1
|
Taylor JS, Bargmann BOR. Transcriptional Tuning: How Auxin Strikes Unique Chords in Gene Regulation. PHYSIOLOGIA PLANTARUM 2025; 177:e70229. [PMID: 40302163 PMCID: PMC12041631 DOI: 10.1111/ppl.70229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/21/2025] [Accepted: 02/24/2025] [Indexed: 05/01/2025]
Abstract
Auxin is a central regulator of plant growth, development, and responses to environmental cues. How a single phytohormone mediates such a diverse array of developmental responses has remained a longstanding question in plant biology. Somehow, perception of the same auxin signal can lead to divergent responses in different organs, tissues, and cell types. These responses are primarily mediated by the nuclear auxin signaling pathway, composed of ARF transcription factors, Aux/IAA repressors, and TIR1/AFB auxin receptors, which act together to regulate auxin-dependent transcriptional changes. Transcriptional specificity likely arises through the functional diversity within these signaling components, forming many coordinated regulatory layers to generate unique transcriptional outputs. These layers include differential binding affinities for cis-regulatory elements, protein-protein interaction-specificity, subcellular localization, co-expression patterns, and protein turnover. In this review, we explore the experimental evidence of functional diversity within auxin signaling machinery and discuss how these differences could contribute to transcriptional output specificity.
Collapse
Affiliation(s)
- Joseph S. Taylor
- Virginia TechSchool of Plant and Environmental SciencesBlacksburgVAUSA
| | | |
Collapse
|
2
|
Guo K, Yang X, Bu T, Lin J, Luo S, Tian H, Xia J, Song W, Li Y, Yu Y, Liu X, Wang W, Teng Z, Liu D, Liu D, Zhang Z. GhIAA14-GhARF7 module coordinates auxin-mediated cellulose biosynthesis during secondary cell wall thickening in cotton fibers. Int J Biol Macromol 2025; 311:143662. [PMID: 40311980 DOI: 10.1016/j.ijbiomac.2025.143662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 04/24/2025] [Accepted: 04/28/2025] [Indexed: 05/03/2025]
Abstract
The phytohormone auxin is critical for cotton fiber development, yet its regulatory mechanisms during secondary cell wall (SCW) thickening remain poorly understood. Our investigation revealed that the dynamic patterns of auxin accumulation exhibit stage correlations with fiber development, with lower levels during rapid elongation (5-10 days post-anthesis [DPA]) and significantly higher level during SCW thickening (15-25 DPA). Meanwhile, the auxin content in superior-fiber cotton Gossypium barbadense is higher than in G. hirsutum at SCW thickening stage. Genome-wide characterization identified GhIAA14, a key AUX/IAA transcriptional repressor predominantly expressed during the elongation-SCW transition stage. CRISPR-Cas9-mediated knockout of GhIAA14 resulted in shortened fibers, elevated micronaire values and cell wall thickness of fiber cells. Yeast two-hybrid (Y2H) screening coupled with bimolecular fluorescence complementation (BiFC) revealed physical interaction between GhIAA14 and transcriptional activator GhARF7. Transcriptional upregulation of downstream targets GhMYBL1 and cellulose synthase genes (GhCES4/7/8) in ghiaa14 mutants suggests a regulatory mechanism where GhIAA14 normally represses ARF-mediated SCW thickening under physiological auxin signaling. These findings delineate the mechanism of fiber SCW thickening mediated by an auxin signaling module GhIAA14-GhARF7, providing potential target genes for fiber quality improvement.
Collapse
Affiliation(s)
- Kai Guo
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China.
| | - Xuyuan Yang
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
| | - Tonghang Bu
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
| | - Jin Lin
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
| | - Siyan Luo
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
| | - Hongyu Tian
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
| | - Jichun Xia
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
| | - Wenhui Song
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
| | - Yibing Li
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
| | - Yi Yu
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
| | - Xueying Liu
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
| | - Wenwen Wang
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
| | - Zhonghua Teng
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
| | - Dajun Liu
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
| | - Dexin Liu
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
| | - Zhengsheng Zhang
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
| |
Collapse
|
3
|
Fu Y, Liu Y, Chen Y, Xiao J, Xie Y, Miao Y, Xu Z, Zhang N, Xun W, Xuan W, Shen Q, Zhang R. A rhizobacterium-secreted protein induces lateral root development through the IAA34-PUCHI pathway. Cell Rep 2025; 44:115414. [PMID: 40073017 DOI: 10.1016/j.celrep.2025.115414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 12/09/2024] [Accepted: 02/18/2025] [Indexed: 03/14/2025] Open
Abstract
Lateral roots (LRs) can continuously forage water and nutrients from soil. In Arabidopsis thaliana, LR development depends on a canonical auxin signaling pathway involving the core transcription factors INDOLE-3-ACETIC ACIDs (IAAs) and AUXIN RESPONSE FACTORs (ARFs). In this study, we identified a protein, bacillolysin, secreted by the beneficial rhizobacterium Bacillus velezensis SQR9, that is able to stimulate LR formation of Arabidopsis. The receptor protein kinase C-TERMINALLY ENCODED PEPTIDE RECEPTOR2 (CEPR2) interacts with bacillolysin and plays a critical role in LR development. In the bacillolysin-regulated signaling pathway, the transcriptional repressor IAA34 interacts with PUCHI to activate downstream LATERAL ORGAN BOUNDARIES-DOMAIN33 (LBD33) expression, consequently inducing LR development. This study reveals interkingdom communication via a protein that mediates a novel pathway to induce LR development.
Collapse
Affiliation(s)
- Yansong Fu
- Key Lab of Organic-based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Yunpeng Liu
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yu Chen
- Key Lab of Organic-based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Jintao Xiao
- Key Lab of Organic-based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuanming Xie
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing 210095, China
| | - Youzhi Miao
- Key Lab of Organic-based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhihui Xu
- Key Lab of Organic-based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Nan Zhang
- Key Lab of Organic-based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Weibing Xun
- Key Lab of Organic-based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Wei Xuan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing 210095, China
| | - Qirong Shen
- Key Lab of Organic-based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Ruifu Zhang
- Key Lab of Organic-based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
4
|
Fu Y, Wang J, Su Z, Chen Q, Li J, Zhao J, Xuan W, Miao Y, Zhang J, Zhang R. Sinomonas gamaensis NEAU-HV1 remodels the IAA14-ARF7/19 interaction to promote plant growth. THE NEW PHYTOLOGIST 2025; 245:2016-2037. [PMID: 39722601 DOI: 10.1111/nph.20370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 12/04/2024] [Indexed: 12/28/2024]
Abstract
Sinomonas species typically reside in soils or the rhizosphere and can promote plant growth. Sinomonas enrichment in rhizospheric soils is positively correlated with increases in plant biomass. However, the growth promotion mechanisms regulated by Sinomonas remain unclear. By using soil systems, we studied the growth-promoting effects of Sinomonas gamaensis NEAU-HV1 on various plants. Through a combination of phenotypic analyses and microscopic observations, the effects of NEAU-HV1 on root development were evaluated. We subsequently conducted molecular and genetic experiments to reveal the mechanism promoting lateral root (LR) development. We demonstrated that NEAU-HV1 significantly promoted the growth of lettuce, wheat, maize, peanut and Arabidopsis. This effect was associated with multiple beneficial traits, including phosphate solubilization, indole-3-acetic acid and 1-aminocyclopropane-1-carboxylic acid deaminase production and survival ability in the rhizosphere and within the inner tissue of roots. In addition, NEAU-HV1 could secrete metabolites to promote LR development by affecting auxin transport and signaling. Importantly, we found that the influence of auxin signaling may be attributed to the remodeling interaction between SOLITARY-ROOT (SLR)/IAA14 and ARF7/19, occurring independently of the auxin receptor TIR1/AFB2. Our results indicate that NEAU-HV1-induced LR formation is dependent on direct remodeling interactions between transcription factors, providing novel insights into plant-microbe interactions.
