1
|
Lin P, Liu H, Lou J, Lyu G, Li Y, He P, Fu Y, Zhang R, Zhang Y, Yan T. Novel SLC16A2 Frameshift Mutation as a Cause of Allan-Herndon-Dudley Syndrome and its Implications for Carrier Screening. Pharmgenomics Pers Med 2025; 18:85-94. [PMID: 40291819 PMCID: PMC12034286 DOI: 10.2147/pgpm.s492647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 03/18/2025] [Indexed: 04/30/2025] Open
Abstract
Background Allan-Herndon-Dudley syndrome (AHDS) is a rare X-linked neurodevelopmental disorder caused by mutations in the solute carrier family 16-member 2 (SLC16A2) gene. This syndrome leads to significant psychomotor disabilities, thyroid dysfunction, and abnormal brain development. This case report describes the genetic cause of AHDS in a male proband and to expanding the mutation spectrum of the SLC16A2 gene. Methods A blood specimen was collected from a one-year-old child with delayed development and abnormal thyroid function and this was followed by whole-exome sequencing (WES) was performed on the proband to identify potential genetic mutations. Sanger sequencing was subsequently used to confirm the findings and determine the inheritance pattern of the mutation within the family. Results The proband, who presented with developmental delay, thyroid dysfunction, and abnormal brain development, was found to have a novel hemizygous frameshift mutation, c.513_538del (p.Ile172Cysfs*60), in the SLC16A2 gene (NM_006517.5). This mutation was inherited from his asymptomatic mother, confirming the X-linked inheritance pattern. The mutation is classified as likely pathogenic, contributing to the clinical presentation observed in the proband. Conclusion This study identified a novel frameshift mutation in the SLC16A2 gene associated with AHDS, thereby expanding the known mutation spectrum of this gene. Given the significant impact of AHDS on neural development and hormone secretion, it is recommended that this gene be included in carrier screening panels in China, particularly for families with a history of related neurodevelopmental disorders.
Collapse
Affiliation(s)
- Peng Lin
- Prenatal Diagnostic Centre, Dongguan Maternal and Children Health Hospital, Dongguan, Guangdong, People’s Republic of China
- Dongguan Key Laboratory of Precision Medicine for Prenatal Diagnosis of Genetic Diseases, Dongguan, Guangdong, People’s Republic of China
| | - Huituan Liu
- Department of Children’s Rehabilitation, Dongguan Maternal and Children Health Hospital, Dongguan, Guangdong, People’s Republic of China
| | - Jiwu Lou
- Prenatal Diagnostic Centre, Dongguan Maternal and Children Health Hospital, Dongguan, Guangdong, People’s Republic of China
- Dongguan Key Laboratory of Precision Medicine for Prenatal Diagnosis of Genetic Diseases, Dongguan, Guangdong, People’s Republic of China
| | - Guizhen Lyu
- Dongguan Key Laboratory of Clinical Medical Test Diagnostic Technology for Oncology, Dongguan Labway Medical Testing Laboratory Co., Ltd., Dongguan, Guangdong, People’s Republic of China
- Dongguan Molecular Diagnostic Technology and Infectious Disease Medical Test Engineering Research Centre, Dongguan Labway Medical Testing Laboratory Co., Ltd., Dongguan, Guangdong, People’s Republic of China
| | - Yanwei Li
- Dongguan Key Laboratory of Clinical Medical Test Diagnostic Technology for Oncology, Dongguan Labway Medical Testing Laboratory Co., Ltd., Dongguan, Guangdong, People’s Republic of China
| | - Peiqing He
- Prenatal Diagnostic Centre, Dongguan Maternal and Children Health Hospital, Dongguan, Guangdong, People’s Republic of China
- Dongguan Key Laboratory of Precision Medicine for Prenatal Diagnosis of Genetic Diseases, Dongguan, Guangdong, People’s Republic of China
| | - Youqing Fu
- Prenatal Diagnostic Centre, Dongguan Maternal and Children Health Hospital, Dongguan, Guangdong, People’s Republic of China
- Dongguan Key Laboratory of Precision Medicine for Prenatal Diagnosis of Genetic Diseases, Dongguan, Guangdong, People’s Republic of China
| | - Ronghua Zhang
- Prenatal Diagnostic Centre, Dongguan Maternal and Children Health Hospital, Dongguan, Guangdong, People’s Republic of China
- Dongguan Key Laboratory of Precision Medicine for Prenatal Diagnosis of Genetic Diseases, Dongguan, Guangdong, People’s Republic of China
| | - Yuqiong Zhang
- Department of Children’s Rehabilitation, Dongguan Maternal and Children Health Hospital, Dongguan, Guangdong, People’s Republic of China
| | - Tizhen Yan
- Prenatal Diagnostic Centre, Dongguan Maternal and Children Health Hospital, Dongguan, Guangdong, People’s Republic of China
- Dongguan Key Laboratory of Precision Medicine for Prenatal Diagnosis of Genetic Diseases, Dongguan, Guangdong, People’s Republic of China
| |
Collapse
|
2
|
Henshey B, Carneiro A, Lei K, Schaffer D, Boulis NM. Adeno-associated viral vector targeted evolution for neurofibromatosis gene delivery. Trends Mol Med 2025; 31:388-398. [PMID: 39890493 PMCID: PMC11985305 DOI: 10.1016/j.molmed.2025.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 12/29/2024] [Accepted: 01/08/2025] [Indexed: 02/03/2025]
Abstract
Neurofibromatosis type 1 (NF1) is an inherited genetic disease resulting from pathogenic mutations in NF1 that drive tumor formation along peripheral nerves, leading to many functional consequences. Tumor removal or treatment often results in regrowth and/or nerve damage. Addressing NF1 pathogenic variations at the cellular level through gene therapy holds great potential for long-term treatment of patients with NF1. Adeno-associated viruses (AAVs) are broadly used gene delivery vehicles for gene therapies because of their low pathogenicity, ability to transduce nondividing cells, and potential for long-term gene expression. This article explores the landscape of AAV-mediated gene delivery strategies for NF1, discusses the challenges of efficient delivery to relevant cell types, and highlights the progress in vector design strategies.
Collapse
Affiliation(s)
- Brett Henshey
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA
| | - Ana Carneiro
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Kecheng Lei
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA.
| | - David Schaffer
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA 94720, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA.
| | - Nicholas M Boulis
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA; Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
3
|
Cheng M, Lu D, Li K, Wang Y, Tong X, Qi X, Yan C, Ji K, Wang J, Wang W, Lv H, Zhang X, Kong W, Zhang J, Ma J, Li K, Wang Y, Feng J, Wei P, Li Q, Shen C, Fu XD, Ma Y, Zhang X. Mitochondrial respiratory complex IV deficiency recapitulates amyotrophic lateral sclerosis. Nat Neurosci 2025; 28:748-756. [PMID: 40069360 DOI: 10.1038/s41593-025-01896-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 01/17/2025] [Indexed: 03/23/2025]
Abstract
Amyotrophic lateral sclerosis (ALS) is categorized into ~10% familial and ~90% sporadic cases. While familial ALS is caused by mutations in many genes of diverse functions, the underlying pathogenic mechanisms of ALS, especially in sporadic ALS (sALS), are largely unknown. Notably, about half of the cases with sALS showed defects in mitochondrial respiratory complex IV (CIV). To determine the causal role of this defect in ALS, we used transcription activator-like effector-based mitochondrial genome editing to introduce mutations in CIV subunits in rat neurons. Our results demonstrate that neuronal CIV deficiency is sufficient to cause a number of ALS-like phenotypes, including cytosolic TAR DNA-binding protein 43 redistribution, selective motor neuron loss and paralysis. These results highlight CIV deficiency as a potential cause of sALS and shed light on the specific vulnerability of motor neurons, marking an important advance in understanding and therapeutic development of sALS.
Collapse
Affiliation(s)
- Man Cheng
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Dan Lu
- State Key Laboratory of Respiratory Health and Multimorbidity, National Center of Technology Innovation for Animal Model and National Human Diseases Animal Model Resource Center, NHC Key Laboratory of Comparative Medicine, Key Laboratory of Pathogen Infection Prevention and Control (Ministry of Education), Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Kexin Li
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Yan Wang
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Xiwen Tong
- Key Laboratory for Nucleic Acid Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xiaolong Qi
- State Key Laboratory of Respiratory Health and Multimorbidity, National Center of Technology Innovation for Animal Model and National Human Diseases Animal Model Resource Center, NHC Key Laboratory of Comparative Medicine, Key Laboratory of Pathogen Infection Prevention and Control (Ministry of Education), Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chuanzhu Yan
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Kunqian Ji
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Junlin Wang
- Department of Neurology, Xiangya Hospital, Central South University, National Regional Center for Neurological Diseases, Nanchang, China
| | - Wei Wang
- Key Laboratory for Nucleic Acid Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Huijiao Lv
- State Key Laboratory of Respiratory Health and Multimorbidity, National Center of Technology Innovation for Animal Model and National Human Diseases Animal Model Resource Center, NHC Key Laboratory of Comparative Medicine, Key Laboratory of Pathogen Infection Prevention and Control (Ministry of Education), Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Medical Primate Research Center and Neuroscience Center, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Beijing, China
| | - Xu Zhang
- State Key Laboratory of Respiratory Health and Multimorbidity, National Center of Technology Innovation for Animal Model and National Human Diseases Animal Model Resource Center, NHC Key Laboratory of Comparative Medicine, Key Laboratory of Pathogen Infection Prevention and Control (Ministry of Education), Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Weining Kong
- Medical Primate Research Center and Neuroscience Center, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Beijing, China
| | - Jian Zhang
- Key Laboratory for Nucleic Acid Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Jiaxin Ma
- Medical Primate Research Center and Neuroscience Center, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Beijing, China
| | - Keru Li
- State Key Laboratory of Respiratory Health and Multimorbidity, National Center of Technology Innovation for Animal Model and National Human Diseases Animal Model Resource Center, NHC Key Laboratory of Comparative Medicine, Key Laboratory of Pathogen Infection Prevention and Control (Ministry of Education), Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yaheng Wang
- State Key Laboratory of Respiratory Health and Multimorbidity, National Center of Technology Innovation for Animal Model and National Human Diseases Animal Model Resource Center, NHC Key Laboratory of Comparative Medicine, Key Laboratory of Pathogen Infection Prevention and Control (Ministry of Education), Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jingyu Feng
- Key Laboratory for Nucleic Acid Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Panpan Wei
- Key Laboratory for Nucleic Acid Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Qiushuang Li
- Key Laboratory for Nucleic Acid Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Chengyong Shen
- Department of Neurobiology of the First Affiliated Hospital, Institute of Translational Medicine, School of Medicine, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University, Hangzhou, China
| | - Xiang-Dong Fu
- Westlake Laboratory of Life Sciences and Biomedicine, School of Life Sciences, Westlake University, Hangzhou, China
| | - Yuanwu Ma
- State Key Laboratory of Respiratory Health and Multimorbidity, National Center of Technology Innovation for Animal Model and National Human Diseases Animal Model Resource Center, NHC Key Laboratory of Comparative Medicine, Key Laboratory of Pathogen Infection Prevention and Control (Ministry of Education), Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
- Medical Primate Research Center and Neuroscience Center, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Beijing, China.
| | - Xiaorong Zhang
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China.
- Key Laboratory for Nucleic Acid Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
4
|
Zaremba A, Zaremba P, Zahorodnia S. In silico development of HASDI-G2 as a novel agent for selective recognition of the DNA sequence. Sci Rep 2025; 15:8577. [PMID: 40075113 PMCID: PMC11904238 DOI: 10.1038/s41598-025-89967-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 02/10/2025] [Indexed: 03/14/2025] Open
Abstract
Genetic information, which is mostly encoded in the form of DNA sequence, is the basis of life. Its deviations are often the cause of the most deadly diseases such as cancer. Accordingly, the development of methods to control the transcription of certain DNA parts is an important direction of modern pharmacological and biological research. Within the scope of this work, we are investigating the second generation of a polyintercalating agent that we developed earlier, potentially capable of recognizing 16-bp DNA sequences. In order to confirm its ability for advanced selective DNA recognition a series of simulation experiments was conducted. We differentially investigated the stability of HASDI-G2 complexes with mutated targeting sequences and their native variants. Firstly, we confirmed the ability of HASDI-G2 to clearly discriminate the target sequence (EBNA1) from a random site in the human genome (KCNH2). That repeated the experiment of the polyintercalator's previous version and additionally showed better results of the next-generation structure. Next, we examined HASDI-G2 under conditions where the target sequence differed from the random one increasingly slightly. And we found that even a one-nucleotide mismatch leads to a similar complex destabilization as a mismatch of 3 or 4 nucleotides. Such complexes showed significant conformational rearrangements, accompanied by a sharp decrease in the hydrogen bonds quantity, a drop in the binding free energy, and local melting of the DNA duplex. Moreover, the latter applied not only to sites of direct incompatibility, but also to parts where HASDI-G2 fully corresponded to the sequence of intercalation.
Collapse
Affiliation(s)
- Andrii Zaremba
- Zabolotny Institute of Microbiology and Virology of NASU, 154 Acad. Zabolotny Str., Kyiv, 03143, Ukraine.
| | - Polina Zaremba
- Zabolotny Institute of Microbiology and Virology of NASU, 154 Acad. Zabolotny Str., Kyiv, 03143, Ukraine
| | - Svіtlana Zahorodnia
- Zabolotny Institute of Microbiology and Virology of NASU, 154 Acad. Zabolotny Str., Kyiv, 03143, Ukraine
| |
Collapse
|
5
|
Foden CJ, Durant K, Mellet J, Joubert F, van Rensburg J, Masemola K, Velaphi SC, Nakwa FL, Horn AR, Pillay S, Kali G, Coetzee M, Ballot DE, Kalua T, Babbo C, Pepper MS. Genetic Variants Associated with Suspected Neonatal Hypoxic Ischaemic Encephalopathy: A Study in a South African Context. Int J Mol Sci 2025; 26:2075. [PMID: 40076698 PMCID: PMC11900005 DOI: 10.3390/ijms26052075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 02/18/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
Neonatal encephalopathy suspected to be due to hypoxic ischaemic encephalopathy (NESHIE) carries the risk of death or severe disability (cognitive defects and cerebral palsy). Previous genetic studies on NESHIE have predominantly focused on exomes or targeted genes. The objective of this study was to identify genetic variants associated with moderate-severe NESHIE through whole-genome, unbiased analysis. Variant filtering and prioritization were performed, followed by association testing both on a case-control basis and to compare the grades of severity and/or progression. Association testing on neonates with NESHIE (N = 172) and ancestry-matched controls (N = 288) produced 71 significant genetic variants (false discovery rate corrected p-value < 6.2 × 10-4), all located in non-coding regions and not previously implicated in NESHIE. Disease-associated variants in non-coding regions are considered to affect regulatory functions, possibly by modifying gene expression, promoters, enhancers, or DNA structure. The most significant variant was at position 6:162010973 in the Parkin RBR E3 ubiquitin protein ligase (PRKN) intron. Intronic variants were also identified in genes involved in inflammatory processes (SLCO3A1), DNA repair (ZGRF1), synaptogenesis (CNTN5), haematopoiesis (ASXL2), and the transcriptional response to hypoxia (PADI4). Ten variants were associated with a higher severity or lack of improvement in NESHIE, including one in ADAMTS3, which encodes a procollagen amino protease with a role in angiogenesis and lymphangiogenesis. This analysis represents one of the first efforts to analyze whole-genome data to investigate the genetic complexity of NESHIE in diverse ethnolinguistic groups of African origin and provides direction for further study.
