1
|
Jeitner TM, Singh PK, Azcona J, Euler CW, Kelly JM. Identifying transglutaminase substrate glutaminyls using dansylcadaverine. Anal Biochem 2025; 704:115888. [PMID: 40345315 DOI: 10.1016/j.ab.2025.115888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2025] [Revised: 04/29/2025] [Accepted: 04/30/2025] [Indexed: 05/11/2025]
Abstract
Dansylcadaverine is often used at a final concentration of 1 mM to identify transglutaminase substrate glutaminyl residues. At this concentration, dansylcadaverine only labels a fraction of the possible substrates. Therefore, we developed a 500 mM stock dansylcadaverine solution in dimethyl sulfoxide:acetic acid (19:1) that allows the identification of all transglutaminase substrate glutaminyl residues. This solution was used to identify these substrate residues: Gln 283, Gln 325, and Gln 677 in a fragment of arginine-specific gingipain A.
Collapse
Affiliation(s)
- Thomas M Jeitner
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA.
| | | | - Juan Azcona
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Chad W Euler
- Department of Medical Laboratory Sciences, Hunter College, City University of New York, New York, NY, USA; Department of Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| | - James M Kelly
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA; Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA; Citigroup Biomedical Imaging Center, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
2
|
Zhu Y, Furukawa S. Effects of two transglutaminases on innate immune responses in the oriental armyworm, Mythimna separata. INSECT SCIENCE 2025; 32:409-424. [PMID: 38988132 DOI: 10.1111/1744-7917.13420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/12/2024]
Abstract
Transglutaminase (TGase) is a key enzyme that mediates hemolymph coagulation and is thought to contribute to the elimination of pathogenic microorganisms in invertebrates. The objective of this study was to elucidate the involvement of TGase in insect immune responses via functional analysis of this enzyme in the oriental armyworm, Mythimna separata, using recombinant proteins and RNA interference technique. We identified two TGase genes, mystgase1 and mystgase2, in Mythimna separata and found that both genes are expressed in all surveyed tissues in M. separata larvae. Significant changes were induced in hemocytes following Escherichia coli injection. Injection of Gram-positive bacteria (Micrococcus luteus) and Gram-negative bacteria (Escherichia coli and Serratia marcescens) into larvae triggered a time-specific induction of both mystgase1 and mystgase2 in hemocytes. Recombinant MysTGase1 and MysTGase2 proteins bound to both E. coli and M. luteus, localizing within bacterial clusters and resulting in agglutination in a Ca2+-dependent manner. The hemocytes of larvae injected with recombinant MysTGase1 or MysTGase2 exhibited enhanced phagocytic ability against E. coli, improved in vivo bacterial clearance, and increased resistance to S. marcescens, decreasing larval mortality rate. Conversely, RNA interference targeting mystgase1 or mystgase2 significantly reduced hemocyte phagocytic capability, decreased bacterial clearance, and increased susceptibility to S. marcescens infection, thereby increasing larval mortality rate. The findings of this study are anticipated to expand our understanding of the function of TGases within insect immune responses and may contribute to developing new pest control strategies.
Collapse
Affiliation(s)
- Ying Zhu
- Degree Programs in Life and Earth Sciences, University of Tsukuba, Tsukuba, Japan
| | - Seiichi Furukawa
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
3
|
Starikova EA, Mammedova JT, Rubinstein AA, Sokolov AV, Kudryavtsev IV. Activation of the Coagulation Cascade as a Universal Danger Sign. Curr Issues Mol Biol 2025; 47:108. [PMID: 39996829 PMCID: PMC11854423 DOI: 10.3390/cimb47020108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 01/29/2025] [Accepted: 02/02/2025] [Indexed: 02/26/2025] Open
Abstract
Hemostasis is a mechanism that stops bleeding from an injured vessel, involves multiple interlinked steps, culminating in the formation of a "clot" sealing the damaged area. Moreover, it has long been recognized that inflammation also provokes the activation of the coagulation system. However, there has been an increasing amount of evidence revealing the immune function of the hemostasis system. This review collects and analyzes the results of the experimental studies and data from clinical observations confirming the inflammatory function of hemostasis. Here, we summarize the latest knowledge of the pathways in immune system activation under the influence of coagulation factors. The data analyzed allow us to consider the components of hemostasis as receptors recognizing «foreign» or damaged «self» or/and as «self» damage signals that initiate and reinforce inflammation and affect the direction of the adaptive immune response. To sum up, the findings collected in the review allow us to classify the coagulation factors, such as Damage-Associated Molecular Patterns that break down the conventional concepts of the coagulation system.
Collapse
Affiliation(s)
- Eleonora A. Starikova
- Laboratory of Cellular Immunology, Department of Immunology, Institute of Experimental Medicine, Akademika Pavlova 12, 197376 Saint Petersburg, Russia (I.V.K.)
- Medical Faculty, First Saint Petersburg State I. Pavlov Medical University, L’va Tolstogo St. 6-8, 197022 Saint Petersburg, Russia
- Department of Microbiology and Virology, Institute of Medical Education Almazov National Medical Research Centre, 2 Akkuratova Street, 197341 Saint Petersburg, Russia
| | - Jennet T. Mammedova
- Laboratory of Cellular Immunology, Department of Immunology, Institute of Experimental Medicine, Akademika Pavlova 12, 197376 Saint Petersburg, Russia (I.V.K.)
- Department of Molecular Biotechnology, Chemical and Biotechnology Faculty, Saint Petersburg State Institute of Technology, Moskovski Ave., 26, 190013 Saint Petersburg, Russia
| | - Artem A. Rubinstein
- Laboratory of Cellular Immunology, Department of Immunology, Institute of Experimental Medicine, Akademika Pavlova 12, 197376 Saint Petersburg, Russia (I.V.K.)
| | - Alexey V. Sokolov
- Laboratory of Systemic Virology, Department of Molecular Biology of Viruses, Smorodintsev Research Institute of Influenza, 15/17, Prof. Popova Str., 197376 Saint Petersburg, Russia;
| | - Igor V. Kudryavtsev
- Laboratory of Cellular Immunology, Department of Immunology, Institute of Experimental Medicine, Akademika Pavlova 12, 197376 Saint Petersburg, Russia (I.V.K.)
- Medical Faculty, First Saint Petersburg State I. Pavlov Medical University, L’va Tolstogo St. 6-8, 197022 Saint Petersburg, Russia
| |
Collapse
|
4
|
Syed Mohammed RD, Gutierrez Luque L, Maurer MC. Factor XIII Activation Peptide Residues Play Important Roles in Stability, Activation, and Transglutaminase Activity. Biochemistry 2024; 63:2830-2841. [PMID: 39422351 DOI: 10.1021/acs.biochem.4c00318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
A subunit of factor XIII (FXIII-A) contains a unique activation peptide (AP) that protects the catalytic triad and prevents degradation. In plasma, FXIII is activated proteolytically (FXIII-A*) by thrombin and Ca2+ cleaving AP, while in cytoplasm, it is activated nonproteolytically (FXIII-A°) with increased Ca2+ concentrations. This study aimed to elucidate the role of individual parts of the FXIII-A AP in protein stability, thrombin activation, and transglutaminase activity. Recombinant FXIII-A AP variants were expressed, and SDS-PAGE was used to monitor thrombin hydrolysis at the AP cleavage sites R37-G38. Transglutaminase activities were assessed by cross-linking lysine mimics to Fbg αC (233-425, glutamine-substrate) and monitoring reactions by mass spectrometry and in-gel fluorescence assays. FXIII-A AP variants, S19P, E23K, and D24V, degraded during purification, indicating their vital role in FXIII-A2 stability. Mutation of P36 to L36/F36 abolished the proteolytic cleavage of AP and thus prevented activation. FXIII-A N20S and P27L exhibited slower thrombin activation, likely due to the loss of key interdomain H-bonding interactions. Except N20S and P15L/P16L, all activatable FXIII-A* variants (P15L, P16L, S19A, and P27L) showed similar cross-linking activity to WT. By contrast, FXIII-A° P15L, P16L, and P15L/P16L had significantly lower cross-linking activity than FXIII-A° WT, suggesting that loss of these prolines had a greater structural impact. In conclusion, FXIII-A AP residues that play crucial roles in FXIII-A stability, activation, and activity were identified. The interactions between these AP amino acid residues and other domains control the stability and activity of FXIII.
Collapse
Affiliation(s)
- Rameesa D Syed Mohammed
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, United States
| | - Lianay Gutierrez Luque
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, United States
| | - Muriel C Maurer
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, United States
| |
Collapse
|
5
|
Žunić M, Vreča N, Bevc S. The role of factor XIII in patient blood management. Blood Coagul Fibrinolysis 2024; 35:325-333. [PMID: 39397731 PMCID: PMC11462988 DOI: 10.1097/mbc.0000000000001326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/14/2024] [Indexed: 10/15/2024]
Abstract
Factor XIII (FXIII), a plasma transglutaminase, is a coagulation factor that plays a crucial role in blood clotting and patient blood management. The studies have demonstrated that FXIII targets a wide range of additional substrates that have an important role in hemostasis, especially in posttraumatic patients, patients undergoing surgery or obstetrics, being involved in wound healing and tissue repair. Morover, FXIII deficiency has also been described and an extensive research has shown that FXIII deficiency is a rare coagulopathy that leads to longer bleeding time, perioperative and postoperative complications and slower wound healing. Present article aims to overview the diverse functions of FXIII and to highlight its role in patient blood management.
Collapse
Affiliation(s)
- Miodrag Žunić
- Department of Anaesthesiology, Intensive care, and Pain management, University Medical Centre Maribor
- Faculty of Medicine, Univesity of Maribor, Maribor, Slovenia
| | - Nino Vreča
- Department of Nephrology, University Medical Centre Maribor
| | - Sebastjan Bevc
- Department of Nephrology, University Medical Centre Maribor
- Faculty of Medicine, Univesity of Maribor, Maribor, Slovenia
| |
Collapse
|
6
|
Guilabert P, Abarca L, Usúa G, Martin N, Alonso M, Barret JP, Colomina MJ. Factor XIII in major burns coagulation. Burns 2024; 50:1769-1778. [PMID: 38902134 DOI: 10.1016/j.burns.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 04/25/2024] [Accepted: 05/02/2024] [Indexed: 06/22/2024]
Abstract
BACKGROUND In the days following a burn injury, major burn patients (MBP) present a multifactorial coagulation disorder known as acute burn-induced coagulopathy. Several studies have investigated coagulation in MBPs; however, Factor XIII (FXIII), which converts fibrin monomers into a stable clot and promotes wound healing, has not yet been studied. OBJECTIVE To determine the kinetics of FXIII and other coagulation factors and cofactors in MBPs in order to clarify coagulopathy in these patients and its potential relationship with surgical bleeding. METHODS Prospective observational pilot study of the kinetics of FXIII and other coagulation factors and cofactors in MBPs during the first 30 days of burn injury. RESULTS FXIII levels show a significant decline of 75.10% in the interval between the burn injury and surgery, and a decline of 87.70% in the 24 h following surgery. Patients undergo surgery with a median antigenic FXIII of 32%. Plasma levels of most factors decrease significantly 24 h after the burn injury. CONCLUSION MBPs experience a significant decrease in plasma levels of FXIII from the time of admission up to 24 h after surgery. Abnormally low levels were observed at the time of surgery that could not be detected by other coagulation tests. The decrease in most factors at 24 h seems to be associated with dilution due to intensive fluid resuscitation.
Collapse
Affiliation(s)
- Patricia Guilabert
- Anesthesia and Critical Care Department. University Hospital Vall d'Hebron, Autonomous University of Barcelona, Barcelona, Spain.
| | - Luis Abarca
- Anesthesia and Critical Care Department. University Hospital Vall d'Hebron, Autonomous University of Barcelona, Barcelona, Spain.
| | - Gemma Usúa
- Anesthesia and Critical Care Department. University Hospital Vall d'Hebron, Autonomous University of Barcelona, Barcelona, Spain.
| | - Nuria Martin
- Anesthesia and Critical Care Department. Hospital Clinic Barcelona, Spain.
| | - María Alonso
- Anesthesia and Critical Care Department. University Hospital Vall d'Hebron, Autonomous University of Barcelona, Barcelona, Spain.
| | - Joan P Barret
- Plastic Surgery Department and Burn Centre. University Hospital Vall d'Hebron. Autonomous University of Barcelona, Barcelona, Spain.
| | - Maria J Colomina
- Anesthesia and Critical Care Department, University Bellvitge Hospital, University of Barcelona, Barcelona, Spain.
| |
Collapse
|
7
|
Mohammed RDS, Piell KM, Maurer MC. Identification of Factor XIII β-Sandwich Residues Mediating Glutamine Substrate Binding and Activation Peptide Cleavage. Thromb Haemost 2024; 124:408-422. [PMID: 38040030 DOI: 10.1055/a-2220-7544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2023]
Abstract
BACKGROUND Factor XIII (FXIII) forms covalent crosslinks across plasma and cellular substrates and has roles in hemostasis, wound healing, and bone metabolism. FXIII activity is implicated in venous thromboembolism (VTE) and is a target for developing pharmaceuticals, which requires understanding FXIII - substrate interactions. Previous studies proposed the β-sandwich domain of the FXIII A subunit (FXIII-A) exhibits substrate recognition sites. MATERIAL AND METHODS Recombinant FXIII-A proteins (WT, K156E, F157L, R158Q/E, R171Q, and R174E) were generated to identify FXIII-A residues mediating substrate recognition. Proteolytic (FXIII-A*) and non-proteolytic (FXIII-A°) forms were analyzed for activation and crosslinking activities toward physiological substrates using SDS-PAGE and MALDI-TOF MS. RESULTS All FXIII-A* variants displayed reduced crosslinking abilities compared to WT for Fbg αC (233 - 425), fibrin, and actin. FXIII-A* WT activity was greater than A°, suggesting the binding site is more exposed in FXIII-A*. With Fbg αC (233 - 425), FXIII-A* variants R158Q/E, R171Q, and R174E exhibited decreased activities approaching those of FXIII-A°. However, with a peptide substrate, FXIII-A* WT and variants showed similar crosslinking suggesting the recognition site is distant from the catalytic site. Surprisingly, FXIII-A R158E and R171Q displayed slower thrombin activation than WT, potentially due to loss of crucial H-bonding with neighboring activation peptide (AP) residues. CONCLUSION In conclusion, FXIII-A residues K156, F157, R158, R171, and R174 are part of a binding site for physiological substrates [fibrin (α and γ) and actin]. Moreover, R158 and R171 control AP cleavage during thrombin activation. These investigations provide new molecular details on FXIII - substrate interactions that control crosslinking abilities.
