1
|
Ma L, Liu C, Song R, Qian Y, Zhang F. Telomere Length and Oxidative Damage in Children and Adolescents with Autism Spectrum Disorder: A Systematic Review and Meta-Analysis. J Integr Neurosci 2025; 24:24948. [PMID: 39862003 DOI: 10.31083/jin24948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/15/2024] [Accepted: 08/23/2024] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND Autism spectrum disorder (ASD) has been reported to confer an increased risk of natural premature death. Telomere erosion caused by oxidative stress is a common consequence in age-related diseases. However, whether telomere length (TL) and oxidative indicators are significantly changed in ASD patients compared with controls remains controversial. The aim of this study was to determine the associations of ASD with TL and oxidative indicators by performing a meta-analysis of all published evidence. METHODS The PubMed and Embase databases were searched for articles published up to April, 2024. The effect size was expressed as standardized mean difference (SMD) and 95% confidence interval (CI) via Stata 15.0 software. RESULTS Thirty-nine studies were included. Pooled results showed that compared with controls, children and adolescents with ASD were associated with significantly shorter TL (SMD = -0.48; 95% CI = -0.66- -0.29; p < 0.001; particularly in males), lower total antioxidant capacity (TAC: SMD = -1.15; 95% CI = -2.01- -0.30; p = 0.008), and higher oxidative DNA (8-hydroxy-2'-deoxyguanosine, 8-OHdG: SMD = 0.63; 95% CI = 0.03-1.23; p = 0.039), lipid (hexanolyl-lysine, HEL: SMD = 0.37; 95% CI = 0.13-0.62; p = 0.003), and protein (3-nitrotyrosine, 3-NT: SMD = 0.86; 95% CI = 0.21-1.51; p = 0.01; dityrosine, DT: SMD = 0.66; 95% CI = 0.521-0.80; p < 0.01) damage. There were no significant differences between ASD and controls in 8-isoprostane and oxidative stress index after publication bias correction, and in N-formylkynurenine during overall meta-analysis. CONCLUSIONS TL, 8-OHdG, TAC, HEL, 3-NT, and DT represent potential biomarkers for prediction of ASD in children and adolescents.
Collapse
Affiliation(s)
- Leping Ma
- Department of Child Health, Shaoxing Keqiao Maternal and Child Health Care Hospital, 312030 Shaoxing, Zhejiang, China
| | - Cui Liu
- Department of Pediatrics, Qingdao Huangdao District Central Hospital, 266555 Qingdao, Shandong, China
| | - Ran Song
- Department of Pediatrics, Zaozhuang Shanting District People's Hospital, 277200 Zaozhuang, Shandong, China
| | - Yeping Qian
- Department of Child Health, Shaoxing Keqiao Maternal and Child Health Care Hospital, 312030 Shaoxing, Zhejiang, China
| | - Feng Zhang
- Department of Child Health, Qingdao Huangdao District Central Hospital, 266555 Qingdao, Shandong, China
| |
Collapse
|
2
|
Steinz MM, Beard N, Shorter E, Lanner JT. Stable oxidative posttranslational modifications alter the gating properties of RyR1. J Gen Physiol 2024; 156:e202313515. [PMID: 39499505 PMCID: PMC11540854 DOI: 10.1085/jgp.202313515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 07/03/2024] [Accepted: 10/03/2024] [Indexed: 11/07/2024] Open
Abstract
The ryanodine receptor type 1 (RyR1) is a Ca2+ release channel that regulates skeletal muscle contraction by controlling Ca2+ release from the sarcoplasmic reticulum (SR). Posttranslational modifications (PTMs) of RyR1, such as phosphorylation, S-nitrosylation, and carbonylation are known to increase RyR1 open probability (Po), contributing to SR Ca2+ leak and skeletal muscle dysfunction. PTMs on RyR1 have been linked to muscle dysfunction in diseases like breast cancer, rheumatoid arthritis, Duchenne muscle dystrophy, and aging. While reactive oxygen species (ROS) and oxidative stress induce PTMs, the impact of stable oxidative modifications like 3-nitrotyrosine (3-NT) and malondialdehyde adducts (MDA) on RyR1 gating remains unclear. Mass spectrometry and single-channel recordings were used to study how 3-NT and MDA modify RyR1 and affect Po. Both modifications increased Po in a dose-dependent manner, with mass spectrometry identifying 30 modified residues out of 5035 amino acids per RyR1 monomer. Key modifications were found in domains critical for protein interaction and channel activation, including Y808/3NT in SPRY1, Y1081/3NT and H1254/MDA in SPRY2&3, and Q2107/MDA and Y2128/3NT in JSol, near the binding site of FKBP12. Though these modifications did not directly overlap with FKBP12 binding residues, they promoted FKBP12 dissociation from RyR1. These findings provide detailed insights into how stable oxidative PTMs on RyR1 residues alter channel gating, advancing our understanding of RyR1-mediated Ca2+ release in conditions associated with oxidative stress and muscle weakness.
Collapse
Affiliation(s)
- Maarten M. Steinz
- Department of Physiology and Pharmacology, Molecular Muscle Physiology and Pathophysiology lab, Karolinska Institutet, Stockholm, Sweden
| | - Nicole Beard
- Faculty or Science and Technology, University of Canberra, Canberra, Australia
| | - Emily Shorter
- Department of Physiology and Pharmacology, Molecular Muscle Physiology and Pathophysiology lab, Karolinska Institutet, Stockholm, Sweden
| | - Johanna T. Lanner
- Department of Physiology and Pharmacology, Molecular Muscle Physiology and Pathophysiology lab, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
3
|
Chemla Y, Kaufman F, Amiram M, Alfonta L. Expanding the Genetic Code of Bioelectrocatalysis and Biomaterials. Chem Rev 2024; 124:11187-11241. [PMID: 39377473 DOI: 10.1021/acs.chemrev.4c00077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Genetic code expansion is a promising genetic engineering technology that incorporates noncanonical amino acids into proteins alongside the natural set of 20 amino acids. This enables the precise encoding of non-natural chemical groups in proteins. This review focuses on the applications of genetic code expansion in bioelectrocatalysis and biomaterials. In bioelectrocatalysis, this technique enhances the efficiency and selectivity of bioelectrocatalysts for use in sensors, biofuel cells, and enzymatic electrodes. In biomaterials, incorporating non-natural chemical groups into protein-based polymers facilitates the modification, fine-tuning, or the engineering of new biomaterial properties. The review provides an overview of relevant technologies, discusses applications, and highlights achievements, challenges, and prospects in these fields.
Collapse
|
4
|
Murphy AR, Asif H, Cingoz H, Gourronc FA, Ankrum JA, Klingelhutz AJ, Kim JJ. The Impact of High Adiposity on Endometrial Progesterone Response and Metallothionein Regulation. J Clin Endocrinol Metab 2024; 109:2920-2936. [PMID: 38597153 PMCID: PMC11479696 DOI: 10.1210/clinem/dgae236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 03/21/2024] [Accepted: 04/08/2024] [Indexed: 04/11/2024]
Abstract
CONTEXT Obesity is a disease with deleterious effects on the female reproductive tract, including the endometrium. OBJECTIVE We sought to understand the effects of excess adipose on the benign endometrium. METHODS A physiologic in vitro coculture system was developed, consisting of multicellular human endometrial organoids, adipose spheroids, and menstrual cycle hormones. Native human endometrial tissue samples from women with and without obesity were also analyzed. Benign endometrial tissues from premenopausal women ages 33 to 53 undergoing hysterectomy were obtained following written consent at Northwestern University Prentice Women's Hospital, Chicago, Illinois. Gene expression, protein expression, chromatin binding, and expression of DNA damage and oxidative damage markers were measured. RESULTS Under high adiposity conditions, endometrial organoids downregulated endometrial secretory phase genes, suggestive of an altered progesterone response. Progesterone specifically upregulated the metallothionein (MT) gene family in the epithelial cells of endometrial organoids, while high adiposity significantly downregulated the MT genes. Silencing MT genes in endometrial epithelial cells resulted in increased DNA damage, illustrating the protective role of MTs. Native endometrium from women with obesity displayed increased MT expression and oxidative damage in the stroma and not in the epithelium, indicating the cell-specific impact of obesity on MT genes. CONCLUSION Taken together, the in vitro and in vivo systems used here revealed that high adiposity or obesity can alter MT expression by decreasing progesterone response in the epithelial cells and increasing oxidative stress in the stroma.
Collapse
Affiliation(s)
- Alina R Murphy
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Huma Asif
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Harun Cingoz
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Françoise A Gourronc
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - James A Ankrum
- Roy J. Carver Department of Biomedical Engineering, Pappajohn Biomedical Institute, University of Iowa, Iowa City, IA 52242, USA
| | - Aloysius J Klingelhutz
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - J Julie Kim
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
5
|
Gu XR, Tai YF, Liu Z, Zhang XY, Liu K, Zhou LY, Yin WJ, Deng YX, Kong DL, Midgley AC, Zuo XC. Layer-by-Layer Assembly of Renal-Targeted Polymeric Nanoparticles for Robust Arginase-2 Knockdown and Contrast-Induced Acute Kidney Injury Prevention. Adv Healthc Mater 2024; 13:e2304675. [PMID: 38688026 DOI: 10.1002/adhm.202304675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 04/27/2024] [Indexed: 05/02/2024]
Abstract
The mitochondrial enzyme arginase-2 (Arg-2) is implicated in the pathophysiology of contrast-induced acute kidney injury (CI-AKI). Therefore, Arg-2 represents a candid target for CI-AKI prevention. Here, layer-by-layer (LbL) assembled renal-targeting polymeric nanoparticles are developed to efficiently deliver small interfering RNA (siRNA), knockdown Arg-2 expression in renal tubules, and prevention of CI-AKI is evaluated. First, near-infrared dye-loaded poly(lactic-co-glycolic acid) (PLGA) anionic cores are electrostatically coated with cationic chitosan (CS) to facilitate the adsorption and stabilization of Arg-2 siRNA. Next, nanoparticles are coated with anionic hyaluronan (HA) to provide protection against siRNA leakage and shielding against early clearance. Sequential electrostatic layering of CS and HA improves loading capacity of Arg-2 siRNA and yields LbL-assembled nanoparticles. Renal targeting and accumulation is enhanced by modifying the outermost layer of HA with a kidney targeting peptide (HA-KTP). The resultant kidney-targeting and siRNA loaded nanoparticles (PLGA/CS/HA-KTP siRNA) exhibit proprietary accumulation in kidneys and proximal tubular cells at 24 h post-tail vein injection. In iohexol-induced in vitro and in vivo CI-AKI models, PLGA/CS/HA-KTP siRNA delivery alleviates oxidative and nitrification stress, and rescues mitochondrial dysfunction while reducing apoptosis, thereby demonstrating a robust and satisfactory therapeutic effect. Thus, PLGA/CS/HA-KTP siRNA nanoparticles offer a promising candidate therapy to protect against CI-AKI.
Collapse
Affiliation(s)
- Xu-Rui Gu
- Department of Pharmacy, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Yi-Fan Tai
- Key Laboratory of Bioactive Materials for the Ministry of Education and State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Zhen Liu
- Key Laboratory of Bioactive Materials for the Ministry of Education and State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Xin-Yan Zhang
- Key Laboratory of Bioactive Materials for the Ministry of Education and State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Kun Liu
- Department of Pharmacy, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Ling-Yun Zhou
- Department of Pharmacy, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Wen-Jun Yin
- Department of Pharmacy, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Yi-Xuan Deng
- Department of Pharmacy, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - De-Ling Kong
- Key Laboratory of Bioactive Materials for the Ministry of Education and State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Adam C Midgley
- Key Laboratory of Bioactive Materials for the Ministry of Education and State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Xiao-Cong Zuo
- Department of Pharmacy, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| |
Collapse
|
6
|
Tao B, Gong W, Xu C, Ma Z, Mei J, Chen M. The relationship between hypoxia and Alzheimer's disease: an updated review. Front Aging Neurosci 2024; 16:1402774. [PMID: 39086755 PMCID: PMC11288848 DOI: 10.3389/fnagi.2024.1402774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 07/04/2024] [Indexed: 08/02/2024] Open
Abstract
Alzheimer's disease (AD) is one of the most common neurodegenerative diseases, and the most prevalent form of dementia. The main hallmarks for the diagnosis of AD are extracellular amyloid-beta (Aβ) plaque deposition and intracellular accumulation of highly hyperphosphorylated Tau protein as neurofibrillary tangles. The brain consumes more oxygen than any other organs, so it is more easily to be affected by hypoxia. Hypoxia has long been recognized as one of the possible causes of AD and other neurodegenerative diseases, but the exact mechanism has not been clarified. In this review, we will elucidate the connection between hypoxia-inducible factors-1α and AD, including its contribution to AD and its possible protective effects. Additionally, we will discuss the relationship between oxidative stress and AD as evidence show that oxidative stress acts on AD-related pathogenic factors such as mitochondrial dysfunction, Aβ deposition, inflammation, etc. Currently, there is no cure for AD. Given the close association between hypoxia, oxidative stress, and AD, along with current research on the protective effects of antioxidants against AD, we speculate that antioxidants could be a potential therapeutic approach for AD and worth further study.
