1
|
Chan CL, Shirley Bezerra M, Stefanovski D, Gallop RJ, Walega R, Donaldson SH, Frederick CA, Freedman SD, Gelfond D, Hoffman LR, Narkewicz MR, Rowe SM, Sagel SD, Schwarzenberg SJ, Solomon GM, Stalvey MS, Kelly A. Glycemia and Insulin Secretion in Cystic Fibrosis Two Years After Elexacaftor/Tezacaftor/Ivacaftor: PROMISE-ENDO. J Clin Endocrinol Metab 2024:dgae857. [PMID: 39657947 DOI: 10.1210/clinem/dgae857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 10/08/2024] [Accepted: 12/06/2024] [Indexed: 12/12/2024]
Abstract
BACKGROUND Elexacaftor/tezacaftor/ivacaftor (ETI) is a highly effective therapy that improves lung disease in people with cystic fibrosis (pwCF), but its effect on glucose tolerance and insulin secretion is unclear. METHODS PROMISE is a multicenter prospective, observational study of ETI in pwCF ≥12 years and at least one F508del allele. The PROMISE Endocrine sub-study (PROMISE-ENDO) enrolled participants at 10 CF Centers where hemoglobin A1c (HbA1c) was collected and 3-hour oral glucose tolerance tests (OGTT) conducted to examine glucose tolerance, glucose excursions, insulin secretory rates (deconvolution of C-peptide) and sensitivity (oral minimal model) prior to ETI and 12-18 months (mos) and 24-30 mos following ETI initiation. Longitudinal mixed effects models were used to test within-subject ETI effects. RESULTS At baseline, 79 participants completed OGTTs [39 (49%) male, median (IQR) age 19.6 (14.7, 27.3) years, BMI z-score 0.12 (-0.51, 0.65)]. At 12-18 mos n=68 and at 24-30 mos n=58 completed OGTTs. At 24-30 mos, fasting glucose (mg/dL) decreased [94 (92, 96) to 90 (88, 93), p=0.02] in the subset not on insulin therapy (n=61), but no differences in 1-hr or 2-hr glucose were found. HbA1c (%) decreased from 5.8 (5.6, 5.9) to 5.5 (5.4, 5.6), p<0.001 by 24-30 mos. Although insulin sensitivity (mU/L-1.min-1) decreased [8.4 (7.2, 9.5) vs. 6.8 (5.8, 7.9), p=0.03], no changes in oral disposition index were found, p=0.14. CONCLUSIONS After two years of ETI, fasting glucose and HbA1c showed modest decreases. Glucose tolerance varied, and overall measures of insulin secretion did not deteriorate.
Collapse
Affiliation(s)
- Christine L Chan
- Department of Pediatrics, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, CO
| | - Meghan Shirley Bezerra
- Division of Endocrinology and Diabetes, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Darko Stefanovski
- New Bolton Center, University of Pennsylvania School of Veterinary Medicine, Kennett Square, PA
| | - Robert J Gallop
- Department of Biostatistics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Rachel Walega
- Division of Endocrinology and Diabetes, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Scott H Donaldson
- Department of Medicine, University of North Carolina at Chapel Hill, NC
| | - Carla A Frederick
- Jacobs School of Medicine and Biomedical Sciences of the University of Buffalo, NY
| | - Steven D Freedman
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | | | - Lucas R Hoffman
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA
| | - Michael R Narkewicz
- Department of Pediatrics, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, CO
| | - Steven M Rowe
- Cystic Fibrosis Foundation, Bethesda, MD
- Department of Medicine and the Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Scott D Sagel
- Department of Pediatrics, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, CO
| | | | - George M Solomon
- Department of Medicine and the Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Andrea Kelly
- Division of Endocrinology and Diabetes, Children's Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| |
Collapse
|
2
|
Drzymała-Czyż S, Walkowiak J, Colombo C, Alicandro G, Storrösten OT, Kolsgaard M, Bakkeheim E, Strandvik B. Fatty acid abnormalities in cystic fibrosis-the missing link for a cure? iScience 2024; 27:111153. [PMID: 39620135 PMCID: PMC11607544 DOI: 10.1016/j.isci.2024.111153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025] Open
Abstract
The care for cystic fibrosis (CF) has dramatically changed with the development of modulators, correctors, and potentiators of the CFTR molecule, which lead to improved clinical status of most people with CF (pwCF). The modulators influence phospholipids and ceramides, but not linoleic acid (LA) deficiency, associated with more severe phenotypes of CF. The LA deficiency is associated with upregulation of its transfer to arachidonic acid (AA). The AA release from membranes is increased and associated with increase of pro-inflammatory prostanoids and the characteristic inflammation is present before birth and bacterial infections. Docosahexaenoic acid is often decreased, especially in associated liver disease Some endogenously synthesized fatty acids are increased. Cholesterol and ceramide metabolisms are disturbed. The lipid abnormalities are present at birth, and before feeding in transgenic pigs and ferrets. This review focus on the lipid abnormalities and their associations to clinical symptoms in CF, based on clinical studies and experimental research.
Collapse
Affiliation(s)
| | - Jarosław Walkowiak
- Department of Pediatric Gastroenterology and Metabolic Diseases, Institute of Pediatrics, Poznan University of Medical Sciences, Poznan, Poland
| | - Carla Colombo
- Cystic Fibrosis Centre, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, and Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Gianfranco Alicandro
- Cystic Fibrosis Centre, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, and Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Olav Trond Storrösten
- National Resource Centre for Cystic Fibrosis, Oslo University Hospital, Oslo, Norway
| | - Magnhild Kolsgaard
- National Resource Centre for Cystic Fibrosis, Oslo University Hospital, Oslo, Norway
| | - Egil Bakkeheim
- National Resource Centre for Cystic Fibrosis, Oslo University Hospital, Oslo, Norway
| | | |
Collapse
|
3
|
Liang X, Hou X, Chen YE, Jin JP, Zhang K, Xu J. Endocrine pathology in young rabbits with cystic fibrosis. EGASTROENTEROLOGY 2024; 2:e100102. [PMID: 39605883 PMCID: PMC11594368 DOI: 10.1136/egastro-2024-100102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Background Cystic fibrosis (CF) is an autosomal recessive genetic disorder caused by loss-of-function mutations in the CF transmembrane conductance regulator gene. CF-related pancreatic lesions are known to cause exocrine dysfunctions such as pancreatic insufficiency, and endocrine dysfunctions, including CF related diabetes. In a previous study, we generated CF rabbits using CRISPR/Cas9-mediated gene editing. Methods CF rabbits were subjected to histological analysis with a focus on CF associated pancreatic lesions. Endocrine function related assays were conducted to evaluate CF related pancreatic endocrine disorders in these animals. Results We report that CF rabbits develop spontaneous pancreatic lesions at a young age, characterised by pancreatic inflammation and fibrosis, vacuolar degeneration, epithelium mucus-secretory cell metaplasia, and pancreatic duct dilation. The size of the pancreatic islets in the CF rabbits is significantly smaller than that of the wild type animals. Consistent with these pathological findings, young CF rabbits exhibited signs of pancreatic endocrine related disorders such as lower insulin levels and impaired glucose metabolism. Conclusions Our results suggest that the CF rabbit could serve as a valuable model for translational research on CF related pancreatic endocrine dysfunction.
Collapse
Affiliation(s)
- Xiubin Liang
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Xia Hou
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Y. Eugene Chen
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Jian-Ping Jin
- Department of Physiology and Biophysics, University of Illinois at Chicago College of Medicine, Chicago, IL, 60612, USA
| | - Kezhong Zhang
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Jie Xu
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| |
Collapse
|
4
|
Umashankar B, Eliasson L, Ooi CY, Kim KW, Shaw JAM, Waters SA. Beyond insulin: Unraveling the complex interplay of ER stress, oxidative damage, and CFTR modulation in CFRD. J Cyst Fibros 2024; 23:842-852. [PMID: 38897882 DOI: 10.1016/j.jcf.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/10/2024] [Accepted: 06/04/2024] [Indexed: 06/21/2024]
Abstract
CF-related diabetes (CFRD) is a prevalent comorbidity in people with Cystic Fibrosis (CF), significantly impacting morbidity and mortality rates. This review article critically evaluates the current understanding of CFRD molecular mechanisms, including the role of CFTR protein, oxidative stress, unfolded protein response (UPR) and intracellular communication. CFRD manifests from a complex interplay between exocrine pancreatic damage and intrinsic endocrine dysfunction, further complicated by the deleterious effects of misfolded CFTR protein on insulin secretion and action. Studies indicate that ER stress and subsequent UPR activation play critical roles in both exocrine and endocrine pancreatic cell dysfunction, contributing to β-cell loss and insulin insufficiency. Additionally, oxidative stress and altered calcium flux, exacerbated by CFTR dysfunction, impair β-cell survival and function, highlighting the significance of antioxidant pathways in CFRD pathogenesis. Emerging evidence underscores the importance of exosomal microRNAs (miRNAs) in mediating inflammatory and stress responses, offering novel insights into CFRD's molecular landscape. Despite insulin therapy remaining the cornerstone of CFRD management, the variability in response to CFTR modulators underscores the need for personalized treatment approaches. The review advocates for further research into non-CFTR therapeutic targets, emphasizing the need to address the multifaceted pathophysiology of CFRD. Understanding the intricate mechanisms underlying CFRD will pave the way for innovative treatments, moving beyond insulin therapy to target the disease's root causes and improve the quality of life for individuals with CF.
Collapse
Affiliation(s)
- Bala Umashankar
- School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia; Molecular and Integrative Cystic Fibrosis Research Centre, University of New South Wales, Sydney, NSW, Australia; School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Lena Eliasson
- Department of Clinical Sciences, Unit of Islet Cell Exocytosis, Lund University Diabetes Centre, Scania University Hospital, Malmö, Scania, Sweden
| | - Chee Y Ooi
- Molecular and Integrative Cystic Fibrosis Research Centre, University of New South Wales, Sydney, NSW, Australia; School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia; Department of Gastroenterology, Sydney Children's Hospital Randwick, NSW, Australia
| | - Ki Wook Kim
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia; Virology and Serology Division (SaViD), New South Wales Health Pathology, Prince of Wales Hospital, Randwick, NSW, Australia
| | - James A M Shaw
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Shafagh A Waters
- School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia; Molecular and Integrative Cystic Fibrosis Research Centre, University of New South Wales, Sydney, NSW, Australia; School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
5
|
Meyerholz DK, Burrough ER, Kirchhof N, Anderson DJ, Helke KL. Swine models in translational research and medicine. Vet Pathol 2024; 61:512-523. [PMID: 38197394 DOI: 10.1177/03009858231222235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Swine are increasingly studied as animal models of human disease. The anatomy, size, longevity, physiology, immune system, and metabolism of swine are more like humans than traditional rodent models. In addition, the size of swine is preferred for surgical placement and testing of medical devices destined for humans. These features make swine useful for biomedical, pharmacological, and toxicological research. With recent advances in gene-editing technologies, genetic modifications can readily and efficiently be made in swine to study genetic disorders. In addition, gene-edited swine tissues are necessary for studies testing and validating xenotransplantation into humans to meet the critical shortfall of viable organs versus need. Underlying all of these biomedical applications, the knowledge of husbandry, background diseases and lesions, and biosecurity needs are important for productive, efficient, and reproducible research when using swine as a human disease model for basic research, preclinical testing, and translational studies.
Collapse
|
6
|
Sims-Lucas S, Goetzman ES, Kleyman TR. Cystic fibrosis-related metabolic defects: crosstalk between ion channels and organs. J Clin Invest 2024; 134:e182329. [PMID: 38949023 PMCID: PMC11213462 DOI: 10.1172/jci182329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024] Open
Abstract
Cystic fibrosis is a debilitating disease characterized by a poor medical prognosis due to devastating lung injury. Recent medical advances targeting the major genetic mutation ΔF508 of the cystic fibrosis transmembrane conductance regulator (CFTR) protein have dramatically increased the lifespan of patients with this mutation. This development has led to major changes in the field and has pushed research beyond the ion transport nature of cystic fibrosis and toward multiorgan physiological reprogramming. In this issue of the JCI, Bae, Kim, and colleagues utilized a large animal pig model prior to the onset of disease. They revealed metabolic reprogramming and organ crosstalk that occurred prior to disease progression. These findings provide paradigm-shifting insight into this complex disease.