Collapse
Affiliation(s)
- Caroline J. Foden
- Institute for Cellular and Molecular Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria 0084, South Africa; (C.J.F.); (J.M.); (J.v.R.); (T.K.); (C.B.)
| | | | - Juanita Mellet
- Institute for Cellular and Molecular Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria 0084, South Africa; (C.J.F.); (J.M.); (J.v.R.); (T.K.); (C.B.)
| | - Fourie Joubert
- Centre for Bioinformatics and Computational Biology, Genomics Research Institute, Department of Biochemistry, Genetics, and Microbiology, University of Pretoria, Pretoria 0002, South Africa;
| | - Jeanne van Rensburg
- Institute for Cellular and Molecular Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria 0084, South Africa; (C.J.F.); (J.M.); (J.v.R.); (T.K.); (C.B.)
| | - Khomotso Masemola
- Department of Paediatrics and Child Health, Kalafong Hospital and Faculty of Health Sciences, University of Pretoria, Pretoria 0084, South Africa;
| | - Sithembiso C. Velaphi
- Department of Paediatrics and Child Health, Chris Hani Baragwanath Academic Hospital, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa; (S.C.V.); (F.L.N.)
| | - Firdose L. Nakwa
- Department of Paediatrics and Child Health, Chris Hani Baragwanath Academic Hospital, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa; (S.C.V.); (F.L.N.)
| | - Alan R. Horn
- Division of Neonatal Medicine, Department of Paediatrics and Child Health, Groote Schuur Hospital, University of Cape Town, Cape Town 7701, South Africa; (A.R.H.); (S.P.)
| | - Shakti Pillay
- Division of Neonatal Medicine, Department of Paediatrics and Child Health, Groote Schuur Hospital, University of Cape Town, Cape Town 7701, South Africa; (A.R.H.); (S.P.)
| | - Gugu Kali
- Tygerberg Hospital Neonatal Unit, Department of Paediatrics and Child Health, Stellenbosch University, Cape Town 7600, South Africa;
| | - Melantha Coetzee
- Division of Neonatology, Department of Paediatrics and Child Health, Steve Biko Academic Hospital, Faculty of Health Sciences, University of Pretoria, Pretoria 0084, South Africa;
| | - Daynia E. Ballot
- Department of Paediatrics and Child Health, Charlotte Maxeke Johannesburg Academic Hospital, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa;
| | - Thumbiko Kalua
- Institute for Cellular and Molecular Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria 0084, South Africa; (C.J.F.); (J.M.); (J.v.R.); (T.K.); (C.B.)
| | - Carina Babbo
- Institute for Cellular and Molecular Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria 0084, South Africa; (C.J.F.); (J.M.); (J.v.R.); (T.K.); (C.B.)
| | - Michael S. Pepper
- Institute for Cellular and Molecular Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria 0084, South Africa; (C.J.F.); (J.M.); (J.v.R.); (T.K.); (C.B.)
| |
Collapse
|
6
|
Yang HM. Mitochondrial Dysfunction in Neurodegenerative Diseases. Cells 2025; 14:276. [PMID: 39996748 PMCID: PMC11853439 DOI: 10.3390/cells14040276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 02/11/2025] [Accepted: 02/12/2025] [Indexed: 02/26/2025] Open
Abstract
Mitochondrial dysfunction represents a pivotal characteristic of numerous neurodegenerative disorders, including Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. These conditions, distinguished by unique clinical and pathological features, exhibit shared pathways leading to neuronal damage, all of which are closely associated with mitochondrial dysfunction. The high metabolic requirements of neurons make even minor mitochondrial deficiencies highly impactful, driving oxidative stress, energy deficits, and aberrant protein processing. Growing evidence from genetic, biochemical, and cellular investigations associates impaired electron transport chain activity and disrupted quality-control mechanisms, such as mitophagy, with the initial phases of disease progression. Furthermore, the overproduction of reactive oxygen species and persistent neuroinflammation can establish feedforward cycles that exacerbate neuronal deterioration. Recent clinical research has increasingly focused on interventions aimed at enhancing mitochondrial resilience-through antioxidants, small molecules that modulate the balance of mitochondrial fusion and fission, or gene-based therapeutic strategies. Concurrently, initiatives to identify dependable mitochondrial biomarkers seek to detect pathological changes prior to the manifestation of overt symptoms. By integrating the current body of knowledge, this review emphasizes the critical role of preserving mitochondrial homeostasis as a viable therapeutic approach. It also addresses the complexities of translating these findings into clinical practice and underscores the potential of innovative strategies designed to delay or potentially halt neurodegenerative processes.
Collapse
Affiliation(s)
- Han-Mo Yang
- Division of Cardiology, Department of Internal Medicine, Seoul National University Hospital, Seoul 03080, Republic of Korea
| |
Collapse
|
7
|
Hafiz MN, Suhail N, Mohammed ZMS, Elzein HO, Almasmoum HA, Abass AE, Jawad MM, Trabelsi S. Awareness and Attitude of the General Population Towards Inherited Hemoglobinopathies in the Premarital Screening Program in the Northern Region of Saudi Arabia. Hematol Rep 2025; 17:9. [PMID: 39997357 PMCID: PMC11855037 DOI: 10.3390/hematolrep17010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/21/2025] [Accepted: 01/30/2025] [Indexed: 02/26/2025] Open
Abstract
Background: Premarital screening (PMS) is a nationwide program that helps high-risk individuals make decisions to avoid genetic and sexually transmitted diseases from spreading to their spouse or future offspring. This study examined the knowledge and attitudes towards inherited hemoglobinopathies in PMS among the people of Northern Border Region in Saudi Arabia and their relationship to various sociodemographic factors. Methods: A cross-sectional study was undertaken in the Northern region of Saudi Arabia from January to March 2024. Data were gathered via questionnaire from 478 Saudi participants aged 18 years and older. The chi-square test was employed to determine the association between categorical variables. Results: All participants in the study were familiar with the PMS program. A significant portion of participants, 79.3%, acknowledged that consanguinity can increase the risk of hereditary blood disorders, while 69.9% believed that if both parents are carriers of the same genetic blood disease, their child may inherit it. Higher education, female gender, and age group (30-40) were found to be the main predictors of knowledge regarding PMS. Most of the participants (98.5%) had a positive attitude regarding the necessity of PMS as a prerequisite for marriage completion. About 82.8% indicated they would not continue with the marriage if the PMS results were incompatible. Conclusions: The study indicates a growing awareness and positive attitude towards premarital screening among the general population, with an increasing number of individuals opting for it. The findings suggest that PMS programs contribute to informed decision making, as evidenced by the rise in participants choosing to forgo marriage due to partner incompatibility. The study recommends the enhancement of health education campaigns by considering demographic factors such as age, education, and marital status. Additionally, it advocates for expanding the scope of PMS to include a wider range of health and genetic disorders to improve its overall efficacy.
Collapse
Affiliation(s)
- Mariah N. Hafiz
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Northern Border University, Arar 91431, Saudi Arabia; (M.N.H.); (H.O.E.); (A.E.A.); (M.M.J.)
| | - Nida Suhail
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Northern Border University, Arar 91431, Saudi Arabia; (M.N.H.); (H.O.E.); (A.E.A.); (M.M.J.)
| | - Zakariya M. S. Mohammed
- Center for Scientific Research and Entrepreneurship, Northern Border University, Arar 91431, Saudi Arabia;
- Department of Mathematics, College of Science, Northern Border University, Arar 91431, Saudi Arabia
| | - Husham O. Elzein
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Northern Border University, Arar 91431, Saudi Arabia; (M.N.H.); (H.O.E.); (A.E.A.); (M.M.J.)
| | - Hibah A. Almasmoum
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 7607, Saudi Arabia;
| | - Awad E. Abass
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Northern Border University, Arar 91431, Saudi Arabia; (M.N.H.); (H.O.E.); (A.E.A.); (M.M.J.)
| | - Mohammed M. Jawad
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Northern Border University, Arar 91431, Saudi Arabia; (M.N.H.); (H.O.E.); (A.E.A.); (M.M.J.)
| | - Saoussen Trabelsi
- Department of Community Health, Faculty of Applied Medical Sciences, Northern Border University, Arar 91431, Saudi Arabia;
- Centre for Health Research, Northern Border University, Arar 91431, Saudi Arabia
| |
Collapse
|
8
|
Qie B, Tuo J, Chen F, Ding H, Lyu L. Gene therapy for genetic diseases: challenges and future directions. MedComm (Beijing) 2025; 6:e70091. [PMID: 39949979 PMCID: PMC11822459 DOI: 10.1002/mco2.70091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 01/08/2025] [Accepted: 01/09/2025] [Indexed: 02/16/2025] Open
Abstract
Genetic diseases constitute the majority of rare human diseases, resulting from abnormalities in an individual's genetic composition. Traditional treatments offer limited relief for these challenging conditions. In contrast, the rapid advancement of gene therapy presents significant advantages by directly addressing the underlying causes of genetic diseases, thereby providing the potential for precision treatment and the possibility of curing these disorders. This review aims to delineate the mechanisms and outcomes of current gene therapy approaches in clinical applications across various genetic diseases affecting different body systems. Additionally, genetic muscular disorders will be examined as a case study to investigate innovative strategies of novel therapeutic approaches, including gene replacement, gene suppression, gene supplementation, and gene editing, along with their associated advantages and limitations at both clinical and preclinical levels. Finally, this review emphasizes the existing challenges of gene therapy, such as vector packaging limitations, immunotoxicity, therapy specificity, and the subcellular localization and immunogenicity of therapeutic cargos, while discussing potential optimization directions for future research. Achieving delivery specificity, as well as long-term effectiveness and safety, will be crucial for the future development of gene therapies targeting genetic diseases.
Collapse
Affiliation(s)
- Beibei Qie
- Institute of Sports Medicine and Health, School of Sports Medicine and HealthChengdu Sport UniversityChengduChina
| | - Jianghua Tuo
- Institute of Sports Medicine and Health, School of Sports Medicine and HealthChengdu Sport UniversityChengduChina
| | - Feilong Chen
- Institute of Sports Medicine and Health, School of Sports Medicine and HealthChengdu Sport UniversityChengduChina
| | - Haili Ding
- Institute of Sports Medicine and Health, School of Sports Medicine and HealthChengdu Sport UniversityChengduChina
| | - Lei Lyu
- Institute of Sports Medicine and Health, School of Sports Medicine and HealthChengdu Sport UniversityChengduChina
| |
Collapse
|
9
|
Tayade N, Manoj G, Kewat A, A AK, Devulapalli R, Kumar S, Polipalli SK, Nair BG, Bandapalli OR, Suravajhala P. Genomic exploration of pediatric neurological disorders: a case series. J Med Case Rep 2025; 19:43. [PMID: 39891267 PMCID: PMC11786458 DOI: 10.1186/s13256-025-05052-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 12/09/2024] [Indexed: 02/03/2025] Open
Abstract
BACKGROUND Pediatric neurological disorders include neurodegenerative diseases causing cognitive impairment and vision loss. They are one of the important causes of morbidity and mortality in children with diverse etiologies. Diagnosis is difficult despite genetic work, and a final diagnosis can be achieved in only 60% of cases. CASE PRESENTATION We explore three Indian cases of pediatric neurological diseases (with age presented at the clinic), viz. arthrogryposis (8 years), autism (18 months), and congenital bilateral cataract (3 years), by analyzing clinical exomes. In this work, we attempt to understand rare neurological disorders in an Indian pediatric cohort using exome studies. CONCLUSION We used our benchmarked CONVEX pipeline for screening consensus variants, wherein EIF2B2 was found to be inherently pathogenic. We map the association of variants and genes and disease correlation to neuroleptic malignant syndrome, which matches the phenotype to the cases.
Collapse
Affiliation(s)
- Naresh Tayade
- Department of Pediatrics, Dr Panjabrao Deshmukh Medical College Amravati and Life Care Hospitals, Amaravati, 444601, India
| | - Gautham Manoj
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Clappana PO, 690525, India
| | - Akshay Kewat
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Clappana PO, 690525, India
| | - Anjali Krishna A
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Clappana PO, 690525, India
| | | | - Somesh Kumar
- Genome Sequencing Centre, Maulana Azad Medical College, Delhi, 110002, India
| | | | - Bipin G Nair
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Clappana PO, 690525, India
| | | | - Prashanth Suravajhala
- Department of Pediatrics, Dr Panjabrao Deshmukh Medical College Amravati and Life Care Hospitals, Amaravati, 444601, India.
- Bioclues.org, Hyderabad, 501511, India.
| |
Collapse
|
10
|
Dongare DB, Nishad SS, Mastoli SY, Saraf SA, Srivastava N, Dey A. High-throughput sequencing: a breakthrough in molecular diagnosis for precision medicine. Funct Integr Genomics 2025; 25:22. [PMID: 39838192 DOI: 10.1007/s10142-025-01529-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/03/2025] [Accepted: 01/07/2025] [Indexed: 01/23/2025]
Abstract
High-resolution insights into the nucleotide arrangement within an organism's genome are pivotal for deciphering its genetic composition, function, and evolutionary trajectory. Over the years, nucleic acid sequencing has been instrumental in driving significant advancements in genomics and molecular biology. The advent of high-throughput or next-generation sequencing (NGS) technologies has revolutionized whole genome sequencing, revealing novel and intriguing features of genomes, such as single nucleotide polymorphisms and lethal mutations in both coding and non-coding regions. These platforms provide a practical approach to comprehensively identifying and analyzing whole genomes with remarkable throughput, accuracy, and scalability within a short time frame. The resulting data holds immense potential for enhancing healthcare systems, developing novel and personalized therapies, and preparing for future pandemics and outbreaks. Given the wide array of available high-throughput sequencing platforms, selecting the appropriate technology based on specific needs is crucial. However, there is limited information regarding sample preparation, sequencing principles, and output data to facilitate a comparative evaluation of these platforms. This review details various NGS technologies and approaches, examining their advantages, limitations, and future potential. Despite being in their early stages and facing challenges, ongoing advancements in NGS are expected to yield significant future benefits.
