1
|
Chang SY, Liao MC, Miyata KN, Pang Y, Zhao XP, Peng J, Rivard A, Ingelfinger JR, Chan JSD, Zhang SL. Canagliflozin inhibits hedgehog interacting protein (Hhip) induction of tubulopathy in diabetic Akita mice. Transl Res 2025; 277:13-26. [PMID: 39756674 DOI: 10.1016/j.trsl.2024.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 12/18/2024] [Accepted: 12/29/2024] [Indexed: 01/07/2025]
Abstract
Renal hedgehog interacting protein (Hhip) activates sodium-glucose cotransporter 2 (Sglt2) expression and promotes tubular senescence in murine diabetic kidney disease (DKD), yet its underlying mechanism(s) are poorly understood. Here we study the effect of the SGLT2 inhibitor, canagliflozin on tubulopathy (fibrosis and apoptosis) in Akita/HhipRPTC-transgenic (Tg) mice with overexpression of Hhip in their renal proximal tubular cells (RPTCs) and its relevant mechanisms. The DKD-tubulopathy with pronounced Sglt2 expression was aggravated in the kidney of Akita/HhipRPTC-Tg cf. Akita/non-Tg mice. A strong association was observed between Hhip and tubular senescence in Nephroseq from the Nakagawa chronic kidney disease study. Both in vivo and in vitro, excessive Hhip in RPTCs triggered RPTC senescence (polyploidization and cytoskeleton destabilization) and released extracellular vesicles (EVs) carrying Hhip (EVsHhip), most of which were apoptotic bodies (ABsHhip) or microvesicles (MVsHhip) and little exosomes (EXOsHhip). Further, Hhip stimulated β2-microglobulin, which further interacts with EVsHhip, together facilitating RPTC turn-over from cellular senescence to fibrosis and/or apoptosis, ultimately leading to advanced tubulopathy. In contrast, canagliflozin administration offset the action of Hhip in RPTCs, thereby preventing DKD progression. In conclusion, canagliflozin prevented excessive Hhip-mediated tubulopathy, possibly via the inhibition of excessive Hhip carried by extracellular vehicles in DKD.
Collapse
Affiliation(s)
- Shiao-Ying Chang
- Department of Medicine, Université de Montréal, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), 900 Saint Denis Street, Montréal, QC H2 X 0A9, Canada
| | - Min-Chun Liao
- Department of Medicine, Université de Montréal, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), 900 Saint Denis Street, Montréal, QC H2 X 0A9, Canada
| | - Kana N Miyata
- Department of Medicine, Université de Montréal, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), 900 Saint Denis Street, Montréal, QC H2 X 0A9, Canada; Division of Nephrology, Department of Internal Medicine, Saint Louis University, 1008 Spring Ave. St Louis, MO 63110, USA
| | - Yuchao Pang
- Department of Medicine, Université de Montréal, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), 900 Saint Denis Street, Montréal, QC H2 X 0A9, Canada
| | - Xin-Ping Zhao
- Department of Medicine, Université de Montréal, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), 900 Saint Denis Street, Montréal, QC H2 X 0A9, Canada
| | - Junzheng Peng
- Department of Medicine, Université de Montréal, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), 900 Saint Denis Street, Montréal, QC H2 X 0A9, Canada
| | - Alain Rivard
- Department of Medicine, Université de Montréal, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), 900 Saint Denis Street, Montréal, QC H2 X 0A9, Canada
| | - Julie R Ingelfinger
- Pediatric Nephrology Unit, Mass General Hospital for Children at Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA
| | - John S D Chan
- Department of Medicine, Université de Montréal, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), 900 Saint Denis Street, Montréal, QC H2 X 0A9, Canada
| | - Shao-Ling Zhang
- Department of Medicine, Université de Montréal, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), 900 Saint Denis Street, Montréal, QC H2 X 0A9, Canada.
| |
Collapse
|
2
|
Donadini MP, Calcaterra F, Romualdi E, Ciceri R, Cancellara A, Lodigiani C, Bacci M, Della Bella S, Ageno W, Mavilio D. The Link Between Venous and Arterial Thrombosis: Is There a Role for Endothelial Dysfunction? Cells 2025; 14:144. [PMID: 39851572 PMCID: PMC11763525 DOI: 10.3390/cells14020144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 01/14/2025] [Accepted: 01/17/2025] [Indexed: 01/26/2025] Open
Abstract
Venous thromboembolism (VTE) and arterial thrombosis (AT) are distinct yet closely related pathological processes. While traditionally considered separate entities, accumulating evidence suggests that they share common risk factors, such as inflammation and endothelial dysfunction (ED). This review explores the parallels and differences between venous and arterial thrombosis, with particular attention to the role of unprovoked VTE and its potential links to atherosclerosis and systemic inflammation. A key focus is the role of ED, which is emerging as a critical factor in thrombogenesis across both the venous and arterial systems. We examine the current methods for clinically detecting ED, including the use of biomarkers and advanced imaging techniques. Additionally, we discuss novel research avenues, such as the potential of endothelial colony-forming cells and other innovative methodologies, to further unravel the complex mechanisms of thrombosis. Finally, we propose future clinical scenarios where targeting endothelial health could pave the way for more effective prevention and treatment strategies in thrombosis management.
Collapse
Affiliation(s)
- Marco Paolo Donadini
- Department of Medicine and Surgery, Research Center on Thromboembolic Diseases and Antithrombotic Therapies, University of Insubria, 21100 Varese, Italy;
- Centro Trombosi e TAO, Azienda Socio Sanitaria Territoriale dei Sette Laghi, 21100 Varese, Italy;
| | - Francesca Calcaterra
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, 20125 Milan, Italy; (F.C.); (R.C.); (A.C.); (S.D.B.); (D.M.)
- Unit of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
| | - Erica Romualdi
- Centro Trombosi e TAO, Azienda Socio Sanitaria Territoriale dei Sette Laghi, 21100 Varese, Italy;
| | - Roberta Ciceri
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, 20125 Milan, Italy; (F.C.); (R.C.); (A.C.); (S.D.B.); (D.M.)
- Unit of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
| | - Assunta Cancellara
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, 20125 Milan, Italy; (F.C.); (R.C.); (A.C.); (S.D.B.); (D.M.)
- Unit of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
| | - Corrado Lodigiani
- Center for Thrombosis and Hemorrhagic Diseases, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy; (C.L.); (M.B.)
| | - Monica Bacci
- Center for Thrombosis and Hemorrhagic Diseases, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy; (C.L.); (M.B.)
| | - Silvia Della Bella
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, 20125 Milan, Italy; (F.C.); (R.C.); (A.C.); (S.D.B.); (D.M.)
- Unit of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
| | - Walter Ageno
- Department of Medicine and Surgery, Research Center on Thromboembolic Diseases and Antithrombotic Therapies, University of Insubria, 21100 Varese, Italy;
- Department of Internal Medicine, Ospedale Regionale di Bellinzona e Valli, 6500 Bellinzona, Switzerland
| | - Domenico Mavilio
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, 20125 Milan, Italy; (F.C.); (R.C.); (A.C.); (S.D.B.); (D.M.)
- Unit of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
| |
Collapse
|
3
|
Abbas A, Almaghrbi H, Giordo R, Zayed H, Pintus G. Pathogenic mechanisms, diagnostic, and therapeutic potential of microvesicles in diabetes and its complications. Arch Biochem Biophys 2024; 761:110168. [PMID: 39349130 DOI: 10.1016/j.abb.2024.110168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 10/02/2024]
Abstract
Extracellular vesicles (EVs), particularly microvesicles (MVs), have gained significant attention for their role as mediators of intercellular communication in both physiological and pathological contexts, including diabetes mellitus (DM) and its complications. This review provides a comprehensive analysis of the emerging roles of MVs in the pathogenesis of diabetes and associated complications such as nephropathy, retinopathy, cardiomyopathy, and neuropathy. MVs, through their cargo of proteins, lipids, mRNAs, and miRNAs, regulate critical processes like inflammation, oxidative stress, immune responses, and tissue remodeling, all of which contribute to the progression of diabetes and its complications. We examine the molecular mechanisms underlying MVs' involvement in these pathological processes and discuss their potential as biomarkers and therapeutic tools, particularly for drug delivery. Despite promising evidence, challenges remain in isolating and characterizing MVs, understanding their molecular mechanisms, and validating them for clinical use. Advanced techniques such as single-cell RNA sequencing and proteomics are required to gain deeper insights. Improved isolation and purification methods are essential for translating MVs into clinical applications, with potential to develop novel diagnostic and therapeutic strategies to improve patient outcomes in diabetes.
Collapse
Affiliation(s)
- Alaa Abbas
- Department of Biomedical Science, College of Health Sciences, Member of QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Heba Almaghrbi
- Department of Biomedical Science, College of Health Sciences, Member of QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Roberta Giordo
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, 505055, Dubai, United Arab Emirates; Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43B, 07100, Sassari, Italy
| | - Hatem Zayed
- Department of Biomedical Science, College of Health Sciences, Member of QU Health, Qatar University, P.O. Box 2713, Doha, Qatar.
| | - Gianfranco Pintus
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43B, 07100, Sassari, Italy; Department of Medical Laboratory Sciences, College of Health Sciences and Sharjah Institute for Medical Research, University of Sharjah, University City Rd, Sharjah, 27272, United Arab Emirates.
| |
Collapse
|
4
|
Wang X, He B. Insight into endothelial cell-derived extracellular vesicles in cardiovascular disease: Molecular mechanisms and clinical implications. Pharmacol Res 2024; 207:107309. [PMID: 39009292 DOI: 10.1016/j.phrs.2024.107309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/15/2024] [Accepted: 07/12/2024] [Indexed: 07/17/2024]
Abstract
The endothelium is crucial in regulating vascular function. Extracellular vesicles (EVs) serve as membranous structures released by cells to facilitate intercellular communication through the delivery of nucleic acids, lipids, and proteins to recipient cells in an paracrine or endocrine manner. Endothelial cell-derived EVs (EndoEVs) have been identified as both biomarkers and significant contributors to the occurrence and progression of cardiovascular disease (CVD). The impact of EndoEVs on CVD is complex and contingent upon the condition of donor cells, the molecular cargo within EVs, and the characteristics of recipient cells. Consequently, elucidating the underlying molecular mechanisms of EndoEVs is crucial for comprehending their contributions to CVD. Moreover, a thorough understanding of the composition and function of EndoEVs is imperative for their potential clinical utility. This review aims provide an up-to-date overview of EndoEVs in the context of physiology and pathophysiology, as well as to discuss their prospective clinical applications.
Collapse
Affiliation(s)
- Xia Wang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, School of Medicine, China
| | - Ben He
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, School of Medicine, China.
| |
Collapse
|
5
|
Novinbahador T, Abroon S, Motlagh K, Abbasi K, Mehdizadeh A, Nejabati HR, Yousefi M. Surface markers on microparticles involved in obesity-derived diseases. Life Sci 2024; 352:122876. [PMID: 38942357 DOI: 10.1016/j.lfs.2024.122876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024]
Abstract
AIMS This review aimed to investigate the different types of microparticles playing role in obesity-related diseases. Additionally, the factors participating in changing the microparticles amount in obese people will also be discussed. MATERIAL & METHODS The authors collected the relevant articles published until 2023 and these are carefully selected from three scientific databases based on keywords. KEY FINDINGS It has been revealed that exercise might change the microparticle content in the body. The other factor which participates in obesity process is the oxidative stress which is increased in microparticles. Moreover, the obesity is implicated in metabolic conditions including diabetes and cardiovascular diseases. SIGNIFICANCE More than one-third of people on the planet today are known as overweight individuals. Microparticles (MPs) are small membrane-bound vesicles that are found in healthy people's blood and are elevated in patients with pathological conditions such as obesity. MPs mostly come from platelets, leukocytes, endothelial cells, and vascular smooth muscle cells. Considering the effect of obesity on microparticles, these small membrane-bound vesicles might play a crucial role in preventing or treatment of obesity.
Collapse
Affiliation(s)
- Tannaz Novinbahador
- Department of Biology, Faculty of Naturexoal Sciences, University of Tabriz, Tabriz, Iran; Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sina Abroon
- Department of Biology, Faculty of Naturexoal Sciences, University of Tabriz, Tabriz, Iran; Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Kimia Motlagh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khadijeh Abbasi
- Student Research Committee, Tabriz University of Medical sciences, Tabriz, Iran
| | - Amir Mehdizadeh
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamid Reza Nejabati
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Yousefi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
6
|
Sokolov D, Gorshkova A, Tyshchuk E, Grebenkina P, Zementova M, Kogan I, Totolian A. Large Extracellular Vesicles Derived from Natural Killer Cells Affect the Functions of Monocytes. Int J Mol Sci 2024; 25:9478. [PMID: 39273424 PMCID: PMC11395174 DOI: 10.3390/ijms25179478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/13/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
Communication between natural killer cells (NK cells) and monocytes/macrophages may play an important role in immunomodulation and regulation of inflammatory processes. The aim of this research was to investigate the impact of NK cell-derived large extracellular vesicles on monocyte function because this field is understudied. We studied how NK-cell derived large extracellular vesicles impact on THP-1 cells characteristics after coculturing: phenotype, functions were observed with flow cytometry. In this study, we demonstrated the ability of large extracellular vesicles produced by NK cells to integrate into the membranes of THP-1 cells and influence the viability, phenotype, and functional characteristics of the cells. The results obtained demonstrate the ability of large extracellular vesicles to act as an additional component in the immunomodulatory activity of NK cells in relation to monocytes.
