1
|
Hakim SM, Fouad MN, Habib MK, Mohamed MS, Ghaly SI. Effect of early administration of inhaled heparin on outcomes of smoke inhalation injury: A randomized controlled trial. Burns 2025; 51:107518. [PMID: 40319829 DOI: 10.1016/j.burns.2025.107518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 04/01/2025] [Accepted: 04/19/2025] [Indexed: 05/07/2025]
Abstract
BACKGROUND The present study aimed to examine the effects of early administration of inhaled heparin on the outcome of smoke inhalation injury. METHODS Eighty-eight adults suffering smoke inhalation injury within 24 h were randomized to receive 5000 IU of heparin (n = 44) or normal saline (n = 44) by nebulization every 4 h until successful extubation or death, up to a maximum of 14 days. The primary outcome was ventilator-free days (VFDs) and alive at 28 days. The secondary outcomes included the intensive care unit (ICU)-free days and alive at 28 days, change in the PaO2/FiO2 ratio, 28-day all-cause mortality rate, and mechanical ventilation days in survivors. RESULTS When adjusted to the burn area and burn-to-randomization time, inhaled heparin was associated with more VFDs (P =.046) and a higher cumulative incidence of weaning from mechanical ventilation over time (P =.007). Patients receiving inhaled heparin had more ICU-free days (P =.015), higher PaO2/FiO2 ratio (P =.001), and fewer mechanical ventilation days in survivors (P <.001), but the mortality rate was comparable to the control group (P =.596). CONCLUSIONS The early administration of inhaled heparin to patients suffering smoke inhalation injury was associated with more VFDs and enhanced weaning from mechanical ventilation. Inhaled heparin was also associated with more ICU-free days, higher PaO2/FiO2 ratios, and fewer mechanical ventilation days in survivors. Larger randomized controlled trials are required to establish the role of inhaled heparin as a standard of care in this clinical setting.
Collapse
Affiliation(s)
- Sameh M Hakim
- Department of Anesthesiology, Intensive Care, and Pain Management, Ain Shams University Faculty of Medicine, Cairo, Egypt.
| | - Mariam N Fouad
- Department of Anesthesiology, Intensive Care, and Pain Management, Ain Shams University Faculty of Medicine, Cairo, Egypt
| | - Mariam K Habib
- Department of Anesthesiology, Intensive Care, and Pain Management, Ain Shams University Faculty of Medicine, Cairo, Egypt
| | - Mahmoud S Mohamed
- Department of Anesthesiology, Intensive Care, and Pain Management, Ain Shams University Faculty of Medicine, Cairo, Egypt
| | - Safaa I Ghaly
- Department of Anesthesiology, Intensive Care, and Pain Management, Ain Shams University Faculty of Medicine, Cairo, Egypt
| |
Collapse
|
2
|
Milton-Jones H, Soussi S, Davies R, Charbonney E, Charles WN, Cleland H, Dunn K, Gantner D, Giles J, Jeschke M, Lee N, Legrand M, Lloyd J, Martin-Loeches I, Pantet O, Samaan M, Shelley O, Sisson A, Spragg K, Wood F, Yarrow J, Vizcaychipi MP, Williams A, Leon-Villapalos J, Collins D, Jones I, Singh S. An international RAND/UCLA expert panel to determine the optimal diagnosis and management of burn inhalation injury. Crit Care 2023; 27:459. [PMID: 38012797 PMCID: PMC10680253 DOI: 10.1186/s13054-023-04718-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 10/31/2023] [Indexed: 11/29/2023] Open
Abstract
BACKGROUND Burn inhalation injury (BII) is a major cause of burn-related mortality and morbidity. Despite published practice guidelines, no consensus exists for the best strategies regarding diagnosis and management of BII. A modified DELPHI study using the RAND/UCLA (University of California, Los Angeles) Appropriateness Method (RAM) systematically analysed the opinions of an expert panel. Expert opinion was combined with available evidence to determine what constitutes appropriate and inappropriate judgement in the diagnosis and management of BII. METHODS A 15-person multidisciplinary panel comprised anaesthetists, intensivists and plastic surgeons involved in the clinical management of major burn patients adopted a modified Delphi approach using the RAM method. They rated the appropriateness of statements describing diagnostic and management options for BII on a Likert scale. A modified final survey comprising 140 statements was completed, subdivided into history and physical examination (20), investigations (39), airway management (5), systemic toxicity (23), invasive mechanical ventilation (29) and pharmacotherapy (24). Median appropriateness ratings and the disagreement index (DI) were calculated to classify statements as appropriate, uncertain, or inappropriate. RESULTS Of 140 statements, 74 were rated as appropriate, 40 as uncertain and 26 as inappropriate. Initial intubation with ≥ 8.0 mm endotracheal tubes, lung protective ventilatory strategies, initial bronchoscopic lavage, serial bronchoscopic lavage for severe BII, nebulised heparin and salbutamol administration for moderate-severe BII and N-acetylcysteine for moderate BII were rated appropriate. Non-protective ventilatory strategies, high-frequency oscillatory ventilation, high-frequency percussive ventilation, prophylactic systemic antibiotics and corticosteroids were rated inappropriate. Experts disagreed (DI ≥ 1) on six statements, classified uncertain: the use of flexible fiberoptic bronchoscopy to guide fluid requirements (DI = 1.52), intubation with endotracheal tubes of internal diameter < 8.0 mm (DI = 1.19), use of airway pressure release ventilation modality (DI = 1.19) and nebulised 5000IU heparin, N-acetylcysteine and salbutamol for mild BII (DI = 1.52, 1.70, 1.36, respectively). CONCLUSIONS Burns experts mostly agreed on appropriate and inappropriate diagnostic and management criteria of BII as in published guidance. Uncertainty exists as to the optimal diagnosis and management of differing grades of severity of BII. Future research should investigate the accuracy of bronchoscopic grading of BII, the value of bronchial lavage in differing severity groups and the effectiveness of nebulised therapies in different severities of BII.
Collapse
Affiliation(s)
| | - Sabri Soussi
- Department of Anesthesia and Pain Management, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
- Inserm UMR-S 942, Cardiovascular Markers in Stress Conditions (MASCOT), University of Paris Cité, Paris, France
| | - Roger Davies
- Department of Intensive Care and Anaesthesia, Chelsea and Westminster Hospital NHS Foundation Trust, London, UK
| | - Emmanuel Charbonney
- Department of Médicine, Critical Care Division, Centre Hospitalier de l'Université de Montréal, Montréal, Canada
- Department of Medicine, Université de Montréal, Montréal, Canada
| | - Walton N Charles
- Department of Surgery and Cancer, Imperial College London, London, UK
- Intensive Care National Audit and Research Centre, London, UK
| | - Heather Cleland
- Victorian Adult Burns Service, Alfred Health, Melbourne, Australia
- Department of Surgery, Central Clinical School, Monash University, Melbourne, Australia
| | - Ken Dunn
- University Hospital South Manchester, Wythenshawe, UK
| | - Dashiell Gantner
- Department of Intensive Care, Alfred Health, Melbourne, Australia
- Australian and New Zealand Intensive Care Research Centre, Monash University, Melbourne, Australia
| | - Julian Giles
- Department of Anaesthesia, Queen Victoria Hospital NHS Foundation Trust, East Grinstead, UK
| | - Marc Jeschke
- Ross Tilley Burn Center, Department of Surgery, Sunnybrook Health Science Center, Toronto, ON, Canada
- Departments of Surgery and Immunology, University of Toronto, Toronto, ON, Canada
| | - Nicole Lee
- Department of Burns, Plastic and Reconstructive Surgery, Chelsea and Westminster Hospital NHS Foundation Trust, London, UK
| | - Matthieu Legrand
- Department of Anesthesia and Perioperative Care, Division of Critical Care Medicine, University of California, San Francisco, USA
- Investigation Network Initiative-Cardiovascular and Renal Clinical Trialists Network, Nancy, France
| | - Joanne Lloyd
- Department of Anaesthesia and Burns Intensive Care, St Andrew's Centre for Burns and Plastic Surgery, Broomfield Hospital, Chelmsford, UK
| | - Ignacio Martin-Loeches
- Department of Intensive Care Medicine, Multidisciplinary Intensive Care Research Organization (MICRO), St James Hospital, Dublin, Ireland
- Department of Respiratory Medicine, Hospital Clinic, IDIBAPS, CIBERes, Barcelona, Spain
- Universitat Barcelona, Barcelona, Spain
| | - Olivier Pantet
- Service of Adult Intensive Care, Lausanne University Hospital, Lausanne, Switzerland
| | - Mark Samaan
- Department of Gastroenterology, University College London Hospitals NHS Foundation Trust, London, UK
| | - Odhran Shelley
- Trinity College, Dublin, Ireland
- Department of Plastic and Reconstructive Surgery, St James' Hospital, Dublin, Ireland
| | - Alice Sisson
- Department of Intensive Care and Anaesthesia, Chelsea and Westminster Hospital NHS Foundation Trust, London, UK
| | - Kaisa Spragg
- Burns Unit, Queen Victoria Hospital NHS Foundation Trust, East Grinstead, UK
| | - Fiona Wood
- Fiona Stanley Hospital, Perth, Australia
- Perth Children's Hospital, Perth, Australia
- University of Western Australia, Perth, Australia
| | - Jeremy Yarrow
- Welsh Centre for Burns and Plastic Surgery, Morriston Hospital, Swansea, UK
| | - Marcela Paola Vizcaychipi
- Department of Intensive Care and Anaesthesia, Chelsea and Westminster Hospital NHS Foundation Trust, London, UK
- Department of Médicine, Critical Care Division, Centre Hospitalier de l'Université de Montréal, Montréal, Canada
| | - Andrew Williams
- Department of Médicine, Critical Care Division, Centre Hospitalier de l'Université de Montréal, Montréal, Canada
- Department of Burns, Plastic and Reconstructive Surgery, Chelsea and Westminster Hospital NHS Foundation Trust, London, UK
| | - Jorge Leon-Villapalos
- Department of Médicine, Critical Care Division, Centre Hospitalier de l'Université de Montréal, Montréal, Canada
- Department of Burns, Plastic and Reconstructive Surgery, Chelsea and Westminster Hospital NHS Foundation Trust, London, UK
| | - Declan Collins
- Department of Médicine, Critical Care Division, Centre Hospitalier de l'Université de Montréal, Montréal, Canada
- Department of Burns, Plastic and Reconstructive Surgery, Chelsea and Westminster Hospital NHS Foundation Trust, London, UK
| | - Isabel Jones
- Department of Médicine, Critical Care Division, Centre Hospitalier de l'Université de Montréal, Montréal, Canada
- Department of Burns, Plastic and Reconstructive Surgery, Chelsea and Westminster Hospital NHS Foundation Trust, London, UK
| | - Suveer Singh
- Faculty of Medicine, Imperial College London, London, UK.
- Department of Intensive Care and Anaesthesia, Chelsea and Westminster Hospital NHS Foundation Trust, London, UK.
- Department of Médicine, Critical Care Division, Centre Hospitalier de l'Université de Montréal, Montréal, Canada.
- Department of Research and Development, Chelsea and Westminster Hospital NHS Foundation Trust, London, UK.