Collapse
Affiliation(s)
- Dipali Barku Dongare
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER)-Raebareli, Lucknow, 226002, India
| | - Shaik Shireen Nishad
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER)-Raebareli, Lucknow, 226002, India
| | - Sakshi Y Mastoli
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Raebareli, Lucknow, 226002, India
| | - Shubhini A Saraf
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Raebareli, Lucknow, 226002, India
| | - Nidhi Srivastava
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER)-Raebareli, Lucknow, 226002, India
| | - Abhishek Dey
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER)-Raebareli, Lucknow, 226002, India.
| |
Collapse
|
11
|
Méndez-Vidal C, Bravo-Gil N, Pérez-Florido J, Marcos-Luque I, Fernández RM, Fernández-Rueda JL, González-Del Pozo M, Martín-Sánchez M, Fernández-Suárez E, Mena M, Carmona R, Dopazo J, Borrego S, Antiñolo G. A genomic strategy for precision medicine in rare diseases: integrating customized algorithms into clinical practice. J Transl Med 2025; 23:86. [PMID: 39833864 PMCID: PMC11748347 DOI: 10.1186/s12967-025-06069-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 01/02/2025] [Indexed: 01/22/2025] Open
Abstract
BACKGROUND Despite the use of Next-Generation Sequencing (NGS) as the gold standard for the diagnosis of rare diseases, its clinical implementation has been challenging, limiting the cost-effectiveness of NGS and the understanding, control and safety essential for decision-making in clinical applications. Here, we describe a personalized NGS-based strategy integrating precision medicine into a public healthcare system and its implementation in the routine diagnosis process during a five-year pilot program. METHODS Our approach involved customized probe designs, the generation of virtual panels and the development of a personalized medicine module (PMM) for variant prioritization. This strategy was applied to 6500 individuals including 6267 index patients and 233 NGS-based carrier screenings. RESULTS Causative variants were identified in 2061 index patients (average 32.9%, ranging from 12 to 62% by condition). Also, 131 autosomal-recessive cases could be partially genetically diagnosed. These results led to over 5000 additional studies including carrier, prenatal and preimplantational tests or pharmacological and gene therapy treatments. CONCLUSION This strategy has shown promising improvements in the diagnostic rate, facilitating timely diagnosis and gradually expanding our services portfolio for rare diseases. The steps taken towards the integration of clinical and genomic data are opening new possibilities for conducting both retrospective and prospective healthcare studies. Overall, this study represents a major milestone in the ongoing efforts to improve our understanding and clinical management of rare diseases, a crucial area of medical research and care.
Collapse
Affiliation(s)
- Cristina Méndez-Vidal
- Institute of Biomedicine of Seville, IBiS/University Hospital Virgen del Rocio, CSIC/University of Seville, Seville, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Seville, Spain
| | - Nereida Bravo-Gil
- Institute of Biomedicine of Seville, IBiS/University Hospital Virgen del Rocio, CSIC/University of Seville, Seville, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Seville, Spain
| | - Javier Pérez-Florido
- Institute of Biomedicine of Seville, IBiS/University Hospital Virgen del Rocio, CSIC/University of Seville, Seville, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Seville, Spain
- Platform of Computational Medicine. Fundación Progreso y Salud (FPS). CDCA, University Hospital Virgen del Rocio, Seville, Spain
| | - Irene Marcos-Luque
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Seville, Spain
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville, IBiS/University Hospital Virgen del Rocio, CSIC/University of Seville, Seville, Spain
| | - Raquel M Fernández
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Seville, Spain
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville, IBiS/University Hospital Virgen del Rocio, CSIC/University of Seville, Seville, Spain
| | - José Luis Fernández-Rueda
- Platform of Computational Medicine. Fundación Progreso y Salud (FPS). CDCA, University Hospital Virgen del Rocio, Seville, Spain
| | - María González-Del Pozo
- Institute of Biomedicine of Seville, IBiS/University Hospital Virgen del Rocio, CSIC/University of Seville, Seville, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Seville, Spain
| | - Marta Martín-Sánchez
- Institute of Biomedicine of Seville, IBiS/University Hospital Virgen del Rocio, CSIC/University of Seville, Seville, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Seville, Spain
| | - Elena Fernández-Suárez
- Institute of Biomedicine of Seville, IBiS/University Hospital Virgen del Rocio, CSIC/University of Seville, Seville, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Seville, Spain
| | - Marcela Mena
- Institute of Biomedicine of Seville, IBiS/University Hospital Virgen del Rocio, CSIC/University of Seville, Seville, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Seville, Spain
| | - Rosario Carmona
- Institute of Biomedicine of Seville, IBiS/University Hospital Virgen del Rocio, CSIC/University of Seville, Seville, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Seville, Spain
- Platform of Computational Medicine. Fundación Progreso y Salud (FPS). CDCA, University Hospital Virgen del Rocio, Seville, Spain
| | - Joaquín Dopazo
- Institute of Biomedicine of Seville, IBiS/University Hospital Virgen del Rocio, CSIC/University of Seville, Seville, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Seville, Spain
- Platform of Computational Medicine. Fundación Progreso y Salud (FPS). CDCA, University Hospital Virgen del Rocio, Seville, Spain
| | - Salud Borrego
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Seville, Spain.
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville, IBiS/University Hospital Virgen del Rocio, CSIC/University of Seville, Seville, Spain.
| | - Guillermo Antiñolo
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Seville, Spain.
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville, IBiS/University Hospital Virgen del Rocio, CSIC/University of Seville, Seville, Spain.
| |
Collapse
|
12
|
Xu R, Zhang M, Yang X, Tian W, Li C. Decoding complexity: The role of long-read sequencing in unraveling genetic disease etiologies. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2025; 795:108529. [PMID: 39788369 DOI: 10.1016/j.mrrev.2024.108529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/26/2024] [Accepted: 12/31/2024] [Indexed: 01/12/2025]
Abstract
In recent years, next-generation high-throughput sequencing technology has been widely used in clinical practice for the identification and diagnosis of Mendelian diseases as an auxiliary detection method. Nevertheless, due to the limitations in read length and poor coverage of complex genomic regions, the etiology of many genetic diseases is unclear. Long-read sequencing (LRS) addresses these limitations of next-generation sequencing. LRS is an effective tool for the clinical study of the etiology of complex genetic diseases. In this review, we summarized the current research on the application of LRS in diseases across various systems. We also reported the improvements in the diagnostic rate and common variant types of LRS in different studies, providing a foundation for the discovery of new disease mechanisms, which is anticipated to play a crucial role in future research on genetic diseases.
Collapse
Affiliation(s)
- Ran Xu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China
| | - Mengmeng Zhang
- Laboratory for Genetic Engineering of Antibodies and Functional Proteins, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Xiaoming Yang
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Radiation Medicine, Beijing 100850, China.
| | - Weiming Tian
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China.
| | - Changyan Li
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Radiation Medicine, Beijing 100850, China; School of Basic Medical Sciences, An Hui Medical University, 230032, Hefei, China; School of Life Sciences, Hebei University, No. 180 Wusi Dong Road, Lian Chi District, Baoding, Hebei 071000, China.
| |
Collapse
|
13
|
Lei M, Zhu Z, Wei C, Xie H, Guo R, Zhao Y, Wang K, Wang M, Chen W, Xu X, Zeng X, Xu Y, Zhang W, Chu Y, Sun Y, Yang Q. Prenatal Silicon Dioxide Nanoparticles Exposure Reduces Female Offspring Fertility Without Affecting Males. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2410353. [PMID: 39574356 PMCID: PMC11744561 DOI: 10.1002/advs.202410353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/07/2024] [Indexed: 01/21/2025]
Abstract
Silicon dioxide nanoparticles (SiO2 NPs) are widely utilized in biomedicine due to their controllable size and biocompatibility. While previous studies have demonstrated that prenatal exposure to SiO2 NPs can traverse the placental barrier and induce neurotoxicity in offspring. However, their reproductive toxicity remains unclear. Here, it is found that prenatal SiO2 NPs exposure led to subfertility in female offspring, evidenced by decreased ovulation potential, ovarian reserve, and litter size. In contrast, male offspring maintained normal sperm production and fertility. Mechanistic analyses revealed that prenatal SiO2 NPs exposure disrupted meiotic recombination and increased oocyte apoptosis, resulting in reduced postnatal primordial follicle formation in females. Conversely, meiotic recombination occurring postnatally in male offspring remained unaffected. Notably, treatment with carboxylate (COOH)-functionalized SiO2 nanoparticles (SiO2-COOH NPs) has a minimal impact on fertility in female offspring. Further research, including clinical studies, is needed to confirm these findings in humans. These findings demonstrated gender-specific reproductive toxicity induced by prenatal SiO2 NPs exposure and highlighted the importance of considering nanoparticle safety in prenatal contexts.
Collapse
|
14
|
Chitara N, Krishan K, Kanchan T. The three-parent baby: Medicolegal, forensic and ethical concerns. MEDICINE, SCIENCE, AND THE LAW 2025; 65:71-76. [PMID: 39056221 DOI: 10.1177/00258024241266566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
In the recent past, human genetics and in vitro fertilization (IVF) have undergone various advances to combat with several congenital and developmental disorders. These advances are a boon for the families and patients who were restricted from having a child due to one or the other reasons. One such reason is the mitochondrial DNA (mtDNA) mutations, which are definitely transmitted from the mother to the child due to uniparental/maternal inheritance of mitochondria. Depending upon the range of the mutation (mutation loads) present, the mtDNA mutation leads to various devitalizing to fatal disorders, all of which are incurable. Scientists and researchers developed a technique known as mitochondrial donation technique or mitochondrial replacement therapy (MRT) to combat with the mtDNA mutations. The technique relies on the replacement of faulty mitochondria in the mother's egg with the normal wild-type from a donor female resulting in a "three-parent baby." On the other side, forensic scientists and anthropologists continuously explore the mtDNA in various medicolegal cases and in uncoupling the mystery of human origin and migration respectively. In this regard, we explored the genetic, forensic and ethical aspects of a "three-parent baby." The present communication also attempts to highlight the importance and limitations of the MRT technique/three-parent baby in a medicolegal context.
Collapse
Affiliation(s)
- Nandini Chitara
- Department of Anthropology, Panjab University, Chandigarh, India
| | - Kewal Krishan
- Department of Anthropology, Panjab University, Chandigarh, India
| | - Tanuj Kanchan
- Department of Forensic Medicine, All India Institute of Medical Sciences, Jodhpur, India
| |
Collapse
|
15
|
Azeez SS, Hamad RS, Hamad BK, Shekha MS, Bergsten P. Advances in CRISPR-Cas technology and its applications: revolutionising precision medicine. Front Genome Ed 2024; 6:1509924. [PMID: 39726634 PMCID: PMC11669675 DOI: 10.3389/fgeed.2024.1509924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 11/28/2024] [Indexed: 12/28/2024] Open
Abstract
CRISPR-Cas (Clustered Regularly Interspaced Short Palindromic Repeats-CRISPR-associated proteins) has undergone marked advancements since its discovery as an adaptive immune system in bacteria and archaea, emerged as a potent gene-editing tool after the successful engineering of its synthetic guide RNA (sgRNA) toward the targeting of specific DNA sequences with high accuracy. Besides its DNA editing ability, further-developed Cas variants can also edit the epigenome, rendering the CRISPR-Cas system a versatile tool for genome and epigenome manipulation and a pioneering force in precision medicine. This review explores the latest advancements in CRISPR-Cas technology and its therapeutic and biomedical applications, highlighting its transformative impact on precision medicine. Moreover, the current status of CRISPR therapeutics in clinical trials is discussed. Finally, we address the persisting challenges and prospects of CRISPR-Cas technology.
Collapse
Affiliation(s)
- Sarkar Sardar Azeez
- Department of Medical Laboratory Technology, Soran Technical College, Erbil Polytechnic University, Erbil, Kurdistan Region, Iraq
| | - Rahin Shareef Hamad
- Nursing Department, Soran Technical College, Erbil Polytechnic University, Erbil, Kurdistan Region, Iraq
| | - Bahra Kakamin Hamad
- Department of Medical Laboratory Technology, Erbil Health and Medical Technical College, Erbil Polytechnic University, Erbil, Kurdistan Region, Iraq
| | - Mudhir Sabir Shekha
- Department of Biology, College of Science, Salahaddin University, Erbil, Kurdistan Region, Iraq
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Peter Bergsten
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
16
|
Schuster D, LeBlanc DPM, Zhou G, Meier MJ, Dodge AE, White PA, Long AS, Williams A, Hobbs C, Diesing A, Smith-Roe SL, Salk JJ, Marchetti F, Yauk CL. Dose-Related Mutagenic and Clastogenic Effects of Benzo[ b]fluoranthene in Mouse Somatic Tissues Detected by Duplex Sequencing and the Micronucleus Assay. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:21450-21463. [PMID: 39602390 PMCID: PMC11636207 DOI: 10.1021/acs.est.4c07236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/06/2024] [Accepted: 11/09/2024] [Indexed: 11/29/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are common environmental pollutants that originate from the incomplete combustion of organic materials. We investigated the clastogenicity and mutagenicity of benzo[b]fluoranthene (BbF), one of 16 priority PAHs, in MutaMouse males after a 28 day oral exposure. BbF causes robust dose-dependent increases in micronucleus frequency in peripheral blood, indicative of chromosome damage. Duplex sequencing (DS), an error-corrected sequencing technology, reveals that BbF induces dose-dependent increases in mutation frequencies in bone marrow (BM) and liver. Mutagenicity is increased in intergenic relative to genic regions, suggesting a role for transcription-coupled repair of BbF-induced DNA damage. At higher doses, the maximum mutagenic response to BbF is higher in liver, which has a lower mitotic index but higher metabolic capacity than BM; however, mutagenic potency is comparable between the two tissues. BbF induces primarily C:G > A:T mutations, followed by C:G > T:A and C:G > G:C, indicating that BbF metabolites mainly target guanines and cytosines. The mutation spectrum of BbF correlates with cancer mutational signatures associated with tobacco exposure, supporting its contribution to the carcinogenicity of combustion-derived PAHs in humans. Overall, BbF's mutagenic effects are similar to benzo[a]pyrene, a well-studied mutagenic PAH. Our work showcases the utility of DS for effective mutagenicity assessment of environmental pollutants.
Collapse
Affiliation(s)
| | | | - Gu Zhou
- Environmental
Health Science and Research Bureau, Health
Canada, Ottawa K1A 0K9, Canada
| | - Matthew J. Meier
- Environmental
Health Science and Research Bureau, Health
Canada, Ottawa K1A 0K9, Canada
| | - Annette E. Dodge
- Department
of Biology, University of Ottawa, Ottawa K1N 6N5, Canada
| | - Paul A. White
- Department
of Biology, University of Ottawa, Ottawa K1N 6N5, Canada
- Environmental
Health Science and Research Bureau, Health
Canada, Ottawa K1A 0K9, Canada
| | - Alexandra S. Long
- Existing
Substances Risk Assessment Bureau, Health
Canada, Ottawa K1A 0K9, Canada
| | - Andrew Williams
- Environmental
Health Science and Research Bureau, Health
Canada, Ottawa K1A 0K9, Canada
| | - Cheryl Hobbs
- Integrated
Laboratory Systems, LLC, an Inotiv Company, Research Triangle Park 27560, North Carolina, United States
| | - Alex Diesing
- Integrated
Laboratory Systems, LLC, an Inotiv Company, Research Triangle Park 27560, North Carolina, United States
| | - Stephanie L. Smith-Roe
- Division
of Translational Toxicology, National Institute
of Environmental Health Sciences, Research Triangle Park 27709, North Carolina, United States
| | - Jesse J. Salk
- Department
of Medicine, Division of Hematology and Oncology, University of Washington School of Medicine, Seattle 98195, Washington, United
States
| | - Francesco Marchetti
- Environmental
Health Science and Research Bureau, Health
Canada, Ottawa K1A 0K9, Canada
- Department
of Biology, Carleton University, Ottawa K1N6N5, Canada
| | - Carole L. Yauk
- Department
of Biology, University of Ottawa, Ottawa K1N 6N5, Canada
| |
Collapse
|
17
|
Pappalardo M, Sipala FM, Nicolosi MC, Guccione S, Ronsisvalle S. Recent Applications of In Silico Approaches for Studying Receptor Mutations Associated with Human Pathologies. Molecules 2024; 29:5349. [PMID: 39598735 PMCID: PMC11596970 DOI: 10.3390/molecules29225349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/05/2024] [Accepted: 11/08/2024] [Indexed: 11/29/2024] Open
Abstract
In recent years, the advent of computational techniques to predict the potential activity of a drug interacting with a receptor or to predict the structure of unidentified proteins with aberrant characteristics has significantly impacted the field of drug design. We provide a comprehensive review of the current state of in silico approaches and software for investigating the effects of receptor mutations associated with human diseases, focusing on both frequent and rare mutations. The reported techniques include virtual screening, homology modeling, threading, docking, and molecular dynamics. This review clearly shows that it is common for successful studies to integrate different techniques in drug design, with docking and molecular dynamics being the most frequently used techniques. This trend reflects the current emphasis on developing novel therapies for diseases resulting from receptor mutations with the recently discovered AlphaFold algorithm as the driving force.
