in the liver, pancreatic islet hypertrophy, increased glomerular area and pericapsular fibrosis, but reduced capsular space. This study shows that early postnatal exposure to MG induces oxidative stress, inflammation and fibrosis markers in pancreas, liver and kidney, which are related to metabolic dysfunction features. Thus, nutritional disruptors during lactation period may be an important risk factor for metabolic alterations at adulthood.
Collapse
|
15
|
Methylglyoxal Scavengers Attenuate Angiogenesis Dysfunction Induced by Methylglyoxal and Oxygen-Glucose Deprivation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8854457. [PMID: 35035668 PMCID: PMC8754597 DOI: 10.1155/2022/8854457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/02/2021] [Accepted: 11/06/2021] [Indexed: 12/11/2022]
Abstract
Cerebral endothelial cells play an essential role in brain angiogenesis, and their function has been found to be impaired in diabetes. Methylglyoxal (MG) is a highly reactive dicarbonyl metabolite of glucose formed mainly during glycolysis, and its levels can be elevated in hyperglycemic conditions. MG is a potent precursor of AGEs (advanced glycation end-products). In this study, we investigated if MG can induce angiogenesis dysfunction and whether MG scavengers can ameliorate angiogenesis dysfunction induced by MG. Here, we used cultured human brain microvascular endothelial cells (HBMECs) treated with MG and oxygen-glucose deprivation (OGD) to mimic diabetic stroke in vitro. We also used the MG challenged chicken embryo chorioallantoic membrane (CAM) to study angiogenesis in vivo. Interestingly, administration of MG significantly impaired cell proliferation, cell migration, and tube formation and decreased protein expression of angiogenesis-related factors, which was rescued by three different MG scavengers, glyoxalase 1 (GLO1), aminoguanidine (AG), and N-acetyl cysteine (NAC). In cultured CAM, MG exposure significantly reduced angiogenesis and the angiogenesis-related dysfunction could be attenuated by pretreatment with AG or NAC. Treatment of cultured HBMECs with MG plus OGD increased cellular apoptosis significantly, which could be prevented by exposure to GLO1, AG, or NAC. We also noted that administration of MG increased cellular oxidative stress as measured by reactive oxygen species (ROS) generation, enhanced AGE accumulation, and receptor for advanced glycation end-product (RAGE) expression in the cultured HBMECs, which were partially reversed by GLO1, AG, or NAC. Taken together, our findings demonstrated that GLO1, AG, or NAC administration can ameliorate MG-induced angiogenesis dysfunction, and this can be mainly attributed to attenuated ROS production, reduced cellular apoptosis, and increased levels of angiogenic factors. Overall, this study suggested that GLO1, AG, or NAC may be promising candidate compounds for the treatment of angiogenesis dysfunction caused by hyperglycemia in diabetic ischemic stroke.
Collapse
|
16
|
Prestes ADS, Dos Santos MM, Kamdem JP, Mancini G, Schüler da Silva LC, de Bem AF, Barbosa NV. Methylglyoxal disrupts the functionality of rat liver mitochondria. Chem Biol Interact 2022; 351:109677. [PMID: 34634269 DOI: 10.1016/j.cbi.2021.109677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 09/10/2021] [Accepted: 09/29/2021] [Indexed: 11/15/2022]
Abstract
Methylglyoxal (MG) is a reactive metabolite derived from different physiological pathways. Its production can be harmful to cells via glycation reactions of lipids, DNA, and proteins. But, the effects of MG on mitochondrial functioning and bioenergetic responses are still elusive. Then, the effects of MG on key parameters of mitochondrial functionality were examined here. Isolated rat liver mitochondria were exposed to 0.1-10 mM of MG to determine its toxicity in the mitochondrial viability, membrane potential (Δψm), swelling and the superoxide (O2•-) production. Besides, mitochondrial oxidative phosphorylation parameters were analyzed by high-resolution respiratory (HRR) assay. In this set of experiments, routine state, PM state (pyruvate/malate), oxidative phosphorylation (OXPHOS), LEAK respiration, electron transport system (ETS) and oxygen residual (ROX) states were evaluated. HRR showed that PM state, OXPHOS CI-Linked, LEAK respiration, ETS CI/CII-Linked and ETS CII-Linked/ROX were significantly inhibited by MG exposure. MG also inhibited the complex II activity, and decreased Δψm and the viability of mitochondria. Taken together, our data indicates that MG is an inductor of mitochondrial dysfunctions and impairs important steps of respiratory chain, effects that can alter bioenergetics responses.
Collapse
Affiliation(s)
- Alessandro de Souza Prestes
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, RS, Brazil.
| | - Matheus Mülling Dos Santos
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Jean Paul Kamdem
- Department of Biological Sciences, Regional University of Cariri, Pimenta, Crato, CE, Brazil
| | - Gianni Mancini
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | | | - Andreza Fabro de Bem
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Nilda Vargas Barbosa
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| |
Collapse
|
17
|
Cortizo FG, Pfaff D, Wirth A, Schlotterer A, Medert R, Morgenstern J, Weber T, Hammes HP, Fleming T, Nawroth PP, Freichel M, Teleman AA. The activity of glyoxylase 1 is regulated by glucose-responsive phosphorylation on Tyr136. Mol Metab 2022; 55:101406. [PMID: 34838714 PMCID: PMC8715127 DOI: 10.1016/j.molmet.2021.101406] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 11/17/2021] [Accepted: 11/23/2021] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE Methylglyoxal (MG) is a highly reactive α-oxoaldehyde that glycates proteins. MG has been linked to the development of diabetic complications: MG is the major precursor of advanced glycation end products (AGEs), a risk marker for diabetic complications in humans. Furthermore, flies and fish with elevated MG develop insulin resistance, obesity, and hyperglycemia. MG is detoxified in large part through the glyoxalase system, whose rate-limiting enzyme is glyoxalase I (Glo1). Hence, we aimed to study how Glo1 activity is regulated. METHODS We studied the regulation and effect of post-translational modifications of Glo1 in tissue culture and in mouse models of diabetes. RESULTS We show that Glo1 activity is promoted by phosphorylation on Tyrosine 136 via multiple kinases. We find that Glo1 Y136 phosphorylation responds in a bimodal fashion to glucose levels, increasing in cell culture from 0 mM to 5 mM (physiological) glucose, and then decreasing at higher glucose concentrations, both in cell culture and in mouse models of hyperglycemia. CONCLUSIONS These data, together with published findings that elevated MG leads to hyperglycemia, suggest the existence of a deleterious positive feedback loop whereby hyperglycemia leads to reduced Glo1 activity, contributing to elevated MG levels, which in turn promote hyperglycemia. Hence, perturbations elevating either glucose or MG have the potential to start an auto-amplifying feedback loop contributing to diabetic complications.
Collapse
Affiliation(s)
- Fabiola Garcia Cortizo
- German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany; Heidelberg University, 69120, Heidelberg, Germany
| | - Daniel Pfaff
- German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany; Department of Internal Medicine I and Clinical Chemistry, University Hospital Heidelberg, Germany
| | - Angela Wirth
- Pharmakologisches Institut, Ruprecht-Karls-Universität Heidelberg, 69120, Heidelberg, Germany
| | - Andrea Schlotterer
- 5th Medical Department, Universitätsmedizin Mannheim, University of Heidelberg, Mannheim, Germany
| | - Rebekka Medert
- Pharmakologisches Institut, Ruprecht-Karls-Universität Heidelberg, 69120, Heidelberg, Germany
| | - Jakob Morgenstern
- Department of Internal Medicine I and Clinical Chemistry, University Hospital Heidelberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Tobias Weber
- German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany; Heidelberg University, 69120, Heidelberg, Germany
| | - Hans-Peter Hammes
- 5th Medical Department, Universitätsmedizin Mannheim, University of Heidelberg, Mannheim, Germany
| | - Thomas Fleming
- Department of Internal Medicine I and Clinical Chemistry, University Hospital Heidelberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Peter Paul Nawroth
- Department of Internal Medicine I and Clinical Chemistry, University Hospital Heidelberg, Germany
| | - Marc Freichel
- Pharmakologisches Institut, Ruprecht-Karls-Universität Heidelberg, 69120, Heidelberg, Germany
| | - Aurelio A Teleman
- German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany; Heidelberg University, 69120, Heidelberg, Germany.
| |
Collapse
|
18
|
Jiang M, Yakupu A, Guan H, Dong J, Liu Y, Song F, Tang J, Tian M, Niu Y, Lu S. Pyridoxamine ameliorates methylglyoxal-induced macrophage dysfunction to facilitate tissue repair in diabetic wounds. Int Wound J 2022; 19:52-63. [PMID: 33792156 PMCID: PMC8684884 DOI: 10.1111/iwj.13597] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/16/2021] [Accepted: 03/23/2021] [Indexed: 01/13/2023] Open
Abstract
Methylglyoxal (MGO) is a highly reactive dicarbonyl compound formed during hyperglycaemia. MGO combines with proteins to form advanced glycation end products (AGEs), leading to cellular dysfunction and organ damage. In type 2 diabetes mellitus (T2DM), the higher the plasma MGO concentration, the higher the lower extremity amputation rate. Here, we aimed to identify the mechanisms of MGO-induced dysfunction. We observed that the accumulation of MGO-derived AGEs in human diabetic wounds increased, whereas the expression of glyoxalase 1 (GLO1), a key metabolic enzyme of MGO, decreased. We show for the first time that topical application of pyridoxamine (PM), a natural vitamin B6 analogue, reduced the accumulation of MGO-derived AGEs in the wound tissue of type-2 diabetic mice, promoted the influx of macrophages in the early stage of tissue repair, improved the dysfunctional inflammatory response, and accelerated wound healing. In vitro, MGO damaged the phagocytic functions of M1-like macrophages induced by lipopolysaccharide (LPS), but not those of M0-like macrophages induced by PMA or of M2-like macrophages induced by interleukins 4 (IL-4) and 13 (IL-13); the impaired phagocytosis of M1-like macrophages was rescued by PM administration. These findings suggest that the increase in MGO metabolism in vivo might contribute to macrophage dysfunction, thereby affecting wound healing. Our results indicate that PM may be a novel therapeutic approach for treating diabetic wounds. MGO forms protein adducts that cause macrophage dysfunction. These adducts cause cell and organ dysfunction that is common in diabetes. Pyridoxamine scavenges MGO to ameliorate this dysfunction, promoting wound healing. Pyridoxamine could be used therapeutically to treat non-healing diabetic wounds.