Collapse
Affiliation(s)
| | | | - Thomas R. Kleyman
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
7
|
Villaca CBP, Mastracci TL. Pancreatic Crosstalk in the Disease Setting: Understanding the Impact of Exocrine Disease on Endocrine Function. Compr Physiol 2024; 14:5371-5387. [PMID: 39109973 PMCID: PMC11425433 DOI: 10.1002/cphy.c230008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
The exocrine and endocrine are functionally distinct compartments of the pancreas that have traditionally been studied as separate entities. However, studies of embryonic development, adult physiology, and disease pathogenesis suggest there may be critical communication between exocrine and endocrine cells. In fact, the incidence of the endocrine disease diabetes secondary to exocrine disease/dysfunction ranges from 25% to 80%, depending on the type and severity of the exocrine pathology. Therefore, it is necessary to investigate how exocrine-endocrine "crosstalk" may impact pancreatic function. In this article, we discuss common exocrine diseases, including cystic fibrosis, acute, hereditary, and chronic pancreatitis, and the impact of these exocrine diseases on endocrine function. Additionally, we review how obesity and fatty pancreas influence exocrine function and the impact on cellular communication between the exocrine and endocrine compartments. Interestingly, in all pathologies, there is evidence that signals from the exocrine disease contribute to endocrine dysfunction and the progression to diabetes. Continued research efforts to identify the mechanisms that underlie the crosstalk between various cell types in the pancreas are critical to understanding normal pancreatic physiology as well as disease states. © 2024 American Physiological Society. Compr Physiol 14:5371-5387, 2024.
Collapse
Affiliation(s)
| | - Teresa L Mastracci
- Department of Biology, Indiana University Indianapolis, Indianapolis, Indiana, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
8
|
Malik SS, Padmanabhan D, Hull-Meichle RL. Pancreas and islet morphology in cystic fibrosis: clues to the etiology of cystic fibrosis-related diabetes. Front Endocrinol (Lausanne) 2023; 14:1269139. [PMID: 38075070 PMCID: PMC10704027 DOI: 10.3389/fendo.2023.1269139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 10/03/2023] [Indexed: 12/18/2023] Open
Abstract
Cystic fibrosis (CF) is a multi-organ disease caused by loss-of-function mutations in CFTR (which encodes the CF transmembrane conductance regulator ion channel). Cystic fibrosis related diabetes (CFRD) occurs in 40-50% of adults with CF and is associated with significantly increased morbidity and mortality. CFRD arises from insufficient insulin release from β cells in the pancreatic islet, but the mechanisms underlying the loss of β cell function remain understudied. Widespread pathological changes in the CF pancreas provide clues to these mechanisms. The exocrine pancreas is the epicenter of pancreas pathology in CF, with ductal pathology being the initiating event. Loss of CFTR function results in ductal plugging and subsequent obliteration. This in turn leads to destruction of acinar cells, fibrosis and fatty replacement. Despite this adverse environment, islets remain relatively well preserved. However, islet composition and arrangement are abnormal, including a modest decrease in β cells and an increase in α, δ and γ cell abundance. The small amount of available data suggest that substantial loss of pancreatic/islet microvasculature, autonomic nerve fibers and intra-islet macrophages occur. Conversely, T-cell infiltration is increased and, in CFRD, islet amyloid deposition is a frequent occurrence. Together, these pathological changes clearly demonstrate that CF is a disease of the pancreas/islet microenvironment. Any or all of these changes are likely to have a dramatic effect on the β cell, which relies on positive signals from all of these neighboring cell types for its normal function and survival. A thorough characterization of the CF pancreas microenvironment is needed to develop better therapies to treat, and ultimately prevent CFRD.
Collapse
Affiliation(s)
- Sarah S. Malik
- Department of Pharmacology, University of Washington, Seattle, WA, United States
- Research Service, Veterans Affairs Puget Sound Health Care System, Seattle, WA, United States
| | - Diksha Padmanabhan
- Research Service, Veterans Affairs Puget Sound Health Care System, Seattle, WA, United States
- Seattle Institute for Biomedical and Clinical Research, Seattle, WA, United States
| | - Rebecca L. Hull-Meichle
- Department of Pharmacology, University of Washington, Seattle, WA, United States
- Research Service, Veterans Affairs Puget Sound Health Care System, Seattle, WA, United States
- Seattle Institute for Biomedical and Clinical Research, Seattle, WA, United States
- Division of Metabolism, Endocrinology, and Nutrition, Department of Medicine, University of Washington, Seattle, WA, United States
| |
Collapse
|
9
|
Putman MS, Norris AW, Hull RL, Rickels MR, Sussel L, Blackman SM, Chan CL, Ode KL, Daley T, Stecenko AA, Moran A, Helmick MJ, Cray S, Alvarez JA, Stallings VA, Tuggle KL, Clancy JP, Eggerman TL, Engelhardt JF, Kelly A. Cystic Fibrosis-Related Diabetes Workshop: Research Priorities Spanning Disease Pathophysiology, Diagnosis, and Outcomes. Diabetes Care 2023; 46:1112-1123. [PMID: 37125948 PMCID: PMC10234745 DOI: 10.2337/dc23-0380] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/27/2023] [Indexed: 05/02/2023]
Abstract
Cystic fibrosis (CF) is a recessive disorder arising from mutations in the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR) protein. CFTR is expressed in numerous tissues, with high expression in the airways, small and large intestine, pancreatic and hepatobiliary ducts, and male reproductive tract. CFTR loss in these tissues disrupts regulation of salt, bicarbonate, and water balance across their epithelia, resulting in a systemic disorder with progressive organ dysfunction and damage. Pancreatic exocrine damage ultimately manifests as pancreatic exocrine insufficiency that begins as early as infancy. Pancreatic remodeling accompanies this early damage, during which abnormal glucose tolerance can be observed in toddlers. With increasing age, however, insulin secretion defects progress such that CF-related diabetes (CFRD) occurs in 20% of teens and up to half of adults with CF. The relevance of CFRD is highlighted by its association with increased morbidity, mortality, and patient burden. While clinical research on CFRD has greatly assisted in the care of individuals with CFRD, key knowledge gaps on CFRD pathogenesis remain. Furthermore, the wide use of CFTR modulators to restore CFTR activity is changing the CFRD clinical landscape and the field's understanding of CFRD pathogenesis. For these reasons, the National Institute of Diabetes and Digestive and Kidney Diseases and the Cystic Fibrosis Foundation sponsored a CFRD Scientific Workshop, 23-25 June 2021, to define knowledge gaps and needed research areas. This article describes the findings from this workshop and plots a path for CFRD research that is needed over the next decade.
Collapse
Affiliation(s)
- Melissa S. Putman
- Division of Pediatric Endocrinology, Boston Children’s Hospital, Boston, MA
- Diabetes Research Center, Massachusetts General Hospital, Boston, MA
| | - Andrew W. Norris
- Department of Pediatrics, University of Iowa, Iowa City, IA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA
| | - Rebecca L. Hull
- Division of Metabolism, Endocrinology, and Nutrition, Department of Medicine, University of Washington, Seattle, WA
- Research Service, VA Puget Sound Health Care System, Seattle
| | - Michael R. Rickels
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Lori Sussel
- Department of Pediatrics, Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Scott M. Blackman
- Division of Pediatric Endocrinology and Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Christine L. Chan
- Department of Pediatrics, Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Katie Larson Ode
- Department of Pediatrics, University of Iowa, Iowa City, IA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA
| | - Tanicia Daley
- Division of Endocrinology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
- Children’s Healthcare of Atlanta, Atlanta, GA
| | - Arlene A. Stecenko
- Division of Pulmonology, Asthma, Cystic Fibrosis, and Sleep, Department of Pediatrics, Emory University, Atlanta, GA
| | - Antoinette Moran
- Department of Pediatrics, University of Minnesota, Minneapolis, MN
| | | | | | - Jessica A. Alvarez
- Division of Endocrinology, Metabolism, and Lipids, Department of Medicine, Emory School of Medicine, Atlanta, GA
| | - Virginia A. Stallings
- Division of Gastroenterology, Hepatology, and Nutrition, Children’s Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, The University of Pennsylvania, Philadelphia, PA
| | | | | | - Thomas L. Eggerman
- Division of Diabetes, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - John F. Engelhardt
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA
| | - Andrea Kelly
- Department of Pediatrics, The University of Pennsylvania, Philadelphia, PA
- Division of Endocrinology and Diabetes, The Children’s Hospital of Philadelphia, Philadelphia, PA
| |
Collapse
|
10
|
Putman MS, Norris AW, Hull RL, Rickels MR, Sussel L, Blackman SM, Chan CL, Ode KL, Daley T, Stecenko AA, Moran A, Helmick MJ, Cray S, Alvarez JA, Stallings VA, Tuggle KL, Clancy JP, Eggerman TL, Engelhardt JF, Kelly A. Cystic Fibrosis-Related Diabetes Workshop: Research Priorities Spanning Disease Pathophysiology, Diagnosis, and Outcomes. Diabetes 2023; 72:677-689. [PMID: 37125945 PMCID: PMC10202770 DOI: 10.2337/db22-0949] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/27/2023] [Indexed: 05/02/2023]
Abstract
Cystic fibrosis (CF) is a recessive disorder arising from mutations in the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR) protein. CFTR is expressed in numerous tissues, with high expression in the airways, small and large intestine, pancreatic and hepatobiliary ducts, and male reproductive tract. CFTR loss in these tissues disrupts regulation of salt, bicarbonate, and water balance across their epithelia, resulting in a systemic disorder with progressive organ dysfunction and damage. Pancreatic exocrine damage ultimately manifests as pancreatic exocrine insufficiency that begins as early as infancy. Pancreatic remodeling accompanies this early damage, during which abnormal glucose tolerance can be observed in toddlers. With increasing age, however, insulin secretion defects progress such that CF-related diabetes (CFRD) occurs in 20% of teens and up to half of adults with CF. The relevance of CFRD is highlighted by its association with increased morbidity, mortality, and patient burden. While clinical research on CFRD has greatly assisted in the care of individuals with CFRD, key knowledge gaps on CFRD pathogenesis remain. Furthermore, the wide use of CFTR modulators to restore CFTR activity is changing the CFRD clinical landscape and the field's understanding of CFRD pathogenesis. For these reasons, the National Institute of Diabetes and Digestive and Kidney Diseases and the Cystic Fibrosis Foundation sponsored a CFRD Scientific Workshop, 23-25 June 2021, to define knowledge gaps and needed research areas. This article describes the findings from this workshop and plots a path for CFRD research that is needed over the next decade.
Collapse
Affiliation(s)
- Melissa S. Putman
- Division of Pediatric Endocrinology, Boston Children’s Hospital, Boston, MA
- Diabetes Research Center, Massachusetts General Hospital, Boston, MA
| | - Andrew W. Norris
- Department of Pediatrics, University of Iowa, Iowa City, IA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA
| | - Rebecca L. Hull
- Division of Metabolism, Endocrinology, and Nutrition, Department of Medicine, University of Washington, Seattle, WA
- Research Service, VA Puget Sound Health Care System, Seattle, WA
| | - Michael R. Rickels
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Lori Sussel
- Department of Pediatrics, Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Scott M. Blackman
- Division of Pediatric Endocrinology and Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Christine L. Chan
- Department of Pediatrics, Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Katie Larson Ode
- Department of Pediatrics, University of Iowa, Iowa City, IA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA
| | - Tanicia Daley
- Division of Endocrinology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
- Children’s Healthcare of Atlanta, Atlanta, GA
| | - Arlene A. Stecenko
- Division of Pulmonology, Asthma, Cystic Fibrosis, and Sleep, Department of Pediatrics, Emory University, Atlanta, GA
| | - Antoinette Moran
- Department of Pediatrics, University of Minnesota, Minneapolis, MN
| | | | | | - Jessica A. Alvarez
- Division of Endocrinology, Metabolism, and Lipids, Department of Medicine, Emory School of Medicine, Atlanta, GA
| | - Virginia A. Stallings
- Division of Gastroenterology, Hepatology, and Nutrition, Children’s Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, The University of Pennsylvania, Philadelphia, PA
| | | | | | - Thomas L. Eggerman
- Division of Diabetes, Endocrinology, and Metabolic Diseases, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - John F. Engelhardt
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA
| | - Andrea Kelly
- Department of Pediatrics, The University of Pennsylvania, Philadelphia, PA
- Division of Endocrinology and Diabetes, The Children’s Hospital of Philadelphia, Philadelphia, PA
| |
Collapse
|
11
|
Uc A, Strandvik B, Yao J, Liu X, Yi Y, Sun X, Welti R, Engelhardt J, Norris A. The fatty acid imbalance of cystic fibrosis exists at birth independent of feeding in pig and ferret models. Clin Sci (Lond) 2022; 136:1773-1791. [PMID: 36416119 PMCID: PMC9747517 DOI: 10.1042/cs20220450] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 11/24/2022]
Abstract
Persons with cystic fibrosis (CF) exhibit a unique alteration of fatty acid composition, marked especially among polyunsaturates by relative deficiency of linoleic acid and excess of Mead acid. Relative deficiency of docosahexaenoic acid is variably found. However, the initial development of these abnormalities is not understood. We examined fatty acid composition in young CF ferrets and pigs, finding abnormalities from the day of birth onward including relative deficiency of linoleic acid in both species. Fatty acid composition abnormalities were present in both liver and serum phospholipids of newborn CF piglets even prior to feeding, including reduced linoleic acid and increased Mead acid. Serum fatty acid composition evolved over the first weeks of life in both non-CF and CF ferrets, though differences between CF and non-CF persisted. Although red blood cell phospholipid fatty acid composition was normal in newborn animals, it became perturbed in juvenile CF ferrets including relative deficiencies of linoleic and docosahexaenoic acids and excess of Mead acid. In summary, fatty acid composition abnormalities in CF pigs and ferrets exist from a young age including at birth independent of feeding and overlap extensively with the abnormalities found in humans with CF. That the abnormalities exist prior to feeding implies that dietary measures alone will not address the mechanisms of imbalance.