Collapse
Affiliation(s)
- Borui Tao
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- The First Clinical Medical College, Anhui Medical University, Hefei, China
| | - Wei Gong
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Chengyuan Xu
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Zhihui Ma
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Jinyu Mei
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ming Chen
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| |
Collapse
|
7
|
González-Gordo S, López-Jaramillo J, Rodríguez-Ruiz M, Taboada J, Palma JM, Corpas FJ. Pepper catalase: a broad analysis of its modulation during fruit ripening and by nitric oxide. Biochem J 2024; 481:883-901. [PMID: 38884605 DOI: 10.1042/bcj20240247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/13/2024] [Accepted: 06/17/2024] [Indexed: 06/18/2024]
Abstract
Catalase is a major antioxidant enzyme located in plant peroxisomes that catalyzes the decomposition of H2O2. Based on our previous transcriptomic (RNA-Seq) and proteomic (iTRAQ) data at different stages of pepper (Capsicum annuum L.) fruit ripening and after exposure to nitric oxide (NO) enriched atmosphere, a broad analysis has allowed us to characterize the functioning of this enzyme. Three genes were identified, and their expression was differentially modulated during ripening and by NO gas treatment. A dissimilar behavior was observed in the protein expression of the encoded protein catalases (CaCat1-CaCat3). Total catalase activity was down-regulated by 50% in ripe (red) fruits concerning immature green fruits. This was corroborated by non-denaturing polyacrylamide gel electrophoresis, where only a single catalase isozyme was identified. In vitro analyses of the recombinant CaCat3 protein exposed to peroxynitrite (ONOO-) confirmed, by immunoblot assay, that catalase underwent a nitration process. Mass spectrometric analysis identified that Tyr348 and Tyr360 were nitrated by ONOO-, occurring near the active center of catalase. The data indicate the complex regulation at gene and protein levels of catalase during the ripening of pepper fruits, with activity significantly down-regulated in ripe fruits. Nitration seems to play a key role in this down-regulation, favoring an increase in H2O2 content during ripening. This pattern can be reversed by the exogenous NO application. While plant catalases are generally reported to be tetrameric, the analysis of the protein structure supports that pepper catalase has a favored quaternary homodimer nature. Taken together, data show that pepper catalase is down-regulated during fruit ripening, becoming a target of tyrosine nitration, which provokes its inhibition.
Collapse
Affiliation(s)
- Salvador González-Gordo
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Stress, Development and Signaling in Plants, Estación Experimental del Zaidín, Spanish National Research Council (CSIC), Profesor Albareda 1, E-18008 Granada, Spain Granada, Spain
| | | | - Marta Rodríguez-Ruiz
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Stress, Development and Signaling in Plants, Estación Experimental del Zaidín, Spanish National Research Council (CSIC), Profesor Albareda 1, E-18008 Granada, Spain Granada, Spain
| | - Jorge Taboada
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Stress, Development and Signaling in Plants, Estación Experimental del Zaidín, Spanish National Research Council (CSIC), Profesor Albareda 1, E-18008 Granada, Spain Granada, Spain
| | - José M Palma
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Stress, Development and Signaling in Plants, Estación Experimental del Zaidín, Spanish National Research Council (CSIC), Profesor Albareda 1, E-18008 Granada, Spain Granada, Spain
| | - Francisco J Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Stress, Development and Signaling in Plants, Estación Experimental del Zaidín, Spanish National Research Council (CSIC), Profesor Albareda 1, E-18008 Granada, Spain Granada, Spain
| |
Collapse
|
8
|
Zhou J, Zhou J, Liu R, Liu Y, Meng J, Wen Q, Luo Y, Liu S, Li H, Ba L, Du J. The oxidant-antioxidant imbalance was involved in the pathogenesis of chronic rhinosinusitis with nasal polyps. Front Immunol 2024; 15:1380846. [PMID: 38756779 PMCID: PMC11096511 DOI: 10.3389/fimmu.2024.1380846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/22/2024] [Indexed: 05/18/2024] Open
Abstract
Background Although oxidative stress is involved in the pathophysiological process of chronic rhinosinusitis with nasal polyps (CRSwNP), the specific underlying mechanism is still unclear. Whether antioxidant therapy can treat CRSwNP needs further investigation. Methods Immunohistochemistry, immunofluorescence, western blotting and quantitative polymerase chain reaction (qPCR) analyses were performed to detect the distribution and expression of oxidants and antioxidants in nasal polyp tissues. qPCR revealed correlations between oxidase, antioxidant enzymes and inflammatory cytokine levels in CRSwNP patients. Human nasal epithelial cells (HNEpCs) and primary macrophages were cultured to track the cellular origin of oxidative stress in nasal polyps(NPs) and to determine whether crocin can reduce cellular inflammation by increasing the cellular antioxidant capacity. Results The expression of NOS2, NOX1, HO-1 and SOD2 was increased in nasal epithelial cells and macrophages derived from nasal polyp tissue. Oxidase levels were positively correlated with those of inflammatory cytokines (IL-5 and IL-6). Conversely, the levels of antioxidant enzymes were negatively correlated with those of IL-13 and IFN-γ. Crocin inhibited M1 and M2 macrophage polarization as well as the expression of NOS2 and NOX1 and improved the antioxidant capacity of M2 macrophages. Moreover, crocin enhanced the ability of antioxidants to reduce inflammation via the KEAP1/NRF2/HO-1 pathway in HNEpCs treated with SEB or LPS. Additionally, we observed the antioxidant and anti-inflammatory effects of crocin in nasal explants. Conclusion Oxidative stress plays an important role in the development of CRSwNP by promoting various types of inflammation. The oxidative stress of nasal polyps comes from epithelial cells and macrophages. Antioxidant therapy may be a promising strategy for treating CRSwNP.
Collapse
Affiliation(s)
- Jing Zhou
- Department of Otolaryngology-Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu, China
- Upper Respiratory Tract Laboratory of Department of Otolaryngology-Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Jiao Zhou
- Department of Medicine and Engineering Interdisciplinary Research Laboratory of Nursing & Materials, West China Hospital, Sichuan University, Chengdu, China
| | - Ruowu Liu
- Department of Otolaryngology-Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu, China
- Upper Respiratory Tract Laboratory of Department of Otolaryngology-Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yafeng Liu
- Department of Otolaryngology-Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu, China
- Upper Respiratory Tract Laboratory of Department of Otolaryngology-Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Juan Meng
- Department of Otolaryngology-Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu, China
- Upper Respiratory Tract Laboratory of Department of Otolaryngology-Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Qiao Wen
- Department of Otolaryngology-Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu, China
- Upper Respiratory Tract Laboratory of Department of Otolaryngology-Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yirui Luo
- Department of Otolaryngology, People’s Hospital of Tibet Autonomous Region, Lhasa, China
| | - Shixi Liu
- Department of Otolaryngology-Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu, China
- Upper Respiratory Tract Laboratory of Department of Otolaryngology-Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Huabin Li
- Department of Otolaryngology, Head and Neck Surgery, Affiliated Eye, Ear, Nose and Throat Hospital, Fudan University, Shanghai, China
| | - Luo Ba
- Department of Otolaryngology, People’s Hospital of Tibet Autonomous Region, Lhasa, China
| | - Jintao Du
- Department of Otolaryngology-Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu, China
- Upper Respiratory Tract Laboratory of Department of Otolaryngology-Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
9
|
Deshpande A, Brants J, Wasylyk C, van Hooij O, Verhaegh GW, Maas P, Schalken JA, Wasylyk B. TTLL12 has a potential oncogenic activity, suppression of ligation of nitrotyrosine to the C-terminus of detyrosinated α-tubulin, that can be overcome by molecules identified by screening a compound library. PLoS One 2024; 19:e0296960. [PMID: 38394155 PMCID: PMC10889654 DOI: 10.1371/journal.pone.0296960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
Tubulin tyrosine ligase 12 (TTLL12) is a promising target for therapeutic intervention since it has been implicated in tumour progression, the innate immune response to viral infection, ciliogenesis and abnormal cell division. It is the most mysterious of a fourteen-member TTL/TTLL family, since, although it is the topmost conserved in evolution, it does not have predicted enzymatic activities. TTLL12 seems to act as a pseudo-enzyme that modulates various processes indirectly. Given the need to target its functions, we initially set out to identify a property of TTLL12 that could be used to develop a reliable high-throughput screening assay. We discovered that TTLL12 suppresses the cell toxicity of nitrotyrosine (3-nitrotyrosine) and its ligation to the C-terminus of detyrosinated α-tubulin (abbreviated to ligated-nitrotyrosine). Nitrotyrosine is produced by oxidative stress and is associated with cancer progression. Ligation of nitrotyrosine has been postulated to be a check-point induced by excessive cell stress. We found that the cytotoxicities of nitrotyrosine and tubulin poisons are independent of one another, suggesting that drugs that increase nitrotyrosination could be complementary to current tubulin-directed therapeutics. TTLL12 suppression of nitrotyrosination of α-tubulin was used to develop a robust cell-based ELISA assay that detects increased nitrotyrosination in cells that overexpress TTLL12 We adapted it to a high throughput format and used it to screen a 10,000 molecule World Biological Diversity SETTM collection of low-molecular weight molecules. Two molecules were identified that robustly activate nitrotyrosine ligation at 1 μM concentration. This is the pioneer screen for molecules that modulate nitrotyrosination of α-tubulin. The molecules from the screen will be useful for the study of TTLL12, as well as leads for the development of drugs to treat cancer and other pathologies that involve nitrotyrosination.
Collapse
Affiliation(s)
- Amit Deshpande
- Université de Strasbourg, CNRS, Inserm, IGBMC UMR 7104- UMR-S 1258, F-67400 Illkirch, France
| | - Jan Brants
- Université de Strasbourg, CNRS, Inserm, IGBMC UMR 7104- UMR-S 1258, F-67400 Illkirch, France
| | - Christine Wasylyk
- Université de Strasbourg, CNRS, Inserm, IGBMC UMR 7104- UMR-S 1258, F-67400 Illkirch, France
| | - Onno van Hooij
- Department of Urology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Gerald W. Verhaegh
- Department of Urology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Peter Maas
- Specs, Bleiswijkseweg, Zoetermeer, The Netherlands
| | - Jack A. Schalken
- Department of Urology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Bohdan Wasylyk
- Université de Strasbourg, CNRS, Inserm, IGBMC UMR 7104- UMR-S 1258, F-67400 Illkirch, France
| |
Collapse
|
10
|
Xiao H, Ren GL, Hu JH, Chen JH, Yang X, Xiao X, Li Q, Yang HP. Cucurbit[8]uril-Based Supramolecular Probe for the Detection of 3-Nitrotyrosine in Human Serum and Plasma. ACS Sens 2024; 9:424-432. [PMID: 38214465 DOI: 10.1021/acssensors.3c02211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
The biomarker 3-nitrotyrosine (3-NT) is widely recognized as an indicator of renal oxidative stress injury, making its detection crucial for the early identification of renal insufficiency. This study presents the design and synthesis of a tetraphenylstyrene imidazole derivative (TIPE-MI), which is utilized to create a supramolecular probe in conjunction with cucurbit[8]uril (Q[8]) through host-guest interactions. The resulting supramolecular self-assembly exhibits excellent optical properties and has been employed for the specific detection of 3-NT through fluorescence quenching. The introduction of 3-NT resulted in a decreased fluorescence intensity of the yellow fluorescent probe, which gradually transitioned from bright yellow to light yellow and then became colorless as the 3-NT concentration was increased. A portable detection platform was devised to augment the efficiency of detection. In order to facilitate biological applications, we have substantiated the probe's exceptional precision in detecting 3-NT in biological samples, encompassing human serum and plasma. The probe also exhibited negligible cytotoxicity. The accumulation of the probe in renal cells elicited a fluorescence signal, thereby indicating the prospective viability of this system for visual detection with renal cytocompatibility.
Collapse
Affiliation(s)
- Han Xiao
- Department of Nephrology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Chongqing 400014, China
| | - Guo-Lian Ren
- Department of Nephrology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Chongqing 400014, China
| | - Jian-Hang Hu
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Jia-Huan Chen
- Department of Nephrology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Chongqing 400014, China
| | - Xia Yang
- Department of Nephrology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Chongqing 400014, China
| | - Xin Xiao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Qiu Li
- Department of Nephrology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Chongqing 400014, China
| | - Hai-Ping Yang
- Department of Nephrology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Chongqing 400014, China
| |
Collapse
|
11
|
Zhao Y, Xu Q, He N, Jiang M, Chen Y, Ren Z, Tang Z, Wu C, Liu L. Non-oxidative Modified Low-density Lipoproteins: The Underappreciated Risk Factors for Atherosclerosis. Curr Med Chem 2024; 31:5598-5611. [PMID: 37550912 DOI: 10.2174/0929867331666230807154019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/29/2023] [Accepted: 06/01/2023] [Indexed: 08/09/2023]
Abstract
Atherosclerosis, the pathological basis of most cardiovascular diseases, is a main risk factor causing about 20 million deaths each year worldwide. Oxidized low-density lipoprotein is recognized as the most important and independent risk factor in initiating and promoting atherosclerosis. Numerous antioxidants are extensively used in clinical practice, but they have no significant effect on reducing the morbidity and mortality of cardiovascular diseases. This finding suggests that researchers should pay more attention to the important role of non-oxidative modified low-density lipoprotein in atherosclerosis with a focus on oxidized low-density lipoprotein. This review briefly summarizes several important non-oxidative modified low-density lipoproteins associated with atherosclerosis, introduces the pathways through which these non-oxidative modified low-density lipoproteins induce the development of atherosclerosis in vivo, and discusses the mechanism of atherogenesis induced by these non-oxidative modified low-density lipoproteins. New therapeutic strategies and potential drug targets are provided for the prevention and treatment of atherosclerotic cardiovascular diseases.
Collapse
Affiliation(s)
- Yimeng Zhao
- Key Laboratory for Arteriosclerology of Hunan Province, Department of Cardiovascular Medicine, Institute of Cardiovascular Disease, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, The Third Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang 421001, China
| | - Qian Xu
- Key Laboratory for Arteriosclerology of Hunan Province, Department of Cardiovascular Medicine, Institute of Cardiovascular Disease, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, The Third Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang 421001, China
| | - Naiqi He
- Key Laboratory for Arteriosclerology of Hunan Province, Department of Cardiovascular Medicine, Institute of Cardiovascular Disease, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, The Third Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang 421001, China
| | - Mulin Jiang
- Key Laboratory for Arteriosclerology of Hunan Province, Department of Cardiovascular Medicine, Institute of Cardiovascular Disease, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, The Third Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang 421001, China
| | - Yingzhuo Chen
- Key Laboratory for Arteriosclerology of Hunan Province, Department of Cardiovascular Medicine, Institute of Cardiovascular Disease, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, The Third Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang 421001, China
| | - Zhong Ren
- Key Laboratory for Arteriosclerology of Hunan Province, Department of Cardiovascular Medicine, Institute of Cardiovascular Disease, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, The Third Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang 421001, China
| | - Zhihan Tang
- Key Laboratory for Arteriosclerology of Hunan Province, Department of Cardiovascular Medicine, Institute of Cardiovascular Disease, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, The Third Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang 421001, China
| | - Chunyan Wu
- Key Laboratory for Arteriosclerology of Hunan Province, Department of Cardiovascular Medicine, Institute of Cardiovascular Disease, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, The Third Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang 421001, China
| | - Lushan Liu
- Key Laboratory for Arteriosclerology of Hunan Province, Department of Cardiovascular Medicine, Institute of Cardiovascular Disease, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, The Third Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang 421001, China
| |
Collapse
|
12
|
Fröhlich-Nowoisky J, Bothen N, Backes AT, Weller MG, Pöschl U. Oligomerization and tyrosine nitration enhance the allergenic potential of the birch and grass pollen allergens Bet v 1 and Phl p 5. FRONTIERS IN ALLERGY 2023; 4:1303943. [PMID: 38125293 PMCID: PMC10732249 DOI: 10.3389/falgy.2023.1303943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/20/2023] [Indexed: 12/23/2023] Open
Abstract
Protein modifications such as oligomerization and tyrosine nitration alter the immune response to allergens and may contribute to the increasing prevalence of allergic diseases. In this mini-review, we summarize and discuss relevant findings for the major birch and grass pollen allergens Bet v 1 and Phl p 5 modified with tetranitromethane (laboratory studies), peroxynitrite (physiological processes), and ozone and nitrogen dioxide (environmental conditions). We focus on tyrosine nitration and the formation of protein dimers and higher oligomers via dityrosine cross-linking and the immunological effects studied.