Collapse
Affiliation(s)
| | - Kellianne M Piell
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, Kentucky, United States
| | - Muriel C Maurer
- Department of Chemistry, University of Louisville, Louisville, Kentucky, United States
| |
Collapse
|
8
|
Yamada S, Asakura H. How We Interpret Thrombosis with Thrombocytopenia Syndrome? Int J Mol Sci 2024; 25:4956. [PMID: 38732176 PMCID: PMC11084439 DOI: 10.3390/ijms25094956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/16/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
Platelets play an important role in hemostasis, and a low platelet count usually increases the risk of bleeding. Conditions in which thrombosis occurs despite low platelet counts are referred to as thrombosis with thrombocytopenia syndrome, including heparin-induced thrombocytopenia, vaccine-induced immune thrombotic thrombocytopenia, paroxysmal nocturnal hemoglobinuria, antiphospholipid syndrome, thrombotic microangiopathy (TMA), and disseminated intravascular coagulation. TMA includes thrombotic thrombocytopenic purpura, Shiga toxin-producing Escherichia coli-associated hemolytic uremic syndrome (HUS), and atypical HUS. Patients with these pathologies present with thrombosis and consumptive thrombocytopenia associated with the activation of platelets and the coagulation system. Treatment varies from disease to disease, and many diseases have direct impacts on mortality and organ prognosis if therapeutic interventions are not promptly implemented. Underlying diseases and the results of physical examinations and general laboratory tests as part of a thorough workup for patients should promptly lead to therapeutic intervention before definitive diagnosis. For some diseases, the diagnosis and initial treatment must proceed in parallel. Utilization of not only laboratory tests but also various scoring systems is important for validating therapeutic interventions based on clinical information.
Collapse
Affiliation(s)
| | - Hidesaku Asakura
- Department of Hematology, Kanazawa University Hospital, Takaramachi 13-1, Kanazawa City 920-8640, Ishikawa, Japan;
| |
Collapse
|
9
|
Marta-Enguita J, Navarro-Oviedo M, Machado FJDM, Bermejo R, Aymerich N, Herrera M, Zandio B, Pagola J, Juega J, Marta-Moreno J, Rodriguez JA, Páramo JA, Roncal C, Muñoz R, Orbe J. Role of factor XIII in ischemic stroke: a key molecule promoting thrombus stabilization and resistance to lysis. J Thromb Haemost 2024; 22:1080-1093. [PMID: 38160727 DOI: 10.1016/j.jtha.2023.12.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 12/14/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND Active coagulation factor XIII (FXIII) catalyzing crosslinking of fibrin and other hemostatic factors plays a key role in clot stability and lysis. OBJECTIVES To evaluate the effect of FXIII inhibition in a mouse model of ischemic stroke (IS) and the role of activated FXIII (FXIIIa) in clot formation and lysis in patients with IS. METHODS A ferric chloride IS murine model was performed before and after administration of a FXIIIa inhibitor (FXIIIinh). Thromboelastometry in human and mice blood was used to evaluate thrombus stiffness and lysis with FXIIIinh. FXIIIa-dependent fibrin crosslinking and lysis with fibrinolytic drugs (tissue plasminogen activator and tenecteplase) were studied on fibrin plates and on thrombi and clotted plasma of patients with IS. Finally, circulating and thrombus FXIIIa were measured in 85 patients with IS. RESULTS FXIIIinh administration before stroke induction reduced infarct size, α2-antiplasmin (α2AP) crosslinking, and local microthrombosis, improving motor coordination and fibrinolysis without intracranial bleeds (24 hours). Interestingly, FXIII blockade after stroke also reduced brain damage and neurologic deficit. Thromboelastometry in human/mice blood with FXIIIinh showed delayed clot formation, reduced clot firmness, and shortened tissue plasminogen activator lysis time. FXIIIa fibrin crosslinking increased fibrin density and lysis resistance, which increased further after α2AP addition. FXIIIinh enhanced ex vivo lysis in stroke thrombi and fibrin plates. In patients with IS, thrombus FXIII and α2AP were associated with inflammatory and hemostatic components, and plasma FXIIIa correlated with thrombus α2AP and fibrin. CONCLUSION Our results suggest a key role of FXIIIa in thrombus stabilization, α2AP crosslinking, and lysis resistance, with a protective effect of FXIIIinh in an IS experimental model.
Collapse
Affiliation(s)
- Juan Marta-Enguita
- Atherothrombosis Laboratory, Cardiovascular Diseases Program, Centro de Investigacion Medica Aplicada (CIMA), Universidad de Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona Spain; Neurology Department, Hospital Universitario Navarra, Pamplona, Spain; Red de Investigación Cooperativa Orientada a Resultados en Salud (RICORS)-Ictus Instituto de Salud Carlos III (ISCIII), Madrid, Spain. https://twitter.com/jmartaen
| | - Manuel Navarro-Oviedo
- Atherothrombosis Laboratory, Cardiovascular Diseases Program, Centro de Investigacion Medica Aplicada (CIMA), Universidad de Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona Spain
| | - Florencio J D M Machado
- Atherothrombosis Laboratory, Cardiovascular Diseases Program, Centro de Investigacion Medica Aplicada (CIMA), Universidad de Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona Spain
| | - Rebeca Bermejo
- Neurointervencionist Radiology, Hospital Universitario Navarra, Pamplona, Spain
| | - Nuria Aymerich
- Neurology Department, Hospital Universitario Navarra, Pamplona, Spain; Red de Investigación Cooperativa Orientada a Resultados en Salud (RICORS)-Ictus Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Maria Herrera
- Neurology Department, Hospital Universitario Navarra, Pamplona, Spain; Red de Investigación Cooperativa Orientada a Resultados en Salud (RICORS)-Ictus Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Beatriz Zandio
- Neurology Department, Hospital Universitario Navarra, Pamplona, Spain; Red de Investigación Cooperativa Orientada a Resultados en Salud (RICORS)-Ictus Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Jorge Pagola
- Red de Investigación Cooperativa Orientada a Resultados en Salud (RICORS)-Ictus Instituto de Salud Carlos III (ISCIII), Madrid, Spain; Stroke Unit, Vall d'Hebron Instituto de Investigación (VHIR), Hospital Universitario Vall d'Hebron, Barcelona, Spain
| | - Jesús Juega
- Red de Investigación Cooperativa Orientada a Resultados en Salud (RICORS)-Ictus Instituto de Salud Carlos III (ISCIII), Madrid, Spain; Stroke Unit, Vall d'Hebron Instituto de Investigación (VHIR), Hospital Universitario Vall d'Hebron, Barcelona, Spain
| | - Javier Marta-Moreno
- Red de Investigación Cooperativa Orientada a Resultados en Salud (RICORS)-Ictus Instituto de Salud Carlos III (ISCIII), Madrid, Spain; Neurology Department, Hospital Universitario Miguel Servet, IIS-Aragon, Zaragoza, Spain
| | - Jose-Antonio Rodriguez
- Atherothrombosis Laboratory, Cardiovascular Diseases Program, Centro de Investigacion Medica Aplicada (CIMA), Universidad de Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), ISCIII, Madrid, Spain
| | - Jose-Antonio Páramo
- Atherothrombosis Laboratory, Cardiovascular Diseases Program, Centro de Investigacion Medica Aplicada (CIMA), Universidad de Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), ISCIII, Madrid, Spain; Hematology Department, Clinica Universidad Navarra, Pamplona, Spain
| | - Carmen Roncal
- Atherothrombosis Laboratory, Cardiovascular Diseases Program, Centro de Investigacion Medica Aplicada (CIMA), Universidad de Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), ISCIII, Madrid, Spain
| | - Roberto Muñoz
- Neurology Department, Hospital Universitario Navarra, Pamplona, Spain; Red de Investigación Cooperativa Orientada a Resultados en Salud (RICORS)-Ictus Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Josune Orbe
- Atherothrombosis Laboratory, Cardiovascular Diseases Program, Centro de Investigacion Medica Aplicada (CIMA), Universidad de Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona Spain; Red de Investigación Cooperativa Orientada a Resultados en Salud (RICORS)-Ictus Instituto de Salud Carlos III (ISCIII), Madrid, Spain.
| |
Collapse
|
10
|
Yeh S, Yeh T, Wang Y, Chao C, Tzeng S, Tang T, Hsieh J, Kan Y, Yang W, Hsieh S. Nerve pathology of microangiopathy and thromboinflammation in hereditary transthyretin amyloidosis. Ann Clin Transl Neurol 2024; 11:30-44. [PMID: 37902278 PMCID: PMC10791016 DOI: 10.1002/acn3.51930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 10/10/2023] [Indexed: 10/31/2023] Open
Abstract
OBJECTIVE Despite amyloid deposition as a hallmark of hereditary transthyretin amyloidosis (ATTRv) with polyneuropathy, this pathology could not completely account for nerve degeneration. ATTRv patients frequently have vasomotor symptoms, but microangiopathy hypothesis in ATTRv was not systemically clarified. METHODS This study examined the vascular pathology of sural nerves in ATTRv patients with transthyretin (TTR) mutation of p.Ala117Ser (TTR-A97S), focusing on morphometry and patterns of molecular expression in relation to nerve degeneration. We further applied human microvascular endothelial cell (HMEC-1) culture to examine the direct effect of TTR-A97S protein on endothelial cells. RESULTS In ATTRv nerves, there was characteristic microangiopathy compared to controls: increased vessel wall thickness and decreased luminal area; both were correlated with the reduction of myelinated fiber density. Among the components of vascular wall, the area of collagen IV in ATTRv nerves was larger than that of controls. This finding was validated in a cell model of HMEC-1 culture in which the expression of collagen IV was upregulated after exposure to TTR-A97S. Apoptosis contributed to the endothelial cell degeneration of microvasculatures in ATTRv endoneurium. ATTRv showed prothrombotic status with intravascular fibrin deposition, which was correlated with (1) increased tissue factor and coagulation factor XIIIA and (2) reduced tissue plasminogen activator. This cascade led to intravascular thrombin deposition, which was colocalized with upregulated p-selectin and thrombomodulin, accompanied by complement deposition and macrophages infiltration, indicating thromboinflammation in ATTRv. INTERPRETATION Microangiopathy with thromboinflammation is characteristic of advanced-stage ATTRv nerves, which provides an add-on mechanism and therapeutic target for nerve degeneration.
Collapse
Affiliation(s)
- Shin‐Joe Yeh
- Department of NeurologyNational Taiwan University HospitalTaipeiTaiwan
| | - Ti‐Yen Yeh
- Department of Anatomy and Cell BiologyNational Taiwan University College of MedicineTaipeiTaiwan
| | - Yi‐Shiang Wang
- Institute of Biochemistry and Molecular BiologyNational Taiwan University College of MedicineTaipeiTaiwan
| | - Chi‐Chao Chao
- Department of NeurologyNational Taiwan University HospitalTaipeiTaiwan
| | - Shiou‐Ru Tzeng
- Institute of Biochemistry and Molecular BiologyNational Taiwan University College of MedicineTaipeiTaiwan
| | - Tsz‐Yi Tang
- Department of UrologyKaohsiung Medical University Hospital, Kaohsiung Medical UniversityKaohsiungTaiwan
- Department of UrologyKaohsiung Municipal Siaogang HospitalKaohsiungTaiwan
| | - Jung‐Hsien Hsieh
- Department of SurgeryNational Taiwan University HospitalTaipeiTaiwan
| | - Yu‐Yu Kan
- Department of Anatomy and Cell Biology, School of MedicineCollege of Medicine, Taipei Medical UniversityTaipeiTaiwan
- School of Medicine, College of Medicine, National Sun Yat‐Sen UniversityKaohsiungTaiwan
| | - Wei‐Kang Yang
- Department of Anatomy and Cell BiologyNational Taiwan University College of MedicineTaipeiTaiwan
| | - Sung‐Tsang Hsieh
- Department of NeurologyNational Taiwan University HospitalTaipeiTaiwan
- Department of Anatomy and Cell BiologyNational Taiwan University College of MedicineTaipeiTaiwan
- Graduate Institute of Clinical Medicine, National Taiwan University College of MedicineTaipeiTaiwan
- Graduate Institute of Brain and Mind Sciences, National Taiwan University College of MedicineTaipeiTaiwan
- Center of Precision MedicineNational Taiwan University College of MedicineTaipeiTaiwan
| |
Collapse
|
11
|
Dang Y, Zhang Y, Jian M, Luo P, Anwar N, Ma Y, Zhang D, Wang X. Advances of Blood Coagulation Factor XIII in Bone Healing. TISSUE ENGINEERING. PART B, REVIEWS 2023; 29:591-604. [PMID: 37166415 DOI: 10.1089/ten.teb.2023.0016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The biologic process of bone healing is complicated, involving a variety of cells, cytokines, and growth factors. As a result of bone damage, the activation of a clotting cascade leads to hematoma with a high osteogenic potential in the initial stages of healing. A major factor involved in this course of events is clotting factor XIII (FXIII), which can regulate bone defect repair in different ways during various stages of healing. Autografts and allografts often have defects in clinical practice, making the development of advanced materials that support bone regeneration a critical requirement. Few studies, however, have examined the promotion of bone healing by FXIII in combination with biomaterials, in particular, its effect on blood coagulation and osteogenesis. Therefore, we mainly summarized the role of FXIII in promoting bone regeneration by regulating the extracellular matrix and type I collagen, bone-related cells, angiogenesis, and platelets, and described the research progress of FXIII = related biomaterials on osteogenesis. This review provides a reference for investigators to explore the mechanism by which FXIII promotes bone healing and the combination of FXIII with biomaterials to achieve targeted bone tissue repair.