- Academic Department of Anaesthesia, Pain Management and Intensive Care (APMIC), Imperial College London, London, UK.
- Royal Brompton Hospital, Guy's and St Thomas' Hospitals NHS Foundation Trust, London, UK.
| |
Collapse
|
3
|
Sang L, Guo X, Zhao Y, Shi J, Niu Z, Wu Z, Hou S, Fan H, Lv Q. Protective Effect of Nebulized Heparin in the Animal Models of Smoke Inhalation Injury: A Meta-analysis and Systematic Review of Experimental Studies. J Burn Care Res 2023; 44:42-52. [PMID: 36269755 DOI: 10.1093/jbcr/irac156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Indexed: 01/14/2023]
Abstract
The pathophysiological mechanism of abnormal coagulation can result from smoke inhalation injury (SII). Heparin nebulization is a common treatment for lung disorders. This study aimed to use meta-analysis in animal models to examine the effectiveness of atomized heparin on SII. For our online searches, we used the Cochrane Central Register of Controlled Trials, PubMed, Web of Science, Chinese National Knowledge Infrastructure, Chinese BioMedical Literature Database, and Wanfang Database up to January 2022. Data for SII were retrieved and compared to control animals. The studies' findings were determined by combining standardized mean difference (SMD) analysis with 95% confidence intervals (CIs). The findings showed that as compared to the control group, the heparin-treated group had a lower death rate (relative risk 0.42; 95% CI 0.22, 0.80; p < .05). The meta-analysis demonstrated favorable changes in lung physiology, including PaO2/FiO2 (SMD 1.04; 95% CI 0.65, 1.44; p < .001), lung wet-to-dry weight ratio (SMD -1.83; 95% CI -2.47, -1.18; p < .001), and pulmonary shunt Qs/Qt (SMD -0.69; 95% CI -1.29, -0.08; p < .05) after heparin nebulization for lung injury. The present data indicated that pulmonary artery mean pressure in the heparin therapy group was significantly lowered after 24 and 48 hours of therapy, suggesting that the cardiovascular system could recover following heparin treatment. As a result, heparin nebulization appeared to be more effective against SII and improved cardiopulmonary function compared to the control group. Graphical Abstract.
Collapse
Affiliation(s)
- Lu Sang
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China.,Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, China
| | - Xiaoqin Guo
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China.,Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, China
| | - Yuchen Zhao
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China.,Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, China
| | - Jie Shi
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China.,Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, China
| | - Zhifang Niu
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China.,Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, China
| | - Zhenlong Wu
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China.,Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, China
| | - Shike Hou
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China.,Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, China
| | - Haojun Fan
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China.,Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, China
| | - Qi Lv
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China.,Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, China
| |
Collapse
|
4
|
O’Hara KC, Ranches J, Roche LM, Schohr TK, Busch RC, Maier GU. Impacts from Wildfires on Livestock Health and Production: Producer Perspectives. Animals (Basel) 2021; 11:ani11113230. [PMID: 34827962 PMCID: PMC8614491 DOI: 10.3390/ani11113230] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Wildfires are increasing in frequency and severity across the Western United States. Efforts to understand the health impacts on humans are widespread and expanding; however, very little is known about the impact of wildfires and smoke exposure on livestock. This work presents the results of a survey of cattle, sheep, and goat producers in California, Oregon, and Nevada, on their experiences during the 2020 wildfire season. While few direct impacts of fires were reported among the 70 responses, 26% of respondents reported they had to evacuate livestock and 19% reported pasture losses. Indirect losses from smoke exposure, including pneumonia and reproductive losses were reported more broadly. This preliminary work highlights the need to better understand impacts of wildfires on livestock and how policy changes can help support the livestock production industry through these crises. Abstract Wildfires are increasing in frequency and severity across the Western United States. However, there is limited information available on the impacts these fires are having on the livelihood of livestock producers and their animals. This work presents the results of a survey evaluating the direct and indirect impacts of the 2020 wildfire season on beef cattle, dairy cattle, sheep, and goat, producers in California, Oregon, and Nevada. Seventy completed surveys were collected between May and July 2021. While dairy producers reported no direct impacts from the fires, beef, sheep, and goat producers were impacted by evacuations and pasture lost to fires. Only beef producers reported losses due to burns and burn-associated deaths or euthanasia. Dairy, beef, sheep, and goat producers observed reduced conception, poor weight gain, and drops in milk production. All but dairy producers also observed pneumonia. Lower birthweights, increased abortion rates, and unexplained deaths were reported in beef cattle, sheep, and goats. This work documents the wide-ranging impacts of wildfires on livestock producers and highlights the need for additional work defining the health impacts of fire and smoke exposure in livestock, as well as the policy changes needed to support producers experiencing direct and indirect losses.
Collapse
Affiliation(s)
- Kathleen C. O’Hara
- Center for Animal Disease Modeling and Surveillance (CADMS), School of Veterinary Medicine, University of California, Davis, CA 95616, USA;
| | - Juliana Ranches
- Eastern Oregon Agricultural Research Center (EOARC), Oregon State University, Burns, OR 97720, USA;
| | - Leslie M. Roche
- Department of Plant Sciences, University of California Davis, Davis, CA 95616, USA;
| | - Tracy Kay Schohr
- University of California Cooperative Extension, Plumas-Sierra-Butte Counties, Quincy, CA 96130, USA;
| | - Roselle C. Busch
- Department of Population Health & Reproduction, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA;
| | - Gabriele U. Maier
- Department of Population Health & Reproduction, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA;
- Correspondence:
| |
Collapse
|
5
|
van Haren FMP, Page C, Laffey JG, Artigas A, Camprubi-Rimblas M, Nunes Q, Smith R, Shute J, Carroll M, Tree J, Carroll M, Singh D, Wilkinson T, Dixon B. Nebulised heparin as a treatment for COVID-19: scientific rationale and a call for randomised evidence. Crit Care 2020; 24:454. [PMID: 32698853 PMCID: PMC7374660 DOI: 10.1186/s13054-020-03148-2] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 07/03/2020] [Indexed: 12/16/2022] Open
Abstract
Nebulised unfractionated heparin (UFH) has a strong scientific and biological rationale and warrants urgent investigation of its therapeutic potential, for COVID-19-induced acute respiratory distress syndrome (ARDS). COVID-19 ARDS displays the typical features of diffuse alveolar damage with extensive pulmonary coagulation activation resulting in fibrin deposition in the microvasculature and formation of hyaline membranes in the air sacs. Patients infected with SARS-CoV-2 who manifest severe disease have high levels of inflammatory cytokines in plasma and bronchoalveolar lavage fluid and significant coagulopathy. There is a strong association between the extent of the coagulopathy and poor clinical outcomes.The anti-coagulant actions of nebulised UFH limit fibrin deposition and microvascular thrombosis. Trials in patients with acute lung injury and related conditions found inhaled UFH reduced pulmonary dead space, coagulation activation, microvascular thrombosis and clinical deterioration, resulting in increased time free of ventilatory support. In addition, UFH has anti-inflammatory, mucolytic and anti-viral properties and, specifically, has been shown to inactivate the SARS-CoV-2 virus and prevent its entry into mammalian cells, thereby inhibiting pulmonary infection by SARS-CoV-2. Furthermore, clinical studies have shown that inhaled UFH safely improves outcomes in other inflammatory respiratory diseases and also acts as an effective mucolytic in sputum-producing respiratory patients. UFH is widely available and inexpensive, which may make this treatment also accessible for low- and middle-income countries.These potentially important therapeutic properties of nebulised UFH underline the need for expedited large-scale clinical trials to test its potential to reduce mortality in COVID-19 patients.
Collapse
Affiliation(s)
- Frank M P van Haren
- Australian National University, Medical School, Canberra, Australia.
- Intensive Care Unit, the Canberra Hospital, Canberra, Australia.
| | - Clive Page
- Sackler Institute of Pulmonary Pharmacology, King's College London, London, UK
| | - John G Laffey
- Anaesthesia and Intensive Care Medicine, School of Medicine, and Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, Biomedical Sciences Building, National University of Ireland Galway, Galway, Ireland
- Department of Anaesthesia, University Hospital Galway, Saolta Hospital Group, Galway, Ireland
| | - Antonio Artigas
- Critical Center, Corporació Sanitaria Parc Tauli , CIBER Enfermedades Respiratorias, Autonomous University of Barcelona, Sabadell, Spain
| | - Marta Camprubi-Rimblas
- Institut d'Investigació I Innovació Parc Tauli (I3PT), CIBER de Enfermedades Respiratorias, Sabadell, Spain
| | - Quentin Nunes
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Roger Smith
- Department of Critical Care Medicine, St Vincent's Hospital, Melbourne, Australia
| | - Janis Shute
- School of Pharmacy and Biomedical Science, University of Portsmouth, Portsmouth, UK
| | - Mary Carroll
- Department of Respiratory Medicine, University of Southampton, Southampton, UK
| | - Julia Tree
- National Infection Service, Public Health England, Porton Down, UK
| | - Miles Carroll
- National Infection Service, Public Health England, Porton Down, UK
| | - Dave Singh
- Medicines Evaluation Unit, University of Manchester, Manchester, UK
| | - Tom Wilkinson
- Department of Respiratory Medicine, University of Southampton, Southampton, UK
| | - Barry Dixon
- Department of Critical Care Medicine, St Vincent's Hospital, Melbourne, Australia
| |
Collapse
|
6
|
Lan X, Huang Z, Tan Z, Huang Z, Wang D, Huang Y. Nebulized heparin for inhalation injury in burn patients: a systematic review and meta-analysis. BURNS & TRAUMA 2020; 8:tkaa015. [PMID: 32523966 PMCID: PMC7271764 DOI: 10.1093/burnst/tkaa015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 03/12/2020] [Accepted: 03/20/2020] [Indexed: 02/02/2023]
Abstract
Background Smoke inhalation injury increases overall burn mortality. Locally applied heparin attenuates lung injury in burn animal models of smoke inhalation. It is uncertain whether local treatment of heparin is benefit for burn patients with inhalation trauma. We systematically reviewed published clinical trial data to evaluate the effectiveness of nebulized heparin in treating burn patients with inhalation injury. Methods A systematic search was undertaken in PubMed, the Cochrane Library, Embase, Web of Science, the Chinese Journals Full-text Database, the China Biomedical Literature Database and the Wanfang Database to obtain clinical controlled trails evaluating nebulized heparin in the treatment of burn patients with inhalation injury. Patient and clinical characteristics, interventions and physiological and clinical outcomes were recorded. Cochrane Risk of Bias Evaluation Tool and the Newcastle–Ottawa Scale were used to evaluate data quality. Potential publication bias was assessed by Egger’s test. A sensitivity analysis was conducted to assess the stability of the results. The meta-analysis was conducted in R 3.5.1 software. Results Nine trials were eligible for the systematic review and meta-analysis. Nebulized heparin can reduce lung injury and improve lung function in burn patients with inhalation injury without abnormal coagulation or bleeding, but the findings are still controversial. Mortality in the heparin-treated group was lower than that of the traditional treatment group (relative risk (RR) 0.75). The duration of mechanical ventilation (DOMV) was shorter in the heparin-treated group compared to the traditional treatment group (standardized mean difference (SMD) −0.78). Length of hospital stay was significantly shorter than that in the traditional treatment group (SMD −0.42), but incidence rates of pneumonia and unplanned reintubation were not significantly different in the study groups (RRs 0.97 and 0.88, respectively). No statistically significant publication biases were detected for the above clinical endpoints (p > 0.05). Conclusions Based on conventional aerosol therapy, heparin nebulization can further reduce lung injury, improve lung function, shorten DOMV and length of hospital stay, and reduce mortality, although it does not reduce the incidence of pneumonia and/or the unplanned reintubation rate.