Collapse
Affiliation(s)
- Yansong Fu
- Key Lab of Organic-based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- College of Plant Protection, Northeast Agricultural University, Harbin, 150030, China
| | - Juexuan Wang
- Key Lab of Organic-based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ziwei Su
- College of Plant Protection, Northeast Agricultural University, Harbin, 150030, China
| | - Qinyuan Chen
- College of Plant Protection, Northeast Agricultural University, Harbin, 150030, China
| | - Jiaxin Li
- College of Plant Protection, Northeast Agricultural University, Harbin, 150030, China
| | - Junwei Zhao
- College of Plant Protection, Northeast Agricultural University, Harbin, 150030, China
| | - Wei Xuan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, 210095, China
| | - Youzhi Miao
- Key Lab of Organic-based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ji Zhang
- College of Plant Protection, Northeast Agricultural University, Harbin, 150030, China
| | - Ruifu Zhang
- Key Lab of Organic-based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
5
|
Gan H, Chu J, Sun J, Wang Q. High concentration of phosphate treatment increased the tolerance of Robinia pseudoacacia roots to salt stress. PLANT CELL REPORTS 2025; 44:53. [PMID: 39937299 DOI: 10.1007/s00299-025-03446-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 01/30/2025] [Indexed: 02/13/2025]
Abstract
KEY MESSAGE High P increased the tolerance of R. pseudoacacia roots to salt stress. Salt is an important abiotic factor that restricts plant growth and development in soil. An appropriate concentration of P can increase plant tolerance to salt stress. We investigated the physiological and transcriptional regulatory effects of high P (HP) or low P (LP) on the response of R. pseudoacacia roots to salt stress. A pot experiment was carried out to grow R. pseudoacacia seedlings in vermiculite media supplemented with 0 mM, 150 mM or 300 mM NaCl under HP or LP conditions. The root dry weight and concentrations of free proline, P, ions, and phytohormones were measured, and the transcription of the genes was analyzed under NaCl stress under HP or LP conditions. The results revealed that R. pseudoacacia responds to NaCl stress by regulating the absorption and utilization of P and the levels of free proline, phytohormones and Na+, K+, Ca2+, and Mg2+ as well as changing the expression levels of key genes. Compared with those under the LP condition, the roots of the R. pseudoacacia under the HP condition presented greater P concentrations, lower JA concentrations, and more stable K+ levels when subjected to NaCl stress, which increased their tolerance to NaCl stress. Moreover, genes involved in the cell wall, root growth, root architecture regulation, biomass accumulation, stress response, osmotic regulation and ion balance maintenance were upregulated under NaCl stress under HP conditions. In addition, NaCl stress impairs N metabolism under LP conditions. Our findings provide new insights into the response of woody plants to salt stress under different P conditions and contribute to the development of scientific afforestation in saline-alkali areas.
Collapse
Affiliation(s)
- Honghao Gan
- Coastal Forestry Research Center, National Forestry and Grassland Administration, Beijing, 100091, China
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Jianmin Chu
- Coastal Forestry Research Center, National Forestry and Grassland Administration, Beijing, 100091, China.
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China.
- Experimental Center of Desert Forestry, Chinese Academy of Forestry, Dengkou, 015200, China.
| | - Jia Sun
- Coastal Forestry Research Center, National Forestry and Grassland Administration, Beijing, 100091, China
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Qian Wang
- Coastal Forestry Research Center, National Forestry and Grassland Administration, Beijing, 100091, China
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| |
Collapse
|
6
|
Jardim-Messeder D, de Souza-Vieira Y, Sachetto-Martins G. Dressed Up to the Nines: The Interplay of Phytohormones Signaling and Redox Metabolism During Plant Response to Drought. PLANTS (BASEL, SWITZERLAND) 2025; 14:208. [PMID: 39861561 PMCID: PMC11768152 DOI: 10.3390/plants14020208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 01/27/2025]
Abstract
Plants must effectively respond to various environmental stimuli to achieve optimal growth. This is especially relevant in the context of climate change, where drought emerges as a major factor globally impacting crops and limiting overall yield potential. Throughout evolution, plants have developed adaptative strategies for environmental stimuli, with plant hormones and reactive oxygen species (ROS) playing essential roles in their development. Hormonal signaling and the maintenance of ROS homeostasis are interconnected, playing indispensable roles in growth, development, and stress responses and orchestrating diverse molecular responses during environmental adversities. Nine principal classes of phytohormones have been categorized: auxins, brassinosteroids, cytokinins, and gibberellins primarily oversee developmental growth regulation, while abscisic acid, ethylene, jasmonic acid, salicylic acid, and strigolactones are the main orchestrators of environmental stress responses. Coordination between phytohormones and transcriptional regulation is crucial for effective plant responses, especially in drought stress. Understanding the interplay of ROS and phytohormones is pivotal for elucidating the molecular mechanisms involved in plant stress responses. This review provides an overview of the intricate relationship between ROS, redox metabolism, and the nine different phytohormones signaling in plants, shedding light on potential strategies for enhancing drought tolerance for sustainable crop production.
Collapse
Affiliation(s)
- Douglas Jardim-Messeder
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
- Programa de Biologia Molecular e Biotecnologia, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Ygor de Souza-Vieira
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
| | - Gilberto Sachetto-Martins
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
| |
Collapse
|
7
|
Meng X, Ye R, Cao J, Tao L, Wang Z, Kong T, Hu C, Yi J, Gou X. CLAVATA3 INSENSITIVE RECEPTOR KINASEs regulate lateral root initiation and spacing in Arabidopsis. PLANT PHYSIOLOGY 2024; 197:kiae540. [PMID: 39387495 DOI: 10.1093/plphys/kiae540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 08/21/2024] [Accepted: 09/13/2024] [Indexed: 10/15/2024]
Abstract
The root system architecture is very critical for plants to adapt to ever-changing environmental stimulations and is largely affected by lateral roots (LRs). Therefore, how plants regulate LR initiation and spacing is a key point for root system development. Previous studies have shown that RECEPTOR-LIKE KINASE 7 (RLK7) and its ligand TARGET OF LBD SIXTEEN 2 (TOLS2) control the initiation and spacing of LRs. However, the molecular mechanism underlying the perception and transduction of the TOLS2 signal by RLK7 remains to be elucidated. In this study, we explored whether CLAVATA3 INSENSITIVE RECEPTOR KINASEs (CIKs) are critical signaling components during Arabidopsis (Arabidopsis thaliana) LR development by investigating phenotypes of cik mutants and examining interactions between CIKs and members of the RLK7-mediated signaling pathway. Our results showed that high-order cik mutants generated more LRs because of more LR initiation and defective LR spacing. The cik mutants showed reduced sensitivity to applied TOLS2 peptides. TOLS2 application enhanced the interactions between CIKs and RLK7 and the RLK7-dependent phosphorylation of CIKs. In addition, overexpression of transcription factor PUCHI and constitutive activation of MITOGEN-ACTIVATED PROTEIN KINASE KINASE 4 (MKK4) and MKK5 partially rescued the spacing defects of LRs in cik and rlk7-3 mutants. Moreover, we discovered that auxin maximum in pericycle cells altered subcellular localization of CIKs to determine lateral root founder cells. These findings revealed that CIKs and RLK7 function together to perceive the TOLS2 signal and regulate LR initiation and spacing through the MKK4/5-MPK3/6-PUCHI cascade.
Collapse
Affiliation(s)
- Xianghu Meng
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Rui Ye
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jing Cao
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Liang Tao
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Zhe Wang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Tianzhen Kong
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Chong Hu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jing Yi
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Xiaoping Gou
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
8
|
Gao Z, Yang Q, Shen H, Guo P, Xie Q, Chen G, Hu Z. The knockout of SlMTC impacts tomato seed size and reduces resistance to salt stress in tomato. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 349:112228. [PMID: 39218307 DOI: 10.1016/j.plantsci.2024.112228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/10/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024]
Abstract
Members of the MT-A70 family are key catalytic proteins involved in m6A methylation modifications in plants. They play diverse roles at the posttranscriptional level by regulating RNA secondary structure, selective splicing, stability, and translational efficiency, which collectively affect plant growth, development, and stress responses. In this study, we explored the function of the gene SlMTC, a Class C member of the MT-A70 family, in tomatoes by using CRISPR/Cas9 technology. Compared with the wild-type (WT), the CR-slmtc mutants exhibited decreased seed size and slower growth rates during the seedling stage, along with weaker salt tolerance and significant downregulation of stress-related genes, such as PR1, PR5, and P5CS. The qRT-PCR results revealed that the expression levels of genes involved in auxin biosynthesis (FZY1, FZY3, and FZY4) and polar transport (PIN1, PIN4, and PIN8) were lower in CR-slmtc plants than in the WT plants. In addition, yeast two-hybrid assays showed that SlMTC could interact with SlMTA, a Class A member of the MT-A70 family, providing insights into the potential mode of action of SlMTC in tomatoes. Overall, our findings indicate the critical role of SlMTC in plant growth and development as well as in response to salt stress.