Collapse
Affiliation(s)
- Yi Dang
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yi Zhang
- Department of Hygiene Toxicology, School of Public Health, Zunyi Medical University, Zunyi, China
| | - Minghui Jian
- Department of Hygiene Toxicology, School of Public Health, Zunyi Medical University, Zunyi, China
| | - Peng Luo
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Nadia Anwar
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yaping Ma
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Dingmei Zhang
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Center for Tissue Engineering, The Fourth Military Medical University, Xian, China
| | - Xin Wang
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- School of Mechanical, Medical and Process Engineering, Center for Biomedical Technologies, Queensland University of Technology, Brisbane, Queensland, Australia
| |
Collapse
|
12
|
Bazzan E, Casara A, Radu CM, Tinè M, Biondini D, Faccioli E, Pezzuto F, Bernardinello N, Conti M, Balestro E, Calabrese F, Simioni P, Rea F, Turato G, Spagnolo P, Cosio MG, Saetta M. Macrophages-derived Factor XIII links coagulation to inflammation in COPD. Front Immunol 2023; 14:1131292. [PMID: 37180121 PMCID: PMC10166842 DOI: 10.3389/fimmu.2023.1131292] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 04/05/2023] [Indexed: 05/15/2023] Open
Abstract
Background The local, extravascular, activation of the coagulation system in response to injury is a key factor mediating the resulting inflammatory response. Coagulation Factor XIIIA (FXIIIA) found in alveolar macrophages (AM) and dendritic cells (DC), by influencing fibrin stability, might be an inflammatory modifier in COPD. Aims To study the expression of FXIIIA in AM and Langerin+DC (DC-1) and their relation to the inflammatory response and disease progression in COPD. Methods In 47 surgical lungs, 36 from smokers (22 COPD and 14 no-COPD) and 11 from non-smokers we quantified by immunohistochemistry FXIIIA expression in AM and DC-1 along with numbers of CD8+Tcells and CXCR3 expression in lung parenchyma and airways. Lung function was measured prior to surgery. Results The percentage of AM expressing FXIII (%FXIII+AM) was higher in COPD than no-COPD and non-smokers. DC-1 expressed FXIIIA and their numbers were higher in COPD than no-COPD and non-smokers. DC-1 positively correlated with %FXIII+AM (r=0.43; p<0.018). CD8+Tcells, which were higher in COPD than in no-COPD, were correlated with DC-1 (p<0.01) and %FXIII+AM. CXCR3+ cells were increased in COPD and correlated with %FXIII+AM (p<0.05). Both %FXIII+AM (r=-0.6; p=0.001) and DC-1 (r=-0.7; p=0.001) correlated inversely with FEV1. Conclusion FXIIIA, an important link between the extravascular coagulation cascade and inflammatory response, is significantly expressed in alveolar macrophages and dendritic cells of smokers with COPD, suggesting that it could play an important role in the adaptive inflammatory reaction characteristic of the disease.
Collapse
Affiliation(s)
- Erica Bazzan
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Alvise Casara
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | | | - Mariaenrica Tinè
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Davide Biondini
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
- Department of Medicine, University of Padova, Padova, Italy
| | - Eleonora Faccioli
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Federica Pezzuto
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Nicol Bernardinello
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Maria Conti
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Elisabetta Balestro
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Fiorella Calabrese
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Paolo Simioni
- Department of Medicine, University of Padova, Padova, Italy
| | - Federico Rea
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Graziella Turato
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Paolo Spagnolo
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Manuel G. Cosio
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
- Meakins-Christie Laboratories, Respiratory Division, McGill University, Montreal, QC, Canada
| | - Marina Saetta
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| |
Collapse
|
13
|
Syed Mohammed RD, Ablan FDO, McCann NM, Hindi MM, Maurer MC. Transglutaminase Activities of Blood Coagulant Factor XIII Are Dependent on the Activation Pathways and on the Substrates. Thromb Haemost 2023; 123:380-392. [PMID: 36473493 PMCID: PMC10719020 DOI: 10.1055/a-1993-4193] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Factor XIII (FXIII) catalyzes formation of γ-glutamyl-ε-lysyl crosslinks between reactive glutamines (Q) and lysines (K). In plasma, FXIII is activated proteolytically (FXIII-A*) by the concerted action of thrombin and Ca2+. Cellular FXIII is activated nonproteolytically (FXIII-A°) by elevation of physiological Ca2+ concentrations. FXIII-A targets plasmatic and cellular substrates, but questions remain on correlating FXIII activation, resultant conformational changes, and crosslinking function to different physiological substrates. To address these issues, the characteristics of FXIII-A* versus FXIII-A° that contribute to transglutaminase activity and substrate specificities were investigated. Crosslinking of lysine mimics into a series of Q-containing substrates were measured using in-gel fluorescence, mass spectrometry, and UV-Vis spectroscopy. Covalent incorporation of fluorescent monodansylcadaverine revealed that FXIII-A* exhibits greater activity than FXIII-A° toward Q residues within Fbg αC (233-425 WT, Q328P Seoul II, and Q328PQ366N) and actin. FXIII-A* and FXIII-A° displayed similar activities toward α2-antiplasmin (α2AP), fibronectin, and Fbg αC (233-388, missing FXIII-binding site αC 389-402). Furthermore, the N-terminal α2AP peptide (1-15) exhibited similar kinetic properties for FXIII-A* and FXIII-A°. MALDI-TOF mass spectrometry assays with glycine ethyl ester and Fbg αC (233-425 WT, αC E396A, and truncated αC (233-388) further documented that FXIII-A* exerts greater benefit from the αC 389-402 binding site than FXIII-A°. Conformational properties of FXIII-A* versus A° are proposed to help promote transglutaminase function toward different substrates. A combination of protein substrate disorder and secondary FXIII-binding site exposure are utilized to control activity and specificity. From these studies, greater understandings of how FXIII-A targets different substrates are achieved.
Collapse
Affiliation(s)
| | | | | | - Mohammed M. Hindi
- Department of Chemistry, University of Louisville, Louisville, KY, USA
| | - Muriel C. Maurer
- Department of Chemistry, University of Louisville, Louisville, KY, USA
| |
Collapse
|
14
|
Yamada S, Asakura H, Kubo M, Sakai K, Miyamoto T, Matsumoto M. Distinguishing immune-mediated thrombotic thrombocytopenic purpura from septic disseminated intravascular coagulation using plasma levels of haptoglobin and factor XIII activity. Res Pract Thromb Haemost 2023; 7:100076. [PMID: 36861115 PMCID: PMC9969072 DOI: 10.1016/j.rpth.2023.100076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/21/2022] [Accepted: 01/12/2023] [Indexed: 02/10/2023] Open
Abstract
Background Both immune-mediated thrombotic thrombocytopenic purpura (iTTP) and septic disseminated intravascular coagulation (DIC) are life-threatening disorders developed by platelet-consuming microvascular thrombi and necessitate immediate therapeutic interventions. Although severe deficiencies of plasma haptoglobin in iTTP and factor XIII (FXIII) activity in septic DIC have been reported, few studies have focused on the possibility of using these markers to distinguish between iTTP and septic DIC. Objectives We investigated whether the plasma levels of haptoglobin and FXIII activity could be helpful for differential diagnosis. Methods Thirty-five patients with iTTP and 30 with septic DIC were enrolled in the study. Patient characteristics, coagulation, and fibrinolytic markers were collected from the clinical data. Plasma haptoglobin and FXIII activities were measured using chromogenic Enzyme-Linked Immuno Sorbent Assay and an automated instrument, respectively. Results The median plasma haptoglobin level was 0.39 mg/dL and 54.20 mg/dL in the iTTP and septic DIC groups, respectively. The median plasma FXIII activities were 91.3% and 36.3% in the iTTP and septic DIC groups, respectively. In the receiver operating characteristic curve analysis, the cutoff level of plasma haptoglobin was 2.868 mg/dL and the area under the curve was 0.832. The cutoff level for plasma FXIII activity and the area under the curve were 76.0% and 0.931, respectively. The thrombotic thrombocytopenic purpura (TTP)/DIC index was defined by FXIII activity (percentage) and haptoglobin (milligrams per decilitre). Laboratory TTP was defined as an index ≥60 and laboratory DIC <60. The sensitivity and specificity of the TTP/DIC index were 94.3% and 86.7%, respectively. Conclusion The TTP/DIC index, composed of plasma levels of haptoglobin and FXIII activity, is useful in differentiating iTTP from septic DIC.
Collapse
Affiliation(s)
- Shinya Yamada
- Department of Blood Transfusion Medicine, Nara Medical University, Kashihara, Japan,Department of Hematology, Kanazawa University Hospital, Kanazawa, Japan
| | - Hidesaku Asakura
- Department of Hematology, Kanazawa University Hospital, Kanazawa, Japan
| | - Masayuki Kubo
- Department of Blood Transfusion Medicine, Nara Medical University, Kashihara, Japan
| | - Kazuya Sakai
- Department of Blood Transfusion Medicine, Nara Medical University, Kashihara, Japan
| | | | - Masanori Matsumoto
- Department of Blood Transfusion Medicine, Nara Medical University, Kashihara, Japan,Correspondence Masanori Matsumoto, Department of Blood Transfusion Medicine, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8522, Japan.
| |
Collapse
|
15
|
Wilhelmi M, Albrecht A, Macke C, Wilhelmi M, Omar M, Winkelmann M, Clausen JD. The potential impact of coagulation factor XIII in trauma-induced coagulopathy - a retrospective case series analysis. Eur J Trauma Emerg Surg 2023; 49:1517-1523. [PMID: 36670303 DOI: 10.1007/s00068-023-02221-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 01/07/2023] [Indexed: 01/22/2023]
Abstract
BACKGROUND The role of factor XIII (FXIII) in trauma-induced coagulopathy (TIC) is not fully understood. METHODS We evaluated FXIII supplementation in severely injured patients with persistent bleeding. This was a retrospective case series analysis. RESULTS Twenty-four patients received FXIII concentrate within 24 h of admission for bleeding that continued after transfusion of > 6 U red blood cells (RBCs); control patients (n = 27) did not receive FXIII concentrate. Both study groups were similar regarding injury severity score and global coagulation tests, but FXIII activity levels were significantly higher and lactate levels significantly lower in the control group, respectively. The differences in FXIII activity between the groups could be attributed to a more severe trauma-induced coagulopathy in FXIII-deficient patients, as demonstrated by lower fibrinogen and higher lactate levels. The median dose of FXIII concentrate within 24 h of admission was 2500 IU (IQR: 1250-4375). Median 24-h transfusion of RBCs (primary study endpoint) was significantly higher in the FXIII group versus controls (10.0 U, IQR 5-14 U vs. 2, IQR 0-6 U; p < 0.01). Subsequently, while patients were in the intensive care unit, there was no statistically significant difference regarding RBC transfusion anymore and the overall clinical outcomes were similar in both patient groups. CONCLUSIONS The substitution of FXIII in patients who were more seriously compromised due to higher lactate levels and who presented with initially more severe bleedings than patients in the control group, resulted in a comparable transfusion necessity after 24 h. Thus, we guess that the substitution of FXIII in severely injured patients with ongoing bleeding might have an impact on their clinical outcome.