Collapse
Affiliation(s)
- Matteo Pappalardo
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (M.P.); (F.M.S.); (M.C.N.); (S.R.)
| | - Federica Maria Sipala
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (M.P.); (F.M.S.); (M.C.N.); (S.R.)
- Department of Chemical Science, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Milena Cristina Nicolosi
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (M.P.); (F.M.S.); (M.C.N.); (S.R.)
- Department of Chemical Science, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Salvatore Guccione
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (M.P.); (F.M.S.); (M.C.N.); (S.R.)
| | - Simone Ronsisvalle
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (M.P.); (F.M.S.); (M.C.N.); (S.R.)
| |
Collapse
|
18
|
Bian T, Pei Y, Gao S, Zhou S, Sun X, Dong M, Song J. Xeno Nucleic Acids as Functional Materials: From Biophysical Properties to Application. Adv Healthc Mater 2024; 13:e2401207. [PMID: 39036821 DOI: 10.1002/adhm.202401207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/14/2024] [Indexed: 07/23/2024]
Abstract
Xeno nucleic acid (XNA) are artificial nucleic acids, in which the chemical composition of the sugar moiety is changed. These modifications impart distinct physical and chemical properties to XNAs, leading to changes in their biological, chemical, and physical stability. Additionally, these alterations influence the binding dynamics of XNAs to their target molecules. Consequently, XNAs find expanded applications as functional materials in diverse fields. This review provides a comprehensive summary of the distinctive biophysical properties exhibited by various modified XNAs and explores their applications as innovative functional materials in expanded fields.
Collapse
Affiliation(s)
- Tianyuan Bian
- Academy of Medical Engineering and Translational Medicine (AMT), Tianjin University, Tianjin, 300072, China
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Yufeng Pei
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Shitao Gao
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, 310022, China
- College of Materials Science and Engineering, Zhejiang University of Technology, ChaoWang Road 18, HangZhou, 310014, China
| | - Songtao Zhou
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Xinyu Sun
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, 310022, China
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Mingdong Dong
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C, Aarhus, DK-8000, Denmark
| | - Jie Song
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, 310022, China
| |
Collapse
|
19
|
Scarpa F, Casu M. Genomics and Bioinformatics in One Health: Transdisciplinary Approaches for Health Promotion and Disease Prevention. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:1337. [PMID: 39457310 PMCID: PMC11507412 DOI: 10.3390/ijerph21101337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/02/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024]
Abstract
The One Health concept underscores the interconnectedness of human, animal, and environmental health, necessitating an integrated, transdisciplinary approach to tackle contemporary health challenges. This perspective paper explores the pivotal role of genomics and bioinformatics in advancing One Health initiatives. By leveraging genomic technologies and bioinformatics tools, researchers can decode complex biological data, enabling comprehensive insights into pathogen evolution, transmission dynamics, and host-pathogen interactions across species and environments (or ecosystems). These insights are crucial for predicting and mitigating zoonotic disease outbreaks, understanding antimicrobial resistance patterns, and developing targeted interventions for health promotion and disease prevention. Furthermore, integrating genomic data with environmental and epidemiological information enhances the precision of public health responses. Here we discuss case studies demonstrating successful applications of genomics and bioinformatics in One Health contexts, such as including data integration, standardization, and ethical considerations in genomic research. By fostering collaboration among geneticists, bioinformaticians, epidemiologists, zoologists, and data scientists, the One Health approach can harness the full potential of genomics and bioinformatics to safeguard global health. This perspective underscores the necessity of continued investment in interdisciplinary education, research infrastructure, and policy frameworks to effectively employ these technologies in the service of a healthier planet.
Collapse
Affiliation(s)
- Fabio Scarpa
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| | - Marco Casu
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy
| |
Collapse
|
20
|
Winter E, Teschler-Nicola M, Macfelda K, Vohland K. The pathological anatomical collection of the Natural History Museum Vienna. Wien Med Wochenschr 2024; 174:265-278. [PMID: 36729342 PMCID: PMC9893974 DOI: 10.1007/s10354-022-01001-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 12/22/2022] [Indexed: 02/03/2023]
Abstract
The pathological anatomical collection Vienna (Pathologisch-Anatomische Sammlung Wien; PASW) is a living and still growing research collection. It was established as early as 1796 as part of the Medical University of Vienna, acquired the status of an independent federal museum in 1971, and was assigned to the Natural History Museum Vienna in 2012. It houses a wide range of human wet and dry specimens and further objects, such as moulages, medical devices, microbiological and histological specimens, and a photo archive (approximately 50,000 objects), which, as a meaningful source, may contribute to disclosing not only aspects of the medical history and the development of corresponding museums in Vienna, but is also considered a collection of cultural and current scientific relevance, quite comparable to today's biobanks. Most of the tissue amassment represents wet organic specimens and human skeletons or skeletal elements representing, e.g., congenital and metabolic disorders, infectious diseases, injuries, neoplasms, or musculoskeletal diseases, basically collected as descriptive anatomical teaching aids. This article reviews the current medical issues on which research has been and is being conducted by including PASW specimens (hereby using the ICD-10 code), and the extent to and ethical conditions under which this important heritage could be used as a reference collection for clinical and bioanthropological (paleopathological and palaeoepidemiological) studies; finally, this article reflects on the value and future research prospects, taking into account different positions and the ongoing discussions in pathological anatomical human tissue collections.
Collapse
|
21
|
Ab Rajab NS, Yasin MAM, Ghazali WSW, Talib NA, Taib WRW, Sulong S. Schizophrenia and Rheumatoid Arthritis Genetic Scenery: Potential Non-HLA Genes Involved in Both Diseases Relationship. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2024; 97:281-295. [PMID: 39351328 PMCID: PMC11426293 DOI: 10.59249/fbot5313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Background: The link between rheumatoid arthritis (RA) and schizophrenia (SZ) has long been a hot topic of deliberation among scientists from various fields. Especially when it comes to genetics, the connection between RA and SZ is still up for discussion, as can be observed in this study. The HLA genes are the most disputed in identifying a connection between the two diseases, but a more thorough investigation of other genes that may be ignored could yield something even more interesting. Thus, finding the genes responsible for this long-sought relationship will necessitate looking for them. Materials and Methods: Shared and overlapped associated genes involved between SZ and RA were extracted from four databases. The overlapping genes were examined using Database for Annotation, Visualization and Integrated Discovery (DAVID) and InnateDB to search the pertinent genes that concatenate between these two disorders. Results: A total of 91 overlapped genes were discovered, and that 13 genes, divided into two clusters, showed a similarity in function, suggesting that they may serve as an important meeting point. FCGR2A, IL18R, BTNL2, AGER, and CTLA4 are five non-HLA genes related to the immune system, which could lead to new discoveries about the connection between these two disorders. Conclusion: An in-depth investigation of these functionally comparable non-HLA genes that overlap could reveal new interesting information in both diseases. Understanding the molecular and immune-related aspects of RA and SZ may shed light on their etiology and inform future research on targeted treatment strategies.
Collapse
Affiliation(s)
- Nur Shafawati Ab Rajab
- Human Genome Centre, School of Medical Sciences,
Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Mohd Azhar Mohd Yasin
- Department of Psychiatry, School of Medical Sciences,
Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Wan Syamimee Wan Ghazali
- Department of Internal Medicine, School of Medical
Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Norlelawati Abdul Talib
- Department of Pathology and Laboratory Medicine,
Kuliyyah of Medicine, International Islamic University Malaysia, Kuantan,
Pahang, Malaysia
| | - Wan Rohani Wan Taib
- Faculty of Medicine and Health Sciences, Universiti
Sultan Zainal Abidin, Kampung Gong Badak, Terengganu, Malaysia
| | - Sarina Sulong
- Human Genome Centre, School of Medical Sciences,
Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| |
Collapse
|
22
|
Singh S, Raj D, Mathur A, Mani N, Kumar D. Current approaches in CRISPR-Cas systems for hereditary diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 210:205-229. [PMID: 39824581 DOI: 10.1016/bs.pmbts.2024.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2025]
Abstract
CRISPR-Cas technologies have drastically revolutionized genetic engineering and also dramatically changed the potential for treating inherited disorders. The potential to correct genetic mutations responsible for numerous hereditary disorders from single-gene disorders to complex polygenic diseases through precise DNA editing is feasible. The tactic now employed in CRISPR-Cas systems for treating inherited disorders is the usage of particular guide RNAs to target and edit disease-causing mutations in the patient's genome. Several methods such as CRISPR-Cas9, CRISPR-Cas12, and CRISPR-Cas13 are being thoroughly researched and optimized to increase effectiveness, accuracy, and safety in gene editing. Additionally, it is predicted that CRISPR-based therapies will be able to treat complex genetic illnesses such as cancer predisposition syndromes, neurological disorders, and cardiovascular conditions in addition to single-gene disorders. The available editing tools and creation of base editing technology facilitate the simultaneous correction of many mutations or accurate nucleotide changes leading to further advances in the development of multiplex editing tools and base editing technology fiction. When combined with other paradigms such as gene therapy using stem cell treatment, CRISPR-Cas promises improved efficacy. Patient treatment and lowering side effects significantly in individual genetic profiles will guide CRISPR-based treatments. These procedures will undoubtedly lead to therapies that are both efficient and curative of a wide range of genetic diseases, ushering in a new era of precision medicine. This chapter discusses about CRISPR Cas9 mechanism and its significance in the treatment of Hereditary disorders.
Collapse
Affiliation(s)
- Swati Singh
- School of Health Sciences & Technology, UPES, Dehradun, Uttarakhand, India
| | - Divakar Raj
- School of Health Sciences & Technology, UPES, Dehradun, Uttarakhand, India
| | - Ashish Mathur
- School of Health Sciences & Technology, UPES, Dehradun, Uttarakhand, India
| | - Neel Mani
- Dev Sanskriti Vishwavidyalaya, Haridwar
| | - Dhruv Kumar
- School of Health Sciences & Technology, UPES, Dehradun, Uttarakhand, India.
| |
Collapse
|
23
|
Mahrous NN, Albaqami A, Saleem RA, Khoja B, Khan MI, Hawsawi YM. The known and unknown about attention deficit hyperactivity disorder (ADHD) genetics: a special emphasis on Arab population. Front Genet 2024; 15:1405453. [PMID: 39165752 PMCID: PMC11333229 DOI: 10.3389/fgene.2024.1405453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 07/15/2024] [Indexed: 08/22/2024] Open
Abstract
Attention deficit hyperactivity disorder (ADHD) is a clinically and genetically heterogeneous neurodevelopmental syndrome characterized by behavioral appearances such as impulsivity, inattention, and hyperactivity. The prevalence of ADHD is high in childhood when compared to adults. ADHD has been significantly advanced by genetic research over the past 25 years. However, it is logically conceivable that both genetic and/or non-genetic factors, such as postnatal environmental and social influences, are associated with ADHD phenotype in Arab populations. While genetic influences are strongly linked with the etiology of ADHD, it remains obscure how consanguinity which is an underlying factor for many genetic diseases, contributes to ADHD subtypes. Arabian Gulf Nations have one the highest rates of consanguineous marriages, and consanguinity plays an important contributing factor in many genetic diseases that exist in higher percentages in Arabian Gulf Nations. Therefore, the current review aims to shed light on the genetic variants associated with ADHD subtypes in Arabian Gulf nations and Saudi Arabia in particular. It also focuses on the symptoms and the diagnosis of ADHD before turning to the neuropsychological pathways and subgroups of ADHD. The impact of a consanguinity-based understanding of the ADHD subtype will help to understand the genetic variability of the Arabian Gulf population in comparison with the other parts of the world and will provide novel information to develop new avenues for future research in ADHD.
Collapse
Affiliation(s)
- Nahed N. Mahrous
- Department of Biological Sciences, College of Science, University of Hafr Al-Batin, Hafr Al- Batin, Saudi Arabia
| | - Amirah Albaqami
- Department of Clinical Laboratory Sciences, Turbah University College, Taif University, Taif, Saudi Arabia
| | - Rimah A. Saleem
- Department of Biochemistry and Molecular Medicine, College of Medicine, Al-Faisal University, Riyadh, Saudi Arabia
| | - Basmah Khoja
- Research Center, King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia
| | - Mohammed I. Khan
- Research Center, King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia
| | - Yousef M. Hawsawi
- Department of Biochemistry and Molecular Medicine, College of Medicine, Al-Faisal University, Riyadh, Saudi Arabia
- Research Center, King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia
| |
Collapse
|
24
|
Dey AD, Mannan A, Dhiman S, Singh TG. Unlocking new avenues for neuropsychiatric disease therapy: the emerging potential of Peroxisome proliferator-activated receptors as promising therapeutic targets. Psychopharmacology (Berl) 2024; 241:1491-1516. [PMID: 38801530 DOI: 10.1007/s00213-024-06617-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/16/2024] [Indexed: 05/29/2024]
Abstract
RATIONALE Peroxisome proliferator-activated receptors (PPARs) are transcription factors that regulate various physiological processes such as inflammation, lipid metabolism, and glucose homeostasis. Recent studies suggest that targeting PPARs could be beneficial in treating neuropsychiatric disorders by modulating neuronal function and signaling pathways in the brain. PPAR-α, PPAR-δ, and PPAR-γ have been found to play important roles in cognitive function, neuroinflammation, and neuroprotection. Dysregulation of PPARs has been associated with neuropsychiatric disorders like bipolar disorder, schizophrenia, major depression disorder, and autism spectrum disorder. The limitations and side effects of current treatments have prompted research to target PPARs as a promising novel therapeutic strategy. Preclinical and clinical studies have shown the potential of PPAR agonists and antagonists to improve symptoms associated with these disorders. OBJECTIVE This review aims to provide an overview of the current understanding of PPARs in neuropsychiatric disorders, their potential as therapeutic targets, and the challenges and future directions for developing PPAR-based therapies. METHODS An extensive literature review of various search engines like PubMed, Medline, Bentham, Scopus, and EMBASE (Elsevier) databases was carried out with the keywords "PPAR, Neuropsychiatric disorders, Oxidative stress, Inflammation, Bipolar Disorder, Schizophrenia, Major depression disorder, Autism spectrum disorder, molecular pathway". RESULT & CONCLUSION Although PPARs present a hopeful direction for innovative therapeutic approaches in neuropsychiatric conditions, additional research is required to address obstacles and convert this potential into clinically viable and individualized treatments.