Collapse
Affiliation(s)
- Aliye Uc
- Department of Pediatrics, University of Iowa, Iowa City, IA 52242, U.S.A
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, U.S.A
| | - Birgitta Strandvik
- Department of Biosciences and Nutrition, Karolinska Institutet NEO, Flemingsberg, Stockholm 14183, Sweden
| | - Jianrong Yao
- Department of Pediatrics, University of Iowa, Iowa City, IA 52242, U.S.A
| | - Xiaoming Liu
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA 52242, U.S.A
| | - Yaling Yi
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA 52242, U.S.A
| | - Xingshen Sun
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA 52242, U.S.A
| | - Ruth Welti
- Kansas Lipidomics Research Center, Kansas State University, Manhattan, KS 66506, U.S.A
| | - John F. Engelhardt
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, U.S.A
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA 52242, U.S.A
| | - Andrew W. Norris
- Department of Pediatrics, University of Iowa, Iowa City, IA 52242, U.S.A
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, U.S.A
| |
Collapse
|
12
|
Abstract
Endocrine comorbidities have become increasingly important medical considerations as improving cystic fibrosis (CF) care increases life expectancy. Although the underlying pathophysiology of CF-related diabetes remains elusive, the use of novel technologies and therapeutics seeks to improve both CF-related outcomes and quality of life. Improvements in the overall health of those with CF have tempered concerns about pubertal delay and short stature; however, other comorbidities such as hypogonadism and bone disease are increasingly recognized. Following the introduction of highly effective modulator therapies there are many lessons to be learned about their long-term impact on endocrine comorbidities.
Collapse
Affiliation(s)
- Andrea Kelly
- Division of Endocrinology & Diabetes, University of Pennsylvania Perelman School of Medicine, Children's Hospital of Philadelphia, Room 14363, Roberts Building for Pediatric Research, 2716 South Street, Philadelphia, PA 19146, USA
| | - Brynn E Marks
- Division of Endocrinology & Diabetes, Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Children's Hospital of Philadelphia, Room 7547, The Hub for Clinical Collaboration, 3501 Civic Center Blvd, Philadelphia, PA 19104, USA
| | - Michael S Stalvey
- Department of Pediatrics, UAB Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Children's of Alabama, CPPII M30, 1600 7th Avenue South, Birmingham, AL 35233-1711, USA; Department of Medicine, UAB Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Children's of Alabama, CPPII M30, 1600 7th Avenue South, Birmingham, AL 35233-1711, USA.
| |
Collapse
|
13
|
O’Malley Y, Coleman MC, Sun X, Lei J, Yao J, Pulliam CF, Kluz P, McCormick ML, Yi Y, Imai Y, Engelhardt JF, Norris AW, Spitz DR, Uc A. Oxidative stress and impaired insulin secretion in cystic fibrosis pig pancreas. ADVANCES IN REDOX RESEARCH 2022; 5:100040. [PMID: 35903252 PMCID: PMC9328447 DOI: 10.1016/j.arres.2022.100040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Cystic fibrosis-related diabetes (CFRD) is one the most common comorbidities in cystic fibrosis (CF). Pancreatic oxidative stress has been postulated in the pathogenesis of CFRD, but no studies have been done to show an association. The main obstacle is the lack of suitable animal models and no immediate availability of pancreas tissue in humans. In the CF porcine model, we found increased pancreatic total glutathione (GSH), glutathione disulfide (GSSG), 3-nitrotyrosine- and 4-hydroxynonenal-modified proteins, and decreased copper zinc superoxide dismutase (CuZnSOD) activity, all indicative of oxidative stress. CF pig pancreas demonstrated increased DHE oxidation (as a surrogate marker of superoxide) in situ compared to non-CF and this was inhibited by a SOD-mimetic (GC4401). Catalase and glutathione peroxidase activities were not different between CF and non-CF pancreas. Isolated CF pig islets had significantly increased DHE oxidation, peroxide production, reduced insulin secretion in response to high glucose and diminished secretory index compared to non-CF islets. Acute treatment with apocynin or an SOD mimetic failed to restore insulin secretion. These results are consistent with the hypothesis that CF pig pancreas is under significant oxidative stress as a result of increased O2 ●- and peroxides combined with reduced antioxidant defenses against reactive oxygen species (ROS). We speculate that insulin secretory defects in CF may be due to oxidative stress.
Collapse
Affiliation(s)
- Yunxia O’Malley
- Stead Family Department of Pediatrics, The University of Iowa Carver College of Medicine, 200 Hawkins Drive, Iowa City, Iowa 52242, USA
| | - Mitchell C. Coleman
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa 52242, USA
| | - Xingshen Sun
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa 52242, USA
| | - Junying Lei
- Stead Family Department of Pediatrics, The University of Iowa Carver College of Medicine, 200 Hawkins Drive, Iowa City, Iowa 52242, USA
| | - Jianrong Yao
- Stead Family Department of Pediatrics, The University of Iowa Carver College of Medicine, 200 Hawkins Drive, Iowa City, Iowa 52242, USA
| | - Casey F. Pulliam
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa 52242, USA
| | - Paige Kluz
- Department of Orthopedics and Rehabilitation, University of Iowa, Iowa City, Iowa 52242, USA
| | - Michael L. McCormick
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa 52242, USA
| | - Yaling Yi
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa 52242, USA
| | - Yumi Imai
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa 52242, USA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa 52242, USA
| | - John F. Engelhardt
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa 52242, USA
| | - Andrew W. Norris
- Stead Family Department of Pediatrics, The University of Iowa Carver College of Medicine, 200 Hawkins Drive, Iowa City, Iowa 52242, USA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa 52242, USA
| | - Douglas R. Spitz
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa 52242, USA
| | - Aliye Uc
- Stead Family Department of Pediatrics, The University of Iowa Carver College of Medicine, 200 Hawkins Drive, Iowa City, Iowa 52242, USA
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa 52242, USA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa 52242, USA
| |
Collapse
|
14
|
Moheet A, Moran A. New Concepts in the Pathogenesis of Cystic Fibrosis-Related Diabetes. J Clin Endocrinol Metab 2022; 107:1503-1509. [PMID: 35106591 DOI: 10.1210/clinem/dgac020] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Indexed: 11/19/2022]
Abstract
CONTEXT Cystic fibrosis-related diabetes (CFRD) is the most common extrapulmonary complication of cystic fibrosis (CF). Approximately 40% of people with CF who are older than 20 years have CFRD. Presence of CFRD is associated with poor health outcomes in people with CF. OBJECTIVE This review summarizes current knowledge on pathophysiology of CFRD. METHODS A PubMed review of the literature was conducted, with search terms that included CFRD, cystic fibrosis, cystic fibrosis related diabetes, and cystic fibrosis transmembrane conductance regulator (CFTR). Additional sources were identified through manual searches of reference lists. Pathophysiology of CFRD: The pathophysiology underlying development of glucose tolerance abnormalities in CF is complex and not fully understood. β-cell loss and functional impairment of the remaining β-cell function results in progressive insulin insufficiency. Factors that may contribute to development of CFRD include local islet and systemic inflammation, alterations in the incretion hormone axis, varying degrees of insulin resistance and genetic factors related to type 2 diabetes. CONCLUSION The prevalence of CFRD is expected to further increase with improving life expectancy of people with CF. Further research is needed to better understand the mechanisms underlying the development of CFRD and the impact of diabetes on clinical outcomes in CF.
Collapse
Affiliation(s)
- Amir Moheet
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Antoinette Moran
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
15
|
Li C, Hu Y. In vitro and animal models to predict the glycemic index value of carbohydrate-containing foods. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2021.12.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
16
|
Chan CL, Pyle L, Vigers T, Zeitler PS, Nadeau KJ. The Relationship Between Continuous Glucose Monitoring and OGTT in Youth and Young Adults With Cystic Fibrosis. J Clin Endocrinol Metab 2022; 107:e548-e560. [PMID: 34537845 PMCID: PMC8764335 DOI: 10.1210/clinem/dgab692] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Indexed: 01/13/2023]
Abstract
CONTEXT Early glucose abnormalities in people with cystic fibrosis (PwCF) are commonly detected by continuous glucose monitoring (CGM). Relationships between these CGM abnormalities and oral glucose tolerance testing (OGTT) in PwCF have not been fully characterized. OBJECTIVE This work aimed to determine the relationship between CGM and common OGTT-derived estimates of β-cell function, including C-peptide index and oral disposition index (oDI) and to explore whether CGM can be used to screen for OGTT-defined prediabetes and cystic fibrosis-related diabetes (CFRD). METHODS PwCF not on insulin and healthy controls aged 6 to 25 years were enrolled in a prospective study collecting OGTT and CGM. A subset underwent frequently sampled OGTTs (fsOGTT) with 7-point glucose, insulin, and C-peptide measurements. Pearson correlation coefficient was used to test the association between select CGM and fsOGTT measures. Receiver operating curve (ROC) analysis was applied to CGM variables to determine the cutoff optimizing sensitivity and specificity for detecting prediabetes and CFRD. RESULTS A total of 120 participants (controls = 35, CF = 85), including 69 with fsOGTTs, were included. CGM coefficient of variation correlated inversely with C-peptide index (Cpeptide30-Cpeptide0/Glucose30-Glucose0) (r = -0.45, P < .001) and oDIcpeptide (C-peptide index)(1/cpep0) (r = -0.48, P < .0001). In PwCF, CGM variables had ROC - areas under the curve ranging from 0.43 to 0.57 for prediabetes and 0.47 to 0.6 for CFRD. CONCLUSION Greater glycemic variability on CGM correlated with reduced β-cell function. However, CGM performed poorly at discriminating individuals with and without OGTT-defined CFRD and prediabetes. Prospective studies are now needed to determine how well the different tests predict clinically relevant nonglycemic outcomes in PwCF.
Collapse
Affiliation(s)
- Christine L Chan
- Department of Pediatrics, Pediatric Endocrinology, Children’s Hospital Colorado and University of Colorado Anschutz Medical Center, Aurora, Colorado 80045, USA
| | - Laura Pyle
- Department of Biostatistics, Colorado School of Public Health, Aurora, Colorado 80045, USA
| | - Tim Vigers
- Department of Pediatrics, Pediatric Endocrinology, Children’s Hospital Colorado and University of Colorado Anschutz Medical Center, Aurora, Colorado 80045, USA
- Department of Biostatistics, Colorado School of Public Health, Aurora, Colorado 80045, USA
| | - Philip S Zeitler
- Department of Pediatrics, Pediatric Endocrinology, Children’s Hospital Colorado and University of Colorado Anschutz Medical Center, Aurora, Colorado 80045, USA
| | - Kristen J Nadeau
- Department of Pediatrics, Pediatric Endocrinology, Children’s Hospital Colorado and University of Colorado Anschutz Medical Center, Aurora, Colorado 80045, USA
| |
Collapse
|
17
|
Korten I, Kieninger E, Krueger L, Bullo M, Flück CE, Latzin P, Casaulta C, Boettcher C. Short-Term Effects of Elexacaftor/Tezacaftor/Ivacaftor Combination on Glucose Tolerance in Young People With Cystic Fibrosis-An Observational Pilot Study. Front Pediatr 2022; 10:852551. [PMID: 35529332 PMCID: PMC9070552 DOI: 10.3389/fped.2022.852551] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/16/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The effect of elexacaftor/tezacaftor/ivacaftor (ELX/TEZ/IVA) on glucose tolerance and/or cystic-fibrosis-related diabetes (CFRD) is not well understood. We performed an observational study on the short-term effects of ELX/TEZ/IVA on glucose tolerance. METHODS Sixteen adolescents with CF performed oral glucose tolerance tests (OGTT) before and 4-6 weeks after initiating ELX/TEZ/IVA therapy. A continuous glucose monitoring (CGM) system was used 3 days before until 7 days after starting ELX/TEZ/IVA treatment. RESULTS OGTT categories improved after initiating ELX/TEZ/IVA therapy (p = 0.02). Glucose levels of OGTT improved at 60, 90, and 120 min (p < 0.05), whereas fasting glucose and CGM measures did not change. CONCLUSION Shortly after initiating ELX/TEZ/IVA therapy, glucose tolerance measured by OGTT improved in people with CF. This pilot study indicates that ELX/TEZ/IVA treatment has beneficial effects on the endocrine pancreatic function and might prevent or at least postpone future CFRD.