Collapse
Affiliation(s)
| | | | - Christian Macke
- Trauma Department, Hannover Medical School, Hannover, Germany
| | - Mathias Wilhelmi
- Department for Vascular and Endovascular Surgery, St. Bernward Hospital, Hildesheim, Germany
| | - Mohammed Omar
- Trauma Department, Hannover Medical School, Hannover, Germany
| | | | | |
Collapse
|
16
|
Yan Z, Zhang K, Wang G, Wang L, Zhang J, Qiu Z, Guo Z, Zhang K, Li J. Differential proteomic of plasma provides a new perspective on scientific diagnosis and drug screening for dampness heat diarrhea in calves. Front Vet Sci 2022; 9:986329. [PMID: 36204290 PMCID: PMC9530945 DOI: 10.3389/fvets.2022.986329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/23/2022] [Indexed: 11/22/2022] Open
Abstract
Dampness heat diarrhea (DHD) is one of the most common syndromes of calf diarrhea. Its complex etiology and lack of objective diagnostic criteria bring great challenges to the diagnosis and treatment of this disease. This study aims to screen some prospective diagnostic biomarkers or therapeutic targets for calves with DHD by investigating the differential protein profiles of plasma between DHD calves and clinically healthy calves by mass spectrometry-based proteomic. A total of 120 DHD calves and 90 clinically healthy calves were divided into two groups randomly, 30 DHD calves and 30 clinically healthy calves in the test group, and 90 DHD calves and 60 clinically healthy calves in the validation group. In the test group, a total of 52 proteins were differentially expressed between calves with DHD and clinically healthy calves, 13 proteins were significantly increased and 39 proteins were significantly decreased. The differentially expressed proteins were associated with the intestinal immune network of IgA production, caffeine metabolism, purine metabolism, and PI3K signaling pathway. In the validation group, 13 proteins were selected from 52 differential expression proteins for parallel reaction monitoring validation to verify their associations with DHD calves. The targeted proteomic results showed that fibronectin precursor (FN1) and apolipoprotein C-IV precursor (APOC4) were significantly associated with DHD in calves, and they were downregulated in sick calves. In conclusion, the differential expression of plasma proteins was associated with DHD pathogenesis in calves, and the FN1 and APOC4 might be the potential clinical biomarkers for diagnosis of DHD in calves, and the intestinal immune network of IgA production, caffeine metabolism, purine metabolism, and PI3K signaling pathway are the candidate targets to treat DHD in calves. Our finding provides a reference for further investigating the pathogenesis, developing techniques of diagnosis, and screening treatment drugs for DHD in calves.
Collapse
|
17
|
Wolberg AS, Sang Y. Fibrinogen and Factor XIII in Venous Thrombosis and Thrombus Stability. Arterioscler Thromb Vasc Biol 2022; 42:931-941. [PMID: 35652333 PMCID: PMC9339521 DOI: 10.1161/atvbaha.122.317164] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
As the third most common vascular disease, venous thromboembolism is associated with significant mortality and morbidity. Pathogenesis underlying venous thrombosis is still not fully understood. Accumulating data suggest fibrin network structure and factor XIII-mediated crosslinking are major determinants of venous thrombus mass, composition, and stability. Understanding the cellular and molecular mechanisms mediating fibrin(ogen) and factor XIII production and function and their ability to influence venous thrombogenesis and resolution may inspire new anticoagulant strategies that target these proteins to reduce or prevent venous thrombosis in certain at-risk patients. This article summarizes fibrinogen and factor XIII biology and current knowledge of their function during venous thromboembolism.
Collapse
Affiliation(s)
- Alisa S Wolberg
- Department of Pathology and UNC Blood Research Center, University of North Carolina, Chapel Hill
| | - Yaqiu Sang
- Department of Pathology and UNC Blood Research Center, University of North Carolina, Chapel Hill
| |
Collapse
|
18
|
Kar S, Vu K, Mottamal M, Al-Horani RA. Ethacrynic acid is an inhibitor of human factor XIIIa. BMC Pharmacol Toxicol 2022; 23:35. [PMID: 35642005 PMCID: PMC9158266 DOI: 10.1186/s40360-022-00575-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 05/25/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Ethacrynic acid (EA) is a loop diuretic that is approved orally and parenterally to manage edema-associated diseases. Nevertheless, it was earlier reported that it is also associated with bleeding upon its parenteral administration. In this report, we investigated the effects of EA on human factor XIIIa (FXIIIa) of the coagulation process using a variety of techniques.
Methods
A series of biochemical and computational methods have been used in this study. The potency and efficacy of human FXIIIa inhibition by EA was evaluated using a bisubstrate-based fluorescence trans-glutamination assay under near physiological conditions. To establish the physiological relevance of FXIIIa inhibition by EA, the effect on FXIIIa-mediated polymerization of fibrin(ogen) as well as the formation of fibrin(ogen) – α2-antiplasmin complex was evaluated using SDS-PAGE experiments. The selectivity profile of EA against other coagulation proteins was assessed by evaluating EA’s effect on human clotting times in the activated partial thromboplastin time (APTT) and the prothrombin time (PT) assays. We also used molecular modeling studies to put forward a putative binding mode for EA in the active site of FXIIIa. Results involving EA were the average of at least three experiments and the standard error ± 1 was provided. In determining the inhibition parameters, we used non-linear regression analysis.
Results
FXIIIa is a transglutaminase that works at the end of the coagulation process to form an insoluble, rigid, and cross-linked fibrin rich blood clot. In fact, inhibition of FXIIIa-mediated biological processes has been reported to result in a bleeding diathesis. Inhibition of FXIIIa by EA was investigated given the nucleophilic nature of the thiol-containing active site of the enzyme and the Michael acceptor-based electrophilicity of EA. In a bisubstrate-based fluorescence trans-glutamination assay, EA inhibited FXIIIa with a moderate potency (IC50 ~ 105 µM) and efficacy (∆Y ~ 66%). In SDS-PAGE experiments, EA appears to significantly inhibit the FXIIIa-mediated polymerization of fibrin(ogen) as well as the formation of fibrin(ogen) – α2-antiplasmin complex which indicates that EA affects the physiological functions of FXIIIa. Interestingly, EA did not affect the clotting times of human plasma in the APTT and the PT assays at the highest concentration tested of 2.5 mM suggesting the lack of effects on the coagulation serine proteases and potentially the functional selectivity of EA with respect to the clotting process. Molecular modeling studies demonstrated that the Michael acceptor of EA forms a covalent bond with catalytic residue of Cys314 in the active site of FXIIIa.
Conclusions
Overall, our studies indicate that EA inhibits the physiological function of human FXIIIa in vitro which may potentially contribute to the bleeding complications that were reported with the association of the parenteral administration of EA.
Collapse
|
19
|
Zhu Y, Esnault S, Ge Y, Jarjour NN, Brasier AR. Airway fibrin formation cascade in allergic asthma exacerbation: implications for inflammation and remodeling. Clin Proteomics 2022; 19:15. [PMID: 35590254 PMCID: PMC9117591 DOI: 10.1186/s12014-022-09351-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 04/04/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Airway remodeling in patients with asthma, which leads to a decline in pulmonary function, is likely the result of repeated exacerbations often provoked by aeroallergen exposures. Aeroallegen exposure triggers a stereotypic response orchestrated by growth factor cytokines and other protein mediators. This results in a late-phase allergic reaction characterized by vascular permeability, recruitment of activated leukocytes, and activation of structural cells of the airway. The spectrum of protein mediators and their functions are incompletely understood. METHODS Bronchoalveolar lavage fluid (BALF) samples were obtained from 12 volunteers who exhibited robust eosinophilic recruitment following segmental bronchial provocation with allergen (SBP-Ag). We systematically identified and quantified proteins in BALF using high-performance liquid chromatography-high-resolution mass spectrometry (LC-MS/MS) followed by pathway analysis and correlations with airway physiology. RESULTS Pairwise analysis of protein abundance in BALF pre- vs post-SBP-Ag revealed that 55 proteins were upregulated and 103 proteins were downregulated. We observed enrichment of groups of proteins mapping to hemostasis/fibrin clot, platelet activation, lipoprotein assembly, neutrophil degranulation proteins, and acute-phase inflammation-airway remodeling pathways. The abundances of F2 and Fibrinogen γ (FGG) correlated with eosinophil numbers, whereas SERPINA3 negatively correlated with change in FeNO. The coagulation proteins F2 and KNG negatively correlated with FN1 an index of airway remodeling. Interestingly, patients with lower FEV1 showed distinct allergen-induced patterns of 8 BALF proteins, including MUC1, alarmins (HSPB1), and actin polymerization factors. CONCLUSIONS Protein abundance of the fibrin formation cascade, platelet activation and remodeling are associated with late-phase leukocyte numbers and markers of remodeling. Patients with lower FEV1 have distinct dynamic responses to allergen.
Collapse
Affiliation(s)
- Yanlong Zhu
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Stephane Esnault
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health (SMPH), Madison, WI, 53705, USA
| | - Ying Ge
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Nizar N Jarjour
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health (SMPH), Madison, WI, 53705, USA
| | - Allan R Brasier
- Institute for Clinical and Translational Research (ICTR), University of Wisconsin-Madison, 715 Highland Ave, Madison, WI, 53705, USA.
| |
Collapse
|
20
|
Several pathologies cause delayed postoperative paralysis following posterior decompression and spinal fusion for thoracic myelopathy caused by ossification of the posterior longitudinal ligament. J Orthop Sci 2022; 27:725-733. [PMID: 31522904 DOI: 10.1016/j.jos.2019.08.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 07/31/2019] [Accepted: 08/08/2019] [Indexed: 02/09/2023]
|
21
|
Takamatsu N, Manabe H, Wada K, Hirano T, Chikawa T, Sairyo K. Successful treatment of intractable pseudomeningocele with FXIII deficiency by surgery and FXIII replacement therapy: A case report. Int J Surg Case Rep 2022; 92:106851. [PMID: 35278986 PMCID: PMC8917295 DOI: 10.1016/j.ijscr.2022.106851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/17/2022] [Accepted: 02/22/2022] [Indexed: 11/05/2022] Open
Abstract
Pseudomeningocele is an extradural cystic collection of cerebrospinal fluid (CSF) and is rare and typically asymptomatic. However, pseudomeningocele is sometimes associated with symptoms. Whether symptomatic pseudomeningocele is best treated conservatively or surgically remains controversial. Factor XIII (FXIII) is a blood coagulation factor that also promotes fibroblast proliferation during wound healing. Although treatment of postsurgical CSF leakage with FXIII has been reported, there have been no reports on surgical treatment and FXIII replacement therapy of pseudomeningocele with FXIII deficiency. We report a case of pseudomeningocele with FXIII deficiency that was successfully treated by surgery and FXIII replacement therapy. The patient presented with symptoms of intracranial hypotension syndrome that had started a few months after laminectomy for thoracic ossification of the ligamentum flavum 2 years earlier. Magnetic resonance imaging and delayed computed tomography myelography confirmed a diagnosis of pseudomeningocele. Epidural blood patch treatment was performed twice but did not result in improvement. Furthermore, the FXIII level decreased to 56%, so the patient was also diagnosed as having acquired FXIII deficiency. We elected to treat the patient by surgery with FXIII replacement therapy. The dural injury was repaired using an artificial dura mater patch, fibrin glue, and polyglycolic acid sheets. The FXIII level was 74%–135% during the perioperative period. The patient had a good postoperative course. Postoperative magnetic resonance images showed resolution of the pseudomeningocele. There was no recurrence during 6 months of follow-up. Perioperative FXIII replacement may be a useful treatment for pseudomeningocele with FXIII deficiency. Pseudomeningocele is an extradural cystic collection of cerebrospinal fluid. Whether symptomatic pseudomeningocele is best treated remains controversial. Factor XIII is a blood coagulation factor that also promotes fibroblast proliferation. There have been no reports on surgical treatment and FXIII replacement therapy of pseudomeningocele with FXIII deficiency. We report a case of pseudomeningocele treated by surgery and FXIII replacement therapy.
Collapse
Affiliation(s)
- Nobutoshi Takamatsu
- Department of Orthopedics, Tokushima Prefecture Naruto Hospital, 32 Muya, Naruto city, Tokushima 772-8503, Japan.
| | - Hiroaki Manabe
- Department of Orthopedics, Tokushima Prefecture Naruto Hospital, 32 Muya, Naruto city, Tokushima 772-8503, Japan
| | - Kazuma Wada
- Department of Orthopedics, Tokushima Prefecture Naruto Hospital, 32 Muya, Naruto city, Tokushima 772-8503, Japan
| | - Tetsuya Hirano
- Department of Orthopedics, Tokushima Prefecture Naruto Hospital, 32 Muya, Naruto city, Tokushima 772-8503, Japan
| | - Takashi Chikawa
- Department of Orthopedics, Tokushima Prefecture Naruto Hospital, 32 Muya, Naruto city, Tokushima 772-8503, Japan
| | - Koichi Sairyo
- Department of Orthopedics, Institute of Biomedical Science, Tokushima University Graduate School, 3-18-15 Kuramoto, Tokushima City, Tokushima 770-8503, Japan
| |
Collapse
|
22
|
Wu YC, Franzenburg S, Ribes M, Pita L. Wounding response in Porifera (sponges) activates ancestral signaling cascades involved in animal healing, regeneration, and cancer. Sci Rep 2022; 12:1307. [PMID: 35079031 PMCID: PMC8789774 DOI: 10.1038/s41598-022-05230-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 01/06/2022] [Indexed: 11/24/2022] Open
Abstract
Upon injury, the homeostatic balance that ensures tissue function is disrupted. Wound-induced signaling triggers the recovery of tissue integrity and offers a context to understand the molecular mechanisms for restoring tissue homeostasis upon disturbances. Marine sessile animals are particularly vulnerable to chronic wounds caused by grazers that can compromise prey's health. Yet, in comparison to other stressors like warming or acidification, we know little on how marine animals respond to grazing. Marine sponges (Phylum Porifera) are among the earliest-diverging animals and play key roles in the ecosystem; but they remain largely understudied. Here, we investigated the transcriptomic responses to injury caused by a specialist spongivorous opisthobranch (i.e., grazing treatment) or by clipping with a scalpel (i.e., mechanical damage treatment), in comparison to control sponges. We collected samples 3 h, 1 d, and 6 d post-treatment for differential gene expression analysis on RNA-seq data. Both grazing and mechanical damage activated a similar transcriptomic response, including a clotting-like cascade (e.g., with genes annotated as transglutaminases, metalloproteases, and integrins), calcium signaling, and Wnt and mitogen-activated protein kinase signaling pathways. Wound-induced gene expression signature in sponges resembles the initial steps of whole-body regeneration in other animals. Also, the set of genes responding to wounding in sponges included putative orthologs of cancer-related human genes. Further insights can be gained from taking sponge wound healing as an experimental system to understand how ancient genes and regulatory networks determine healthy animal tissues.