Collapse
Affiliation(s)
- Minfei Jiang
- Department of BurnRuijin Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Aobuliaximu Yakupu
- Department of BurnRuijin Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Haonan Guan
- Department of BurnRuijin Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Jiaoyun Dong
- Department of BurnRuijin Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yingkai Liu
- Department of BurnRuijin Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Fei Song
- Department of BurnRuijin Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Jiajun Tang
- Department of BurnRuijin Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Ming Tian
- Department of BurnRuijin Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yiwen Niu
- Department of BurnRuijin Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Shuliang Lu
- Department of BurnRuijin Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
19
|
Hernandez-Castillo C, Shuck SC. Diet and Obesity-Induced Methylglyoxal Production and Links to Metabolic Disease. Chem Res Toxicol 2021; 34:2424-2440. [PMID: 34851609 DOI: 10.1021/acs.chemrestox.1c00221] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The obesity rate in the United States is 42.4% and has become a national epidemic. Obesity is a complex condition that is influenced by socioeconomic status, ethnicity, genetics, age, and diet. Increased consumption of a Western diet, one that is high in processed foods, red meat, and sugar content, is associated with elevated obesity rates. Factors that increase obesity risk, such as socioeconomic status, also increase consumption of a Western diet because of a limited access to healthier options and greater affordability of processed foods. Obesity is a public health threat because it increases the risk of several pathologies, including atherosclerosis, diabetes, and cancer. The molecular mechanisms linking obesity to disease onset and progression are not well understood, but a proposed mechanism is physiological changes caused by altered lipid peroxidation, glycolysis, and protein metabolism. These metabolic pathways give rise to reactive molecules such as the abundant electrophile methylglyoxal (MG), which covalently modifies nucleic acids and proteins. MG-adducts are associated with obesity-linked pathologies and may have potential for biomonitoring to determine the risk of disease onset and progression. MG-adducts may also play a role in disease progression because they are mutagenic and directly impact protein stability and function. In this review, we discuss how obesity drives metabolic alterations, how these alterations lead to MG production, the association of MG-adducts with disease, and the potential impact of MG-adducts on cellular function.
Collapse
Affiliation(s)
- Carlos Hernandez-Castillo
- Department of Diabetes and Cancer Metabolism, Beckman Research Institute of City of Hope, Duarte, California 91010, United States
| | - Sarah C Shuck
- Department of Diabetes and Cancer Metabolism, Beckman Research Institute of City of Hope, Duarte, California 91010, United States
| |
Collapse
|
20
|
Banerjee S. Biophysical and mass spectrometry based characterization of methylglyoxal-modified myoglobin: Role of advanced glycation end products in inducing protein structural alterations. Int J Biol Macromol 2021; 193:2165-2172. [PMID: 34774865 DOI: 10.1016/j.ijbiomac.2021.11.047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 09/08/2021] [Accepted: 11/05/2021] [Indexed: 11/25/2022]
Abstract
Methylglyoxal (MG) is a highly reactive α-dicarbonyl compound which reacts with proteins to form advanced glycation end products (AGEs). MG-induced AGE (MAGE) formation is particularly significant in diabetic condition. In the current study, we have undertaken a time-dependant characterization of MG-modified myoglobin following incubation of the heme protein with the α-dicarbonyl compound for different time periods. Interestingly, mass spectrometric studies indicated modifications at two specific lysine residues, Lys-87 and Lys-133. The AGE adducts identified at Lys-87 were carboxymethyllysine and carboxyethyllysine, while those detected at Lys-133 included pyrraline-carboxymethyllysine and carboxyethyllysine, respectively. Far-UV CD studies revealed a decrease in the native α-helical content of the heme protein gradually with increasing time of MG incubation. In addition, MG modification was found to induce changes in tertiary structure as well as surface hydrophobicity of the heme protein. MG-derived AGE adducts thus appear to alter the structure of Mb considerably. Considering the increased level of MG in diabetic condition, the current study appears physiologically relevant in terms of understanding AGE-mediated protein modification and subsequent structural changes.
Collapse
Affiliation(s)
- Sauradipta Banerjee
- Department of Biophysics, Molecular Biology & Bioinformatics, University of Calcutta, 92, Acharyya Prafulla Chandra Road, Kolkata 700009, India.
| |
Collapse
|
21
|
Medeiros ML, Oliveira AL, de Oliveira MG, Mónica FZ, Antunes E. Methylglyoxal Exacerbates Lipopolysaccharide-Induced Acute Lung Injury via RAGE-Induced ROS Generation: Protective Effects of Metformin. J Inflamm Res 2021; 14:6477-6489. [PMID: 34880648 PMCID: PMC8648108 DOI: 10.2147/jir.s337115] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/15/2021] [Indexed: 01/11/2023] Open
Abstract
Purpose Methylglyoxal (MGO) is a highly reactive dicarbonyl species implicated in diabetic-associated diseases. Acute lung injury (ALI) symptoms and prognosis are worsened by diabetes and obesity. Here, we hypothesized that elevated MGO levels aggravate ALI, which can be prevented by metformin. Therefore, this study evaluated the lung inflammation in lipopolysaccharide (LPS)-exposed mice pretreated with MGO. Methods C57Bl/6 male mice treated or not with MGO for 12 weeks were intranasally instilled with LPS (30 µg) to induce ALI, and metformin (300 mg/kg) was given as gavage in the last two weeks of treatment. After 6 h, bronchoalveolar lavage fluid (BALF) and lung tissues were collected to quantify the cell infiltration, cytokine levels, reactive-oxygen species (ROS) production, and RAGE expression. Results LPS exposure markedly increased the neutrophil infiltration in BALF and lung tissue, which was accompanied by higher levels of IFN-γ, TNF-α and IL-1β compared with untreated group. MGO treatment significantly increased the airways neutrophil infiltration and mRNA expressions of TNF-α and IL-1β, whereas COX-2 expression remained unchanged. In lung tissues of LPS-exposed mice, MGO treatment significantly increased the immunostaining and mRNA expression of RAGE, and the ROS levels. Serum MGO concentration achieved after 12-week intake was 9.2-fold higher than control mice, which was normalized by metformin treatment. Metformin also reduced the inflammatory markers in response to MGO. Conclusion MGO intake potentiates the LPS-induced ALI, increases RAGE expression and ROS generation, which is normalized by metformin. MGO scavengers may be a good adjuvant therapy to reduce ALI in patients with cardiometabolic diseases.
Collapse
Affiliation(s)
- Matheus L Medeiros
- Department of Pharmacology, University of Campinas (UNICAMP), Campinas, Sao Paulo, Brazil
| | - Akila L Oliveira
- Department of Pharmacology, University of Campinas (UNICAMP), Campinas, Sao Paulo, Brazil
| | - Mariana G de Oliveira
- Department of Pharmacology, University of Campinas (UNICAMP), Campinas, Sao Paulo, Brazil
| | - Fabíola Z Mónica
- Department of Pharmacology, University of Campinas (UNICAMP), Campinas, Sao Paulo, Brazil
| | - Edson Antunes
- Department of Pharmacology, University of Campinas (UNICAMP), Campinas, Sao Paulo, Brazil
| |
Collapse
|
22
|
Park SY, Suh KS, Jung WW, Chin SO. Spironolactone Attenuates Methylglyoxal-induced Cellular Dysfunction in MC3T3-E1 Osteoblastic Cells. J Korean Med Sci 2021; 36:e265. [PMID: 34609092 PMCID: PMC8490790 DOI: 10.3346/jkms.2021.36.e265] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/29/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Methylglyoxal (MG) is associated with the pathogenesis of age- and diabetes-related complications. Spironolactone is a competitive antagonist of aldosterone that is widely employed in the treatment of hypertension and heart failure. This study examined the effects of spironolactone on MG-induced cellular dysfunction in MC3T3-E1 osteoblastic cells. METHODS MC3T3-E1 cells were treated with spironolactone in the presence of MG. The mitochondrial function, bone formation activity, oxidative damage, inflammatory cytokines, glyoxalase I activity, and glutathione (GSH) were measured. RESULTS Pretreatment of MC3T3-E1 osteoblastic cells with spironolactone prevented MG-induced cell death, and improved bone formation activity. Spironolactone reduced MG-induced endoplasmic reticulum stress, production of intracellular reactive oxygen species, mitochondrial superoxides, cardiolipin peroxidation, and inflammatory cytokines. Pretreatment with spironolactone also increased the level of reduced GSH and the activity of glyoxalase I. MG induced mitochondrial dysfunction, but markers of mitochondrial biogenesis such as mitochondrial membrane potential, adenosine triphosphate, proliferator-activated receptor gamma coactivator 1α, and nitric oxide were significantly improved by treatment of spironolactone. CONCLUSION Spironolactone could prevent MG-induced cytotoxicity in MC3T3-E1 osteoblastic cells by reduction of oxidative stress. The oxidative stress reduction was explained by spironolactone's inhibition of advanced glycation end-product formation, restoring mitochondrial dysfunction, and anti-inflammatory effect.