Collapse
Affiliation(s)
- Asmita Deka Dey
- Chitkara College of Pharmacy, Chitkara University, Chandigarh, Punjab, India
| | - Ashi Mannan
- Chitkara College of Pharmacy, Chitkara University, Chandigarh, Punjab, India
| | - Sonia Dhiman
- Chitkara College of Pharmacy, Chitkara University, Chandigarh, Punjab, India
| | | |
Collapse
|
25
|
Schuster DM, LeBlanc DPM, Zhou G, Meier MJ, Dodge AE, White PA, Long AS, Williams A, Hobbs C, Diesing A, Smith-Roe SL, Salk JJ, Marchetti F, Yauk CL. Dose-related Mutagenic and Clastogenic Effects of Benzo[b]fluoranthene in Mouse Somatic Tissues Detected by Duplex Sequencing and the Micronucleus Assay. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.26.605228. [PMID: 39211269 PMCID: PMC11360995 DOI: 10.1101/2024.07.26.605228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are common environmental pollutants that originate from the incomplete combustion of organic materials. We investigated the clastogenicity and mutagenicity of benzo[ b ]fluoranthene (BbF), one of 16 priority PAHs, in MutaMouse males after a 28-day oral exposure. BbF causes robust dose-dependent increases in micronucleus frequency in peripheral blood, indicative of chromosome damage. Duplex Sequencing (DS), an error-corrected sequencing technology, reveals that BbF induces dose-dependent increases in mutation frequencies in bone marrow (BM) and liver. Mutagenicity is increased in intergenic relative to genic regions, suggesting a role for transcription-coupled repair of BbF-induced DNA damage. At higher doses, the maximum mutagenic response to BbF is higher in liver, which has a lower mitotic index but higher metabolic capacity than BM; however, mutagenic potency is comparable between the two tissues. BbF induces primarily C:G>A:T mutations, followed by C:G>T:A and C:G>G:C, indicating that BbF metabolites mainly target guanines and cytosines. The mutation spectrum of BbF correlates with cancer mutational signatures associated with tobacco exposure, supporting its contribution to the carcinogenicity of combustion-derived PAHs in humans. Overall, BbF's mutagenic effects are similar to benzo[ a ]pyrene, a well-studied mutagenic PAH. Our work showcases the utility of DS for effective mutagenicity assessment of environmental pollutants. Synopsis We used Duplex Sequencing to study the mutagenicity of benzo[ b ]fluoranthene across the mouse genome. Dose-dependent changes in mutation frequency and spectrum quantify its role in PAH-induced carcinogenicity.
Collapse
|
26
|
Jeong JH, Park C. Comparative Study of 1444 nm Laser Monotherapy versus Integrated Liposuction in the Treatment of Axillary Osmidrosis. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1151. [PMID: 39064579 PMCID: PMC11278600 DOI: 10.3390/medicina60071151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/05/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024]
Abstract
Background and Objectives: The 1444 nm wavelength Neodymium:Yttrium-Aluminum-Garnet (Nd:YAG) laser treatment is an efficient method for treating axillary osmidrosis (AO); however, it has a relatively low treatment persistence. To address this issue, we performed integrated liposuction surgery with a laser to treat AO and compared the results with those of a group treated only with a laser. Materials and Methods: This study compared the outcomes of AO treatment between the two groups up to six months postoperatively. The first group of 18 patients underwent laser treatment alone, and the second group of 12 patients underwent integrated liposuction surgery in addition to laser treatment. Outcomes were assessed using the following variables: degree of malodor (DOM), sweating area, patient satisfaction, pain levels, and complications, such as burns, swelling, and contractures. Results: Compared to the laser-only group, the integrated liposuction group demonstrated significantly superior outcomes in terms of DOM (p = 0.002) and patient satisfaction (p = 0.006), as well as a reduction in the sweating area (p = 0.012). The pain rating was higher in the liposuction group, but the difference was not statistically significant (p = 0.054). Compared with the patients in the integrated liposuction treatment group, those in the laser treatment group exhibited a significantly higher number of burns under the axillae (p = 0.025). However, no significant differences were observed in the swelling or contracture between the groups. Conclusions: Integrated liposuction with laser therapy significantly improved treatment outcomes, including malodor, patient satisfaction, sweat test results, and decreased complication rates.
Collapse
Affiliation(s)
- Jae Hoon Jeong
- Department of Plastic and Reconstructive Surgery, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam-si 13620, Republic of Korea;
| | - Chongsoo Park
- Department of Plastic and Reconstructive Surgery, Inje University College of Medicine, Inje University Busan Paik Hospital, Busan 47392, Republic of Korea
| |
Collapse
|
27
|
Sun G, Huang W, Wang L, Wu J, Zhao G, Ren H, Liu L, Kong X. Molecular findings in patients for whole exome sequencing and mitochondrial genome assessment. Clin Chim Acta 2024; 561:119774. [PMID: 38852791 DOI: 10.1016/j.cca.2024.119774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/20/2024] [Accepted: 06/06/2024] [Indexed: 06/11/2024]
Abstract
OBJECTIVE Whole exome sequencing (WES) is becoming more widely used as a diagnostic tool in the field of medicine. In this article, we reported the diagnostic yield of WES and mitochondrial genome assessment in 2226 consecutive cases in a single clinical laboratory. MATERIALS AND METHODS We retrospectively analyzed consecutive WES reports from 2226 patients with various genetic disorders. WES-process was focused exclusively on the probands and aimed at a higher diagnostic capacity. We determined the diagnostic rate of WES overall and by phenotypic category, mode of inheritance, mitochondrial genome variant, and copy number variants (CNVs). RESULTS Among the 2226 patients who had diagnostic WES proband-only, the overall diagnostic yield of WES was 34.59% (770/2226). The highest diagnostic yield was observed in autosomal dominant disorders, at 45.58% (351/770), followed by autosomal recessive at 31.95%(246/770), X-linked disorder at 9.61%(74/770), and mitochondrial diseases at a notably lower 0.65%(5/770). The 12.21% (94/770) diagnoses were based on a total of 94 copy number variants reported from WES data. CNVs in children accounted for 67.02% of the total CNVs. While majority of the molecular diagnoses were related to nuclear genes, the inclusion of mitochondrial genome sequencing in the WES test contributed to five diagnoses. all mitochondrial diseases were identified in adults. CONCLUSIONS The proband-only WES provided a definitive molecular diagnosis for 34.59% of a large cohort of patients while analysis of WES simultaneously analyzed the SNVs, exons, mitochondrial genome, and CNVs, thereby improving the diagnostic yield significantly compared to the single-detection WES method; and facilitating the identification of novel candidate genes.
Collapse
Affiliation(s)
- Gege Sun
- Genetics and Prenatal Diagnosis Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wei Huang
- Genetics and Prenatal Diagnosis Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Li Wang
- Genetics and Prenatal Diagnosis Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jinlin Wu
- Genetics and Prenatal Diagnosis Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ganye Zhao
- Genetics and Prenatal Diagnosis Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Huanan Ren
- Genetics and Prenatal Diagnosis Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lina Liu
- Genetics and Prenatal Diagnosis Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiangdong Kong
- Genetics and Prenatal Diagnosis Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
28
|
Nissi J, Kalam L, Catalini L, Fedder J. Effects of Chemotherapy on Aneuploidy Rates in Sperm from Male Patients with Testicular Cancer or Hodgkin's Lymphoma-A Systematic Review. J Clin Med 2024; 13:3650. [PMID: 38999216 PMCID: PMC11242479 DOI: 10.3390/jcm13133650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/12/2024] [Accepted: 06/17/2024] [Indexed: 07/14/2024] Open
Abstract
BACKGROUND Testicular cancer and Hodgkin's lymphoma are prevalent malignancies among young males aged 20 to 39. The incidence of testicular cancer and lymphoma has risen in recent years, with orchiectomy often followed by adjuvant chemotherapy as the primary treatment for testicular cancer and chemotherapy for lymphoma. Chemotherapy has been associated with an increased risk of aneuploidy and reduced fertility. METHOD This systematic review included seven studies, both case-control and longitudinal prospective designs, from the PubMed, Embase, and Cochrane Library databases. The screening process was conducted using the online tool covidence.org. RESULTS The study outcomes indicate varied impacts of chemotherapy on aneuploidy rates. An increase in the aneuploidy rates, notably for the sex chromosomes, immediately post-treatment was a common trend, followed by a decline in pretreatment values. CONCLUSION This systematic review presents the effects of chemotherapy on the aneuploidy rates of testicular cancer and Hodgkin's lymphoma patients, with a decrease post-treatment. The findings underscore the need for larger, well-designed studies with a longer study period.
Collapse
Affiliation(s)
- Jasmin Nissi
- Centre of Andrology and Fertility Clinic, Odense University Hospital, DK-5000 Odense, Denmark
- Department of Clinical Research, Faculty of Health Sciences & Medicine, University of Southern Denmark, DK-5000 Odense, Denmark
| | - Laila Kalam
- Centre of Andrology and Fertility Clinic, Odense University Hospital, DK-5000 Odense, Denmark
- Department of Clinical Research, Faculty of Health Sciences & Medicine, University of Southern Denmark, DK-5000 Odense, Denmark
| | - Laura Catalini
- Centre of Andrology and Fertility Clinic, Odense University Hospital, DK-5000 Odense, Denmark
- Department of Clinical Research, Faculty of Health Sciences & Medicine, University of Southern Denmark, DK-5000 Odense, Denmark
| | - Jens Fedder
- Centre of Andrology and Fertility Clinic, Odense University Hospital, DK-5000 Odense, Denmark
- Department of Clinical Research, Faculty of Health Sciences & Medicine, University of Southern Denmark, DK-5000 Odense, Denmark
| |
Collapse
|
29
|
Parsons BL, Beal MA, Dearfield KL, Douglas GR, Gi M, Gollapudi BB, Heflich RH, Horibata K, Kenyon M, Long AS, Lovell DP, Lynch AM, Myers MB, Pfuhler S, Vespa A, Zeller A, Johnson GE, White PA. Severity of effect considerations regarding the use of mutation as a toxicological endpoint for risk assessment: A report from the 8th International Workshop on Genotoxicity Testing (IWGT). ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2024. [PMID: 38828778 DOI: 10.1002/em.22599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/13/2024] [Accepted: 04/15/2024] [Indexed: 06/05/2024]
Abstract
Exposure levels without appreciable human health risk may be determined by dividing a point of departure on a dose-response curve (e.g., benchmark dose) by a composite adjustment factor (AF). An "effect severity" AF (ESAF) is employed in some regulatory contexts. An ESAF of 10 may be incorporated in the derivation of a health-based guidance value (HBGV) when a "severe" toxicological endpoint, such as teratogenicity, irreversible reproductive effects, neurotoxicity, or cancer was observed in the reference study. Although mutation data have been used historically for hazard identification, this endpoint is suitable for quantitative dose-response modeling and risk assessment. As part of the 8th International Workshops on Genotoxicity Testing, a sub-group of the Quantitative Analysis Work Group (WG) explored how the concept of effect severity could be applied to mutation. To approach this question, the WG reviewed the prevailing regulatory guidance on how an ESAF is incorporated into risk assessments, evaluated current knowledge of associations between germline or somatic mutation and severe disease risk, and mined available data on the fraction of human germline mutations expected to cause severe disease. Based on this review and given that mutations are irreversible and some cause severe human disease, in regulatory settings where an ESAF is used, a majority of the WG recommends applying an ESAF value between 2 and 10 when deriving a HBGV from mutation data. This recommendation may need to be revisited in the future if direct measurement of disease-causing mutations by error-corrected next generation sequencing clarifies selection of ESAF values.
Collapse
Affiliation(s)
- Barbara L Parsons
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | - Marc A Beal
- Bureau of Chemical Safety, Health Products and Food Branch, Health Canada, Ottawa, Ontario, Canada
| | - Kerry L Dearfield
- U.S. Environmental Protection Agency and U.S. Department of Agriculture, Washington, DC, USA
| | - George R Douglas
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario, Canada
| | - Min Gi
- Department of Environmental Risk Assessment, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | | | - Robert H Heflich
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | | | - Michelle Kenyon
- Portfolio and Regulatory Strategy, Drug Safety Research and Development, Pfizer, Groton, Connecticut, USA
| | - Alexandra S Long
- Existing Substances Risk Assessment Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario, Canada
| | - David P Lovell
- Population Health Research Institute, St George's Medical School, University of London, London, UK
| | | | - Meagan B Myers
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | | | - Alisa Vespa
- Pharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario, Canada
| | - Andreas Zeller
- Pharmaceutical Sciences, pRED Innovation Center Basel, Hoffmann-La Roche Ltd, Basel, Switzerland
| | - George E Johnson
- Swansea University Medical School, Swansea University, Swansea, Wales, UK
| | - Paul A White
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario, Canada
| |
Collapse
|
30
|
Tian X, Liu Z. Single nucleotide variants in lung cancer. CHINESE MEDICAL JOURNAL PULMONARY AND CRITICAL CARE MEDICINE 2024; 2:88-94. [PMID: 39169933 PMCID: PMC11332866 DOI: 10.1016/j.pccm.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Indexed: 08/23/2024]
Abstract
Germline genetic variants, including single-nucleotide variants (SNVs) and copy number variants (CNVs), account for interpatient heterogeneity. In the past several decades, genome-wide association studies (GWAS) have identified multiple lung cancer-associated SNVs in Caucasian and Chinese populations. These variants either reside within coding regions and change the structure and function of cancer-related proteins or reside within non-coding regions and alter the expression level of cancer-related proteins. The variants can be used not only for cancer risk assessment and prevention but also for the development of new therapies. In this review, we discuss the lung cancer-associated SNVs identified to date, their contributions to lung tumorigenesis and prognosis, and their potential use in predicting prognosis and implementing therapeutic strategies.
Collapse
Affiliation(s)
- Xiaoling Tian
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Cell Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Zhe Liu
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Cell Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| |
Collapse
|
31
|
Neacșu SM, Mititelu M, Ozon EA, Musuc AM, Iuga IDM, Manolescu BN, Petrescu S, Pandele Cusu J, Rusu A, Surdu VA, Oprea E, Lupuliasa D, Popescu IA. Comprehensive Analysis of Novel Synergistic Antioxidant Formulations: Insights into Pharmacotechnical, Physical, Chemical, and Antioxidant Properties. Pharmaceuticals (Basel) 2024; 17:690. [PMID: 38931357 PMCID: PMC11206646 DOI: 10.3390/ph17060690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/22/2024] [Accepted: 05/25/2024] [Indexed: 06/28/2024] Open
Abstract
(1) Background: Oxidative stress plays a pivotal role in the pathogenesis of various diseases, including neurodegenerative disorders, cardiovascular diseases, cancer, and diabetes, highlighting the pressing need for effective antioxidant interventions. (2) Methods: In this study, we aimed to develop and characterise two novel antioxidant formulations, F3 and F4, as therapeutic interventions for oxidative stress-related conditions. (3) Results: The physicochemical characterisation, preformulation analysis, formulation, preparation of filling powders for capsules, capsule content evaluation, and antioxidant activity assessment of the two novel antioxidant formulations were assessed. These formulations comprise a combination of well-established antioxidants like quercetin, biotin, coenzyme Q10, and resveratrol. Through comprehensive testing, the formulations' antioxidant efficacy, stability, and potential synergistic interactions were evaluated. (4) Conclusions: The findings underscore the promising potential of these formulations as therapeutic interventions for oxidative stress-related disorders and highlight the significance of antioxidant interventions in mitigating their progression.