Collapse
Affiliation(s)
- Yu-Chen Wu
- Research Unit Marine Microbiology, Department Marine Ecology, GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany
- Christian-Albrechts University of Kiel, Kiel, Germany
| | - Soeren Franzenburg
- Institute of Clinical Molecular Biology (IKMB), Christian-Albrechts University of Kiel, Kiel, Germany
| | - Marta Ribes
- Department Marine Biology and Oceanography, Institute of Marine Sciences (ICM-CSIC), Barcelona, Spain
| | - Lucía Pita
- Research Unit Marine Microbiology, Department Marine Ecology, GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany.
- Department Marine Biology and Oceanography, Institute of Marine Sciences (ICM-CSIC), Barcelona, Spain.
| |
Collapse
|
23
|
Guilabert P, Asmis L, Cortina V, Barret JP, Colomina MJ. Factor XIII and surgical bleeding. A narrative review. Minerva Anestesiol 2022; 88:156-165. [PMID: 35072429 DOI: 10.23736/s0375-9393.22.15772-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
FXIII is the final factor in the coagulation cascade. It converts soluble fibrin monomers into a stable fibrin clot, prevents premature degradation of fibrin, participates in wound healing, and helps prevent the loss of the endothelial barrier function. FXIII deficiency is believed to be rare, and this may explain why clinicians do not routinely take it into consideration. Congenital FXIII deficiency is a rare disease with a reported prevalence of 1 per million. However, the prevalence of acquired FXIII deficiency is much higher. Acquired forms have been described in patients with decreased hepatic or bone marrow synthesis, hyperconsumption and increased degradation by autoantibodies. This review offers guidance on how to suspect and diagnose FXIII deficiency in both the preoperative consultation and different surgical settings. We also analyze current scientific evidence in order to clarify when and why this clinical situation should be suspected, and how it may be treated.
Collapse
Affiliation(s)
- Patricia Guilabert
- Anesthesia and Critical Care Department, University Hospital Vall d'Hebron, Autonomous University of Barcelona, Barcelona, Spain -
| | - Lars Asmis
- Centre for Perioperative Thrombosis and Hemostasis, University of Zurich, Zurich, Switzerland
| | - Vicente Cortina
- Hemostasis Laboratory, University Hospital Vall d'Hebron, Barcelona, Spain
| | - Joan P Barret
- Plastic Surgery Department and Burn Centre, University Hospital Vall d'Hebron, Autonomous University of Barcelona, Barcelona, Spain
| | - Maria J Colomina
- Anesthesia and Critical Care Department, University Bellvitge Hospital, University of Barcelona, Barcelona, Spain
| |
Collapse
|
24
|
Therapeutic Strategies for Disseminated Intravascular Coagulation Associated with Aortic Aneurysm. Int J Mol Sci 2022; 23:ijms23031296. [PMID: 35163216 PMCID: PMC8836167 DOI: 10.3390/ijms23031296] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/05/2022] [Accepted: 01/22/2022] [Indexed: 01/22/2023] Open
Abstract
Aortic aneurysms are sometimes associated with enhanced-fibrinolytic-type disseminated intravascular coagulation (DIC). In enhanced-fibrinolytic-type DIC, both coagulation and fibrinolysis are markedly activated. Typical cases show decreased platelet counts and fibrinogen levels, increased concentrations of fibrin/fibrinogen degradation products (FDP) and D-dimer, and increased FDP/D-dimer ratios. Thrombin-antithrombin complex or prothrombin fragment 1 + 2, as markers of coagulation activation, and plasmin-α2 plasmin inhibitor complex, a marker of fibrinolytic activation, are all markedly increased. Prolongation of prothrombin time (PT) is not so obvious, and the activated partial thromboplastin time (APTT) is rather shortened in some cases. As a result, DIC can be neither diagnosed nor excluded based on PT and APTT alone. Many of the factors involved in coagulation and fibrinolysis activation are serine proteases. Treatment of enhanced-fibrinolytic-type DIC requires consideration of how to control the function of these serine proteases. The cornerstone of DIC treatment is treatment of the underlying pathology. However, in some cases surgery is either not possible or exacerbates the DIC associated with aortic aneurysm. In such cases, pharmacotherapy becomes even more important. Unfractionated heparin, other heparins, synthetic protease inhibitors, recombinant thrombomodulin, and direct oral anticoagulants (DOACs) are agents that inhibit serine proteases, and all are effective against DIC. Inhibition of activated coagulation factors by anticoagulants is key to the treatment of DIC. Among them, DOACs can be taken orally and is useful for outpatient treatment. Combination therapy of heparin and nafamostat allows fine-adjustment of anticoagulant and antifibrinolytic effects. While warfarin is an anticoagulant, this agent is ineffective in the treatment of DIC because it inhibits the production of coagulation factors as substrates without inhibiting activated coagulation factors. In addition, monotherapy using tranexamic acid in cases of enhanced-fibrinolytic-type DIC may induce fatal thrombosis. If tranexamic acid is needed for DIC, combination with anticoagulant therapy is of critical importance.
Collapse
|
25
|
Platelet binding to polymerizing fibrin is avidity driven and requires activated αIIbβ3 but not fibrin cross-linking. Blood Adv 2021; 5:3986-4002. [PMID: 34647980 PMCID: PMC8945615 DOI: 10.1182/bloodadvances.2021005142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/12/2021] [Indexed: 11/20/2022] Open
Abstract
Platelet interaction with polymerizing fibrin is avidity driven and requires activated αIIbβ3 but not fibrin cross-linking. The mechanism by which αIIbβ3 interacts with polymerizing fibrin differs subtly from the interaction of αIIbβ3 with fibrinogen.
The molecular basis of platelet-fibrin interactions remains poorly understood despite the predominance of fibrin in thrombi. We have studied the interaction of platelets with polymerizing fibrin by adding thrombin to washed platelets in the presence of the peptide RGDW, which inhibits the initial platelet aggregation mediated by fibrinogen binding to αIIbβ3 but leaves intact a delayed increase in light transmission (delayed wave; DW) as platelets interact with the polymerizing fibrin. The DW was absent in platelets from a patient with Glanzmann thrombasthenia, indicating a requirement for αIIbβ3. The DW required αIIbb3 activation and it was inhibited by the αIIbβ3 antagonists eptifibatide and the monoclonal antibody (mAb) 7E3, but only at much higher concentrations than needed to inhibit platelet aggregation initiated by a thrombin receptor activating peptide (T6). Surface plasmon resonance and scanning electron microscopy studies both supported fibrin having greater avidity for αIIbβ3 than fibrinogen rather than greater affinity, consistent with fibrin’s multivalency. mAb 10E5, a potent inhibitor of T6-induced platelet aggregation, did not inhibit the DW, suggesting that fibrin differs from fibrinogen in its mechanism of binding. Inhibition of factor XIII–mediated fibrin cross-linking by >95% reduced the DW by only 32%. Clot retraction showed a pattern of inhibition similar to that of the DW. We conclude that activated αIIbβ3 is the primary mediator of platelet-fibrin interactions leading to clot retraction, and that the interaction is avidity driven, does not require fibrin cross-linking, and is mediated by a mechanism that differs subtly from that of the interaction of αIIbβ3 with fibrinogen.
Collapse
|
26
|
Yamada Y, Abe T, Ochiai H, Ashizuka S. Refractory Duodenal Bleeding Ulcers Successfully Treated with Factor XIII Transfusion. Intern Med 2021; 60:2217-2221. [PMID: 33583894 PMCID: PMC8355396 DOI: 10.2169/internalmedicine.6463-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
A 67-year-old woman with a history of autoimmune hepatitis was admitted for fever, acute hepatic dysfunction, and acute kidney injury. She was diagnosed with multiple duodenal ulcers. Despite the administration of proton pump inhibitor and red blood cells, her black stool and anemia progressed, and she was therefore transferred to our hospital. Despite hemostatic treatments, she continued to bleed. On the 21st day of admission, an endoscopic examination showed the oozing of blood from the duodenal mucosa. A low factor XIII (FXIII) activity level was detected, and she was administered FXIII concentrate. The bleeding stopped and she was thereafter discharged.
Collapse
Affiliation(s)
- Yusuke Yamada
- Department of Trauma and Critical Care Medicine, University of Miyazaki Hospital, Japan
| | - Tomohiro Abe
- Department of Trauma and Critical Care Medicine, University of Miyazaki Hospital, Japan
| | - Hidenobu Ochiai
- Department of Trauma and Critical Care Medicine, University of Miyazaki Hospital, Japan
| | - Shinya Ashizuka
- Circulatory and Body Fluid Regulation, Faculty of Medicine, University of Miyazaki, Japan
| |
Collapse
|
27
|
Factor XIII and Fibrin Clot Properties in Acute Venous Thromboembolism. Int J Mol Sci 2021; 22:ijms22041607. [PMID: 33562624 PMCID: PMC7914915 DOI: 10.3390/ijms22041607] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/01/2021] [Accepted: 02/03/2021] [Indexed: 12/31/2022] Open
Abstract
Coagulation factor XIII (FXIII) is converted by thrombin into its active form, FXIIIa, which crosslinks fibrin fibers, rendering clots more stable and resistant to degradation. FXIII affects fibrin clot structure and function leading to a more prothrombotic phenotype with denser networks, characterizing patients at risk of venous thromboembolism (VTE). Mechanisms regulating FXIII activation and its impact on fibrin structure in patients with acute VTE encompassing pulmonary embolism (PE) or deep vein thrombosis (DVT) are poorly elucidated. Reduced circulating FXIII levels in acute PE were reported over 20 years ago. Similar observations indicating decreased FXIII plasma activity and antigen levels have been made in acute PE and DVT with their subsequent increase after several weeks since the index event. Plasma fibrin clot proteome analysis confirms that clot-bound FXIII amounts associated with plasma FXIII activity are decreased in acute VTE. Reduced FXIII activity has been associated with impaired clot permeability and hypofibrinolysis in acute PE. The current review presents available studies on the role of FXIII in the modulation of fibrin clot properties during acute PE or DVT and following these events. Better understanding of FXIII’s involvement in the pathophysiology of acute VTE might help to improve current therapeutic strategies in patients with acute VTE.
Collapse
|
28
|
Memtsas VP, Arachchillage DRJ, Gorog DA. Role, Laboratory Assessment and Clinical Relevance of Fibrin, Factor XIII and Endogenous Fibrinolysis in Arterial and Venous Thrombosis. Int J Mol Sci 2021; 22:ijms22031472. [PMID: 33540604 PMCID: PMC7867291 DOI: 10.3390/ijms22031472] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 02/06/2023] Open
Abstract
Diseases such as myocardial infarction, ischaemic stroke, peripheral vascular disease and venous thromboembolism are major contributors to morbidity and mortality. Procoagulant, anticoagulant and fibrinolytic pathways are finely regulated in healthy individuals and dysregulated procoagulant, anticoagulant and fibrinolytic pathways lead to arterial and venous thrombosis. In this review article, we discuss the (patho)physiological role and laboratory assessment of fibrin, factor XIII and endogenous fibrinolysis, which are key players in the terminal phase of the coagulation cascade and fibrinolysis. Finally, we present the most up-to-date evidence for their involvement in various disease states and assessment of cardiovascular risk.
Collapse
Affiliation(s)
- Vassilios P. Memtsas
- Cardiology Department, East and North Hertfordshire NHS Trust, Stevenage, Hertfordshire SG1 4AB, UK;
| | - Deepa R. J. Arachchillage
- Centre for Haematology, Department of Immunology and Inflammation, Imperial College London, London SW7 2AZ, UK;
- Department of Haematology, Imperial College Healthcare NHS Trust, London W2 1NY, UK
- Department of Haematology, Royal Brompton Hospital, London SW3 6NP, UK
| | - Diana A. Gorog
- Cardiology Department, East and North Hertfordshire NHS Trust, Stevenage, Hertfordshire SG1 4AB, UK;
- School of Life and Medical Sciences, Postgraduate Medical School, University of Hertfordshire, Hertfordshire AL10 9AB, UK
- Faculty of Medicine, National Heart and Lung Institute, Imperial College, London SW3 6LY, UK
- Correspondence: ; Tel.: +44-207-0348841
| |
Collapse
|
29
|
Complete hemostasis achieved by factor XIII concentrate administration in a patient with bleeding after teeth extraction as a complication of aplastic anemia and chronic disseminated intravascular coagulation. Blood Coagul Fibrinolysis 2021; 31:274-278. [PMID: 32167951 DOI: 10.1097/mbc.0000000000000902] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
: Hemostatic treatment of disseminated intravascular coagulation (DIC) due to aortic aneurysm involves numerous difficulties. An 89-year-old man with aplastic anemia and chronic DIC developed periodontitis and loose teeth requiring extraction, after which hemostasis was difficult. Platelet concentrates and fresh-frozen plasma transfusions were ineffective, and there was a risk of hemorrhage; therefore, administration of anticoagulant agents for DIC was inappropriate. A decrease in factor XIII (FXIII) was discovered, and FXIII concentrate was administered, resulting in hemostasis together with wound healing. No complications were seen, but the following coagulation markers were found to decrease: fibrin degradation products, D-dimer, thrombin-antithrombin complex, and plasmin-α2 plasmin inhibitor complex. By 1 month after FXIII administration, FXIII had returned to the preadministration level, thus, the FXIII decrease was deduced to be have been due to DIC. These findings suggest that FXIII concentrate is useful for treating hemorrhage associated with DIC due to aortic aneurysm.