Collapse
Affiliation(s)
- Insa Korten
- Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Elisabeth Kieninger
- Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Linn Krueger
- Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Marina Bullo
- Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Christa E Flück
- Department of Paediatric Endocrinology, Diabetology and Metabolism, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,Department of BioMedical Research, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Philipp Latzin
- Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Carmen Casaulta
- Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Claudia Boettcher
- Department of Paediatric Endocrinology, Diabetology and Metabolism, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,Department of BioMedical Research, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
18
|
Lee JA, Cho A, Huang EN, Xu Y, Quach H, Hu J, Wong AP. Gene therapy for cystic fibrosis: new tools for precision medicine. J Transl Med 2021; 19:452. [PMID: 34717671 PMCID: PMC8556969 DOI: 10.1186/s12967-021-03099-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/01/2021] [Indexed: 12/18/2022] Open
Abstract
The discovery of the Cystic fibrosis (CF) gene in 1989 has paved the way for incredible progress in treating the disease such that the mean survival age of individuals living with CF is now ~58 years in Canada. Recent developments in gene targeting tools and new cell and animal models have re-ignited the search for a permanent genetic cure for all CF. In this review, we highlight some of the more recent gene therapy approaches as well as new models that will provide insight into personalized therapies for CF.
Collapse
Affiliation(s)
- Jin-A Lee
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, 686 Bay Street, PGCRL 16-9420, Toronto, ON, M5G0A4, Canada
| | - Alex Cho
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Elena N Huang
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Yiming Xu
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Henry Quach
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Jim Hu
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.,Program in Translational Medicine, Hospital for Sick Children, Toronto, ON, M5G0A4, Canada
| | - Amy P Wong
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, 686 Bay Street, PGCRL 16-9420, Toronto, ON, M5G0A4, Canada. .,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.
| |
Collapse
|
19
|
Al-Selwi Y, Shaw JA, Kattner N. Understanding the Pancreatic Islet Microenvironment in Cystic Fibrosis and the Extrinsic Pathways Leading to Cystic Fibrosis Related Diabetes. CLINICAL MEDICINE INSIGHTS-ENDOCRINOLOGY AND DIABETES 2021; 14:11795514211048813. [PMID: 34675737 PMCID: PMC8524685 DOI: 10.1177/11795514211048813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/23/2021] [Indexed: 11/16/2022]
Abstract
Cystic fibrosis (CF) is an autosomal recessive chronic condition
effecting approximately 70 000 to 100 000 people globally and is
caused by a loss-of-function mutation in the CF transmembrane
conductance regulator. Through improvements in clinical care, life
expectancy in CF has increased considerably associated with rising
incidence of secondary complications including CF-related diabetes
(CFRD). CFRD is believed to result from β-cell loss as well as
insufficient insulin secretion due to β-cell dysfunction, but the
underlying pathophysiology is not yet fully understood. Here we review
the morphological and cellular changes in addition to the
architectural remodelling of the pancreatic exocrine and endocrine
compartments in CF and CFRD pancreas. We consider also potential
underlying proinflammatory signalling pathways impacting on endocrine
and specifically β-cell function, concluding that further research
focused on these mechanisms may uncover novel therapeutic targets
enabling restoration of normal insulin secretion.
Collapse
Affiliation(s)
- Yara Al-Selwi
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - James Am Shaw
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK.,Institute of Transplantation, Freeman Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Nicole Kattner
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
20
|
Chagay NB, Khayt GY, Vdovina TM, Shaforost AA. [Cystic fibrosis being a polyendocrine disease (Review)]. ACTA ACUST UNITED AC 2021; 67:28-39. [PMID: 34004101 PMCID: PMC8926149 DOI: 10.14341/probl12694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 02/22/2021] [Accepted: 03/30/2021] [Indexed: 11/06/2022]
Abstract
The cystic fibrosis transmembrane regulator (CFTR) gene encodes the synthesis of a protein of the same name, which functions as a direct activator of anionic transport. Chloride is the most abundant anion; as an antagonist of Na+ and K+, it provides electroneutrality of cell membranes at rest; together with cations, it serves as an important osmolyte and forms water flow across cell membranes for transepithelial secretion.Glandular cells in CF trap Cl- and Na+, and the prodused secretion is excessively viscous. Subnormal CFTR activity leads to stagnation of mucociliary clearance, inhibition of intestinal transport.In addition to exocrine disorders, CFTR mutations are associated with a decrease in volume, mass, increased apoptosis of β-cells of the pancreas, a significant suppression of insulin exocytosis in response to stimulation with glucose and glucagon-like peptide-1, hyperglucagonemia against the background of a defect in the suppression of α-cell function by insulin, but a decrease in maximum capacity α-cells.Deficiency and progressive decline in bone mineral density is an expected secondary manifestation of CF due to pancreatic exocrine insufficiency with malabsorption of nutrients and fat-soluble vitamins. However, in patients with the F508del mutation, a significant decrease in the synthesis of OPG, COX-2, PGE2 in the osteoblastic formation, and an increase in the activity of the antianabolic NF-kB were found. We are talking about a defect in the canonical signaling pathway (Wnt/β-catenin), which regulates the expression of genes-activators of osteoblastogenesis, dissociation of the stages of physiological bone remodeling.In addition to congenital bilateral or unilateral aplasia of the vas deferens, an increase in the frequency of CFTR mutations is also found in non-obstructive azoospermia, oligo-, astheno- and teratospermia. CFTR is involved in the entry of HCO3- into Sertoli cells to trigger cAMP-dependent transcription and its defects lead to suppression of FSH-dependent gene expression of spermatogenesis, loss of sequence in the Wnt cascade, destruction of the PGE2-dependent transepithelial interaction and, as a consequence, the blood-testicular barrier.CF is characterized, along with classical signs, by endocrine dysfunction of the pancreas, osteoporosis with suppression of osteoblastogenesis, and a defect in spermatogenesis.
Collapse
Affiliation(s)
- N B Chagay
- Stavropol Regional Clinical Consultative and Diagnostic Center; Stavropol State Medical University
| | - G Ya Khayt
- Stavropol Regional Clinical Consultative and Diagnostic Center; Stavropol State Medical University
| | - T M Vdovina
- Stavropol Regional Clinical Consultative and Diagnostic Center
| | - A A Shaforost
- Stavropol Regional Clinical Consultative and Diagnostic Center
| |
Collapse
|
21
|
Rickels MR, Norris AW, Hull RL. A tale of two pancreases: exocrine pathology and endocrine dysfunction. Diabetologia 2020; 63:2030-2039. [PMID: 32894313 PMCID: PMC7646259 DOI: 10.1007/s00125-020-05210-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 05/14/2020] [Indexed: 02/07/2023]
Abstract
The islets of Langerhans are well embedded within the exocrine pancreas (the latter comprised of ducts and acini), but the nature of interactions between these pancreatic compartments and their role in determining normal islet function and survival are poorly understood. However, these interactions appear to be critical, as when pancreatic exocrine disease occurs, islet function and insulin secretion frequently decline to the point that diabetes ensues, termed pancreatogenic diabetes. The most common forms of pancreatogenic diabetes involve sustained exocrine disease leading to ductal obstruction, acinar inflammation, and fibro-fatty replacement of the exocrine pancreas that predates the development of dysfunction of the endocrine pancreas, as seen in chronic pancreatitis-associated diabetes and cystic fibrosis-related diabetes and, more rarely, MODY type 8. Intriguingly, a form of tumour-induced diabetes has been described that is associated with pancreatic ductal adenocarcinoma. Here, we review the similarities and differences among these forms of pancreatogenic diabetes, with the goal of highlighting the importance of exocrine/ductal homeostasis for the maintenance of pancreatic islet function and survival and to highlight the need for a better understanding of the mechanisms underlying these diverse conditions. Graphical abstract.
Collapse
Affiliation(s)
- Michael R Rickels
- Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
- Institute for Diabetes, Obesity & Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Andrew W Norris
- Department of Pediatrics, University of Iowa, Iowa City, IA, USA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, USA
| | - Rebecca L Hull
- VA Puget Sound Health Care System (151), 1660 S. Columbian Way, Seattle, WA, 98108, USA.
- Department of Medicine, University of Washington, Seattle, WA, USA.
| |
Collapse
|
22
|
Moheet A, Beisang D, Zhang L, Sagel SD, VanDalfsen JM, Heltshe SL, Frederick C, Mann M, Antos N, Billings J, Rowe SM, Moran A. Lumacaftor/ivacaftor therapy fails to increase insulin secretion in F508del/F508del CF patients. J Cyst Fibros 2020; 20:333-338. [PMID: 32917547 DOI: 10.1016/j.jcf.2020.09.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 07/13/2020] [Accepted: 09/02/2020] [Indexed: 01/05/2023]
Abstract
BACKGROUND Glucose tolerance abnormalities including cystic fibrosis related diabetes (CFRD) are common in patients with cystic fibrosis (CF). The underlying pathophysiology is not fully understood. Emerging evidence suggests that CFTR dysfunction may directly or indirectly impact β-cell function, offering the potential for improvement with CFTR modulator therapy. In small pilot studies, treatment with ivacaftor improved insulin secretion in patients with the G551D CFTR mutation. In the current study, we examined the impact of lumacaftor/ivacaftor therapy on glucose tolerance and insulin secretion in patients with CF who were homozygous for the F508del mutation. METHODS 39 subjects from the PROSPECT Part B study who had been prescribed lumacaftor/ivacaftor by their CF care team at a CF Foundation's Therapeutic Development Network center were recruited. Subjects underwent 2-hour oral glucose tolerance tests (OGTTs) at baseline prior to first dose of lumacaftor/ivacaftor, and at 3, 6 and 12 months on therapy. OGTT glucose, insulin and c-peptide parameters were compared. RESULTS Compared to baseline, OGTT fasting and 2 hour glucose levels, glucose area under the curve, insulin area under the curve and time to peak insulin level were not significantly different at 3, 6 and 12 months on lumacaftor/ivacaftor therapy. Similarly, C-peptide levels were no different. CONCLUSIONS Lumacaftor/ivacaftor therapy did not improve insulin secretion or glucose tolerance in patients with CF who were homozygous for the F508del mutation.
Collapse
Affiliation(s)
- Amir Moheet
- Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Daniel Beisang
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States
| | - Lin Zhang
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN, United States
| | - Scott D Sagel
- Department of Pediatrics, Children's Hospital Colorado and University of Colorado Anshutz Medical Campus, Aurora, CO, United States
| | - Jill M VanDalfsen
- Cystic Fibrosis Foundation Therapeutics Development Network Coordinating Center, Seattle, Children's Research, Seattle, WA, United States
| | - Sonya L Heltshe
- Cystic Fibrosis Foundation Therapeutics Development Network Coordinating Center, Seattle, Children's Research, Seattle, WA, United States; Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, United States
| | - Carla Frederick
- Jacobs School of Medicine and Biomedical Sciences of the University at Buffalo and UBMD Internal Medicine, Buffalo, NY, United States
| | - Michelle Mann
- Baylor College of Medicine, Houston, TX, United States
| | - Nicholas Antos
- Medical College of Wisconsin, Milwaukee, WI, United States
| | - Joanne Billings
- Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Steven M Rowe
- Department of Medicine and the Gregory Flemming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Antoinette Moran
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States.
| | | |
Collapse
|
23
|
Tang Y, Yan Z, Engelhardt JF. Viral Vectors, Animal Models, and Cellular Targets for Gene Therapy of Cystic Fibrosis Lung Disease. Hum Gene Ther 2020; 31:524-537. [PMID: 32138545 PMCID: PMC7232698 DOI: 10.1089/hum.2020.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 03/05/2020] [Indexed: 12/14/2022] Open
Abstract
After more than two decades since clinical trials tested the first use of recombinant adeno-associated virus (rAAV) to treat cystic fibrosis (CF) lung disease, gene therapy for this disorder has undergone a tremendous resurgence. Fueling this enthusiasm has been an enhanced understanding of rAAV transduction biology and cellular processes that limit transduction of airway epithelia, the development of new rAAV serotypes and other vector systems with high-level tropism for airway epithelial cells, an improved understanding of CF lung pathogenesis and the cellular targets for gene therapy, and the development of new animal models that reproduce the human CF disease phenotype. These advances have created a preclinical path for both assessing the efficacy of gene therapies in the CF lung and interrogating the target cell types in the lung required for complementation of the CF disease state. Lessons learned from early gene therapy attempts with rAAV in the CF lung have guided thinking for the testing of next-generation vector systems. Although unknown questions still remain regarding the cellular targets in the lung that are required or sufficient to complement CF lung disease, the field is now well positioned to tackle these challenges. This review will highlight the role that next-generation CF animal models are playing in the preclinical development of gene therapies for CF lung disease and the knowledge gaps in disease pathophysiology that these models are attempting to fill.