Collapse
Affiliation(s)
- Xiaodong Lan
- Department of burn and plastic surgery, Chengdu Second People's Hospital, Chengdu, 610021, China
| | - Zhiyong Huang
- Department of burn and plastic surgery, Chengdu Second People's Hospital, Chengdu, 610021, China
| | - Ziming Tan
- Department of burn and plastic surgery, Chengdu Second People's Hospital, Chengdu, 610021, China
| | - Zhenjia Huang
- Department of burn and plastic surgery, Chengdu Second People's Hospital, Chengdu, 610021, China
| | - Dehuai Wang
- Department of burn and plastic surgery, Chengdu Second People's Hospital, Chengdu, 610021, China
| | - Yuesheng Huang
- Department of Wound Repair, Institute of Wound Repair, Shenzhen People's Hospital, the First Affiliated Hospital of South University of Science and Technology, and the Second Clinical Medical College of Jinan University, Shenzhen, 518020, China
| |
Collapse
|
7
|
Holley AD, Reade MC, Lipman J, Cohen J. There is no fire without smoke! Pathophysiology and treatment of inhalational injury in burns: A narrative review. Anaesth Intensive Care 2020; 48:114-122. [PMID: 32316738 DOI: 10.1177/0310057x20913282] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Smoke inhalation resulting in acute lung injury is a common challenge facing critical care practitioners caring for patients with severe burns, contributing significantly to morbidity and mortality. The intention of this review is to critically evaluate the published literature and trends in the diagnosis, management, implications and novel therapies in caring for patients with inhalation injury.
Collapse
Affiliation(s)
- Anthony D Holley
- Department of Intensive Care Medicine, Royal Brisbane and Women's Hospital, Brisbane, Australia.,Faculty of Medicine, University of Queensland, Brisbane, Australia.,Jamieson Trauma Institute, Brisbane, Australia.,Australian Defence Force, Australia
| | - Michael C Reade
- Department of Intensive Care Medicine, Royal Brisbane and Women's Hospital, Brisbane, Australia.,Faculty of Medicine, University of Queensland, Brisbane, Australia.,Jamieson Trauma Institute, Brisbane, Australia.,Australian Defence Force, Australia
| | - Jeffrey Lipman
- Department of Intensive Care Medicine, Royal Brisbane and Women's Hospital, Brisbane, Australia.,Faculty of Medicine, University of Queensland, Brisbane, Australia.,Jamieson Trauma Institute, Brisbane, Australia
| | - Jeremy Cohen
- Department of Intensive Care Medicine, Royal Brisbane and Women's Hospital, Brisbane, Australia.,Faculty of Medicine, University of Queensland, Brisbane, Australia.,Jamieson Trauma Institute, Brisbane, Australia
| |
Collapse
|
8
|
Mercel A, Tsihlis ND, Maile R, Kibbe MR. Emerging therapies for smoke inhalation injury: a review. J Transl Med 2020; 18:141. [PMID: 32228626 PMCID: PMC7104527 DOI: 10.1186/s12967-020-02300-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 03/14/2020] [Indexed: 12/20/2022] Open
Abstract
Background Smoke inhalation injury increases overall burn mortality by up to 20 times. Current therapy remains supportive with a failure to identify an optimal or targeted treatment protocol for smoke inhalation injury. The goal of this review is to describe emerging therapies that are being developed to treat the pulmonary pathology induced by smoke inhalation injury with or without concurrent burn injury. Main body A comprehensive literature search was performed using PubMed (1995–present) for therapies not approved by the U.S. Food and Drug Administration (FDA) for smoke inhalation injury with or without concurrent burn injury. Therapies were divided based on therapeutic strategy. Models included inhalation alone with or without concurrent burn injury. Specific animal model, mechanism of action of medication, route of administration, therapeutic benefit, safety, mortality benefit, and efficacy were reviewed. Multiple potential therapies for smoke inhalation injury with or without burn injury are currently under investigation. These include stem cell therapy, anticoagulation therapy, selectin inhibition, inflammatory pathway modulation, superoxide and peroxynitrite decomposition, selective nitric oxide synthase inhibition, hydrogen sulfide, HMG-CoA reductase inhibition, proton pump inhibition, and targeted nanotherapies. While each of these approaches shows a potential therapeutic benefit to treating inhalation injury in animal models, further research including mortality benefit is needed to ensure safety and efficacy in humans. Conclusions Multiple novel therapies currently under active investigation to treat smoke inhalation injury show promising results. Much research remains to be conducted before these emerging therapies can be translated to the clinical arena.
Collapse
Affiliation(s)
- Alexandra Mercel
- Department of Surgery, University of North Carolina at Chapel Hill, 4041 Burnett Womack, 101 Manning Drive, CB# 7050, Chapel Hill, NC, 27599-7050, USA
| | - Nick D Tsihlis
- Department of Surgery, University of North Carolina at Chapel Hill, 4041 Burnett Womack, 101 Manning Drive, CB# 7050, Chapel Hill, NC, 27599-7050, USA
| | - Rob Maile
- Department of Surgery, University of North Carolina at Chapel Hill, 4041 Burnett Womack, 101 Manning Drive, CB# 7050, Chapel Hill, NC, 27599-7050, USA.,Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - Melina R Kibbe
- Department of Surgery, University of North Carolina at Chapel Hill, 4041 Burnett Womack, 101 Manning Drive, CB# 7050, Chapel Hill, NC, 27599-7050, USA. .,Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, USA.
| |
Collapse
|
9
|
Guo B, Bai Y, Ma Y, Liu C, Wang S, Zhao R, Dong J, Ji HL. Preclinical and clinical studies of smoke-inhalation-induced acute lung injury: update on both pathogenesis and innovative therapy. Ther Adv Respir Dis 2019; 13:1753466619847901. [PMID: 31068086 PMCID: PMC6515845 DOI: 10.1177/1753466619847901] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Smoke-inhalation-induced acute lung injury (SI-ALI) is a leading cause of morbidity and mortality in victims of fire tragedies. SI-ALI contributes to an estimated 30% of burn-caused patient deaths, and recently, more attention has been paid to the specific interventions for this devastating respiratory illness. In the last decade, much progress has been made in the understanding of SI-ALI patho-mechanisms and in the development of new therapeutic strategies in both preclinical and clinical studies. This article reviews the recent progress in the treatment of SI-ALI, based on pathophysiology, thermal damage, airway obstruction, the nuclear-factor kappa-B signaling pathway, and oxidative stress. Preclinical therapeutic strategies include use of mesenchymal stem cells, hydrogen sulfide, peroxynitrite decomposition catalysts, and proton-pump inhibitors. Clinical interventions include high-frequency percussive ventilation, perfluorohexane, inhaled anticoagulants, and nebulized epinephrine. The animal model, dose, clinical application, and pharmacology of these medications are summarized. Future directions and further needs for developing innovative therapies are discussed.
Collapse
Affiliation(s)
- Bingxin Guo
- Institute of Lung and Molecular Therapy, Xinxiang Medical University, Xinxiang Henan, China
| | - Yichun Bai
- Institute of Lung and Molecular Therapy, Xinxiang Medical University, Xinxiang Henan, China
| | - Yana Ma
- Institute of Lung and Molecular Therapy, Xinxiang Medical University, Xinxiang Henan, China
| | - Cong Liu
- Institute of Lung and Molecular Therapy, Xinxiang Medical University, Xinxiang Henan, China
| | - Song Wang
- Institute of Lung and Molecular Therapy, Xinxiang Medical University, Xinxiang Henan, China
| | - Runzhen Zhao
- Department of Cellular and Molecular Biology, University of Texas Health Science Center at Tyler, Tyler, TX, USA
| | - Jiaxing Dong
- Institute of Lung and Molecular Therapy, Xinxiang Medical University, Xinxiang Henan, China
| | - Hong-Long Ji
- Texas Lung Injury Institute, University of Texas Health Science Center at Tyler, Tyler, TX, USA
| |
Collapse
|
10
|
Foncerrada G, Culnan DM, Capek KD, González-Trejo S, Cambiaso-Daniel J, Woodson LC, Herndon DN, Finnerty CC, Lee JO. Inhalation Injury in the Burned Patient. Ann Plast Surg 2018; 80:S98-S105. [PMID: 29461292 PMCID: PMC5825291 DOI: 10.1097/sap.0000000000001377] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Inhalation injury causes a heterogeneous cascade of insults that increase morbidity and mortality among the burn population. Despite major advancements in burn care for the past several decades, there remains a significant burden of disease attributable to inhalation injury. For this reason, effort has been devoted to finding new therapeutic approaches to improve outcomes for patients who sustain inhalation injuries.The three major injury classes are the following: supraglottic, subglottic, and systemic. Treatment options for these three subtypes differ based on the pathophysiologic changes that each one elicits.Currently, no consensus exists for diagnosis or grading of the injury, and there are large variations in treatment worldwide, ranging from observation and conservative management to advanced therapies with nebulization of different pharmacologic agents.The main pathophysiologic change after a subglottic inhalation injury is an increase in the bronchial blood flow. An induced mucosal hyperemia leads to edema, increases mucus secretion and plasma transudation into the airways, disables the mucociliary escalator, and inactivates hypoxic vasocontriction. Collectively, these insults potentiate airway obstruction with casts formed from epithelial debris, fibrin clots, and inspissated mucus, resulting in impaired ventilation. Prompt bronchoscopic diagnosis and multimodal treatment improve outcomes. Despite the lack of globally accepted standard treatments, data exist to support the use of bronchoscopy and suctioning to remove debris, nebulized heparin for fibrin casts, nebulized N-acetylcysteine for mucus casts, and bronchodilators.Systemic effects of inhalation injury occur both indirectly from hypoxia or hypercapnia resulting from loss of pulmonary function and systemic effects of proinflammatory cytokines, as well as directly from metabolic poisons such as carbon monoxide and cyanide. Both present with nonspecific clinical symptoms including cardiovascular collapse. Carbon monoxide intoxication should be treated with oxygen and cyanide with hydroxocobalamin.Inhalation injury remains a great challenge for clinicians and an area of opportunity for scientists. Management of this concomitant injury lags behind other aspects of burn care. More clinical research is required to improve the outcome of inhalation injury.The goal of this review is to comprehensively summarize the diagnoses, treatment options, and current research.