Collapse
Affiliation(s)
| | - Nadine Bothen
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
| | - Anna T. Backes
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
| | - Michael G. Weller
- Division 1.5 - Protein Analysis, Federal Institute for Materials Research and Testing (BAM), Berlin, Germany
| | - Ulrich Pöschl
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
| |
Collapse
|
13
|
Bora JR, Mahalakshmi R. Photoradical-Mediated Catalyst-Independent Protein Cross-Link with Unusual Fluorescence Properties. Chembiochem 2023; 24:e202300380. [PMID: 37232210 PMCID: PMC7615464 DOI: 10.1002/cbic.202300380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 05/27/2023]
Abstract
Photo-actively modified natural amino acids have served as lucrative probes for precise mapping of the dynamics, interaction networks, and turnover of cytosolic proteins both in vivo and ex vivo. In our attempts to extend the utility of photoreactive reporters to map the molecular characteristics of vital membrane proteins, we carried out site-selective incorporation of 7-fluoro-indole in the human mitochondrial outer membrane protein VDAC2 (voltage-dependent anion channel isoform 2), with the aim of generating Trp-Phe/Tyr cross-links. Prolonged irradiation at 282 nm provided us with a surprisingly unusual fluorophore that displayed sizably red-shifted excitation (λex-max =280 nm→360 nm) and emission (λem-max =330 nm→430 nm) spectra that was reversible with organic solvents. By measuring the kinetics of the photo-activated cross-linking with a library of hVDAC2 variants, we demonstrate that formation of this unusual fluorophore is kinetically retarded, independent of tryptophan, and is site-specific. Using other membrane (Tom40 and Sam50) and cytosolic (MscR and DNA Pol I) proteins, we additionally show that formation of this fluorophore is protein-independent. Our findings reveal the photoradical-mediated accumulation of reversible tyrosine cross-links, with unusual fluorescent properties. Our findings have immediate applications in protein biochemistry and UV-mediated protein aggregation and cellular damage, opening avenues for formulating therapeutics that prolong cell viability in humans.
Collapse
Affiliation(s)
- Jinam Ravindra Bora
- Molecular Biophysics Laboratory Department of Biological Sciences Indian Institute of Science Education and Research Bhopal Bypass Road, Bhauri, Bhopal 462066, Madhya Pradesh (India)
| | - Radhakrishnan Mahalakshmi
- Molecular Biophysics Laboratory Department of Biological Sciences Indian Institute of Science Education and Research Bhopal Bypass Road, Bhauri, Bhopal 462066, Madhya Pradesh (India)
| |
Collapse
|
14
|
Yuan D, Chen J, Zhao Z, Qin H. Metabolomics analysis of visceral leishmaniasis based on urine of golden hamsters. Parasit Vectors 2023; 16:304. [PMID: 37649093 PMCID: PMC10469881 DOI: 10.1186/s13071-023-05881-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/12/2023] [Indexed: 09/01/2023] Open
Abstract
BACKGROUND Leishmaniasis is one of the most neglected tropical diseases and is spread mainly in impoverished regions of the world. Although many studies have focused on the host's response to Leishmania invasion, relatively less is known about the complex processes at the metabolic level, especially the metabolic alterations in the infected hosts. METHODS In this study, we conducted metabolomics analysis on the urine of golden hamsters in the presence or absence of visceral leishmaniasis (VL) using the ultra-performance liquid chromatography (UPLC) system tandem high-resolution mass spectrometer (HRMS). The metabolic characteristics of urine samples, along with the histopathological change and the parasite burden of liver and spleen tissues, were detected at 4 and 12 weeks post infection (WPI), respectively. RESULTS Amino acid metabolism was extensively affected at both stages of VL progression. Meanwhile, there were also distinct metabolic features at different stages. At 4 WPI, the significantly affected metabolic pathways involved alanine, aspartate and glutamate metabolism, the pentose phosphate pathway (PPP), histidine metabolism, tryptophan metabolism and tyrosine metabolism. At 12 WPI, the markedly enriched metabolic pathways were almost concentrated on amino acid metabolism, including tyrosine metabolism, taurine and hypotaurine metabolism and tryptophan metabolism. The dysregulated metabolites and metabolic pathways at 12 WPI were obviously less than those at 4 WPI. In addition, seven metabolites that were dysregulated at both stages through partial least squares-discriminant analysis (PLS-DA) and receiver-operating characteristic (ROC) tests were screened to be of diagnostic potential. The combination of these metabolites as a potential biomarker panel showed satisfactory performance in distinguishing infection groups from control groups as well as among different stages of infection. CONCLUSION Our findings could provide valuable information for further understanding of the host response to Leishmania infection from the aspect of the urine metabolome. The proposed urine biomarker panel could help in the development of a novel approach for the diagnosis and prognosis of VL.
Collapse
Affiliation(s)
- Dongmei Yuan
- Department of Human Anatomy, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Jianping Chen
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Zhiwei Zhao
- Department of Human Anatomy, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.
| | - Hanxiao Qin
- Clinical Trial Center, Chengdu Second People's Hospital, Chengdu, 610021, Sichuan, People's Republic of China.
| |
Collapse
|
15
|
Kitamura N, Galligan JJ. A global view of the human post-translational modification landscape. Biochem J 2023; 480:1241-1265. [PMID: 37610048 PMCID: PMC10586784 DOI: 10.1042/bcj20220251] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/26/2023] [Accepted: 08/07/2023] [Indexed: 08/24/2023]
Abstract
Post-translational modifications (PTMs) provide a rapid response to stimuli, finely tuning metabolism and gene expression and maintain homeostasis. Advances in mass spectrometry over the past two decades have significantly expanded the list of known PTMs in biology and as instrumentation continues to improve, this list will surely grow. While many PTMs have been studied in detail (e.g. phosphorylation, acetylation), the vast majority lack defined mechanisms for their regulation and impact on cell fate. In this review, we will highlight the field of PTM research as it currently stands, discussing the mechanisms that dictate site specificity, analytical methods for their detection and study, and the chemical tools that can be leveraged to define PTM regulation. In addition, we will highlight the approaches needed to discover and validate novel PTMs. Lastly, this review will provide a starting point for those interested in PTM biology, providing a comprehensive list of PTMs and what is known regarding their regulation and metabolic origins.
Collapse
Affiliation(s)
- Naoya Kitamura
- Department of Pharmacology and College of Pharmacy, University of Arizona, Tucson, Arizona 85721, U.S.A
| | - James J. Galligan
- Department of Pharmacology and College of Pharmacy, University of Arizona, Tucson, Arizona 85721, U.S.A
| |
Collapse
|
16
|
Zhang S, De Leon Rodriguez LM, Li FF, Brimble MA. Recent developments in the cleavage, functionalization, and conjugation of proteins and peptides at tyrosine residues. Chem Sci 2023; 14:7782-7817. [PMID: 37502317 PMCID: PMC10370606 DOI: 10.1039/d3sc02543h] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 06/26/2023] [Indexed: 07/29/2023] Open
Abstract
Peptide and protein selective modification at tyrosine residues has become an exploding field of research as tyrosine constitutes a robust alternative to lysine and cysteine-targeted traditional peptide/protein modification protocols. This review offers a comprehensive summary of the latest advances in tyrosine-selective cleavage, functionalization, and conjugation of peptides and proteins from the past three years. This updated overview complements the extensive body of work on site-selective modification of peptides and proteins, which holds significant relevance across various disciplines, including chemical, biological, medical, and material sciences.
Collapse
Affiliation(s)
- Shengping Zhang
- Center for Translational Medicine, Shenzhen Bay Laboratory New Zealand
- School of Chemical Sciences, The University of Auckland 23 Symonds St Auckland 1010 New Zealand
- School of Biological Sciences, The University of Auckland 3A Symonds St Auckland 1010 New Zealand
| | | | - Freda F Li
- School of Chemical Sciences, The University of Auckland 23 Symonds St Auckland 1010 New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland 1142 New Zealand
| | - Margaret A Brimble
- School of Chemical Sciences, The University of Auckland 23 Symonds St Auckland 1010 New Zealand
- School of Biological Sciences, The University of Auckland 3A Symonds St Auckland 1010 New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland 1142 New Zealand
| |
Collapse
|
17
|
Muñoz-Vargas MA, López-Jaramillo J, González-Gordo S, Paradela A, Palma JM, Corpas FJ. H 2S-Generating Cytosolic L-Cysteine Desulfhydrase and Mitochondrial D-Cysteine Desulfhydrase from Sweet Pepper ( Capsicum annuum L.) Are Regulated During Fruit Ripening and by Nitric Oxide. Antioxid Redox Signal 2023; 39:2-18. [PMID: 36950799 PMCID: PMC10585658 DOI: 10.1089/ars.2022.0222] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/27/2023] [Accepted: 03/13/2023] [Indexed: 03/24/2023]
Abstract
Aims: Pepper fruit is a horticultural product worldwide consumed that has great nutritional and economic relevance. Besides the phenotypical changes that undergo pepper fruit during ripening, there are many associated modifications at transcriptomic, proteomic, biochemical, and metabolic levels. Nitric oxide (NO) and hydrogen sulfide (H2S) are recognized signal molecules that can exert regulatory functions in diverse plant processes. This study aims at analyzing the interrelationship between NO and H2S during fruit ripening. Results: Our data indicate that the H2S-generating cytosolic L-cysteine desulfhydrase (LCD) and the mitochondrial D-cysteine desulfhydrase (DCD) activities are downregulated during ripening but this effect was reverted after NO treatment of fruits. Innovation and Conclusion: Using as a model the non-climacteric pepper fruits at different ripening stages and under an NO-enriched atmosphere, the activity of the H2S-generating LCD and DCD was analyzed. LCD and DCD activities were downregulated during ripening, but this effect was reverted after NO treatment of fruits. The analysis of LCD activity by non-denaturing polyacrylamide gel electrophoresis (PAGE) allowed identifying three isozymes designated CaLCD I to CaLCD III, which were differentially modulated by NO and strictly dependent on pyridoxal 5'-phosphate (PLP). In vitro analyses of green fruit samples in the presence of different compounds including NO donors, peroxynitrite (ONOO-), and reducing agents such as reduced glutathione (GSH) and L-cysteine (L-Cys) triggered an almost 100% inhibition of CaLCD II and CaLCD III. This redox adaptation process of both enzymes could be cataloged as a hormesis phenomenon. The protein tyrosine (Tyr) nitration (an NO-promoted post-translational modification) of the recombinant LCD was corroborated by immunoblot and by mass spectrometry (MS) analyses. Among the 11 Tyr residues present in this enzyme, MS of the recombinant LCD enabled us to identify that Tyr82 and Tyr254 were nitrated by ONOO-, this occurring near the active center on the enzyme, where His237 and Lys260 together with the cofactor PLP are involved. These data support the relationship between NO and H2S during pepper fruit ripening, since LCD and DCD are regulated by NO during this physiological event, and this could also be extrapolated to other plant species.
Collapse
Affiliation(s)
- María A. Muñoz-Vargas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture. Estación Experimental del Zaidín (Spanish National Research Council, CSIC), Granada, Spain
| | - Javier López-Jaramillo
- Instituto de Biotecnología, Department of Organic Chemistry, University of Granada, Granada, Spain
| | - Salvador González-Gordo
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture. Estación Experimental del Zaidín (Spanish National Research Council, CSIC), Granada, Spain
| | - Alberto Paradela
- Proteomics Core Facility, Centro Nacional de Biotecnología, CSIC, Madrid, Spain
| | - José M. Palma
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture. Estación Experimental del Zaidín (Spanish National Research Council, CSIC), Granada, Spain
| | - Francisco J. Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture. Estación Experimental del Zaidín (Spanish National Research Council, CSIC), Granada, Spain
| |
Collapse
|
18
|
Vladimirova O, Soldan S, Su C, Kossenkov A, Ngalamika O, Tso FY, West JT, Wood C, Lieberman PM. Elevated iNOS and 3'-nitrotyrosine in Kaposi's Sarcoma tumors and mouse model. Tumour Virus Res 2023; 15:200259. [PMID: 36863485 PMCID: PMC10009278 DOI: 10.1016/j.tvr.2023.200259] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 01/24/2023] [Accepted: 02/20/2023] [Indexed: 03/04/2023] Open
Abstract
Kaposi's Sarcoma (KS) is a heterogenous, multifocal vascular malignancy caused by the human herpesvirus 8 (HHV8), also known as Kaposi's Sarcoma-Associated Herpesvirus (KSHV). Here, we show that KS lesions express iNOS/NOS2 broadly throughout KS lesions, with enrichment in LANA positive spindle cells. The iNOS byproduct 3-nitrotyrosine is also enriched in LANA positive tumor cells and colocalizes with a fraction of LANA-nuclear bodies. We show that iNOS is highly expressed in the L1T3/mSLK tumor model of KS. iNOS expression correlated with KSHV lytic cycle gene expression, which was elevated in late-stage tumors (>4 weeks) but to a lesser degree in early stage (1 week) xenografts. Further, we show that L1T3/mSLK tumor growth is sensitive to an inhibitor of nitric oxide, L-NMMA. L-NMMA treatment reduced KSHV gene expression and perturbed cellular gene pathways relating to oxidative phosphorylation and mitochondrial dysfunction. These finding suggest that iNOS is expressed in KSHV infected endothelial-transformed tumor cells in KS, that iNOS expression depends on tumor microenvironment stress conditions, and that iNOS enzymatic activity contributes to KS tumor growth.