Collapse
Affiliation(s)
- So Young Park
- Department of Endocrinology and Metabolism, Kyung Hee University Hospital, Seoul, Korea
| | - Kwang Sik Suh
- Department of Endocrinology and Metabolism, Kyung Hee University School of Medicine, Seoul, Korea
| | - Woon-Won Jung
- Department of Biomedical Laboratory Science, College of Health and Medical Sciences, Cheongju University, Cheongju, Korea
| | - Sang Ouk Chin
- Department of Endocrinology and Metabolism, Kyung Hee University Hospital, Seoul, Korea
- Department of Endocrinology and Metabolism, Kyung Hee University School of Medicine, Seoul, Korea.
| |
Collapse
|
23
|
Lee JH, Samsuzzaman M, Park MG, Park SJ, Kim SY. Methylglyoxal-derived hemoglobin advanced glycation end products induce apoptosis and oxidative stress in human umbilical vein endothelial cells. Int J Biol Macromol 2021; 187:409-421. [PMID: 34271050 DOI: 10.1016/j.ijbiomac.2021.07.058] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 07/08/2021] [Accepted: 07/08/2021] [Indexed: 12/30/2022]
Abstract
The presence of excess glucose promotes hemoglobin glycation via the biochemical modification of hemoglobin by dicarbonyl products. However, the precise effects of Hb-AGEs in human umbilical vein endothelial cells (HUVECs) are not known to date. Therefore, we investigated the tentative effects of Hb-AGEs in HUVECs. Initially, we used the AGE formation assay to examine the selectivity of MGO toward various proteins. Among all proteins, MGO-Hb-AGEs formation was higher compared to the formation of other dicarbonyl-mediated AGEs. Our next data demonstrated that treatment with 0.5 mg/mL of Hb-AGEs-4w significantly reduced cell viability in HUVECs. Further, we evaluated the role of MGO in conformational and structural changes in Hb. The results showed that Hb demonstrated a highly altered conformation upon incubation with MGO. Moreover, Hb-AGEs-4w treatment strongly increased ROS production, and decreased mitochondrial membrane potential in HUVECs, and moderately reduced the expression of phosphorylated forms of p-38 and JNK. We observed that Hb-AGEs-4w treatment increased the number of apoptotic cells and the Bax/Bcl-2 ratio and cleaved the nuclear enzyme PARP in HUVECs. Finally, Hb-AGEs also inhibited migration and proliferation of HUVECs, thus be physiologically significant in endothelial dysfunction. Taken together, our data suggest that Hb-AGEs may play a critical role in inducing vascular endothelial cell damage. Therefore, this study may provide a plausible explanation for the potential Hb-AGEs in human endothelial cell dysfunction of diabetic patients.
Collapse
Affiliation(s)
- Jae Hyuk Lee
- College of Pharmacy, Gachon University, #191, Hambakmoero, Yeonsu-gu, Incheon 21936, Republic of Korea
| | - Md Samsuzzaman
- College of Pharmacy, Gachon University, #191, Hambakmoero, Yeonsu-gu, Incheon 21936, Republic of Korea
| | - Myoung Gyu Park
- MetaCen Therapeutics Company, # Changnyong-daero 256 beon-gil, Yeongtong-gu, Suwon-si, Gyeonggi-do 16229, Republic of Korea
| | - Sung Jean Park
- College of Pharmacy, Gachon University, #191, Hambakmoero, Yeonsu-gu, Incheon 21936, Republic of Korea; Gachon Institute of Pharmaceutical Science, Gachon University, #191, Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Republic of Korea.
| | - Sun Yeou Kim
- College of Pharmacy, Gachon University, #191, Hambakmoero, Yeonsu-gu, Incheon 21936, Republic of Korea; Gachon Institute of Pharmaceutical Science, Gachon University, #191, Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Republic of Korea.
| |
Collapse
|
24
|
Bartosova M, Zhang C, Schaefer B, Herzog R, Ridinger D, Damgov I, Levai E, Marinovic I, Eckert C, Romero P, Sallay P, Ujszaszi A, Unterwurzacher M, Wagner A, Hildenbrand G, Warady BA, Schaefer F, Zarogiannis SG, Kratochwill K, Schmitt CP. Glucose Derivative Induced Vasculopathy in Children on Chronic Peritoneal Dialysis. Circ Res 2021; 129:e102-e118. [PMID: 34233458 DOI: 10.1161/circresaha.121.319310] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Maria Bartosova
- Center for Pediatric and Adolescent Medicine (M.B., C.Z., B.S., I.D., E.L., I.M., F.S., S.G.Z., C.P.S.), University of Heidelberg, Heidelberg, Germany
| | - Conghui Zhang
- Center for Pediatric and Adolescent Medicine (M.B., C.Z., B.S., I.D., E.L., I.M., F.S., S.G.Z., C.P.S.), University of Heidelberg, Heidelberg, Germany
| | - Betti Schaefer
- Center for Pediatric and Adolescent Medicine (M.B., C.Z., B.S., I.D., E.L., I.M., F.S., S.G.Z., C.P.S.), University of Heidelberg, Heidelberg, Germany
| | - Rebecca Herzog
- Christian Doppler Laboratory for Molecular Stress Research in Peritoneal Dialysis, Division of Pediatric Nephrology and Gastroenterology, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria (R.H., M.U., A.W., K.K.)
| | - David Ridinger
- Kirchhoff Institute for Physics (D.R., G.H.), University of Heidelberg, Heidelberg, Germany
| | - Ivan Damgov
- Center for Pediatric and Adolescent Medicine (M.B., C.Z., B.S., I.D., E.L., I.M., F.S., S.G.Z., C.P.S.), University of Heidelberg, Heidelberg, Germany
| | - Eszter Levai
- Center for Pediatric and Adolescent Medicine (M.B., C.Z., B.S., I.D., E.L., I.M., F.S., S.G.Z., C.P.S.), University of Heidelberg, Heidelberg, Germany
- ELKH-SE, Pediatrics and Nephrology Research Group, Budapest, Hungary (E.L.)
- 1st Department of Pediatrics, Semmelweis University, Budapest, Hungary (E.L., P.S.)
| | - Iva Marinovic
- Center for Pediatric and Adolescent Medicine (M.B., C.Z., B.S., I.D., E.L., I.M., F.S., S.G.Z., C.P.S.), University of Heidelberg, Heidelberg, Germany
| | - Christoph Eckert
- Institute of Pathology (C.E.), University of Heidelberg, Heidelberg, Germany
| | - Philipp Romero
- Division of Pediatric Surgery, Department of General, Visceral and Transplantation Surgery (P.R.), University of Heidelberg, Heidelberg, Germany
| | - Peter Sallay
- 1st Department of Pediatrics, Semmelweis University, Budapest, Hungary (E.L., P.S.)
| | - Akos Ujszaszi
- Division of Nephrology, Heidelberg University Hospital, Heidelberg, Germany (A.U.)
| | - Markus Unterwurzacher
- Christian Doppler Laboratory for Molecular Stress Research in Peritoneal Dialysis, Division of Pediatric Nephrology and Gastroenterology, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria (R.H., M.U., A.W., K.K.)
| | - Anja Wagner
- Christian Doppler Laboratory for Molecular Stress Research in Peritoneal Dialysis, Division of Pediatric Nephrology and Gastroenterology, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria (R.H., M.U., A.W., K.K.)
| | - Georg Hildenbrand
- Kirchhoff Institute for Physics (D.R., G.H.), University of Heidelberg, Heidelberg, Germany
| | | | - Franz Schaefer
- Center for Pediatric and Adolescent Medicine (M.B., C.Z., B.S., I.D., E.L., I.M., F.S., S.G.Z., C.P.S.), University of Heidelberg, Heidelberg, Germany
| | - Sotirios G Zarogiannis
- Center for Pediatric and Adolescent Medicine (M.B., C.Z., B.S., I.D., E.L., I.M., F.S., S.G.Z., C.P.S.), University of Heidelberg, Heidelberg, Germany
- Department of Physiology, Faculty of Medicine, University of Thessaly, Larissa, Greece (S.G.Z.)
| | - Klaus Kratochwill
- Christian Doppler Laboratory for Molecular Stress Research in Peritoneal Dialysis, Division of Pediatric Nephrology and Gastroenterology, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria (R.H., M.U., A.W., K.K.)
| | - Claus Peter Schmitt
- Center for Pediatric and Adolescent Medicine (M.B., C.Z., B.S., I.D., E.L., I.M., F.S., S.G.Z., C.P.S.), University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
25
|
Francisco FA, Saavedra LPJ, Junior MDF, Barra C, Matafome P, Mathias PCF, Gomes RM. Early AGEing and metabolic diseases: is perinatal exposure to glycotoxins programming for adult-life metabolic syndrome? Nutr Rev 2021; 79:13-24. [PMID: 32951053 DOI: 10.1093/nutrit/nuaa074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Perinatal early nutritional disorders are critical for the developmental origins of health and disease. Glycotoxins, or advanced glycation end-products, and their precursors such as the methylglyoxal, which are formed endogenously and commonly found in processed foods and infant formulas, may be associated with acute and long-term metabolic disorders. Besides general aspects of glycotoxins, such as their endogenous production, exogenous sources, and their role in the development of metabolic syndrome, we discuss in this review the sources of perinatal exposure to glycotoxins and their involvement in metabolic programming mechanisms. The role of perinatal glycotoxin exposure in the onset of insulin resistance, central nervous system development, cardiovascular diseases, and early aging also are discussed, as are possible interventions that may prevent or reduce such effects.
Collapse
Affiliation(s)
- Flávio A Francisco
- Department of Biotechnology, Genetics, and Cellular Biology, State University of Maringa, Maringa, PR, Brazil
| | - Lucas P J Saavedra
- Department of Biotechnology, Genetics, and Cellular Biology, State University of Maringa, Maringa, PR, Brazil
| | - Marcos D F Junior
- Department of Physiological Sciences, Federal University of Goiás, Goiânia, GO, Brazil
| | - Cátia Barra
- Institute of Physiology and Coimbra Institute of Clinical and Biomedical Research, Faculty of Medicine, and the Center for Innovative Biotechnology and Biomedicine, University of Coimbra; and the Clinical Academic Center of Coimbra, Coimbra, Portugal
| | - Paulo Matafome
- Institute of Physiology and Coimbra Institute of Clinical and Biomedical Research, Faculty of Medicine, and the Center for Innovative Biotechnology and Biomedicine, University of Coimbra; and the Clinical Academic Center of Coimbra, Coimbra, Portugal
| | - Paulo C F Mathias
- Department of Biotechnology, Genetics, and Cellular Biology, State University of Maringa, Maringa, PR, Brazil
| | - Rodrigo M Gomes
- Department of Physiological Sciences, Federal University of Goiás, Goiânia, GO, Brazil
| |
Collapse
|
26
|
Iacobini C, Vitale M, Pesce C, Pugliese G, Menini S. Diabetic Complications and Oxidative Stress: A 20-Year Voyage Back in Time and Back to the Future. Antioxidants (Basel) 2021; 10:727. [PMID: 34063078 PMCID: PMC8147954 DOI: 10.3390/antiox10050727] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 04/30/2021] [Accepted: 05/03/2021] [Indexed: 02/07/2023] Open
Abstract
Twenty years have passed since Brownlee and colleagues proposed a single unifying mechanism for diabetic complications, introducing a turning point in this field of research. For the first time, reactive oxygen species (ROS) were identified as the causal link between hyperglycemia and four seemingly independent pathways that are involved in the pathogenesis of diabetes-associated vascular disease. Before and after this milestone in diabetes research, hundreds of articles describe a role for ROS, but the failure of clinical trials to demonstrate antioxidant benefits and some recent experimental studies showing that ROS are dispensable for the pathogenesis of diabetic complications call for time to reflect. This twenty-year journey focuses on the most relevant literature regarding the main sources of ROS generation in diabetes and their role in the pathogenesis of cell dysfunction and diabetic complications. To identify future research directions, this review discusses the evidence in favor and against oxidative stress as an initial event in the cellular biochemical abnormalities induced by hyperglycemia. It also explores possible alternative mechanisms, including carbonyl stress and the Warburg effect, linking glucose and lipid excess, mitochondrial dysfunction, and the activation of alternative pathways of glucose metabolism leading to vascular cell injury and inflammation.