Collapse
Affiliation(s)
- Guillermo Foncerrada
- Department of Surgery, University of Texas Medical Branch, Galveston, Texas, USA
- Shriners Hospitals for Children - Galveston, Galveston, Texas, USA
| | - Derek M. Culnan
- JMS Burn and Reconstructive Center at Merit Health Central, Jackson, MS, USA
| | - Karel D. Capek
- Department of Surgery, University of Texas Medical Branch, Galveston, Texas, USA
- Shriners Hospitals for Children - Galveston, Galveston, Texas, USA
| | - Sagrario González-Trejo
- Department of Surgery, University of Texas Medical Branch, Galveston, Texas, USA
- Shriners Hospitals for Children - Galveston, Galveston, Texas, USA
| | - Janos Cambiaso-Daniel
- Department of Surgery, University of Texas Medical Branch, Galveston, Texas, USA
- Shriners Hospitals for Children - Galveston, Galveston, Texas, USA
| | - Lee C. Woodson
- Shriners Hospitals for Children - Galveston, Galveston, Texas, USA
- Department of Anesthesiology, University of Texas Medical Branch Galveston, Texas, USA
| | - David N. Herndon
- Department of Surgery, University of Texas Medical Branch, Galveston, Texas, USA
- Shriners Hospitals for Children - Galveston, Galveston, Texas, USA
| | - Celeste C. Finnerty
- Department of Surgery, University of Texas Medical Branch, Galveston, Texas, USA
- Shriners Hospitals for Children - Galveston, Galveston, Texas, USA
| | - Jong O. Lee
- Department of Surgery, University of Texas Medical Branch, Galveston, Texas, USA
- Shriners Hospitals for Children - Galveston, Galveston, Texas, USA
| |
Collapse
|
11
|
Camprubí-Rimblas M, Tantinyà N, Bringué J, Guillamat-Prats R, Artigas A. Anticoagulant therapy in acute respiratory distress syndrome. ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:36. [PMID: 29430453 PMCID: PMC5799142 DOI: 10.21037/atm.2018.01.08] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 12/28/2017] [Indexed: 01/11/2023]
Abstract
Acute respiratory distress syndrome (ARDS) presents a complex pathophysiology characterized by pulmonary activated coagulation and reduced fibrinolysis. Despite advances in supportive care of this syndrome, morbidity and mortality remains high, leading to the need of novel therapies to combat this disease. Focus these therapies in the inhibition of ARDS development pathophysiology is essential. Beneficial effects of anticoagulants in ARDS have been proved in preclinical and clinical trials, thanks to its anticoagulant and anti-inflammatory properties. Moreover, local administration by nebulization in the alveolar compartment increases local efficacy and does not produce systemic bleeding. In this review the coagulation and fibrinolytic pathway and its pharmacological targets to treat ARDS are summarized.
Collapse
Affiliation(s)
- Marta Camprubí-Rimblas
- Institut d’Investigació i Innovació Parc Tauli (I3PT), Sabadell, Spain
- Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Neus Tantinyà
- Centro de Investigaciones Biomédicas en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Josep Bringué
- Institut d’Investigació i Innovació Parc Tauli (I3PT), Sabadell, Spain
- Universitat Autònoma de Barcelona, Bellaterra, Spain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Raquel Guillamat-Prats
- Institut d’Investigació i Innovació Parc Tauli (I3PT), Sabadell, Spain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Antonio Artigas
- Institut d’Investigació i Innovació Parc Tauli (I3PT), Sabadell, Spain
- Universitat Autònoma de Barcelona, Bellaterra, Spain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
- Critical Care Center, Corporació Sanitària Universitaria Parc Taulí, Sabadell, Spain
| |
Collapse
|
12
|
McGinn KA, Weigartz K, Lintner A, Scalese MJ, Kahn SA. Nebulized Heparin With N-Acetylcysteine and Albuterol Reduces Duration of Mechanical Ventilation in Patients With Inhalation Injury. J Pharm Pract 2017; 32:163-166. [PMID: 29233052 DOI: 10.1177/0897190017747143] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Nebulized heparin has been proposed to improve pulmonary function in patients with inhalation injuries. The purpose of this study was to evaluate the impact of nebulized heparin with N-acetylcysteine (NAC) and albuterol on the duration of mechanical ventilation in burn patients. METHODS This is a retrospective study evaluating mechanically ventilated adult patients admitted to a regional burn center with inhalation injury. Outcomes were compared between patients who were prescribed a combination of nebulized heparin with NAC and albuterol versus similar patients who did not. RESULTS A total of 48 patients met inclusion criteria (heparin n = 22; nonheparin n = 26). Patients in the nonheparin group had higher percentage of total body surface area (TBSA) burned (29.00 [5.75-51.88] vs 5.25 [0.50-13.25] %TBSA; P = .009), longer duration of mechanical ventilation (6.50 [2.75-17.00] vs 3.00 [1.00-8.25] days; P = .022), and longer intensive care unit length of stay (LOS) (3.00 [3.00-28.75] vs 5.50 days [2.00-11.25]; P = .033). Upon regression, use of heparin was the only variable associated with reducing the duration of mechanical ventilation ( P = .039). CONCLUSION Nebulized heparin in combination with NAC and albuterol was associated with a significant reduction in the duration of mechanical ventilation.
Collapse
Affiliation(s)
- Kaitlin A McGinn
- 1 Department of Pharmacy Practice, Auburn University Harrison School of Pharmacy, Auburn, AL, USA.,2 Department of Surgery, University of South Alabama Medical Center, Mobile, AL, USA
| | - Katie Weigartz
- 1 Department of Pharmacy Practice, Auburn University Harrison School of Pharmacy, Auburn, AL, USA
| | - Alicia Lintner
- 2 Department of Surgery, University of South Alabama Medical Center, Mobile, AL, USA
| | - Michael J Scalese
- 1 Department of Pharmacy Practice, Auburn University Harrison School of Pharmacy, Auburn, AL, USA.,2 Department of Surgery, University of South Alabama Medical Center, Mobile, AL, USA
| | - Steven A Kahn
- 2 Department of Surgery, University of South Alabama Medical Center, Mobile, AL, USA
| |
Collapse
|
13
|
Juschten J, Tuinman PR, Juffermans NP, Dixon B, Levi M, Schultz MJ. Nebulized anticoagulants in lung injury in critically ill patients-an updated systematic review of preclinical and clinical studies. ANNALS OF TRANSLATIONAL MEDICINE 2017; 5:444. [PMID: 29264361 DOI: 10.21037/atm.2017.08.23] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Pneumonia, inhalation trauma and acute respiratory distress syndrome (ARDS), typical causes of lung injury in critically ill patients, are all three characterized by dysregulated inflammation and coagulation in the lungs. Nebulized anticoagulants are thought to have beneficial effects as they could attenuate pulmonary coagulopathy and maybe even affect pulmonary inflammation. A systematic search of the medical literature was performed using terms referring to aspects of the condition ('pneumonia', 'inhalation trauma' and 'ARDS'), the intervention ('nebulized', 'vaporized', and 'aerosolized') and anticoagulants limited to agents that are commercially available and frequently given or tested in critically ill patients ['heparin', 'danaparoid', 'activated protein C' (APC), 'antithrombin' (AT) and 'tissue factor pathway inhibitor' (TFPI)]. The systematic search identified 16 articles reporting on preclinical studies and 11 articles reporting on human trials. All nebulized anticoagulants attenuate pulmonary coagulopathy in preclinical studies using various models for lung injury, but the effects on inflammation are less consistent. Nebulized heparin, danaparoid and TFPI, but not APC and AT also reduced systemic coagulation. Nebulized heparin in lung injury patients shows contradictory results, and there is concern over systemic side effects of this strategy. Future studies need to focus on the way to nebulize anticoagulants, as well as on efficient but safe dosages, and other side effects.
Collapse
Affiliation(s)
- Jenny Juschten
- Laboratory of Experimental Intensive Care and Anesthesiology (L·E·I·C·A), Academic Medical Center, Amsterdam, the Netherlands.,Department of Intensive Care and Research VUmc Intensive Care (REVIVE), VU Medical Center, Amsterdam, the Netherlands.,Department of Intensive Care, Academic Medical Center, Amsterdam, the Netherlands
| | - Pieter R Tuinman
- Department of Intensive Care and Research VUmc Intensive Care (REVIVE), VU Medical Center, Amsterdam, the Netherlands
| | - Nicole P Juffermans
- Laboratory of Experimental Intensive Care and Anesthesiology (L·E·I·C·A), Academic Medical Center, Amsterdam, the Netherlands.,Department of Intensive Care, Academic Medical Center, Amsterdam, the Netherlands
| | - Barry Dixon
- Department of Intensive Care Medicine, St. Vincent's Hospital, Melbourne, Australia
| | - Marcel Levi
- Department of Medicine, University College London Hospitals, London, UK
| | - Marcus J Schultz
- Laboratory of Experimental Intensive Care and Anesthesiology (L·E·I·C·A), Academic Medical Center, Amsterdam, the Netherlands.,Department of Intensive Care, Academic Medical Center, Amsterdam, the Netherlands.,Mahidol-Oxford Research Unit (MORU), Mahidol University, Bangkok, Thailand
| |
Collapse
|
14
|
De Carvalho FO, Silva ÉR, Felipe FA, Teixeira LGB, Zago LBS, Nunes PS, Shanmugam S, Serafini MR, Araújo AADS. Natural and synthetic products used for the treatment of smoke inhalation: a patent review. Expert Opin Ther Pat 2017; 27:877-886. [DOI: 10.1080/13543776.2017.1339790] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
| | - Érika Ramos Silva
- Post-graduate Program in Health Sciences, Federal University of Sergipe, São Cristóvão, Brazil
| | - Fernanda Araújo Felipe
- Post-graduate Program in Health Sciences, Federal University of Sergipe, São Cristóvão, Brazil
| | | | | | - Paula Santos Nunes
- Department of Morphology, Federal University of Sergipe, São Cristóvão, Brazil
| | - Saravanan Shanmugam
- Department of Pharmacy, Federal University of Sergipe, São Cristóvão, Brazil
| | | | | |
Collapse
|
15
|
Robin E, Guieu LV, Le Boedec K. Recurrent Obstructive Fibrinous Tracheal Pseudomembranes in a Young English Bulldog. J Vet Intern Med 2017; 31:550-555. [PMID: 28224661 PMCID: PMC5354013 DOI: 10.1111/jvim.14650] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 11/04/2016] [Accepted: 12/06/2016] [Indexed: 11/30/2022] Open
Abstract
Endotracheal intubation is a common procedure, rarely associated with life-threatening complications (e.g., tracheal rupture, necrosis, foreign body). A 1.5-year-old English Bulldog was presented for respiratory distress, with increased respiratory efforts and stridor, 2 days after endotracheal intubation. Cervical and thoracic radiographs disclosed a severe narrowing of the tracheal lumen associated with an intraluminal soft-tissue structure at the thoracic inlet. Tracheoscopy confirmed the presence of an obstructive fibrinous tracheal pseudomembrane (OFTP) creating a 1-way valve obstruction. Removal of the OFTP dramatically improved the dog's respiratory function, but the lesion reformed twice despite corticosteroid and antibiotic therapy PO, warranting repeated endoscopic removal of the OFTP. No additional recurrences were observed after treatment with inhaled heparin and N-acetylcysteine q4h. No respiratory signs were reported 9 months after discharge. Postintubation OFTP has been reported rarely in humans and never described in dogs. Unexplained signs of upper airway obstruction shortly after endotracheal intubation should prompt consideration of OFTP in dogs, even if intubation was uneventful. Unlike its counterpart in humans, OFTP in dogs can reoccur after endoscopic removal, warranting repeated endoscopic extraction. A combination of corticosteroid therapy PO and heparin and N-acetylcysteine inhalation q4h may be attempted if recurrence is observed.