Collapse
Affiliation(s)
- Dmitry Sokolov
- Federal State Budgetary Scientific Institution "The Research Institute of Obstetrics, Gynecology and Reproductology Named after D.O. Ott", 199034 St. Petersburg, Russia
- Saint-Petersburg Pasteur Institute, 197101 St. Petersburg, Russia
| | - Alina Gorshkova
- Federal State Budgetary Scientific Institution "The Research Institute of Obstetrics, Gynecology and Reproductology Named after D.O. Ott", 199034 St. Petersburg, Russia
| | - Elizaveta Tyshchuk
- Federal State Budgetary Scientific Institution "The Research Institute of Obstetrics, Gynecology and Reproductology Named after D.O. Ott", 199034 St. Petersburg, Russia
- Saint-Petersburg Pasteur Institute, 197101 St. Petersburg, Russia
| | - Polina Grebenkina
- Federal State Budgetary Scientific Institution "The Research Institute of Obstetrics, Gynecology and Reproductology Named after D.O. Ott", 199034 St. Petersburg, Russia
- Saint-Petersburg Pasteur Institute, 197101 St. Petersburg, Russia
| | - Maria Zementova
- Federal State Budgetary Scientific Institution "The Research Institute of Obstetrics, Gynecology and Reproductology Named after D.O. Ott", 199034 St. Petersburg, Russia
- Saint-Petersburg Pasteur Institute, 197101 St. Petersburg, Russia
| | - Igor Kogan
- Federal State Budgetary Scientific Institution "The Research Institute of Obstetrics, Gynecology and Reproductology Named after D.O. Ott", 199034 St. Petersburg, Russia
| | - Areg Totolian
- Saint-Petersburg Pasteur Institute, 197101 St. Petersburg, Russia
| |
Collapse
|
7
|
Dumitrescu G, Antovic J, Soutari N, Gran C, Antovic A, Al-Abani K, Grip J, Rooyackers O, Taxiarchis A. The role of complement and extracellular vesicles in the development of pulmonary embolism in severe COVID-19 cases. PLoS One 2024; 19:e0309112. [PMID: 39178205 PMCID: PMC11343408 DOI: 10.1371/journal.pone.0309112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/05/2024] [Indexed: 08/25/2024] Open
Abstract
Complement and extracellular vesicles (EVs) association with thrombogenic tendencies is acknowledged, but limited evidence exists for their link to COVID-19 venous thromboembolism. This study aims to examine the relationship between pulmonary embolism and the expression of complement and other proteins related to thrombogenesis in severe Covid-19 patients. We included prospectively 207 severe COVID-19 patients and retrospectively screened for pulmonary embolism (PE). This analysis comprises 20 confirmed PE cases and 20 matched patients without PE. Blood samples taken at the admission in the intensive care unit were analyzed for complement using ELISA. EVs derived from neutrophils, endothelium, or platelets, as well carrying complement or tissue factor were analyzed using flow cytometry. Complement levels were markedly elevated, with a notable increase in C3a and Terminal Complement Complex. The most prevalent EV population was identified as tissue factor (TF)-carrying EVs which peaked in patients with PE during ICU days 4-9. However, for both the complement and analyzed EV populations, no statistically significant differences were found between the patients who developed pulmonary embolism and those who did not. In conclusion, complement factors and EVs expressing tissue factor, along with EVs derived from endothelial cells and platelets, are elevated in severe COVID-19 patients, regardless of the presence of pulmonary embolism. However, the involvement of complement and procoagulant EVs in peripheral plasma in the development of pulmonary embolism is still unclear and requires further investigation.
Collapse
Affiliation(s)
- Gabriel Dumitrescu
- Division of Anaesthesia and Intensive Care, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, and Perioperative and Intensive Care Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Jovan Antovic
- Department of Molecular Medicine and Surgery, Karolinska Institutet, and Clinical Chemistry, Karolinska University Laboratory, Karolinska University Hospital, Stockholm, Sweden
| | - Nida Soutari
- Department of Molecular Medicine and Surgery, Karolinska Institutet, and Clinical Chemistry, Karolinska University Laboratory, Karolinska University Hospital, Stockholm, Sweden
| | - Charlotte Gran
- Department of Molecular Medicine and Surgery, Karolinska Institutet, and Clinical Chemistry, Karolinska University Laboratory, Karolinska University Hospital, Stockholm, Sweden
| | - Aleksandra Antovic
- Division of Rheumatology, Department of Medicine, Karolinska Institutet, and Unit of Rheumatology, Karolinska University Hospital, Stockholm, Sweden
| | - Kais Al-Abani
- Department of Clinical Physiology, Karolinska University Hospital, Stockholm, Sweden
| | - Jonathan Grip
- Division of Anaesthesia and Intensive Care, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, and Perioperative and Intensive Care Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Olav Rooyackers
- Division of Anaesthesia and Intensive Care, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, and Perioperative and Intensive Care Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Apostolos Taxiarchis
- Department of Molecular Medicine and Surgery, Karolinska Institutet, and Clinical Chemistry, Karolinska University Laboratory, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
8
|
Suwakulsiri W, Xu R, Rai A, Chen M, Shafiq A, Greening DW, Simpson RJ. Transcriptomic analysis and fusion gene identifications of midbody remnants released from colorectal cancer cells reveals they are molecularly distinct from exosomes and microparticles. Proteomics 2024; 24:e2300058. [PMID: 38470197 DOI: 10.1002/pmic.202300058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 02/25/2024] [Accepted: 02/27/2024] [Indexed: 03/13/2024]
Abstract
Previously, we reported that human primary (SW480) and metastatic (SW620) colorectal (CRC) cells release three classes of membrane-encapsulated extracellular vesicles (EVs); midbody remnants (MBRs), exosomes (Exos), and microparticles (MPs). We reported that MBRs were molecularly distinct at the protein level. To gain further biochemical insights into MBRs, Exos, and MPs and their emerging role in CRC, we performed, and report here, for the first time, a comprehensive transcriptome and long noncoding RNA sequencing analysis and fusion gene identification of these three EV classes using the next-generation RNA sequencing technique. Differential transcript expression analysis revealed that MBRs have a distinct transcriptomic profile compared to Exos and MPs with a high enrichment of mitochondrial transcripts lncRNA/pseudogene transcripts that are predicted to bind to ribonucleoprotein complexes, spliceosome, and RNA/stress granule proteins. A salient finding from this study is a high enrichment of several fusion genes in MBRs compared to Exos, MPs, and cell lysates from their parental cells such as MSH2 (gene encoded DNA mismatch repair protein MSH2). This suggests potential EV-liquid biopsy targets for cancer detection. Importantly, the expression of cancer progression-related transcripts found in EV classes derived from SW480 (EGFR) and SW620 (MET and MACCA1) cell lines reflects their parental cell types. Our study is the report of RNA and fusion gene compositions within MBRs (including Exos and MPs) that could have an impact on EV functionality in cancer progression and detection using EV-based RNA/ fusion gene candidates for cancer biomarkers.
Collapse
Affiliation(s)
- Wittaya Suwakulsiri
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science (LIMS), School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, Victoria, Australia
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Darlington, New South Wales, Australia
| | - Rong Xu
- Nanobiotechnology Laboratory, Australia Centre for Blood Diseases, Centre Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Alin Rai
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Baker Department of Cardiovascular Research, Translation and Implementation, La Trobe University, Melbourne, Victoria, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Maoshan Chen
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Centre, The Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Adnan Shafiq
- Department of Cell & Developmental Biology, School of Medicine, Vanderbilt University, Nashville, Tennessee, USA
| | - David W Greening
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Baker Department of Cardiovascular Research, Translation and Implementation, La Trobe University, Melbourne, Victoria, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Richard J Simpson
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science (LIMS), School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, Victoria, Australia
| |
Collapse
|
9
|
Louka E, Koumandou VL. The Emerging Role of Human Gut Bacteria Extracellular Vesicles in Mental Disorders and Developing New Pharmaceuticals. Curr Issues Mol Biol 2024; 46:4751-4767. [PMID: 38785554 PMCID: PMC11120620 DOI: 10.3390/cimb46050286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/08/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024] Open
Abstract
In recent years, further evidence has emerged regarding the involvement of extracellular vesicles in various human physiopathological conditions such as Alzheimer's disease, Parkinson's disease, irritable bowel syndrome, and mental disorders. The biogenesis and cargo of such vesicles may reveal their impact on human health nd disease and set the underpinnings for the development of novel chemical compounds and pharmaceuticals. In this review, we examine the link between bacteria-derived exosomes in the gastrointestinal tract and mental disorders, such as depression and anxiety disorders. Crucially, we focus on whether changes in the gut environment affect the human mental state or the other way around. Furthermore, the possibility of handling bacteria-derived exosomes as vectors of chemicals to treat such conditions is examined.
Collapse
Affiliation(s)
- Effrosyni Louka
- Genetics Laboratory, Department of Biotechnology, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Vassiliki Lila Koumandou
- Genetics Laboratory, Department of Biotechnology, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| |
Collapse
|
10
|
Abughofah Y, Anderson WL, Kreutz RP. Renal Dysfunction and Outcomes in Patients With ST-Elevation Myocardial Infarction Treated With Percutaneous Coronary Intervention. Am J Cardiol 2024; 217:35-38. [PMID: 38408591 DOI: 10.1016/j.amjcard.2024.01.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/13/2024] [Accepted: 01/29/2024] [Indexed: 02/28/2024]
Affiliation(s)
- Yousaf Abughofah
- Indiana University School of Medicine, Division of Cardiovascular Medicine, Indianapolis, Indiana
| | - Wesley L Anderson
- Indiana University School of Medicine, Division of Cardiovascular Medicine, Indianapolis, Indiana
| | - Rolf P Kreutz
- Indiana University School of Medicine, Division of Cardiovascular Medicine, Indianapolis, Indiana.
| |
Collapse
|
11
|
Malin SK, Erdbrügger U. Extracellular Vesicles in Metabolic and Vascular Insulin Resistance. J Vasc Res 2024; 61:129-141. [PMID: 38615667 PMCID: PMC11149383 DOI: 10.1159/000538197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/01/2024] [Indexed: 04/16/2024] Open
Abstract
BACKGROUND Insulin resistance is a major etiological factor in obesity, type 2 diabetes, and cardiovascular disease (CVD). Endothelial dysfunction may precede impairments in insulin-stimulated glucose uptake, thereby making it a key feature in development of CVD. However, the mechanism by which vascular tissue becomes dysfunctional is not clear. SUMMARY Extracellular vesicles (EVs) have emerged as potential mediators of insulin resistance and vascular dysfunction. EVs are membrane-bound particles released by tissues following cellular stress or activation. They carry "cargo" (e.g., insulin signaling proteins, eNOS-nitric oxide, and miRNA) that are believed to promote inter-cellular and interorgan communications. Herein, we review the underlying physiology of EVs in relation to type 2 diabetes and CVD risk. Specifically, we discuss how EVs may modulate metabolic (e.g., skeletal muscle, liver, and adipose) insulin sensitivity, and propose that EVs may modulate vascular insulin action to influence both endothelial function and arterial stiffness. We lastly identify how EVs may play a unique role following exercise to promote metabolic and vascular insulin sensitivity changes. KEY MESSAGE Gaining insight toward insulin-mediated EV mechanism has potential to identify novel pathways regulating cardiometabolic health and provide foundation for examining EVs as unique biomarkers and targets to prevent and/or treat chronic diseases.
Collapse
Affiliation(s)
- Steven K. Malin
- Department of Kinesiology & Health, Rutgers University, New Brunswick, NJ
- Division of Endocrinology, Metabolism & Nutrition, Department of Medicine, New Brunswick, NJ
- The New Jersey Institute for Food, Nutrition and Health, Rutgers University, New Brunswick, NJ
- Institute of Translational Medicine & Science, Rutgers University, New Brunswick, NJ
| | - Uta Erdbrügger
- Division of Nephrology, Department of Medicine, University of Virginia Health System, VA
| |
Collapse
|
12
|
Gaceb A, Roupé L, Enström A, Almasoudi W, Carlsson R, Lindgren AG, Paul G. Pericyte Microvesicles as Plasma Biomarkers Reflecting Brain Microvascular Signaling in Patients With Acute Ischemic Stroke. Stroke 2024; 55:558-568. [PMID: 38323422 PMCID: PMC10896197 DOI: 10.1161/strokeaha.123.045720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 01/07/2024] [Accepted: 01/19/2024] [Indexed: 02/08/2024]
Abstract
BACKGROUND Blood-based biomarkers have the potential to reflect cerebrovascular signaling after microvascular injury; yet, the detection of cell-specific signaling has proven challenging. Microvesicles retain parental cell surface antigens allowing detection of cell-specific signaling encoded in their cargo. In ischemic stroke, the progression of pathology involves changes in microvascular signaling whereby brain pericytes, perivascular cells wrapping the microcapillaries, are one of the early responders to the ischemic insult. Intercepting the pericyte signaling response peripherally by isolating pericyte-derived microvesicles may provide not only diagnostic information on microvascular injury but also enable monitoring of important pathophysiological mechanisms. METHODS Plasma samples were collected from patients with acute ischemic stroke (n=39) at 3 time points after stroke onset: 0 to 6 hours, 12 to 24 hours, and 2 to 6 days, and compared with controls (n=39). Pericyte-derived microvesicles were isolated based on cluster of differentiation 140b expression and quantified by flow cytometry. The protein content was evaluated using a proximity extension assay, and vascular signaling pathways were examined using molecular signature hallmarks and gene ontology. RESULTS In this case-control study, patients with acute ischemic stroke showed significantly increased numbers of pericyte-derived microvesicles (median, stroke versus controls) at 12 to 24 hours (1554 versus 660 microvesicles/μL; P=0.0041) and 2 to 6 days after stroke (1346 versus 660 microvesicles/μL; P=0.0237). Their proteome revealed anti-inflammatory properties mediated via downregulation of Kirsten rat sarcoma virus and IL (interleukin)-6/JAK/STAT3 signaling at 0 to 6 hours, but proangiogenic as well as proinflammatory signals at 12 to 24 hours. Between 2 and 6 days, proteins were mainly associated with vascular remodeling as indicated by activation of Hedgehog signaling in addition to proangiogenic signals. CONCLUSIONS We demonstrate that the plasma of patients with acute ischemic stroke reflects (1) an early and time-dependent increase of pericyte-derived microvesicles and (2) changes in the protein cargo of microvesicles over time indicating cell signaling specifically related to inflammation and vascular remodeling.
Collapse
Affiliation(s)
- Abderahim Gaceb
- Translational Neurology Group, Department of Clinical Science, Wallenberg Neuroscience Center (A.G., A.E., R.C., G.P.), Lund University, Sweden
| | - Linnea Roupé
- Department of Neurology, Scania University Hospital, Lund, Sweden (L.R., W.A., A.G.L., G.P.)
| | - Andreas Enström
- Translational Neurology Group, Department of Clinical Science, Wallenberg Neuroscience Center (A.G., A.E., R.C., G.P.), Lund University, Sweden
| | - Wejdan Almasoudi
- Department of Neurology, Scania University Hospital, Lund, Sweden (L.R., W.A., A.G.L., G.P.)
| | - Robert Carlsson
- Translational Neurology Group, Department of Clinical Science, Wallenberg Neuroscience Center (A.G., A.E., R.C., G.P.), Lund University, Sweden
| | - Arne G. Lindgren
- Department of Neurology, Scania University Hospital, Lund, Sweden (L.R., W.A., A.G.L., G.P.)
| | - Gesine Paul
- Translational Neurology Group, Department of Clinical Science, Wallenberg Neuroscience Center (A.G., A.E., R.C., G.P.), Lund University, Sweden
- Wallenberg Center for Molecular Medicine (G.P.), Lund University, Sweden
- Department of Neurology, Scania University Hospital, Lund, Sweden (L.R., W.A., A.G.L., G.P.)
| |
Collapse
|
13
|
Bharti N, Rai MK, Singh S, Agarwal V, Prasad N, Pandey R, Agrawal V. Prognostic significance of circulating microparticles in IgA nephropathy. Int Urol Nephrol 2024; 56:1071-1081. [PMID: 37615844 DOI: 10.1007/s11255-023-03743-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 08/10/2023] [Indexed: 08/25/2023]
Abstract
PURPOSE Endothelial injury, involved in the pathogenesis of renal fibrosis, can generate microparticles (MPs). These are 0.1-1 µm membrane-bound vesicles shed from the damaged or activated cell surfaces. We analyzed the presence of circulating MPs and EnMPs in IgAN and correlated with markers of endothelial injury and disease activity. METHODS The study included 30 IgAN (mean age 31.5 ± 9 years), 25 healthy controls and Lupus nephritis (n = 10) as disease controls. Circulating MPs were quantitated by Flow cytometry and EnMPs were analyzed using anti-CD31-FITC and anti-CD146-PE antibodies. Their levels were correlated with serum von Willebrand Factor, histological Oxford MEST-C score and renal outcome. A prospective validation group of 20 patients of biopsy-proven IgA nephropathy was also included. RESULTS IgAN had significantly higher levels of MPs, EnMPs and vWF compared to controls. On multivariate analysis, plasma levels of total MPs, EnMPs and serum vWF correlated significantly with the presence of hypertension and E1 on histology. E1 and high MPs (> 130 counts/µl) were associated with shorter time to doubling of serum creatinine. MPs cutoff level of 130 counts/µl had a sensitivity of 75%, specificity of 93.3% and diagnostic accuracy of 89.5% for E1 in the validation cohort. CONCLUSION Circulating MPs and EnMPs in IgAN correlate with E1 on histology and have a potential as non-invasive biomarkers to predict disease activity and renal outcome.