Collapse
Affiliation(s)
- Sorinel Marius Neacșu
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020945 Bucharest, Romania; (S.M.N.); (D.L.); (I.A.P.)
| | - Magdalena Mititelu
- Department of Clinical Laboratory and Food Safety, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020945 Bucharest, Romania; (M.M.); (I.D.M.I.)
| | - Emma Adriana Ozon
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020945 Bucharest, Romania; (S.M.N.); (D.L.); (I.A.P.)
| | - Adina Magdalena Musuc
- Institute of Physical Chemistry—Ilie Murgulescu, Romanian Academy, 202 Spl. Independentei, 060021 Bucharest, Romania; (S.P.); (J.P.C.); (A.R.)
| | - Izabela Dana Maria Iuga
- Department of Clinical Laboratory and Food Safety, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020945 Bucharest, Romania; (M.M.); (I.D.M.I.)
| | - Bogdan Nicolae Manolescu
- “C. Nenitescu” Department of Organic Chemistry, Faculty of Applied Chemistry and Science of Materials, National University for Science and Technology Politehnica Bucharest, 1–7 Gh. Polizu Street, 011061 Bucharest, Romania;
| | - Simona Petrescu
- Institute of Physical Chemistry—Ilie Murgulescu, Romanian Academy, 202 Spl. Independentei, 060021 Bucharest, Romania; (S.P.); (J.P.C.); (A.R.)
| | - Jeanina Pandele Cusu
- Institute of Physical Chemistry—Ilie Murgulescu, Romanian Academy, 202 Spl. Independentei, 060021 Bucharest, Romania; (S.P.); (J.P.C.); (A.R.)
| | - Adriana Rusu
- Institute of Physical Chemistry—Ilie Murgulescu, Romanian Academy, 202 Spl. Independentei, 060021 Bucharest, Romania; (S.P.); (J.P.C.); (A.R.)
| | - Vasile-Adrian Surdu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, National University for Science and Technology Politehnica Bucharest, 1–7 Gh. Polizu Street, 011061 Bucharest, Romania;
| | - Eliza Oprea
- Department of Microbiology, Faculty of Biology, University of Bucharest, 1–3 Portocalilor Way, 060101 Bucharest, Romania;
| | - Dumitru Lupuliasa
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020945 Bucharest, Romania; (S.M.N.); (D.L.); (I.A.P.)
| | - Ioana Andreea Popescu
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020945 Bucharest, Romania; (S.M.N.); (D.L.); (I.A.P.)
| |
Collapse
|
32
|
Jarand C, Baker K, Petroff M, Jin M, Reed WF. DNA Released by Adeno-Associated Virus Strongly Alters Capsid Aggregation Kinetics in a Physiological Solution. Biomacromolecules 2024; 25:2890-2901. [PMID: 38683736 PMCID: PMC11094734 DOI: 10.1021/acs.biomac.4c00027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 05/02/2024]
Abstract
While adeno-associated virus is a leading vector for gene therapy, significant gaps remain in understanding AAV degradation and stability. In this work, we study the degradation of an engineered AAV serotype at physiological pH and ionic strength. Viral particles of varying fractions of encapsulated DNA were incubated between 30 and 60 °C, with changes in molecular weight measured by changes in total light scattering intensity at 90° over time. Mostly full vectors demonstrated a rapid decrease in molecular weight corresponding to the release of capsid DNA, followed by slow aggregation. In contrast, empty vectors demonstrated immediate, rapid colloid-type aggregation. Mixtures of full and empty capsids showed a pronounced decrease in initial aggregation that cannot be explained by a linear superposition of empty and full degradation scattering signatures, indicating interactions between capsids and ejected DNA that influenced aggregation mechanisms. This demonstrates key interactions between AAV capsids and their cargo that influence capsid degradation, aggregation, and DNA release mechanisms in a physiological solution.
Collapse
Affiliation(s)
- Curtis
W. Jarand
- Department
of Physics, Tulane University, New Orleans, Louisiana 70118, United States
| | - Karen Baker
- Downstream
and Drug Product Process Development, Spark
Therapeutics, Philadelphia, Pennsylvania 19143, United States
| | - Matthew Petroff
- Downstream
and Drug Product Process Development, Spark
Therapeutics, Philadelphia, Pennsylvania 19143, United States
| | - Mi Jin
- Downstream
and Drug Product Process Development, Spark
Therapeutics, Philadelphia, Pennsylvania 19143, United States
| | - Wayne F. Reed
- Department
of Physics, Tulane University, New Orleans, Louisiana 70118, United States
| |
Collapse
|
33
|
Aguilar O, Chang C, Bismuth E, Rivas MA. Integrative machine learning approaches for predicting disease risk using multi-omics data from the UK Biobank. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.16.589819. [PMID: 38659731 PMCID: PMC11042345 DOI: 10.1101/2024.04.16.589819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
We train prediction and survival models using multi-omics data for disease risk identification and stratification. Existing work on disease prediction focuses on risk analysis using datasets of individual data types (metabolomic, genomics, demographic), while our study creates an integrated model for disease risk assessment. We compare machine learning models such as Lasso Regression, Multi-Layer Perceptron, XG Boost, and ADA Boost to analyze multi-omics data, incorporating ROC-AUC score comparisons for various diseases and feature combinations. Additionally, we train Cox proportional hazard models for each disease to perform survival analysis. Although the integration of multi-omics data significantly improves risk prediction for 8 diseases, we find that the contribution of metabolomic data is marginal when compared to standard demographic, genetic, and biomarker features. Nonetheless, we see that metabolomics is a useful replacement for the standard biomarker panel when it is not readily available.
Collapse
Affiliation(s)
- Oscar Aguilar
- Department of Management Science & Engineering, Stanford University, Stanford, CA, United States of America
| | - Cheng Chang
- Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA, United States of America
| | - Elsa Bismuth
- Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA, United States of America
| | - Manuel A. Rivas
- Department of Biomedical Data Science, Stanford University, Stanford, CA, United States of America
| |
Collapse
|
34
|
Deng Z, Liu Y, Zhou H. Distinct roles of CD244 expression in cancer diagnosis and prognosis: A pan-cancer analysis. Heliyon 2024; 10:e28928. [PMID: 38633624 PMCID: PMC11021915 DOI: 10.1016/j.heliyon.2024.e28928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/19/2024] Open
Abstract
The abnormal expression of tumor associated genes in pan-cancer is closely related to the clinicopathological features of distinct cancer types. Thus, identifying the role of specific genes in pan-cancer is needed for developing effective anti-cancer strategies. However, the function of CD244 in pan-cancer has not been fully understood. In this study, we explored the CD244 expression profile across 33 tumor types based on The Cancer Genome Atlas project, the Gene Expression Omnibus database, and other bioinformatics tools. We found down-regulated expression levels in seven tumor types and up-regulated expression levels in two tumor types. We subsequently explored the relationship between survival rate and CD244 expression, and found the positive relationship in patients with adrenocortical carcinoma (ACC), head and neck squamous cell carcinoma (HNSC), skin cutaneous melanoma (SKCM), and uterine corpus endometrial carcinoma (UCEC). We further investigated the association between CD244 expression and tumor-infiltrating immune cells, and discovered their positive correlation in different tumors. We found that CD244 expression level was higher in normal samples than in UCEC samples, and was positively associated with CD8+ T cells infiltrating. The mutation status, promoter methylation, CD244-related molecules and signaling pathways were also employed to study the potential function of CD244 in tumor initiation and progression. Our study offers a comprehensive overview of CD244 in human tumors, revealing CD244 as a potential prognostic biomarker and immunotherapeutic target in cancers.
Collapse
Affiliation(s)
- Zhenzhen Deng
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Yuanhong Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Haiyan Zhou
- Department of Pathology, School of Basic Medicine, Central South University, Changsha, Hunan, China
| |
Collapse
|
35
|
Li P, Zhu C, Liu LS, Han CTJ, Chu HC, Li Z, Mao Z, Wang F, Lo PK. Ultra-stable threose nucleic acid-based biosensors for rapid and sensitive nucleic acid detection and in vivo imaging. Acta Biomater 2024; 177:472-485. [PMID: 38296012 DOI: 10.1016/j.actbio.2024.01.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 01/04/2024] [Accepted: 01/22/2024] [Indexed: 02/13/2024]
Abstract
The human genome's nucleotide sequence variation, such as single nucleotide mutations, can cause numerous genetic diseases. However, detecting nucleic acids accurately and rapidly in complex biological samples remains a major challenge. While natural deoxyribonucleic acid (DNA) has been used as biorecognition probes, it has limitations like poor specificity, reproducibility, nuclease-induced enzymatic degradation, and reduced bioactivity on solid surfaces. To address these issues, we introduce a stable and reliable biosensor called graphene oxide (GO)- threose nucleic acid (TNA). It comprises chemically modified TNA capture probes on GO for detecting and imaging target nucleic acids in vitro and in vivo, distinguishing single nucleobase mismatches, and monitoring dynamic changes in target microRNA (miRNA). By loading TNA capture probes onto the GO substrate, the GO-TNA sensing platform for nucleic acid detection demonstrates a significant 88-fold improvement in the detection limit compared to TNA probes alone. This platform offers a straightforward preparation method without the need for costly and labor-intensive isolation procedures or complex chemical reactions, enabling real-time analysis. The stable TNA-based GO sensing nanoplatform holds promise for disease diagnosis, enabling rapid and accurate detection and imaging of various disease-related nucleic acid molecules at the in vivo level. STATEMENT OF SIGNIFICANCE: The study's significance lies in the development of the GO-TNA biosensor, which addresses limitations in nucleic acid detection. By utilizing chemically modified nucleic acid analogues, the biosensor offers improved reliability and specificity, distinguishing single nucleobase mismatches and avoiding false signals. Additionally, its ability to detect and image target nucleic acids in vivo facilitates studying disease mechanisms. The simplified preparation process enhances practicality and accessibility, enabling real-time analysis. The biosensor's potential applications extend beyond healthcare, contributing to environmental analysis and food safety. Overall, this study's findings have substantial implications for disease diagnosis, biomedical research, and diverse applications, advancing nucleic acid detection and its impact on various fields.
Collapse
Affiliation(s)
- Pan Li
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong SAR, P. R. China
| | - Chiying Zhu
- Shenzhen Clinical Medical College, Guangzhou University of Chinese Medicine, 518116 Shenzhen, P. R. China
| | - Ling Sum Liu
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, Wood Lane, London W12 0BZ, United Kingdom
| | - Chang Tristan Juin Han
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong SAR, P. R. China
| | - Hoi Ching Chu
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong SAR, P. R. China
| | - Zhenhua Li
- The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), 523059 Dongguan, P. R. China
| | - Zhengwei Mao
- Department of Polymer Science and Engineering, Zhejiang University, 310027 Hangzhou, P. R. China.
| | - Fei Wang
- The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), 523059 Dongguan, P. R. China.
| | - Pik Kwan Lo
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong SAR, P. R. China; Key Laboratory of Biochip Technology, Biotech and Health Care, Shenzhen Research Institute of City University of Hong Kong, 518057 Shenzhen, P. R. China.
| |
Collapse
|
36
|
Pandey P, Alexov E. Most Monogenic Disorders Are Caused by Mutations Altering Protein Folding Free Energy. Int J Mol Sci 2024; 25:1963. [PMID: 38396641 PMCID: PMC10888012 DOI: 10.3390/ijms25041963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
Revealing the molecular effect that pathogenic missense mutations have on the corresponding protein is crucial for developing therapeutic solutions. This is especially important for monogenic diseases since, for most of them, there is no treatment available, while typically, the treatment should be provided in the early development stages. This requires fast targeted drug development at a low cost. Here, we report an updated database of monogenic disorders (MOGEDO), which includes 768 proteins and the corresponding 2559 pathogenic and 1763 benign mutations, along with the functional classification of the corresponding proteins. Using the database and various computational tools that predict folding free energy change (ΔΔG), we demonstrate that, on average, 70% of pathogenic cases result in decreased protein stability. Such a large fraction indicates that one should aim at in silico screening for small molecules stabilizing the structure of the mutant protein. We emphasize that knowledge of ΔΔG is essential because one wants to develop stabilizers that compensate for ΔΔG, but do not make protein over-stable, since over-stable protein may be dysfunctional. We demonstrate that, by using ΔΔG and predicted solvent exposure of the mutation site, one can develop a predictive method that distinguishes pathogenic from benign mutations with a success rate even better than some of the leading pathogenicity predictors. Furthermore, hydrophobic-hydrophobic mutations have stronger correlations between folding free energy change and pathogenicity compared with others. Also, mutations involving Cys, Gly, Arg, Trp, and Tyr amino acids being replaced by any other amino acid are more likely to be pathogenic. To facilitate further detection of pathogenic mutations, the wild type of amino acids in the 768 proteins mentioned above was mutated to other 19 residues (14,847,817 mutations), the ΔΔG was calculated with SAAFEC-SEQ, and 5,506,051 mutations were predicted to be pathogenic.
Collapse
Affiliation(s)
| | - Emil Alexov
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, USA;
| |
Collapse
|
37
|
Khayat AM, Alshareef BG, Alharbi SF, AlZahrani MM, Alshangity BA, Tashkandi NF. Consanguineous Marriage and Its Association With Genetic Disorders in Saudi Arabia: A Review. Cureus 2024; 16:e53888. [PMID: 38465157 PMCID: PMC10924896 DOI: 10.7759/cureus.53888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2024] [Indexed: 03/12/2024] Open
Abstract
Consanguineous marriages, where spouses are related by blood, have been a longstanding practice in human history. The primary medical concern with consanguineous marriages is the increased risk of genetic disorders. When closely related individuals reproduce, there is a higher probability that both parents carry the same genetic mutation. In Arab countries, especially Saudi Arabia, the rate of consanguineous marriage is high compared with Western European and Asian countries. This high rate is directly proportionate with elevated risk of genetic disorders, including congenital heart diseases, renal diseases, and rare blood disorders. Additionally, it was noted that the rate of negative postnatal outcomes is higher in consanguineous marriages compared with the general population. These observations indicate the necessity of tackling this area and highlighting the consequences of this practice. In this review, we aim to discuss the current evidence regarding the association between consanguineous marriages and genetic disorders in Saudi Arabia.
Collapse
Affiliation(s)
| | | | - Sara F Alharbi
- Biotechnology, College of Science, Taif University, Taif, SAU
| | | | | | - Noha Farouk Tashkandi
- Medical Research, College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Riyadh, SAU
| |
Collapse
|
38
|
Lan F, Chen Z, Lin X. Systematic analysis and evaluation of chromosome aberrations in major birth defects associated with infertility. Intractable Rare Dis Res 2024; 13:29-35. [PMID: 38404732 PMCID: PMC10883841 DOI: 10.5582/irdr.2023.01100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 02/27/2024] Open
Abstract
Previous studies have indicated an elevated risk of infertility in certain birth defects, including congenital heart disease (CHD), hypospadias, cryptorchidism, and disorders of sexual development (DSD). Although the identification of chromosomal abnormalities or chromosomal aberrations (CAs) is crucial for the diagnosis of these conditions, the assessment of CAs in these disorders remains unclear, and few large-scale studies have been conducted at multiple centers. The aim of the current study was to systematically evaluate the prevalence of CAs in CHD, hypospadias, cryptorchidism, and DSD. Studies reporting CAs in these birth defects were retrospectively analyzed from 1991- 2023, using online databases such as PubMed and Google scholar as well as preprints and references from related literature. Comprehensive screening, data acquisition, and systematic assessments of the identified literature were performed. Ultimately, searches yielded a total of 7,356 samples from 14 published articles on CHD, 298 hypospadias cases from 4 published articles, 1,681 cryptorchidism cases from 4 published articles, and 2,876 DSD cases from 7 published articles. Carrier rates of CAs varied widely among these studies and conditions. A retrospective analysis revealed that CHD was associated with the highest carrier rate (26%) for CAs, followed by DSD (21%), hypospadias (9%), and cryptorchidism (5%). A subtype analysis of CAs indicated a higher prevalence of numerical abnormalities among the reported cases. Therefore, considering CAs in birth defects associated with infertility is imperative. This provides a foundation for the further clinical implementation of chromosomal screening and enhancing high-risk screening for individuals in the real world.