Collapse
Affiliation(s)
- Yinghua Tang
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Ziying Yan
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - John F. Engelhardt
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
24
|
Liou TG, Kartsonaki C, Keogh RH, Adler FR. Evaluation of a five-year predicted survival model for cystic fibrosis in later time periods. Sci Rep 2020; 10:6602. [PMID: 32313191 PMCID: PMC7171119 DOI: 10.1038/s41598-020-63590-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 04/02/2020] [Indexed: 12/04/2022] Open
Abstract
We evaluated a multivariable logistic regression model predicting 5-year survival derived from a 1993-1997 cohort from the United States Cystic Fibrosis (CF) Foundation Patient Registry to assess whether therapies introduced since 1993 have altered applicability in cohorts, non-overlapping in time, from 1993-1998, 1999-2004, 2005-2010 and 2011-2016. We applied Kaplan-Meier statistics to assess unadjusted survival. We tested logistic regression model discrimination using the C-index and calibration using Hosmer-Lemeshow tests to examine original model performance and guide updating as needed. Kaplan-Meier age-adjusted 5-year probability of death in the CF population decreased substantially during 1993-2016. Patients in successive cohorts were generally healthier at entry, with higher average age, weight and lung function and fewer pulmonary exacerbations annually. CF-related diabetes prevalence, however, steadily increased. Newly derived multivariable logistic regression models for 5-year survival in new cohorts had similar estimated coefficients to the originals. The original model exhibited excellent calibration and discrimination when applied to later cohorts despite improved survival and remains useful for predicting 5-year survival. All models may be used to stratify patients for new studies, and the original coefficients may be useful as a baseline to search for additional but rare events that affect survival in CF.
Collapse
Affiliation(s)
- Theodore G Liou
- Center for Quantitative Biology, University of Utah, Salt Lake City, Utah, USA.
- The Adult Cystic Fibrosis Center at the University of Utah, Division of Respiratory, Critical Care and Occupational Pulmonary Medicine, Department of Internal Medicine, School of Medicine, University of Utah, Salt Lake City, Utah, USA.
| | - Christiana Kartsonaki
- Clinical Trial Service Unit & Epidemiological Studies Unit and Medical Research Council Population Health Research Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Ruth H Keogh
- Department of Medical Statistics, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Frederick R Adler
- Center for Quantitative Biology, University of Utah, Salt Lake City, Utah, USA
- Department of Mathematics, College of Science and the College of Biological Sciences, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
25
|
Olesen HV, Drevinek P, Gulmans VA, Hatziagorou E, Jung A, Mei-Zahav M, Stojnic N, Thomas M, Zolin A. Cystic fibrosis related diabetes in Europe: Prevalence, risk factors and outcome; Olesen et al. J Cyst Fibros 2019; 19:321-327. [PMID: 31680042 DOI: 10.1016/j.jcf.2019.10.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 09/17/2019] [Accepted: 10/01/2019] [Indexed: 01/09/2023]
Abstract
BACKGROUND Cystic fibrosis related diabetes (CFRD) has implications for morbidity and mortality with several risk factors identified. We studied the epidemiology of CFRD in the large dataset of the European Cystic Fibrosis Society Patient registry. METHODS Data on CF patients were investigated for the prevalence of CFRD as well as for any association with suggested risk factors and effects. RESULTS CFRD increased by approximately ten percentage points every decade from ten years of age. Prevalence was higher in females in the younger age groups. CFRD was associated with severe CF genotypes (OR = 3.11, 95%CI: 2.77-3.48), pancreatic insufficiency (OR = 1.46, 95%CI: 1.39-1.53) and female gender (OR = 1.28, 95%CI: 1.21-1.34). Patients with CFRD had higher odds of being chronically infected with Pseudomonas aeruginosa, Burkholderia cepacia complex and Stenotrophomonas maltophilia than patients without CFRD, higher odds of having FEV1% of predicted <40% (OR = 1.82, 95%CI: 1.70-1.94) and higher odds of having BMI SDS ≤-2 than patients without CFRD (OR = 1.24, 95%CI: 1.15-1.34). CONCLUSIONS Severe genotype, pancreatic insufficiency and female gender remain considerable intrinsic risk factors for early acquisition of CFRD. CFRD is associated with infections, lower lung function and poor nutritional status. Early diagnosis and aggressive treatment of CFRD are more important than ever with increasing life span.
Collapse
Affiliation(s)
- Hanne V Olesen
- Dept of Pediatrics and Adolescent Medicine, Aarhus University Hospital, Denmark.
| | - Pavel Drevinek
- Department of Medical Microbiology, Motol University Hospital and 2nd Faculty of Medicine, Charles University, Prague, Czech Republic.
| | | | - Elpis Hatziagorou
- Paediatric Pulmonology and CF Unit, Hippokration Hospital of Thessaloniki, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Andreas Jung
- Paediatric Pulmonology, University Children`s Hospital Zurich, Zurich, Switzerland.
| | - Meir Mei-Zahav
- Pulmonary Institute, Schneider Children's Medical Center of Israel, Sackler Faculty of Medicine, Tel Aviv University, Israel
| | - Natasa Stojnic
- Department of Pulmonology, Mother and Child Healthcare Institute of Serbia, Belgrade, Serbia
| | - Muriel Thomas
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy.
| | - Anna Zolin
- Belgian Cystic Fibrosis Registry, Sciensano, Belgium.
| | | |
Collapse
|
26
|
Granados A, Chan CL, Ode KL, Moheet A, Moran A, Holl R. Cystic fibrosis related diabetes: Pathophysiology, screening and diagnosis. J Cyst Fibros 2019; 18 Suppl 2:S3-S9. [DOI: 10.1016/j.jcf.2019.08.016] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/14/2019] [Accepted: 08/15/2019] [Indexed: 12/12/2022]
|
27
|
Saloman JL, Albers KM, Cruz-Monserrate Z, Davis BM, Edderkaoui M, Eibl G, Epouhe AY, Gedeon JY, Gorelick FS, Grippo PJ, Groblewski GE, Husain SZ, Lai KK, Pandol SJ, Uc A, Wen L, Whitcomb DC. Animal Models: Challenges and Opportunities to Determine Optimal Experimental Models of Pancreatitis and Pancreatic Cancer. Pancreas 2019; 48:759-779. [PMID: 31206467 PMCID: PMC6581211 DOI: 10.1097/mpa.0000000000001335] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
At the 2018 PancreasFest meeting, experts participating in basic research met to discuss the plethora of available animal models for studying exocrine pancreatic disease. In particular, the discussion focused on the challenges currently facing the field and potential solutions. That meeting culminated in this review, which describes the advantages and limitations of both common and infrequently used models of exocrine pancreatic disease, namely, pancreatitis and exocrine pancreatic cancer. The objective is to provide a comprehensive description of the available models but also to provide investigators with guidance in the application of these models to investigate both environmental and genetic contributions to exocrine pancreatic disease. The content covers both nongenic and genetically engineered models across multiple species (large and small). Recommendations for choosing the appropriate model as well as how to conduct and present results are provided.
Collapse
Affiliation(s)
- Jami L. Saloman
- Department of Neurobiology, Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA
| | - Kathryn M. Albers
- Department of Neurobiology, Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA
| | - Zobeida Cruz-Monserrate
- Division of Gastroenterology, Hepatology, and Nutrition; Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Brian M. Davis
- Department of Neurobiology, Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA
| | - Mouad Edderkaoui
- Basic and Translational Pancreas Research, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Guido Eibl
- Department of Surgery, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA
| | - Ariel Y. Epouhe
- Department of Neurobiology, Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA
| | - Jeremy Y. Gedeon
- Department of Neurobiology, Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA
| | - Fred S. Gorelick
- Department of Internal Medicine, Section of Digestive Diseases & Department of Cell Biology Yale University School of Medicine; Veterans Affairs Connecticut Healthcare, West Haven, CT
| | - Paul J. Grippo
- Department of Medicine, Division of Gastroenterology and Hepatology, UI Cancer Center, University of Illinois at Chicago, Chicago, IL
| | - Guy E. Groblewski
- Department of Nutritional Sciences, University of Wisconsin, Madison, WI
| | | | - Keane K.Y. Lai
- Department of Pathology (National Medical Center), Department of Molecular Medicine (Beckman Research Institute), and Comprehensive Cancer Center, City of Hope, Duarte, CA
| | - Stephen J. Pandol
- Department of Surgery, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA
| | - Aliye Uc
- Stead Family Department of Pediatrics, University of Iowa, Stead Family Children’s Hospital, Iowa City, IA
| | - Li Wen
- Department of Pediatrics, Stanford University, Palo Alto, CA
| | | |
Collapse
|
28
|
Kelsey R, Manderson Koivula FN, McClenaghan NH, Kelly C. Cystic Fibrosis-Related Diabetes: Pathophysiology and Therapeutic Challenges. CLINICAL MEDICINE INSIGHTS-ENDOCRINOLOGY AND DIABETES 2019; 12:1179551419851770. [PMID: 31191067 PMCID: PMC6539575 DOI: 10.1177/1179551419851770] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 04/26/2019] [Indexed: 12/21/2022]
Abstract
Cystic fibrosis–related diabetes (CFRD) is among the most common extrapulmonary co-morbidity associated with cystic fibrosis (CF), affecting an estimated 50% of adults with the condition. Cystic fibrosis is prevalent in 1 in every 2500 Caucasian live births and is caused by a mutation in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Mutated CFTR leads to dehydrated epithelial surfaces and a build-up of mucus in a variety of tissues including the lungs and pancreas. The leading cause of mortality in CF is repeated respiratory bacterial infections, which prompts a decline in lung function. Co-morbid diabetes promotes bacterial colonisation of the airways and exacerbates the deterioration in respiratory health. Cystic fibrosis–related diabetes is associated with a 6-fold higher mortality rate compared with those with CF alone. The management of CFRD adds a further burden for the patient and creates new therapeutic challenges for the clinical team. Several proposed hypotheses on how CFRD develops have emerged, including exocrine-driven fibrosis and destruction of the entire pancreas and contrasting theories on the direct or indirect impact of CFTR mutation on islet function. The current review outlines recent data on the impact of CFTR on endocrine pancreatic function and discusses the use of conventional diabetic therapies and new CFTR-correcting drugs on the treatment of CFRD.
Collapse
Affiliation(s)
- Ryan Kelsey
- Northern Ireland Centre for Stratified Medicine, School of Biomedical Sciences, University of Ulster, Derry/Londonderry, UK
| | - Fiona N Manderson Koivula
- Northern Ireland Centre for Stratified Medicine, School of Biomedical Sciences, University of Ulster, Derry/Londonderry, UK
| | | | - Catriona Kelly
- Northern Ireland Centre for Stratified Medicine, School of Biomedical Sciences, University of Ulster, Derry/Londonderry, UK
| |
Collapse
|
29
|
Norris AW, Ode KL, Merjaneh L, Sanda S, Yi Y, Sun X, Engelhardt JF, Hull RL. Survival in a bad neighborhood: pancreatic islets in cystic fibrosis. J Endocrinol 2019; 241:JOE-18-0468.R1. [PMID: 30759072 PMCID: PMC6675675 DOI: 10.1530/joe-18-0468] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 02/13/2019] [Indexed: 12/12/2022]
Abstract
In cystic fibrosis (CF), ductal plugging and acinar loss result in rapid decline of exocrine pancreatic function. This destructive process results in remodeled islets, with only a modest reduction in insulin producing β cells. However, β-cell function is profoundly impaired, with decreased insulin release and abnormal glucose tolerance being present even in infants with CF. Ultimately, roughly half of CF subjects develop diabetes (termed CF-related diabetes, CFRD). Importantly, CFRD increases CF morbidity and mortality via worsening catabolism and pulmonary disease. Current accepted treatment options for CFRD are aimed at insulin replacement, thereby improving glycemia as well as preventing nutritional losses and lung decline. CFRD is a unique form of diabetes with a distinct pathophysiology that is as yet incompletely understood. Recent studies highlight emerging areas of interest. First, islet inflammation and lymphocyte infiltration are common even in young children with CF and may contribute to β-cell failure. Second, controversy exists in the literature regarding the presence/importance of β-cell intrinsic functions of CFTR and its direct role in modulating insulin release. Third, loss of the CF transmembrane conductance regulator (CFTR) from pancreatic ductal epithelium, the predominant site of its synthesis, results in paracrine effects that impair insulin release. Finally, the degree of β-cell loss in CFRD does not appear sufficient to explain the deficit in insulin release. Thus, it may be possible to enhance the function of the remaining β cells using strategies such as targeting islet inflammation or ductal CFTR deficiency to effectively treat or even prevent CFRD.