Collapse
Affiliation(s)
- Niharika Bharti
- Departments of Pathology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, 226014, India
| | - Mohit Kumar Rai
- Clinical Immunology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, 226014, India
| | - Snigdha Singh
- Departments of Pathology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, 226014, India
| | - Vikas Agarwal
- Clinical Immunology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, 226014, India
| | - Narayan Prasad
- Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, 226014, India
| | - Rakesh Pandey
- Departments of Pathology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, 226014, India
| | - Vinita Agrawal
- Departments of Pathology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, 226014, India.
| |
Collapse
|
14
|
Pateraki P, Latsoudis H, Papadopoulou A, Gontika I, Fragiadaki I, Mavroudi I, Bizymi N, Batsali A, Klontzas ME, Xagorari A, Michalopoulos E, Sotiropoulos D, Yannaki E, Stavropoulos-Giokas C, Papadaki HA. Perspectives for the Use of Umbilical Cord Blood in Transplantation and Beyond: Initiatives for an Advanced and Sustainable Public Banking Program in Greece. J Clin Med 2024; 13:1152. [PMID: 38398465 PMCID: PMC10889829 DOI: 10.3390/jcm13041152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/11/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
The umbilical cord blood (UCB) donated in public UCB banks is a source of hematopoietic stem cells (HSC) alternative to bone marrow for allogeneic HSC transplantation (HSCT). However, the high rejection rate of the donated units due to the strict acceptance criteria and the wide application of the haploidentical HSCT have resulted in significant limitation of the use of UCB and difficulties in the economic sustainability of the public UCB banks. There is an ongoing effort within the UCB community to optimize the use of UCB in the field of HSCT and a parallel interest in exploring the use of UCB for applications beyond HSCT i.e., in the fields of cell therapy, regenerative medicine and specialized transfusion medicine. In this report, we describe the mode of operation of the three public UCB banks in Greece as an example of an orchestrated effort to develop a viable UCB banking system by (a) prioritizing the enrichment of the national inventory by high-quality UCB units from populations with rare human leukocyte antigens (HLA), and (b) deploying novel sustainable applications of UCB beyond HSCT, through national and international collaborations. The Greek paradigm of the public UCB network may become an example for countries, particularly with high HLA heterogeneity, with public UCB banks facing sustainability difficulties and adds value to the international efforts aiming to sustainably expand the public UCB banking system.
Collapse
Affiliation(s)
- Patra Pateraki
- Law Directorate of the Health Region of Crete, Ministry of Health, Heraklion, 71500 Heraklion, Greece;
- Public Cord Blood Bank of Crete, Department of Hematology, University Hospital of Heraklion, 71500 Heraklion, Greece; (I.G.); (I.F.); (I.M.); (N.B.); (A.B.)
| | - Helen Latsoudis
- Institute of Computer Sciences, Foundation for Research and Technology–Hellas (FORTH), 70013 Heraklion, Greece;
| | - Anastasia Papadopoulou
- Gene and Cell Therapy Center, Department of Hematology-HCT Unit, George Papanikolaou Hospital, 57010 Thessaloniki, Greece;
| | - Ioanna Gontika
- Public Cord Blood Bank of Crete, Department of Hematology, University Hospital of Heraklion, 71500 Heraklion, Greece; (I.G.); (I.F.); (I.M.); (N.B.); (A.B.)
- Hemopoiesis Research Laboratory, School of Medicine, University of Crete, 71500 Heraklion, Greece;
| | - Irene Fragiadaki
- Public Cord Blood Bank of Crete, Department of Hematology, University Hospital of Heraklion, 71500 Heraklion, Greece; (I.G.); (I.F.); (I.M.); (N.B.); (A.B.)
- Hemopoiesis Research Laboratory, School of Medicine, University of Crete, 71500 Heraklion, Greece;
| | - Irene Mavroudi
- Public Cord Blood Bank of Crete, Department of Hematology, University Hospital of Heraklion, 71500 Heraklion, Greece; (I.G.); (I.F.); (I.M.); (N.B.); (A.B.)
- Hemopoiesis Research Laboratory, School of Medicine, University of Crete, 71500 Heraklion, Greece;
| | - Nikoleta Bizymi
- Public Cord Blood Bank of Crete, Department of Hematology, University Hospital of Heraklion, 71500 Heraklion, Greece; (I.G.); (I.F.); (I.M.); (N.B.); (A.B.)
- Hemopoiesis Research Laboratory, School of Medicine, University of Crete, 71500 Heraklion, Greece;
| | - Aristea Batsali
- Public Cord Blood Bank of Crete, Department of Hematology, University Hospital of Heraklion, 71500 Heraklion, Greece; (I.G.); (I.F.); (I.M.); (N.B.); (A.B.)
- Hemopoiesis Research Laboratory, School of Medicine, University of Crete, 71500 Heraklion, Greece;
| | - Michail E. Klontzas
- Department of Radiology, School of Medicine, University of Crete, 71500 Heraklion, Greece;
- Department of Medical Imaging, University Hospital of Heraklion, 71500 Heraklion, Greece
| | - Angeliki Xagorari
- Public Cord Blood Bank, Department of Hematology, George Papanikolaou Hospital, 57010 Thessaloniki, Greece; (A.X.); (D.S.)
| | - Efstathios Michalopoulos
- Hellenic Cord Blood Bank (HCBB), Biomedical Research Foundation Academy of Athens, 11527 Athens, Greece; (E.M.); (C.S.-G.)
| | - Damianos Sotiropoulos
- Public Cord Blood Bank, Department of Hematology, George Papanikolaou Hospital, 57010 Thessaloniki, Greece; (A.X.); (D.S.)
| | - Evangelia Yannaki
- Hemopoiesis Research Laboratory, School of Medicine, University of Crete, 71500 Heraklion, Greece;
| | - Catherine Stavropoulos-Giokas
- Hellenic Cord Blood Bank (HCBB), Biomedical Research Foundation Academy of Athens, 11527 Athens, Greece; (E.M.); (C.S.-G.)
| | - Helen A. Papadaki
- Public Cord Blood Bank of Crete, Department of Hematology, University Hospital of Heraklion, 71500 Heraklion, Greece; (I.G.); (I.F.); (I.M.); (N.B.); (A.B.)
- Hemopoiesis Research Laboratory, School of Medicine, University of Crete, 71500 Heraklion, Greece;
| |
Collapse
|
15
|
Papareddy P, Tapken I, Kroh K, Varma Bhongir RK, Rahman M, Baumgarten M, Cim EI, Györffy L, Smeds E, Neumann A, Veerla S, Olinder J, Thorlacus H, Ryden C, Bartakova E, Holub M, Herwald H. The role of extracellular vesicle fusion with target cells in triggering systemic inflammation. Nat Commun 2024; 15:1150. [PMID: 38326335 PMCID: PMC10850166 DOI: 10.1038/s41467-024-45125-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 01/16/2024] [Indexed: 02/09/2024] Open
Abstract
Extracellular vesicles (EVs) play a crucial role in intercellular communication by transferring bioactive molecules from donor to recipient cells. As a result, EV fusion leads to the modulation of cellular functions and has an impact on both physiological and pathological processes in the recipient cell. This study explores the impact of EV fusion on cellular responses to inflammatory signaling. Our findings reveal that fusion renders non-responsive cells susceptible to inflammatory signaling, as evidenced by increased NF-κB activation and the release of inflammatory mediators. Syntaxin-binding protein 1 is essential for the merge and activation of intracellular signaling. Subsequent analysis show that EVs transfer their functionally active receptors to target cells, making them prone to an otherwise unresponsive state. EVs in complex with their agonist, require no further stimulation of the target cells to trigger mobilization of NF-κB. While receptor antagonists were unable to inhibit NF-κB activation, blocking of the fusion between EVs and their target cells with heparin mitigated inflammation in mice challenged with EVs.
Collapse
Affiliation(s)
- Praveen Papareddy
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden.
| | - Ines Tapken
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
- SMATHERIA gGmbH - Non-Profit Biomedical Research Institute, Hannover, Germany
- Center for Systems Neuroscience (ZSN), Hannover, Germany
| | - Keshia Kroh
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | | | - Milladur Rahman
- Section of Surgery, Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Maria Baumgarten
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Eda Irem Cim
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Lilla Györffy
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Emanuel Smeds
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Ariane Neumann
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Srinivas Veerla
- Division of Oncology and Pathology, Lund, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Jon Olinder
- Division of Infection Medicine, Helsingborg Hospital and Department of Clinical Sciences Helsingborg, Lund University, Lund, Sweden
| | - Henrik Thorlacus
- Section of Surgery, Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Cecilia Ryden
- Division of Infection Medicine, Helsingborg Hospital and Department of Clinical Sciences Helsingborg, Lund University, Lund, Sweden
| | - Eva Bartakova
- Department of Infectious Diseases, First Faculty of Medicine, Charles University and Military University Hospital Prague, Praha, Czech Republic
| | - Michal Holub
- Department of Infectious Diseases, First Faculty of Medicine, Charles University and Military University Hospital Prague, Praha, Czech Republic
| | - Heiko Herwald
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden.
| |
Collapse
|
16
|
Abdolalian M, Khalaf-Adeli E, Yari F, Hosseini S, Kiaeefar P. Presurgical circulating platelet-derived microparticles level as a risk factor of blood transfusion in patients with valve heart disease undergoing cardiac surgery. Transfus Clin Biol 2024; 31:19-25. [PMID: 38029957 DOI: 10.1016/j.tracli.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 11/17/2023] [Accepted: 11/21/2023] [Indexed: 12/01/2023]
Abstract
BACKGROUND Cell-derived microparticles (MPs) are membrane vesicles that have emerged as a potential biomarker for various diseases and their clinical complications. This study investigates the role of MPs as a risk factor for blood transfusion in patients with valve heart disease undergoing cardiac surgery. METHODS Forty adult patients undergoing heart valve surgery with cardiopulmonary bypass (CPB) were enrolled, and venous blood samples were collected prior to surgical incision. Plasma rich in MPs was prepared by double centrifugation, and the concentration of MPs was determined using the Bradford method. Flow cytometry analysis was performed to determine MPs count and phenotype. Patients were divided into "with transfusion" (n = 18) and "without transfusion" (n = 22) groups based on red blood cell (RBC) transfusion. RESULTS There was no significant difference in MPs concentration between the "with transfusion" and "without transfusion" groups. Although the count of preoperative platelet-derived MPs (PMPs), monocyte-derived MPs (MMPs), and red cell-derived MPs (RMPs) was higher in "without transfusion" group, these differences were not statistically significant. The preoperative PMPs count was negatively correlated with RBC transfusion (P = 0.005, r = -0.65). Multivariate logistic regression analysis revealed that the count of CD41+ PMPs, Hemoglobin (Hb), and RBC count were risk factors for RBC transfusion. CONCLUSION This study suggests that the presurgical levels of PMPs, Hb, and RBC count can serve as risk factors of RBC transfusion in patients with valve heart disease undergoing cardiac surgery. The findings provide insights into the potential use of MPs as biomarkers for blood transfusion prediction in cardiac surgery.
Collapse
Affiliation(s)
- Mehrnaz Abdolalian
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Elham Khalaf-Adeli
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran; Department of Hematology, Faculty of Paramedical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Fatemeh Yari
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Saeid Hosseini
- Heart Valve Disease Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
17
|
Li C, Xiang F, Gong Y, Fu Y, Chen G, Wang Z, Li Z, Wei D. Tumor-derived microparticles promoted M2-like macrophages polarization to stimulate osteosarcoma progression. Int J Biochem Cell Biol 2024; 166:106494. [PMID: 37956954 DOI: 10.1016/j.biocel.2023.106494] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/14/2023] [Accepted: 11/09/2023] [Indexed: 11/21/2023]
Abstract
Microparticles (MPs) are a heterogeneous subpopulation of extracellular vesicles that originate from the plasma membranes of cells. There is increasing evidence that tumor-derived MPs (T-MPs) play a significant role in tumor progression and immune response in cancer. In our study, we found an increased secretion of MPs in osteosarcoma tissues obtained from metastatic patients. These T-MPs promoted polarization of M2-like macrophages and stimulated the migration and chemoresistance of osteosarcoma cells. Mechanistically, T-MPs promoted macrophage polarization to an M2-like phenotype through TBK1-STAT6 signaling. Consequently, these M2-like macrophages mediated osteosarcoma cell migration via CCL18/STAT3 signaling. Blockade of STAT3 signaling pathway improved the outcome of chemotherapy in LM8-bearing osteosarcoma mice model. Thus, our study reveals how tumor cells regulate macrophage polarization by releasing MPs and provides new insights into clinical osteosarcoma therapy.
Collapse
Affiliation(s)
- Cui Li
- Department of Nosocomial Infection Control, Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Feifan Xiang
- Department of Orthopaedics, Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China; Sichuan Provincial Laboratory of Orthopaedic Engineering, Luzhou 646000, Sichuan, China; Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou 646000, Sichuan, China
| | - Yuqi Gong
- Department of Clinical Medicine, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Yi Fu
- Department of Clinical Medicine, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Ge Chen
- Department of Orthopaedics, Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China; Sichuan Provincial Laboratory of Orthopaedic Engineering, Luzhou 646000, Sichuan, China
| | - Zhi Wang
- Department of Orthopaedics, Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China; Sichuan Provincial Laboratory of Orthopaedic Engineering, Luzhou 646000, Sichuan, China
| | - Zhong Li
- Department of Orthopaedics, Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China; Sichuan Provincial Laboratory of Orthopaedic Engineering, Luzhou 646000, Sichuan, China
| | - Daiqing Wei
- Department of Orthopaedics, Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China; Sichuan Provincial Laboratory of Orthopaedic Engineering, Luzhou 646000, Sichuan, China.
| |
Collapse
|
18
|
Angelov AK, Markov M, Ivanova M, Georgiev T. The genesis of cardiovascular risk in inflammatory arthritis: insights into glycocalyx shedding, endothelial dysfunction, and atherosclerosis initiation. Clin Rheumatol 2023; 42:2541-2555. [PMID: 37581758 DOI: 10.1007/s10067-023-06738-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/05/2023] [Accepted: 08/07/2023] [Indexed: 08/16/2023]
Abstract
This narrative review provides a comprehensive examination of the complex interplay between inflammatory arthritis (IA) and cardiovascular pathology. It particularly illuminates the roles of atherosclerosis initiation, endothelial dysfunction, and glycocalyx shedding. IA not only provokes tissue-specific inflammatory responses, but also engenders a considerable degree of non-specific systemic inflammation. This review underscores the accelerating influence of the chronic inflammatory milieu of IA on cardiovascular disease (CVD) progression. A focal point of our exploration is the critical function of the endothelial glycocalyx (EG) in this acceleration process, which possibly characterizes the earliest phases of atherosclerosis. We delve into the influence of inflammatory mediators on microtubule dynamics, EG modulation, immune cell migration and activation, and lipid dysregulation. We also illuminate the impact of microparticles and microRNA on endothelial function. Further, we elucidate the role of systemic inflammation and sheddases in EG degradation, the repercussions of complement activation, and the essential role of syndecans in preserving EG integrity. Our review provides insight into the complex and dynamic interface between systemic circulation and the endothelium.