Collapse
Affiliation(s)
- Zihan Gao
- Laboratory of molecular biology of tomato, Bioengineering College, Chongqing University, Chongqing 400030, China
| | - Qingling Yang
- Laboratory of molecular biology of tomato, Bioengineering College, Chongqing University, Chongqing 400030, China
| | - Hui Shen
- Laboratory of molecular biology of tomato, Bioengineering College, Chongqing University, Chongqing 400030, China
| | - Pengyu Guo
- Laboratory of molecular biology of tomato, Bioengineering College, Chongqing University, Chongqing 400030, China
| | - Qiaoli Xie
- Laboratory of molecular biology of tomato, Bioengineering College, Chongqing University, Chongqing 400030, China
| | - Guoping Chen
- Laboratory of molecular biology of tomato, Bioengineering College, Chongqing University, Chongqing 400030, China.
| | - Zongli Hu
- Laboratory of molecular biology of tomato, Bioengineering College, Chongqing University, Chongqing 400030, China.
| |
Collapse
|
9
|
Geng S, Wang X, Yan W, Liu Q, Wang N, Zhang J, Guo J, Liu J, Luo L. Overexpression of Cassava MeSTP7 Promotes Arabidopsis Seedling Development. PLANTS (BASEL, SWITZERLAND) 2024; 13:3102. [PMID: 39520020 PMCID: PMC11548149 DOI: 10.3390/plants13213102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/28/2024] [Accepted: 11/02/2024] [Indexed: 11/16/2024]
Abstract
The sugar transporter (STP) gene family is a key regulator of plant development, which is crucial for the efficient transport and utilization of sugars during plant growth and development. In this study, we identified the MeSTP7 gene, which is highly expressed in cassava fibrous roots, early storage roots, and under hormonal treatment, including IAA, MeJA, ABA, and GA3, and abiotic stressors, such as mannitol and NaCl. A strong response was observed with exoqenous IAA. Transfecting MeSTP7 into Arabidopsis promoted early seedling growth, particularly in lateral root development. The content of endogenous hormones (IAA and MeJA) as well as soluble sugars (sucrose, fructose, and glucose) was elevated in transgenic Arabidopsis. Hormone treatments with IAA, MeJA, GA3, and ABA on transgenic Arabidopsis revealed that transgenic Arabidopsis responded positively to added 20 μM IAA. They also exhibited co-induced regulation of lateral root formation by GA3, MeJA, and ABA. qRT-PCR analysis showed that overexpression of MeSTP7 upregulated the expression of IAA14, ARF7, and ARF19 in Arabidopsis. Under IAA treatment, the expression of these genes was similarly upregulated but downregulated under MeJA treatment. These results suggest that MeSTP7 may promote Arabidopsis seedling development by increasing the content of sucrose, glucose, and fructose in roots, which in turn influences IAA-based hormonal signaling.
Collapse
Affiliation(s)
- Sha Geng
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Baoshan 678000, China; (S.G.); (W.Y.); (Q.L.); (N.W.)
| | - Xiaotong Wang
- National Key Laboratory for Tropical Crop Breeding, Sanya Research Institute, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (X.W.); (J.G.)
- Key Laboratory of Sustainable Utilization of Tropical Biological Resources of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China;
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
| | - Wei Yan
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Baoshan 678000, China; (S.G.); (W.Y.); (Q.L.); (N.W.)
| | - Qian Liu
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Baoshan 678000, China; (S.G.); (W.Y.); (Q.L.); (N.W.)
| | - Na Wang
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Baoshan 678000, China; (S.G.); (W.Y.); (Q.L.); (N.W.)
| | - Jianyu Zhang
- Key Laboratory of Sustainable Utilization of Tropical Biological Resources of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China;
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
| | - Jianchun Guo
- National Key Laboratory for Tropical Crop Breeding, Sanya Research Institute, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (X.W.); (J.G.)
| | - Jiao Liu
- National Key Laboratory for Tropical Crop Breeding, Sanya Research Institute, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (X.W.); (J.G.)
| | - Lijuan Luo
- Key Laboratory of Sustainable Utilization of Tropical Biological Resources of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China;
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
| |
Collapse
|
10
|
Chen L, Wang R, Hu X, Wang D, Wang Y, Xue R, Wu M, Li H. Overexpression of wheat C2H2 zinc finger protein transcription factor TaZAT8-5B enhances drought tolerance and root growth in Arabidopsis thaliana. PLANTA 2024; 260:126. [PMID: 39466433 DOI: 10.1007/s00425-024-04559-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/16/2024] [Indexed: 10/30/2024]
Abstract
MAIN CONCLUSION TaZAT8-5B, a C2H2 zinc finger protein transcription factor, positively regulates drought tolerance in transgenic Arabidopsis. It promotes root growth under drought stress via the Aux/IAA-ARF module in the auxin signaling pathway. C2H2 zinc finger proteins (C2H2-ZFPs) represent the largest but relatively unexplored family of transcription factors in plants. This is particularly evident in wheat, where the functions of only a few C2H2-ZFP genes have been confirmed. In this study, we identified a novel C2H2-ZFP gene, TaZAT8-5B. This gene shows high expression in roots and flowers and is significantly induced by heat, drought, and salt stress. Under drought stress, overexpressing TaZAT8-5B in Arabidopsis resulted in increased proline content and superoxide dismutase (SOD) activity in leaves. It also led to reduced stomatal aperture and water loss, while inducing the expression of P5CS1, RD29A, and DREB1A. Consequently, it alleviated drought stress-induced malondialdehyde (MDA) accumulation and improved drought tolerance. Additionally, TaZAT8-5B promoted lateral root initiation under mannitol stress and enhanced both lateral and primary root growth under long-term drought stress. Moreover, TaZAT8-5B was induced by indole-3-acetic acid (IAA). Overexpressing TaZAT8-5B under drought stress significantly inhibited the expression of auxin signaling negative regulatory genes IAA12 and IAA14. Conversely, downstream genes (ARF7, LBD16, LBD18, and CDKA1) of IAA14 and IAA12 were upregulated in TaZAT8-5B overexpressing plants compared to wild-type (WT) plants. These findings suggest that TaZAT8-5B regulates root growth and development under drought stress via the Aux/IAA-ARF module in the auxin signaling pathway. In summary, this study elucidates the role of TaZAT8-5B in enhancing drought tolerance and its involvement in root growth and development through the auxin signaling pathway. These findings offer new insights into the functional analysis of homologous genes of TaZAT8-5B, particularly in Gramineae species.
Collapse
Affiliation(s)
- Lulu Chen
- College of Life Science, Henan Agricultural University, Zhengzhou, 450046, China
| | - Run Wang
- College of Life Science, Henan Agricultural University, Zhengzhou, 450046, China
| | - Xiaoqing Hu
- College of Life Science, Henan Agricultural University, Zhengzhou, 450046, China
| | - Dan Wang
- Puyang Academy of Agricultural and Forestry Sciences, Puyang, 457000, China
| | - Yuexia Wang
- College of Life Science, Henan Agricultural University, Zhengzhou, 450046, China
| | - Ruili Xue
- College of Life Science, Henan Agricultural University, Zhengzhou, 450046, China.
| | - Mingzhu Wu
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China.
| | - Hua Li
- College of Life Science, Henan Agricultural University, Zhengzhou, 450046, China.
| |
Collapse
|
11
|
Wang R, Zhong Y, Han J, Huang L, Wang Y, Shi X, Li M, Zhuang Y, Ren W, Liu X, Cao H, Xin B, Lai J, Chen L, Chen F, Yuan L, Wang Y, Li X. NIN-LIKE PROTEIN3.2 inhibits repressor Aux/IAA14 expression and enhances root biomass in maize seedlings under low nitrogen. THE PLANT CELL 2024; 36:4388-4403. [PMID: 38917216 PMCID: PMC11448906 DOI: 10.1093/plcell/koae184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 05/29/2024] [Accepted: 06/18/2024] [Indexed: 06/27/2024]
Abstract
Plants generally enhance their root growth in the form of greater biomass and/or root length to boost nutrient uptake in response to short-term low nitrogen (LN). However, the underlying mechanisms of short-term LN-mediated root growth remain largely elusive. Our genome-wide association study, haplotype analysis, and phenotyping of transgenic plants showed that the crucial nitrate signaling component NIN-LIKE PROTEIN3.2 (ZmNLP3.2), a positive regulator of root biomass, is associated with natural variations in root biomass of maize (Zea mays L.) seedlings under LN. The monocot-specific gene AUXIN/INDOLE-3-ACETIC ACID14 (ZmAux/IAA14) exhibited opposite expression patterns to ZmNLP3.2 in ZmNLP3.2 knockout and overexpression lines, suggesting that ZmNLP3.2 hampers ZmAux/IAA14 transcription. Importantly, ZmAux/IAA14 knockout seedlings showed a greater root dry weight (RDW), whereas ZmAux/IAA14 overexpression reduced RDW under LN compared with wild-type plants, indicating that ZmAux/IAA14 negatively regulates the RDW of LN-grown seedlings. Moreover, in vitro and vivo assays indicated that AUXIN RESPONSE FACTOR19 (ZmARF19) binds to and transcriptionally activates ZmAux/IAA14, which was weakened by the ZmNLP3.2-ZmARF19 interaction. The zmnlp3.2 ZmAux/IAA14-OE seedlings exhibited further reduced RDW compared with ZmAux/IAA14 overexpression lines when subjected to LN treatment, corroborating the ZmNLP3.2-ZmAux/IAA14 interaction. Thus, our study reveals a ZmNLP3.2-ZmARF19-ZmAux/IAA14 module regulating root biomass in response to nitrogen limitation in maize.