Collapse
Affiliation(s)
- Fuying Lan
- Department of Urology, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhongzhong Chen
- Department of Urology, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Urogenital Development Research Center, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoling Lin
- Department of Urology, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
39
|
Mohammadian Farsani A, Mokhtari N, Nooraei S, Bahrulolum H, Akbari A, Farsani ZM, Khatami S, Ebadi MS, Ahmadian G. Lipid nanoparticles: The game-changer in CRISPR-Cas9 genome editing. Heliyon 2024; 10:e24606. [PMID: 38288017 PMCID: PMC10823087 DOI: 10.1016/j.heliyon.2024.e24606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/10/2024] [Accepted: 01/10/2024] [Indexed: 01/31/2024] Open
Abstract
The steady progress in genome editing, especially genome editing based on the use of clustered regularly interspaced short palindromic repeats (CRISPR) and programmable nucleases to make precise modifications to genetic material, has provided enormous opportunities to advance biomedical research and promote human health. However, limited transfection efficiency of CRISPR-Cas9 poses a substantial challenge, hindering its wide adoption for genetic modification. Recent advancements in nanoparticle technology, specifically lipid nanoparticles (LNPs), offer promising opportunities for targeted drug delivery. LNPs are becoming popular as a means of delivering therapeutics, including those based on nucleic acids and mRNA. Notably, certain LNPs, such as Polyethylene glycol-phospholipid-modified cationic lipid nanoparticles and solid lipid nanoparticles, exhibit remarkable potential for efficient CRISPR-Cas9 delivery as a gene editing instrument. This review will introduce the molecular mechanisms and diverse applications of the CRISPR/Cas9 gene editing system, current strategies for delivering CRISPR/Cas9-based tools, the advantage of LNPs for CRISPR-Cas9 delivery, an overview of strategies for overcoming off-target genome editing, and approaches for improving genome targeting and tissue targeting. We will also highlight current developments and recent clinical trials for the delivery of CRISPR/Cas9. Finally, future directions for overcoming the limitations and adaptation of this technology for clinical trials will be discussed.
Collapse
Affiliation(s)
- Arezoo Mohammadian Farsani
- Department of Industrial and Environmental Biotechnology, National Institute for Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Negin Mokhtari
- Department of Industrial and Environmental Biotechnology, National Institute for Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi Univesity, Tehran, Iran
| | - Saghi Nooraei
- Department of Industrial and Environmental Biotechnology, National Institute for Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Howra Bahrulolum
- Department of Industrial and Environmental Biotechnology, National Institute for Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Ali Akbari
- Department of Industrial and Environmental Biotechnology, National Institute for Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Zoheir Mohammadian Farsani
- Department of Industrial and Environmental Biotechnology, National Institute for Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Seyedmoein Khatami
- Department of Industrial and Environmental Biotechnology, National Institute for Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Mozhdeh sadat Ebadi
- Department of Industrial and Environmental Biotechnology, National Institute for Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Gholamreza Ahmadian
- Department of Industrial and Environmental Biotechnology, National Institute for Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| |
Collapse
|
40
|
Huang T, Han Y, Chen Y, Diao Z, Ma Y, Feng L, Wang D, Zhang R, Li J. RLP system: A single-tube two-step approach with dual amplification cascades for rapid identification of EGFR T790M. Anal Chim Acta 2024; 1287:342126. [PMID: 38182396 DOI: 10.1016/j.aca.2023.342126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/03/2023] [Accepted: 12/07/2023] [Indexed: 01/07/2024]
Abstract
BACKGROUND The detection of cancer gene mutations in biofluids plays a pivotal role in revolutionizing disease diagnosis. The presence of a large background of wild-type sequences poses a challenge to liquid biopsy of tumor mutation genes. Suppressing the detection of wild-type sequences can reduce their interference, however, due to the minimal difference between mutant and wild-type sequences (such as single nucleotide variants differing by only one nucleotide), how to suppress the detection of wild-type sequences to the greatest extent without compromising the sensitivity of mutant sequence detection remains to be explored. SIGNIFICANCE The RLP system addresses the incompatibility between RPA and RT-PCR reactions through a physical separation strategy. Besides, due to the remarkable flexibility of locked nucleic acid probes, the RLP system emerges as a potent tool for detecting mutations across diverse genes. It excels in sensitivity and speed, tolerates plasma matrix, and is cost-effective. This bodes well for advancing the field of precision medicine. RESULTS The recombinase-assisted locked nucleic acid (LNA) probe-mediated dual amplification biosensing platform (namely RLP), which combines recombinase polymerase amplification (RPA) and LNA clamp PCR method in one tube, enabling highly sensitive and selective detection of EGFR T790M mutation under the help of well-designed LNA probes. This technique can quantify DNA targets with a limit of detection (LoD) at the single copy level and identify point mutation with mutant allelic fractions as low as 0.007 % in 45 min. Moreover, RLP has the potential for the direct detection of plasma samples without the need for nucleic acid extraction and the cost of a single test is less than 1USD. Furthermore, the RLP system is a cascading dual amplification reaction conducted in a single tube, which eliminates the risk of cross-contamination associated with opening multiple tubes and ensures the reliability of the results.
Collapse
Affiliation(s)
- Tao Huang
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, China; National Center for Clinical Laboratories, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
| | - Yanxi Han
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, China; National Center for Clinical Laboratories, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
| | - Yuqing Chen
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, China; National Center for Clinical Laboratories, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
| | - Zhenli Diao
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, China; National Center for Clinical Laboratories, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
| | - Yu Ma
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, China; National Center for Clinical Laboratories, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
| | - Lei Feng
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, China; National Center for Clinical Laboratories, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
| | - Duo Wang
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, China; National Center for Clinical Laboratories, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
| | - Rui Zhang
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, China; National Center for Clinical Laboratories, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China.
| | - Jinming Li
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, China; National Center for Clinical Laboratories, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China.
| |
Collapse
|
41
|
Walton NA, Nagarajan R, Wang C, Sincan M, Freimuth RR, Everman DB, Walton DC, McGrath SP, Lemas DJ, Benos PV, Alekseyenko AV, Song Q, Gamsiz Uzun E, Taylor CO, Uzun A, Person TN, Rappoport N, Zhao Z, Williams MS. Enabling the clinical application of artificial intelligence in genomics: a perspective of the AMIA Genomics and Translational Bioinformatics Workgroup. J Am Med Inform Assoc 2024; 31:536-541. [PMID: 38037121 PMCID: PMC10797281 DOI: 10.1093/jamia/ocad211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 10/09/2023] [Accepted: 10/26/2023] [Indexed: 12/02/2023] Open
Abstract
OBJECTIVE Given the importance AI in genomics and its potential impact on human health, the American Medical Informatics Association-Genomics and Translational Biomedical Informatics (GenTBI) Workgroup developed this assessment of factors that can further enable the clinical application of AI in this space. PROCESS A list of relevant factors was developed through GenTBI workgroup discussions in multiple in-person and online meetings, along with review of pertinent publications. This list was then summarized and reviewed to achieve consensus among the group members. CONCLUSIONS Substantial informatics research and development are needed to fully realize the clinical potential of such technologies. The development of larger datasets is crucial to emulating the success AI is achieving in other domains. It is important that AI methods do not exacerbate existing socio-economic, racial, and ethnic disparities. Genomic data standards are critical to effectively scale such technologies across institutions. With so much uncertainty, complexity and novelty in genomics and medicine, and with an evolving regulatory environment, the current focus should be on using these technologies in an interface with clinicians that emphasizes the value each brings to clinical decision-making.
Collapse
Affiliation(s)
- Nephi A Walton
- Division of Medical Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112 ,United States
| | - Radha Nagarajan
- Enterprise Information Services, Cedars-Sinai Medical Center, Los Angeles, CA 90025, United States
- Information Services Department, Children’s Hospital of Orange County, Orange, CA 92868, United States
| | - Chen Wang
- Division of Computational Biology, Department of Quantitative Health Sciences, Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, United States
| | - Murat Sincan
- Flatiron Health, New York, NY 10013, United States
- Department of Internal Medicine, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD 57107, United States
| | - Robert R Freimuth
- Department of Artificial Intelligence and Informatics, Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, United States
| | - David B Everman
- EverMed Genetics and Genomics Consulting LLC, Greenville, SC 29607, United States
| | | | - Scott P McGrath
- CITRIS Health, CITRIS and Banatao Institute, University of California Berkeley, Berkeley, CA 94720, United States
| | - Dominick J Lemas
- Department of Health Outcomes and Biomedical Informatics, University of Florida, Gainesville, FL 32610, United States
| | - Panayiotis V Benos
- Department of Epidemiology, University of Florida, Gainesville, FL 32610, United States
| | - Alexander V Alekseyenko
- Department of Public Health Sciences, Biomedical Informatics Center, Medical University of South Carolina, Charleston, SC 29403, United States
| | - Qianqian Song
- Department of Health Outcomes and Biomedical Informatics, University of Florida, Gainesville, FL 32610, United States
| | - Ece Gamsiz Uzun
- Department of Pathology and Laboratory Medicine, Rhode Island Hospital and Lifespan Medical Center, Providence, RI 02915, United States
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School of Brown University, Providence, RI 02915, United States
| | - Casey Overby Taylor
- Departments of Medicine and Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD 21205, United States
| | - Alper Uzun
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School of Brown University, Providence, RI 02915, United States
- Legorreta Cancer Center, Brown University, Providence, RI 02915, United States
| | - Thomas Nate Person
- Department of Bioinformatics and Genomics, Huck Institutes of the Life Sciences, Penn State University, Bloomsburg, PA 16802, United States
| | - Nadav Rappoport
- Department of Software and Information Systems Engineering, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel
| | - Zhongming Zhao
- Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, United States
| | - Marc S Williams
- Department of Genomic Health, Geisinger, Danville, PA 17822, United States
| |
Collapse
|
42
|
Samir S. Human DNA Mutations and their Impact on Genetic Disorders. Recent Pat Biotechnol 2024; 18:288-315. [PMID: 37936448 DOI: 10.2174/0118722083255081231020055309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 07/25/2023] [Accepted: 09/18/2023] [Indexed: 11/09/2023]
Abstract
DNA is a remarkably precise medium for copying and storing biological information. It serves as a design for cellular machinery that permits cells, organs, and even whole organisms to work. The fidelity of DNA replication results from the action of hundreds of genes involved in proofreading and damage repair. All human cells can acquire genetic changes in their DNA all over life. Genetic mutations are changes to the DNA sequence that happen during cell division when the cells make copies of themselves. Mutations in the DNA can cause genetic illnesses such as cancer, or they could help humans better adapt to their environment over time. The endogenous reactive metabolites, therapeutic medicines, and an excess of environmental mutagens, such as UV rays all continuously damage DNA, compromising its integrity. One or more chromosomal alterations and point mutations at a single site (monogenic mutation) including deletions, duplications, and inversions illustrate such DNA mutations. Genetic conditions can occur when an altered gene is inherited from parents, which increases the risk of developing that particular condition, or some gene alterations can happen randomly. Moreover, symptoms of genetic conditions depend on which gene has a mutation. There are many different diseases and conditions caused by mutations. Some of the most common genetic conditions are Alzheimer's disease, some cancers, cystic fibrosis, Down syndrome, and sickle cell disease. Interestingly, scientists find that DNA mutations are more common than formerly thought. This review outlines the main DNA mutations that occur along the human genome and their influence on human health. The subject of patents pertaining to DNA mutations and genetic disorders has been brought up.
Collapse
Affiliation(s)
- Safia Samir
- Department of Biochemistry and Molecular Biology, Theodor Bilharz Research Institute, Giza, Egypt
| |
Collapse
|
43
|
Kim S, Pistawka C, Langlois S, Osiovich H, Virani A, Kitchin V, Elliott AM. Genetic counselling considerations with genetic/genomic testing in Neonatal and Pediatric Intensive Care Units: A scoping review. Clin Genet 2024; 105:13-33. [PMID: 37927209 DOI: 10.1111/cge.14446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/23/2023] [Accepted: 10/15/2023] [Indexed: 11/07/2023]
Abstract
Genetic and genomic technologies can effectively diagnose numerous genetic disorders. Patients benefit when genetic counselling accompanies genetic testing and international guidelines recommend pre- and post-test genetic counselling with genome-wide sequencing. However, there is a gap in knowledge regarding the unique genetic counselling considerations with different types of genetic testing in the Neonatal Intensive Care Unit (NICU) and the Pediatric Intensive Care Unit (PICU). This scoping review was conducted to identify the gaps in care with respect to genetic counselling for infants/pediatric patients undergoing genetic and genomic testing in NICUs and PICUs and understand areas in need of improvement in order to optimize clinical care for patients, caregivers, and healthcare providers. Five databases (MEDLINE [Ovid], Embase [Ovid], PsycINFO [Ebsco], CENTRAL [Ovid], and CINHAL [Ebsco]) and grey literature were searched. A total of 170 studies were included and used for data extraction and analysis. This scoping review includes descriptive analysis, followed by a narrative account of the extracted data. Results were divided into three groups: pre-test, post-test, and comprehensive (both pre- and post-test) genetic counselling considerations based on indication for testing. More studies were conducted in the NICU than the PICU. Comprehensive genetic counselling was discussed in only 31% of all the included studies demonstrating the need for both pre-test and post-test genetic counselling for different clinical indications in addition to the need to account for different cultural aspects based on ethnicity and geographic factors.
Collapse
Affiliation(s)
- Sunu Kim
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Carly Pistawka
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sylvie Langlois
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Women's Health Research Institute, Vancouver, British Columbia, Canada
| | - Horacio Osiovich
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Women's Health Research Institute, Vancouver, British Columbia, Canada
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Alice Virani
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
- Ethics Service, Provincial Health Services Authority, Vancouver, British Columbia, Canada
| | - Vanessa Kitchin
- Woodward Library, University of British Columbia, Vancouver, British Columbia, Canada
| | - Alison M Elliott
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Women's Health Research Institute, Vancouver, British Columbia, Canada
| |
Collapse
|
44
|
Prem P, Muneshwar KN, Agrawal S, Jaiswal A. The Impact of Increased Homozygosity on Human Fertility: A Comprehensive Review. Cureus 2023; 15:e49000. [PMID: 38111431 PMCID: PMC10726075 DOI: 10.7759/cureus.49000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 11/18/2023] [Indexed: 12/20/2023] Open
Abstract
This comprehensive review explores the multifaceted relationship between increased homozygosity and human fertility, delving into the genetic, ethical, cultural, and public health dimensions of this complex phenomenon. Homozygosity, characterized by identical alleles at specific gene loci, can result from consanguineous marriages, genetic drift, and population isolation. The review highlights key findings, including the heightened risk of recessive genetic disorders, the implications for immune system diversity, and the influence on complex traits and diseases. It underscores the critical role of genetic counseling in addressing these consequences, considering the ethical implications, and respecting cultural practices. The delicate balance between genetic diversity and cultural norms is emphasized, calling for increased awareness and community engagement. Looking ahead, the review suggests emerging technologies, longitudinal studies, and interdisciplinary research as crucial avenues for further exploration, with the ultimate goal of informing effective public health policies and interventions that safeguard genetic diversity and cultural traditions for future generations.