Collapse
Affiliation(s)
- Alexander Krasimirov Angelov
- Medical Faculty, Medical University - Sofia, Sofia, 1431, Bulgaria
- Clinic of Rheumatology, University Hospital St. Ivan Rilski - Sofia, Sofia, 1431, Bulgaria
| | - Miroslav Markov
- Faculty of Medicine, Medical University - Varna, Varna, 9002, Bulgaria
- Clinic of Internal Medicine, University Hospital St. Marina - Varna, Varna, 9010, Bulgaria
| | - Mariana Ivanova
- Medical Faculty, Medical University - Sofia, Sofia, 1431, Bulgaria
- Clinic of Rheumatology, University Hospital St. Ivan Rilski - Sofia, Sofia, 1431, Bulgaria
| | - Tsvetoslav Georgiev
- Faculty of Medicine, Medical University - Varna, Varna, 9002, Bulgaria.
- Clinic of Rheumatology, University Hospital St. Marina - Varna, Varna, 9002, Bulgaria.
| |
Collapse
|
19
|
Lin CY, Chen CW, Wang C, Sung FC, Su TC. The Association between 4-Tertiary-Octylphenol, Apoptotic Microparticles, and Carotid Intima-Media Thickness in a Young Taiwanese Population. TOXICS 2023; 11:757. [PMID: 37755767 PMCID: PMC10537624 DOI: 10.3390/toxics11090757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 09/28/2023]
Abstract
As one of the most common alkylphenols, 4-tertiary-octylphenol (4-tOP) is commonly used in many consumer products. Our previous epidemiological study revealed a negative correlation between serum 4-tOP levels and carotid intima-media thickness (CIMT), which serves as a biomarker of arteriosclerosis. We aimed to explore the role of apoptotic microparticles, markers of vascular endothelial cell function, in the 4-tOP and CIMT connection. To investigate this, we enrolled 886 Taiwanese adolescents and young adults (aged 12-30 years) and examined the relationships among serum 4-tOP levels, apoptotic microparticles (CD31+/CD42a-, CD31+/CD42a+), and CIMT. Our results showed negative associations among serum 4-tOP levels, both apoptotic microparticles, and CIMT in multiple linear regression analysis. The odds ratios for CIMT (≥75th percentile) and the natural logarithm of 4-tOP were highest when both CD31+/CD42a- and CD31+/CD42a+ were greater than the 50th percentile. Conversely, the odds ratios were lowest when both CD31+/CD42a- and CD31+/CD42a+ were less than the 50th percentile. In the structural equation model, we demonstrated that serum 4-tOP levels were negatively correlated with CIMT and indirectly and negatively correlated with CIMT through both apoptotic microparticles. In conclusion, our study reported the inverse association between 4-tOP apoptotic microparticles and CIMT in a young Taiwanese population. Further experimental studies are needed to clarify these associations.
Collapse
Affiliation(s)
- Chien-Yu Lin
- Department of Internal Medicine, En Chu Kong Hospital, New Taipei City 237, Taiwan;
- School of Medicine, Fu Jen Catholic University, New Taipei City 242, Taiwan
- Department of Environmental Engineering and Health, Yuanpei University of Medical Technology, Hsinchu 300, Taiwan;
| | - Ching-Way Chen
- Department of Cardiology, National Taiwan University Hospital Yunlin Branch, Yunlin 640, Taiwan;
| | - Chikang Wang
- Department of Environmental Engineering and Health, Yuanpei University of Medical Technology, Hsinchu 300, Taiwan;
| | - Fung-Chang Sung
- Department of Health Services Administration, China Medical University College of Public Health, Taichung 404, Taiwan;
- Department of Food Nutrition and Health Biotechnology, Asia University, Taichung 413, Taiwan
| | - Ta-Chen Su
- Department of Environmental and Occupational Medicine, National Taiwan University Hospital, Taipei 100, Taiwan
- Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital, Taipei 100, Taiwan
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei 100, Taiwan
| |
Collapse
|
20
|
Montezano AC, Camargo LL, Mary S, Neves KB, Rios FJ, Stein R, Lopes RA, Beattie W, Thomson J, Herder V, Szemiel AM, McFarlane S, Palmarini M, Touyz RM. SARS-CoV-2 spike protein induces endothelial inflammation via ACE2 independently of viral replication. Sci Rep 2023; 13:14086. [PMID: 37640791 PMCID: PMC10462711 DOI: 10.1038/s41598-023-41115-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 08/22/2023] [Indexed: 08/31/2023] Open
Abstract
COVID-19, caused by SARS-CoV-2, is a respiratory disease associated with inflammation and endotheliitis. Mechanisms underling inflammatory processes are unclear, but angiotensin converting enzyme 2 (ACE2), the receptor which binds the spike protein of SARS-CoV-2 may be important. Here we investigated whether spike protein binding to ACE2 induces inflammation in endothelial cells and determined the role of ACE2 in this process. Human endothelial cells were exposed to SARS-CoV-2 spike protein, S1 subunit (rS1p) and pro-inflammatory signaling and inflammatory mediators assessed. ACE2 was modulated pharmacologically and by siRNA. Endothelial cells were also exposed to SARS-CoV-2. rSP1 increased production of IL-6, MCP-1, ICAM-1 and PAI-1, and induced NFkB activation via ACE2 in endothelial cells. rS1p increased microparticle formation, a functional marker of endothelial injury. ACE2 interacting proteins involved in inflammation and RNA biology were identified in rS1p-treated cells. Neither ACE2 expression nor ACE2 enzymatic function were affected by rSP1. Endothelial cells exposed to SARS-CoV-2 virus did not exhibit viral replication. We demonstrate that rSP1 induces endothelial inflammation via ACE2 through processes that are independent of ACE2 enzymatic activity and viral replication. We define a novel role for ACE2 in COVID-19- associated endotheliitis.
Collapse
Affiliation(s)
- Augusto C Montezano
- Research Institute of the McGill University Health Centre (RI-MUHC), Site Glen-Block E-Office: E01.3362, 1001, Boul. Decarie, Montreal, QC, H4A3J1, Canada.
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK.
| | - Livia L Camargo
- Research Institute of the McGill University Health Centre (RI-MUHC), Site Glen-Block E-Office: E01.3362, 1001, Boul. Decarie, Montreal, QC, H4A3J1, Canada
| | - Sheon Mary
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK
| | - Karla B Neves
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Francisco J Rios
- Research Institute of the McGill University Health Centre (RI-MUHC), Site Glen-Block E-Office: E01.3362, 1001, Boul. Decarie, Montreal, QC, H4A3J1, Canada
| | - Ross Stein
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK
| | - Rheure A Lopes
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK
| | - Wendy Beattie
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK
| | - Jacqueline Thomson
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK
| | - Vanessa Herder
- MRC Centre for Virus Research, University of Glasgow, Glasgow, UK
| | | | - Steven McFarlane
- MRC Centre for Virus Research, University of Glasgow, Glasgow, UK
| | | | - Rhian M Touyz
- Research Institute of the McGill University Health Centre (RI-MUHC), Site Glen-Block E-Office: E01.3362, 1001, Boul. Decarie, Montreal, QC, H4A3J1, Canada.
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK.
- McGill University, Montreal, Canada.
| |
Collapse
|
21
|
Dong X, Dong JF, Zhang J. Roles and therapeutic potential of different extracellular vesicle subtypes on traumatic brain injury. Cell Commun Signal 2023; 21:211. [PMID: 37596642 PMCID: PMC10436659 DOI: 10.1186/s12964-023-01165-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 05/13/2023] [Indexed: 08/20/2023] Open
Abstract
Traumatic brain injury (TBI) is a leading cause of injury-related disability and death around the world, but the clinical stratification, diagnosis, and treatment of complex TBI are limited. Due to their unique properties, extracellular vesicles (EVs) are emerging candidates for being biomarkers of traumatic brain injury as well as serving as potential therapeutic targets. However, the effects of different extracellular vesicle subtypes on the pathophysiology of traumatic brain injury are very different, or potentially even opposite. Before extracellular vesicles can be used as targets for TBI therapy, it is necessary to classify different extracellular vesicle subtypes according to their functions to clarify different strategies for EV-based TBI therapy. The purpose of this review is to discuss contradictory effects of different EV subtypes on TBI, and to propose treatment ideas based on different EV subtypes to maximize their benefits for the recovery of TBI patients. Video Abstract.
Collapse
Affiliation(s)
- Xinlong Dong
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 119, Nansihuan West Road, Fengtai District, Beijing, China.
- Beijing Key Laboratory of Central Nervous System Injury, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.
| | - Jing-Fei Dong
- Bloodworks Research Institute, Seattle, WA, USA
- Division of Hematology, Department of Medicine, School of Medicine, University of Washington, Seattle, WA, USA
| | - Jianning Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
22
|
Lin W, Huang F, Yuan Y, Li Q, Lin Z, Zhu W, Lin B, Zhu P. Endothelial exosomes work as a functional mediator to activate macrophages. Front Immunol 2023; 14:1169471. [PMID: 37575264 PMCID: PMC10416261 DOI: 10.3389/fimmu.2023.1169471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 07/10/2023] [Indexed: 08/15/2023] Open
Abstract
Introduction Intercellular communication is essential for almost all physiological and pathological processes. Endothelial cell (EC)-derived exosomes, working as mediators for intercellular information exchange, are involved in the pathophysiological mechanisms of atherosclerosis. However, the effect of inflamed endothelial exosomes on the function of macrophages (Mϕ) is poorly defined. This study aims to unravel how exosomes derived from tumor necrosis factor-α (TNF-α)-stimulated ECs (exo-T) affect Mϕ in vitro. Methods and results Exosomes derived from untreated ECs (exo) and exo-T were identified by using TEM, NTA, and western blot, and we observed that PKH67-labeled exo/exo-T were taken up by Mϕ. Exposure to exo-T for 24 h not only skewed Mϕ to the M1 subtype and exacerbated lipid deposition, but also promoted Mϕ apoptosis, while it did not significantly affect Mϕ migration, as detected by RT-qPCR, Dil-ox-LDL uptake assay, flow cytometry, wound healing assay, and transwell assay, respectively. In addition, exo/exo-T-related microRNA-Seq revealed 104 significantly differentially expressed microRNAs (DE-miRNAs). The target genes of DE-miRNAs were mainly enriched functionally in metabolic pathways, MAPK signaling pathway, etc., as determined using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. We further demonstrated by immunoblotting that exo-T intervention improves the phosphorylation of MAPK/NF-κB-related proteins. Discussion and conclusion Collectively, this study reveals that inflamed endothelial exosomes (TNF-α-stimulated EC-derived exosomes) work as a functional mediator to affect Mϕ function and may activate Mϕ through MAPK/NF-κB signaling pathways.
Collapse
Affiliation(s)
- Wenwen Lin
- Department of Geriatric Medicine, Fujian Provincial Hospital, Fuzhou, China
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, China
- Fujian Provincial Key Laboratory of Geriatrics, Fuzhou, China
- Fujian Provincial Institute of Clinical Geriatrics, Fuzhou, China
- Fujian Provincial Center of Geriatrics, Fuzhou, China
| | - Feng Huang
- Department of Geriatric Medicine, Fujian Provincial Hospital, Fuzhou, China
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, China
- Fujian Provincial Key Laboratory of Geriatrics, Fuzhou, China
- Fujian Provincial Institute of Clinical Geriatrics, Fuzhou, China
- Fujian Provincial Center of Geriatrics, Fuzhou, China
| | - Yin Yuan
- Department of Geriatric Medicine, Fujian Provincial Hospital, Fuzhou, China
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, China
- Fujian Provincial Key Laboratory of Geriatrics, Fuzhou, China
- Fujian Provincial Institute of Clinical Geriatrics, Fuzhou, China
- Fujian Provincial Center of Geriatrics, Fuzhou, China
| | - Qiaowei Li
- Department of Geriatric Medicine, Fujian Provincial Hospital, Fuzhou, China
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, China
- Fujian Provincial Key Laboratory of Geriatrics, Fuzhou, China
- Fujian Provincial Institute of Clinical Geriatrics, Fuzhou, China
- Fujian Provincial Center of Geriatrics, Fuzhou, China
| | - Zhong Lin
- Department of Geriatric Medicine, Fujian Provincial Hospital, Fuzhou, China
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, China
- Fujian Provincial Key Laboratory of Geriatrics, Fuzhou, China
- Fujian Provincial Institute of Clinical Geriatrics, Fuzhou, China
- Fujian Provincial Center of Geriatrics, Fuzhou, China
| | - Wenqing Zhu
- Department of Geriatric Medicine, Fujian Provincial Hospital, Fuzhou, China
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, China
- Fujian Provincial Key Laboratory of Geriatrics, Fuzhou, China
- Fujian Provincial Institute of Clinical Geriatrics, Fuzhou, China
- Fujian Provincial Center of Geriatrics, Fuzhou, China
| | - Binbin Lin
- Department of Geriatric Medicine, Fujian Provincial Hospital, Fuzhou, China
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, China
- Fujian Provincial Key Laboratory of Geriatrics, Fuzhou, China
- Fujian Provincial Institute of Clinical Geriatrics, Fuzhou, China
- Fujian Provincial Center of Geriatrics, Fuzhou, China
| | - Pengli Zhu
- Department of Geriatric Medicine, Fujian Provincial Hospital, Fuzhou, China
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, China
- Fujian Provincial Key Laboratory of Geriatrics, Fuzhou, China
- Fujian Provincial Institute of Clinical Geriatrics, Fuzhou, China
- Fujian Provincial Center of Geriatrics, Fuzhou, China
| |
Collapse
|
23
|
Di Vincenzo F, Yadid Y, Petito V, Emoli V, Masi L, Gerovska D, Araúzo-Bravo MJ, Gasbarrini A, Regenberg B, Scaldaferri F. Circular and Circulating DNA in Inflammatory Bowel Disease: From Pathogenesis to Potential Molecular Therapies. Cells 2023; 12:1953. [PMID: 37566032 PMCID: PMC10417561 DOI: 10.3390/cells12151953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/15/2023] [Accepted: 07/25/2023] [Indexed: 08/12/2023] Open
Abstract
Inflammatory bowel diseases (IBD), including Crohn's Disease (CD) and Ulcerative Colitis (UC) are chronic multifactorial disorders which affect the gastrointestinal tract with variable extent. Despite extensive research, their etiology and exact pathogenesis are still unknown. Cell-free DNAs (cfDNAs) are defined as any DNA fragments which are free from the origin cell and able to circulate into the bloodstream with or without microvescicles. CfDNAs are now being increasingly studied in different human diseases, like cancer or inflammatory diseases. However, to date it is unclear how IBD etiology is linked to cfDNAs in plasma. Extrachromosomal circular DNA (eccDNA) are non-plasmidic, nuclear, circular and closed DNA molecules found in all eukaryotes tested. CfDNAs appear to play an important role in autoimmune diseases, inflammatory processes, and cancer; recently, interest has also grown in IBD, and their role in the pathogenesis of IBD has been suggested. We now suggest that eccDNAs also play a role in IBD. In this review, we have comprehensively collected available knowledge in literature regarding cfDNA, eccDNA, and structures involving them such as neutrophil extracellular traps and exosomes, and their role in IBD. Finally, we focused on old and novel potential molecular therapies and drug delivery systems, such as nanoparticles, for IBD treatment.