Collapse
|
30
|
Salih A, Masood K, Ibraheem E. Congenital factor XIII deficiency in Iraq: An 8-year single-center study. IRAQI JOURNAL OF HEMATOLOGY 2021. [DOI: 10.4103/ijh.ijh_1_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
31
|
Al-Horani RA, Kar S. Factor XIIIa inhibitors as potential novel drugs for venous thromboembolism. Eur J Med Chem 2020; 200:112442. [PMID: 32502864 PMCID: PMC7513741 DOI: 10.1016/j.ejmech.2020.112442] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 05/06/2020] [Accepted: 05/07/2020] [Indexed: 12/11/2022]
Abstract
Human factor XIIIa (FXIIIa) is a multifunctional transglutaminase with a significant role in hemostasis. FXIIIa catalyzes the last step in the coagulation process. It stabilizes the blood clot by cross-linking the α- and γ-chains of fibrin. It also protects the newly formed clot from plasmin-mediated fibrinolysis, primarily by cross-linking α2-antiplasmin to fibrin. Furthermore, FXIIIa is a major determinant of clot size and clot's red blood cells content. Therefore, inhibitors targeting FXIIIa have been considered to develop a new generation of anticoagulants to prevent and/or treat venous thromboembolism. Several inhibitors of FXIIIa have been discovered or designed including active site and allosteric site small molecule inhibitors as well as natural and modified polypeptides. This work reviews the structural, biochemical, and pharmacological aspects of FXIIIa inhibitors so as to advance their molecular design to become more clinically relevant.
Collapse
Affiliation(s)
- Rami A Al-Horani
- Division of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, LA, 70125, USA.
| | - Srabani Kar
- Division of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, LA, 70125, USA
| |
Collapse
|
32
|
Csobán-Szabó Z, Fésüs L, Király R. Protein-peptide based assay for the characterization of human blood coagulation factor XIII-A isopeptidase activity. Anal Biochem 2020; 600:113699. [DOI: 10.1016/j.ab.2020.113699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/27/2020] [Accepted: 03/20/2020] [Indexed: 02/02/2023]
|
33
|
Shirai S, Yamauchi Y, Yokote F, Sakai T, Saito Y, Sakao Y, Kawamura M. Dynamics of coagulation factor XIII activity after video-assisted thoracoscopic lobectomy for non-small cell lung cancer. J Thorac Dis 2020; 11:5382-5389. [PMID: 32030256 DOI: 10.21037/jtd.2019.12.08] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background The present study was performed to investigate the perioperative dynamics of coagulation factor XIII (FXIII) in patients with non-small cell lung cancer undergoing video-assisted thoracoscopic surgery (VATS) lobectomy compared with open lobectomy. Methods Perioperative coagulation factors including FXIII were analyzed in 30 patients who underwent VATS lobectomy and 10 patients who underwent open lobectomy at Teikyo University Hospital from December 2017 to April 2019. Results Patients in the VATS lobectomy group showed higher FXIII activity on postoperative day (POD) 5 than patients in the open lobectomy group (P=0.028). The FXIII activity was significantly lower on POD3, POD5, and POD7 than that in the preoperative period and on POD1, even in patients who had undergone VATS lobectomy (P<0.001). No factors were found to affect the maintenance of FXIII in the VATS lobectomy group. Conclusion The postoperative decrease of FXIII activity differed between patients who underwent VATS lobectomy and those who underwent open lobectomy. Based on the characteristics of FXIII, the FXIII activity may be a good marker of the invasiveness of VATS lobectomy versus open lobectomy.
Collapse
Affiliation(s)
- Suguru Shirai
- Department of Surgery, Teikyo University School of Medicine, Tokyo, Japan
| | - Yoshikane Yamauchi
- Department of Surgery, Teikyo University School of Medicine, Tokyo, Japan
| | - Fumi Yokote
- Department of Surgery, Teikyo University School of Medicine, Tokyo, Japan
| | - Takashi Sakai
- Department of Surgery, Teikyo University School of Medicine, Tokyo, Japan
| | - Yuichi Saito
- Department of Surgery, Teikyo University School of Medicine, Tokyo, Japan
| | - Yukinori Sakao
- Department of Surgery, Teikyo University School of Medicine, Tokyo, Japan
| | - Masafumi Kawamura
- Department of Surgery, Teikyo University School of Medicine, Tokyo, Japan
| |
Collapse
|
34
|
Gualtierotti R, Ingegnoli F, Boscolo M, Griffini S, Grovetti E, Cugno M. Tocilizumab Effects on Coagulation Factor XIII in Patients with Rheumatoid Arthritis. Adv Ther 2019; 36:3494-3502. [PMID: 31654331 PMCID: PMC6860466 DOI: 10.1007/s12325-019-01118-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Indexed: 12/19/2022]
Abstract
Introduction Rheumatoid arthritis (RA) is a chronic systemic auto-immune disease associated with a prothrombotic state. Tocilizumab, an interleukin-6 receptor inhibitor, is highly effective in controlling disease activity and thrombotic risk. Factor XIII (FXIII), involved in thrombotic complications, has been reported to be reduced in RA patients during maintenance treatment with tocilizumab, but no data are available before and after the drug administration. Thus, we investigated the effects of tocilizumab on FXIII, thrombin generation and inflammation in patients with RA naïve for the drug. Methods We studied 15 consecutive adult patients with RA at baseline and 4 weeks after the onset of parenteral administration of tocilizumab, measuring disease activity and plasma levels of C-reactive protein (CRP), FXIII, and prothrombin fragments F1+2 by immunoenzymatic methods. Fifteen healthy subjects, sex-and age-matched with patients, served as normal controls for laboratory measurements. Results At baseline, patients with established RA had a median DAS28 of 4.8 (3.2–8.3) and, compared to healthy controls, had higher plasma levels of CRP (p < 0.0001), FXIII (p = 0.017) and F1+2 (p < 0.0001). Four weeks after starting treatment with tocilizumab, based on the EULAR response criteria, eight patients were classifiable as responders and seven as non-responders. In responders, we observed a statistically significant reduction not only of the values of DAS28 and CRP (p = 0.012 for both), ut also of plasma levels of FXIII (p = 0.05) and F1+2 (p = 0.025). In non-responders, all the studied parameters were unchanged. Conclusion The decrease of FXIII and F1+2 levels after tocilizumab treatment observed only in those patients who responded to the drug indicates that the effect of tocilizumab on the prothrombotic state is linked to the control of inflammation and disease activity and not to a direct effect of the drug, thus contributing to the reduction of the cardiovascular risk.
Collapse
|
35
|
Gyurina K, Kárai B, Ujfalusi A, Hevessy Z, Barna G, Jáksó P, Pálfi-Mészáros G, Póliska S, Scholtz B, Kappelmayer J, Zahuczky G, Kiss C. Coagulation FXIII-A Protein Expression Defines Three Novel Sub-populations in Pediatric B-Cell Progenitor Acute Lymphoblastic Leukemia Characterized by Distinct Gene Expression Signatures. Front Oncol 2019; 9:1063. [PMID: 31709175 PMCID: PMC6823876 DOI: 10.3389/fonc.2019.01063] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 09/30/2019] [Indexed: 12/17/2022] Open
Abstract
Background: Leukemic B-cell precursor (BCP) lymphoblasts were identified as a novel expression site for coagulation factor XIII subunit A (FXIII-A). Flow cytometry (FC) revealed three distinct expression patterns, i.e., FXIII-A negative, FXIII-A dim, and FXIII-A bright subgroups. The FXIII-A negative subgroup was significantly associated with the “B-other” genetic category and had an unfavorable disease outcome. Methods: RNA was extracted from bone marrow lymphoblasts of 42 pediatric patients with BCP-acute lymphoblastic leukemia (ALL). FXIII-A expression was determined by multiparameter FC. Genetic diagnosis was based on conventional cytogenetic method and fluorescence in situ hybridization. Affymetrix GeneChip Human Primeview array was used to analyze global expression pattern of 28,869 well-annotated genes. Microarray data were analyzed by Genespring GX14.9.1 software. Gene Ontology analysis was performed using Cytoscape 3.4.0 software with ClueGO application. Selected differentially expressed genes were validated by RT-Q-PCR. Results: We demonstrated, for the first time, the general expression of F13A1 gene in pediatric BCP-ALL samples. The intensity of F13A1 expression corresponded to the FXIII-A protein expression subgroups which defined three characteristic and distinct gene expression signatures detected by Affymetrix oligonucleotide microarrays. Relative gene expression intensity of ANGPTL2, EHMT1 FOXO1, HAP1, NUCKS1, NUP43, PIK3CG, RAPGEF5, SEMA6A, SPIN1, TRH, and WASF2 followed the pattern of change in the intensity of the expression of the F13A1 gene. Common enhancer elements of these genes revealed by in silico analysis suggest that common transcription factors may regulate the expression of these genes in a similar fashion. PLAC8 was downregulated in the FXIII-A bright subgroup. Gene expression signature of the FXIII-A negative subgroup showed an overlap with the signature of “B-other” samples. DFFA, GIGYF1, GIGYF2, and INTS3 were upregulated and CD3G was downregulated in the “B-other” subgroup. Validated genes proved biologically and clinically relevant. We described differential expression of genes not shown previously to be associated with pediatric BCP-ALL. Conclusions: Gene expression signature according to FXIII-A protein expression status defined three novel subgroups of pediatric BCP-ALL. Multiparameter FC appears to be an easy-to-use and affordable method to help in selecting FXIII-A negative patients who require a more elaborate and expensive molecular genetic investigation to design precision treatment.
Collapse
Affiliation(s)
- Katalin Gyurina
- Department of Pediatrics, University of Debrecen, Debrecen, Hungary
| | - Bettina Kárai
- Department of Laboratory of Medicine, University of Debrecen, Debrecen, Hungary
| | - Anikó Ujfalusi
- Department of Laboratory of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zsuzsanna Hevessy
- Department of Laboratory of Medicine, University of Debrecen, Debrecen, Hungary
| | - Gábor Barna
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Pál Jáksó
- Department of Pathology, University of Pécs, Pécs, Hungary
| | | | - Szilárd Póliska
- Genomic Medicine and Bioinformatic Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Beáta Scholtz
- Genomic Medicine and Bioinformatic Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - János Kappelmayer
- Department of Laboratory of Medicine, University of Debrecen, Debrecen, Hungary
| | - Gábor Zahuczky
- UD GenoMed Medical Genomic Technologies Ltd., Debrecen, Hungary
| | - Csongor Kiss
- Department of Pediatrics, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
36
|
Singh S, Dodt J, Volkers P, Hethershaw E, Philippou H, Ivaskevicius V, Imhof D, Oldenburg J, Biswas A. Structure functional insights into calcium binding during the activation of coagulation factor XIII A. Sci Rep 2019; 9:11324. [PMID: 31383913 PMCID: PMC6683118 DOI: 10.1038/s41598-019-47815-z] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 07/24/2019] [Indexed: 01/25/2023] Open
Abstract
The dimeric FXIII-A2, a pro-transglutaminase is the catalytic part of the heterotetrameric coagulation FXIII-A2B2 complex that upon activation by calcium binding/thrombin cleavage covalently cross-links preformed fibrin clots protecting them from premature fibrinolysis. Our study characterizes the recently disclosed three calcium binding sites of FXIII-A concerning evolution, mutual crosstalk, thermodynamic activation profile, substrate binding, and interaction with other similarly charged ions. We demonstrate unique structural aspects within FXIII-A calcium binding sites that give rise to functional differences making FXIII unique from other transglutaminases. The first calcium binding site showed an antagonistic relationship towards the other two. The thermodynamic profile of calcium/thrombin-induced FXIII-A activation explains the role of bulk solvent in transitioning its zymogenic dimeric form to an activated monomeric form. We also explain the indirect effect of solvent ion concentration on FXIII-A activation. Our study suggests FXIII-A calcium binding sites could be putative pharmacologically targetable regions.