Collapse
Affiliation(s)
- Carla Iacobini
- Department of Clinical and Molecular Medicine, “La Sapienza” University, 00189 Rome, Italy; (C.I.); (M.V.); (S.M.)
| | - Martina Vitale
- Department of Clinical and Molecular Medicine, “La Sapienza” University, 00189 Rome, Italy; (C.I.); (M.V.); (S.M.)
| | - Carlo Pesce
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetic and Maternal Infantile Sciences (DINOGMI), Department of Excellence of MIUR, University of Genoa Medical School, 16132 Genoa, Italy;
| | - Giuseppe Pugliese
- Department of Clinical and Molecular Medicine, “La Sapienza” University, 00189 Rome, Italy; (C.I.); (M.V.); (S.M.)
| | - Stefano Menini
- Department of Clinical and Molecular Medicine, “La Sapienza” University, 00189 Rome, Italy; (C.I.); (M.V.); (S.M.)
| |
Collapse
|
27
|
Zhang X, Rodriguez-Niño A, Pastene DO, Pallavi P, van den Born J, Bakker SJL, Krämer BK, Yard BA. Methylglyoxal induces p53 activation and inhibits mTORC1 in human umbilical vein endothelial cells. Sci Rep 2021; 11:8004. [PMID: 33850227 PMCID: PMC8044125 DOI: 10.1038/s41598-021-87561-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 03/30/2021] [Indexed: 12/26/2022] Open
Abstract
Methylglyoxal (MGO), a precursor of advanced glycation end products (AGEs), is regarded as a pivotal mediator of vascular damage in patients with diabetes. We have previously reported that MGO induces transcriptional changes compatible with p53 activation in cultured human endothelial cells. To further substantiate this finding and to explore the underlying mechanisms and possible consequences of p53 activation, we aimed (1) to provide direct evidence for p53 activation in MGO-treated human umbilical vein endothelial cells (HUVECs), (2) to assess putative mechanisms by which this occurs, (3) to analyze down-stream effects on mTOR and autophagy pathways, and (4) to assess the potential benefit of carnosine herein. Exposure of HUVECs to 800 µM of MGO for 5 h induced p53 phosphorylation. This was paralleled by an increase in TUNEL and γ-H2AX positive cells, indicative for DNA damage. Compatible with p53 activation, MGO treatment resulted in cell cycle arrest, inhibition of mTORC1 and induction of autophagy. Carnosine co-treatment did not counteract MGO-driven effects. In conclusion, our results demonstrate that MGO elicits DNA damage and p53 activation in HUVECs, resulting in modulation of downstream pathways, e.g. mTORC1.
Collapse
Affiliation(s)
- Xinmiao Zhang
- Department of Nephrology, Endocrinology and Rheumatology, Fifth Department of Medicine, University Hospital Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany.
| | - Angelica Rodriguez-Niño
- Department of Nephrology, Endocrinology and Rheumatology, Fifth Department of Medicine, University Hospital Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
- Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Diego O Pastene
- Department of Nephrology, Endocrinology and Rheumatology, Fifth Department of Medicine, University Hospital Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Prama Pallavi
- Surgical Department, University Hospital Mannheim, Heidelberg University, Mannheim, Germany
| | - Jacob van den Born
- Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Stephan J L Bakker
- Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Bernhard K Krämer
- Department of Nephrology, Endocrinology and Rheumatology, Fifth Department of Medicine, University Hospital Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Benito A Yard
- Department of Nephrology, Endocrinology and Rheumatology, Fifth Department of Medicine, University Hospital Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
28
|
Kosmachevskaya OV, Novikova NN, Topunov AF. Carbonyl Stress in Red Blood Cells and Hemoglobin. Antioxidants (Basel) 2021; 10:253. [PMID: 33562243 PMCID: PMC7914924 DOI: 10.3390/antiox10020253] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 12/13/2022] Open
Abstract
The paper overviews the peculiarities of carbonyl stress in nucleus-free mammal red blood cells (RBCs). Some functional features of RBCs make them exceptionally susceptible to reactive carbonyl compounds (RCC) from both blood plasma and the intracellular environment. In the first case, these compounds arise from the increased concentrations of glucose or ketone bodies in blood plasma, and in the second-from a misbalance in the glycolysis regulation. RBCs are normally exposed to RCC-methylglyoxal (MG), triglycerides-in blood plasma of diabetes patients. MG modifies lipoproteins and membrane proteins of RBCs and endothelial cells both on its own and with reactive oxygen species (ROS). Together, these phenomena may lead to arterial hypertension, atherosclerosis, hemolytic anemia, vascular occlusion, local ischemia, and hypercoagulation phenotype formation. ROS, reactive nitrogen species (RNS), and RCC might also damage hemoglobin (Hb), the most common protein in the RBC cytoplasm. It was Hb with which non-enzymatic glycation was first shown in living systems under physiological conditions. Glycated HbA1c is used as a very reliable and useful diagnostic marker. Studying the impacts of MG, ROS, and RNS on the physiological state of RBCs and Hb is of undisputed importance for basic and applied science.
Collapse
Affiliation(s)
- Olga V. Kosmachevskaya
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia;
| | | | - Alexey F. Topunov
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia;
| |
Collapse
|
29
|
Hanssen NMJ, Teraa M, Scheijen JLJM, Van de Waarenburg M, Gremmels H, Stehouwer CDA, Verhaar MC, Schalkwijk CG. Plasma Methylglyoxal Levels Are Associated With Amputations and Mortality in Severe Limb Ischemia Patients With and Without Diabetes. Diabetes Care 2021; 44:157-163. [PMID: 33144352 DOI: 10.2337/dc20-0581] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 09/25/2020] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Diabetes is a risk factor for severe limb ischemia (SLI), a condition associated with high mortality, morbidity, and limb loss. The reactive glucose-derived dicarbonyl methylglyoxal (MGO) is a major precursor for advanced glycation end products (AGEs) and a potential driver of cardiovascular disease. We investigated whether plasma MGO levels are associated with poor outcomes in SLI. RESEARCH DESIGN AND METHODS We measured plasma levels of MGO, free AGEs, and d-lactate, the detoxification end product of MGO, with ultraperformance liquid chromatography-tandem mass spectrometry at baseline in 160 patients (64.8 ± 13.3 years, 67.5% male, 37.5% with diabetes) with no-option SLI and recorded major adverse outcomes (n = 86, comprising n = 53 deaths and n = 49 amputations [first event counted]) over the 5-year follow-up. Data were analyzed with linear or Cox regression, after Ln-transformation of the independent variables, adjusted for sex, age, trial arm, diabetes, estimated glomerular filtration rate, systolic blood pressure, cholesterol levels, and BMI. Associations are reported per 1 SD plasma marker. RESULTS Higher plasma MGO levels were associated with more adverse outcomes (relative risk 1.44; 95% CI 1.11-1.86) and amputations separately (1.55; 1.13-2.21). We observed a similar but weaker trend for mortality (1.28; 0.93-1.77). The MGO-derived AGE Nε-(carboxyethyl)lysine was also associated with more adverse outcomes (1.46; 1.00-2.15) and amputations (1.71; 1.04-2.79). d-Lactate was not associated with adverse incident outcomes. Higher plasma MGO levels were also associated with more inflammation and white blood cells and fewer progenitor cells. CONCLUSIONS Plasma MGO levels are associated with adverse outcomes in SLI. Future studies should investigate whether MGO-targeting therapies improve outcomes in SLI.
Collapse
Affiliation(s)
- Nordin M J Hanssen
- Department of Internal Medicine, Cardiovascular Research Institute Maastricht (CARIM) School for Cardiovascular Diseases, Maastricht University, Maastricht, the Netherlands .,Diabetes Center, Department of Vascular and Internal Medicine, Amsterdam University Medical Centre, Amsterdam, the Netherlands
| | - Martin Teraa
- Department of Vascular Surgery, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Jean L J M Scheijen
- Department of Internal Medicine, Cardiovascular Research Institute Maastricht (CARIM) School for Cardiovascular Diseases, Maastricht University, Maastricht, the Netherlands
| | - Marjo Van de Waarenburg
- Department of Internal Medicine, Cardiovascular Research Institute Maastricht (CARIM) School for Cardiovascular Diseases, Maastricht University, Maastricht, the Netherlands
| | - Hendrik Gremmels
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Coen D A Stehouwer
- Department of Internal Medicine, Cardiovascular Research Institute Maastricht (CARIM) School for Cardiovascular Diseases, Maastricht University, Maastricht, the Netherlands
| | - Marianne C Verhaar
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Casper G Schalkwijk
- Department of Internal Medicine, Cardiovascular Research Institute Maastricht (CARIM) School for Cardiovascular Diseases, Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
30
|
Zhang S, Xiao L, Lv L, Sang S. Trapping Methylglyoxal by Myricetin and Its Metabolites in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:9408-9414. [PMID: 32786863 DOI: 10.1021/acs.jafc.0c03471] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Trapping of methylglyoxal (MGO) has been determined to be one of the potential mechanisms for dietary polyphenols to prevent chronic diseases. In this study, myricetin was demonstrated to efficiently trap MGO to generate mono- and di-MGO adducts under in vitro conditions. Furthermore, the mono- and di-MGO adducts of myricetin were detected in urine and fecal samples collected from myricetin-treated mice based on LC-MS analysis. More importantly, the mono-MGO adducts of the mono- and di-methylated myricetin were also found in these mouse samples. Further dose-dependent studies demonstrated that myricetin and its methylated metabolites significantly trapped MGO in a dose-dependent manner with the 400 mg/kg dose having the highest trapping efficacy (mono-MGO-myricetin: 272.0 ± 90.9 nM in urine and 1.05 ± 0.67 μg/g in feces; mono-MGO-mono-Me-myricetin: 135.2 ± 77.6 nM in urine and 1.16 ± 0.65 μg/g in feces; and mono-MGO-di-Me-myricetin: 17.0 ± 5.9 nM in urine and 0.19 ± 0.04 μg/g in feces) compared to the 100 and 200 mg/kg doses. In conclusion, this study demonstrates for the first time the in vivo trapping efficacy of myricetin, suggesting that intake of myricetin-containing foods has the potential to scavenge MGO in vivo and to prevent MGO-induced harmful effects to human health.