Collapse
Affiliation(s)
- Federica Di Vincenzo
- IBD Unit, Centro di Malattie dell’Apparato Digerente (CeMAD), Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (F.D.V.); (L.M.); (A.G.); (F.S.)
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (Y.Y.); (V.E.)
| | - Ylenia Yadid
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (Y.Y.); (V.E.)
| | - Valentina Petito
- IBD Unit, Centro di Malattie dell’Apparato Digerente (CeMAD), Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (F.D.V.); (L.M.); (A.G.); (F.S.)
| | - Valeria Emoli
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (Y.Y.); (V.E.)
| | - Letizia Masi
- IBD Unit, Centro di Malattie dell’Apparato Digerente (CeMAD), Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (F.D.V.); (L.M.); (A.G.); (F.S.)
| | - Daniela Gerovska
- Computational Biology and Systems Biomedicine, Biodonostia Health Research Institute, Calle Doctor Begiristain s/n, 20014 San Sebastian, Spain; (D.G.); (M.J.A.-B.)
| | - Marcos Jesus Araúzo-Bravo
- Computational Biology and Systems Biomedicine, Biodonostia Health Research Institute, Calle Doctor Begiristain s/n, 20014 San Sebastian, Spain; (D.G.); (M.J.A.-B.)
- IKERBASQUE, Basque Foundation for Science, Calle María Díaz Harokoa 3, 48013 Bilbao, Spain
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Antonio Gasbarrini
- IBD Unit, Centro di Malattie dell’Apparato Digerente (CeMAD), Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (F.D.V.); (L.M.); (A.G.); (F.S.)
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (Y.Y.); (V.E.)
| | - Birgitte Regenberg
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Universitetsparken 13, Room 426, DK-2100 Copenhagen, Denmark;
| | - Franco Scaldaferri
- IBD Unit, Centro di Malattie dell’Apparato Digerente (CeMAD), Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (F.D.V.); (L.M.); (A.G.); (F.S.)
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (Y.Y.); (V.E.)
| |
Collapse
|
24
|
Tschirhart BJ, Lu X, Gomes J, Chandrabalan A, Bell G, Hess DA, Xing G, Ling H, Burger D, Feng Q. Annexin A5 Inhibits Endothelial Inflammation Induced by Lipopolysaccharide-Activated Platelets and Microvesicles via Phosphatidylserine Binding. Pharmaceuticals (Basel) 2023; 16:837. [PMID: 37375784 DOI: 10.3390/ph16060837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/25/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
Sepsis is caused by a dysregulated immune response to infection and is a leading cause of mortality globally. To date, no specific therapeutics are available to treat the underlying septic response. We and others have shown that recombinant human annexin A5 (Anx5) treatment inhibits pro-inflammatory cytokine production and improves survival in rodent sepsis models. During sepsis, activated platelets release microvesicles (MVs) with externalization of phosphatidylserine to which Anx5 binds with high affinity. We hypothesized that recombinant human Anx5 blocks the pro-inflammatory response induced by activated platelets and MVs in vascular endothelial cells under septic conditions via phosphatidylserine binding. Our data show that treatment with wildtype Anx5 reduced the expression of inflammatory cytokines and adhesion molecules induced by lipopolysaccharide (LPS)-activated platelets or MVs in endothelial cells (p < 0.01), which was not observed with Anx5 mutant deficient in phosphatidylserine binding. In addition, wildtype Anx5 treatment, but not Anx5 mutant, improved trans-endothelial electrical resistance (p < 0.05) and reduced monocyte (p < 0.001) and platelet (p < 0.001) adhesion to vascular endothelial cells in septic conditions. In conclusion, recombinant human Anx5 inhibits endothelial inflammation induced by activated platelets and MVs in septic conditions via phosphatidylserine binding, which may contribute to its anti-inflammatory effects in the treatment of sepsis.
Collapse
Affiliation(s)
- Brent J Tschirhart
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada
| | - Xiangru Lu
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada
| | - Janice Gomes
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada
| | - Arundhasa Chandrabalan
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada
| | - Gillian Bell
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada
| | - David A Hess
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada
| | - Guangxin Xing
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada
| | - Hong Ling
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada
| | - Dylan Burger
- Kidney Research Centre, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON K1H 8L6, Canada
| | - Qingping Feng
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada
| |
Collapse
|
25
|
Ryan MJ. Cardiovascular research at the Heart of Clinical Science. Clin Sci (Lond) 2023; 137:537-542. [PMID: 37051741 DOI: 10.1042/cs20220497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/19/2023] [Accepted: 03/27/2023] [Indexed: 04/14/2023]
Abstract
Clinical Science was originally established as the journal Heart in 1909 by Sir Thomas Lewis and Sir James Mackenzie. Heart was an influential journal publishing cardiovascular research and was renamed Clinical Science in 1933 to attract broader research interests. Nevertheless, cardiovascular research contributions remain a foundational part of the journal to this day. This editorial provides historical perspective on the journal's cardiovascular origins and includes data related to cardiovascular publications from the past decade. Clinical Science is committed to publishing leading cardiovascular research from the field and looks forward to receiving your submission.
Collapse
Affiliation(s)
- Michael J Ryan
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, U.S.A
- Columbia Veterans Affairs Health Care System, Columbia, SC, U.S.A
| |
Collapse
|
26
|
Salehi R, Wyse BA, Asare-Werehene M, Esfandiarinezhad F, Abedini A, Pan B, Urata Y, Gutsol A, Vinas JL, Jahangiri S, Xue K, Xue Y, Burns KD, Vanderhyden B, Li J, Osuga Y, Burger D, Tan SL, Librach CL, Tsang BK. Androgen-induced exosomal miR-379-5p release determines granulosa cell fate: cellular mechanism involved in polycystic ovaries. J Ovarian Res 2023; 16:74. [PMID: 37046285 PMCID: PMC10091561 DOI: 10.1186/s13048-023-01141-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/17/2023] [Indexed: 04/14/2023] Open
Abstract
Polycystic ovarian syndrome (PCOS) is a complex multi-factorial syndrome associated with androgen excess and anovulatory infertility. In the current study, we investigated the role of dihydrotestosterone-induced exosomal miR-379-5p release in determining the destiny of the developing follicles. Our hypothesis was that androgen regulates granulosa cell miR-379-5p content by facilitating its exosomal release in a follicular-stage dependent manner, a process which determines granulosa cell fate. Compared to human non-PCOS subjects, individuals with PCOS exhibit higher follicular fluid free testosterone levels, lower exosomal miR-379-5p content and granulosa cell proliferation. Androgenized rats exhibited lower granulosa cell miR-379-5p but higher phosphoinositide-dependent kinase-1 (PDK1; a miR-379-5p target) content and proliferation. Androgen reduced granulosa cell miR-379-5p content by increasing its exosomal release in preantral follicles, but not in antral follicles in vitro. Studies with an exosomal release inhibitor confirmed that androgen-induced exosomal miR-379-5p release decreased granulosa cell miR-379-5p content and proliferation. Ovarian overexpression of miR-379-5p suppressed granulosa cell proliferation, and basal and androgen-induced preantral follicle growth in vivo. These findings suggest that increased exosomal miR-379-5p release in granulosa cells is a proliferative response to androgenic stimulation specific for the preantral stage of follicle development and that dysregulation of this response at the antral stage is associated with follicular growth arrest, as observed in human PCOS.
Collapse
Affiliation(s)
- Reza Salehi
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Departments of Obstetrics and Gynecology, and Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- CReATe Fertility Centre, Toronto, ON, Canada
| | | | - Meshach Asare-Werehene
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Departments of Obstetrics and Gynecology, and Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Fereshteh Esfandiarinezhad
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Departments of Obstetrics and Gynecology, and Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Atefeh Abedini
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Bo Pan
- Department of Animal BioScience, University of Guelph, Guelph, ON, Canada
| | - Yoko Urata
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Obstetrics and Gynecology, University of Tokyo, Tokyo, Japan
| | - Alex Gutsol
- Division of Nephrology, Department of Medicine, Kidney Research Centre, University of Ottawa, Ottawa, ON, Canada
| | - Jose L Vinas
- Division of Nephrology, Department of Medicine, Kidney Research Centre, University of Ottawa, Ottawa, ON, Canada
| | | | - Kai Xue
- Department of Gynecology, The Affiliated Obstetrics and Gynecology Hospital, Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu Province, China
| | - Yunping Xue
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Kevin D Burns
- Division of Nephrology, Department of Medicine, Kidney Research Centre, University of Ottawa, Ottawa, ON, Canada
| | - Barbara Vanderhyden
- Departments of Obstetrics and Gynecology, and Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Julang Li
- Department of Animal BioScience, University of Guelph, Guelph, ON, Canada
| | - Yutaka Osuga
- Department of Obstetrics and Gynecology, University of Tokyo, Tokyo, Japan
| | - Dylan Burger
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Division of Nephrology, Department of Medicine, Kidney Research Centre, University of Ottawa, Ottawa, ON, Canada
| | - Seang-Lin Tan
- Department of Obstetrics and Gynecology, McGill University, Montreal, QC, Canada
- Originelle Fertility Clinic and Women's Health Centre, Ottawa, ON, Canada
| | - Clifford L Librach
- CReATe Fertility Centre, Toronto, ON, Canada
- Departments of Obstetrics and Gynaecology, Physiology, Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - Benjamin K Tsang
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada.
- Departments of Obstetrics and Gynecology, and Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
27
|
Abolbaghaei A, Turner M, Thibodeau JF, Holterman CE, Kennedy CRJ, Burger D. The Proteome of Circulating Large Extracellular Vesicles in Diabetes and Hypertension. Int J Mol Sci 2023; 24:ijms24054930. [PMID: 36902363 PMCID: PMC10003702 DOI: 10.3390/ijms24054930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/14/2023] [Accepted: 02/23/2023] [Indexed: 03/08/2023] Open
Abstract
Hypertension and diabetes induce vascular injury through processes that are not fully understood. Changes in extracellular vesicle (EV) composition could provide novel insights. Here, we examined the protein composition of circulating EVs from hypertensive, diabetic and healthy mice. EVs were isolated from transgenic mice overexpressing human renin in the liver (TtRhRen, hypertensive), OVE26 type 1 diabetic mice and wild-type (WT) mice. Protein content was analyzed using liquid chromatography-mass spectrometry. We identified 544 independent proteins, of which 408 were found in all groups, 34 were exclusive to WT, 16 were exclusive to OVE26 and 5 were exclusive to TTRhRen mice. Amongst the differentially expressed proteins, haptoglobin (HPT) was upregulated and ankyrin-1 (ANK1) was downregulated in OVE26 and TtRhRen mice compared with WT controls. Conversely, TSP4 and Co3A1 were upregulated and SAA4 was downregulated exclusively in diabetic mice; and PPN was upregulated and SPTB1 and SPTA1 were downregulated in hypertensive mice, compared to WT mice. Ingenuity pathway analysis identified enrichment in proteins associated with SNARE signaling, the complement system and NAD homeostasis in EVs from diabetic mice. Conversely, in EVs from hypertensive mice, there was enrichment in semaphroin and Rho signaling. Further analysis of these changes may improve understanding of vascular injury in hypertension and diabetes.
Collapse
Affiliation(s)
- Akram Abolbaghaei
- Chronic Disease Program, Kidney Research Centre, Ottawa Hospital Research Institute, Ottawa, ON K1H 8M5, Canada
| | - Maddison Turner
- Chronic Disease Program, Kidney Research Centre, Ottawa Hospital Research Institute, Ottawa, ON K1H 8M5, Canada
| | - Jean-François Thibodeau
- Chronic Disease Program, Kidney Research Centre, Ottawa Hospital Research Institute, Ottawa, ON K1H 8M5, Canada
| | - Chet E. Holterman
- Chronic Disease Program, Kidney Research Centre, Ottawa Hospital Research Institute, Ottawa, ON K1H 8M5, Canada
| | - Christopher R. J. Kennedy
- Chronic Disease Program, Kidney Research Centre, Ottawa Hospital Research Institute, Ottawa, ON K1H 8M5, Canada
- Departments of Medicine and Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Dylan Burger
- Chronic Disease Program, Kidney Research Centre, Ottawa Hospital Research Institute, Ottawa, ON K1H 8M5, Canada
- Departments of Medicine and Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- School of Pharmaceutical Sciences, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Correspondence: ; Tel.: +1-613-562-5800 (ext. 8241)
| |
Collapse
|
28
|
Abolbaghaei A, Mohammad S, da Silva DF, Hutchinson KA, Myette RL, Adamo KB, Burger D. Impact of acute moderate-intensity aerobic exercise on circulating extracellular vesicles in pregnant and non-pregnant women. Appl Physiol Nutr Metab 2023; 48:198-208. [PMID: 36661228 DOI: 10.1139/apnm-2022-0288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Exercise improves cardiovascular and metabolic health in pregnancy and may represent a non-pharmacological approach to improving pregnancy outcomes. Extracellular vesicles (EVs) are emerging biomarkers of endothelial dysfunction and offer the potential for evaluating vascular health non-invasively during pregnancy. The purpose of this study was to investigate changes in circulating EV levels after an acute bout of moderate-intensity aerobic exercise in healthy pregnant and non-pregnant women. We studied plasma samples from pregnant (N = 13, 13-28 weeks) and non-pregnant (N = 17) women. A pre-exercise blood sample was obtained followed by a 30 min bout of moderate-intensity treadmill-based exercise. Immediately following the exercise, a post-exercise blood draw was collected. Large EVs were isolated from plasma by differential centrifugation and characterized by Western blot and electron microscopy. We quantified circulating EVs by nanoscale flow cytometry. Endothelial EVs were identified as VE-Cadherin+, platelet EVs as CD41+, and leukocyte EVs as CD45+ events. Acute exercise was associated with a significant reduction in levels of circulating endothelial EVs in the non-pregnant group (p = 0.0232) but not in the pregnant group (p = 0.2734). A greater proportion of non-pregnant women (13/17, 76.47%) exhibited a reduction in endothelial EVs compared with their pregnant counterparts (4/13, 30.76%, p < 0.05). We also observed a positive association between measures of fitness (average speed) and baseline levels of platelet (r = 0.5816, p = 0.0159) and total EVs (r = 0.5325, p = 0.0296) in the non-pregnant group but not in pregnant individuals. Collectively, our study highlights that after a matched acute exercise, changes to circulating EV levels differ depending on pregnancy status.