Collapse
Affiliation(s)
| | | | - Chenhe Su
- The Wistar Institute, Philadelphia, PA, 19104, USA
| | | | - Owen Ngalamika
- Dermatology and Venereology Section, University Teaching Hospitals, University of Zambia School of Medicine, Lusaka, P.O. Box 50110, Zambia
| | - For Yue Tso
- Department of Interdisciplinary Oncology, Stanley S Scott Cancer Center, State University Health Sciences Center, New Orleans, LA, USA
| | - John T West
- Department of Interdisciplinary Oncology, Stanley S Scott Cancer Center, State University Health Sciences Center, New Orleans, LA, USA
| | - Charles Wood
- Department of Interdisciplinary Oncology, Stanley S Scott Cancer Center, State University Health Sciences Center, New Orleans, LA, USA
| | | |
Collapse
|
19
|
Harbin NH, Lustberg DJ, Hurst C, Pare J, Crotty KM, Waters AL, Yeligar SM, Smith Y, Seyfried NT, Weinshenker D, Hepler JR. RGS14 limits seizure-induced mitochondrial oxidative stress and pathology in hippocampus. Neurobiol Dis 2023; 181:106128. [PMID: 37075948 PMCID: PMC10259180 DOI: 10.1016/j.nbd.2023.106128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/02/2023] [Accepted: 04/14/2023] [Indexed: 04/21/2023] Open
Abstract
RGS14 is a complex multifunctional scaffolding protein that is highly enriched within pyramidal cells (PCs) of hippocampal area CA2. In these neurons, RGS14 suppresses glutamate-induced calcium influx and related G protein and ERK signaling in dendritic spines to restrain postsynaptic signaling and plasticity. Previous findings show that, unlike PCs of hippocampal areas CA1 and CA3, CA2 PCs are resistant to a number of neurological insults, including degeneration caused by temporal lobe epilepsy (TLE). While RGS14 is protective against peripheral injury, similar roles for RGS14 during pathological injury in hippocampus remain unexplored. Recent studies showed that area CA2 modulates hippocampal excitability, generates epileptiform activity and promotes hippocampal pathology in animal models and patients with TLE. Because RGS14 suppresses CA2 excitability and signaling, we hypothesized that RGS14 would moderate seizure behavior and early hippocampal pathology following seizure activity, possibly affording protection to CA2 PCs. Using kainic acid (KA) to induce status epilepticus (KA-SE) in mice, we show that the loss of RGS14 (RGS14 KO) accelerated onset of limbic motor seizures and mortality compared to wild type (WT) mice, and that KA-SE upregulated RGS14 protein expression in CA2 and CA1 PCs of WT. Our proteomics data show that the loss of RGS14 impacted the expression of a number of proteins at baseline and after KA-SE, many of which associated unexpectedly with mitochondrial function and oxidative stress. RGS14 was shown to localize to the mitochondria in CA2 PCs of mice and reduce mitochondrial respiration in vitro. As a readout of oxidative stress, we found that RGS14 KO dramatically increased 3- nitrotyrosine levels in CA2 PCs, which was greatly exacerbated following KA-SE and correlated with a lack of superoxide dismutase 2 (SOD2) induction. Assessing for hallmarks of seizure pathology in RGS14 KO, we unexpectedly found no differences in neuronal injury in CA2 PCs. However, we observed a striking and surprising lack of microgliosis in CA1 and CA2 of RGS14 KO compared to WT. Together, our data demonstrate a newly appreciated role for RGS14 in limiting intense seizure activity and pathology in hippocampus. Our findings are consistent with a model where RGS14 limits seizure onset and mortality and, after seizure, is upregulated to support mitochondrial function, prevent oxidative stress in CA2 PCs, and promote microglial activation in hippocampus.
Collapse
Affiliation(s)
- N H Harbin
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, 1510 Clifton Rd, 5001 Rollins Research Ctr, Atlanta, GA 30322, United States.
| | - D J Lustberg
- Department of Human Genetics, Emory University School of Medicine, 615 Michael Street, Suite 301, Atlanta, GA 30322, United States
| | - C Hurst
- Department of Biochemistry, Emory University School of Medicine, 1510 Clifton Rd, 4001 Rollins Research Center, Atlanta, GA 30322, United States.
| | - J Pare
- Emory National Primate Research Center, Emory University, 954, Gatewood Rd NE, Atlanta, GA 30329, United States.
| | - K M Crotty
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, 1364 Clifton Road NE, Suite H-153, Atlanta, GA 30322, United States; Atlanta Veterans Affairs Health Care System, 1670 Clairmont Road, Decatur, GA 30033, United States.
| | - A L Waters
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, 1510 Clifton Rd, 5001 Rollins Research Ctr, Atlanta, GA 30322, United States.
| | - S M Yeligar
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, 1364 Clifton Road NE, Suite H-153, Atlanta, GA 30322, United States; Atlanta Veterans Affairs Health Care System, 1670 Clairmont Road, Decatur, GA 30033, United States.
| | - Y Smith
- Emory National Primate Research Center, Emory University, 954, Gatewood Rd NE, Atlanta, GA 30329, United States; Department of Neurology, Emory University School of Medicine, 12 Executive Park Dr NE, Atlanta, GA, 30322, United States.
| | - N T Seyfried
- Department of Biochemistry, Emory University School of Medicine, 1510 Clifton Rd, 4001 Rollins Research Center, Atlanta, GA 30322, United States.
| | - D Weinshenker
- Department of Human Genetics, Emory University School of Medicine, 615 Michael Street, Suite 301, Atlanta, GA 30322, United States.
| | - J R Hepler
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, 1510 Clifton Rd, 5001 Rollins Research Ctr, Atlanta, GA 30322, United States.
| |
Collapse
|
20
|
Sadeghi Z, Cerulli A, Marzocco S, Moridi Farimani M, Masullo M, Piacente S. Anti-inflammatory Activity of Tanshinone-Related Diterpenes from Perovskia artemisioides Roots. JOURNAL OF NATURAL PRODUCTS 2023; 86:812-821. [PMID: 37040078 PMCID: PMC10152488 DOI: 10.1021/acs.jnatprod.2c01004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Indexed: 05/04/2023]
Abstract
Perovskia artemisioides is a perennial and aromatic plant widely distributed in the Baluchestan region of Iran. Phytochemical analysis of a n-hexane extract of P. artemisioides roots, guided by an analytical approach based on LC-ESI/LTQOrbitrap/MS/MS, yielded six previously undescribed diterpenoid compounds (2, 9-11, 16, and 20), and 19 known diterpenoids, for which the structures were elucidated by 1D and 2D NMR experiments. Some of the isolated compounds showed significant anti-inflammatory activity using J774A.1 macrophage cells stimulated with Escherichia coli lipopolysaccharide. In particular, compounds 6, 8, 17, 18, 20, and 22 significantly inhibited the release of nitric oxide and the expression of related pro-inflammatory enzymes, such as inducible nitric oxide synthase and cycloxygenase-2. Moreover, two compounds that showed the highest activity in reducing nitric oxide release (6 and 18) were tested to evaluate their effects on nitrotyrosine formation and reactive oxygen species release. Both compounds inhibited ROS release and, in particular, compound 6 also inhibited nitrotyrosine formation at all tested concentrations, thus indicating a significant antioxidant potential.
Collapse
Affiliation(s)
- Zahra Sadeghi
- Department
of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Evin, Tehran 1983969411, Iran
- Dipartimento
di Farmacia, Università degli Studi
di Salerno, via Giovanni Paolo II n. 132, 84084 Fisciano, Salerno, Italy
| | - Antonietta Cerulli
- Dipartimento
di Farmacia, Università degli Studi
di Salerno, via Giovanni Paolo II n. 132, 84084 Fisciano, Salerno, Italy
| | - Stefania Marzocco
- Dipartimento
di Farmacia, Università degli Studi
di Salerno, via Giovanni Paolo II n. 132, 84084 Fisciano, Salerno, Italy
| | - Mahdi Moridi Farimani
- Department
of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Evin, Tehran 1983969411, Iran
| | - Milena Masullo
- Dipartimento
di Farmacia, Università degli Studi
di Salerno, via Giovanni Paolo II n. 132, 84084 Fisciano, Salerno, Italy
| | - Sonia Piacente
- Dipartimento
di Farmacia, Università degli Studi
di Salerno, via Giovanni Paolo II n. 132, 84084 Fisciano, Salerno, Italy
| |
Collapse
|
21
|
Auclair J, Turcotte P, Gagnon C, Peyrot C, Wilkinson KJ, Gagné F. Form-Dependent Toxicity of Silver Nanomaterials in Rainbow Trout Gills. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1356. [PMID: 37110941 PMCID: PMC10142066 DOI: 10.3390/nano13081356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 03/29/2023] [Accepted: 04/06/2023] [Indexed: 06/19/2023]
Abstract
The toxicity of the form of nanoparticles is presently not well understood. The purpose of this study consists in comparing the toxicity of various forms of silver nanoparticles (nAg) in juvenile rainbow trout Oncorhynchus mykiss. Juveniles were exposed to various forms of polyvinyl-coated nAg of similar size for 96 h at 15 °C. After the exposure period, the gills were isolated and analyzed for Ag uptake/distribution, oxidative stress, glucose metabolism, and genotoxicity. Higher levels of Ag were detected in gills in fish exposed to dissolved Ag followed by spherical, cubic, and prismatic nAg. Size-exclusion chromatography of gill fractions revealed that the dissolution of nAg was observed for all forms of nAg where prismatic nAg released more important levels of Ag in the protein pool as in fish exposed to dissolved Ag as well. The aggregation of nAg was more important for cubic nAg in respect of the other forms of nAg. The data revealed that lipid peroxidation was closely associated with protein aggregation and viscosity. Biomarkers revealed changes in lipid/oxidative stress and genotoxicity, which were related to the loss of protein aggregation and inflammation (NO2 levels), respectively. In general, the observed effects were found for all forms of nAg where the effects from prismatic nAg were generally higher than for spherical and cubic nAg. The strong relationship between genotoxicity and inflammation response suggests the participation of the immune system in the observed responses of juvenile fish gills.
Collapse
Affiliation(s)
- Joëlle Auclair
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, Montreal, QC H2Y 2E7, Canada; (J.A.)
| | - Patrice Turcotte
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, Montreal, QC H2Y 2E7, Canada; (J.A.)
| | - Christian Gagnon
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, Montreal, QC H2Y 2E7, Canada; (J.A.)
| | - Caroline Peyrot
- Chemistry Department, Montréal University, Montreal, QC H3C 3J7, Canada
| | | | - François Gagné
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, Montreal, QC H2Y 2E7, Canada; (J.A.)
| |
Collapse
|
22
|
Harbin NH, Lustberg DJ, Hurst C, Pare JF, Crotty KM, Waters AL, Yeligar SM, Smith Y, Seyfried NT, Weinshenker D, Hepler JR. RGS14 is neuroprotective against seizure-induced mitochondrial oxidative stress and pathology in hippocampus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.01.526349. [PMID: 36778349 PMCID: PMC9915580 DOI: 10.1101/2023.02.01.526349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
RGS14 is a complex multifunctional scaffolding protein that is highly enriched within pyramidal cells (PCs) of hippocampal area CA2. There, RGS14 suppresses glutamate-induced calcium influx and related G protein and ERK signaling in dendritic spines to restrain postsynaptic signaling and plasticity. Previous findings show that, unlike PCs of hippocampal areas CA1 and CA3, CA2 PCs are resistant to a number of neurological insults, including degeneration caused by temporal lobe epilepsy (TLE). While RGS14 is protective against peripheral injury, similar roles for RGS14 during pathological injury in hippocampus remain unexplored. Recent studies show that area CA2 modulates hippocampal excitability, generates epileptiform activity and promotes hippocampal pathology in animal models and patients with TLE. Because RGS14 suppresses CA2 excitability and signaling, we hypothesized that RGS14 would moderate seizure behavior and early hippocampal pathology following seizure activity. Using kainic acid (KA) to induce status epilepticus (KA-SE) in mice, we show loss of RGS14 (RGS14 KO) accelerated onset of limbic motor seizures and mortality compared to wild type (WT) mice, and that KA-SE upregulated RGS14 protein expression in CA2 and CA1 PCs of WT. Utilizing proteomics, we saw loss of RGS14 impacted the expression of a number of proteins at baseline and after KA-SE, many of which associated unexpectedly with mitochondrial function and oxidative stress. RGS14 was shown to localize to the mitochondria in CA2 PCs of mice and reduce mitochondrial respiration in vitro . As a readout of oxidative stress, we found RGS14 KO dramatically increased 3-nitrotyrosine levels in CA2 PCs, which was greatly exacerbated following KA-SE and correlated with a lack of superoxide dismutase 2 (SOD2) induction. Assessing for hallmarks of seizure pathology in RGS14 KO, we observed worse neuronal injury in area CA3 (but none in CA2 or CA1), and a lack of microgliosis in CA1 and CA2 compared to WT. Together, our data demonstrates a newly appreciated neuroprotective role for RGS14 against intense seizure activity in hippocampus. Our findings are consistent with a model where, after seizure, RGS14 is upregulated to support mitochondrial function and prevent oxidative stress in CA2 PCs, limit seizure onset and hippocampal neuronal injury, and promote microglial activation in hippocampus.