Collapse
Affiliation(s)
- E Robin
- Internal Medicine Unit, CHV Fregis, Arcueil, France
| | - L V Guieu
- Emergency and Critical Care Unit, CHV Fregis, Arcueil, France
| | - K Le Boedec
- Internal Medicine Unit, CHV Fregis, Arcueil, France
| |
Collapse
|
16
|
Enkhbaatar P, Pruitt BA, Suman O, Mlcak R, Wolf SE, Sakurai H, Herndon DN. Pathophysiology, research challenges, and clinical management of smoke inhalation injury. Lancet 2016; 388:1437-1446. [PMID: 27707500 PMCID: PMC5241273 DOI: 10.1016/s0140-6736(16)31458-1] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 08/11/2016] [Accepted: 08/16/2016] [Indexed: 01/02/2023]
Abstract
Smoke inhalation injury is a serious medical problem that increases morbidity and mortality after severe burns. However, relatively little attention has been paid to this devastating condition, and the bulk of research is limited to preclinical basic science studies. Moreover, no worldwide consensus criteria exist for its diagnosis, severity grading, and prognosis. Therapeutic approaches are highly variable depending on the country and burn centre or hospital. In this Series paper, we discuss understanding of the pathophysiology of smoke inhalation injury, the best evidence-based treatments, and challenges and future directions in diagnostics and management.
Collapse
Affiliation(s)
- Perenlei Enkhbaatar
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA.
| | - Basil A Pruitt
- Department of Surgery, Division of Trauma, University of Texas Health Science Center, San Antonio, TX, USA
| | - Oscar Suman
- Department of Surgery, University of Texas Medical Branch, Galveston, TX, USA; Shriners Hospitals for Children, Galveston, TX, USA
| | - Ronald Mlcak
- Shriners Hospitals for Children, Galveston, TX, USA; Department of Respiratory Care, School of Health Professions, University of Texas Medical Branch, Galveston, TX, USA
| | - Steven E Wolf
- Department of Surgery, University of Texas, Southwestern Medical Center, Dallas, TX, USA
| | - Hiroyuki Sakurai
- Department of Plastic and Reconstructive Surgery, Tokyo Women's Medical University, Tokyo, Japan
| | - David N Herndon
- Department of Surgery, University of Texas Medical Branch, Galveston, TX, USA; Shriners Hospitals for Children, Galveston, TX, USA
| |
Collapse
|
17
|
Does a Nebulized Heparin/N-acetylcysteine Protocol Improve Outcomes in Adult Smoke Inhalation? PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2014; 2:e165. [PMID: 25289358 PMCID: PMC4174237 DOI: 10.1097/gox.0000000000000121] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2013] [Accepted: 04/23/2014] [Indexed: 11/27/2022]
Abstract
Background: Smoke inhalation is a major source of morbidity and mortality. Heparin and N-acetylcysteine treatment has potential efficacy in inhalation injury. We investigated the impact of a heparin/N-acetylcysteine/albuterol nebulization protocol in adult patients with inhalation injury. Methods: A retrospective review was performed of adult inhalation injury patients, admitted to a regional burn center between January 2011 and July 2012, who underwent a protocol of alternating treatments of heparin and N-acetylcysteine/albuterol nebulization every 4 hours. The study cohort was matched 1:1 by age, sex, and burn size to a control cohort admitted within 5 years before protocol implementation. Results: The study (n = 20) and control cohorts (n = 20) were well matched, with nearly identical age (50 vs 49 years), sex distribution (70% male), burn size (total body surface area, 22% vs 21%), and inhalation injury, except grade I injuries (79% vs 47%, P = 0.01). The protocol did not change mortality (30% vs 25%, P = 0.72) or duration of mechanical ventilation (8.5 vs 8.8 days, P = 0.9). There was no difference in development of sepsis (40% vs 33%, P = 0.7) or acute respiratory distress syndrome (15% vs 10%, P = 1); however, those who received the protocol were more likely to develop pneumonia (45% vs 11%, P = 0.03). Conclusions: The implementation of a heparin/N-acetylcysteine/albuterol protocol did not reduce mortality or duration of mechanical ventilation in this cohort of adults with inhalation injury and resulted in a significant increase in pneumonia rates. Larger prospective studies are necessary, with close attention paid to minimizing the infection risk incurred from frequent administration of nebulized medications.
Collapse
|
18
|
Glas GJ, Muller J, Binnekade JM, Cleffken B, Colpaert K, Dixon B, Juffermans NP, Knape P, Levi MM, Loef BG, Mackie DP, Malbrain M, Schultz MJ, van der Sluijs KF. HEPBURN - investigating the efficacy and safety of nebulized heparin versus placebo in burn patients with inhalation trauma: study protocol for a multi-center randomized controlled trial. Trials 2014; 15:91. [PMID: 24661817 PMCID: PMC3987885 DOI: 10.1186/1745-6215-15-91] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 03/07/2014] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Pulmonary coagulopathy is a hallmark of lung injury following inhalation trauma. Locally applied heparin attenuates lung injury in animal models of smoke inhalation. Whether local treatment with heparin benefits patients with inhalation trauma is uncertain. The present trial aims at comparing a strategy using frequent nebulizations of heparin with standard care in intubated and ventilated burn patients with bronchoscopically confirmed inhalation trauma. METHODS The Randomized Controlled Trial Investigating the Efficacy and Safety of Nebulized HEParin versus Placebo in BURN Patients with Inhalation Trauma (HEPBURN) is an international multi-center, double-blind, placebo-controlled, two-arm study. One hundred and sixteen intubated and ventilated burn patients with confirmed inhalation trauma are randomized to nebulizations of heparin (the nebulized heparin strategy) or nebulizations of normal saline (the control strategy) every four hours for 14 days or until extubation, whichever comes first. The primary endpoint is the number of ventilator-free days, defined as days alive and breathing without assistance during the first 28 days, if the period of unassisted breathing lasts for at least 24 consecutive hours. DISCUSSION As far as the authors know, HEPBURN is the first randomized, placebo-controlled trial, powered to investigate whether local treatment with heparin shortens duration of ventilation of intubated and ventilated burn patients with inhalation trauma. TRIAL REGISTRATION NCT01773083 (http://www.clinicaltrials.gov), registered on 16 January 2013.Recruiting. Randomisation commenced on 1 January 2014.
Collapse
Affiliation(s)
- Gerie J Glas
- Laboratory of Experimental Intensive Care and Anesthesiology (L · E · I C · A), Department of Intensive Care Medicine, Academic Medical Center, M0-210, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
- Department of Intensive Care Medicine, Academic Medical Center, Amsterdam, the Netherlands
| | - Johannes Muller
- Department of Intensive Care, University Hospital Gasthuisberg, Leuven, Belgium
| | - Jan M Binnekade
- Department of Intensive Care Medicine, Academic Medical Center, Amsterdam, the Netherlands
| | - Berry Cleffken
- Department of Intensive Care, Maasstad Hospital, Rotterdam, the Netherlands
| | - Kirsten Colpaert
- Department of Intensive Care, Ghent University Hospital, Ghent, Belgium
| | - Barry Dixon
- Department of Intensive Care, St Vincent’s Hospital, Melbourne, Australia
| | - Nicole P Juffermans
- Laboratory of Experimental Intensive Care and Anesthesiology (L · E · I C · A), Department of Intensive Care Medicine, Academic Medical Center, M0-210, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
- Department of Intensive Care Medicine, Academic Medical Center, Amsterdam, the Netherlands
| | - Paul Knape
- Department of Intensive Care, Red Cross Hospital, Beverwijk, the Netherlands
| | - Marcel M Levi
- Department of Internal Medicine, Academic Medical Center, Amsterdam, the Netherlands
| | - Bert G Loef
- Department of Intensive Care, Martini Hospital, Groningen, the Netherlands
| | - David P Mackie
- Department of Intensive Care, Red Cross Hospital, Beverwijk, the Netherlands
| | - Manu Malbrain
- Department of Intensive Care, Ziekenhuis Netwerk Antwerpen - Stuivenberg, Antwerp, Belgium
| | - Marcus J Schultz
- Laboratory of Experimental Intensive Care and Anesthesiology (L · E · I C · A), Department of Intensive Care Medicine, Academic Medical Center, M0-210, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
- Department of Intensive Care Medicine, Academic Medical Center, Amsterdam, the Netherlands
| | - Koenraad F van der Sluijs
- Laboratory of Experimental Intensive Care and Anesthesiology (L · E · I C · A), Department of Intensive Care Medicine, Academic Medical Center, M0-210, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| |
Collapse
|
19
|
Inhaled anticoagulation regimens for the treatment of smoke inhalation-associated acute lung injury: a systematic review. Crit Care Med 2014; 42:413-9. [PMID: 24158173 DOI: 10.1097/ccm.0b013e3182a645e5] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Inhaled anticoagulation regimens are increasingly being used to manage smoke inhalation-associated acute lung injury. We systematically reviewed published and unpublished preclinical and clinical trial data to elucidate the effects of these regimens on lung injury severity, airway obstruction, ventilation, oxygenation, pulmonary infections, bleeding complications, and survival. DATA SOURCES PubMed, Scopus, EMBASE, and Web of Science were searched to identify relevant published studies. Relevant unpublished studies were identified by searching the Australian and New Zealand Clinical Trials Registry, World Health Organization International Clinical Trials Registry Platform, Cochrane Library, ClinicalTrials.gov, MINDCULL.com, Current Controlled Trials, and Google. STUDY SELECTION Inclusion criteria were any preclinical or clinical study in which 1) animals or subjects experienced smoke inhalation exposure, 2) they were treated with nebulized or aerosolized anticoagulation regimens, including heparin, heparinoids, antithrombins, or fibrinolytics (e.g., tissue plasminogen activator), 3) a control and/or sham group was described for preclinical studies, and 4) a concurrent or historical control group described for clinical studies. Exclusion criteria were 1) the absence of a group treated with a nebulized or aerosolized anticoagulation regimen, 2) the absence of a control or sham group, and 3) case reports. DATA EXTRACTION Ninety-nine potentially relevant references were identified. Twenty-seven references met inclusion criteria including 19 preclinical references reporting 18 studies and eight clinical references reporting five clinical studies. DATA SYNTHESIS A systematic review of the literature is provided. Both clinical and methodological diversity precluded combining these studies in a meta-analysis. CONCLUSIONS The high mortality associated with smoke inhalation-associated acute lung injury results from airway damage, mucosal dysfunction, neutrophil infiltration, airway coagulopathy with cast formation, ventilation-perfusion mismatching with shunt, and barotrauma. Inhaled anticoagulation regimens in both preclinical and clinical studies improve survival and decrease morbidity without altering systemic markers of clotting and anticoagulation. In some preclinical and clinical studies, inhaled anticoagulants were associated with a favorable effect on survival. This approach appears sufficiently promising to merit a well-designed prospective study to validate its use in patients with severe smoke inhalation-associated acute lung injury requiring mechanical ventilation.