Collapse
Affiliation(s)
- Akram Abolbaghaei
- Chronic Disease Program, Kidney Research Centre, Ottawa Hospital Research Institute, Ottawa, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, 2513-/451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - Shuhiba Mohammad
- Faculty of Health Sciences, School of Human Kinetics, University of Ottawa, Ottawa, ON, Canada
| | | | - Kelly Ann Hutchinson
- Faculty of Health Sciences, School of Human Kinetics, University of Ottawa, Ottawa, ON, Canada
| | - Robert L Myette
- Chronic Disease Program, Kidney Research Centre, Ottawa Hospital Research Institute, Ottawa, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, 2513-/451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - Kristi B Adamo
- Faculty of Health Sciences, School of Human Kinetics, University of Ottawa, Ottawa, ON, Canada
| | - Dylan Burger
- Chronic Disease Program, Kidney Research Centre, Ottawa Hospital Research Institute, Ottawa, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, 2513-/451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
29
|
Figuer A, Alique M, Valera G, Serroukh N, Ceprían N, de Sequera P, Morales E, Carracedo J, Ramírez R, Bodega G. New mechanisms involved in the development of cardiovascular disease in chronic kidney disease. Nefrologia 2023; 43:63-80. [PMID: 37268501 DOI: 10.1016/j.nefroe.2023.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 03/02/2022] [Indexed: 06/04/2023] Open
Abstract
Chronic kidney disease (CKD) is a pathology with a high worldwide incidence and an upward trend affecting the elderly. When CKD is very advanced, the use of renal replacement therapies is required to prolong its life (dialysis or kidney transplantation). Although dialysis improves many complications of CKD, the disease does not reverse completely. These patients present an increase in oxidative stress, chronic inflammation and the release of extracellular vesicles (EVs), which cause endothelial damage and the development of different cardiovascular diseases (CVD). CKD patients develop premature diseases associated with advanced age, such as CVD. EVs play an essential role in developing CVD in patients with CKD since their number increases in plasma and their content is modified. The EVs of patients with CKD cause endothelial dysfunction, senescence and vascular calcification. In addition, miRNAs free or transported in EVs together with other components carried in these EVs promote endothelial dysfunction, thrombotic and vascular calcification in CKD, among other effects. This review describes the classic factors and focuses on the role of new mechanisms involved in the development of CVD associated with CKD, emphasizing the role of EVs in the development of cardiovascular pathologies in the context of CKD. Moreover, the review summarized the EVs' role as diagnostic and therapeutic tools, acting on EV release or content to avoid the development of CVD in CKD patients.
Collapse
Affiliation(s)
- Andrea Figuer
- Departamento de Biología de Sistemas, Universidad de Alcalá (IRYCIS), Alcalá de Henares (Madrid), Spain
| | - Matilde Alique
- Departamento de Biología de Sistemas, Universidad de Alcalá (IRYCIS), Alcalá de Henares (Madrid), Spain.
| | - Gemma Valera
- Departamento de Biología de Sistemas, Universidad de Alcalá (IRYCIS), Alcalá de Henares (Madrid), Spain
| | - Nadia Serroukh
- Departamento de Genética, Fisiología y Microbiología, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre (IMAS12), Madrid, Spain
| | - Noemí Ceprían
- Departamento de Genética, Fisiología y Microbiología, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre (IMAS12), Madrid, Spain
| | - Patricia de Sequera
- Sección de Nefrología, Hospital Universitario Infanta Leonor, Universidad Complutense de Madrid, Madrid, Spain
| | - Enrique Morales
- Sección de Nefrología, Hospital 12 de Octubre, Madrid, Spain
| | - Julia Carracedo
- Departamento de Genética, Fisiología y Microbiología, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre (IMAS12), Madrid, Spain
| | - Rafael Ramírez
- Departamento de Biología de Sistemas, Universidad de Alcalá (IRYCIS), Alcalá de Henares (Madrid), Spain
| | - Guillermo Bodega
- Departamento de Biomedicina y Biotecnología, Universidad de Alcalá, Alcalá de Henares (Madrid), Spain
| |
Collapse
|
30
|
Song YK, Yuan HX, Jian YP, Chen YT, Liang KF, Liu XJ, Ou ZJ, Liu JS, Li Y, Ou JS. Pentraxin 3 in Circulating Microvesicles: a Potential Biomarker for Acute Heart Failure After Cardiac Surgery with Cardiopulmonary Bypass. J Cardiovasc Transl Res 2022; 15:1414-1423. [PMID: 35879589 DOI: 10.1007/s12265-022-10253-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/04/2022] [Indexed: 10/16/2022]
Abstract
The aim of this study was to investigate whether pentraxin 3 (PTX3) in microvesicles (MVs) can be a valuable biomarker for the prediction of acute heart failure (AHF) after cardiac surgery with cardiopulmonary bypass (CPB). One hundred and twenty-four patients undergoing cardiac surgery with CPB were included and analyzed (29 with AHF and 95 without AHF). The concentrations of PTX3 in MVs isolated from plasma were measured by ELISA kits before, 12 h, and 3 days after surgery. Patients' demographics, medical history, surgical data, and laboratory results were collected. The levels of PTX3 in MVs were significantly elevated during perioperative surgery, which was increased more in the AHF group. The concentrations of PTX3 in MVs at postoperative 12 h were independent risk factors for AHF with the area under the ROC curve of 0.920. The concentration of PTX3 in MVs may be a novel biomarker for prediction of AHF after cardiac surgery.
Collapse
Affiliation(s)
- Yuan-Kai Song
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhong Shan Er Road, Guangzhou, 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- NHC Key Laboratory of Assisted Circulation (Sun Yat-Sen University), Guangzhou, China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Hao-Xiang Yuan
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhong Shan Er Road, Guangzhou, 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- NHC Key Laboratory of Assisted Circulation (Sun Yat-Sen University), Guangzhou, China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Yu-Peng Jian
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhong Shan Er Road, Guangzhou, 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- NHC Key Laboratory of Assisted Circulation (Sun Yat-Sen University), Guangzhou, China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Ya-Ting Chen
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhong Shan Er Road, Guangzhou, 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- NHC Key Laboratory of Assisted Circulation (Sun Yat-Sen University), Guangzhou, China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Kai-Feng Liang
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhong Shan Er Road, Guangzhou, 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- NHC Key Laboratory of Assisted Circulation (Sun Yat-Sen University), Guangzhou, China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Xiao-Jun Liu
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhong Shan Er Road, Guangzhou, 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- NHC Key Laboratory of Assisted Circulation (Sun Yat-Sen University), Guangzhou, China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Zhi-Jun Ou
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- NHC Key Laboratory of Assisted Circulation (Sun Yat-Sen University), Guangzhou, China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- Division of Hypertension and Vascular Diseases, Heart Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jia-Sheng Liu
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhong Shan Er Road, Guangzhou, 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- NHC Key Laboratory of Assisted Circulation (Sun Yat-Sen University), Guangzhou, China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Yan Li
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhong Shan Er Road, Guangzhou, 510080, China.
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China.
- NHC Key Laboratory of Assisted Circulation (Sun Yat-Sen University), Guangzhou, China.
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China.
| | - Jing-Song Ou
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhong Shan Er Road, Guangzhou, 510080, China.
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China.
- NHC Key Laboratory of Assisted Circulation (Sun Yat-Sen University), Guangzhou, China.
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, China.
| |
Collapse
|
31
|
Association of Circulating Platelet Extracellular Vesicles and Pulse Wave Velocity with Cardiovascular Risk Estimation. Int J Mol Sci 2022; 23:ijms231810524. [PMID: 36142436 PMCID: PMC9505165 DOI: 10.3390/ijms231810524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 11/17/2022] Open
Abstract
Elevated circulating platelet-derived extracellular vesicles (EVs) have been reported in conditions associated with thrombotic risk. The present study aimed to assess the relationship between circulating platelet-derived EV levels, cardiovascular risk stratification and vascular organ damage, as assessed by pulse wave velocity (PWV). A total of 92 patients were included in the present analysis. Platelet EV were evaluated by flow cytometry (CD41+/Annexin v+). The cardiovascular risk was determined using the 2021 ESC guideline stratification and SCORE2 and SCORE-OP. PWV was performed as a surrogate to assess macrovascular damage. Risk stratification revealed significant group differences in EV levels (ANOVA, p = 0.04). Post hoc analysis demonstrated significantly higher levels of EVs in the very high-risk group compared with the young participants (12.53 ± 8.69 vs. 7.51 ± 4.67 EV/µL, p = 0.03). Linear regression models showed SCORE2 and SCORE-OP (p = 0.04) was a predictor of EV levels. EVs showed a significant association with macrovascular organ damage measured by PWV (p = 0.01). PWV progressively increased with more severe cardiovascular risk (p < 0.001) and was also associated with SCORE2 and SCORE-OP (p < 0.001). Within the pooled group of subjects with low to moderate risk and young participants (<40 years), those with EV levels in the highest tertile had a trend towards higher nocturnal blood pressure levels, fasting glucose concentration, lipid levels, homocysteine and PWV. Levels of platelet-derived EVs were highest in those patients with very high CV risk. Within a pooled group of patients with low to moderate risk, an unfavourable cardiometabolic profile was present with higher EV levels.
Collapse
|
32
|
Composition, Biogenesis, and Role of Exosomes in Tumor Development. Stem Cells Int 2022; 2022:8392509. [PMID: 36117723 PMCID: PMC9481374 DOI: 10.1155/2022/8392509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 08/14/2022] [Accepted: 08/26/2022] [Indexed: 11/30/2022] Open
Abstract
The role of exosomes and their mechanism of action at the tumor site have received increasing attention. These microvesicles are produced by a wide range of cells including mesenchymal stem cells (MSCs) and immune cells. In particular, tumor cells release remarkable amounts of exosomes which spread to distant organs through the blood and enhance the possibility of tumor metastasis. In spite of results on tumor promoting properties, there are reports demonstrating the tumor inhibiting effects of exosomes depending on the type of the tumor and cell source. This review aims to have a comprehensive appraisal on the biogenesis, composition, and isolation of exosomes and then highlights the current knowledge of their role in cancer progression or inhibition by special focusing on MSC's exosomes (MSC-EXOs).
Collapse
|
33
|
Lamarre Y, Nader E, Connes P, Romana M, Garnier Y. Extracellular Vesicles in Sickle Cell Disease: A Promising Tool. Bioengineering (Basel) 2022; 9:bioengineering9090439. [PMID: 36134985 PMCID: PMC9495982 DOI: 10.3390/bioengineering9090439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/25/2022] [Accepted: 08/31/2022] [Indexed: 12/12/2022] Open
Abstract
Sickle cell disease (SCD) is the most common hemoglobinopathy worldwide. It is characterized by an impairment of shear stress-mediated vasodilation, a pro-coagulant, and a pro-adhesive state orchestrated among others by the depletion of the vasodilator nitric oxide, by the increased phosphatidylserine exposure and tissue factor expression, and by the increased interactions of erythrocytes with endothelial cells that mediate the overexpression of adhesion molecules such as VCAM-1, respectively. Extracellular vesicles (EVs) have been shown to be novel actors involved in SCD pathophysiological processes. Medium-sized EVs, also called microparticles, which exhibit increased plasma levels in this pathology, were shown to induce the activation of endothelial cells, thereby increasing neutrophil adhesion, a key process potentially leading to the main complication associated with SCD, vaso-occlusive crises (VOCs). Small-sized EVs, also named exosomes, which have also been reported to be overrepresented in SCD, were shown to potentiate interactions between erythrocytes and platelets, and to trigger endothelial monolayer disruption, two processes also known to favor the occurrence of VOCs. In this review we provide an overview of the current knowledge about EVs concentration and role in SCD.
Collapse
Affiliation(s)
- Yann Lamarre
- Université Paris Cité and Université des Antilles, Inserm, BIGR, F-75015 Paris, France
| | - Elie Nader
- Laboratoire Inter-Universitaire de Biologie de la Motricité EA7424, Team “Vascular Biology and Red Blood Cell”, Université Claude Bernard Lyon 1, Université de Lyon, 69622 Lyon, France
| | - Philippe Connes
- Laboratoire Inter-Universitaire de Biologie de la Motricité EA7424, Team “Vascular Biology and Red Blood Cell”, Université Claude Bernard Lyon 1, Université de Lyon, 69622 Lyon, France
| | - Marc Romana
- Université Paris Cité and Université des Antilles, Inserm, BIGR, F-75015 Paris, France
| | - Yohann Garnier
- Université Paris Cité and Université des Antilles, Inserm, BIGR, F-75015 Paris, France
- Correspondence: ; Tel.: +590-590-891530
| |
Collapse
|
34
|
Jung RG, Duchez AC, Simard T, Dhaliwal S, Gillmore T, Di Santo P, Labinaz A, Ramirez FD, Rasheed A, Robichaud S, Ouimet M, Short S, Clifford C, Xiao F, Lordkipanidzé M, Burger D, Gadde S, Rayner KJ, Hibbert B. Plasminogen Activator Inhibitor-1–Positive Platelet-Derived Extracellular Vesicles Predicts MACE and the Proinflammatory SMC Phenotype. JACC Basic Transl Sci 2022; 7:985-997. [PMID: 36337926 PMCID: PMC9626902 DOI: 10.1016/j.jacbts.2022.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/02/2022] [Accepted: 05/02/2022] [Indexed: 12/01/2022]
Abstract
This study shows the existence of PAI-1+ PEVs. Approximately 20% of plasma PAI-1 is composed of PAI-1+ PEVs. Elevated PAI-1+ PEV levels were predictive of 1-year major adverse cardiac events in both the discovery and the validation cohort, with larger effect sizes than other clinical biomarkers. High PAI-1+ PEV levels did not affect thrombogenicity. Increasing doses of PAI-1+ PEVs promoted the proinflammatory VSMC state by enhancing proliferation and migration. Inhibition of the PAI-1:low-density lipoprotein–related receptor-1 pathway dampened the proinflammatory VSMC changes. PAI-1+ PEV is a promising biomarker for major adverse cardiac events, and targeting the PAI-1+ PEV–VSMC interaction may offer a novel target to modulate cardiac events in patients with coronary artery disease.
Patients with established coronary artery disease remain at elevated risk of major adverse cardiac events. The goal of this study was to evaluate the utility of plasminogen activator inhibitor-1–positive platelet-derived extracellular vesicles as a biomarker for major adverse cardiac events and to explore potential underlying mechanisms. Our study suggests these extracellular vesicles as a potential biomarker to identify and a therapeutic target to ameliorate neointimal formation of high-risk patients.