Collapse
|
23
|
Brasil FB, de Almeida FJS, Luckachaki MD, Dall'Oglio EL, de Oliveira MR. The isothiocyanate sulforaphane prevents mitochondrial impairment and neuroinflammation in the human dopaminergic SH-SY5Y and in the mouse microglial BV2 cells: role for heme oxygenase-1. Metab Brain Dis 2023; 38:419-435. [PMID: 35469083 DOI: 10.1007/s11011-022-00990-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 04/18/2022] [Indexed: 01/25/2023]
Abstract
Sulforaphane (SFN) promotes protective effects in different cell types. Nonetheless, it remains to be clarified by which mechanism SFN exerts benefits in mammalian cells. Mitochondria are a major source of adenosine triphosphate (ATP) and reactive species in nucleated cells. Mitochondrial impairment result in cellular redox biology disruption, bioenergetic status collapse, and inflammation. Evidence suggest that mitochondrial dysfunction plays a role in neurological disorders. Since a cure was not discovered yet to some of these diseases, investigating strategies to promote mitochondrial protection is pharmacologically relevant and may improve life quality of patients suffering from these maladies. Natural molecules, such as SFN, are potent inducers of the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) and, consequently, stimulate the expression of genes whose products, such as heme oxygenase-1 (HO-1), induce cytoprotective actions in mammalian tissues. In this work, we investigated whether SFN (5 µM) would be capable to prevent the dysfunctions caused by chlorpyrifos (CPF) on the human dopaminergic SH-SY5Y cells. Moreover, we examined the effects of a pretreatment with SFN at the same concentration on the mouse microglial BV2 cells stimulated by lipopolysaccharide (LPS) in an experimental model of neuroinflammation. SFN prevented the mitochondrial impairment and the neuroinflammation caused by the chemical stressors in both cell types. Inhibition of heme oxygenase-1 (HO-1) suppressed the mitochondrial protection and anti-inflammatory action afforded by SFN in this experimental model. Overall, SFN promoted cytoprotection by a mechanism dependent on the HO-1 enzyme in the SH-SY5Y and BV2 cells.
Collapse
Affiliation(s)
- Flávia Bittencourt Brasil
- Departamento de Ciências da Natureza, Campus Universitário de Rio das Ostras-Universidade Federal Fluminense (UFF), Rio de Janeiro, Brazil
| | - Fhelipe Jolner Souza de Almeida
- Programa de Pós-Graduação Em Ciências da Saúde (PPGCS), Universidade Federal de Mato Grosso (UFMT), Cuiaba, MT, Brazil
- Grupo de Estudos Em Neuroquímica E Neurobiologia de Moléculas Bioativas, Departamento de Química, Universidade Federal de Mato Grosso (UFMT), Av. Fernando Corrêa da Costa, 2367, Cuiaba, MT, CEP 78060-900, Brazil
| | - Matheus Dargesso Luckachaki
- Grupo de Estudos Em Neuroquímica E Neurobiologia de Moléculas Bioativas, Departamento de Química, Universidade Federal de Mato Grosso (UFMT), Av. Fernando Corrêa da Costa, 2367, Cuiaba, MT, CEP 78060-900, Brazil
| | - Evandro Luiz Dall'Oglio
- Grupo de Estudos Em Neuroquímica E Neurobiologia de Moléculas Bioativas, Departamento de Química, Universidade Federal de Mato Grosso (UFMT), Av. Fernando Corrêa da Costa, 2367, Cuiaba, MT, CEP 78060-900, Brazil
| | - Marcos Roberto de Oliveira
- Grupo de Estudos Em Neuroquímica E Neurobiologia de Moléculas Bioativas, Departamento de Química, Universidade Federal de Mato Grosso (UFMT), Av. Fernando Corrêa da Costa, 2367, Cuiaba, MT, CEP 78060-900, Brazil.
| |
Collapse
|
24
|
Fu D, Wu S, Jiang X, You T, Li Y, Xin J, Feng X, Wen J, Huang Y, Hu C. Caveolin-1 alleviates acetaminophen-induced vascular oxidative stress and inflammation in non-alcoholic fatty liver disease. Free Radic Biol Med 2023; 195:245-257. [PMID: 36596386 DOI: 10.1016/j.freeradbiomed.2022.12.095] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/24/2022] [Accepted: 12/26/2022] [Indexed: 01/01/2023]
Abstract
Acetaminophen (APAP) is one of the most widely used drugs in the world. The literature shows that excessive or long-term use of APAP can lead to increased cardiovascular dysfunction. An acute increase in angiotensin Ⅱ (Ang Ⅱ) caused by APAP use in fatty liver disease may increase the risk and severity of vascular injury. However, the underlying mechanism remains unclear. Caveolin-1 (CAV1) is a broad-spectrum kinase inhibitor that significantly determines endothelial function. This study aimed to observe the effects of APAP on the vasculature in non-alcoholic fatty liver disease (NAFLD) and to determine whether CAV1 could alleviate vascular oxidative stress and inflammation by targeting Ang Ⅱ or its downstream pathways. In this study, 7-week-old C57BL/6 male mice (18-20 g) were administered APAP by gavage after eight weeks of a high-fat diet. Any resulting vascular oxidative stress and inflammation were assessed. Levels of Ang Ⅱ, CAV1, and other related proteins were measured using ELISA and western blotting. In APAP-treated NAFLD mice, CAV1 expression was downregulated and Ang Ⅱ expression was upregulated compared to normal APAP-treated mice. In vitro, HUVECs were incubated with Ang Ⅱ (300 nM) for 48 h. Overexpression of CAV1 in HUVECs attenuated Ang Ⅱ-induced oxidative stress and inflammation and downregulated the expression of Protein kinase C (PKC) and p-P38/P38. After intervention with CAV1-siRNA, immunofluorescence results showed that the fluorescence intensity of PKC on mitochondria was further increased, and flow cytometry results showed that the mitochondrial membrane potential increased. PKC inhibitors alleviated Ang Ⅱ-induced endothelial injury. In conclusion, our findings confirmed that CAV1 exerts a protective effect against vascular injury by inhibiting oxidative stress and inflammation through the PKC/MAPK pathway. Therefore, restoration of CAV1 may have clinical benefits in reducing APAP-induced vascular damage in NAFLD patients.
Collapse
Affiliation(s)
- Dongdong Fu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; Institute for Liver Diseases of Anhui Medical University, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, 230032, China
| | - Shuai Wu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; Institute for Liver Diseases of Anhui Medical University, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, 230032, China
| | - Xiangfu Jiang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; Institute for Liver Diseases of Anhui Medical University, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, 230032, China
| | - Tingyu You
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; Institute for Liver Diseases of Anhui Medical University, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, 230032, China
| | - Yu Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; Institute for Liver Diseases of Anhui Medical University, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, 230032, China
| | - Jiao Xin
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; Institute for Liver Diseases of Anhui Medical University, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, 230032, China
| | - Xiaowen Feng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; Institute for Liver Diseases of Anhui Medical University, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, 230032, China
| | - Jiagen Wen
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; Institute for Liver Diseases of Anhui Medical University, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, 230032, China
| | - Yan Huang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; Institute for Liver Diseases of Anhui Medical University, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, 230032, China
| | - Chengmu Hu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; Institute for Liver Diseases of Anhui Medical University, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, 230032, China.
| |
Collapse
|
25
|
Campolo N, Mastrogiovanni M, Mariotti M, Issoglio FM, Estrin D, Hägglund P, Grune T, Davies MJ, Bartesaghi S, Radi R. Multiple oxidative post-translational modifications of human glutamine synthetase mediate peroxynitrite-dependent enzyme inactivation and aggregation. J Biol Chem 2023; 299:102941. [PMID: 36702251 PMCID: PMC10011836 DOI: 10.1016/j.jbc.2023.102941] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/25/2023] Open
Abstract
Glutamine synthetase (GS), which catalyzes the ATP-dependent synthesis of L-glutamine from L-glutamate and ammonia, is a ubiquitous and conserved enzyme that plays a pivotal role in nitrogen metabolism across all life domains. In vertebrates, GS is highly expressed in astrocytes, where its activity sustains the glutamate-glutamine cycle at glutamatergic synapses and is thus essential for maintaining brain homeostasis. In fact, decreased GS levels or activity have been associated with neurodegenerative diseases, with these alterations attributed to oxidative post-translational modifications of the protein, in particular tyrosine nitration. In this study, we expressed and purified human GS (HsGS) and performed an in-depth analysis of its oxidative inactivation by peroxynitrite (ONOO-) in vitro. We found that ONOO- exposure led to a dose-dependent loss of HsGS activity, the oxidation of cysteine, methionine, and tyrosine residues and also the nitration of tryptophan and tyrosine residues. Peptide mapping by LC-MS/MS through combined H216O/H218O trypsin digestion identified up to 10 tyrosine nitration sites and five types of dityrosine cross-links; these modifications were further scrutinized by structural analysis. Tyrosine residues 171, 185, 269, 283, and 336 were the main nitration targets; however, tyrosine-to-phenylalanine HsGS mutants revealed that their sole nitration was not responsible for enzyme inactivation. In addition, we observed that ONOO- induced HsGS aggregation and activity loss. Thiol oxidation was a key modification to elicit aggregation, as it was also induced by hydrogen peroxide treatment. Taken together, our results indicate that multiple oxidative events at various sites are responsible for the inactivation and aggregation of human GS.
Collapse
Affiliation(s)
- Nicolás Campolo
- Departamento de Bioquímica and Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Mauricio Mastrogiovanni
- Departamento de Bioquímica and Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Michele Mariotti
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Federico M Issoglio
- CONICET-Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Oeiras, Portugal
| | - Darío Estrin
- CONICET-Universidad de Buenos Aires, Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), Buenos Aires, Argentina; Departamento de Química Inorgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Analítica y Química Física, Buenos Aires, Argentina
| | - Per Hägglund
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Tilman Grune
- Department of Molecular Toxicology, German Institute of Human Nutrition, Potsdam-Rehbrücke, Nuthetal, Germany; German Center for Cardiovascular Research (DZHK), Berlin, Germany; Department of Physiological Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Michael J Davies
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Silvina Bartesaghi
- Departamento de Bioquímica and Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Rafael Radi
- Departamento de Bioquímica and Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo, Uruguay.
| |
Collapse
|
26
|
Delafiori J, Faria AVDS, de Oliveira AN, Sales GM, Dias-Audibert FL, Catharino RR. Unraveling the Metabolic Alterations Induced by Zika Infection in Prostate Epithelial (PNT1a) and Adenocarcinoma (PC-3) Cell Lines. J Proteome Res 2023; 22:193-203. [PMID: 36469742 DOI: 10.1021/acs.jproteome.2c00630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The outbreak of Zika virus infection in 2016 led to the identification of its presence in several types of biofluids, including semen. Later discoveries associated Zika infection with sexual transmission and persistent replication in cells of the male reproductive tract. Prostate epithelial and carcinoma cells are favorable to virus replication, with studies pointing to transcriptomics alterations of immune and inflammation genes upon persistence. However, metabolome alterations promoted by the Zika virus in prostate cells are unknown. Given its chronic effects and oncolytic potential, we aim to investigate the metabolic alterations induced by the Zika virus in prostate epithelial (PNT1a) and adenocarcinoma (PC-3) cells using an untargeted metabolomics approach and high-resolution mass spectrometry. PNT1a cells were viable up to 15 days post ZIKV infection, in contrast to its antiproliferative effect in the PC-3 cell lineage. Remarkable alterations in the PNT1a cell metabolism were observed upon infection, especially regarding glycerolipids, fatty acids, and acylcarnitines, which could be related to viral cellular resource exploitation, in addition to the over-time increase in oxidative stress metabolites associated with carcinogenesis. The upregulation of FA20:5 at 5 dpi in PC-3 cells corroborates the antiproliferative effect observed since this metabolite was previously reported to induce PC-3 cell death. Overall, Zika virus promotes extensive lipid alterations on both PNT1a and PC-3 cells, promoting different outcomes based on the cellular metabolic state.
Collapse
Affiliation(s)
- Jeany Delafiori
- Innovare Biomarkers Laboratory, School of Pharmaceutical Sciences, University of Campinas, Campinas, SP 13083-970, Brazil
| | - Alessandra V de S Faria
- Department of Biochemistry and Tissue Biology, University of Campinas, Campinas, SP 13083-862, Brazil
| | - Arthur N de Oliveira
- Innovare Biomarkers Laboratory, School of Pharmaceutical Sciences, University of Campinas, Campinas, SP 13083-970, Brazil
| | - Geovana M Sales
- Innovare Biomarkers Laboratory, School of Pharmaceutical Sciences, University of Campinas, Campinas, SP 13083-970, Brazil
| | - Flávia Luísa Dias-Audibert
- Innovare Biomarkers Laboratory, School of Pharmaceutical Sciences, University of Campinas, Campinas, SP 13083-970, Brazil
| | - Rodrigo R Catharino
- Innovare Biomarkers Laboratory, School of Pharmaceutical Sciences, University of Campinas, Campinas, SP 13083-970, Brazil
| |
Collapse
|
27
|
Corpas FJ, Palma JM. Functions of NO and H 2S Signal Molecules Against Plant Abiotic Stress. Methods Mol Biol 2023; 2642:97-109. [PMID: 36944874 DOI: 10.1007/978-1-0716-3044-0_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Nitric oxide (NO) and hydrogen sulfide (H2S) are two recognized signal molecules in higher plants involved in a wide range of physiological processes and the mechanisms of response against adverse environmental conditions. These molecules can interact to provide an adequate response to palliate the negative impact exerted by stressful conditions, particularly by regulating key components of the metabolism of reactive oxygen species (ROS) to avoid their overproduction and further oxidative damage which, finally, affects cellular functioning. NO and H2S can exert the regulation over the function of susceptible proteins by posttranslational modifications (PTMs) including nitration, S-nitrosation, and persulfidation but also through the regulation of gene expression by the induction of specific transcription factors which modulate the expression of genes encoding proteins related to stress resistance. This chapter encompasses a wide perspective of the signaling and functional relationships between NO and H2S to modulate the overproduction of reactive oxygen species, particularly under abiotic stress conditions.