Collapse
|
20
|
Advantages and pitfalls of combining intravenous antithrombin with nebulized heparin and tissue plasminogen activator in acute respiratory distress syndrome. J Trauma Acute Care Surg 2014; 76:126-33. [PMID: 24368367 DOI: 10.1097/ta.0b013e3182ab0785] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Pulmonary coagulopathy has become an important therapeutic target in adult respiratory distress syndrome (ARDS). We hypothesized that combining intravenous recombinant human antithrombin (rhAT), nebulized heparin, and nebulized tissue plasminogen activator (TPA) more effectively improves pulmonary gas exchange compared with a single rhAT infusion, while maintaining the anti-inflammatory properties of rhAT in ARDS. Therefore, the present prospective, randomized experiment was conducted using an established ovine model. METHODS Following burn and smoke inhalation injury (40% of total body surface area, third-degree flame burn, and 4 × 12 breaths of cold cotton smoke), 18 chronically instrumented sheep were randomly assigned to receive intravenous saline plus saline nebulization (control), intravenous rhAT (6 IU/kg/h) started 1 hour after injury plus saline nebulization (AT i.v.) or intravenous rhAT combined with nebulized heparin (10,000 IU every 4 hours, started 2 hours after injury), and nebulized TPA (2 mg every 4 hours, started 4 hours after injury) (triple therapy, n = 6 each). All animals were mechanically ventilated and fluid resuscitated according to standard protocols during the 48-hour study period. RESULTS Both treatment approaches attenuated ARDS compared with control animals. Notably, triple therapy was associated with an improved PaO2/FiO2 ratio (p = 0.007), attenuated pulmonary obstruction (p = 0.02) and shunting (p = 0.025), as well as reduced ventilatory pressures (p < 0.05 each) versus AT i.v. at 48 hours. However, the anti-inflammatory effects of sole AT i.v., namely, the inhibition of neutrophil activation (neutrophil count in the lymph and pulmonary polymorphonuclear cells, p < 0.05 vs. control each), pulmonary transvascular fluid flux (lymph flow, p = 0.004 vs. control), and systemic vascular leakage (cumulative net fluid balance, p < 0.001 vs. control), were abolished in the triple therapy group. CONCLUSION Combining intravenous rhAT with nebulized heparin and nebulized TPA more effectively restores pulmonary gas exchange, but the anti-inflammatory effects of sole rhAT are abolished with the triple therapy. Interferences between the different anticoagulants may represent a potential explanation for these findings.
Collapse
|
21
|
Antithrombin attenuates vascular leakage via inhibiting neutrophil activation in acute lung injury. Crit Care Med 2014; 41:e439-46. [PMID: 24107637 DOI: 10.1097/ccm.0b013e318298ad3a] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
OBJECTIVE To test the hypothesis that restoration of antithrombin plasma concentrations attenuates vascular leakage by inhibiting neutrophil activation through syndecan-4 receptor inhibition in an established ovine model of acute lung injury. DESIGN Randomized controlled laboratory experiment. SETTING University animal research facility. SUBJECTS Eighteen chronically instrumented sheep. INTERVENTIONS Following combined burn and smoke inhalation injury (40% of total body surface area, third-degree flame burn; 4 × 12 breaths of cold cotton smoke), chronically instrumented sheep were randomly assigned to receive an IV infusion of 6 IU/kg/hr recombinant human antithrombin III or normal saline (n = 6 each) during the 48-hour study period. In addition, six sham animals (not injured, continuous infusion of vehicle) were used to obtain reference values for histological and immunohistochemical analyses. MEASUREMENTS AND MAIN RESULTS Compared to control animals, recombinant human antithrombin III reduced the number of neutrophils per hour in the pulmonary lymph (p < 0.01 at 24 and 48 hr), alveolar neutrophil infiltration (p = 0.04), and pulmonary myeloperoxidase activity (p = 0.026). Flow cytometric analysis revealed a significant reduction of syndecan-4-positive neutrophils (p = 0.002 vs control at 24 hr). Treatment with recombinant human antithrombin III resulted in a reduction of pulmonary nitrosative stress (p = 0.002), airway obstruction (bronchi: p = 0.001, bronchioli: p = 0.013), parenchymal edema (p = 0.044), and lung bloodless wet-to-dry-weight ratio (p = 0.015). Clinically, recombinant human antithrombin III attenuated the increased pulmonary transvascular fluid flux (12-48 hr: p ≤ 0.001 vs control each) and the deteriorated pulmonary gas exchange (12-48 hr: p < 0.05 vs control each) without increasing the risk of bleeding. CONCLUSIONS The present study provides evidence for the interaction between antithrombin and neutrophils in vivo, its pathophysiological role in vascular leakage, and the therapeutic potential of recombinant human antithrombin III in a large animal model of acute lung injury.
Collapse
|
22
|
Fu LS, Tsai JJ, Chen YJ, Lin HK, Tsai MC, Chang MDT. Heparin protects BALB/c mice from mite-induced airway allergic inflammation. Int J Immunopathol Pharmacol 2013; 26:349-59. [PMID: 23755750 DOI: 10.1177/039463201302600208] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
More and more studies have demonstrated the anti-inflammatory effects of heparin. However, in the aspect of allergic airway inflammation, data about its daily use in animal model is scarce. To evaluate the efficacy of 22-day intranasal heparin administration in mite-induced airway allergic inflammation in BALB/c mice, the murine model of house dust-mite allergen-induced asthma was used to assess the effect of heparin (h) and low molecular weight heparin (l mwh) administered intra-nasally (IN) throughout the full study period (22 days). Effects were monitored by histopathology, cell counts in broncho-alveolar lavage fluid (BALF), local cytokine production, serum, specific antibody levels, and airway resistance measurements. Compared to the positive control group, both hIN and lmwhIN groups had lower peri-bronchiolar/alveolar inflammatory pathology score and lower goblet cell scores (p less than 0.01); lower eosinophil and neutrophil counts in BALF (p less than 0.0001); and lower cytokine levels including IL-17A/F, IL-5, IL-13, IL-8 and eotaxin in lung tissue (p less than 0.001). Serum Der p-specific IgE level was also lower in heparin-treated groups (p less than 0.004). The two heparin-treated groups also revealed lower value of Penh after Mch stimulation. In conclusion, heparin and lmw heparin decrease serum Der p-specific IgE level and possess anti-inflammatory effects on mite-induced airway allergic inflammation model in BALB/c mice.
Collapse
Affiliation(s)
- L S Fu
- Pediatric Department, Taichung Veterans General Hospital, Taichung, Taiwan
| | | | | | | | | | | |
Collapse
|
23
|
Antithrombin attenuates myocardial dysfunction and reverses systemic fluid accumulation following burn and smoke inhalation injury: a randomized, controlled, experimental study. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2013; 17:R86. [PMID: 23663695 PMCID: PMC3706920 DOI: 10.1186/cc12712] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 05/11/2013] [Indexed: 12/29/2022]
Abstract
Introduction We hypothesized that maintaining physiological plasma levels of antithrombin attenuates myocardial dysfunction and inflammation as well as vascular leakage associated with burn and smoke inhalation injury. Therefore, the present prospective, randomized experiment was conducted using an established ovine model. Methods Following 40% of total body surface area, third degree flame burn and 4 × 12 breaths of cold cotton smoke, chronically instrumented sheep were randomly assigned to receive an intravenous infusion of 6 IU/kg/h recombinant human antithrombin (rhAT) or normal saline (control group; n = 6 each). In addition, six sheep were designated as sham animals (not injured, continuous infusion of vehicle). During the 48 h study period the animals were awake, mechanically ventilated and fluid resuscitated according to standard formulas. Results Compared to the sham group, myocardial contractility was severely impaired in control animals, as suggested by lower stroke volume and left ventricular stroke work indexes. As a compensatory mechanism, heart rate increased, thereby increasing myocardial oxygen consumption. In parallel, myocardial inflammation was induced via nitric oxide production, neutrophil accumulation (myeloperoxidase activity) and activation of the p38-mitogen-activated protein kinase pathway resulting in cytokine release (tumor necrosis factor-alpha, interleukin-6) in control vs. sham animals. rhAT-treatment significantly attenuated these inflammatory changes leading to a myocardial contractility and myocardial oxygen consumption comparable to sham animals. In control animals, systemic fluid accumulation progressively increased over time resulting in a cumulative positive fluid balance of about 4,000 ml at the end of the study period. Contrarily, in rhAT-treated animals there was only an initial fluid accumulation until 24 h that was reversed back to the level of sham animals during the second day. Conclusions Based on these findings, the supplementation of rhAT may represent a valuable therapeutic approach for cardiovascular dysfunction and inflammation after burn and smoke inhalation injury.
Collapse
|
24
|
Tuinman PR, Dixon B, Levi M, Juffermans NP, Schultz MJ. Nebulized anticoagulants for acute lung injury - a systematic review of preclinical and clinical investigations. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2012; 16:R70. [PMID: 22546487 PMCID: PMC3681399 DOI: 10.1186/cc11325] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Revised: 04/02/2012] [Accepted: 04/30/2012] [Indexed: 12/16/2022]
Abstract
Background Data from interventional trials of systemic anticoagulation for sepsis inconsistently suggest beneficial effects in case of acute lung injury (ALI). Severe systemic bleeding due to anticoagulation may have offset the possible positive effects. Nebulization of anticoagulants may allow for improved local biological availability and as such may improve efficacy in the lungs and lower the risk of systemic bleeding complications. Method We performed a systematic review of preclinical studies and clinical trials investigating the efficacy and safety of nebulized anticoagulants in the setting of lung injury in animals and ALI in humans. Results The efficacy of nebulized activated protein C, antithrombin, heparin and danaparoid has been tested in diverse animal models of direct (for example, pneumonia-, intra-pulmonary lipopolysaccharide (LPS)-, and smoke inhalation-induced lung injury) and indirect lung injury (for example, intravenous LPS- and trauma-induced lung injury). Nebulized anticoagulants were found to have the potential to attenuate pulmonary coagulopathy and frequently also inflammation. Notably, nebulized danaparoid and heparin but not activated protein C and antithrombin, were found to have an effect on systemic coagulation. Clinical trials of nebulized anticoagulants are very limited. Nebulized heparin was found to improve survival of patients with smoke inhalation-induced ALI. In a trial of critically ill patients who needed mechanical ventilation for longer than two days, nebulized heparin was associated with a higher number of ventilator-free days. In line with results from preclinical studies, nebulization of heparin was found to have an effect on systemic coagulation, but without causing systemic bleedings. Conclusion Local anticoagulant therapy through nebulization of anticoagulants attenuates pulmonary coagulopathy and frequently also inflammation in preclinical studies of lung injury. Recent human trials suggest nebulized heparin for ALI to be beneficial and safe, but data are very limited.