Collapse
Affiliation(s)
- Andrew W. Norris
- Department of Pediatrics, University of Iowa, Iowa City, Iowa 52242
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa 52242
| | - Katie Larson Ode
- Department of Pediatrics, University of Iowa, Iowa City, Iowa 52242
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa 52242
| | - Lina Merjaneh
- Division of Endocrinology & Diabetes, Seattle Children’s Hospital, Seattle, Washington 98105
| | - Srinath Sanda
- Department of Pediatrics, University of California San Francisco, San Francisco, CA
- Diabetes Center, University of California San Francisco, San Francisco, CA
| | - Yaling Yi
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa 52242
| | - Xingshen Sun
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa 52242
| | - John F. Engelhardt
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa 52242
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa 52242
| | - Rebecca L. Hull
- Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, United States
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, WA 98195, United States
| |
Collapse
|
30
|
Edlund A, Barghouth M, Huhn M, Abels M, Esguerra J, Mollet I, Svedin E, Wendt A, Renstrom E, Zhang E, Wierup N, Scholte BJ, Flodström-Tullberg M, Eliasson L. Defective exocytosis and processing of insulin in a cystic fibrosis mouse model. J Endocrinol 2019; 241:JOE-18-0570.R1. [PMID: 30721137 DOI: 10.1530/joe-18-0570] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 02/05/2019] [Indexed: 01/21/2023]
Abstract
Cystic fibrosis-related diabetes (CFRD) is a common complication for patients with cystic fibrosis (CF), a disease caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR). The cause of CFRD is unclear, but a commonly observed reduction in first-phase insulin secretion suggests defects at the beta cell level. Here we aimed to examine beta- and alpha-cell function in the Cftrtm1EUR/F508del mouse model (C57BL/6J), which carries the most common human mutation in CFTR, the F508del mutation. CFTR expression, beta cell mass, insulin granule distribution, hormone secretion and single cell capacitance changes were evaluated using islets (or beta cells) from F508del mice and age-matched wild-type mice aged 7-10 weeks. Granular pH was measured with DND-189 fluorescence. Serum glucose, insulin and glucagon levels were measured in vivo, and glucose tolerance was assessed using IPGTT. We show increased secretion of proinsulin and concomitant reduced secretion of C-peptide in islets from F508del mice compared to WT mice. Exocytosis and number of docked granules was reduced. We confirmed reduced granular pH by CFTR stimulation. We detected decreased pancreatic beta cell area, but unchanged beta cell number. Moreover, the F508del mutation caused failure to suppress glucagon secretion leading to hyperglucagonemia. In conclusion, F508del mice have beta cell defects resulting in 1) reduced number of docked insulin granules and reduced exocytosis, and 2) potential defective proinsulin cleavage and secretion of immature insulin. These observations provide insight into the functional role of CFTR in pancreatic islets and contribute to increased understanding of the pathogenesis of CFRD.
Collapse
Affiliation(s)
- Anna Edlund
- A Edlund, Clinical sciences in Malmo, Lund University, Malmo, 21428, Sweden
| | - Mohammad Barghouth
- M Barghouth, Dept Clinical Sciences in Malmö, Lunds Universitet, Malmö, Sweden
| | - Michael Huhn
- M Huhn, of medicine Huddinge, Karolinska institute, Center for infectious medicine, Stockholm, Sweden
| | - Mia Abels
- M Abels, Department of clinical sciencies in Malmo, Lunds Universitet Institutionen for kliniska vetenskaper i Malmo, Malmo, Sweden
| | - Jonathan Esguerra
- J Esguerra, Clinical Sciences - Malmö, Lund University, Malmö, 21428, Sweden
| | - Ines Mollet
- I Mollet, CEDOC - Chronic Diseases Research Center, NOVA Medical School - Faculdade de Ciências Médicas, Lisboa, 1150-082, Portugal
| | - Emma Svedin
- E Svedin, Department of Medicine Huddinge, Karolinska Institutet Department of Medicine Huddinge, Stockholm, Sweden
| | - Anna Wendt
- A Wendt, Dept Clinical Sciences in Malmö, Lunds Universitet, Malmö, Sweden
| | - Erik Renstrom
- E Renstrom, Clinical Sciences Malmo, Lund University, Malmo, SE-20502, Sweden
| | - Enming Zhang
- E Zhang, Department of Clinical Science, Lund Uinversity, Malmö, 20502, Sweden
| | - Nils Wierup
- N Wierup, Department of Clinical Sciences, Lund University Diabetes Centre, Malmö, 20502, Sweden
| | - Bob J Scholte
- B Scholte, Department of Cellbiology, Pediatric Pulmonology, Erasmus MC, Rotterdam, Netherlands
| | - Malin Flodström-Tullberg
- M Flodström-Tullberg, Dept of Medicine Huddinge, Karolinska institute, Center for Infectious Medicine, Stockholm, Sweden
| | - Lena Eliasson
- L Eliasson, Dept Clinical Sciences in Malmö, Lunds Universitet, Malmö, 214 28, Sweden
| |
Collapse
|
31
|
Liou TG. The Clinical Biology of Cystic Fibrosis Transmembrane Regulator Protein: Its Role and Function in Extrapulmonary Disease. Chest 2018; 155:605-616. [PMID: 30359614 DOI: 10.1016/j.chest.2018.10.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 10/08/2018] [Accepted: 10/10/2018] [Indexed: 02/07/2023] Open
Abstract
Normal cystic fibrosis (CF) transmembrane regulator (CFTR) protein has multiple functions in health and disease. Many mutations in the CFTR gene produce abnormal or absent protein. CFTR protein dysfunction underlies the classic CF phenotype of progressive pulmonary and GI pathology but may underlie diseases not usually associated with CF. This review highlights selected extrapulmonary disease that may be associated with abnormal CFTR. Increasing survival in CF is associated with increasing incidence of diseases associated with aging. CFTR dysfunction in older individuals may have novel effects on glucose metabolism, control of insulin release, regulation of circadian rhythm, and cancer cell pathophysiology. In individuals who have cancers with acquired CFTR suppression, their tumors may more likely exhibit rapid expansion, epithelial-to-mesenchymal transformation, abnormally reduced apoptosis, and increased metastatic potential. The new modulators of CFTR protein synthesis could facilitate the additional exploration needed to better understand the unfolding clinical biology of CFTR in human disease, even as they revolutionize treatment of patients with CF.
Collapse
Affiliation(s)
- Theodore G Liou
- Center for Quantitative Biology, The Adult Cystic Fibrosis Center and the Division of Respiratory, Critical Care and Occupational Pulmonary Medicine, Department of Internal Medicine, School of Medicine, University of Utah, Salt Lake City, UT.
| |
Collapse
|
32
|
Abstract
Cystic fibrosis (CF) is the most common life-limiting genetic disease in Caucasian patients. Continued advances have led to improved survival, and adults with CF now outnumber children. As our understanding of the disease improves, new therapies have emerged that improve the basic defect, enabling patient-specific treatment and improved outcomes. However, recurrent exacerbations continue to lead to morbidity and mortality, and new pathogens have been identified that may lead to worse outcomes. In addition, new complications, such as CF-related diabetes and increased risk of gastrointestinal cancers, are creating new challenges in management. For patients with end-stage disease, lung transplantation has remained one of the few treatment options, but challenges in identifying the most appropriate patients remain.
Collapse
Affiliation(s)
- Michael M Rey
- Division of Pulmonary, Allergy and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA; , ,
| | - Michael P Bonk
- Division of Pulmonary, Allergy and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA; , ,
| | - Denis Hadjiliadis
- Division of Pulmonary, Allergy and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA; , ,
| |
Collapse
|
33
|
Li A, Vigers T, Pyle L, Zemanick E, Nadeau K, Sagel SD, Chan CL. Continuous glucose monitoring in youth with cystic fibrosis treated with lumacaftor-ivacaftor. J Cyst Fibros 2018; 18:144-149. [PMID: 30104123 DOI: 10.1016/j.jcf.2018.07.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 06/22/2018] [Accepted: 07/25/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND The effects of lumacaftor-ivacaftor therapy on glycemia have not been thoroughly investigated. Continuous glucose monitoring (CGM) provides detailed information about glycemic patterns and detects glucose abnormalities earlier than traditional screening tools for diabetes. METHODS CGM measures, HbA1c, and oral glucose tolerance test (OGTT) results were collected and within-subject results compared in F508del homozygous youth with CF before and after initiation of lumacaftor-ivacaftor using the Wilcoxon signed-rank test. RESULTS Nine youth with CF (6 males, median age 12.7 years) were enrolled. CGM was performed in all participants before (median 26 weeks) and after lumacaftor-ivacaftor (median 29 weeks). HbA1c and fasting plasma glucose increased (p = .02) after lumacaftor-ivacaftor initiation. No changes in OGTT 1 h or 2 h glucose nor CGM measures were observed overall. When analyzed by sex, males showed lower glycemic variability, as reflected by the mean amplitude of glycemic excursions, on the post-treatment CGM. CONCLUSIONS Glycemic abnormalities persisted in CF patients treated with lumacaftor-ivacaftor, although sex-dependent differences in glycemic response to treatment may exist.
Collapse
Affiliation(s)
- Angel Li
- University of Colorado School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Tim Vigers
- Department of Pediatrics, Division of Pediatric Endocrinology, Children's Hospital Colorado, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Laura Pyle
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Edith Zemanick
- Department of Pediatrics, Division of Pediatric Pulmonology, Children's Hospital Colorado, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kristen Nadeau
- Department of Pediatrics, Division of Pediatric Endocrinology, Children's Hospital Colorado, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Scott D Sagel
- Department of Pediatrics, Division of Pediatric Pulmonology, Children's Hospital Colorado, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Christine L Chan
- Department of Pediatrics, Division of Pediatric Endocrinology, Children's Hospital Colorado, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| |
Collapse
|
34
|
Principles and approaches for reproducible scoring of tissue stains in research. J Transl Med 2018; 98:844-855. [PMID: 29849125 DOI: 10.1038/s41374-018-0057-0] [Citation(s) in RCA: 201] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 03/16/2018] [Accepted: 03/31/2018] [Indexed: 02/07/2023] Open
Abstract
Evaluation of tissues is a common and important aspect of translational research studies. Labeling techniques such as immunohistochemistry can stain cells/tissues to enhance identification of specific cell types, cellular activation states, and protein expression. While qualitative evaluation of labeled tissues has merit, use of semiquantitative and quantitative scoring approaches can greatly enhance the rigor of the tissue data. Adhering to key principles for reproducible scoring can enhance the quality and reproducibility of the tissue data so as to maximize its biological relevance and scientific impact.
Collapse
|
35
|
Pediatric chronic pancreatitis: Updates in the 21st century. Pancreatology 2018; 18:354-359. [PMID: 29724605 DOI: 10.1016/j.pan.2018.04.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 04/25/2018] [Accepted: 04/26/2018] [Indexed: 12/11/2022]
Abstract
Pediatric Pancreatitis has gained a lot of attention in the last decade. Updates in medical management include new testing technologies in genetics, function testing and imaging modalities. Updates in surgical management have taken place as well, with total pancreatectomy islet auto transplantation reserved for a specific patient population that meets the clinical criteria. Multidisciplinary team management is needed for patients with chronic pancreatitis to ensure optimal outcomes.
Collapse
|
36
|
Hull RL, Gibson RL, McNamara S, Deutsch GH, Fligner CL, Frevert CW, Ramsey BW, Sanda S. Islet Interleukin-1β Immunoreactivity Is an Early Feature of Cystic Fibrosis That May Contribute to β-Cell Failure. Diabetes Care 2018; 41:823-830. [PMID: 29437698 PMCID: PMC5860832 DOI: 10.2337/dc17-1387] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 01/06/2018] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Cystic fibrosis-related diabetes (CFRD) is a common complication of cystic fibrosis (CF), increasing patient morbidity and mortality. Poor understanding of CFRD pathogenesis limits the development of targeted therapies to treat and/or prevent the disease. The aim of this study was to evaluate islet pathology, specifically, inflammation, amyloid deposition, and endocrine cell composition in subjects with CF with diabetes and with CF without diabetes. RESEARCH DESIGN AND METHODS A retrospective analysis of archived pancreas tissue collected at autopsy was conducted using pancreas tissue from subjects with CF and diabetes (CFRD) (n = 18) and CF without diabetes (CF-no DM) (n = 17). Two cohorts of control non-CF subjects were identified, each matched to CFRD and CF-no DM subjects for age, sex, and BMI (non-CF older, n = 20, and non-CF younger, n = 20), respectively. Immunohistochemistry was performed to assess interleukin-1β (IL-1β) and islet hormone (insulin, glucagon, somatostatin, and pancreatic polypeptide) immunoreactivity; histochemistry was performed to quantify amyloid deposition. RESULTS Islet IL-1β immunoreactivity was substantially increased in both CFRD and CF-no DM subjects compared with non-CF subjects and was common in young subjects with CF (≤10 years of age). In contrast, islet amyloid deposition was increased only in CFRD subjects. We also observe abnormal islet hormone immunoreactivity, characterized by increased glucagon immunoreactivity, in CF-no DM and CFRD subjects compared with non-CF subjects. CONCLUSIONS These findings reveal novel molecular pathways and therapeutic targets underlying islet pathology in CF subjects and may be important in developing new approaches to treat CFRD.