Collapse
Affiliation(s)
- Ruifeng Wang
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Yanting Zhong
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Jienan Han
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Liangliang Huang
- Department of Plant Genetics and Breeding, State Key Laboratory of Maize Bio-Breeding, National Maize Improvement Center, China Agricultural University, Beijing 100193, China
| | - Yongqi Wang
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Xionggao Shi
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Mengfei Li
- State Key Laboratory of Plant Environmental Resilience, National Maize Improvement Center, Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Yao Zhuang
- State Key Laboratory of Plant Environmental Resilience, College of Natural Resources and Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Wei Ren
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xiaoting Liu
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Huairong Cao
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Beibei Xin
- Department of Plant Genetics and Breeding, State Key Laboratory of Maize Bio-Breeding, National Maize Improvement Center, China Agricultural University, Beijing 100193, China
| | - Jinsheng Lai
- Department of Plant Genetics and Breeding, State Key Laboratory of Maize Bio-Breeding, National Maize Improvement Center, China Agricultural University, Beijing 100193, China
| | - Limei Chen
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Fanjun Chen
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Lixing Yuan
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Yi Wang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Xuexian Li
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China
| |
Collapse
|
12
|
Yalamanchili K, Vermeer JEM, Scheres B, Willemsen V. Shaping root architecture: towards understanding the mechanisms involved in lateral root development. Biol Direct 2024; 19:87. [PMID: 39358783 PMCID: PMC11447941 DOI: 10.1186/s13062-024-00535-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 09/17/2024] [Indexed: 10/04/2024] Open
Abstract
Plants have an amazing ability to adapt to their environment, and this extends beyond biochemical responses and includes developmental changes that help them better exploit resources and survive. The plasticity observed in individual plant morphology is associated with robust developmental pathways that are influenced by environmental factors. However, there is still much to learn about the mechanisms behind the formation of the root system. In Arabidopsis thaliana, the root system displays a hierarchical structure with primary and secondary roots. The process of lateral root (LR) organogenesis involves multiple steps, including LR pre-patterning, LR initiation, LR outgrowth, and LR emergence. The study of root developmental plasticity in Arabidopsis has led to significant progress in understanding the mechanisms governing lateral root formation. The importance of root system architecture lies in its ability to shape the distribution of roots in the soil, which affects the plant's ability to acquire nutrients and water. In Arabidopsis, lateral roots originate from pericycle cells adjacent to the xylem poles known as the xylem-pole-pericycle (XPP). The positioning of LRs along the primary root is underpinned by a repetitive pre-patterning mechanism that establishes primed sites for future lateral root formation. In a subset of primed cells, the memory of a transient priming stimulus leads to the formation of stable pre-branch sites and the establishment of founder cell identity. These founder cells undergo a series of highly organized periclinal and anticlinal cell divisions and expansion to form lateral root primordia. Subsequently, LRP emerges through three overlying cell layers of the primary root, giving rise to fully developed LRs. In addition to LRs Arabidopsis can also develop adventitious lateral roots from the primary root in response to specific stress signals such as wounding or environmental cues. Overall, this review creates an overview of the mechanisms governing root lateral root formation which can be a stepping stone to improved crop yields and a better understanding of plant adaptation to changing environments.
Collapse
Affiliation(s)
- Kavya Yalamanchili
- Cluster of Plant Developmental Biology, Laboratory of Cell and Developmental Biology, Wageningen University & Research, 6708 PB, Wageningen, The Netherlands
| | - Joop E M Vermeer
- Laboratory of Molecular and Cellular Biology, University of Neuchâtel, 2000, Neuchâtel, Switzerland
| | - Ben Scheres
- Cluster of Plant Developmental Biology, Laboratory of Cell and Developmental Biology, Wageningen University & Research, 6708 PB, Wageningen, The Netherlands
| | - Viola Willemsen
- Cluster of Plant Developmental Biology, Laboratory of Cell and Developmental Biology, Wageningen University & Research, 6708 PB, Wageningen, The Netherlands.
| |
Collapse
|
13
|
Xu K, Zeng H, Lin F, Yumoto E, Asahina M, Hayashi KI, Fukaki H, Ito H, Watahiki MK. Exogenous application of the apocarotenoid retinaldehyde negatively regulates auxin-mediated root growth. PLANT PHYSIOLOGY 2024; 196:1659-1673. [PMID: 39117340 PMCID: PMC11483604 DOI: 10.1093/plphys/kiae405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 08/10/2024]
Abstract
Root development is essential for plant survival. The lack of carotenoid biosynthesis in the phytoene desaturase 3 (pds3) mutant results in short primary roots (PRs) and reduced lateral root formation. In this study, we showed that short-term inhibition of PDS by fluridone suppresses PR growth in wild type, but to a lesser extent in auxin mutants of Arabidopsis (Arabidopsis thaliana). Such an inhibition of PDS activity increased endogenous indole-3-acetic acid levels, promoted auxin signaling, and partially complemented the PR growth of an auxin-deficient mutant, the YUCCA 3 5 7 8 9 quadruple mutant (yucQ). The exogenous application of retinaldehyde (retinal), an apocarotenoid derived from β-carotene, complemented the fluridone-induced suppression of root growth, as well as the short roots of the pds3 mutant. Retinal also partially complemented the auxin-induced suppression of root growth. These results suggest that retinal may play a role in regulating root growth by modulating endogenous auxin levels.
Collapse
Affiliation(s)
- Kang Xu
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Haoran Zeng
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Feiyang Lin
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Emi Yumoto
- Advanced Instrumental Analysis Center, Teikyo University, Utsunomiya 320-8551, Japan
| | - Masashi Asahina
- Advanced Instrumental Analysis Center, Teikyo University, Utsunomiya 320-8551, Japan
- Department of Biosciences, Teikyo University, Utsunomiya 320-8551, Japan
| | - Ken-ichiro Hayashi
- Department of Bioscience, Okayama University of Science, Okayama 700-0005, Japan
| | - Hidehiro Fukaki
- Department of Biology, Graduate School of Science, Kobe University, Kobe 657-8501, Japan
| | - Hisashi Ito
- Institute of Low Temperature Science, Hokkaido University, Sapporo 060-0819, Japan
| | - Masaaki K Watahiki
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
- Division of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| |
Collapse
|
14
|
Serivichyaswat PT, Kareem A, Feng M, Melnyk CW. Auxin signaling in the cambium promotes tissue adhesion and vascular formation during Arabidopsis graft healing. PLANT PHYSIOLOGY 2024; 196:754-762. [PMID: 38701036 PMCID: PMC11444275 DOI: 10.1093/plphys/kiae257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/21/2024] [Accepted: 04/08/2024] [Indexed: 05/05/2024]
Abstract
The strong ability of plants to regenerate wounds is exemplified by grafting when two plants are cut and joined together to grow as one. During graft healing, tissues attach, cells proliferate, and the vasculatures connect to form a graft union. The plant hormone auxin plays a central role, and auxin-related mutants perturb grafting success. Here, we investigated the role of individual cell types and their response to auxin during Arabidopsis (Arabidopsis thaliana) graft formation. By employing a cell-specific inducible misexpression system, we blocked auxin response in individual cell types using the bodenlos mutation. We found that auxin signaling in procambial tissues was critical for successful tissue attachment and vascular differentiation. In addition, we found that auxin signaling was required for cell divisions of the procambial cells during graft formation. Loss of function mutants in cambial pathways also perturbed attachment and phloem reconnection. We propose that cambial and procambial tissues drive tissue attachment and vascular differentiation during successful grafting. Our study thus refines our knowledge of graft development and furthers our understanding of the regenerative role of the cambium.