Collapse
Affiliation(s)
- Pieter R Tuinman
- Department of Intensive Care Medicine and Laboratory of Experimental Intensive Care and Anesthesiology, Academic Medical Center, Meibergdreef 9, Amsterdam, 1105 AZ, The Netherlands.
| | | | | | | | | |
Collapse
|
25
|
|
26
|
Yamamoto Y, Enkhbaatar P, Sousse LE, Sakurai H, Rehberg SW, Asmussen S, Kraft ER, Wright CL, Bartha E, Cox RA, Hawkins HK, Traber LD, Traber MG, Szabo C, Herndon DN, Traber DL. Nebulization with γ-tocopherol ameliorates acute lung injury after burn and smoke inhalation in the ovine model. Shock 2012; 37:408-14. [PMID: 22266978 PMCID: PMC3306540 DOI: 10.1097/shk.0b013e3182459482] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We hypothesize that the nebulization of γ-tocopherol (g-T) in the airway of our ovine model of acute respiratory distress syndrome will effectively improve pulmonary function following burn and smoke inhalation after 96 h. Adult ewes (n = 14) were subjected to 40% total body surface area burn and were insufflated with 48 breaths of cotton smoke under deep anesthesia, in a double-blind comparative study. A customized aerosolization device continuously delivered g-T in ethanol with each breath from 3 to 48 h after the injury (g-T group, n = 6), whereas the control group (n = 5) was nebulized with only ethanol. Animals were weaned from the ventilator when possible. All animals were killed after 96 h, with the exception of one untreated animal that was killed after 64 h. Lung g-T concentration significantly increased after g-T nebulization compared with the control group (38.5 ± 16.8 vs. 0.39 ± 0.46 nmol/g, P < 0.01). The PaO(2)/FIO(2) ratio was significantly higher after treatment with g-T compared with the control group (310 ± 152 vs. 150 ± 27.0, P < 0.05). The following clinical parameters were improved with g-T treatment: pulmonary shunt fraction, peak and pause pressures, lung bloodless wet-to-dry weight ratios (2.9 ± 0.87 vs. 4.6 ± 1.4, P < 0.05), and bronchiolar obstruction (2.0% ± 1.1% vs. 4.6% ± 1.7%, P < 0.05). Nebulization of g-T, carried by ethanol, improved pulmonary oxygenation and markedly reduced the time necessary for assisted ventilation in burn- and smoke-injured sheep. Delivery of g-T into the lungs may be a safe, novel, and efficient approach for management of acute lung injury patients who have sustained oxidative damage to the airway.
Collapse
Affiliation(s)
- Yusuke Yamamoto
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas 77555-0833, USA
- Department of Plastic and Reconstructive Surgery, Tokyo Women’s Medical University, 8-1 Kawata-cho, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Perenlei Enkhbaatar
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas 77555-0833, USA
| | - Linda E. Sousse
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas 77555-0833, USA
| | - Hiroyuki Sakurai
- Department of Plastic and Reconstructive Surgery, Tokyo Women’s Medical University, 8-1 Kawata-cho, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Sebastian W. Rehberg
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas 77555-0833, USA
| | - Sven Asmussen
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas 77555-0833, USA
| | - Edward R. Kraft
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas 77555-0833, USA
| | - Charlotte L. Wright
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon 97331-6512, USA
| | - Eva Bartha
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas 77555-0833, USA
| | - Robert A. Cox
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas 77555-0833, USA
| | - Hal K. Hawkins
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas 77555-0833, USA
| | - Lillian D. Traber
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas 77555-0833, USA
| | - Maret G. Traber
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon 97331-6512, USA
| | - Csaba Szabo
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas 77555-0833, USA
| | - David N. Herndon
- Shriners Hospitals for Children, Burn Unit, Galveston, Texas 77555-0833
| | - Daniel L. Traber
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas 77555-0833, USA
| |
Collapse
|
27
|
Yamamoto Y, Enkhbaatar P, Sakurai H, Rehberg S, Asmussen S, Ito H, Sousse LE, Cox RA, Deyo DJ, Traber LD, Traber MG, Herndon DN, Traber DL. Development of a long-term ovine model of cutaneous burn and smoke inhalation injury and the effects of early excision and skin autografting. Burns 2012; 38:908-16. [PMID: 22459154 DOI: 10.1016/j.burns.2012.01.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Revised: 01/04/2012] [Accepted: 01/06/2012] [Indexed: 10/28/2022]
Abstract
UNLABELLED Smoke inhalation injury frequently increases the risk of pneumonia and mortality in burn patients. The pathophysiology of acute lung injury secondary to burn and smoke inhalation is well studied, but long-term pulmonary function, especially the process of lung tissue healing following burn and smoke inhalation, has not been fully investigated. By contrast, early burn excision has become the standard of care in the management of major burn injury. While many clinical studies and small-animal experiments support the concept of early burn wound excision, and show improved survival and infectious outcomes, we have developed a new chronic ovine model of burn and smoke inhalation injury with early excision and skin grafting that can be used to investigate lung pathophysiology over a period of 3 weeks. MATERIALS AND METHODS Eighteen female sheep were surgically prepared for this study under isoflurane anesthesia. The animals were divided into three groups: an Early Excision group (20% TBSA, third-degree cutaneous burn and 36 breaths of cotton smoke followed by early excision and skin autografting at 24h after injury, n=6), a Control group (20% TBSA, third-degree cutaneous burn and 36 breaths of cotton smoke without early excision, n=6) and a Sham group (no injury, no early excision, n=6). After induced injury, all sheep were placed on a ventilator and fluid-resuscitated with Lactated Ringers solution (4 mL/% TBS/kg). At 24h post-injury, early excision was carried out to fascia, and skin grafting with meshed autografts (20/1000 in., 1:4 ratio) was performed under isoflurane anesthesia. At 48 h post-injury, weaning from ventilator was begun if PaO(2)/FiO(2) was above 250 and sheep were monitored for 3 weeks. RESULTS At 96 h post-injury, all animals were weaned from ventilator. There are no significant differences in PaO(2)/FiO(2) between Early Excision and Control groups at any points. All animals were survived for 3 weeks without infectious complication in Early Excision and Sham groups, whereas two out of six animals in the Control group had abscess in lung. The percentage of the wound healed surviving area (mean ± SD) was 74.7 ± 7.8% on 17 days post-surgery in the Early Excision group. Lung wet-to-dry weight ratio (mean ± SD) was significantly increased in the Early Excision group vs. Sham group (p<0.05). The calculated net fluid balance significantly increased in the early excision compared to those seen in the Sham and Control groups. Plasma protein, oncotic pressure, hematocrit of % baseline, hemoglobin of % baseline, white blood cell and neutrophil were significantly decreased in the Early Excision group vs. Control group. CONCLUSIONS The early excision model closely resembles practice in a clinical setting and allows long-term observations of pulmonary function following burn and smoke inhalation injury. Further studies are warranted to assess lung tissue scarring and measuring collagen deposition, lung compliance and diffusion capacity.
Collapse
Affiliation(s)
- Yusuke Yamamoto
- Department of Anesthesiology, Investigational Intensive Care Unit, The University of Texas Medical Branch, Shriners Burns Hospital for Children, 601 Harborside Drive, Galveston, TX 77555-1102, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Pulmonary activation of coagulation and inhibition of fibrinolysis after burn injuries and inhalation trauma. ACTA ACUST UNITED AC 2011; 70:1389-97. [PMID: 21460745 DOI: 10.1097/ta.0b013e31820f85a7] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Pulmonary coagulopathy is intrinsic to pneumonia and other forms of acute lung injury. We hypothesized patients with burn injuries and inhalation trauma to have similar alterations in pulmonary coagulation and fibrinolysis. METHODS We performed a prospective study on changes in pulmonary and systemic thrombin generation and fibrinolytic activity in patients with burn injuries and inhalation trauma requiring mechanical ventilation. Nondirected bronchial lavage was performed on alternate days. Patients requiring mechanical ventilation for nonpulmonary reasons who did not meet the North American European Consensus Conference criteria for acute lung injury functioned as control patients. RESULTS We studied 13 patients with burn injuries and inhalation trauma and 15 control patients. On admission, patients with burn injuries and inhalation trauma showed a significant increase in thrombin generation in the airways compared with control patients, as reflected by increased lavage fluid levels of thrombin-antithrombin complexes and fibrin degradation products, and decreased lavage fluid levels of activated protein C and antithrombin. Simultaneously, burn patients showed a significant decrease in fibrinolytic activity, as reflected by decreased lavage fluid levels of plasminogen activator activity. Pulmonary coagulopathy persisted throughout the period of mechanical ventilation and was accompanied by similar changes in systemic coagulation and fibrinolysis. There was no significant correlation between changes in coagulation and fibrinolysis and the extent of burn injury. CONCLUSIONS Patients with burn injuries and inhalation trauma requiring mechanical ventilation show a distinct and sustained procoagulant and antifibrinolytic shift in the pulmonary compartment. Pulmonary coagulopathy could be an important therapeutic target in these patients.
Collapse
|
29
|
Markart P, Nass R, Ruppert C, Hundack L, Wygrecka M, Korfei M, Boedeker RH, Staehler G, Kroll H, Scheuch G, Seeger W, Guenther A. Safety and tolerability of inhaled heparin in idiopathic pulmonary fibrosis. J Aerosol Med Pulm Drug Deliv 2010; 23:161-72. [PMID: 20109123 DOI: 10.1089/jamp.2009.0780] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Abnormalities in alveolar coagulation occur in idiopathic pulmonary fibrosis (IPF). Anticoagulants attenuate bleomycin-induced lung fibrosis in animals. In this study, we first examined the pharmacokinetics of inhaled heparin in healthy subjects. Second, we investigated the safety and tolerability of heparin inhalation in IPF patients. METHODS Coagulation assays were performed in blood and bronchoalveolar lavage fluid samples from 19 healthy volunteers after inhalation of increasing amounts of unfractionated heparin. The acute effects of heparin inhalation on lung function and exercise capacity and the safety and tolerability of chronic heparin inhalation for 28 days were assessed in 20 IPF patients in an open-label exploratory pilot study. RESULTS In healthy subjects, inhalation of 150,000 IU heparin ("filled dose") significantly increased the partial thromboplastin time and anti-factor Xa activity in blood samples indicating the threshold dose. The local alveolar anticoagulant effect was detectable up to 72 h, and the alveolar half-life was estimated at 28 h. In IPF-patients, no acute deleterious effects on pulmonary function, gas exchange, or exercise capacity were noted after inhalation of the threshold dose. During chronic treatment, where one-fourth of the threshold dose was inhaled every 12 h for 28 days to obtain a steady-state anticoagulant activity in the alveolar space approximating the anticoagulant activity observed after threshold dose inhalation, no heparin-related side effects, such as hemoptysis or heparin-induced antibodies and thrombocytopenia, were detected in any patient, and median lung function values, exercise capacity, and quality of life scores appeared largely unaltered. Three adverse and one serious adverse events were noted; however, the relation of these events to the heparin inhalation was assessed as "unlikely" or "no relation" in each case. CONCLUSIONS Inhaled heparin appears to be safe and well tolerated in IPF patients. Future clinical trials are required to demonstrate the long-term safety and efficacy of inhaled heparin in IPF.