Collapse
Affiliation(s)
- Francisco J Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Stress, Development and Signaling in Plants, Estación Experimental del Zaidín, Spanish National Research Council (CSIC), Granada, Spain.
| | - José M Palma
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Stress, Development and Signaling in Plants, Estación Experimental del Zaidín, Spanish National Research Council (CSIC), Granada, Spain
| |
Collapse
|
28
|
Immunosenescence in Aging-Related Vascular Dysfunction. Int J Mol Sci 2022; 23:ijms232113269. [PMID: 36362055 PMCID: PMC9654630 DOI: 10.3390/ijms232113269] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/25/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
The immunosenescence-related disproportion in T lymphocytes may have important consequences for endothelial dysfunction, which is a key event in vascular aging. The study was designed to assess the prognostic values of the inflammatory-immune profile to better predict and prevent vascular diseases associated with old age. Eighty individuals aged 70.9 ± 5.3 years were allocated to a low- (LGI) or high-grade inflammation (HGI) group based on CRP (<3 or ≥3 mg/L) as a conventional risk marker of cardiovascular diseases. Significant changes in inflammatory and endothelium-specific variables IL-1β, IL-6, TNFα, oxLDL, H2O2, NO, 3-nitrotyrosine, and endothelial progenitor cells (OR 7.61, 95% CI 2.56−29.05, p < 0.0001), confirmed their interplay in vascular inflammation. The flow-cytometry analysis demonstrated a high disproportion in T lymphocytes CD4+ and CD8+ between LGI and HGI groups. CRP was <3 mg/mL for the CD4/CD8 ratio within the reference values ≥ 1 or ≤2.5, unlike for the CD4/CD8 ratio < 1 and >2.5. The odds ratios for the distribution of CD4+ (OR 5.98, 95% CI 0.001−0.008, p < 0.001), CD8+ (OR 0.23, 95% CI 0.08−0.59, p < 0.01), and CD8CD45RO+ T naïve cells (OR 0.27, 95% CI 0.097−0.695, p < 0.01) and CD4/CD8 (OR 5.69, 95% CI 2.07−17.32, p < 0.001) indicated a potential diagnostic value of T lymphocytes for clinical prognosis in aging-related vascular dysfunction.
Collapse
|
29
|
Kell DB, Pretorius E. The potential role of ischaemia-reperfusion injury in chronic, relapsing diseases such as rheumatoid arthritis, Long COVID, and ME/CFS: evidence, mechanisms, and therapeutic implications. Biochem J 2022; 479:1653-1708. [PMID: 36043493 PMCID: PMC9484810 DOI: 10.1042/bcj20220154] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 02/07/2023]
Abstract
Ischaemia-reperfusion (I-R) injury, initiated via bursts of reactive oxygen species produced during the reoxygenation phase following hypoxia, is well known in a variety of acute circumstances. We argue here that I-R injury also underpins elements of the pathology of a variety of chronic, inflammatory diseases, including rheumatoid arthritis, ME/CFS and, our chief focus and most proximally, Long COVID. Ischaemia may be initiated via fibrin amyloid microclot blockage of capillaries, for instance as exercise is started; reperfusion is a necessary corollary when it finishes. We rehearse the mechanistic evidence for these occurrences here, in terms of their manifestation as oxidative stress, hyperinflammation, mast cell activation, the production of marker metabolites and related activities. Such microclot-based phenomena can explain both the breathlessness/fatigue and the post-exertional malaise that may be observed in these conditions, as well as many other observables. The recognition of these processes implies, mechanistically, that therapeutic benefit is potentially to be had from antioxidants, from anti-inflammatories, from iron chelators, and via suitable, safe fibrinolytics, and/or anti-clotting agents. We review the considerable existing evidence that is consistent with this, and with the biochemical mechanisms involved.
Collapse
Affiliation(s)
- Douglas B. Kell
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 7ZB, U.K
- The Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Kemitorvet 200, 2800 Kgs Lyngby, Denmark
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1 Matieland 7602, South Africa
| | - Etheresia Pretorius
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 7ZB, U.K
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1 Matieland 7602, South Africa
| |
Collapse
|
30
|
Sokolová M, Šestáková H, Truksa M, Šafařík M, Hadravová R, Bouř P, Šebestík J. Photochemical synthesis of pink silver and its use for monitoring peptide nitration via surface enhanced Raman spectroscopy (SERS). Amino Acids 2022; 54:1261-1274. [PMID: 35731286 DOI: 10.1007/s00726-022-03178-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 05/31/2022] [Indexed: 12/01/2022]
Abstract
Oxidative stress may cause extended tyrosine posttranslational modifications of peptides and proteins. The 3-nitro-L-tyrosine (Nit), which is typically formed, affects protein behavior during neurodegenerative processes, such as Alzheimer's and Parkinson's diseases. Such metabolic products may be conveniently detected at very low concentrations by surface enhanced Raman spectroscopy (SERS). Previously, we have explored the SERS detection of the Nit NO2 bending vibrational bands in a presence of hydrogen chloride (Niederhafner et al., Amino Acids 53:517-532, 2021, ibid). In this article, we describe performance of a new SERS substrate, "pink silver", synthesized photochemically. It provides SERS even without the HCl induction, and the acid further decreases the detection limit about 9 times. Strong SERS bands were observed in the asymmetric (1550-1475 cm-1) and symmetric (1360-1290 cm-1) NO stretching in the NO2 group. The bending vibration was relatively weak, but appeared stronger when HCl was added. The band assignments were supported by density functional theory modeling.
Collapse
Affiliation(s)
- Marina Sokolová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences, Flemingovo náměstí 2, 16610, Prague 6, Czech Republic
| | - Hana Šestáková
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences, Flemingovo náměstí 2, 16610, Prague 6, Czech Republic
| | - Martin Truksa
- Mensa Gymnázium O.P.S., Španielova 1111/19, 163 00, Prague 6, Czech Republic
| | - Martin Šafařík
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences, Flemingovo náměstí 2, 16610, Prague 6, Czech Republic
| | - Romana Hadravová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences, Flemingovo náměstí 2, 16610, Prague 6, Czech Republic
| | - Petr Bouř
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences, Flemingovo náměstí 2, 16610, Prague 6, Czech Republic
| | - Jaroslav Šebestík
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences, Flemingovo náměstí 2, 16610, Prague 6, Czech Republic. .,Mensa Gymnázium O.P.S., Španielova 1111/19, 163 00, Prague 6, Czech Republic.
| |
Collapse
|
31
|
Piacenza L, Zeida A, Trujillo M, Radi R. The superoxide radical switch in the biology of nitric oxide and peroxynitrite. Physiol Rev 2022; 102:1881-1906. [PMID: 35605280 DOI: 10.1152/physrev.00005.2022] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Lucìa Piacenza
- Departamento de Bioquímica, Facultad de Medicina; Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Uruguay
| | - Ari Zeida
- Departamento de Bioquímica, Facultad de Medicina; Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay
| | - Madia Trujillo
- Departamento de Bioquímica, Facultad de Medicina; Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay
| | - Rafael Radi
- Departamento de Bioquímica, Facultad de Medicina; Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
32
|
Radiolysis Studies of Oxidation and Nitration of Tyrosine and Some Other Biological Targets by Peroxynitrite-Derived Radicals. Int J Mol Sci 2022; 23:ijms23031797. [PMID: 35163717 PMCID: PMC8836854 DOI: 10.3390/ijms23031797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 01/31/2022] [Accepted: 02/02/2022] [Indexed: 01/27/2023] Open
Abstract
The widespread interest in free radicals in biology extends far beyond the effects of ionizing radiation, with recent attention largely focusing on reactions of free radicals derived from peroxynitrite (i.e., hydroxyl, nitrogen dioxide, and carbonate radicals). These radicals can easily be generated individually by reactions of radiolytically-produced radicals in aqueous solutions and their reactions can be monitored either in real time or by analysis of products. This review first describes the general principles of selective radical generation by radiolysis, the yields of individual species, the advantages and limitations of either pulsed or continuous radiolysis, and the quantitation of oxidizing power of radicals by electrode potentials. Some key reactions of peroxynitrite-derived radicals with potential biological targets are then discussed, including the characterization of reactions of tyrosine with a model alkoxyl radical, reactions of tyrosyl radicals with nitric oxide, and routes to nitrotyrosine formation. This is followed by a brief outline of studies involving the reactions of peroxynitrite-derived radicals with lipoic acid/dihydrolipoic acid, hydrogen sulphide, and the metal chelator desferrioxamine. For biological diagnostic probes such as ‘spin traps’ to be used with confidence, their reactivities with radical species have to be characterized, and the application of radiolysis methods in this context is also illustrated.
Collapse
|
33
|
Metabolic Features of Brain Function with Relevance to Clinical Features of Alzheimer and Parkinson Diseases. Molecules 2022; 27:molecules27030951. [PMID: 35164216 PMCID: PMC8839962 DOI: 10.3390/molecules27030951] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 12/04/2022] Open
Abstract
Brain metabolism is comprised in Alzheimer’s disease (AD) and Parkinson’s disease (PD). Since the brain primarily relies on metabolism of glucose, ketone bodies, and amino acids, aspects of these metabolic processes in these disorders—and particularly how these altered metabolic processes are related to oxidative and/or nitrosative stress and the resulting damaged targets—are reviewed in this paper. Greater understanding of the decreased functions in brain metabolism in AD and PD is posited to lead to potentially important therapeutic strategies to address both of these disorders, which cause relatively long-lasting decreased quality of life in patients.
Collapse
|
34
|
Juhász L, Tallósy SP, Nászai A, Varga G, Érces D, Boros M. Bioactivity of Inhaled Methane and Interactions With Other Biological Gases. Front Cell Dev Biol 2022; 9:824749. [PMID: 35071248 PMCID: PMC8777024 DOI: 10.3389/fcell.2021.824749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 12/14/2021] [Indexed: 01/04/2023] Open
Abstract
A number of studies have demonstrated explicit bioactivity for exogenous methane (CH4), even though it is conventionally considered as physiologically inert. Other reports cited in this review have demonstrated that inhaled, normoxic air-CH4 mixtures can modulate the in vivo pathways involved in oxidative and nitrosative stress responses and key events of mitochondrial respiration and apoptosis. The overview is divided into two parts, the first being devoted to a brief review of the effects of biologically important gases in the context of hypoxia, while the second part deals with CH4 bioactivity. Finally, the consequence of exogenous, normoxic CH4 administration is discussed under experimental hypoxia- or ischaemia-linked conditions and in interactions between CH4 and other biological gases, with a special emphasis on its versatile effects demonstrated in pulmonary pathologies.
Collapse
Affiliation(s)
- László Juhász
- Institute of Surgical Research, Faculty of Medicine, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Szabolcs Péter Tallósy
- Institute of Surgical Research, Faculty of Medicine, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Anna Nászai
- Institute of Surgical Research, Faculty of Medicine, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Gabriella Varga
- Institute of Surgical Research, Faculty of Medicine, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Dániel Érces
- Institute of Surgical Research, Faculty of Medicine, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Mihály Boros
- Institute of Surgical Research, Faculty of Medicine, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| |
Collapse
|
35
|
Hartman MCT. Non-canonical Amino Acid Substrates of E. coli Aminoacyl-tRNA Synthetases. Chembiochem 2022; 23:e202100299. [PMID: 34416067 PMCID: PMC9651912 DOI: 10.1002/cbic.202100299] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/03/2021] [Indexed: 01/07/2023]
Abstract
In this comprehensive review, I focus on the twenty E. coli aminoacyl-tRNA synthetases and their ability to charge non-canonical amino acids (ncAAs) onto tRNAs. The promiscuity of these enzymes has been harnessed for diverse applications including understanding and engineering of protein function, creation of organisms with an expanded genetic code, and the synthesis of diverse peptide libraries for drug discovery. The review catalogues the structures of all known ncAA substrates for each of the 20 E. coli aminoacyl-tRNA synthetases, including ncAA substrates for engineered versions of these enzymes. Drawing from the structures in the list, I highlight trends and novel opportunities for further exploitation of these ncAAs in the engineering of protein function, synthetic biology, and in drug discovery.
Collapse
Affiliation(s)
- Matthew C T Hartman
- Department of Chemistry and Massey Cancer Center, Virginia Commonwealth University, 1001 W Main St., Richmond, VA 23220, USA
| |
Collapse
|
36
|
YANG L, YANG C, SONG ZX, WAN M, XIA H, XU D, PAN D, WANG SK, SHU G, SUN G. Effects of blended oils with different n-6/n-3 polyunsaturated fatty acid ratios on high-fat diet-induced metabolic disorders and hepatic steatosis in rats. FOOD SCIENCE AND TECHNOLOGY 2022; 42. [DOI: 10.1590/fst.81322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | | | - Zhi Xiu SONG
- Nanjing University of Traditional Chinese Medicine, China
| | | | | | | | - Da PAN
- Southeast University, China
| | | | - Guofang SHU
- Zhongda Hospital of Southeast University, China
| | | |
Collapse
|
37
|
Kalous KS, Wynia-Smith SL, Smith BC. Sirtuin Oxidative Post-translational Modifications. Front Physiol 2021; 12:763417. [PMID: 34899389 PMCID: PMC8652059 DOI: 10.3389/fphys.2021.763417] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/19/2021] [Indexed: 12/24/2022] Open
Abstract
Increased sirtuin deacylase activity is correlated with increased lifespan and healthspan in eukaryotes. Conversely, decreased sirtuin deacylase activity is correlated with increased susceptibility to aging-related diseases. However, the mechanisms leading to decreased sirtuin activity during aging are poorly understood. Recent work has shown that oxidative post-translational modification by reactive oxygen (ROS) or nitrogen (RNS) species results in inhibition of sirtuin deacylase activity through cysteine nitrosation, glutathionylation, sulfenylation, and sulfhydration as well as tyrosine nitration. The prevalence of ROS/RNS (e.g., nitric oxide, S-nitrosoglutathione, hydrogen peroxide, oxidized glutathione, and peroxynitrite) is increased during inflammation and as a result of electron transport chain dysfunction. With age, cellular production of ROS/RNS increases; thus, cellular oxidants may serve as a causal link between loss of sirtuin activity and aging-related disease development. Therefore, the prevention of inhibitory oxidative modification may represent a novel means to increase sirtuin activity during aging. In this review, we explore the role of cellular oxidants in inhibiting individual sirtuin human isoform deacylase activity and clarify the relevance of ROS/RNS as regulatory molecules of sirtuin deacylase activity in the context of health and disease.