Collapse
Affiliation(s)
- Shuwei Zhang
- Laboratory for Functional Foods and Human Health, Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, North Carolina Research Campus, 500 Laureate Way, Kannapolis, North Carolina 28081, United States
| | - Liubang Xiao
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 122# Ninghai Road, Nanjing 210097, P. R. China
| | - Lishuang Lv
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 122# Ninghai Road, Nanjing 210097, P. R. China
| | - Shengmin Sang
- Laboratory for Functional Foods and Human Health, Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, North Carolina Research Campus, 500 Laureate Way, Kannapolis, North Carolina 28081, United States
| |
Collapse
|
31
|
Do MH, Choi J, Kim Y, Ha SK, Yoo G, Hur J. Syzygium aromaticum Reduces Diabetes-induced Glucotoxicity via the NRF2/Glo1 Pathway. PLANTA MEDICA 2020; 86:876-883. [PMID: 32645736 DOI: 10.1055/a-1203-0452] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Advanced glycation end products and methylglyoxal are known to show increased levels in diabetic conditions and induce diverse metabolic disorders. However, the antiglycation ability of the bark of Syzygium aromaticum is not yet studied. In this study, we determined the inhibitory effects of S. aromaticum on AGE formation. Moreover, S. aromaticum showed breakage and inhibitory ability against the formation of AGE-collagen crosslinks. In SV40 MES13 cells, treatment with the S. aromaticum extract significantly ameliorated MG-induced oxidative stress as well as cytotoxicity. Furthermore, in the S. aromaticum extract-treated group, there was a reduction in levels of several diabetic markers, such as blood glucose, kidney weight, and urinary albumin to creatinine ratio in streptozotocin-induced diabetic rats. Treatment with the S. aromaticum extract significantly increased the expression of nuclear factor erythroid 2-related factor 2, a transcription factor involved in the expression of antioxidant enzymes. Moreover, the treatment significantly upregulated the expression of glyoxalase 1 and downregulated the expression of receptor for AGEs. These results suggest that the S. aromaticum extract might ameliorate diabetes-induced renal damage by inhibiting the AGE-induced glucotoxicity and oxidative stress through the Nrf2/Glo1 pathway.
Collapse
Affiliation(s)
- Moon Ho Do
- Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-Gun, Jeollabuk-do, Republic of Korea
| | - Jiwon Choi
- Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-Gun, Jeollabuk-do, Republic of Korea
| | - Yoonsook Kim
- Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-Gun, Jeollabuk-do, Republic of Korea
| | - Sang Keun Ha
- Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-Gun, Jeollabuk-do, Republic of Korea
- Division of Food Biotechnology, University of Science and Technology, Daejeon, Republic of Korea
| | - Guijae Yoo
- Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-Gun, Jeollabuk-do, Republic of Korea
| | - Jinyoung Hur
- Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-Gun, Jeollabuk-do, Republic of Korea
- Division of Food Biotechnology, University of Science and Technology, Daejeon, Republic of Korea
| |
Collapse
|
32
|
Autophagy Functions to Prevent Methylglyoxal-Induced Apoptosis in HK-2 Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:8340695. [PMID: 32566104 PMCID: PMC7292969 DOI: 10.1155/2020/8340695] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/14/2020] [Accepted: 04/25/2020] [Indexed: 12/24/2022]
Abstract
Methylglyoxal (MGO), a reactive carbonyl species, causes cellular damage and is closely related to kidney disease, particularly diabetic nephropathy. Although MGO has been reported to induce autophagy and apoptosis, the relationships between the two pathways are unclear. Here, we evaluated whether autophagy may be the underlying mechanism inhibiting MGO-induced apoptosis. MGO treatment induced concentration- and time-dependent apoptosis in HK-2 cells. Moreover, MGO upregulated the autophagy markers p62 and LC3-II. Apoptosis caused by MGO was increased in ATG5-knockdown cells compared to that in wild-type cells. In contrast, autophagy activation by 5-aminoimidazole-4-carboxamide ribonucleotide resulted in reduced apoptosis, suggesting that autophagy played a role in protecting against MGO-induced cell death. To examine the mechanisms through which autophagy occurred following MGO stimulation, we investigated changes in AKT/mammalian target of rapamycin (mTOR) signaling. Autophagy induction by MGO treatment was not related to AKT/mTOR signaling; however, it did involve autophagy-related gene expression promoted by AMP-activated protein kinase-mediated transcription factors, such as forkhead box 1. Overall, our findings indicate that MGO-induced cellular damage can be mitigated by autophagy, suggesting that autophagy may be a potential therapeutic target for diseases such as diabetic nephropathy.
Collapse
|
33
|
Castelhano J, Ribeiro B, Sanches M, Graça B, Saraiva J, Oliveiros B, Neves C, Rodrigues T, Sereno J, Gonçalves S, Ferreira MJ, Seiça R, Matafome P, Castelo-Branco M. A rat model of enhanced glycation mimics cardiac phenotypic components of human type 2 diabetes : A translational study using MRI. J Diabetes Complications 2020; 34:107554. [PMID: 32122788 DOI: 10.1016/j.jdiacomp.2020.107554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 01/22/2020] [Accepted: 01/26/2020] [Indexed: 10/24/2022]
Abstract
BACKGROUND The success of translational research depends on how well animal models mimic the pathophysiology of the human phenotype, and on the identification of disease mechanisms such as enhanced glycation. METHODS Here, we studied cardiac MRI and metabolic phenotypes in human type 2 diabetes (N = 106; 55 patients+51 controls) and animal models with distinct levels of fat diet and end glycation products, to model the role of these factors in the cardiac phenotype. We included four groups of rats, designed to evaluate the role of lipid load and glucotoxicity in cardiac function and to correlate these with the cardiac phenotype observed in humans. We also aimed to assess into which extent phenotypes were related to specific risk factors. RESULTS Stroke Volume (SV) and Peak Filling Rate (PFR) measures were similarly discriminative both in humans and animal models, particularly when enhanced glycation was present. Factorial analysis showed that reduction of multidimensionality into common main explanatory factors, in humans and animals, revealed components that equally explained the variance of cardiac phenotypes (87.62% and 83.75%, respectively). One of the components included, both in humans and animals, SV, PFR and peak ejection rate (PER). The other components included in both humans and animals are the following: ESV (end systolic volume), left ventricular mass (LVM) and ejection fraction (EF). These components were useful for between group discrimination. CONCLUSIONS We conclude that animal models of enhanced glycation and human type 2 diabetes share a striking similarity of cardiac phenotypic components and relation with metabolic changes, independently of fact content in the diet, which reinforces the role of glucose dysmetabolism in left ventricular dysfunction and provides a potentially useful approach for translational research in diabetes, in particular when testing new therapies early on during the natural history of this condition.
Collapse
Affiliation(s)
| | - Bruno Ribeiro
- CIBIT/ICNAS, University of Coimbra, Coimbra, Portugal
| | | | - Bruno Graça
- Coimbra University Hospital (CHUC), Coimbra, Portugal
| | - Joana Saraiva
- Coimbra University Hospital (CHUC), Coimbra, Portugal
| | - Bárbara Oliveiros
- Laboratório de Bioestatística e Informática Médica, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Christian Neves
- Laboratory of Physiology, Faculty of Medicine, University of Coimbra, Portugal
| | - Tiago Rodrigues
- Laboratory of Physiology, Faculty of Medicine, University of Coimbra, Portugal
| | - José Sereno
- CIBIT/ICNAS, University of Coimbra, Coimbra, Portugal
| | | | - Maria João Ferreira
- CIBIT/ICNAS, University of Coimbra, Coimbra, Portugal; Laboratório de Bioestatística e Informática Médica, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Raquel Seiça
- Laboratory of Physiology, Faculty of Medicine, University of Coimbra, Portugal
| | - Paulo Matafome
- Laboratory of Physiology, Faculty of Medicine, University of Coimbra, Portugal.; Instituto Politécnico de Coimbra, Coimbra Health School (ESTeSC), Department of Complementary Sciences, Coimbra, Portugal
| | - Miguel Castelo-Branco
- CIBIT/ICNAS, University of Coimbra, Coimbra, Portugal; Laboratório de Bioestatística e Informática Médica, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
34
|
de Oliveira MG, de Medeiros ML, Tavares EBG, Mónica FZ, Antunes E. Methylglyoxal, a Reactive Glucose Metabolite, Induces Bladder Overactivity in Addition to Inflammation in Mice. Front Physiol 2020; 11:290. [PMID: 32317986 PMCID: PMC7147252 DOI: 10.3389/fphys.2020.00290] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 03/16/2020] [Indexed: 12/30/2022] Open
Abstract
Diabetic bladder dysfunction (DBD) is one of the most common complication of diabetes. Methylglyoxal (MGO), a highly reactive dicarbonyl compound formed as a by-product of glycolysis, is found at high levels in plasma of diabetic patients. Here, we explored the effects of chronic administration of MGO on micturition pattern (cystometry) and bladder contractility in vitro in healthy male C57/BL6 mice. Methylglyoxal was given at 0.5% in drinking water for 4 weeks. Exposure to MGO led to bladder tissue disorganization, edema of lamina propria, partial loss of urothelium and multiple leukocyte infiltrates. Filling cystometry revealed significant increases of micturition frequency and number of non-voiding contractions (NVCs) in the MGO group, clearly indicating an overactive bladder profile. Bladder contractions induced by electrical-field stimulation (EFS) and carbachol were significantly higher in the MGO group, while the muscarinic M2 and M3 mRNA expressions remained unchanged between groups. Additionally, MGO exposure induced upregulation of TRPA1 and down-regulation of TRPV1 and TRPV4 in bladder tissues. Methylglyoxal did not change the mRNA expression of the advanced glycation end products receptor (RAGE), but markedly increased its downstream NF-κB - iNOS signaling. The mRNA expression of cyclooxygenase-2 (COX-2) and reactive-oxygen species (ROS) levels remained unchanged. Altogether, our data show that 4-week MGO intake in mice produces an overactive bladder phenotype in addition to bladder inflammation and increased NF-kB/iNOS signaling. TRPA1 up-regulation and TRPV1/TRPV4 down-regulation may account for the MGO-induced bladder overactivity. Scavengers of MGO could be an option to ameliorate bladder dysfunction in diabetic conditions.