Collapse
Affiliation(s)
- Rebecca L Hull
- Department of Medicine, University of Washington, Seattle, WA
| | - Ronald L Gibson
- Department of Pediatrics, University of Washington, Seattle, WA
| | - Sharon McNamara
- Department of Pediatrics, University of Washington, Seattle, WA
| | - Gail H Deutsch
- Department of Pathology, University of Washington, Seattle, WA
| | | | - Charles W Frevert
- Department of Medicine, University of Washington, Seattle, WA.,Department of Comparative Medicine, University of Washington, Seattle, WA
| | - Bonnie W Ramsey
- Department of Pediatrics, University of Washington, Seattle, WA
| | - Srinath Sanda
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA .,Diabetes Center, University of California, San Francisco, San Francisco, CA
| |
Collapse
|
37
|
Rotti PG, Xie W, Poudel A, Yi Y, Sun X, Tyler SR, Uc A, Norris AW, Hara M, Engelhardt JF, Gibson-Corley KN. Pancreatic and Islet Remodeling in Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Knockout Ferrets. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:876-890. [PMID: 29366680 DOI: 10.1016/j.ajpath.2017.12.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 12/05/2017] [Accepted: 12/28/2017] [Indexed: 12/25/2022]
Abstract
In cystic fibrosis (CF), there is early destruction of the exocrine pancreas, and this results in a unique form of diabetes that affects approximately half of adult CF individuals. An animal model of cystic fibrosis-related diabetes has been developed in the ferret, which progresses through phases of glycemic abnormalities because of islet remodeling during and after exocrine destruction. Herein, we quantified the pancreatic histopathological changes that occur during these phases. There was an increase in percentage ductal, fat, and islet area in CF ferrets over time compared with age-matched wild-type controls. We also quantified islet size, shape, islet cell composition, cell proliferation (Ki-67), and expression of remodeling markers (matrix metalloprotease-7, desmin, and α-smooth muscle actin). Pancreatic ducts were dilated with scattered proliferating cells and were surrounded by activated stellate cells, indicative of tissue remodeling. The timing of islet and duct proliferation, stellate cell activation, and matrix remodeling coincided with the previously published stages of glycemic crisis and inflammation. This mapping of remodeling events in the CF ferret pancreas provides insights into early changes that control glycemic intolerance and subsequent recovery during the evolution of CF pancreatic disease.
Collapse
Affiliation(s)
- Pavana G Rotti
- Department of Anatomy and Cell Biology, The University of Iowa, Iowa City, Iowa; Department of Biomedical Engineering, The University of Iowa, Iowa City, Iowa
| | - Weiliang Xie
- Department of Anatomy and Cell Biology, The University of Iowa, Iowa City, Iowa
| | - Ananta Poudel
- Department of Medicine, University of Chicago, Chicago, Illinois
| | - Yaling Yi
- Department of Anatomy and Cell Biology, The University of Iowa, Iowa City, Iowa
| | - Xingshen Sun
- Department of Anatomy and Cell Biology, The University of Iowa, Iowa City, Iowa
| | - Scott R Tyler
- Department of Anatomy and Cell Biology, The University of Iowa, Iowa City, Iowa
| | - Aliye Uc
- Stead Family Department of Pediatrics, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, Iowa
| | - Andrew W Norris
- Stead Family Department of Pediatrics, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, Iowa
| | - Manami Hara
- Department of Medicine, University of Chicago, Chicago, Illinois
| | - John F Engelhardt
- Department of Anatomy and Cell Biology, The University of Iowa, Iowa City, Iowa
| | | |
Collapse
|
38
|
Tanner MR, Beeton C. Differences in ion channel phenotype and function between humans and animal models. FRONT BIOSCI-LANDMRK 2018; 23:43-64. [PMID: 28930537 PMCID: PMC5626566 DOI: 10.2741/4581] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ion channels play crucial roles in regulating a broad range of physiological processes. They form a very large family of transmembrane proteins. Their diversity results from not only a large number of different genes encoding for ion channel subunits but also the ability of subunits to assemble into homo- or heteromultimers, the existence of splice variants, and the expression of different regulatory subunits. These characteristics and the existence of very selective modulators make ion channels very attractive targets for therapy in a wide variety of pathologies. Some ion channels are already being targeted in the clinic while many more are being evaluated as novel drug targets in both clinical and preclinical studies. Advancing ion channel modulators from the bench to the clinic requires their assessment for safety and efficacy in animal models. While extrapolating results from one species to another is tempting, doing such without careful evaluation of the ion channels in different species presents a risk as the translation is not always straightforward. Here, we discuss differences between species in terms of ion channels expressed in selected tissues, differing roles of ion channels in some cell types, variable response to pharmacological agents, and human channelopathies that cannot fully be replicated in animal models.
Collapse
Affiliation(s)
- Mark R Tanner
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston TX 77030, and Interdepartmental Graduate Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston TX 77030
| | - Christine Beeton
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston TX 77030, and Center for Drug Discovery and Biology of Inflammation Center, Baylor College of Medicine, Houston TX 77030,
| |
Collapse
|
39
|
Moheet A, Moran A. CF-related diabetes: Containing the metabolic miscreant of cystic fibrosis. Pediatr Pulmonol 2017; 52:S37-S43. [PMID: 28714601 DOI: 10.1002/ppul.23762] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 06/15/2017] [Indexed: 01/20/2023]
Abstract
Cystic fibrosis-related diabetes (CFRD) is associated with both an increase in morbidity and mortality in people with cystic fibrosis (CF). With increased screening and improved life expectancy of people with CF, the prevalence of CFRD is expected to rise further. The underlying pathophysiological mechanisms causing glucose intolerance and diabetes in patients with CF are not well understood but both functional and structural abnormalities in islet cells are likely to have key roles. Insulin therapy improves health outcomes in patients with CF. Future research is needed to better understand the mechanisms underlying the development of CFRD and to develop new screening and treatment strategies to minimize the detrimental impact of CFRD on health outcomes in people with CF.
Collapse
Affiliation(s)
- Amir Moheet
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Antoinette Moran
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
40
|
Yoon JC. Evolving Mechanistic Views and Emerging Therapeutic Strategies for Cystic Fibrosis-Related Diabetes. J Endocr Soc 2017; 1:1386-1400. [PMID: 29264462 PMCID: PMC5686691 DOI: 10.1210/js.2017-00362] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 10/25/2017] [Indexed: 12/19/2022] Open
Abstract
Diabetes is a common and important complication of cystic fibrosis, an autosomal recessive genetic disease due to mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Cystic fibrosis-related diabetes (CFRD) is associated with profound detrimental effects on the disease course and mortality and is expected to increase in prevalence as the survival of patients with cystic fibrosis continues to improve. Despite progress in the functional characterization of CFTR molecular defects, the mechanistic basis of CFRD is not well understood, in part because of the relative inaccessibility of the pancreatic tissue and the limited availability of representative animal models. This review presents a concise overview of the current understanding of CFRD pathogenesis and provides a cutting-edge update on novel findings from human and animal studies. Potential contributions from paracrine mechanisms and β-cell compensatory mechanisms are highlighted, as well as functional β-cell and α-cell defects, incretin defects, exocrine pancreatic insufficiency, and loss of islet cell mass. State-of-the-art and emerging treatment options are explored, including advances in insulin administration, CFTR modulators, cell replacement, gene replacement, and gene editing therapies.
Collapse
Affiliation(s)
- John C Yoon
- Division of Endocrinology, Department of Internal Medicine, University of California Davis School of Medicine, Davis, California 95616
| |
Collapse
|
41
|
Sun X, Yi Y, Xie W, Liang B, Winter MC, He N, Liu X, Luo M, Yang Y, Ode KL, Uc A, Norris AW, Engelhardt JF. CFTR Influences Beta Cell Function and Insulin Secretion Through Non-Cell Autonomous Exocrine-Derived Factors. Endocrinology 2017; 158:3325-3338. [PMID: 28977592 PMCID: PMC5659686 DOI: 10.1210/en.2017-00187] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 07/13/2017] [Indexed: 01/05/2023]
Abstract
Although β-cell dysfunction in cystic fibrosis (CF) leads to diabetes, the mechanism by which the cystic fibrosis transmembrane conductance regulator (CFTR) channel influences islet insulin secretion remains debated. We investigated the CFTR-dependent islet-autonomous mechanisms affecting insulin secretion by using islets isolated from CFTR knockout ferrets. Total insulin content was lower in CF as compared with wild-type (WT) islets. Furthermore, glucose-stimulated insulin secretion (GSIS) was impaired in perifused neonatal CF islets, with reduced first, second, and amplifying phase secretion. Interestingly, CF islets compensated for reduced insulin content under static low-glucose conditions by secreting a larger fraction of islet insulin than WT islets, probably because of elevated SLC2A1 transcripts, increased basal inhibition of adenosine triphosphate-sensitive potassium channels (K-ATP), and elevated basal intracellular Ca2+. Interleukin (IL)-6 secretion by CF islets was higher relative to WT, and IL-6 treatment of WT ferret islets produced a CF-like phenotype with reduced islet insulin content and elevated percentage insulin secretion in low glucose. CF islets exhibited altered expression of INS, CELA3B, and several β-cell maturation and proliferation genes. Pharmacologic inhibition of CFTR reduced GSIS by WT ferret and human islets but similarly reduced insulin secretion and intracellular Ca2+ in CFTR knockout ferret islets, indicating that the mechanism of action is not through CFTR. Single-molecule fluorescent in situ hybridization, on isolated ferret and human islets and ferret pancreas, demonstrated that CFTR RNA colocalized within KRT7+ ductal cells but not endocrine cells. These results suggest that CFTR affects β-cell function via a paracrine mechanism involving proinflammatory factors secreted from islet-associated exocrine-derived cell types.
Collapse
Affiliation(s)
- Xingshen Sun
- Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa 52242
| | - Yaling Yi
- Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa 52242
| | - Weiliang Xie
- Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa 52242
| | - Bo Liang
- Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa 52242
| | | | - Nan He
- Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa 52242
| | - Xiaoming Liu
- Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa 52242
| | - Meihui Luo
- Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa 52242
| | - Yu Yang
- Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa 52242
| | - Katie Larson Ode
- Department of Pediatrics, University of Iowa, Iowa City, Iowa 52242
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa 52242
| | - Aliye Uc
- Department of Pediatrics, University of Iowa, Iowa City, Iowa 52242
| | - Andrew W. Norris
- Department of Pediatrics, University of Iowa, Iowa City, Iowa 52242
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa 52242
| | - John F. Engelhardt
- Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa 52242
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa 52242
| |
Collapse
|
42
|
Animal and model systems for studying cystic fibrosis. J Cyst Fibros 2017; 17:S28-S34. [PMID: 28939349 DOI: 10.1016/j.jcf.2017.09.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 08/31/2017] [Accepted: 09/01/2017] [Indexed: 01/07/2023]
Abstract
The cystic fibrosis (CF) field is the beneficiary of five species of animal models that lack functional cystic fibrosis transmembrane conductance regulator (CFTR) channel. These models are rapidly informing mechanisms of disease pathogenesis and CFTR function regardless of how faithfully a given organ reproduces the human CF phenotype. New approaches of genetic engineering with RNA-guided nucleases are rapidly expanding both the potential types of models available and the approaches to correct the CFTR defect. The application of new CRISPR/Cas9 genome editing techniques are similarly increasing capabilities for in vitro modeling of CFTR functions in cell lines and primary cells using air-liquid interface cultures and organoids. Gene editing of CFTR mutations in somatic stem cells and induced pluripotent stem cells is also transforming gene therapy approaches for CF. This short review evaluates several areas that are key to building animal and cell systems capable of modeling CF disease and testing potential treatments.