Collapse
Affiliation(s)
- Kelsey S Kalous
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Sarah L Wynia-Smith
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Brian C Smith
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
38
|
Red Light Irradiation In Vivo Upregulates DJ-1 in the Retinal Ganglion Cell Layer and Protects against Axotomy-Related Dendritic Pruning. Int J Mol Sci 2021; 22:ijms22168380. [PMID: 34445085 PMCID: PMC8395066 DOI: 10.3390/ijms22168380] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 07/30/2021] [Accepted: 07/30/2021] [Indexed: 12/26/2022] Open
Abstract
Retinal ganglion cells (RGCs) undergo dendritic pruning in a variety of neurodegenerative diseases, including glaucoma and autosomal dominant optic atrophy (ADOA). Axotomising RGCs by severing the optic nerve generates an acute model of RGC dendropathy, which can be utilized to assess the therapeutic potential of treatments for RGC degeneration. Photobiomodulation (PBM) with red light provided neuroprotection to RGCs when administered ex vivo to wild-type retinal explants. In the current study, we used aged (13–15-month-old) wild-type and heterozygous B6;C3-Opa1Q285STOP (Opa1+/−) mice, a model of ADOA exhibiting RGC dendropathy. These mice were pre-treated with 4 J/cm2 of 670 nm light for five consecutive days before the eyes were enucleated and the retinas flat-mounted into explant cultures for 0-, 8- or 16-h ex vivo. RGCs were imaged by confocal microscopy, and their dendritic architecture was quantified by Sholl analysis. In vivo 670 nm light pretreatment inhibited the RGC dendropathy observed in untreated wild-type retinas over 16 h ex vivo and inhibited dendropathy in ON-center RGCs in wild-type but not Opa1+/− retinas. Immunohistochemistry revealed that aged Opa1+/− RGCs exhibited increased nitrosative damage alongside significantly lower activation of NF-κB and upregulation of DJ-1. PBM restored NF-κB activation in Opa1+/− RGCs and enhanced DJ-1 expression in both genotypes, indicating a potential molecular mechanism priming the retina to resist future oxidative insult. These data support the potential of PBM as a treatment for diseases involving RGC degeneration.
Collapse
|
39
|
Ferlazzo N, Currò M, Isola G, Maggio S, Bertuccio MP, Trovato-Salinaro A, Matarese G, Alibrandi A, Caccamo D, Ientile R. Changes in the Biomarkers of Oxidative/Nitrosative Stress and Endothelial Dysfunction Are Associated with Cardiovascular Risk in Periodontitis Patients. Curr Issues Mol Biol 2021; 43:704-715. [PMID: 34287264 PMCID: PMC8929118 DOI: 10.3390/cimb43020051] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/08/2021] [Accepted: 07/13/2021] [Indexed: 02/06/2023] Open
Abstract
Patients with cardiovascular disease (CVD) and periodontitis (PT) show shared risk factors as result of the altered molecular mechanisms associated with pathological conditions. The aim of our study was to evaluate if the plasma biomarkers associated with endothelial dysfunction may also be related to alterations in the inflammatory status in peripheral blood mononuclear cells (PBMC). Patients with PT, coronary heart disease (CHD), or both diseases as well as controls were enrolled. Plasma levels of coenzyme Q10 (CoQ10), 3-nitrotyrosine (NT), and asymmetric dimethylarginine (ADMA) were assessed using HPLC. mRNA levels of caspase-1 (CASP1), NLR family pyrin domain containing 3 (NLRP3), and tumor necrosis factor-α (TNF-α) in PBMC from the recruited subjects were quantified using real-time PCR. Patients with PT + CHD showed lower CoQ10 plasma levels and increased concentrations of NT in comparison to healthy subjects. ADMA levels were higher in CHD and PT + CHD patients compared to controls. Transcript levels of CASP1, NLRP3, and TNF-α were up-regulated in PBMC from all patient groups when compared to healthy subjects. Our results suggest a possible causal link between oxidative stress, high levels of NT and ADMA, and inflammasome activation, which may be involved in the endothelial inflammatory dysfunction leading to the pathogenesis and progression of CHD in PT patients.
Collapse
Affiliation(s)
- Nadia Ferlazzo
- Department of Biomedical and Dental Sciences and Morpho-Functional Imaging, University of Messina, 98123 Messina, Italy; (S.M.); (M.P.B.); (G.M.); (D.C.); (R.I.)
- Correspondence: (N.F.); (M.C.); Tel.: +39-0902213389 (M.C.)
| | - Monica Currò
- Department of Biomedical and Dental Sciences and Morpho-Functional Imaging, University of Messina, 98123 Messina, Italy; (S.M.); (M.P.B.); (G.M.); (D.C.); (R.I.)
- Correspondence: (N.F.); (M.C.); Tel.: +39-0902213389 (M.C.)
| | - Gaetano Isola
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, Via S. Sofia 78, 95123 Catania, Italy;
| | - Silvia Maggio
- Department of Biomedical and Dental Sciences and Morpho-Functional Imaging, University of Messina, 98123 Messina, Italy; (S.M.); (M.P.B.); (G.M.); (D.C.); (R.I.)
| | - Maria Paola Bertuccio
- Department of Biomedical and Dental Sciences and Morpho-Functional Imaging, University of Messina, 98123 Messina, Italy; (S.M.); (M.P.B.); (G.M.); (D.C.); (R.I.)
| | | | - Giovanni Matarese
- Department of Biomedical and Dental Sciences and Morpho-Functional Imaging, University of Messina, 98123 Messina, Italy; (S.M.); (M.P.B.); (G.M.); (D.C.); (R.I.)
| | - Angela Alibrandi
- Unit of Statistical and Mathematical Sciences, Department of Economics, University of Messina, 98123 Messina, Italy;
| | - Daniela Caccamo
- Department of Biomedical and Dental Sciences and Morpho-Functional Imaging, University of Messina, 98123 Messina, Italy; (S.M.); (M.P.B.); (G.M.); (D.C.); (R.I.)
| | - Riccardo Ientile
- Department of Biomedical and Dental Sciences and Morpho-Functional Imaging, University of Messina, 98123 Messina, Italy; (S.M.); (M.P.B.); (G.M.); (D.C.); (R.I.)
| |
Collapse
|
40
|
Melatonin, Its Metabolites and Their Interference with Reactive Nitrogen Compounds. Molecules 2021; 26:molecules26134105. [PMID: 34279445 PMCID: PMC8271479 DOI: 10.3390/molecules26134105] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 12/14/2022] Open
Abstract
Melatonin and several of its metabolites are interfering with reactive nitrogen. With the notion of prevailing melatonin formation in tissues that exceeds by far the quantities in blood, metabolites come into focus that are poorly found in the circulation. Apart from their antioxidant actions, both melatonin and N1-acetyl-5-methoxykynuramine (AMK) downregulate inducible and inhibit neuronal NO synthases, and additionally scavenge NO. However, the NO adduct of melatonin redonates NO, whereas AMK forms with NO a stable product. Many other melatonin metabolites formed in oxidative processes also contain nitrosylatable sites. Moreover, AMK readily scavenges products of the CO2-adduct of peroxynitrite such as carbonate radicals and NO2. Protein AMKylation seems to be involved in protective actions.
Collapse
|
41
|
Marussi G, Vione D. Secondary Formation of Aromatic Nitroderivatives of Environmental Concern: Photonitration Processes Triggered by the Photolysis of Nitrate and Nitrite Ions in Aqueous Solution. Molecules 2021; 26:2550. [PMID: 33925664 PMCID: PMC8124604 DOI: 10.3390/molecules26092550] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 11/17/2022] Open
Abstract
Aromatic nitroderivatives are compounds of considerable environmental concern, because some of them are phytotoxic (especially the nitrophenols, and particularly 2,4-dinitrophenol), others are mutagenic and potentially carcinogenic (e.g., the nitroderivatives of polycyclic aromatic hydrocarbons, such as 1-nitropyrene), and all of them absorb sunlight as components of the brown carbon. The latter has the potential to affect the climatic feedback of atmospheric aerosols. Most nitroderivatives are secondarily formed in the environment and, among their possible formation processes, photonitration upon irradiation of nitrate or nitrite is an important pathway that has periodically gained considerable attention. However, photonitration triggered by nitrate and nitrite is a very complex process, because the two ionic species under irradiation produce a wide range of nitrating agents (such as •NO2, HNO2, HOONO, and H2OONO+), which are affected by pH and the presence of organic compounds and, in turn, deeply affect the nitration of aromatic precursors. Moreover, aromatic substrates can highly differ in their reactivity towards the various photogenerated species, thereby providing different behaviours towards photonitration. Despite the high complexity, it is possible to rationalise the different photonitration pathways in a coherent framework. In this context, this review paper has the goal of providing the reader with a guide on what to expect from the photonitration process under different conditions, how to study it, and how to determine which pathway(s) are prevailing in the formation of the observed nitroderivatives.
Collapse
Affiliation(s)
- Giovanna Marussi
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università degli Studi di Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy;
| | - Davide Vione
- Dipartimento di Chimica, Università degli Studi di Torino, Via Pietro Giuria 5, 10125 Torino, Italy
| |
Collapse
|
42
|
Schmidt M, Kubyshkin V. How To Quantify a Genetic Firewall? A Polarity-Based Metric for Genetic Code Engineering. Chembiochem 2021; 22:1268-1284. [PMID: 33231343 PMCID: PMC8049029 DOI: 10.1002/cbic.202000758] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 11/20/2020] [Indexed: 12/14/2022]
Abstract
Genetic code engineering aims to produce organisms that translate genetic information in a different way from that prescribed by the standard genetic code. This endeavor could eventually lead to genetic isolation, where an organism that operates under a different genetic code will not be able to transfer functional genes with other living species, thereby standing behind a genetic firewall. It is not clear however, how distinct the code should be, or how to measure the distance. We have developed a metric (Δcode ) where we assigned polarity indices (clog D7 ) to amino acids to calculate the distances between pairs of genetic codes. We then calculated the distance between a set of 204 genetic codes, including the 24 known distinct natural codes, 11 extreme-distance codes created computationally, nine theoretical special purpose codes from literature and 160 codes in which canonical amino acids were replaced by noncanonical chemical analogues. The metric can be used for building strategies towards creating semantically alienated organisms, and testing the strength of genetic firewalls. This metric provides the basis for a map of the genetic codes that could guide future efforts towards novel biochemical worlds, biosafety and deep barcoding applications.
Collapse
Affiliation(s)
| | - Vladimir Kubyshkin
- Department of ChemistryUniversity of ManitobaDysart Road 144WinnipegR3T 2N2Canada
| |
Collapse
|
43
|
Fang SY, Chen JL, Chiu MH, Huang CC, Lin MW, Lam CF. Distinct phenotypic expression levels of macrophages in neonatal lungs. Exp Ther Med 2021; 21:369. [PMID: 33732342 PMCID: PMC7903444 DOI: 10.3892/etm.2021.9800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 06/02/2020] [Indexed: 11/25/2022] Open
Abstract
Alveolar macrophages are the front-line defense against environmental pathogens. However, to the best of our knowledge, differences in function and phenotypic expression levels of macrophages between neonatal and adult lungs have not previously been determined. The present study investigated lung tissues and analyzed blood samples to find cell markers of M1 and M2 macrophages in neonatal and adult rats. Pulmonary sepsis was induced by intrapleural instillation of lipopolysaccharide (LPS; 20 mg/kg) and survival time after administration of LPS was measured. In certain neonates, a selective inducible nitric oxide synthase (iNOS) inhibitor, 1400w, was administered prior to induction of pulmonary sepsis. Compared with adults, fetal and neonatal lung tissues had significantly higher levels of iNOS and CD86 (M1 markers), whereas the expression levels of CD206 and arginase-1 (M2 markers) were lower in the neonatal lung. The circulating cells that co-expressed CD68 (monocytes and macrophages) and CD86 in the blood were also significantly higher in neonates than in adults (25.9±6.6 vs. 11.6±2.2%; P=0.007. At basal unstimulated conditions, lung tissue concentrations of nitrite and nitrate (NOx) were significantly lower in the neonates than in adults (112.1±55.9 vs. 340.9±124.9 µM/g; P<0.001). However, NOx was increased following administration of LPS. Administration of 1400w suppressed lung tissue levels of NOx and improved the survival time in neonatal rats treated with LPS. The present study demonstrated that M1 is the primary macrophage phenotype in the neonatal lung and that higher iNOS expression levels do not have a protective effect against pulmonary endotoxins in neonates. Overproduction of NO by iNOS in neonatal alveolar macrophages may result in detrimental effects during pulmonary inflammation.
Collapse
Affiliation(s)
- Shih-Yuan Fang
- Department of Anesthesiology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan, R.O.C
| | - Jen-Lung Chen
- Department of Surgery, E-Da Hospital/E-Da Cancer Hospital, I-Shou University, Kaohsiung 824, Taiwan, R.O.C
| | - Meng-Hsuan Chiu
- Department of Anesthesiology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan, R.O.C
| | - Chien-Chi Huang
- Department of Medical Research, E-Da Hospital/E-Da Cancer Hospital, I-Shou University, Kaohsiung 824, Taiwan, R.O.C
| | - Ming-Wei Lin
- Department of Medical Research, E-Da Hospital/E-Da Cancer Hospital, I-Shou University, Kaohsiung 824, Taiwan, R.O.C
| | - Chen-Fuh Lam
- Department of Anesthesiology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan, R.O.C.,Department of Anesthesiology, E-Da Hospital/E-Da Cancer Hospital, I-Shou University, Kaohsiung 824, Taiwan, R.O.C.,School of Medicine, College of Medicine, I-Shou University, Kaohsiung 824, Taiwan, R.O.C
| |
Collapse
|
44
|
Caliri AW, Tommasi S, Besaratinia A. Relationships among smoking, oxidative stress, inflammation, macromolecular damage, and cancer. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2021; 787:108365. [PMID: 34083039 PMCID: PMC8287787 DOI: 10.1016/j.mrrev.2021.108365] [Citation(s) in RCA: 287] [Impact Index Per Article: 71.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 02/07/2023]
Abstract
Smoking is a major risk factor for a variety of diseases, including cancer and immune-mediated inflammatory diseases. Tobacco smoke contains a mixture of chemicals, including a host of reactive oxygen- and nitrogen species (ROS and RNS), among others, that can damage cellular and sub-cellular targets, such as lipids, proteins, and nucleic acids. A growing body of evidence supports a key role for smoking-induced ROS and the resulting oxidative stress in inflammation and carcinogenesis. This comprehensive and up-to-date review covers four interrelated topics, including 'smoking', 'oxidative stress', 'inflammation', and 'cancer'. The review discusses each of the four topics, while exploring the intersections among the topics by highlighting the macromolecular damage attributable to ROS. Specifically, oxidative damage to macromolecular targets, such as lipid peroxidation, post-translational modification of proteins, and DNA adduction, as well as enzymatic and non-enzymatic antioxidant defense mechanisms, and the multi-faceted repair pathways of oxidized lesions are described. Also discussed are the biological consequences of oxidative damage to macromolecules if they evade the defense mechanisms and/or are not repaired properly or in time. Emphasis is placed on the genetic- and epigenetic alterations that may lead to transcriptional deregulation of functionally-important genes and disruption of regulatory elements. Smoking-associated oxidative stress also activates the inflammatory response pathway, which triggers a cascade of events of which ROS production is an initial yet indispensable step. The release of ROS at the site of damage and inflammation helps combat foreign pathogens and restores the injured tissue, while simultaneously increasing the burden of oxidative stress. This creates a vicious cycle in which smoking-related oxidative stress causes inflammation, which in turn, results in further generation of ROS, and potentially increased oxidative damage to macromolecular targets that may lead to cancer initiation and/or progression.