Collapse
Affiliation(s)
- Richard G. Jung
- CAPITAL Research Group, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
- Vascular Biology and Experimental Medicine Laboratory, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Anne-Claire Duchez
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Trevor Simard
- CAPITAL Research Group, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
- Vascular Biology and Experimental Medicine Laboratory, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Division of Cardiology, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Shan Dhaliwal
- CAPITAL Research Group, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
- Vascular Biology and Experimental Medicine Laboratory, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada
| | - Taylor Gillmore
- Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Pietro Di Santo
- CAPITAL Research Group, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
- Vascular Biology and Experimental Medicine Laboratory, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada
| | - Alisha Labinaz
- CAPITAL Research Group, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
- Vascular Biology and Experimental Medicine Laboratory, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - F. Daniel Ramirez
- CAPITAL Research Group, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
- Vascular Biology and Experimental Medicine Laboratory, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
- Division of Cardiology, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Adil Rasheed
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Sabrina Robichaud
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Mireille Ouimet
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Spencer Short
- Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Cole Clifford
- Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Fengxia Xiao
- Kidney Research Centre, Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Marie Lordkipanidzé
- Faculté de Pharmacie, Université de Montréal, Montréal, Québec, Canada
- Research Center, Montreal Heart Institute, Montréal, Québec, Canada
| | - Dylan Burger
- Kidney Research Centre, Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Suresh Gadde
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Katey J. Rayner
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Benjamin Hibbert
- CAPITAL Research Group, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
- Vascular Biology and Experimental Medicine Laboratory, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Division of Cardiology, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
- Address for correspondence: Dr Benjamin Hibbert, University of Ottawa Heart Institute, 40 Ruskin Street, H-4238, Ottawa, Ontario K1Y 4W7, Canada.
| |
Collapse
|
35
|
Cheng C, Bison E, Pontara E, Cattini MG, Tonello M, Denas G, Pengo V. Platelet- and endothelial-derived microparticles in the context of different antiphospholipid antibody profiles. Lupus 2022; 31:1328-1334. [DOI: 10.1177/09612033221118465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Objectives Studies on microparticles (MPs) in patients with antiphospholipid antibodies (aPL) are sparse and inconclusive. The relation between MPs and different aPL antibody profiles has never been tested. We evaluated the presence of platelet and endothelial microparticles in patients positive for IgG anti-β2-glycoprotein I (aβ2GPI) antibodies according to triple, double and single positive aPL profiles. Methods Megamix (Biocytex) was used to set up the MPs gating according to the datasheet. Markers of Platelet Microparticles (PMPs) were CD41a-PE and annexin-V-FITC that was used to determine phosphatidylserine (PS) exposure. CD144-FITC was used as a marker of Endothelial Microparticles (EMPs). Results The number of total MPs and EMPs was significantly higher in triple positive groups with respect to single positive group and showed a significant correlation with IgG aβ2GPI titers. The number PMPs was the lowest in triple positive group and inversely correlated with IgG aβ2GPI titers. Conclusions Elevated levels of total MPs and EMPs suggest a state of vascular activation in IgG aβ2GPI positive individuals according to the number of positive tests. PMPs may be fast cleared from circulation in high risk triple positive patients.
Collapse
Affiliation(s)
- Chunyan Cheng
- Thrombosis Research Laboratory, Department of Cardio-Thoracic-Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Elisa Bison
- Thrombosis Research Laboratory, Department of Cardio-Thoracic-Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Elena Pontara
- Thrombosis Research Laboratory, Department of Cardio-Thoracic-Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Maria Grazia Cattini
- Thrombosis Research Laboratory, Department of Cardio-Thoracic-Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Marta Tonello
- Department of Medicine, Rheumatology Section, University of Padua, Padova, Italy
| | - Gentian Denas
- Thrombosis Research Laboratory, Department of Cardio-Thoracic-Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Vittorio Pengo
- Thrombosis Research Laboratory, Department of Cardio-Thoracic-Vascular Sciences and Public Health, University of Padova, Padova, Italy
- Arianna Foundation on Anticoagulation, Bologna, Italy
| |
Collapse
|
36
|
Pourhadi M, Zali H, Ghasemi R, Vafaei-Nezhad S. Promising Role of Oral Cavity Mesenchymal Stem Cell-Derived Extracellular Vesicles in Neurodegenerative Diseases. Mol Neurobiol 2022; 59:6125-6140. [PMID: 35867205 DOI: 10.1007/s12035-022-02951-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 06/28/2022] [Indexed: 10/17/2022]
Abstract
Mesenchymal stem cells (MSCs) and mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) have been regarded as the beneficial and available tools to treat various hereditary, multifactorial, acute, and chronic diseases. Mesenchymal stem cells can be extracted from numerous sources for clinical purposes while oral cavity-derived mesenchymal stem cells seem to be more effective in neuroregeneration than other sources due to their similar embryonic origins to neuronal tissues. In various studies and different neurodegenerative diseases (NDs), oral cavity mesenchymal stem cells have been applied to prove their promising capacities in disease improvement. Moreover, oral cavity mesenchymal stem cells' secretion is regarded as a novel and practical approach to neuroregeneration; hence, extracellular vesicles (EVs), especially exosomes, may provide promising results to improve CNS defects. This review article focuses on how oral cavity-derived stem cells and their extracellular vesicles can improve neurodegenerative conditions and tries to show which molecules are involved in the recovery process.
Collapse
Affiliation(s)
- Masoumeh Pourhadi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hakimeh Zali
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Rasoul Ghasemi
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeed Vafaei-Nezhad
- Cellular & Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran.,Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
37
|
Eustes AS, Dayal S. The Role of Platelet-Derived Extracellular Vesicles in Immune-Mediated Thrombosis. Int J Mol Sci 2022; 23:7837. [PMID: 35887184 PMCID: PMC9320310 DOI: 10.3390/ijms23147837] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 12/14/2022] Open
Abstract
Platelet-derived extracellular vesicles (PEVs) play important roles in hemostasis and thrombosis. There are three major types of PEVs described based on their size and characteristics, but newer types may continue to emerge owing to the ongoing improvement in the methodologies and terms used to define various types of EVs. As the literature on EVs is growing, there are continuing attempts to standardize protocols for EV isolation and reach consensus in the field. This review provides information on mechanisms of PEV production, characteristics, cellular interaction, and their pathological role, especially in autoimmune and infectious diseases. We also highlight the mechanisms through which PEVs can activate parent cells in a feedback loop.
Collapse
Affiliation(s)
- Alicia S. Eustes
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA;
| | - Sanjana Dayal
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA;
- Iowa City VA Healthcare System, Iowa City, IA 52246, USA
| |
Collapse
|
38
|
Bhadra A, Scruggs AK, Leavesley SJ, Annamdevula N, George AH, Britain AL, Francis CM, Knighten JM, Rich TC, Bauer NN. Extracellular vesicle-induced cyclic AMP signaling. Cell Signal 2022; 95:110348. [PMID: 35504529 PMCID: PMC10676271 DOI: 10.1016/j.cellsig.2022.110348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 11/25/2022]
Abstract
Second messenger signaling is required for cellular processes. We previously reported that extracellular vesicles (EVs) from stimulated cultured endothelial cells contain the biochemical second messenger, cAMP. In the current study, we sought to determine whether cAMP-enriched EVs induce second messenger signaling pathways in naïve recipient cells. Our results indicate that cAMP-enriched EVs increase cAMP content sufficient to stimulate PKA activity. The implications of our work are that EVs represent a novel intercellular mechanism for second messenger, specifically cAMP, signaling.
Collapse
Affiliation(s)
- Aritra Bhadra
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL, United States of America; Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, Alabama
| | - April K Scruggs
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL, United States of America; Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, Alabama
| | - Silas J Leavesley
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL, United States of America; Department of Chemical and Biomolecular Engineering, College of Engineering, University of South Alabama, Mobile, AL, United States of America; Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, Alabama
| | - Naga Annamdevula
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL, United States of America; Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, Alabama
| | - April H George
- Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, Alabama
| | - Andrea L Britain
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL, United States of America; Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, Alabama
| | - Christopher M Francis
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, AL, United States of America; Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, Alabama
| | - Jennifer M Knighten
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, AL, United States of America; Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, Alabama
| | - Thomas C Rich
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL, United States of America; Department of Physiology and Cell Biology, University of South Alabama, Mobile, AL, United States of America
| | - Natalie N Bauer
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL, United States of America; Department of Physiology and Cell Biology, University of South Alabama, Mobile, AL, United States of America.
| |
Collapse
|
39
|
Yalameha B, Nejabati HR, Nouri M. Circulating microparticles as indicators of cardiometabolic risk in PCOS. Clin Chim Acta 2022; 533:63-70. [PMID: 35718107 DOI: 10.1016/j.cca.2022.06.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 11/17/2022]
Abstract
Polycystic ovary syndrome (PCOS), the most prevalent endocrine disturbance of the female reproductive system, is associated with several pathologic conditions, such as metabolic syndrome, obesity, diabetes, dyslipidemia, and insulin resistance, all of which are tightly connected to its progression. These factors are associated with a type of extracellular vesicle, ie, microparticles (MPs), released by shedding due to cell activation and apoptosis. Circulating MPs (cMPs) are secreted by a variety of cells, such as platelets, endothelial, leukocytes, and erythrocytes, and contain cytoplasmic substances derived from parent cells that account for their biologic activity. Current evidence has clearly shown that increased cMPs contribute to endothelial dysfunction, diabetes, hypertriglyceridemia, metabolic syndrome, cardiovascular abnormalities as well as PCOS. It has also been reported that platelet and endothelial MPs are specifically increased in PCOS thus endangering vascular health and subsequent cardiovascular disease. Given the importance of cMPs in the pathophysiology of PCOS, we review the role of cMPs in PCOS with a special focus on cardiometabolic significance.
Collapse
Affiliation(s)
- Banafsheh Yalameha
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamid Reza Nejabati
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mohammad Nouri
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
40
|
Hwang W, Shimizu M, Lee JW. Role of extracellular vesicles in severe pneumonia and sepsis. Expert Opin Biol Ther 2022; 22:747-762. [PMID: 35418256 PMCID: PMC9971738 DOI: 10.1080/14712598.2022.2066470] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Extracellular vesicles (EV) released constitutively or following external stimuli from structural and immune cells are now recognized as important mediators of cell-to-cell communication. They are involved in the pathogenesis of pneumonia and sepsis, leading causes of acute respiratory distress syndrome (ARDS) where mortality rates remain up to 40%. Multiple investigators have demonstrated that one of the underlying mechanisms of the effects of EVs is through the transfer of EV content to host cells, resulting in apoptosis, inflammation, and permeability in target organs. AREAS COVERED The current review focuses on preclinical research examining the role of EVs released into the plasma and injured alveolus during pneumonia and sepsis. EXPERT OPINION Inflammation is associated with elevated levels of circulating EVs that are released by activated structural and immune cells and can have significant proinflammatory, procoagulant, and pro-permeability effects in critically ill patients with pneumonia and/or sepsis. However, clinical translation of the use of EVs as biomarkers or potential therapeutic targets may be limited by current methodologies used to identify and quantify EVs accurately (whether from host cells or infecting organisms) and lack of understanding of the role of EVs in the reparative phase during recovery from pneumonia and/or sepsis.
Collapse
Affiliation(s)
- Wonjung Hwang
- Department of Anesthesiology and Pain Medicine, Seoul St. Mary’s hospital, Catholic College of Medicine, The Catholic University of Korea, Republic of Korea
| | - Masaru Shimizu
- Department of Anesthesiology, University of California, San Francisco, San Francisco, California
| | - Jae-Woo Lee
- Department of Anesthesiology, University of California, San Francisco, San Francisco, California.,Jae-Woo Lee, MD, Professor, University of California San Francisco, Department of Anesthesiology, 505 Parnassus Ave., Box 0648, San Francisco, CA 94143, Telephone: (415) 476-0452, Fax: (415) 514-2999,
| |
Collapse
|
41
|
Peng Z, Duan Y, Zhong S, Chen J, Li J, He Z. RNA-seq analysis of extracellular vesicles from hyperphosphatemia-stimulated endothelial cells provides insight into the mechanism underlying vascular calcification. BMC Nephrol 2022; 23:192. [PMID: 35597927 PMCID: PMC9123672 DOI: 10.1186/s12882-022-02823-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 05/16/2022] [Indexed: 11/19/2022] Open
Abstract
Background Hyperphosphatemia (HP) is associated with vascular calcification (VC) in chronic kidney disease (CKD). However, relationship between HP-induced-endothelial extracellular vesicles (HP-EC-EVs) and VC is unclear, and miR expression in HP-EC-EVs has not been determined. Methods We isolated HP-EC-EVs from endothelial cells with HP and observed that HP-EC-EVs were up-taken by vascular smooth muscle cells (VSMCs). HP-EC-EVs inducing calcium deposition was characterized by Alizarin Red S, colourimetric analysis and ALP activity. To investigate the mechanism of HP-EC-EVs-induced VSMC calcification, RNA-sequencing for HP-EC-EVs was performed. Results We first demonstrated that HP-EC-EVs induced VSMC calcification in vitro. RNA-seq analysis of HP-EC-EVs illustrated that one known miR (hsa-miR-3182) was statistically up-regulated and twelve miRs were significantly down-regulated, which was verified by qRT-PCR. We predicted 58,209 and 74,469 target genes for those down- and up-regulated miRs respectively through miRDB, miRWalk and miRanda databases. GO terms showed that down- and up-regulated targets were mostly enriched in calcium-dependent cell–cell adhesion via plama membrane cell-adhesion molecules (GO:0,016,338, BP) and cell adhesion (GO:0,007,155, BP), plasma membrane (GO:0,005,886, CC), and metal ion binding (GO:0,046,914, MF) and ATP binding (GO:0,005,524, MF) respectively. Top-20 pathways by KEGG analysis included calcium signaling pathway, cAMP signaling pathway, and ABC transporters, which were closely related to VC. Conclusion Our results indicated that those significantly altered miRs, which were packaged in HP-EC-EVs, may play an important role in VC by regulating related pathways. It may provide novel insight into the mechanism of CKD calcification. Supplementary Information The online version contains supplementary material available at 10.1186/s12882-022-02823-6.
Collapse
Affiliation(s)
- Zhong Peng
- The First Affiliated Hospital, Department of Gastroenterology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Yingjie Duan
- The First Affiliated Hospital, Department of Nephrology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Shuzhu Zhong
- The First Affiliated Hospital, Department of Nephrology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Juan Chen
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230002, China
| | - Jianlong Li
- Department of Orthopedic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.,Department of Pediatrics, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Zhangxiu He
- The First Affiliated Hospital, Department of Nephrology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
42
|
Lugo-Gavidia LM, Carnagarin R, Burger D, Nolde JM, Chan J, Robinson S, Bosio E, Matthews VB, Schlaich MP. Circulating platelet-derived extracellular vesicles correlate with night-time blood pressure and vascular organ damage and may represent an integrative biomarker of vascular health. J Clin Hypertens (Greenwich) 2022; 24:738-749. [PMID: 35502649 PMCID: PMC9180329 DOI: 10.1111/jch.14479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/10/2022] [Accepted: 03/22/2022] [Indexed: 12/11/2022]
Abstract
Elevated office blood pressure (BP) has previously been associated with increased levels of circulating extracellular vesicles (EVs). The present study aimed to assess the relationship between levels of platelet derived EVs, ambulatory BP parameters, and pulse wave velocity as a marker of macrovascular organ damage. A total of 96 participants were included in the study. Platelet-derived extracellular vesicles (pEVs) were evaluated by flow cytometry (CD41+/Annexin v+). BP evaluation included unobserved automated office BP and ambulatory BP monitoring. Carotid-femoral pulse wave velocity (PWV) was measured as a marker of macrovascular damage. pEVs correlated with nocturnal systolic BP (r = 0.31; p = .003) and nocturnal dipping (r = -0.29; p = .01) in univariable analysis. Multivariable regression models confirmed robustness of the association of EVs and nocturnal blood pressure (p = .02). In contrast, systolic office, 24h- and daytime-BP did not show significant associations with pEVs. No correlations were found with diastolic BP. Circulating pEVs correlated with pulse wave velocity (r = 0.25; p = .02). When comparing different hypertensive phenotypes, higher levels of EVs and PWV were evident in patients with sustained hypertension compared to patients with white coat HTN and healthy persons. Circulating platelet derived EVs were associated with nocturnal BP, dipping, and PWV. Given that average nocturnal BP is the strongest predictor of CV events, platelet derived EVs may serve as an integrative marker of vascular health, a proposition that requires testing in prospective clinical trials.