Collapse
Affiliation(s)
- Phanu T Serivichyaswat
- Department of Plant Biology, Swedish University of Agricultural Sciences, Ulls gränd 1, 765 51 Uppsala, Sweden
| | - Abdul Kareem
- Department of Plant Biology, Swedish University of Agricultural Sciences, Ulls gränd 1, 765 51 Uppsala, Sweden
| | - Ming Feng
- Department of Plant Biology, Swedish University of Agricultural Sciences, Ulls gränd 1, 765 51 Uppsala, Sweden
| | - Charles W Melnyk
- Department of Plant Biology, Swedish University of Agricultural Sciences, Ulls gränd 1, 765 51 Uppsala, Sweden
| |
Collapse
|
15
|
Agrawal R, Thakur P, Singh A, Panchal P, Thakur JK. Mediator complex: an important regulator of root system architecture. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5521-5530. [PMID: 38881317 DOI: 10.1093/jxb/erae277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 06/15/2024] [Indexed: 06/18/2024]
Abstract
Mediator, a multiprotein complex, is an important component of the transcription machinery. In plants, the latest studies have established that it functions as a signal processor that conveys transcriptional signals from transcription factors to RNA polymerase II. Mediator has been found to be involved in different developmental and stress-adaptation conditions, ranging from embryo, root, and shoot development to flowering and senescence, and also in responses to different biotic and abiotic stresses. In the last decade, significant progress has been made in understanding the role of Mediator subunits in root development. They have been shown to transcriptionally regulate development of almost all the components of the root system architecture-primary root, lateral roots, and root hairs. They also have a role in nutrient acquisition by the root. In this review, we discuss all the known functions of Mediator subunits during root development. We also highlight the role of Mediator as a nodal point for processing different hormone signals that regulate root morphogenesis and growth.
Collapse
Affiliation(s)
- Rekha Agrawal
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Pallabi Thakur
- Plant Mediator Lab, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Amrita Singh
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Poonam Panchal
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Jitendra Kumar Thakur
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| |
Collapse
|
16
|
Gao J, Qin P, Tang S, Guo L, Dai C, Wen J, Yi B, Ma C, Shen J, Fu T, Zou J, Tu J. A gain-of-function mutation in BnaIAA13 disrupts vascular tissue and lateral root development in Brassica napus. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5592-5610. [PMID: 38824403 PMCID: PMC11427839 DOI: 10.1093/jxb/erae245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/31/2024] [Indexed: 06/03/2024]
Abstract
Rapeseed (Brassica napus) is an important oilseed crop worldwide. Plant vascular tissues are responsible for long-distance transport of water and nutrients and for providing mechanical support. The lateral roots absorb water and nutrients. The genetic basis of vascular tissue and lateral root development in rapeseed remains unknown. This study characterized an ethyl methanesulfonate-mutagenized rapeseed mutant, T16, which showed dwarf stature, reduced lateral roots, and leaf wilting. SEM observations showed that the internode cells were shortened. Observations of tissue sections revealed defects in vascular bundle development in the stems and petioles. Genetic analysis revealed that the phenotypes of T16 were controlled by a single semi-dominant nuclear gene. Map-based cloning and genetic complementarity identified BnaA03.IAA13 as the functional gene; a G-to-A mutation in the second exon changed glycine at position 79 to glutamic acid, disrupting the conserved degron motif VGWPP. Transcriptome analysis in roots and stems showed that auxin and cytokinin signaling pathways were disordered in T16. Evolutionary analysis showed that AUXIN/INDOLE-3-ACETIC ACID is conserved during plant evolution. The heterozygote of T16 showed significantly reduced plant height while maintaining other agronomic traits. Our findings provide novel insights into the regulatory mechanisms of vascular tissue and lateral root development, and offer a new germplasm resource for rapeseed breeding.
Collapse
Affiliation(s)
- Jinxiang Gao
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Pei Qin
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Shan Tang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Liang Guo
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
- Yazhouwan National Laboratory, Sanya, Hainan, 572025, China
| | - Cheng Dai
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jing Wen
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bin Yi
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chaozhi Ma
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jinxiong Shen
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tingdong Fu
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jun Zou
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jinxing Tu
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
17
|
Iqbal MZ, Liang Y, Anwar M, Fatima A, Hassan MJ, Ali A, Tang Q, Peng Y. Overexpression of Auxin/Indole-3-Acetic Acid Gene TrIAA27 Enhances Biomass, Drought, and Salt Tolerance in Arabidopsis thaliana. PLANTS (BASEL, SWITZERLAND) 2024; 13:2684. [PMID: 39409554 PMCID: PMC11478388 DOI: 10.3390/plants13192684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/01/2024] [Accepted: 08/13/2024] [Indexed: 10/20/2024]
Abstract
White clover (Trifolium repens L.) is an important forage and aesthetic plant species, but it is susceptible to drought and heat stress. The phytohormone auxin regulates several aspects of plant development and alleviates the effects of drought stress in plants, including white clover, by involving auxin/indole acetic acid (Aux/IAA) family genes. However, Aux/IAA genes and the underlying mechanism of auxin-mediated drought response remain elusive in white clover. To extend our understanding of the multiple functions of Aux/IAAs, the current study described the characterization of a member of the Aux/IAA family TrIAA27 of white clover. TrIAA27 protein had conserved the Aux/IAA family domain and shared high sequence similarity with the IAA27 gene of a closely related species and Arabidopsis. Expression of TrIAA27 was upregulated in response to heavy metal, drought, salt, NO, Ca2+, H2O2, Spm, ABA, and IAA treatments, while downregulated under cold stress in the roots and leaves of white clover. TrIAA27 protein was localized in the nucleus. Constitutive overexpression of TrIAA27 in Arabidopsis thaliana led to enhanced hypocotyl length, root length, plant height, leaf length and width, and fresh and dry weights under optimal and stress conditions. There was Improved photosynthesis activity, chlorophyll content, survival rate, relative water content, endogenous catalase (CAT), and peroxidase (POD) concentration with a significantly lower electrolyte leakage percentage, malondialdehyde (MDA) content, and hydrogen peroxide (H2O2) concentration in overexpression lines compared to wild-type Arabidopsis under drought and salt stress conditions. Exposure to stress conditions resulted in relatively weaker roots and above-ground plant growth inhibition, enhanced endogenous levels of major antioxidant enzymes, which correlated well with lower lipid peroxidation, lower levels of reactive oxygen species, and reduced cell death in overexpression lines. The data of the current study demonstrated that TrIAA27 is involved in positively regulating plant growth and development and could be considered a potential target gene for further use, including the breeding of white clover for higher biomass with improved root architecture and tolerance to abiotic stress.
Collapse
Affiliation(s)
- Muhammad Zafar Iqbal
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (M.Z.I.)
- Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Peking University Institute of Advanced Agricultural Sciences, Weifang 261000, China
| | - Yuzhou Liang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (M.Z.I.)
| | - Muhammad Anwar
- Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Akash Fatima
- Institute of Plant Breeding and Biotechnology, MNS University of Agriculture, Multan 60000, Pakistan
| | - Muhammad Jawad Hassan
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (M.Z.I.)
| | - Asif Ali
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Qilin Tang
- Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China;
| | - Yan Peng
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (M.Z.I.)
| |
Collapse
|
18
|
Ren B, Guo X, Liu J, Feng G, Hao X, Zhang X, Chen Z. Auxin-Mediated Lateral Root Development in Root Galls of Cucumber under Meloidogyne incognita Stress. PLANTS (BASEL, SWITZERLAND) 2024; 13:2679. [PMID: 39409549 PMCID: PMC11478513 DOI: 10.3390/plants13192679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/22/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024]
Abstract
Root-knot nematodes induce the formation of feeding sites within the host roots and the relocation of auxin into galls results in abnormal lateral root growth. Here, we analyzed the changes in cucumber root architecture under Meloidogyne incognita stress and the distribution of auxin in these morphological and molecular root changes. The number of root tips significantly decreased, and regression analysis showed a positive relationship between the size of root galls and the numbers of nematodes in galls compared with the lateral roots on galls, emphasizing the effect of nematode parasitism on root development. Data generated via a promoter-reporter system using the transgenic hairy root system first characterized the auxin distribution during nematode parasitism in cucumber. Using DR5:GUS staining of root galls, we further detected the expression of CsPIN1 and CsAUX1, which regulate polar auxin transport. The results showed that both CsPIN1 and CsAUX1 were induced in galls, and the relative expression of the two genes significantly increased at 21 DAI. The TIBA treatment, which can disrupt polar auxin transport inhibited the numbers of cucumber root tips and total length following increasing concentration gradients. Moreover, the numbers of galls were significantly affected by TIBA treatment, which showed the vital role of auxin during nematode parasitism. Our findings suggest that the transportation of auxin plays an important role during gall formation and induces cucumber lateral root development within nematode feeding sites.