Collapse
Affiliation(s)
- Philipp Markart
- Department of Internal Medicine, Faculty of Medicine, Justus Liebig University, Giessen, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Thaler U, Kraincuk P, Kamolz LP, Frey M, Metnitz PGH. [Inhalation injury--epidemiology, diagnosis and therapy]. Wien Klin Wochenschr 2010; 122:11-21. [PMID: 20177854 DOI: 10.1007/s00508-010-1303-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Accepted: 01/13/2010] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Inhalation injury is a vitally threatening medical syndrome, which might appear in patients with or without burn injuries. Thus, knowledge about development, diagnosis and treatment of inhalation injury should be available for each physician working in an intensive care unit. METHODS This review starts with the causal and formal pathogenesis of inhalation injuries. Furthermore, diagnosis and treatment in the critical care setting are presented, followed by the discussion of possible complications. Specific intoxications such as carbon monoxide are due to their importance separately discussed. CONCLUSIONS Inhalation injury present with an attributable excess mortality and thus worsen the prognosis of burned patients. New insights into the pathogenesis of inhalation injury, however, have led to improved therapeutic possibilities with improved outcome. Necessary prerequisites are a timely diagnosis and restrictive volume management, especially in patients with extensive burns. Prospective studies are needed to be able to answer the many emerging questions.
Collapse
Affiliation(s)
- Ulrich Thaler
- Universitätsklinik für Anästhesie, Allgemeine Intensivmedizin und Schmerztherapie, Medizinische Universität Wien, Wien, Austria
| | | | | | | | | |
Collapse
|
31
|
Thai A, Xiao J, Ammit A, Rohanizadeh R. Development of inhalable formulations of anti-inflammatory drugs to potentially treat smoke inhalation injury in burn victims. Int J Pharm 2010; 389:41-52. [DOI: 10.1016/j.ijpharm.2010.01.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2009] [Revised: 01/04/2010] [Accepted: 01/10/2010] [Indexed: 12/01/2022]
|
32
|
Burcham PC, Raso A, Thompson CA. Toxicity of smoke extracts towards A549 lung cells: role of acrolein and suppression by carbonyl scavengers. Chem Biol Interact 2010; 183:416-24. [PMID: 20015449 DOI: 10.1016/j.cbi.2009.12.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Revised: 12/07/2009] [Accepted: 12/08/2009] [Indexed: 02/06/2023]
Abstract
The noxious 3-carbon electrophile acrolein forms on combustion of diverse organic matter including synthetic polymers such as polyethylene. While known to play a key role in smoke inhalation injury (SII), the molecular basis for the pulmonary toxicity of high dose acrolein-containing smoke is unclear. As a result, drug interventions in SII are poorly directed against pathogenetic smoke toxicants such as acrolein. The first aim of this study was to confirm a role for acrolein in the acute toxicity of smoke extracts towards A549 lung cells by monitoring adduction of known acrolein targets and the expression of acrolein-inducible genes. A second aim was to evaluate carbonyl scavengers for their abilities to protect cell targets and block smoke extract toxicity. Extracts were prepared by bubbling smoke released by smouldering polyethylene through a buffered saline-trap. Acrolein levels in the extracts were estimated via HPLC after derivatisation with 2,4-dinitrophenylhydrazine. Extracts were highly toxic towards A549 cells, eliciting greater ATP depletion than an equivalent concentration of acrolein alone. The toxicity was accompanied by pronounced carbonylation of several cytoskeletal targets, namely vimentin and keratins-7, -8 and -18. Western blotting revealed that polyethylene combustion products also upregulated several acrolein-responsive protein markers, including GADD45beta, NQO1, HMOX, Hsp70, Nur77 and Egr1. Several carbonyl scavengers (bisulfite, d-penicillamine, hydralazine and 1-hydrazinoisoquinoline) strongly attenuated smoke extract toxicity, with bisulfite suppressing both the adduction and cross-linking of intermediate filament targets. Bisulfite also suppressed the cytotoxicity of smoke extracts when detected using real-time monitoring of cellular impedance. These findings confirm a key role for acrolein in smoke cytotoxicity and suggest drugs that block acrolein toxicity deserve further investigation as possible interventions against SII.
Collapse
Affiliation(s)
- Philip C Burcham
- Pharmacology and Anaesthesiology Unit, School of Medicine and Pharmacology, The University of Western Australia, Nedlands, WA 6009, Australia.
| | | | | |
Collapse
|
33
|
Update on Antithrombin for the Treatment of Burn Trauma and Smoke Inhalation Injury. Intensive Care Med 2010. [DOI: 10.1007/978-1-4419-5562-3_27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
34
|
Abstract
This review article describes the pathophysiological aspects of acute lung injury (ALI) and acute respiratory distress syndrome (ARDS), induced by combined burn and smoke inhalation and examines various therapeutic approaches. The injury results in a fall in arterial oxygenation as a result of airway obstruction, increased pulmonary transvascular fluid flux and loss of hypoxic pulmonary vasoconstriction. The changes in cardiopulmonary function are mediated by reactive oxygen and nitrogen species. Nitric oxide (NO) is generated by both inducible and constitutive isoforms of nitric oxide synthase (NOS). Recently, neuronal NOS emerged as a major component within the pathogenesis of ARDS. NO rapidly combines with the oxygen radical superoxide to form reactive and highly toxic nitrogen species such as peroxynitrite. The control of NO formation involves poly(ADP-ribose) polymerase and its ability to up-regulate the activity of nuclear transcription factors through ribosylation. In addition, present data support a major role of the bronchial circulation in the injury, as blockage of bronchial blood flow will also minimize the pulmonary injury. Current data suggest that cytotoxins and activated cells are formed in the airway and carried to the parenchyma.
Collapse
|
35
|
Esechie A, Enkhbaatar P, Traber DL, Jonkam C, Lange M, Hamahata A, Djukom C, Whorton EB, Hawkins HK, Traber LD, Szabo C. Beneficial effect of a hydrogen sulphide donor (sodium sulphide) in an ovine model of burn- and smoke-induced acute lung injury. Br J Pharmacol 2009; 158:1442-53. [PMID: 19845680 DOI: 10.1111/j.1476-5381.2009.00411.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND AND PURPOSE The present study investigated whether the pathophysiological changes induced by burn and smoke inhalation are modulated by parenteral administration of Na(2)S, a H(2)S donor. EXPERIMENTAL APPROACH The study used a total of 16 chronically instrumented, adult female sheep. Na(2)S was administered 1 h post injury, as a bolus injection at a dose of 0.5 mg.kg(-1) and subsequently, as a continuous infusion at a rate of 0.2 mg.kg(-1).h(-1) for 24 h. Cardiopulmonary variables (mean arterial and pulmonary arterial blood pressure, cardiac output, ventricular stroke work index, vascular resistance) and arterial and mixed venous blood gases were measured. Lung wet-to-dry ratio and myeloperoxidase content and protein oxidation and nitration were also measured. In addition, lung inducible nitric oxide synthase expression and cytochrome c were measured in lung homogenates via Western blotting and enzyme-linked immunosorbent assay (elisa) respectively. KEY RESULTS The H(2)S donor decreased mortality during the 96 h experimental period, improved pulmonary gas exchange and lowered further increase in inspiratory pressure and fluid accumulation associated with burn- and smoke-induced acute lung injury. Further, the H(2)S donor treatment reduced the presence of protein oxidation and 3-nitrotyrosine formation following burn and smoke inhalation injury. CONCLUSIONS AND IMPLICATIONS Parenteral administration of the H(2)S donor ameliorated the pulmonary pathophysiological changes associated with burn- and smoke-induced acute lung injury. Based on the effect of H(2)S observed in this clinically relevant model of disease, we propose that treatment with H(2)S or its donors may represent a potential therapeutic strategy in managing patients with acute lung injury.
Collapse
Affiliation(s)
- Aimalohi Esechie
- Department of Neuroscience and Cell Biology, The University of Texas Medical Branch, Galveston, 77550, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Rehberg S, Maybauer MO, Enkhbaatar P, Maybauer DM, Yamamoto Y, Traber DL. Pathophysiology, management and treatment of smoke inhalation injury. Expert Rev Respir Med 2009; 3:283-297. [PMID: 20161170 PMCID: PMC2722076 DOI: 10.1586/ers.09.21] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Smoke inhalation injury continues to increase morbidity and mortality in burn patients in both the third world and industrialized countries. The lack of uniform criteria for the diagnosis and definition of smoke inhalation injury contributes to the fact that, despite extensive research, mortality rates have changed little in recent decades. The formation of reactive oxygen and nitrogen species, as well as the procoagulant and antifibrinolytic imbalance of alveolar homeostasis, all play a central role in the pathogenesis of smoke inhalation injury. Further hallmarks include massive airway obstruction owing to cast formation, bronchospasm, the increase in bronchial circulation and transvascular fluid flux. Therefore, anticoagulants, antioxidants and bronchodilators, especially when administered as an aerosol, represent the most promising treatment strategies. The purpose of this review article is to provide an overview of the pathophysiological changes, management and treatment options of smoke inhalation injury based on the current literature.
Collapse
Affiliation(s)
- Sebastian Rehberg
- Department of Anesthesiology, The University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA, Tel.: +1 409 772 6405, ,
| | | | | | | | | | | |
Collapse
|
37
|
|
38
|
Abstract
OBJECTIVE Acute respiratory distress syndrome/acute lung injury is a serious complication of burn patients with concomitant smoke inhalation injury. Nitric oxide has been shown to play a major role in pulmonary dysfunction from thermal damage. In this study, we have tested the hypothesis that inhibition of neuronal nitric oxide synthase could ameliorate the severity of acute lung injury using our well-established ovine model of cutaneous burn and smoke inhalation. DESIGN Prospective, randomized, controlled, experimental animals study. SETTING Investigational intensive care unit at university hospital. SUBJECTS Adult female sheep. INTERVENTIONS Female sheep (n = 16) were surgically prepared for the study. Seven days after surgery, all sheep were randomly allocated into three study groups: sham (noninjured, nontreated, n = 6); control (injured, treated with saline, n = 6); and neuronal nitric oxide synthase (injured, treated with specific neuronal nitric oxide synthase inhibitor, ZK 234238 (n = 4). Control and neuronal nitric oxide synthase groups were given a cutaneous burn (40% of total body surface, third degree) and insufflated with cotton smoke (48 breaths, <40 degrees C) under halothane anesthesia. Animals in sham group received fake injury also under halothane anesthesia. After injury or fake injury procedure, all sheep were placed on ventilators and resuscitated with lactated Ringer's solution. Neuronal nitric oxide synthase group was administered with continuous infusion of ZK 234238 started 1 hr postinjury with a dose of 100 microg/kg/hr. Sham and control groups received same amount of saline. MEASUREMENTS AND MAIN RESULTS Cardiopulmonary hemodynamics monitored during the 24-hr experimental time period was stable in the sham group. Control sheep developed multiple signs of acute lung injury. This pathophysiology included decreased pulmonary gas exchange and lung compliance, increased pulmonary edema, and inflammatory indices, such as interleukin-8. Treatment of injured sheep with neuronal nitric oxide synthase inhibitor attenuated all the observed pulmonary pathophysiology. CONCLUSIONS The results provide definitive evidence that inhibition of neuronal nitric oxide synthase-derived excessive nitric oxide may be a novel and beneficial treatment strategy for pulmonary pathology in burn victims with smoke inhalation injury.
Collapse
|