Collapse
Affiliation(s)
- Andrew W Caliri
- Department of Preventive Medicine, USC Keck School of Medicine, University of Southern California, M/C 9603, Los Angeles, CA 90033, USA
| | - Stella Tommasi
- Department of Preventive Medicine, USC Keck School of Medicine, University of Southern California, M/C 9603, Los Angeles, CA 90033, USA
| | - Ahmad Besaratinia
- Department of Preventive Medicine, USC Keck School of Medicine, University of Southern California, M/C 9603, Los Angeles, CA 90033, USA.
| |
Collapse
|
45
|
Monitoring peptide tyrosine nitration by spectroscopic methods. Amino Acids 2020; 53:517-532. [PMID: 33205301 DOI: 10.1007/s00726-020-02911-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/04/2020] [Indexed: 12/16/2022]
Abstract
Oxidative stress can lead to various derivatives of the tyrosine residue in peptides and proteins. A typical product is 3-nitro-L-tyrosine residue (Nit), which can affect protein behavior during neurodegenerative processes, such as those associated with Alzheimer's and Parkinson's diseases. Surface enhanced Raman spectroscopy (SERS) is a technique with potential for detecting peptides and their metabolic products at very low concentrations. To explore the applicability to Nit, we use SERS to monitor tyrosine nitration in Met-Enkephalin, rev-Prion protein, and α-synuclein models. Useful nitration indicators were the intensity ratio of two tyrosine marker bands at 825 and 870 cm-1 and a bending vibration of the nitro group. During the SERS measurement, a conversion of nitrotyrosine to azobenzene containing peptides was observed. The interpretation of the spectra has been based on density functional theory (DFT) simulations. The CAM-B3LYP and ωB97XD functionals were found to be most suitable for modeling the measured data. The secondary structure of the α-synuclein models was monitored by electronic and vibrational circular dichroism (ECD and VCD) spectroscopies and modeled by molecular dynamics (MD) simulations. The results suggest that the nitration in these peptides has a limited effect on the secondary structure, but may trigger their aggregation.
Collapse
|
46
|
Simultaneous LC-MS/MS-Based Quantification of Free 3-Nitro-l-tyrosine, 3-Chloro-l-tyrosine, and 3-Bromo-l-tyrosine in Plasma of Colorectal Cancer Patients during Early Postoperative Period. Molecules 2020; 25:molecules25215158. [PMID: 33167555 PMCID: PMC7663926 DOI: 10.3390/molecules25215158] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 10/31/2020] [Accepted: 11/01/2020] [Indexed: 12/12/2022] Open
Abstract
Quantification with satisfactory specificity and sensitivity of free 3-Nitro-l-tyrosine (3-NT), 3-Chloro-l-tyrosine (3-CT), and 3-Bromo-l-tyrosine (3-BT) in biological samples as potential inflammation, oxidative stress, and cancer biomarkers is analytically challenging. We aimed at developing a liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based method for their simultaneous analysis without an extract purification step by solid-phase extraction. Validation of the developed method yielded the following limits of detection (LOD) and quantification (LOQ) for 3-NT, 3-BT, and 3-CT: 0.030, 0.026, 0.030 ng/mL (LODs) and 0.100, 0.096, 0.098 ng/mL (LOQs). Coefficients of variation for all metabolites and tested concentrations were <10% and accuracy was within 95-105%. Method applicability was tested on colorectal cancer patients during the perioperative period. All metabolites were significantly higher in cancer patients than healthy controls. The 3-NT was significantly lower in advanced cancer and 3-BT showed a similar tendency. Dynamics of 3-BT in the early postoperative period were affected by type of surgery and presence of surgical site infections. In conclusion, a sensitive and specific LC-MS/MS method for simultaneous quantification of free 3-NT, 3-BT, and 3-CT in human plasma has been developed.
Collapse
|
47
|
Bowen C, Shibata M, Zhang H, Bergren SK, Shen MM, Gelmann EP. CRISPR/Cas9-Mediated Point Mutation in Nkx3.1 Prolongs Protein Half-Life and Reverses Effects Nkx3.1 Allelic Loss. Cancer Res 2020; 80:4805-4814. [PMID: 32943441 PMCID: PMC7642110 DOI: 10.1158/0008-5472.can-20-1742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/07/2020] [Accepted: 09/14/2020] [Indexed: 11/16/2022]
Abstract
NKX3.1 is the most commonly deleted gene in prostate cancer and is a gatekeeper suppressor. NKX3.1 is haploinsufficient, and pathogenic reduction in protein levels may result from genetic loss, decreased transcription, and increased protein degradation caused by inflammation or PTEN loss. NKX3.1 acts by retarding proliferation, activating antioxidants, and enhancing DNA repair. DYRK1B-mediated phosphorylation at serine 185 of NKX3.1 leads to its polyubiquitination and proteasomal degradation. Because NKX3.1 protein levels are reduced, but never entirely lost, in prostate adenocarcinoma, enhancement of NKX3.1 protein levels represents a potential therapeutic strategy. As a proof of principle, we used CRISPR/Cas9-mediated editing to engineer in vivo a point mutation in murine Nkx3.1 to code for a serine to alanine missense at amino acid 186, the target for Dyrk1b phosphorylation. Nkx3.1S186A/-, Nkx3.1+/- , and Nkx3.1+/+ mice were analyzed over one year to determine the levels of Nkx3.1 expression and effects of the mutant protein on the prostate. Allelic loss of Nkx3.1 caused reduced levels of Nkx3.1 protein, increased proliferation, and prostate hyperplasia and dysplasia, whereas Nkx3.1S186A/- mouse prostates had increased levels of Nkx3.1 protein, reduced prostate size, normal histology, reduced proliferation, and increased DNA end labeling. At 2 months of age, when all mice had normal prostate histology, Nkx3.1+/- mice demonstrated indices of metabolic activation, DNA damage response, and stress response. These data suggest that modulation of Nkx3.1 levels alone can exert long-term control over premalignant changes and susceptibility to DNA damage in the prostate. SIGNIFICANCE: These findings show that prolonging the half-life of Nkx3.1 reduces proliferation, enhances DNA end-labeling, and protects from DNA damage, ultimately blocking the proneoplastic effects of Nkx3.1 allelic loss.
Collapse
Affiliation(s)
- Cai Bowen
- Departments of Medicine, Genetics & Development, Urology and Systems Biology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York
| | - Maho Shibata
- Departments of Medicine, Genetics & Development, Urology and Systems Biology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York
| | - Hailan Zhang
- Division of Hematology/Oncology, University of Arizona Medical Center, Tucson, Arizona
| | - Sarah K Bergren
- Departments of Medicine, Genetics & Development, Urology and Systems Biology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York
| | - Michael M Shen
- Departments of Medicine, Genetics & Development, Urology and Systems Biology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York
| | - Edward P Gelmann
- Division of Hematology/Oncology, University of Arizona Medical Center, Tucson, Arizona.
| |
Collapse
|
48
|
Wang J, Swanson RA. Superoxide and Non-ionotropic Signaling in Neuronal Excitotoxicity. Front Neurosci 2020; 4:861. [PMID: 33013314 PMCID: PMC7497801 DOI: 10.3389/fnins.2020.00861] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 07/24/2020] [Indexed: 01/24/2023] Open
Abstract
Excitotoxicity is classically attributed to Ca2+ influx through NMDA receptors (NMDAr), leading to production of nitric oxide by neuronal nitric oxide synthase and superoxide by mitochondria, which react to form highly cytotoxic peroxynitrite. More recent observations warrant revision of the classic view and help to explain some otherwise puzzling aspects of excitotoxic cell injury. Studies using pharmacological and genetic approaches show that superoxide produced by NMDAr activation originates primarily from NADPH oxidase rather than from mitochondria. As NADPH oxidase is localized to the plasma membrane, this also provides an explanation for the extracellular release of superoxide and cell-to-cell "spread" of excitotoxic injury observed in vitro and in vivo. The signaling pathway linking NMDAr to NADPH oxidase involves Ca2+ influx, phosphoinositol-3-kinase, and protein kinase Cζ, and interventions at any of these steps can prevent superoxide production and excitotoxic injury. Ca2+ influx specifically through NMDAr is normally required to induce excitotoxicity, through a mechanism presumed to involve privileged Ca2+ access to local signaling domains. However, experiments using selective blockade of the NMDAr ion channel and artificial reconstitution of Ca2+ by other routes indicate that the special effects of NMDAr activation are attributable instead to concurrent non-ionotropic NMDAr signaling by agonist binding to NMDAr. The non-ionotropic signaling driving NADPH oxidase activation is mediated in part by phosphoinositol-3-kinase binding to the C-terminal domain of GluN2B receptor subunits. These more recently identified aspects of excitotoxicity expand our appreciation of the complexity of excitotoxic processes and suggest novel approaches for limiting neuronal injury.
Collapse
Affiliation(s)
| | - Raymond A. Swanson
- Department of Neurology, University of California, San Francisco, and San Francisco Veterans Affairs Health Care System, San Francisco, CA, United States
| |
Collapse
|
49
|
Liang YD, Liu Q, Du MH, Liu Z, Yao SM, Zheng PP, Wan YH, Sun N, Li YY, Liu JP, Luo Y, Cai JP, Yang JF, Wang H. Urinary 8-oxo-7,8-dihydroguanosine as a potential biomarker of frailty for elderly patients with cardiovascular disease. Free Radic Biol Med 2020; 152:248-254. [PMID: 32217193 DOI: 10.1016/j.freeradbiomed.2020.03.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/09/2020] [Accepted: 03/19/2020] [Indexed: 01/03/2023]
Abstract
The diagnosis of frailty is usually subjective, which calls for objective biomarkers in clinical medicine. 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGsn) and 8-oxo-7, 8-dihydroguanosine (8-oxoGsn) in urine are two aging biomarkers that have not been explored deeply in cases of frailty. A total of 508 elderly patients with cardiovascular disease (mean age 75.0 ± 6.5 years, 50.8% males) were enrolled consecutively. Frailty was assessed by the Fried phenotype (robust: 0 score; pre-frail: 1-2 scores; frail: 3-5 scores). The concentrations of 8-oxoGsn and 8-oxodGsn in urine were measured by improved ultra-high-performance liquid chromatography-mass spectrometry (UPLC-MS/MS). Urinary creatinine (Cre) was tested to correct the 8-oxoGsn and 8-oxodGsn levels. According to the Fried phenotype score, the proportions of robust, pre-frail, and frail subjects were 20.5% (104/508), 53.9% (274/508), and 25.6% (130/508), respectively. The urinary 8-oxoGsn/Cre (P < 0.001) differed significantly among these 3 groups, but the urinary 8-oxodGsn/Cre (P = 0.600) showed no marked difference. Univariate and multivariate logistic regression showed that the age (odds ratio [OR] = 1.090, P < 0.001), systolic blood pressure (OR = 0.981, P = 0.008), 8-oxoGsn/Cre (OR = 1.203, P = 0.007), hemoglobin (OR = 0.980, P = 0.007), and sodium (OR = 0.915, P = 0.044) were independently associated with frailty. The sensitivity and specificity to identify frailty were 53.08% and 71.96%, respectively, for 8-oxoGsn/Cre at the optimal cut-off value of 3.879 μmol/mol according to the maximal Youden index. Urinary 8-oxoGsn, as a recognized biomarker of RNA oxidation, is independently associated with frailty in elderly patients with cardiovascular disease. However, the urinary 8-oxodGsn shows no obvious correlation with frailty. To obtain a better diagnostic performance for frailty, more biomarkers from different pathophysiological pathways should be explored in the future.
Collapse
Affiliation(s)
- Yao-Dan Liang
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Beijing, China; Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Qian Liu
- MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, China; School of Pharmacy, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ming-Hui Du
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Zhen Liu
- MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Si-Min Yao
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Pei-Pei Zheng
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Yu-Hao Wan
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Ning Sun
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Ying-Ying Li
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Jun-Peng Liu
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Yao Luo
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Jian-Ping Cai
- MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, China.
| | - Jie-Fu Yang
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Beijing, China.
| | - Hua Wang
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Beijing, China.
| |
Collapse
|
50
|
Oxidative-Antioxidant Imbalance and Impaired Glucose Metabolism in Schizophrenia. Biomolecules 2020; 10:biom10030384. [PMID: 32121669 PMCID: PMC7175146 DOI: 10.3390/biom10030384] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/24/2020] [Accepted: 02/26/2020] [Indexed: 02/07/2023] Open
Abstract
Schizophrenia is a neurodevelopmental disorder featuring chronic, complex neuropsychiatric features. The etiology and pathogenesis of schizophrenia are not fully understood. Oxidative-antioxidant imbalance is a potential determinant of schizophrenia. Oxidative, nitrosative, or sulfuric damage to enzymes of glycolysis and tricarboxylic acid cycle, as well as calcium transport and ATP biosynthesis might cause impaired bioenergetics function in the brain. This could explain the initial symptoms, such as the first psychotic episode and mild cognitive impairment. Another concept of the etiopathogenesis of schizophrenia is associated with impaired glucose metabolism and insulin resistance with the activation of the mTOR mitochondrial pathway, which may contribute to impaired neuronal development. Consequently, cognitive processes requiring ATP are compromised and dysfunctions in synaptic transmission lead to neuronal death, preceding changes in key brain areas. This review summarizes the role and mutual interactions of oxidative damage and impaired glucose metabolism as key factors affecting metabolic complications in schizophrenia. These observations may be a premise for novel potential therapeutic targets that will delay not only the onset of first symptoms but also the progression of schizophrenia and its complications.
Collapse
|