Collapse
Affiliation(s)
- Baoling Ren
- College of Life Sciences, Linyi University, Linyi 276000, China; (B.R.); (X.G.)
| | - Xin Guo
- College of Life Sciences, Linyi University, Linyi 276000, China; (B.R.); (X.G.)
| | - Jingjing Liu
- College of Life Sciences, Linyi University, Linyi 276000, China; (B.R.); (X.G.)
| | - Guifang Feng
- College of Life Sciences, Linyi University, Linyi 276000, China; (B.R.); (X.G.)
| | - Xiaodong Hao
- School of Resources and Environment, Linyi University, Linyi 276000, China
| | - Xu Zhang
- College of Life Sciences, Linyi University, Linyi 276000, China; (B.R.); (X.G.)
| | - Zhiqun Chen
- College of Life Sciences, Linyi University, Linyi 276000, China; (B.R.); (X.G.)
| |
Collapse
|
19
|
Rong M, Gao SX, Wen D, Xu YH, Wei JH. The LOB domain protein, a novel transcription factor with multiple functions: A review. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 214:108922. [PMID: 39038384 DOI: 10.1016/j.plaphy.2024.108922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/03/2024] [Accepted: 07/06/2024] [Indexed: 07/24/2024]
Abstract
The LATERAL ORGAN BOUNDARIES DOMAIN (LBD) protein, named for its LATERAL ORGAN BOUNDARIES (LOB) domain, is a member of a class of specific transcription factors commonly found in plants and is absent from all other groups of organisms. LBD TFs have been systematically identified in about 35 plant species and are involved in regulating various aspects of plant growth and development. However, research on the signaling network and regulatory functions of LBD TFs is insufficient, and only a few members have been studied. Moreover, a comprehensive review of these existing studies is lacking. In this review, the structure, regulatory mechanism and function of LBD TFs in recent years were reviewed in order to better understand the role of LBD TFs in plant growth and development, and to provide a new perspective for the follow-up study of LBD TFs.
Collapse
Affiliation(s)
- Mei Rong
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Shi-Xi Gao
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Dong Wen
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Yan-Hong Xu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China.
| | - Jian-He Wei
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China; Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine & Key Laboratory of State Administration of Traditional Chinese Medicine for Agarwood Sustainable Utilization, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Haikou, 570311, China.
| |
Collapse
|
20
|
Zhang F, Wang J, Ding T, Lin X, Hu H, Ding Z, Tian H. MYB2 and MYB108 regulate lateral root development by interacting with LBD29 in Arabidopsis thaliana. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:1675-1687. [PMID: 38923126 DOI: 10.1111/jipb.13720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 05/15/2024] [Indexed: 06/28/2024]
Abstract
AUXIN RESPONSE FACTOR 7 (ARF7)-mediated auxin signaling plays a key role in lateral root (LR) development by regulating downstream LATERAL ORGAN BOUNDARIES DOMAIN (LBD) transcription factor genes, including LBD16, LBD18, and LBD29. LBD proteins are believed to regulate the transcription of downstream genes as homodimers or heterodimers. However, whether LBD29 forms dimers with other proteins to regulate LR development remains unknown. Here, we determined that the Arabidopsis thaliana (L.) Heynh. MYB transcription factors MYB2 and MYB108 interact with LBD29 and regulate auxin-induced LR development. Both MYB2 and MYB108 were induced by auxin in an ARF7-dependent manner. Disruption of MYB2 by fusion with an SRDX domain severely affected auxin-induced LR formation and the ability of LBD29 to induce LR development. By contrast, overexpression of MYB2 or MYB108 resulted in greater LR numbers, except in the lbd29 mutant background. These findings underscore the interdependence and importance of MYB2, MYB108, and LBD29 in regulating LR development. In addition, MYB2-LBD29 and MYB108-LBD29 complexes promoted the expression of CUTICLE DESTRUCTING FACTOR 1 (CDEF1), a member of the GDSL (Gly-Asp-Ser-Leu) lipase/esterase family involved in LR development. In summary, this study identified MYB2-LBD29 and MYB108-LBD29 regulatory modules that act downstream of ARF7 and intricately control auxin-mediated LR development.
Collapse
Affiliation(s)
- Feng Zhang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Junxia Wang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Tingting Ding
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
- Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Xuefeng Lin
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Haiying Hu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Zhaojun Ding
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Huiyu Tian
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| |
Collapse
|
21
|
Cao H, Zhang X, Li F, Han Z, Ding B. A point mutation in the IAA14 promoter enhances callus formation and regeneration. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:1253-1263. [PMID: 39184564 PMCID: PMC11341521 DOI: 10.1007/s12298-024-01493-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 08/27/2024]
Abstract
Callus formation induced by auxin accumulation is considered the first step of in vitro plant regeneration. In Arabidopsis, degradation of the Aux/IAA protein, IAA14, in response to auxin signaling, which activates the AUXIN RESPONSE FACTOR 7 (ARF7) and ARF19 along with a series of downstream transcription factors, also plays a critical role in this process. However, the specific mechanism by which auxin regulates callus formation remains unclear. By screening mutant library in the solitary root 1 (iaa14/slr) Arabidopsis background we obtained the callus formation related 2 (cfr2) mutant. The cfr2 mutant exhibited a stronger capacity for callus formation, as well as lateral root and adventitious root regeneration from leaf explants than wild type (WT) seedlings, but did not recover gravitropism capability. The auxin signal in cfr2 was significantly enhanced, and the expression of some downstream transcription factors was increased. Map-based cloning, whole genome resequencing, and phenotypic complementation experiments showed that the phenotypes observed in the cfr2 mutant were caused by a point mutation in the IAA14 promoter region. This mutation, which is predicted to disrupt the binding of LBD16, LBD19, and LBD30 to the IAA14 promoter, changed the expression pattern of IAA14 in cfr2. Taken together, our results identified a new mutation in the IAA14 promoter region, which affects the expression pattern of IAA14 and in turn its ability to control plant regeneration. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-024-01493-y.
Collapse
Affiliation(s)
- Huifen Cao
- Key Laboratory of Organic Dry Farming for Special Crops in Datong City, College of Agriculture and Life Science, Shanxi Datong University, Datong, 037009 Shanxi Province China
| | - Xiao Zhang
- Engineering Research Center of Coal-based Ecological Carbon Sequestration Technology of the Ministry of Education, Key Laboratory of National Forest and Grass Administration for the Application of Graphene in Forestry, Shanxi Datong University, Datong, 037009 Shanxi Province China
| | - Feng Li
- Key Laboratory of Organic Dry Farming for Special Crops in Datong City, College of Agriculture and Life Science, Shanxi Datong University, Datong, 037009 Shanxi Province China
| | - Zhiping Han
- Key Laboratory of Organic Dry Farming for Special Crops in Datong City, College of Agriculture and Life Science, Shanxi Datong University, Datong, 037009 Shanxi Province China
| | - Baopeng Ding
- Engineering Research Center of Coal-based Ecological Carbon Sequestration Technology of the Ministry of Education, Key Laboratory of National Forest and Grass Administration for the Application of Graphene in Forestry, Shanxi Datong University, Datong, 037009 Shanxi Province China
| |
Collapse
|
22
|
Borowsky AT, Bailey-Serres J. Rewiring gene circuitry for plant improvement. Nat Genet 2024; 56:1574-1582. [PMID: 39075207 DOI: 10.1038/s41588-024-01806-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 05/17/2024] [Indexed: 07/31/2024]
Abstract
Aspirations for high crop growth and yield, nutritional quality and bioproduction of materials are challenged by climate change and limited adoption of new technologies. Here, we review recent advances in approaches to profile and model gene regulatory activity over developmental and response time in specific cells, which have revealed the basis of variation in plant phenotypes: both redeployment of key regulators to new contexts and their repurposing to control different slates of genes. New synthetic biology tools allow tunable, spatiotemporal regulation of transgenes, while recent gene-editing technologies enable manipulation of the regulation of native genes. Ultimately, understanding how gene circuitry is wired to control form and function across varied plant species, combined with advanced technology to rewire that circuitry, will unlock solutions to our greatest challenges in agriculture, energy and the environment.