Collapse
Affiliation(s)
- Sneha Singh
- Institute of Experimental Hematology and Transfusion medicine, University Hospital of Bonn, Bonn, 53127, Germany
| | | | | | - Emma Hethershaw
- Discovery and Translational Science Department, University of Leeds, Leeds, LS29JT, United Kingdom
| | - Helen Philippou
- Discovery and Translational Science Department, University of Leeds, Leeds, LS29JT, United Kingdom
| | - Vytautus Ivaskevicius
- Institute of Experimental Hematology and Transfusion medicine, University Hospital of Bonn, Bonn, 53127, Germany
| | - Diana Imhof
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, Bonn, 53121, Germany
| | - Johannes Oldenburg
- Institute of Experimental Hematology and Transfusion medicine, University Hospital of Bonn, Bonn, 53127, Germany
| | - Arijit Biswas
- Institute of Experimental Hematology and Transfusion medicine, University Hospital of Bonn, Bonn, 53127, Germany.
| |
Collapse
|
37
|
Arati S, Chetan GK, Sibin MK, Bhat DI, Vazhayil V, Narasingarao KVL. Prognostic significance of factor XIIIA promoter methylation status in aneurysmal subarachnoid haemorrhage (aSAH). BMC Cardiovasc Disord 2019; 19:170. [PMID: 31315570 PMCID: PMC6637610 DOI: 10.1186/s12872-019-1146-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 07/01/2019] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Aneurysmal subarachnoid hemorrhage is a life- threatening condition with high rate of disability and mortality. Apolipoprotein E (APOE) and Factor XIIIA (F13A) genes are involved in the pathogenetic mechanism of aneurysmal subarachnoid haemorrhage (aSAH). We evaluated the association of promoter methylation status of APOE and F13A gene and risk of aSAH. METHODS For evaluating the effect of hypermethylation in the promoter region of these genes with risk of aSAH, we conducted a case -control study with 50 aSAH patients and 50 healthy control. The methylation pattern was analysed using methylation specific PCR. The risk factors associated with poor outcome after aSAH was also analysed in this study. The outcome was assessed using Glasgow outcome score (GOS) after 3 months from the initial bleed. RESULTS The frequency of APOE and F13A methylation pattern showed insignificant association with risk of aSAH in this study. Gender stratification analysis suggests that F13A promoter methylation status was significantly associated with the risk of aSAH in male gender. Age, aneurysm located at the anterior communicating artery and diabetes mellitus showed significant association with poor outcome after aSAH. CONCLUSION There was no significant association with APOE promoter methylation with the risk as well as outcome of patients after aSAH. F13A promoter methylation status was significantly associated with risk of aSAH in male gender, with no significant association with outcome after aSAH.
Collapse
Affiliation(s)
- S Arati
- Department of Human Genetics, National Institute of Mental Health and Neuro Sciences, Bangalore/Karnataka, Karnataka, 560029, India
| | - G K Chetan
- Department of Human Genetics, National Institute of Mental Health and Neuro Sciences, Bangalore/Karnataka, Karnataka, 560029, India
| | - M K Sibin
- Department of Biochemistry, Armed Forces Medical College, Pune, 411040, India
| | - Dhananjaya I Bhat
- Department of Neurosurgery, National Institute of Mental Health and Neuro Sciences, Bangalore, 560029, India
| | - Vikas Vazhayil
- Department of Neurosurgery, National Institute of Mental Health and Neuro Sciences, Bangalore, 560029, India
| | - K V L Narasingarao
- Department of Neurosurgery, National Institute of Mental Health and Neuro Sciences, Bangalore, 560029, India.
| |
Collapse
|
38
|
Mouapi KN, Wagner LJ, Stephens CA, Hindi MM, Wilkey DW, Merchant ML, Maurer MC. Evaluating the Effects of Fibrinogen αC Mutations on the Ability of Factor XIII to Crosslink the Reactive αC Glutamines (Q237, Q328, Q366). Thromb Haemost 2019; 119:1048-1057. [PMID: 31055797 DOI: 10.1055/s-0039-1687875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Fibrinogen (Fbg) levels and extent of fibrin polymerization have been associated with various pathological conditions such as cardiovascular disease, arteriosclerosis, and coagulation disorders. Activated factor XIII (FXIIIa) introduces γ-glutamyl-ε-lysinyl isopeptide bonds between reactive glutamines and lysines in the fibrin network to form a blood clot resistant to fibrinolysis. FXIIIa crosslinks the γ-chains and at multiple sites in the αC region of Fbg. Fbg αC contains a FXIII binding site involving αC (389-402) that is located near three glutamines whose reactivities rank Q237 >> Q366 ≈ Q328. Mass spectrometry and two-dimensional heteronuclear single-quantum correlation nuclear magnetic resonance assays were used to probe the anchoring role that αC E396 may play in controlling FXIII function and characterize the effects of Q237 on the reactivities of Q328 and Q366. Studies with αC (233-425) revealed that the E396A mutation does not prevent the transglutaminase function of FXIII A2 or A2B2. Other residues must play a compensatory role in targeting FXIII to αC. Unlike full Fbg, Fbg αC (233-425) did not promote thrombin cleavage of FXIII, an event contributing to activation. With the αC (233-425) E396A mutant, Q237 exhibited slower reactivities compared with αC wild-type (WT) consistent with difficulties in directing this N-terminal segment toward an anchored FXIII interacting at a weaker binding region. Q328 and Q366 became less reactive when Q237 was replaced with inactive N237. Q237 crosslinking is proposed to promote targeting of Q328 and Q366 to the FXIII active site. FXIII thus uses Fbg αC anchoring sites and distinct Q environments to regulate substrate specificity.
Collapse
Affiliation(s)
- Kelly Njine Mouapi
- Chemistry Department, University of Louisville, Louisville, Kentucky, United States
| | - Lucille J Wagner
- Chemistry Department, University of Louisville, Louisville, Kentucky, United States
| | - Chad A Stephens
- Chemistry Department, University of Louisville, Louisville, Kentucky, United States
| | - Mohammed M Hindi
- Chemistry Department, University of Louisville, Louisville, Kentucky, United States
| | - Daniel W Wilkey
- Division of Nephrology and Hypertension, Department of Medicine, University of Louisville, Kentucky, United States
| | - Michael L Merchant
- Division of Nephrology and Hypertension, Department of Medicine, University of Louisville, Kentucky, United States
| | - Muriel C Maurer
- Chemistry Department, University of Louisville, Louisville, Kentucky, United States
| |
Collapse
|
39
|
Schmitt LR, Henderson R, Barrett A, Darula Z, Issaian A, D'Alessandro A, Clendenen N, Hansen KC. Mass spectrometry-based molecular mapping of native FXIIIa cross-links in insoluble fibrin clots. J Biol Chem 2019; 294:8773-8778. [PMID: 31028172 DOI: 10.1074/jbc.ac119.007981] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/22/2019] [Indexed: 12/31/2022] Open
Abstract
The roles of factor XIIIa-specific cross-links in thrombus formation, regression, or probability for embolization are largely unknown. A molecular understanding of fibrin architecture at the level of these cross-links could inform the development of therapeutic strategies to prevent the sequelae of thromboembolism. Here, we present an MS-based method to map native factor XIIIa cross-links in the insoluble matrix component of whole-blood or plasma-fibrin clots and in in vivo thrombi. Using a chaotrope-insoluble digestion method and quantitative cross-linking MS, we identified the previously mapped fibrinogen peptides that are responsible for covalent D-dimer association, as well as dozens of novel cross-links in the αC region of fibrinogen α. Our findings expand the known native cross-linked species from one to over 100 and suggest distinct antiparallel registries for interprotofibril association and covalent attachment of serpins that regulate clot dissolution.
Collapse
Affiliation(s)
| | - Rachel Henderson
- Anesthesiology, University of Colorado School of Medicine, Aurora, Colorado 80045 and
| | | | - Zsuzsanna Darula
- Laboratory of Proteomics Research, Biological Research Center of the Hungarian Academy of Sciences, H-6701 Szeged, Hungary
| | - Aaron Issaian
- From the Departments of Biochemistry and Molecular Genetics and
| | | | - Nathan Clendenen
- Anesthesiology, University of Colorado School of Medicine, Aurora, Colorado 80045 and
| | - Kirk C Hansen
- From the Departments of Biochemistry and Molecular Genetics and
| |
Collapse
|
40
|
Luyendyk JP, Schoenecker JG, Flick MJ. The multifaceted role of fibrinogen in tissue injury and inflammation. Blood 2019; 133:511-520. [PMID: 30523120 PMCID: PMC6367649 DOI: 10.1182/blood-2018-07-818211] [Citation(s) in RCA: 321] [Impact Index Per Article: 53.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 11/26/2018] [Indexed: 02/08/2023] Open
Abstract
The canonical role of the hemostatic and fibrinolytic systems is to maintain vascular integrity. Perturbations in either system can prompt primary pathological end points of hemorrhage or thrombosis with vessel occlusion. However, fibrin(ogen) and proteases controlling its deposition and clearance, including (pro)thrombin and plasmin(ogen), have powerful roles in driving acute and reparative inflammatory pathways that affect the spectrum of tissue injury, remodeling, and repair. Indeed, fibrin(ogen) deposits are a near-universal feature of tissue injury, regardless of the nature of the inciting event, including injuries driven by mechanical insult, infection, or immunological derangements. Fibrin can modify multiple aspects of inflammatory cell function by engaging leukocytes through a variety of cellular receptors and mechanisms. Studies on the role of coagulation system activation and fibrin(ogen) deposition in models of inflammatory disease and tissue injury have revealed points of commonality, as well as context-dependent contributions of coagulation and fibrinolytic factors. However, there remains a critical need to define the precise temporal and spatial mechanisms by which fibrinogen-directed inflammatory events may dictate the severity of tissue injury and coordinate the remodeling and repair events essential to restore normal organ function. Current research trends suggest that future studies will give way to the identification of novel hemostatic factor-targeted therapies for a range of tissue injuries and disease.
Collapse
Affiliation(s)
- James P Luyendyk
- Department of Pathobiology and Diagnostic Investigation
- Department of Pharmacology and Toxicology, and
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI
| | - Jonathan G Schoenecker
- Department of Orthopaedics
- Department of Pharmacology
- Department of Pediatrics, and
- Department of Pathology, Vanderbilt University Medical Center, Nashville, TN; and
| | - Matthew J Flick
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| |
Collapse
|
41
|
Suvatha A, Sibin MK, Bhat DI, Narasingarao KVL, Vazhayil V, Chetan GK. Factor XIII polymorphism and risk of aneurysmal subarachnoid haemorrhage in a south Indian population. BMC MEDICAL GENETICS 2018; 19:159. [PMID: 30185149 PMCID: PMC6126001 DOI: 10.1186/s12881-018-0674-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 08/29/2018] [Indexed: 01/13/2023]
Abstract
BACKGROUND The rupture of a brain aneurysm causes bleeding in the subarachnoid space and is known as aneurysmal subarachnoid haemorrhage (aSAH). In our study, we evaluated the association of factor XIII polymorphism and the risk of Aneurysmal subarachnoid haemorrhage (aSAH) in South Indian population. METHODS The study was performed in 200 subjects with aSAH and 205 healthy control subjects. Genotyping of rs5985(c.103G > T (p.Val35Leu)) and rs5982(c.1694C > T (p.Pro564Leu)) polymorphism was performed by Taqman® allelic discrimination assay. RESULTS In our study, Val/Leu genotype frequency was higher in control subjects (18%) compared to aSAH patients (9%).The Val/Leu genotype was associated with lower risk of aSAH (OR = 0.48, 95%CI = 0.26-0.88, p = 0.02). When compared with Val allele, Leu allele was significantly associated with lower risk of aSAH (OR = 0.55, 95%CI = 0.32-0.95, p = 0.03). In subtyping, we found a significant association of Leu/Leu genotype with the Basilar top aneurysm (OR = 3.59, 95%CI = 1.11-11.64, p = 0.03). In c.1694C > T (p.Pro565Leu) variant, Pro/Pro Vs Pro/Leu genotype (OR = 2.06, 95%CI = 1.10-3.85, p = 0.02) was significantly associated with higher risk of aSAH. The 564Leu allelic frequency in aSAH patients (36%) was higher when compared with that in healthy controls (30%) in our study. When allele frequency (Pro Vs Leu) was compared, 564Leu allele was found to be significantly associated with higher aSAH risk (OR = 1.36, 95%CI = 1.01-1.83, p = 0.04). (OR = 1.36, 95%CI = 1.01-1.83, p = 0.04). Regarding rs5985 and rs5982, significant association was found in the log-additive model (OR = 0.57, 95%CI = 0.33-0.97, p = 0.034; OR = 1.32, 95%CI = 1.00-1.72, p = 0.043). CONCLUSION These results suggest that 34Leu allele was a protective factor for lower risk of aSAH whereas 564Leu allele was associated with higher risk of aSAH in South Indian population.