Collapse
Affiliation(s)
| | | | - Edith B G Tavares
- Department of Pharmacology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Fabiola Z Mónica
- Department of Pharmacology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Edson Antunes
- Department of Pharmacology, University of Campinas (UNICAMP), Campinas, Brazil
| |
Collapse
|
35
|
Zunkel K, Simm A, Bartling B. Long-term intake of the reactive metabolite methylglyoxal is not toxic in mice. Food Chem Toxicol 2020; 141:111333. [PMID: 32298726 DOI: 10.1016/j.fct.2020.111333] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/13/2020] [Accepted: 04/08/2020] [Indexed: 01/09/2023]
Abstract
Reactive carbonyls, including methylglyoxal (MG), are considered toxic compounds in foodstuffs because they irreversibly modify proteins and produce advanced glycation end products (AGEs). Therefore, we studied the long-term effect of increased MG intake in mature adult mice. Six-month-old C57BL/6N mice received MG by drinking water (2.5 mg/ml; i.e., 200-300 mg/kg BW/d) until death. This treatment caused an immediate strong increase in urine MG and a delayed moderate increase in plasma MG. At 24 months of age, mice administered MG showed no changes in the blood and tissue activity of glyoxalase-1 (Glo1), an intracellular MG-detoxifying enzyme; no signs of renal insufficiency and diabetes, including unchanged AGE modifications of plasma and vessel proteins; reduced tumour incidence; and slightly increased survival. Mice simultaneously deficient in the receptor for AGEs (RAGE) and overexpressing Glo1 exhibited higher basal plasma MG levels and did generally not respond to long-term MG intake. In vitro experiments supported the minor relevance of Glo1 in the detoxification of circulating MG but the important role of plasma albumin as an MG scavenger. In conclusion, the detoxification of dietary MG through renal excretion and further mechanisms largely prevents the toxicity of MG and possibly other food-derived reactive carbonyls in mature adults.
Collapse
Affiliation(s)
- Katja Zunkel
- Department of Cardiac Surgery, Mid-German Heart Centre, University Hospital Halle (Saale), Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Andreas Simm
- Department of Cardiac Surgery, Mid-German Heart Centre, University Hospital Halle (Saale), Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Babett Bartling
- Department of Cardiac Surgery, Mid-German Heart Centre, University Hospital Halle (Saale), Martin Luther University Halle-Wittenberg, Halle (Saale), Germany; Department of Animal Health Management, Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany.
| |
Collapse
|
36
|
Schalkwijk CG, Stehouwer CDA. Methylglyoxal, a Highly Reactive Dicarbonyl Compound, in Diabetes, Its Vascular Complications, and Other Age-Related Diseases. Physiol Rev 2020; 100:407-461. [DOI: 10.1152/physrev.00001.2019] [Citation(s) in RCA: 176] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The formation and accumulation of methylglyoxal (MGO), a highly reactive dicarbonyl compound, has been implicated in the pathogenesis of type 2 diabetes, vascular complications of diabetes, and several other age-related chronic inflammatory diseases such as cardiovascular disease, cancer, and disorders of the central nervous system. MGO is mainly formed as a byproduct of glycolysis and, under physiological circumstances, detoxified by the glyoxalase system. MGO is the major precursor of nonenzymatic glycation of proteins and DNA, subsequently leading to the formation of advanced glycation end products (AGEs). MGO and MGO-derived AGEs can impact on organs and tissues affecting their functions and structure. In this review we summarize the formation of MGO, the detoxification of MGO by the glyoxalase system, and the biochemical pathways through which MGO is linked to the development of diabetes, vascular complications of diabetes, and other age-related diseases. Although interventions to treat MGO-associated complications are not yet available in the clinical setting, several strategies to lower MGO have been developed over the years. We will summarize several new directions to target MGO stress including glyoxalase inducers and MGO scavengers. Targeting MGO burden may provide new therapeutic applications to mitigate diseases in which MGO plays a crucial role.
Collapse
Affiliation(s)
- C. G. Schalkwijk
- CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre, Maastricht, The Netherlands; and Department of Internal Medicine, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - C. D. A. Stehouwer
- CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre, Maastricht, The Netherlands; and Department of Internal Medicine, Maastricht University Medical Centre, Maastricht, The Netherlands
| |
Collapse
|
37
|
Dicarbonyl Stress at the Crossroads of Healthy and Unhealthy Aging. Cells 2019; 8:cells8070749. [PMID: 31331077 PMCID: PMC6678343 DOI: 10.3390/cells8070749] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/16/2019] [Accepted: 07/17/2019] [Indexed: 02/07/2023] Open
Abstract
Dicarbonyl stress occurs when dicarbonyl metabolites (i.e., methylglyoxal, glyoxal and 3-deoxyglucosone) accumulate as a consequence of their increased production and/or decreased detoxification. This toxic condition has been associated with metabolic and age-related diseases, both of which are characterized by a pro-inflammatory and pro-oxidant state. Methylglyoxal (MGO) is the most reactive dicarbonyl and the one with the highest endogenous flux. It is the precursor of the major quantitative advanced glycated products (AGEs) in physiological systems, arginine-derived hydroimidazolones, which accumulate in aging and dysfunctional tissues. The aging process is characterized by a decline in the functional properties of cells, tissues and whole organs, starting from the perturbation of crucial cellular processes, including mitochondrial function, proteostasis and stress-scavenging systems. Increasing studies are corroborating the causal relationship between MGO-derived AGEs and age-related tissue dysfunction, unveiling a previously underestimated role of dicarbonyl stress in determining healthy or unhealthy aging. This review summarizes the latest evidence supporting a causal role of dicarbonyl stress in age-related diseases, including diabetes mellitus, cardiovascular disease and neurodegeneration.
Collapse
|
38
|
Dietary Glycotoxins Impair Hepatic Lipidemic Profile in Diet-Induced Obese Rats Causing Hepatic Oxidative Stress and Insulin Resistance. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:6362910. [PMID: 31341532 PMCID: PMC6614994 DOI: 10.1155/2019/6362910] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 04/22/2019] [Indexed: 02/06/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is caused by excessive liver lipid accumulation, but insulin resistance is specifically associated with impaired lipid saturation, oxidation, and storage (esterification), besides increased de novo lipogenesis. We hypothesized that dietary glycotoxins could impair hepatic lipid metabolism in obesity contributing to lipotoxicity-driven insulin resistance and thus to the onset of nonalcoholic steatohepatitis (NASH). In diet-induced obese rats with methylglyoxal-induced glycation, magnetic resonance spectroscopy, mass spectrometry, and gas chromatography were used to assess liver composition in fatty acyl chains and phospholipids. High-fat diet-induced obesity increased liver lipid fraction and suppressed de novo lipogenesis but did not change fatty acid esterification and saturation or insulin sensitivity. Despite a similar increase in total lipid fraction when supplementing the high-fat diet with dietary glycotoxins, impairment in the suppression of de novo lipogenesis and decreased fatty acid unsaturation and esterification were observed. Moreover, glycotoxins also decreased polyunsaturated cardiolipins and caused oxidative stress, portal inflammation, and insulin resistance in high-fat diet-induced obese rats. Dietary glycated products do not change total lipid levels in the liver of obese rats but dramatically modify the lipidemic profile, leading to oxidative stress, hepatic lipotoxicity, and insulin resistance in obesity and thus contribute to the onset of NASH.
Collapse
|
39
|
Qian S, Qian Y, Huo D, Wang S, Qian Q. Tanshinone IIa protects retinal endothelial cells against mitochondrial fission induced by methylglyoxal through glyoxalase 1. Eur J Pharmacol 2019; 857:172419. [PMID: 31136758 DOI: 10.1016/j.ejphar.2019.172419] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 05/24/2019] [Accepted: 05/24/2019] [Indexed: 02/06/2023]
Abstract
Advanced glycation end products (AGEs) play an important role in the onset of diabetic retinopathy. Therefore, in the current study, we investigate whether and how Tanshinone IIa (Tan IIa) from Salvia miltiorrhiza protects bovine retinal endothelial cells (BRECs) against methylglyoxal (MGO) mediated cell dysfunction. The results showed that MGO reduced cell viability in dose dependent manner. The treatment of Tan IIa (50 μM) significantly improved cell viability induced by MGO in BRECs. MGO increased cellular reactive oxygen species formation and cellular nitric oxide (NO) level; enhanced nox1 and iNOS mRNA levels; inhibited prdx1 mRNA level. The treatment of Tan IIa effectually ameliorated cellular oxidative stress. Exposure of MGO resulted in mitochondrial fission and decrease of opa1 and mfn1. No significant difference in mRNA levels of mfn2 and drp1 was detected between MGO and medium. Tan IIa reduced mitochondrial fragmentation, enhanced the mRNA levels of mfn1 and opa1 in MGO cultured BRECs. The short time exposure of cellular antioxidatants, dimethylthiourea (10 mM) and tiron (10 mM) had no effect on mitochondrial fission although they ameliorated cellular reactive oxygen species level. Moreover, overexpression of glyoxalase 1 (GLO1) increased key proteins of mitochondrial fusion, including opa1 and mfn1 in BRECs cultured with MGO. However, inhibition of GLO1 by siRNA abolished the effect of Tan IIa on induction of mitochondrial fusion in MGO cultured BRECs. In conclusion, MGO caused the injury of retinal endothelial cells through induction of mitochondrial dysfunction and mitochondrial fission, the treatment of Tan IIa ameliorated mitochondrial dysfunction and fission induced by AGEs through enhancing GLO1.