Collapse
Affiliation(s)
- Alexander T Borowsky
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, USA
| | - Julia Bailey-Serres
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, USA.
| |
Collapse
|
23
|
Dai Z, Dong S, Cai H, Beckles DM, Guan J, Liu X, Gu X, Miao H, Zhang S. Genome-wide association analysis reveal candidate genes and haplotypes related to root weight in cucumber ( Cucumis sativus L.). FRONTIERS IN PLANT SCIENCE 2024; 15:1417314. [PMID: 39086910 PMCID: PMC11288866 DOI: 10.3389/fpls.2024.1417314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 06/25/2024] [Indexed: 08/02/2024]
Abstract
Background The plant root system is critical for the absorption of water and nutrients, and have a direct influence on growth and yield. In cucumber, a globally consumed crop, the molecular mechanism of root development remains unclear, and this has implications for developing stress tolerant varieties. This study sought to determine the genetic patterns and related genes of cucumber root weight. A core cucumber germplasms population was used to do the GWAS analysis in three environments. Results Here, we investigated four root-weight related traits including root fresh weight (RFW), root dry weight (RDW), ratio of root dry weight to root fresh weight (RDFW) and the comprehensive evaluation index, D-value of root weight (DRW) deduced based on the above three traits for the core germplasm of the cucumber global repository. According to the D-value, we identified 21 and 16 accessions with light and heavy-root, respectively. We also found that the East Asian ecotype accessions had significantly heavier root than other three ecotypes. The genome-wide association study (GWAS) for these four traits reveals that 4 of 10 significant loci (gDRW3.1, gDRW3.2, gDRW4.1 and gDRW5.1) were repeatedly detected for at least two traits. Further haplotype and expression analysis for protein-coding genes positioned within these 4 loci between light and heavy-root accessions predicted five candidate genes (i.e., Csa3G132020 and Csa3G132520 both encoding F-box protein PP2-B1 for gDRW3.1, Csa3G629240 encoding a B-cell receptor-associated protein for gDRW3.2, Csa4G499330 encodes a GTP binding protein for gDRW4.1, and Csa5G286040 encodes a proteinase inhibitor for gDRW5.1). Conclusions We conducted a systematic analysis of the root genetic basis and characteristics of cucumber core germplasms population. We detected four novel loci, which regulate the root weight in cucumber. Our study provides valuable candidate genes and haplotypes for the improvement of root system in cucumber breeding.
Collapse
Affiliation(s)
- Zhuonan Dai
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shaoyun Dong
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hexu Cai
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Diane M. Beckles
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | - Jiantao Guan
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaoping Liu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xingfang Gu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Han Miao
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shengping Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
24
|
Cheng J, Shao Y, Hu X, Gao L, Zheng X, Tan B, Ye X, Wang W, Zhang H, Wang X, Lian X, Li Z, Feng J, Zhang L. A simple and efficient gene functional analysis method for studying the growth and development of peach seedlings. HORTICULTURE RESEARCH 2024; 11:uhae155. [PMID: 39005999 PMCID: PMC11246241 DOI: 10.1093/hr/uhae155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/26/2024] [Indexed: 07/16/2024]
Abstract
Stable genetic transformation of peach [Prunus persica (L.) Batsch] still faces many technical challenges, and existing transient expression methods are limited by tissue type or developmental stage, making it difficult to conduct functional analysis of genes regulating shoot growth. To overcome this dilemma, we developed a three-step method for efficient analysis of gene functions during peach seedling growth and development. This method resulted in transformation frequencies ranging from 48 to 87%, depending on the gene. From transformation of germinating seeds to phenotyping of young saplings took just 1.5 months and can be carried out any time of year. To test the applicability of this method, the function of three tree architecture-related genes, namely PpPDS, PpMAX4, and PpWEEP, and two lateral root-related genes, PpIAA14-1 and -2, were confirmed. Since functional redundancy can challenge gene functional analyses, tests were undertaken with the growth-repressor DELLA, which has three homologous genes, PpDGYLA (DG), PpDELLA1 (D1), and -2 (D2), in peach that are functionally redundant. Silencing using a triple-target vector (TRV2-DG-D1-D2) resulted in transgenic plants taller than those carrying just TRV2-DG or TRV2. Simultaneously silencing the three DELLA genes also attenuated the stature of two dwarf genotypes, 'FHSXT' and 'HSX', which normally accumulate DELLA proteins. Our study provides a method for the functional analysis of genes in peach and can be used for the study of root, stem, and leaf development. We believe this method can be replicated in other woody plants.
Collapse
|
25
|
Liu C, Gu W, Liu C, Shi X, Li B, Chen B, Zhou Y. Tryptophan regulates sorghum root growth and enhances low nitrogen tolerance. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 212:108737. [PMID: 38763003 DOI: 10.1016/j.plaphy.2024.108737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 05/03/2024] [Accepted: 05/15/2024] [Indexed: 05/21/2024]
Abstract
Over evolutionary time, plants have developed sophisticated regulatory mechanisms to adapt to fluctuating nitrogen (N) environments, ensuring that their growth is balanced with their responses to N stress. This study explored the potential of L-tryptophan (Trp) in regulating sorghum root growth under conditions of N limitation. Here, two distinct sorghum genotypes (low-N tolerance 398B and low-N sensitive CS3541) were utilized for investigating effect of low-N stress on root morphology and conducting a comparative transcriptomics analysis. Our foundings indicated that 398B exhibited longer roots, greater root dry weights, and a higher Trp content compared to CS3541 under low-N conditions. Furthermore, transcriptome analysis revealed substantial differences in gene expression profiles related to Trp pathway and carbon (C) and N metabolism pathways between the two genotypes. Additional experiments were conducted to assess the effects of exogenous Trp treatment on the interplay between sorghum root growth and low-N tolerance. Our observations showed that Trp-treated plants developed longer root and had elevated levels of Trp and IAA under low-N conditons. Concurrently, these plants demonstrated stronger physiological activities in C and N metabolism when subjected to low-N stress. These results underscored the pivotal role of Trp on root growth and low-N stress responses by balancing IAA levels and C and N metabolism. This study not only deepens our understanding of how plants maintain growth plasticity during environmental stress but also provides valuable insights into the availability of amino acid in crops, which could be instrumental in developing strategies for promoting crop resilience to N deficiency.
Collapse
Affiliation(s)
- Chunjuan Liu
- College of Agronomy/Shenyang Agricultural University, Shenyang, Liaoning, 110866, PR China
| | - Wendong Gu
- College of Agronomy/Shenyang Agricultural University, Shenyang, Liaoning, 110866, PR China
| | - Chang Liu
- College of Agronomy/Shenyang Agricultural University, Shenyang, Liaoning, 110866, PR China
| | - Xiaolong Shi
- College of Agronomy/Shenyang Agricultural University, Shenyang, Liaoning, 110866, PR China
| | - Bang Li
- College of Agronomy/Shenyang Agricultural University, Shenyang, Liaoning, 110866, PR China
| | - Bingru Chen
- Institute of Crop Germplasm Resources, Jilin Academy of Agricultural Sciences, Changchun, 130033, Jilin, PR China
| | - Yufei Zhou
- College of Agronomy/Shenyang Agricultural University, Shenyang, Liaoning, 110866, PR China.
| |
Collapse
|
26
|
González-García MP, Sáez A, Lanza M, Hoyos P, Bustillo-Avendaño E, Pacios LF, Gradillas A, Moreno-Risueno MA, Hernaiz MJ, del Pozo JC. Synthetically derived BiAux modulates auxin co-receptor activity to stimulate lateral root formation. PLANT PHYSIOLOGY 2024; 195:1694-1711. [PMID: 38378170 PMCID: PMC11142373 DOI: 10.1093/plphys/kiae090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 01/12/2024] [Accepted: 01/13/2024] [Indexed: 02/22/2024]
Abstract
The root system plays an essential role in plant growth and adaptation to the surrounding environment. The root clock periodically specifies lateral root prebranch sites (PBS), where a group of pericycle founder cells (FC) is primed to become lateral root founder cells and eventually give rise to lateral root primordia or lateral roots (LRs). This clock-driven organ formation process is tightly controlled by modulation of auxin content and signaling. Auxin perception entails the physical interaction of TRANSPORT INHIBITOR RESPONSE 1 (TIR1) or AUXIN SIGNALING F-BOX (AFBs) proteins with AUXIN/INDOLE-3-ACETIC ACID (Aux/IAA) repressors to form a co-receptor system. Despite the apparent simplicity, the understanding of how specific auxin co-receptors are assembled remains unclear. We identified the compound bis-methyl auxin conjugated with N-glucoside, or BiAux, in Arabidopsis (Arabidopsis thaliana) that specifically induces the formation of PBS and the emergence of LR, with a slight effect on root elongation. Docking analyses indicated that BiAux binds to F-box proteins, and we showed that BiAux function depends on TIR1 and AFB2 F-box proteins and AUXIN RESPONSE FACTOR 7 activity, which is involved in FC specification and LR formation. Finally, using a yeast (Saccharomyces cerevisiae) heterologous expression system, we showed that BiAux favors the assemblage of specific co-receptors subunits involved in LR formation and enhances AUXIN/INDOLE-3-ACETIC ACID 28 protein degradation. These results indicate that BiAux acts as an allosteric modulator of specific auxin co-receptors. Therefore, BiAux exerts a fine-tune regulation of auxin signaling aimed to the specific formation of LR among the many development processes regulated by auxin.