Collapse
Affiliation(s)
- Arati Suvatha
- Department of Human Genetics, National Institute of Mental Health and Neuro Sciences, Bangalore, Karnataka, 560029, India
| | - M K Sibin
- Department of Biochemistry, Armed Forces Medical College, Pune, 411040, India
| | - Dhananjaya I Bhat
- Department of Neurosurgery, National Institute of Mental Health and Neuro Sciences, Bangalore, 560029, India
| | - K V L Narasingarao
- Department of Neurosurgery, National Institute of Mental Health and Neuro Sciences, Bangalore, 560029, India
| | - Vikas Vazhayil
- Department of Neurosurgery, National Institute of Mental Health and Neuro Sciences, Bangalore, 560029, India
| | - G K Chetan
- Department of Human Genetics, National Institute of Mental Health and Neuro Sciences, Bangalore, Karnataka, 560029, India.
| |
Collapse
|
42
|
Arroyo AB, de Los Reyes-García AM, Teruel-Montoya R, Vicente V, González-Conejero R, Martínez C. microRNAs in the haemostatic system: More than witnesses of thromboembolic diseases? Thromb Res 2018; 166:1-9. [PMID: 29649766 DOI: 10.1016/j.thromres.2018.03.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 03/28/2018] [Accepted: 03/30/2018] [Indexed: 12/18/2022]
Abstract
MicroRNAs (miRNAs) are small endogenous RNAs that post-transcriptionally regulate gene expression. In the last few years, these molecules have been implicated in the regulation of haemostasis, and an increasing number of studies have investigated their relationship with the development of thrombosis. In this review, we discuss the latest developments regarding the role of miRNAs in the regulation of platelet function and secondary haemostasis. We also discuss the genetic and environmental factors that regulate miRNAs. Finally, we address the potential use of miRNAs as prognostic and diagnostic tools in thrombosis.
Collapse
Affiliation(s)
- Ana B Arroyo
- Department of Hematology and Medical Oncology, Morales Meseguer University Hospital, Centro Regional de Hemodonación, University of Murcia, IMIB-Arrixaca, Murcia, Spain
| | - Ascensión M de Los Reyes-García
- Department of Hematology and Medical Oncology, Morales Meseguer University Hospital, Centro Regional de Hemodonación, University of Murcia, IMIB-Arrixaca, Murcia, Spain
| | - Raúl Teruel-Montoya
- Department of Hematology and Medical Oncology, Morales Meseguer University Hospital, Centro Regional de Hemodonación, University of Murcia, IMIB-Arrixaca, Murcia, Spain; Red CIBERER CB15/00055, Murcia, Spain
| | - Vicente Vicente
- Department of Hematology and Medical Oncology, Morales Meseguer University Hospital, Centro Regional de Hemodonación, University of Murcia, IMIB-Arrixaca, Murcia, Spain; Red CIBERER CB15/00055, Murcia, Spain
| | - Rocío González-Conejero
- Department of Hematology and Medical Oncology, Morales Meseguer University Hospital, Centro Regional de Hemodonación, University of Murcia, IMIB-Arrixaca, Murcia, Spain.
| | - Constantino Martínez
- Department of Hematology and Medical Oncology, Morales Meseguer University Hospital, Centro Regional de Hemodonación, University of Murcia, IMIB-Arrixaca, Murcia, Spain.
| |
Collapse
|
43
|
Human Fetal β Islets Express Coagulation Factor XIII-A and Proteases Suggesting Amphicrine Regulation to Facilitate Islet Fusion. Pancreas 2018; 47:e6-e7. [PMID: 29424810 DOI: 10.1097/mpa.0000000000000996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
|
44
|
|
45
|
Watanabe N, Yokoyama Y, Ebata T, Sugawara G, Igami T, Mizuno T, Yamaguchi J, Nagino M. Clinical influence of preoperative factor XIII activity in patients undergoing pancreatoduodenectomy. HPB (Oxford) 2017; 19:972-977. [PMID: 28728890 DOI: 10.1016/j.hpb.2017.07.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 06/10/2017] [Accepted: 07/02/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND The influence of decreased factor XIII (FXIII) activity on perioperative bleeding has been reported in some surgical procedures. The purposes of this study were to investigate the perioperative dynamics of FXIII in patients undergoing pancreatoduodenectomy and to clarify the effects of low preoperative FXIII activity on intraoperative bleeding and postoperative complications. METHODS Total of 43 patients who underwent a pancreatoduodenectomy were enrolled. The perioperative FXIII activities were measured, and their associations with intraoperative bleeding and postoperative outcomes were analyzed. RESULTS Fifteen patients (35%) had low FXIII activities (<70%, lower than the institutional normal range). The patients with preoperative FXIII activities <70% experienced significantly greater blood loss (median, 1309 mL) during surgery compared to those with FXIII levels of ≥70% (median, 710 mL) (p = 0.001). The postoperative morbidity rates, including pancreatic fistula, were comparable between the patients with FXIII activities <70% and those with FXIII activities ≥70%. The FXIII levels substantially decreased on postoperative day 1 and remained at low levels until postoperative day 7. CONCLUSION Unexpectedly high proportions of patients undergoing pancreatoduodenectomy had low preoperative FXIII activities. Preoperative FXIII deficiency may increase intraoperative bleeding but had no influence on the postoperative outcomes.
Collapse
Affiliation(s)
- Nobuyuki Watanabe
- Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yukihiro Yokoyama
- Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Tomoki Ebata
- Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Gen Sugawara
- Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tsuyoshi Igami
- Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takashi Mizuno
- Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Junpei Yamaguchi
- Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masato Nagino
- Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
46
|
Expression of Coagulation Factor XIII Subunit A Correlates with Outcome in Childhood Acute Lymphoblastic Leukemia. Pathol Oncol Res 2017; 24:345-352. [PMID: 28523449 DOI: 10.1007/s12253-017-0236-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 04/23/2017] [Indexed: 12/15/2022]
Abstract
Previously we identified B-cell lineage leukemic lymphoblasts as a new expression site for subunit A of blood coagulation factor XIII (FXIII-A). On the basis of FXIII-A expression, various subgroups of B-cell precursor acute lymphoblastic leukemia (BCP-ALL) can be identified. Fifty-five children with BCP-ALL were included in the study. Bone marrow samples were obtained by aspiration and the presence of FXIII-A was detected by flow cytometry. G-banding and fluorescent in situ hybridization was performed according to standard procedures. The 10-year event-free survival (EFS) and overall survival (OS) rate of FXIII-A-positive and FXIII-A-negative patients showed significant differences (EFS: 84% vs. 61%, respectively; p = 0.031; OS: 89% vs. 61%; p = 0.008). Of all the parameters examined, there was correlation only between FXIII-A expression and 'B-other' genetic subgroup. Further multivariate Cox regression analysis of FXIII-subtype and genetic group or 'B-other' subgroup identified the FXIII-A negative characteristic as an independent factor associated with poor outcome in BCP-ALL. We found an excellent correlation between long-term survival and the FXIII-A-positive phenotype of BCP lymphoblasts at presentation. The results presented seem to be convincing enough to suggest a possible role for FXIII-A expression in the prognostic grouping of childhood BCP-ALL patients.
Collapse
|
47
|
Shimizu S, Tojima I, Takezawa K, Matsumoto K, Kouzaki H, Shimizu T. Thrombin and activated coagulation factor X stimulate the release of cytokines and fibronectin from nasal polyp fibroblasts via protease-activated receptors. Am J Rhinol Allergy 2017; 31:13-18. [PMID: 28234145 DOI: 10.2500/ajra.2017.31.4400] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUND Nasal epithelial cells and infiltrating eosinophils express tissue factor, and high thrombin activity and excess fibrin deposition are found in nasal secretion and in nasal polyp from patients with chronic rhinosinusitis with nasal polyp (CRSwNP). Activated coagulation factors play important roles not only in thrombosis but also in inflammation through interaction with protease-activated receptors (PAR). However, little is known about the effects of activated coagulation factors on the release of cytokines and extracellular matrix from nasal polyp fibroblasts (NPF). PURPOSE The purpose of this study was to analyze the expression of PARs, which are receptors for activated coagulation factors, on NPFs and to determine the roles of thrombin and activated coagulation factor X (FXa) in the release of cytokines and fibronectin from NPFs. METHODS NPFs were obtained from patients with CRSwNP, and the messenger RNA (mRNA) and protein expression of PARs in these NPFs were examined. We then investigated whether thrombin or FXa stimulates the release of transforming growth factor (TGF) beta 1, fibronectin, eotaxin-1, interleukin (IL) 6, or IL-8 from cultured NPFs. The effects of PAR agonists on the release of cytokines and fibronectin were also examined. RESULTS NPFs expressed the mRNA and proteins of all four PARs: PAR-1, PAR-2, PAR-3, and PAR-4. Both thrombin and FXa significantly stimulated the release of TGF beta 1, fibronectin, eotaxin-1, IL-6, and IL-8 from cultured NPFs. PAR-1 and PAR-2 agonists stimulated the secretion of TGF beta 1, fibronectin, eotaxin-1, IL-6, and IL-8. PAR-3 agonist stimulated the release of TGF beta 1, fibronectin, and eotaxin-1. PAR-4 agonist did not induce the release of these molecules. CONCLUSION NPFs play important roles in the pathophysiology of CRSwNP such as in nasal polyp formation and inflammatory cell infiltration by releasing cytokines and extracellular matrix proteins. Activated coagulation factors, thrombin and FXa, stimulate the release of these cytokines and fibronectin from NPFs via PARs.
Collapse
Affiliation(s)
- Shino Shimizu
- Department of Otorhinolaryngology, Shiga University of Medical Science, Otsu, Shiga, Japan
| | | | | | | | | | | |
Collapse
|
48
|
Ferluga J, Kouser L, Murugaiah V, Sim RB, Kishore U. Potential influences of complement factor H in autoimmune inflammatory and thrombotic disorders. Mol Immunol 2017; 84:84-106. [PMID: 28216098 DOI: 10.1016/j.molimm.2017.01.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 01/11/2017] [Accepted: 01/13/2017] [Indexed: 01/01/2023]
Abstract
Complement system homeostasis is important for host self-protection and anti-microbial immune surveillance, and recent research indicates roles in tissue development and remodelling. Complement also appears to have several points of interaction with the blood coagulation system. Deficiency and altered function due to gene mutations and polymorphisms in complement effectors and regulators, including Factor H, have been associated with familial and sporadic autoimmune inflammatory - thrombotic disorders, in which autoantibodies play a part. These include systemic lupus erythematosus, rheumatoid arthritis, atypical haemolytic uremic syndrome, anti-phospholipid syndrome and age-related macular degeneration. Such diseases are generally complex - multigenic and heterogeneous in their symptoms and predisposition/susceptibility. They usually need to be triggered by vascular trauma, drugs or infection and non-complement genetic factors also play a part. Underlying events seem to include decline in peripheral regulatory T cells, dendritic cell, and B cell tolerance, associated with alterations in lymphoid organ microenvironment. Factor H is an abundant protein, synthesised in many cell types, and its reported binding to many different ligands, even if not of high affinity, may influence a large number of molecular interactions, together with the accepted role of Factor H within the complement system. Factor H is involved in mesenchymal stem cell mediated tolerance and also contributes to self-tolerance by augmenting iC3b production and opsonisation of apoptotic cells for their silent dendritic cell engulfment via complement receptor CR3, which mediates anti-inflammatory-tolerogenic effects in the apoptotic cell context. There may be co-operation with other phagocytic receptors, such as complement C1q receptors, and the Tim glycoprotein family, which specifically bind phosphatidylserine expressed on the apoptotic cell surface. Factor H is able to discriminate between self and nonself surfaces for self-protection and anti-microbe defence. Factor H, particularly as an abundant platelet protein, may also modulate blood coagulation, having an anti-thrombotic role. Here, we review a number of interaction pathways in coagulation and in immunity, together with associated diseases, and indicate where Factor H may be expected to exert an influence, based on reports of the diversity of ligands for Factor H.
Collapse
Affiliation(s)
- Janez Ferluga
- Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge, UB8 3PH, United Kingdom
| | - Lubna Kouser
- Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge, UB8 3PH, United Kingdom
| | - Valarmathy Murugaiah
- Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge, UB8 3PH, United Kingdom
| | - Robert B Sim
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, United Kingdom
| | - Uday Kishore
- Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge, UB8 3PH, United Kingdom.
| |
Collapse
|
49
|
Proteins behaving badly. Substoichiometric molecular control and amplification of the initiation and nature of amyloid fibril formation: lessons from and for blood clotting. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2017; 123:16-41. [DOI: 10.1016/j.pbiomolbio.2016.08.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 08/14/2016] [Accepted: 08/19/2016] [Indexed: 02/08/2023]
|
50
|
Duval C, Ariëns RAS. Fibrinogen splice variation and cross-linking: Effects on fibrin structure/function and role of fibrinogen γ' as thrombomobulin II. Matrix Biol 2016; 60-61:8-15. [PMID: 27784620 DOI: 10.1016/j.matbio.2016.09.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 09/30/2016] [Indexed: 11/29/2022]
Abstract
Fibrin is an important matrix protein that provides the backbone to the blood clot, promoting tissue repair and wound healing. Its precursor fibrinogen is one of the most heterogeneous proteins, with an estimated 1 million different forms due to alterations in glycosylation, oxidation, single nucleotide polymorphisms, splice variation and other variations. Furthermore, ligation by transglutaminase factor XIII (cross-linking) adds to the complexity of the fibrin network. The structure and function of the fibrin network is in part determined by this natural variation in the fibrinogen molecule, with major effects from splice variation and cross-linking. This mini-review will discuss the direct effects of fibrinogen αEC and fibrinogen γ' splice variation on clot structure and function and also discuss the additional role of fibrinogen γ' as thrombomodulin II. Furthermore, the effects of cross-linking on clot function will be described. Splice variation and cross-linking are major determinants of the structure and function of fibrin and may therefore impact on diseases affecting bleeding, thrombosis and tissue repair.
Collapse
Affiliation(s)
- Cédric Duval
- Thrombosis and Tissue Repair Group, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK
| | - Robert A S Ariëns
- Thrombosis and Tissue Repair Group, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK.
| |
Collapse
|