Collapse
Affiliation(s)
- Shuhong Qian
- Department of Clinical Laboratory, 1st Affiliated Hospital, Zhengzhou University, China
| | - Yujin Qian
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Australia
| | - Dongxia Huo
- College of Material Engineering, Zhengzhou University, China
| | - Shijin Wang
- Department of Clinical Laboratory, 1st Affiliated Hospital, Zhengzhou University, China
| | - Qingwen Qian
- Department of Internal Medicine, 1st Affiliated Hospital, Zhengzhou University, China.
| |
Collapse
|
40
|
Zhao Y, Wang P, Sang S. Dietary Genistein Inhibits Methylglyoxal-Induced Advanced Glycation End Product Formation in Mice Fed a High-Fat Diet. J Nutr 2019; 149:776-787. [PMID: 31050753 DOI: 10.1093/jn/nxz017] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 08/27/2018] [Accepted: 01/23/2019] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Methylglyoxal (MGO), an important precursor of advanced glycation end products (AGEs), circulates at high concentrations in diabetic patients' blood and plays an important role in the pathogenesis of diabetes and other chronic diseases. OBJECTIVES The aim of this study was to determine whether dietary genistein can prevent indicators of metabolic syndrome (MetS) induced by a very-high-fat (VHF) diet or a high-fat (HF) diet plus exogenous MGO, and the accumulation of MGO and AGEs in mice. METHODS Male, 6-wk-old C57BL/6J mice (n = 15) were fed a low-fat (LF) diet (10% fat energy) or a VHF diet (60% fat energy) alone or including 0.25% genistein (VHF-G) for 16 wk in study 1. In study 2, 75 similar mice were fed the LF diet (LF) or the HF diet alone (HF) or in combination with up to 0.2% MGO in water (HFM) and 0.067% (HFM-GL) or 0.2% (HFM-GH) dietary genistein for 18 wk. Anthropometric and metabolic data were obtained in both studies to determine the effects of MGO and genistein on variables indicative of MetS. RESULTS Body weight gain, fat deposits, dyslipidemia, hyperglycemia, and fatty liver were ameliorated by dietary genistein in both studies. The plasma MGO concentration in VHF-G mice was 52% lower than that in VHF mice. Moreover, the AGE concentrations in plasma, liver, and kidney of VHF-G mice were 73%, 52%, and 49%, respectively, lower than in the VHF group (study 1). Similarly, the concentrations of plasma MGO and AGE in plasma, liver, and kidney of HFM-GH mice were 33.5%, 49%, 69%, and 54% lower than in HFM mice (study 2). Genistein inhibited AGE formation by trapping MGO to form adducts and upregulating the expressions of glyoxalase I and II and aldose reductase in liver and kidney to detoxify MGO in both studies. CONCLUSIONS Our data demonstrate for the first time that genistein significantly lowers MGO and AGE concentrations in 2 mouse MetS models via multiple pathways.
Collapse
Affiliation(s)
- Yantao Zhao
- Laboratory for Functional Foods and Human Health, Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, Kannapolis, NC
| | - Pei Wang
- Laboratory for Functional Foods and Human Health, Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, Kannapolis, NC
| | - Shengmin Sang
- Laboratory for Functional Foods and Human Health, Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, Kannapolis, NC
| |
Collapse
|
41
|
Tófolo LP, Rinaldi W, Gôngora AB, Matiusso CCI, Pavanello A, Malta A, de Almeida DL, Ribeiro TA, Oliveira AR, Peres MNC, Armitage JA, Mathias PCDF, Palma-Rigo K. Moderate Physical Training Ameliorates Cardiovascular Dysfunction Induced by High Fat Diet After Cessation of Training in Adult Rats. Front Physiol 2019; 10:170. [PMID: 30930783 PMCID: PMC6423496 DOI: 10.3389/fphys.2019.00170] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 02/12/2019] [Indexed: 12/11/2022] Open
Abstract
We aimed to test whether moderate physical training can induce long-lasting protection against cardiovascular risk factors induced by high fat diet (HFD) intake, even after cessation of training. 90-days-old Wistar rats were submitted to a sedentary lifestyle or moderate physical training, three times a week, for 30 days. Following this, at 120 days-of age, sedentary and trained rats received a hypercaloric diet (HFD) or a commercial diet normal fat diet (NFD) for 30 days. Body weight (BW) and food intake were evaluated weekly. At 150 days-of age, hemodynamic measures (systolic, diastolic, mean blood pressure, pulse pressure, pulse interval and heart rate) were made via an indwelling femoral artery catheter. Beat-to-beat data were analyzed to calculate power spectra of systolic blood pressure (SBP) and pulse interval. After euthanasia, mesenteric fat pads were removed and weighted and total blood was stored for later analysis of lipid profile. Consumption of a HFD increased blood pressure (BP), pulse pressure, low frequency BP variability, BW gain, fat pad stores and induced dyslipidemia. Interestingly, prior physical training was able to partially protect against this rise in BP and body fat stores. Prior physical training did not totally protect against the effects of HFD consumption but previously trained animals did demonstrate resistance to the development of cardiometabolic alterations, which illustrate that the benefits of physical training may be partially maintained even after 30 days of detraining period.
Collapse
Affiliation(s)
- Laize Peron Tófolo
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Maringá, Brazil.,Department of Physical Education, Faculty of Biomedical Sciences of Cacoal, Cacoal, Brazil
| | - Wilson Rinaldi
- Department of Physical Education, State University of Maringá, Maringá, Brazil
| | - Adriane Barreto Gôngora
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Maringá, Brazil
| | - Camila Cristina Ianoni Matiusso
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Maringá, Brazil
| | - Audrei Pavanello
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Maringá, Brazil
| | - Ananda Malta
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Maringá, Brazil
| | - Douglas Lopes de Almeida
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Maringá, Brazil
| | - Tatiane Aparecida Ribeiro
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Maringá, Brazil
| | | | - Maria Natalia Chimirri Peres
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Maringá, Brazil
| | | | - Paulo Cezar de Freitas Mathias
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Maringá, Brazil
| | - Kesia Palma-Rigo
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Maringá, Brazil.,Faculdade Adventista Paranaense, Ivatuba, Brazil
| |
Collapse
|
42
|
Methylglyoxal disturbs the expression of antioxidant, apoptotic and glycation responsive genes and triggers programmed cell death in human leukocytes. Toxicol In Vitro 2019; 55:33-42. [DOI: 10.1016/j.tiv.2018.11.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 10/03/2018] [Accepted: 11/02/2018] [Indexed: 12/22/2022]
|
43
|
Nigro C, Leone A, Longo M, Prevenzano I, Fleming TH, Nicolò A, Parrillo L, Spinelli R, Formisano P, Nawroth PP, Beguinot F, Miele C. Methylglyoxal accumulation de-regulates HoxA5 expression, thereby impairing angiogenesis in glyoxalase 1 knock-down mouse aortic endothelial cells. Biochim Biophys Acta Mol Basis Dis 2019; 1865:73-85. [DOI: 10.1016/j.bbadis.2018.10.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 09/11/2018] [Accepted: 10/08/2018] [Indexed: 01/31/2023]
|
44
|
Riuzzi F, Sorci G, Sagheddu R, Chiappalupi S, Salvadori L, Donato R. RAGE in the pathophysiology of skeletal muscle. J Cachexia Sarcopenia Muscle 2018; 9:1213-1234. [PMID: 30334619 PMCID: PMC6351676 DOI: 10.1002/jcsm.12350] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 07/20/2018] [Accepted: 08/24/2018] [Indexed: 12/14/2022] Open
Abstract
Emerging evidence suggests that the signalling of the Receptor for Advanced Glycation End products (RAGE) is critical for skeletal muscle physiology controlling both the activity of muscle precursors during skeletal muscle development and the correct time of muscle regeneration after acute injury. On the other hand, the aberrant re-expression/activity of RAGE in adult skeletal muscle is a hallmark of muscle wasting that occurs in response to ageing, genetic disorders, inflammatory conditions, cancer, and metabolic alterations. In this review, we discuss the mechanisms of action and the ligands of RAGE involved in myoblast differentiation, muscle regeneration, and muscle pathological conditions. We highlight potential therapeutic strategies for targeting RAGE to improve skeletal muscle function.
Collapse
Affiliation(s)
- Francesca Riuzzi
- Department of Experimental Medicine, University of Perugia, Perugia, Italy.,Interuniversity Institute of Myology
| | - Guglielmo Sorci
- Department of Experimental Medicine, University of Perugia, Perugia, Italy.,Interuniversity Institute of Myology
| | - Roberta Sagheddu
- Department of Experimental Medicine, University of Perugia, Perugia, Italy.,Interuniversity Institute of Myology
| | - Sara Chiappalupi
- Department of Experimental Medicine, University of Perugia, Perugia, Italy.,Interuniversity Institute of Myology
| | - Laura Salvadori
- Department of Experimental Medicine, University of Perugia, Perugia, Italy.,Interuniversity Institute of Myology
| | - Rosario Donato
- Department of Experimental Medicine, University of Perugia, Perugia, Italy.,Interuniversity Institute of Myology.,Centro Universitario di Ricerca sulla Genomica Funzionale, University of Perugia, Perugia, Italy
| |
Collapse
|
45
|
Schlotterer A, Kolibabka M, Lin J, Acunman K, Dietrich N, Sticht C, Fleming T, Nawroth P, Hammes HP. Methylglyoxal induces retinopathy-type lesions in the absence of hyperglycemia: studies in a rat model. FASEB J 2018; 33:4141-4153. [PMID: 30485119 DOI: 10.1096/fj.201801146rr] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The aim of this study was to evaluate whether damage to the neurovascular unit in diabetes depends on reactive metabolites such as methylglyoxal (MG), and to assess its impact on retinal gene expression. Male Wistar rats were supplied with MG (50 mM) by drinking water and compared with age-matched streptozotocin-diabetic animals and untreated controls. Retinal damage was evaluated for the accumulation of MG-derived advanced glycation end products, changes in hexosamine and PKC pathway activation, microglial activation, vascular alterations (pericyte loss and vasoregression), neuroretinal function assessed by electroretinogram, and neurodegeneration. Retinal gene regulation was studied by microarray analysis, and transcription factor involvement was identified by upstream regulator analysis. Systemic application of MG by drinking water increased retinal MG to levels comparable with diabetic animals. Elevated retinal MG resulted in MG-derived hydroimidazolone modifications in the ganglion cell layer, inner nuclear layer, and outer nuclear layer, a moderate activation of the hexosamine pathway, a pan-retinal activation of microglia, loss of pericytes, increased formation of acellular capillaries, decreased function of bipolar cells, and increased expression of the crystallin gene family. MG mimics important aspects of diabetic retinopathy and plays a pathogenic role in microglial activation, vascular damage, and neuroretinal dysfunction. In response to MG, the retina induces expression of neuroprotective crystallins.-Schlotterer, A., Kolibabka, M., Lin, J., Acunman, K., Dietrich, N., Sticht, C., Fleming, T., Nawroth, P., Hammes, H.-P. Methylglyoxal induces retinopathy-type lesions in the absence of hyperglycemia: studies in a rat model.