Collapse
Affiliation(s)
- Pranjal Prem
- Community Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Komal N Muneshwar
- Community Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Suyash Agrawal
- Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Arpita Jaiswal
- Obstetrics and Gynaecology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
45
|
Zhang J, Chen G, Habudele Z, Wang X, Cai M, Li H, Gao Y, Lip GYH, Lin H. Relation of Life's Essential 8 to the genetic predisposition for cardiovascular outcomes and all-cause mortality: results from a national prospective cohort. Eur J Prev Cardiol 2023; 30:1676-1685. [PMID: 37228091 DOI: 10.1093/eurjpc/zwad179] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 05/01/2023] [Accepted: 05/20/2023] [Indexed: 05/27/2023]
Abstract
AIMS To evaluate the independent, mediating, interactive, and associated effects of Life's Essential 8 (LE8) and genetic predisposition on the risk of cardiovascular outcomes and all-cause mortality. METHODS AND RESULTS We retrieved a total of 254 783 individuals from the UK Biobank. LE8 was determined by eight metrics (nicotine exposure, physical activity, diet, sleep, body mass index, blood pressure, blood glucose, and blood lipids), and was characterized as low, moderate, and high cardiovascular health (CVH). Genetic predisposition was estimated using the polygenic risk score (PRS). Cox regressions were performed to evaluate the associations between LE8, PRS, and outcomes. During a median follow-up of 12.53 years, all-cause mortality occurred in 10 257 of 197 473 participants, cardiovascular mortality in 2074 of 215 675, and incident cardiovascular disease (CVD) in 71 774 of 215 675. Individuals with moderate or high CVH experienced a lower risk [hazard ratios (HRs) 0.33 to 0.81] of adverse health outcomes compared with their counterparts with low CVH. A substantial proportion (16.1∼69.8%) of health outcomes could be attributable to moderate or high LE8, and up to 51.2% of the associations between PRS and adverse outcomes were mediated by LE8. In high PRS group, individuals with high CVH had lower CVD mortality (HR: 0.26, 95% confidence interval: 0.18, 0.39), compared to those with low CVH. CONCLUSION Ideal CVH was associated with lower risks of cardiovascular outcomes and all-cause mortality, with a more pronounced association observed in individuals with high PRS for CVD. Improving CVH according to LE8 guidelines should be encouraged, especially for those with PRS that indicate high CVD risk.
Collapse
Affiliation(s)
- Junguo Zhang
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou 510080, China
| | - Ge Chen
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou 510080, China
| | - Zierdi Habudele
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou 510080, China
| | - Xiaojie Wang
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou 510080, China
| | - Miao Cai
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou 510080, China
| | - Haitao Li
- Department of Social Medicine and Health Service Management, Health Science Center, Shenzhen University, Shenzhen, China
| | - Yanhui Gao
- Department of Medical Statistics, School of Basic Medicine and Public Health, Jinan University, Guangzhou, China
- Department of Epidemiology and Health Statistics, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
| | - Gregory Y H Lip
- Liverpool Centre for Cardiovascular Science at University of Liverpool, Liverpool John Moores University and Liverpool Heart & Chest Hospital, Liverpool, UK
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Hualiang Lin
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou 510080, China
| |
Collapse
|
46
|
Kilgore R, Minzoni A, Shastry S, Smith W, Barbieri E, Wu Y, LeBarre JP, Chu W, O'Brien J, Menegatti S. The downstream bioprocess toolbox for therapeutic viral vectors. J Chromatogr A 2023; 1709:464337. [PMID: 37722177 DOI: 10.1016/j.chroma.2023.464337] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/24/2023] [Accepted: 08/27/2023] [Indexed: 09/20/2023]
Abstract
Viral vectors are poised to acquire a prominent position in modern medicine and biotechnology owing to their role as delivery agents for gene therapies, oncolytic agents, vaccine platforms, and a gateway to engineer cell therapies as well as plants and animals for sustainable agriculture. The success of viral vectors will critically depend on the availability of flexible and affordable biomanufacturing strategies that can meet the growing demand by clinics and biotech companies worldwide. In this context, a key role will be played by downstream process technology: while initially adapted from protein purification media, the purification toolbox for viral vectors is currently undergoing a rapid expansion to fit the unique biomolecular characteristics of these products. Innovation efforts are articulated on two fronts, namely (i) the discovery of affinity ligands that target adeno-associated virus, lentivirus, adenovirus, etc.; (ii) the development of adsorbents with innovative morphologies, such as membranes and 3D printed monoliths, that fit the size of viral vectors. Complementing these efforts are the design of novel process layouts that capitalize on novel ligands and adsorbents to ensure high yield and purity of the product while safeguarding its therapeutic efficacy and safety; and a growing panel of analytical methods that monitor the complex array of critical quality attributes of viral vectors and correlate them to the purification strategies. To help explore this complex and evolving environment, this study presents a comprehensive overview of the downstream bioprocess toolbox for viral vectors established in the last decade, and discusses present efforts and future directions contributing to the success of this promising class of biological medicines.
Collapse
Affiliation(s)
- Ryan Kilgore
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States.
| | - Arianna Minzoni
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States
| | - Shriarjun Shastry
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States; Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, NC 27695, United States
| | - Will Smith
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States
| | - Eduardo Barbieri
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States
| | - Yuxuan Wu
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States
| | - Jacob P LeBarre
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States
| | - Wenning Chu
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States
| | - Juliana O'Brien
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, United States
| | - Stefano Menegatti
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States; Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, NC 27695, United States; North Carolina Viral Vector Initiative in Research and Learning, North Carolina State University, Raleigh, NC 27695, United States
| |
Collapse
|
47
|
Pandey P, Alexov E. Most monogenic disorders are caused by mutations altering protein folding free energy. RESEARCH SQUARE 2023:rs.3.rs-3442589. [PMID: 37886551 PMCID: PMC10602188 DOI: 10.21203/rs.3.rs-3442589/v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Revealing the molecular effect that pathogenic missense mutations cause on the corresponding protein is crucial for developing therapeutic solutions. This is especially important for monogenic diseases since, for most of them, there is no treatment available, while typically, the treatment should be provided in the early development stages. This requires fast, targeted drug development at a low cost. Here, we report a database of monogenic disorders (MOGEDO), which includes 768 proteins, the corresponding 2559 pathogenic and 1763 benign mutations, along with the functional classification of the corresponding proteins. Using the database and various computational tools that predict folding free energy change (ΔΔG), we demonstrate that, on average, 70% of pathogenic cases result in decreased protein stability. Such a large fraction indicates that one should aim at in-silico screening for small molecules stabilizing the structure of the mutant protein. We emphasize that knowledge of ΔΔG is essential because one wants to develop stabilizers that compensate for ΔΔG but not to make protein over-stable since over-stable protein may be dysfunctional. We demonstrate that using ΔΔG and predicted solvent exposure of the mutation site; one can develop a predictive method that distinguishes pathogenic from benign mutation with a success rate even better than some of the leading pathogenicity predictors. Furthermore, hydrophobic-hydrophobic mutations have stronger correlations between folding free energy change and pathogenicity compared with others. Also, mutations involving Cys, Gly, Arg, Trp and Tyr amino acids being replaced by any other amino acid are more likely to be pathogenic. To facilitate further detection of pathogenic mutations, the wild type of amino acids in the 768 proteins mentioned above was mutated to other 19 residues (14,847,817 mutations), and the ΔΔG was calculated with SAAFEC-SEQ, and 5,506,051 mutations were predicted to be pathogenic.
Collapse
|
48
|
Rosindo Daher de Barros F, Novais F. da Silva C, de Castro Michelassi G, Brentani H, Nunes FL, Machado-Lima A. Computer aided diagnosis of neurodevelopmental disorders and genetic syndromes based on facial images - A systematic literature review. Heliyon 2023; 9:e20517. [PMID: 37860568 PMCID: PMC10582402 DOI: 10.1016/j.heliyon.2023.e20517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 09/21/2023] [Accepted: 09/27/2023] [Indexed: 10/21/2023] Open
Abstract
Neurodevelopment disorders can result in facial dysmorphisms. Therefore, the analysis of facial images using image processing and machine learning techniques can help construct systems for diagnosing genetic syndromes and neurodevelopmental disorders. The systems offer faster and cost-effective alternatives for genotyping tests, particularly when dealing with large-scale applications. However, there are still challenges to overcome to ensure the accuracy and reliability of computer-aided diagnosis systems. This article presents a systematic review of such initiatives, including 55 articles. The main aspects used to develop these diagnostic systems were discussed, namely datasets - availability, type of image, size, ethnicities and syndromes - types of facial features, techniques used for normalization, dimensionality reduction and classification, deep learning, as well as a discussion related to the main gaps, challenges and opportunities.
Collapse
Affiliation(s)
- Fábio Rosindo Daher de Barros
- School of Arts, Sciences and Humanities – University of Sao Paulo (USP), Av. Arlindo Bettio, 1000, Sao Paulo, 03828-000, Sao Paulo, Brazil
| | - Caio Novais F. da Silva
- School of Arts, Sciences and Humanities – University of Sao Paulo (USP), Av. Arlindo Bettio, 1000, Sao Paulo, 03828-000, Sao Paulo, Brazil
| | - Gabriel de Castro Michelassi
- School of Arts, Sciences and Humanities – University of Sao Paulo (USP), Av. Arlindo Bettio, 1000, Sao Paulo, 03828-000, Sao Paulo, Brazil
| | - Helena Brentani
- Department of Psychiatry, University of Sao Paulo's School of Medicine (FMUSP), Sao Paulo, 05403-903, Sao Paulo, Brazil
| | - Fátima L.S. Nunes
- School of Arts, Sciences and Humanities – University of Sao Paulo (USP), Av. Arlindo Bettio, 1000, Sao Paulo, 03828-000, Sao Paulo, Brazil
| | - Ariane Machado-Lima
- School of Arts, Sciences and Humanities – University of Sao Paulo (USP), Av. Arlindo Bettio, 1000, Sao Paulo, 03828-000, Sao Paulo, Brazil
| |
Collapse
|
49
|
Chanasongkhram K, Damkliang K, Sangket U. DisVar: an R library for identifying variants associated with diseases using large-scale personal genetic information. PeerJ 2023; 11:e16086. [PMID: 37790633 PMCID: PMC10542659 DOI: 10.7717/peerj.16086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/22/2023] [Indexed: 10/05/2023] Open
Abstract
Background Genetic variants may potentially play a contributing factor in the development of diseases. Several genetic disease databases are used in medical research and diagnosis but the web applications used to search these databases for disease-associated variants have limitations. The application may not be able to search for large-scale genetic variants, the results of searches may be difficult to interpret and variants mapped from the latest reference genome (GRCH38/hg38) may not be supported. Methods In this study, we developed a novel R library called "DisVar" to identify disease-associated genetic variants in large-scale individual genomic data. This R library is compatible with variants from the latest reference genome version. DisVar uses five databases of disease-associated variants. Over 100 million variants can be simultaneously searched for specific associated diseases. Results The package was evaluated using 24 Variant Call Format (VCF) files (215,054 to 11,346,899 sites) from the 1000 Genomes Project. Disease-associated variants were detected in 298,227 hits across all the VCF files, taking a total of 63.58 m to complete. The package was also tested on ClinVar's VCF file (2,120,558 variants), where 20,657 hits associated with diseases were identified with an estimated elapsed time of 45.98 s. Conclusions DisVar can overcome the limitations of existing tools and is a fast and effective diagnostic and preventive tool that identifies disease-associated variations from large-scale genetic variants against the latest reference genome.
Collapse
Affiliation(s)
- Khunanon Chanasongkhram
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Kasikrit Damkliang
- Division of Computational Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Unitsa Sangket
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
- Center for Genomics and Bioinformatics Research, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| |
Collapse
|
50
|
Kierzkowska O, Sarino K, Carter D, Guo L, Marchi E, Voronova A, Lyon GJ. Documentation and prevalence of prenatal and neonatal outcomes in a cohort of individuals with KBG syndrome. Am J Med Genet A 2023; 191:2364-2375. [PMID: 37226940 DOI: 10.1002/ajmg.a.63311] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/24/2023] [Accepted: 05/15/2023] [Indexed: 05/26/2023]
Abstract
Ankyrin Repeat Domain 11 (ANKRD11) gene mutations are associated with KBG syndrome, a developmental disability that affects multiple organ systems. The function of ANKRD11 in human growth and development is not clear, but gene knockout or mutation are lethal in mice embryos and/or pups. In addition, it plays a vital role in chromatin regulation and transcription. Individuals with KBG syndrome are often misdiagnosed or remain undiagnosed until later in life. This is largely due to KBG syndrome's varying and nonspecific phenotypes as well as a lack of accessible genetic testing and prenatal screening. This study documents perinatal outcomes for individuals with KBG syndrome. We obtained data from 42 individuals through videoconferences, medical records, and emails. 45.2% of our cohort was born by C-section, 33.3% had a congenital heart defect, 23.8% were born prematurely, 23.8% were admitted to the NICU, 14.3% were small for gestational age, and 14.3% of the families had a history of miscarriage. These rates were higher in our cohort compared to the overall population, including non-Hispanic and Hispanic populations. Other reports included feeding difficulties (21.4%), neonatal jaundice (14.3%), decreased fetal movement (7.1%), and pleural effusions in utero (4.7%). Comprehensive perinatal studies about KBG syndrome and updated documentation of its phenotypes are important in ensuring prompt diagnosis and can facilitate correct management.
Collapse
Affiliation(s)
- Ola Kierzkowska
- Department of Human Genetics, NYS Institute for Basic Research in Developmental Disabilities, Staten Island, New York, USA
| | - Kathleen Sarino
- Department of Human Genetics, NYS Institute for Basic Research in Developmental Disabilities, Staten Island, New York, USA
| | - Drake Carter
- Department of Human Genetics, NYS Institute for Basic Research in Developmental Disabilities, Staten Island, New York, USA
| | - Lily Guo
- Department of Human Genetics, NYS Institute for Basic Research in Developmental Disabilities, Staten Island, New York, USA
| | - Elaine Marchi
- Department of Human Genetics, NYS Institute for Basic Research in Developmental Disabilities, Staten Island, New York, USA
| | - Anastassia Voronova
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Gholson J Lyon
- Department of Human Genetics, NYS Institute for Basic Research in Developmental Disabilities, Staten Island, New York, USA
- George A. Jervis Clinic, NYS Institute for Basic Research in Developmental Disabilities, Staten Island, New York, USA
- Biology PhD Program, The Graduate Center, The City University of New York, New York, USA
| |
Collapse
|