Collapse
|
43
|
Experiments suggesting extra-digestive effects of enteral pancreatic amylase and its peptides on glucose homeostasis in a pig model. Sci Rep 2017; 7:8628. [PMID: 28819193 PMCID: PMC5561192 DOI: 10.1038/s41598-017-07387-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 06/23/2017] [Indexed: 02/07/2023] Open
Abstract
The studies presented were designed to highlight the impact of pancreatic enzymes on glycemic control and insulin response. Blood glucose and plasma insulin levels were monitored after intravenous, oral or direct gut glucose tolerance tests (GTT) in 6 pigs with an intact gastrointestinal tract and in 12 pigs following duodenal-jejunal bypass (DJB) surgery. In the intact pigs, pancreatic enzymes (Creon®) given orally 1 h prior to the GTT, lowered the blood glucose levels during the oral and meal GTT and reduced the plasma insulin response during the intravenous and meal GTT. In DJB pigs, blood glucose and plasma insulin levels were higher following glucose loading into the by-passed biliopancreatic limb as compared to that following glucose loading orally or into the common intestinal limb. Infusion of amylase or amylase peptides together with glucose into the biliopancreatic limb lowered blood glucose levels in DJB pigs. These preliminary data suggest new, extra-digestive, actions of enteral pancreatic enzymes – probably amylase or its peptides – on glucose homeostasis, with an reduction in net glucose absorption into the blood and in insulin response. This ability of digestive enzymes (amylase) to reduce post-prandial hyperglycaemia in an insulin-independent manner could aid in preventing the development of obesity and diabetes.
Collapse
|
44
|
Yi Y, Norris AW, Wang K, Sun X, Uc A, Moran A, Engelhardt JF, Ode KL. Abnormal Glucose Tolerance in Infants and Young Children with Cystic Fibrosis. Am J Respir Crit Care Med 2017; 194:974-980. [PMID: 27447840 DOI: 10.1164/rccm.201512-2518oc] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE In cystic fibrosis, abnormal glucose tolerance is associated with decreased lung function and worsened outcomes. Translational evidence indicates that abnormal glucose tolerance may begin in early life. OBJECTIVES To determine whether very young children with cystic fibrosis have increased abnormal glucose tolerance prevalence compared with control subjects. The secondary objective was to compare area under the curve for glucose and insulin in children with cystic fibrosis with control subjects. METHODS This is a prospective multicenter study in children ages 3 months to 5 years with and without cystic fibrosis. MEASUREMENTS AND MAIN RESULTS Oral glucose tolerance testing with glucose, insulin, and C-peptide was sampled at 0, 10, 30, 60, 90, and 120 minutes. Twenty-three children with cystic fibrosis and nine control subjects had complete data. All control subjects had normal glucose tolerance. Nine of 23 subjects with cystic fibrosis had abnormal glucose tolerance (39%; P = 0.03). Of those, two met criteria for cystic fibrosis-related diabetes, two indeterminate glycemia, and six impaired glucose tolerance. Children with cystic fibrosis failed to exhibit the normal increase in area under the curve insulin with age observed in control subjects (P < 0.01), despite increased area under the curve glucose (P = 0.02). CONCLUSIONS Abnormal glucose tolerance is notably prevalent among young children with cystic fibrosis. Children with cystic fibrosis lack the normal increase in insulin secretion that occurs in early childhood despite increased glucose. These findings demonstrate that glycemic abnormalities begin very early in cystic fibrosis, possibly because of insufficient insulin secretion.
Collapse
Affiliation(s)
- Yaling Yi
- 1 Department of Anatomy and Cell Biology
| | - Andrew W Norris
- 2 Department of Pediatrics.,3 Fraternal Order of Eagles Diabetes Research Center, and
| | - Kai Wang
- 4 Department of Biostatistics, College of Public Health, University of Iowa, Iowa City, Iowa; and
| | | | | | - Antoinette Moran
- 5 Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota
| | - John F Engelhardt
- 1 Department of Anatomy and Cell Biology.,3 Fraternal Order of Eagles Diabetes Research Center, and
| | - Katie Larson Ode
- 2 Department of Pediatrics.,3 Fraternal Order of Eagles Diabetes Research Center, and
| |
Collapse
|
45
|
Reznikov LR. Cystic Fibrosis and the Nervous System. Chest 2017; 151:1147-1155. [PMID: 27876591 PMCID: PMC5472519 DOI: 10.1016/j.chest.2016.11.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 10/13/2016] [Accepted: 11/02/2016] [Indexed: 12/31/2022] Open
Abstract
Cystic fibrosis (CF) is a life-shortening autosomal recessive disorder caused by mutations in the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR). CFTR is an anion channel that conducts bicarbonate and chloride across cell membranes. Although defective anion transport across epithelial cells is accepted as the basic defect in CF, many of the features observed in people with CF and organs affected by CF are modulated by the nervous system. This is of interest because CFTR expression has been reported in both the peripheral and central nervous systems, and it is well known that the transport of anions, such as chloride, greatly modulates neuronal excitability. Thus it is predicted that in CF, lack of CFTR in the nervous system affects neuronal function. Consistent with this prediction, several nervous system abnormalities and nervous system disorders have been described in people with CF and in animal models of CF. The goal of this special feature article is to highlight the expression and function of CFTR in the nervous system. Special emphasis is placed on nervous system abnormalities described in people with CF and in animal models of CF. Finally, features of CF that may be modulated by or attributed to faulty nervous system function are discussed.
Collapse
Affiliation(s)
- Leah R Reznikov
- Department of Physiological Sciences, University of Florida, College of Veterinary Medicine, Gainesville, FL.
| |
Collapse
|
46
|
Garg M, Ooi CY. The Enigmatic Gut in Cystic Fibrosis: Linking Inflammation, Dysbiosis, and the Increased Risk of Malignancy. Curr Gastroenterol Rep 2017; 19:6. [PMID: 28155088 DOI: 10.1007/s11894-017-0546-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE OF REVIEW Intestinal inflammation, dysbiosis, and increased gastrointestinal malignancy risks are well-described in patients with cystic fibrosis (CF). However, there is limited understanding of their pathophysiology. This review aims to discuss these issues and assess potential links between them. RECENT FINDINGS Evidence of links between intestinal inflammation and dysbiosis (an imbalance in intestinal microbial populations) exist. Recent studies have demonstrated reduction in intestinal inflammation with probiotic administration. Both bacterial dysbiosis and gut inflammation contribute to the suboptimal nutritional status seen in children with CF. Short-chain fatty acids may be reduced in the gut lumen as a result of bacterial imbalances and may promote inflammation. Inflammation and bacterial dysbiosis in CF may also contribute to emerging adult complications such as gastrointestinal malignancy. An increase in carcinogenic microbes and reduction in microbes protective against cancer have been found in CF, linking bacterial dysbiosis and cancer. Murine studies suggest the CF gene, cystic fibrosis transmembrane conductance regulator (CFTR) gene, itself may be a tumour suppressor gene. The pathophysiology of interactions among intestinal inflammation, dysbiosis, and malignancy in CF is not clearly understood and requires further research.
Collapse
Affiliation(s)
- Millie Garg
- School of Women's and Children's Health, Medicine, University of New South Wales, Randwick, NSW, 2031, Australia
| | - Chee Y Ooi
- School of Women's and Children's Health, Medicine, University of New South Wales, Randwick, NSW, 2031, Australia.
- Department of Paediatric Gastroenterology, Sydney Children's Hospital, Randwick, NSW, 2031, Australia.
| |
Collapse
|
47
|
Sheikh S, Gudipaty L, De Leon DD, Hadjiliadis D, Kubrak C, Rosenfeld NK, Nyirjesy SC, Peleckis AJ, Malik S, Stefanovski D, Cuchel M, Rubenstein RC, Kelly A, Rickels MR. Reduced β-Cell Secretory Capacity in Pancreatic-Insufficient, but Not Pancreatic-Sufficient, Cystic Fibrosis Despite Normal Glucose Tolerance. Diabetes 2017; 66:134-144. [PMID: 27495225 PMCID: PMC5204312 DOI: 10.2337/db16-0394] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 08/01/2016] [Indexed: 01/21/2023]
Abstract
Patients with pancreatic-insufficient cystic fibrosis (PI-CF) are at increased risk for developing diabetes. We determined β-cell secretory capacity and insulin secretory rates from glucose-potentiated arginine and mixed-meal tolerance tests (MMTTs), respectively, in pancreatic-sufficient cystic fibrosis (PS-CF), PI-CF, and normal control subjects, all with normal glucose tolerance, in order to identify early pathophysiologic defects. Acute islet cell secretory responses were determined under fasting, 230 mg/dL, and 340 mg/dL hyperglycemia clamp conditions. PI-CF subjects had lower acute insulin, C-peptide, and glucagon responses compared with PS-CF and normal control subjects, indicating reduced β-cell secretory capacity and α-cell function. Fasting proinsulin-to-C-peptide and proinsulin secretory ratios during glucose potentiation were higher in PI-CF, suggesting impaired proinsulin processing. In the first 30 min of the MMTT, insulin secretion was lower in PI-CF compared with PS-CF and normal control subjects, and glucagon-like peptide 1 and gastric inhibitory polypeptide were lower compared with PS-CF, and after 180 min, glucose was higher in PI-CF compared with normal control subjects. These findings indicate that despite "normal" glucose tolerance, adolescents and adults with PI-CF have impairments in functional islet mass and associated early-phase insulin secretion, which with decreased incretin responses likely leads to the early development of postprandial hyperglycemia in CF.
Collapse
Affiliation(s)
- Saba Sheikh
- Division of Pulmonary Medicine, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Lalitha Gudipaty
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Diva D De Leon
- Division of Endocrinology and Diabetes, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Denis Hadjiliadis
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Christina Kubrak
- Division of Pulmonary Medicine, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Nora K Rosenfeld
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Sarah C Nyirjesy
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Amy J Peleckis
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Saloni Malik
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Darko Stefanovski
- Department of Biostatistics, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA
| | - Marina Cuchel
- Division of Translational Medicine and Human Genetics, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Ronald C Rubenstein
- Division of Pulmonary Medicine, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Andrea Kelly
- Division of Endocrinology and Diabetes, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Michael R Rickels
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
48
|
Chronic Pancreatitis in the 21st Century - Research Challenges and Opportunities: Summary of a National Institute of Diabetes and Digestive and Kidney Diseases Workshop. Pancreas 2016; 45:1365-1375. [PMID: 27748719 PMCID: PMC5117429 DOI: 10.1097/mpa.0000000000000713] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A workshop was sponsored by the National Institute of Diabetes and Digestive and Kidney Diseases to focus on research gaps and opportunities in chronic pancreatitis (CP) and its sequelae. This conference marked the 20th year anniversary of the discovery of the cationic trypsinogen (PRSS1) gene mutation for hereditary pancreatitis. The event was held on July 27, 2016, and structured into 4 sessions: (1) pathophysiology, (2) exocrine complications, (3) endocrine complications, and (4) pain. The current state of knowledge was reviewed; many knowledge gaps and research needs were identified that require further investigation. Common themes included the need to design better tools to diagnose CP and its sequelae early and reliably, identify predisposing risk factors for disease progression, develop standardized protocols to distinguish type 3c diabetes mellitus from other types of diabetes, and design effective therapeutic strategies through novel cell culture technologies, animal models mimicking human disease, and pain management tools. Gene therapy and cystic fibrosis conductance regulator potentiators as possible treatments of CP were discussed. Importantly, the need for CP end points and intermediate targets for future drug trials was emphasized.
Collapse
|
49
|
Akhtar Y, Blackman SM. Hyperglycemia in Young Children with Cystic Fibrosis. Am J Respir Crit Care Med 2016; 194:924-925. [DOI: 10.1164/rccm.201608-1579ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Yasmin Akhtar
- Division of Pediatric EndocrinologyJohns Hopkins University School of MedicineBaltimore, Maryland
| | - Scott M. Blackman
- Division of Pediatric EndocrinologyJohns Hopkins University School of MedicineBaltimore, Maryland
| |
Collapse
|
50
|
Abstract
Cystic fibrosis is frequently complicated by endocrine disorders. Diabetes can be expected to affect most with CF and pancreatic insufficiency and varies widely in age of onset, but early identification and treatment improve morbidity and mortality. Short stature can be exacerbated by relative delay of puberty and by use of inhaled corticosteroids. Bone disease in CF causes fragility fractures and should be assessed by monitoring bone mineral density and optimizing vitamin D status. Detecting and managing endocrine complications in CF can reduce morbidity and mortality in CF. These complications can be expected to become more common as the CF population ages.
Collapse
Affiliation(s)
- Scott M. Blackman
- Division of Pediatric Endocrinology, Department of Pediatrics, Johns Hopkins University and Johns Hopkins Hospital, Baltimore, MD
| | - Vin Tangpricha
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine, Emory University School of Medicine and the Atlanta VA Medical Center, Atlanta, GA
| |
Collapse
|