Collapse
Affiliation(s)
- Andrea Schlotterer
- Fifth Medical Department, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Matthias Kolibabka
- Fifth Medical Department, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Jihong Lin
- Fifth Medical Department, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Kübra Acunman
- Fifth Medical Department, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Nadine Dietrich
- Fifth Medical Department, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Carsten Sticht
- Medical Research Center, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany; and
| | - Thomas Fleming
- Department of Medicine I and Clinical Chemistry, Heidelberg University, Heidelberg, Germany
| | - Peter Nawroth
- Department of Medicine I and Clinical Chemistry, Heidelberg University, Heidelberg, Germany
| | - Hans-Peter Hammes
- Fifth Medical Department, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
46
|
Glynn KM, Anderson P, Fast DJ, Koedam J, Rebhun JF, Velliquette RA. Gromwell (Lithospermum erythrorhizon) root extract protects against glycation and related inflammatory and oxidative stress while offering UV absorption capability. Exp Dermatol 2018; 27:1043-1047. [PMID: 29906314 DOI: 10.1111/exd.13706] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2018] [Indexed: 11/28/2022]
Abstract
Glycation and advanced glycation end products (AGE) damage skin which is compounded by AGE-induced oxidative stress and inflammation. Lip and facial skin could be susceptible to glycation damage as they are chronically stressed. As Gromwell (Lithospermum erythrorhizon) root (GR) has an extensive traditional medicine history that includes providing multiple skin benefits, our objective was to determine whether GR extract and its base naphthoquinone, shikonin, might protect skin by inhibiting glycation, increasing oxidative defenses, suppressing inflammatory responses and offering ultraviolet (UV) absorptive potential in lip and facial cosmetic matrices. We show GR extract and shikonin dose-dependently inhibited glycation and enhanced oxidative defenses through nuclear factor erythroid 2-related factor 2 (Nrf2)/antioxidant response element activation. Inflammatory targets, nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB) and tumor necrosis factor alpha, were suppressed by GR extract and shikonin. Glyoxalase 1 (GLO1) and glutathione synthesis genes were significantly upregulated by GR extract and shikonin. GR extract boosted higher wavelength UV absorption in select cosmetic matrices. Rationale for the use of GR extract and shikonin are supported by our research. By inhibiting glycation, modulating oxidative stress, suppressing inflammation and UV-absorptive properties, GR extract and shikonin potentially offer multiple skin benefits.
Collapse
Affiliation(s)
- Kelly M Glynn
- Research & Development, Amway Corporation, Ada, Michigan
| | - Penny Anderson
- Research & Development, Amway Corporation, Ada, Michigan
| | - David J Fast
- Research & Development, Amway Corporation, Ada, Michigan
| | - James Koedam
- Research & Development, Amway Corporation, Ada, Michigan
| | - John F Rebhun
- Research & Development, Amway Corporation, Ada, Michigan
| | | |
Collapse
|
47
|
Moraru A, Wiederstein J, Pfaff D, Fleming T, Miller AK, Nawroth P, Teleman AA. Elevated Levels of the Reactive Metabolite Methylglyoxal Recapitulate Progression of Type 2 Diabetes. Cell Metab 2018; 27:926-934.e8. [PMID: 29551588 DOI: 10.1016/j.cmet.2018.02.003] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 07/27/2017] [Accepted: 02/06/2018] [Indexed: 10/17/2022]
Abstract
The molecular causes of type 2 diabetes (T2D) are not well understood. Both type 1 diabetes (T1D) and T2D are characterized by impaired insulin signaling and hyperglycemia. From analogy to T1D, insulin resistance and hyperglycemia are thought to also play causal roles in T2D. Recent clinical studies, however, found that T2D patients treated to maintain glycemia below the diabetes definition threshold (HbA1c < 6.5%) still develop diabetic complications. This suggests additional insulin- and glucose-independent mechanisms could be involved in T2D progression and/or initiation. T2D patients have elevated levels of the metabolite methylglyoxal (MG). We show here, using Drosophila glyoxalase 1 knockouts, that animals with elevated methylglyoxal recapitulate several core aspects of T2D: insulin resistance, obesity, and hyperglycemia. Thus elevated MG could constitute one root cause of T2D, suggesting that the molecular causes of elevated MG warrant further study.
Collapse
Affiliation(s)
- Alexandra Moraru
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Heidelberg University, 69120 Heidelberg, Germany
| | - Janica Wiederstein
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Heidelberg University, 69120 Heidelberg, Germany
| | - Daniel Pfaff
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Heidelberg University, 69120 Heidelberg, Germany; Department of Internal Medicine I and Clinical Chemistry, Heidelberg University Hospital, 69120 Heidelberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; Joint Heidelberg-IDC Translational Diabetes Program, Helmholtz-Zentrum, 85764 Munich, Germany
| | - Thomas Fleming
- Department of Internal Medicine I and Clinical Chemistry, Heidelberg University Hospital, 69120 Heidelberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; Joint Heidelberg-IDC Translational Diabetes Program, Helmholtz-Zentrum, 85764 Munich, Germany
| | - Aubry K Miller
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Peter Nawroth
- Department of Internal Medicine I and Clinical Chemistry, Heidelberg University Hospital, 69120 Heidelberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; Joint Heidelberg-IDC Translational Diabetes Program, Helmholtz-Zentrum, 85764 Munich, Germany
| | - Aurelio A Teleman
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Heidelberg University, 69120 Heidelberg, Germany.
| |
Collapse
|
48
|
Lin JA, Wu CH, Yen GC. Methylglyoxal displays colorectal cancer-promoting properties in the murine models of azoxymethane and CT26 isografts. Free Radic Biol Med 2018; 115:436-446. [PMID: 29269310 DOI: 10.1016/j.freeradbiomed.2017.12.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 12/04/2017] [Accepted: 12/15/2017] [Indexed: 12/18/2022]
Abstract
Methylglyoxal (MG), a highly reactive carbonyl species (RCS) with pro-oxidant and proinflammatory properties, may be a colon tumor-promoting factor in food and biological systems. In the present study, we found that consumption of MG significantly deteriorated azoxymethane (AOM)-induced colonic preneoplastic lesions in ICR mice, in which biomarkers of oxidative stress and inflammation within the body and feces induced by MG-fueled carbonyl stress may have played important roles. Interestingly, exposure to MG also led to increases in the serum low-density lipoprotein (LDL)/high-density lipoprotein (HDL) ratio and fecal bile acid levels in mice, which may be critical factors involved in MG-induced colonic lesions. Additionally, MG treatment (50mg/kg body weight (BW); intraperitoneally) promoted tumor growth of CT26 isografts in mice partly by carbonyl stress-evoked protumorigenic responses, including low-grade inflammation and oxidative stress. Furthermore, primary tumor cells isolated from mice with MG-induced CT26 isografts had greater proliferative and migratory activities as well as stem-like properties compared to those isolated from the vehicle controls. Excitingly, enhanced expression or activation of proteins that modulate cell survival, proliferation, or migration/invasion was also observed in those cells. In conclusion, it is conceivable that MG-induced carbonyl stress may be the pivotal promoter involved in colon cancer progression.
Collapse
Affiliation(s)
- Jer-An Lin
- Department of Food Science and Biotechnology, National Chung Hsing University, 145 Xingda Road, Taichung 40227, Taiwan, ROC
| | - Chi-Hao Wu
- Department of Human Development and Family Studies, National Taiwan Normal University, 162, Section 1, Heping E. Rd., Taipei City 106, Taiwan, ROC
| | - Gow-Chin Yen
- Department of Food Science and Biotechnology, National Chung Hsing University, 145 Xingda Road, Taichung 40227, Taiwan, ROC; Graduate Institute of Food Safety, National Chung Hsing University, 145 Xingda Road, Taichung 40227, Taiwan, ROC.
| |
Collapse
|
49
|
Limonene protects osteoblasts against methylglyoxal-derived adduct formation by regulating glyoxalase, oxidative stress, and mitochondrial function. Chem Biol Interact 2017; 278:15-21. [DOI: 10.1016/j.cbi.2017.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 09/26/2017] [Accepted: 10/02/2017] [Indexed: 01/05/2023]
|
50
|
Protective Effects and Possible Mechanisms of Ergothioneine and Hispidin against Methylglyoxal-Induced Injuries in Rat Pheochromocytoma Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:4824371. [PMID: 29181125 PMCID: PMC5664345 DOI: 10.1155/2017/4824371] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 08/08/2017] [Accepted: 08/23/2017] [Indexed: 12/25/2022]
Abstract
Diabetic encephalopathy (DE) is often a complication in patients with Alzheimer's disease due to high blood sugar induced by diabetic mellitus. Ergothioneine (EGT) and hispidin (HIP) are antioxidants present in Phellinus linteus. Methylglyoxal (MGO), a toxic precursor of advanced glycated end products (AGEs), is responsible for protein glycation. We investigated whether a combination EGT and HIP (EGT + HIP) protects against MGO-induced neuronal cell damage. Rat pheochromocytoma (PC12) cells were preincubated with EGT (2 μM), HIP (2 μM), or EGT + HIP, then challenged with MGO under high-glucose condition (30 μM MGO + 30 mM glucose; GLU + MGO) for 24–96 h. GLU + MGO markedly increased protein carbonyls and reactive oxygen species in PC12 cells; both of these levels were strongly reduced by EGT or HIP with effects comparable to those of 100 nM aminoguanidine (an AGE inhibitor) but stronger than those of 10 μM epalrestat (an aldose reductase inhibitor). GLU + MGO significantly increased the levels of AGE and AGE receptor (RAGE) protein expression of nuclear factor kappa-B (NF-κB) in the cytosol, but treatment with EGT, HIP, or EGT + HIP significantly attenuated these levels. These results suggest that EGT and HIP protect against hyperglycemic damage in PC12 cells by inhibiting the NF-κB transcription pathway through antioxidant activities.
Collapse
|