Collapse
Affiliation(s)
- Leslie Marisol Lugo-Gavidia
- Dobney Hypertension Centre, Medical School - Royal Perth Hospital Unit, RPH Research Foundation, The University of Western Australia, Perth, Australia
| | - Revathy Carnagarin
- Dobney Hypertension Centre, Medical School - Royal Perth Hospital Unit, RPH Research Foundation, The University of Western Australia, Perth, Australia
| | - Dylan Burger
- Kidney Research Centre, The Ottawa Hospital Research Institute, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Janis M Nolde
- Dobney Hypertension Centre, Medical School - Royal Perth Hospital Unit, RPH Research Foundation, The University of Western Australia, Perth, Australia
| | - Justine Chan
- Dobney Hypertension Centre, Medical School - Royal Perth Hospital Unit, RPH Research Foundation, The University of Western Australia, Perth, Australia
| | - Sandi Robinson
- Dobney Hypertension Centre, Medical School - Royal Perth Hospital Unit, RPH Research Foundation, The University of Western Australia, Perth, Australia
| | - Erika Bosio
- Centre for Clinical Research in Emergency Medicine, Harry Perkins Institute of Medical Research, Perth, Western Australia, Australia
| | - Vance B Matthews
- Dobney Hypertension Centre, Medical School - Royal Perth Hospital Unit, RPH Research Foundation, The University of Western Australia, Perth, Australia
| | - Markus P Schlaich
- Dobney Hypertension Centre, Medical School - Royal Perth Hospital Unit, RPH Research Foundation, The University of Western Australia, Perth, Australia.,Neurovascular Hypertension & Kidney Disease Laboratory, Baker Heart and Dabetes Institute, Melbourne, Victoria, Australia.,Departments of Cardiology and Nephrology, Royal Perth Hospital, Perth, Australia
| |
Collapse
|
43
|
Extracellular Vesicles as an Index for Endothelial Injury and Cardiac Dysfunction in a Rodent Model of GDM. Int J Mol Sci 2022; 23:ijms23094970. [PMID: 35563365 PMCID: PMC9101204 DOI: 10.3390/ijms23094970] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/20/2022] [Accepted: 04/26/2022] [Indexed: 02/08/2023] Open
Abstract
Gestational diabetes mellitus (GDM) increases risk of adverse pregnancy outcomes and maternal cardiovascular complications. It is widely believed that maternal endothelial dysfunction is a critical determinant of these risks, however, connections to maternal cardiac dysfunction and mechanisms of pathogenesis are unclear. Circulating extracellular vesicles (EVs) are emerging biomarkers that may provide insights into the pathogenesis of GDM. We examined the impact of GDM on maternal cardiac and vascular health in a rat model of diet-induced obesity-associated GDM. We observed a >3-fold increase in circulating levels of endothelial EVs (p < 0.01) and von Willebrand factor (p < 0.001) in GDM rats. A significant increase in mitochondrial DNA (mtDNA) within circulating extracellular vesicles was also observed suggesting possible mitochondrial dysfunction in the vasculature. This was supported by nicotinamide adenine dinucleotide deficiency in aortas of GDM mice. GDM was also associated with cardiac remodeling (increased LV mass) and a marked impairment in maternal diastolic function (increased isovolumetric relaxation time [IVRT], p < 0.01). Finally, we observed a strong positive correlation between endothelial EV levels and IVRT (r = 0.57, p < 0.05). In summary, we observed maternal vascular and cardiac dysfunction in rodent GDM accompanied by increased circulating endothelial EVs and EV-associated mitochondrial DNA. Our study highlights a novel method for assessment of vascular injury in GDM and highlights vascular mitochondrial injury as a possible therapeutic target.
Collapse
|
44
|
Figuer A, Alique M, Valera G, Serroukh N, Ceprían N, de Sequera P, Morales E, Carracedo J, Ramírez R, Bodega G. Nuevos mecanismos implicados en el desarrollo de la enfermedad cardiovascular en la enfermedad renal crónica. Nefrologia 2022. [DOI: 10.1016/j.nefro.2022.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
45
|
Investigating Cancerous Exosomes’ Effects on CD8+ T-Cell IL-2 Production in a 3D Unidirectional Flow Bioreactor Using 3D Printed, RGD-Functionalized PLLA Scaffolds. J Funct Biomater 2022; 13:jfb13010030. [PMID: 35323230 PMCID: PMC8950614 DOI: 10.3390/jfb13010030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 11/16/2022] Open
Abstract
Exosomes from cancer cells are implicated in cancer progression and metastasis, carrying immunosuppressive factors that limit the antitumor abilities of immune cells. The development of a real-time, 3D cell/scaffold construct flow perfusion system has been explored as a novel tool in the study of T-cells and exosomes from cancer cells. Exosomes from human lung cancer (H1299 and A549) cells were co-cultured in a unidirectional flow bioreactor with CD8+ T-cells immobilized onto 3D-printed RGD-functionalized poly(L-lactic) acid (PLLA) scaffolds and assessed for IL-2 production. The IL-2 production was investigated for a wide range of T-cell to exosome ratios. With the successful incorporation of the RGD binding motif onto the PLLA surface at controllable densities, CD8+ T-cells were successfully attached onto 2D disks and 3D printed porous PLLA scaffolds. T-cell attachment increased with increasing RGD surface density. The diameter of the attached T-cells was 7.2 ± 0.2 µm for RGD densities below 0.5 nmoles/mm2 but dropped to 5.1 ± 0.3 µm when the RGD density was 2 nmoles/mm2 due to overcrowding. The higher the number of cancer exosomes, the less the IL-2 production by the surface-attached T-cells. In 2D disks, the IL-2 production was silenced for T-cell to exosome ratios higher than 1:10 in static conditions. IL-2 production silencing in static 3D porous scaffolds required ratios higher than 1:20. The incorporation of flow resulted in moderate to significant T-cell detachment. The portions of T-cells retained on the 3D scaffolds after exposure for 4 h to 0.15 or 1.5 mL/min of perfusion flow were 89 ± 11% and 30 ± 8%, respectively. On 3D scaffolds and in the presence of flow at 0.15 ml/min, both H1299 and A549 cancerous exosomes significantly suppressed IL-2 production for T-cell to exosome ratios of 1:1000. The much higher level of exosomes needed to silence the IL-2 production from T-cells cultured under unidirectional flow, compared to static conditions, denotes the importance of the culturing conditions and the hydrodynamic environment, on the interactions between CD8+ T-cells and cancer exosomes.
Collapse
|
46
|
Bathla T, Abolbaghaei A, Reyes AB, Burger D. Extracellular vesicles in gestational diabetes mellitus: A scoping review. Diab Vasc Dis Res 2022; 19:14791641221093901. [PMID: 35395915 PMCID: PMC9021497 DOI: 10.1177/14791641221093901] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Gestational diabetes mellitus (GDM) is one of the most common complications of pregnancy worldwide. Despite extensive study, the molecular mechanisms leading to GDM and associated perinatal complications are not well understood. The condition is also associated with an increased risk of future cardiometabolic disease in both mothers and their offspring. Thus, there is a pressing need for the development of effective screening tools and to identify novel molecular mechanisms responsible for the short and long-term risks associated with GDM. In this regard, extracellular vesicles (EVs) offer promise as novel biomarkers of GDM-mediated changes to both mother and fetus. The purpose of this scoping review is to provide an overview of studies examining EVs in the context of GDM. EMBASE and Ovid Medline were searched for articles published from inception to December 2020. We update current knowledge in this area and identify key knowledge gaps with recommendations for future research.
Collapse
Affiliation(s)
- Tanvi Bathla
- Kidney Research Centre, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Akram Abolbaghaei
- Kidney Research Centre, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Agafe Bless Reyes
- Kidney Research Centre, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Dylan Burger
- Kidney Research Centre, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
47
|
Inci F. Benchmarking a Microfluidic-Based Filtration for Isolating Biological Particles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:1897-1909. [PMID: 35041413 DOI: 10.1021/acs.langmuir.1c03119] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Isolating particles from complex fluids is a crucial approach in multiple fields including biomedicine. In particular, biological matrices contain a myriad of distinct particles with different sizes and structures. Extracellular vesicles (EVs), for instance, are nanosized particles carrying vital information from donor to recipient cells, and they have garnered significant impact on disease diagnostics, drug delivery, and theranostics applications. Among all the EV types, exosome particles are one of the smallest entities, sizing from 30 to 100 nm. Separating such small substances from a complex media such as tissue culture and serum is still one of the most challenging steps in this field. Membrane filtration is one of the convenient approaches for these operations; yet clogging, low-recovery, and high fouling are still major obstacles. In this study, we design a two-filter-integrated microfluidic device focusing on dead-end and cross-flow processes at the same time, thereby minimizing any interfering factors on the recovery. The design of this platform is also numerically assessed to understand pressure-drop and flow rate effects over the procedure. As a model, we isolate exosome particles from human embryonic kidney cells cultured in different conditions, which also mimic complex fluids such as serum. Moreover, by altering the flow direction, we refresh the membranes for minimizing clogging issues and benchmark the platform performance for multitime use. By comprehensively analyzing the design and operation parameters of this platform, we address the aforementioned existing barriers in the recovery, clogging, and fouling factors, thereby achieving the use of a microfluidic device multiple times for bio-nanoparticle isolation without any notable issues.
Collapse
Affiliation(s)
- Fatih Inci
- UNAM - National Nanotechnology Research Center, Bilkent University, 06800 Ankara, Turkey
- Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara, Turkey
| |
Collapse
|
48
|
Merij LB, Andrade FB, Silva AR, Hottz ED. Isolation of Microvesicles from Plasma Samples Avoiding Lipoprotein Contamination. Methods Mol Biol 2022; 2409:245-255. [PMID: 34709647 DOI: 10.1007/978-1-0716-1879-0_17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Dengue is an infectious disease caused by Dengue Virus, mainly transmitted by Aedes aegypti mosquitoes. Severe dengue is a potentially fatal syndrome in consequence of overwhelmed inflammation, in which thrombocytopenia and increased vascular permeability are frequently observed. Several experimental evidences point to the participation of both microvesicles (MVs) and circulating lipoproteins in inflammatory amplification in dengue pathogenesis. On this regard, many protocols for isolating plasma MVs have shown lipoproteins as the main contaminant. This is a limitation to studies aiming at the functional characterization of MVs, since both MVs and lipoproteins can modulate inflammatory responses. Here, we describe a biphasic density-based gradient ultracentrifugation as a tool for concomitant isolation of MVs and lipoproteins without cross-contamination. Flow cytometry for MVs quantification and western blot for detection of apoB100 may be used to confirm the isolation and purity of the MVs.
Collapse
Affiliation(s)
- Laura B Merij
- Laboratory of Immunothrombosis, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Fernanda B Andrade
- Laboratory of Immunothrombosis, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Adriana R Silva
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Eugenio D Hottz
- Laboratory of Immunothrombosis, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil.
| |
Collapse
|
49
|
Maphumulo SC, Pretorius E. Role of Circulating Microparticles in Type 2 Diabetes Mellitus: Implications for Pathological Clotting. Semin Thromb Hemost 2021; 48:188-205. [PMID: 34959250 DOI: 10.1055/s-0041-1740150] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is a multifactorial chronic metabolic disease characterized by chronic hyperglycemia due to insulin resistance and a deficiency in insulin secretion. The global diabetes pandemic relates primarily to T2DM, which is the most prevalent form of diabetes, accounting for over 90% of all cases. Chronic low-grade inflammation, triggered by numerous risk factors, and the chronic activation of the immune system are prominent features of T2DM. Here we highlight the role of blood cells (platelets, and red and white blood cells) and vascular endothelial cells as drivers of systemic inflammation in T2DM. In addition, we discuss the role of microparticles (MPs) in systemic inflammation and hypercoagulation. Although once seen as inert by-products of cell activation or destruction, MPs are now considered to be a disseminated storage pool of bioactive effectors of thrombosis, inflammation, and vascular function. They have been identified to circulate at elevated levels in the bloodstream of individuals with increased risk of atherothrombosis or cardiovascular disease, two significant hallmark conditions of T2DM. There is also general evidence that MPs activate blood cells, express proinflammatory and coagulant effects, interact directly with cell receptors, and transfer biological material. MPs are considered major players in the pathogenesis of many systemic inflammatory diseases and may be potentially useful biomarkers of disease activity and may not only be of prognostic value but may act as novel therapeutic targets.
Collapse
Affiliation(s)
| | - Etheresia Pretorius
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
50
|
Study of the Role of the Tyrosine Kinase Receptor MerTK in the Development of Kidney Ischemia-Reperfusion Injury in RCS Rats. Int J Mol Sci 2021; 22:ijms222212103. [PMID: 34829984 PMCID: PMC8618874 DOI: 10.3390/ijms222212103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/31/2021] [Accepted: 11/03/2021] [Indexed: 11/16/2022] Open
Abstract
Renal ischaemia reperfusion (I/R) triggers a cascade of events including oxidative stress, apoptotic body and microparticle (MP) formation as well as an acute inflammatory process that may contribute to organ failure. Macrophages are recruited to phagocytose cell debris and MPs. The tyrosine kinase receptor MerTK is a major player in the phagocytosis process. Experimental models of renal I/R events are of major importance for identifying I/R key players and for elaborating novel therapeutical approaches. A major aim of our study was to investigate possible involvement of MerTK in renal I/R. We performed our study on both natural mutant rats for MerTK (referred to as RCS) and on wild type rats referred to as WT. I/R was established by of bilateral clamping of the renal pedicles for 30' followed by three days of reperfusion. Plasma samples were analysed for creatinine, aspartate aminotransferase (ASAT), lactate dehydrogenase (LDH), kidney injury molecule -1 (KIM-1), and neutrophil gelatinase-associated lipocalin (NGAL) levels and for MPs. Kidney tissue damage and CD68-positive cell requirement were analysed by histochemistry. monocyte chemoattractant protein-1 (MCP-1), myeloperoxidase (MPO), inducible nitric oxide synthase (iNOS), and histone 3A (H3A) levels in kidney tissue lysates were analysed by western blotting. The phagocytic activity of blood-isolated monocytes collected from RCS or WT towards annexin-V positive bodies derived from cultured renal cell was assessed by fluorescence-activated single cell sorting (FACS) and confocal microscopy analyses. The renal I/R model for RCS rat described for the first time here paves the way for further investigations of MerTK-dependent events in renal tissue injury and repair mechanisms.
Collapse
|