Collapse
Affiliation(s)
- Mary Paz González-García
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA/CSIC), Universidad Politécnica de Madrid (UPM)—Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria-CSIC (INIA/CSIC), Campus Montegancedo, 28223 Pozuelo de Alarcón, Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), 28040 Madrid, Spain
| | - Angela Sáez
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA/CSIC), Universidad Politécnica de Madrid (UPM)—Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria-CSIC (INIA/CSIC), Campus Montegancedo, 28223 Pozuelo de Alarcón, Madrid, Spain
- Universidad Francisco de Vitoria, Facultad de Ciencias Experimentales, Edificio E., 28223 Pozuelo de Alarcón, Madrid, Spain
| | - Mónica Lanza
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA/CSIC), Universidad Politécnica de Madrid (UPM)—Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria-CSIC (INIA/CSIC), Campus Montegancedo, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - Pilar Hoyos
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Estefano Bustillo-Avendaño
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA/CSIC), Universidad Politécnica de Madrid (UPM)—Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria-CSIC (INIA/CSIC), Campus Montegancedo, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - Luis F Pacios
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA/CSIC), Universidad Politécnica de Madrid (UPM)—Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria-CSIC (INIA/CSIC), Campus Montegancedo, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - Ana Gradillas
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Madrid, Spain
| | - Miguel A Moreno-Risueno
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA/CSIC), Universidad Politécnica de Madrid (UPM)—Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria-CSIC (INIA/CSIC), Campus Montegancedo, 28223 Pozuelo de Alarcón, Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), 28040 Madrid, Spain
| | - María José Hernaiz
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Juan C del Pozo
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA/CSIC), Universidad Politécnica de Madrid (UPM)—Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria-CSIC (INIA/CSIC), Campus Montegancedo, 28223 Pozuelo de Alarcón, Madrid, Spain
| |
Collapse
|
27
|
Yu G, Zhang L, Xue H, Chen Y, Liu X, Del Pozo JC, Zhao C, Lozano-Duran R, Macho AP. Cell wall-mediated root development is targeted by a soil-borne bacterial pathogen to promote infection. Cell Rep 2024; 43:114179. [PMID: 38691455 DOI: 10.1016/j.celrep.2024.114179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 03/30/2024] [Accepted: 04/16/2024] [Indexed: 05/03/2024] Open
Abstract
Plant pathogens manipulate host development, facilitating colonization and proliferation. Ralstonia solanacearum is a soil-borne bacterial pathogen that penetrates roots and colonizes plants through the vascular system, causing wilting and death. Here, we find that RipAC, an effector protein from R. solanacearum, alters root development in Arabidopsis, promoting the formation of lateral roots and root hairs. RipAC interacts with CELLULOSE SYNTHASE (CESA)-INTERACTIVE PROTEIN 1 (CSI1), which regulates the activity of CESA complexes at the plasma membrane. RipAC disrupts CESA-CSI1 interaction, leading to a reduction in cellulose content, root developmental alterations, and a promotion of bacterial pathogenicity. We find that CSI1 also associates with the receptor kinase FERONIA, forming a complex that negatively regulates immunity in roots; this interaction, however, is not affected by RipAC. Our work reveals a bacterial virulence strategy that selectively affects the activities of a host target, promoting anatomical alterations that facilitate infection without causing activation of immunity.
Collapse
Affiliation(s)
- Gang Yu
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China; Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Lu Zhang
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China; University of the Chinese Academy of Sciences, Beijing, China
| | - Hao Xue
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China; University of the Chinese Academy of Sciences, Beijing, China
| | - Yujiao Chen
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China; University of the Chinese Academy of Sciences, Beijing, China
| | - Xin Liu
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China; University of the Chinese Academy of Sciences, Beijing, China
| | - Juan C Del Pozo
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA/CSIC), Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria-CSIC (INIA/CSIC), Campus Montegancedo, 28223 Pozuelo de Alarcón (Madrid), Spain
| | - Chunzhao Zhao
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China
| | - Rosa Lozano-Duran
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China
| | - Alberto P Macho
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China.
| |
Collapse
|
28
|
Su X, Zheng J, Diao X, Yang Z, Yu D, Huang F. MtTCP18 Regulates Plant Structure in Medicago truncatula. PLANTS (BASEL, SWITZERLAND) 2024; 13:1012. [PMID: 38611541 PMCID: PMC11013128 DOI: 10.3390/plants13071012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/18/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024]
Abstract
Plant structure has a large influence on crop yield formation, with branching and plant height being the important factors that make it up. We identified a gene, MtTCP18, encoding a TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR (TCP) transcription factor highly conserved with Arabidopsis gene BRC1 (BRANCHED1) in Medicago truncatula. Sequence analysis revealed that MtTCP18 included a conserved basic helix-loop-helix (BHLH) motif and R domain. Expression analysis showed that MtTCP18 was expressed in all organs examined, with relatively higher expression in pods and axillary buds. Subcellular localization analysis showed that MtTCP18 was localized in the nucleus and exhibited transcriptional activation activity. These results supported its role as a transcription factor. Meanwhile, we identified a homozygous mutant line (NF14875) with a mutation caused by Tnt1 insertion into MtTCP18. Mutant analysis showed that the mutation of MtTCP18 altered plant structure, with increased plant height and branch number. Moreover, we found that the expression of auxin early response genes was modulated in the mutant. Therefore, MtTCP18 may be a promising candidate gene for breeders to optimize plant structure for crop improvement.
Collapse
Affiliation(s)
| | | | | | | | | | - Fang Huang
- Key Laboratory of Biology and Genetics Improvement of Soybean, Ministry of Agriculture, Zhongshan Biological Breeding Laboratory (ZSBBL), National Innovation Platform for Soybean Breeding and Industry-Education Integration, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China; (X.S.); (J.Z.); (X.D.); (Z.Y.); (D.Y.)
| |
Collapse
|
29
|
Luo H, Yang J, Liu S, Li S, Si H, Zhang N. Control of Plant Height and Lateral Root Development via Stu-miR156 Regulation of SPL9 Transcription Factor in Potato. PLANTS (BASEL, SWITZERLAND) 2024; 13:723. [PMID: 38475569 DOI: 10.3390/plants13050723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/23/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024]
Abstract
MicroRNAs (miRNAs) are a class of endogenous, non-coding small-molecule RNAs that usually regulate the expression of target genes at the post-transcriptional level. miR156 is one of a class of evolutionarily highly conserved miRNA families. SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) transcription factor is one of the target genes that is regulated by miR156. SPL transcription factors are involved in regulating plant growth and development, hormone response, stress response, and photosynthesis. In the present study, transgenic potato plants with overexpressed miR156 were obtained via the Agrobacterium-mediated transformation method. The results showed that the expression levels of the target gene, StSPL9, were all downregulated in the transgenic plants with overexpressed Stu-miR156. Compared with those of the control plants, the plant height and root length of the transgenic plants were significantly decreased, while the number of lateral roots was significantly increased. These results revealed that the miR156/SPLs module was involved in regulating potato plant height and root growth.
Collapse
Affiliation(s)
- Hongyu Luo
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Jiangwei Yang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Shengyan Liu
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Shigui Li
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Huaijun Si
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Ning Zhang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
30
|
Petersen M, Ebstrup E, Rodriguez E. Going through changes - the role of autophagy during reprogramming and differentiation. J Cell Sci 2024; 137:jcs261655. [PMID: 38393817 DOI: 10.1242/jcs.261655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024] Open
Abstract
Somatic cell reprogramming is a complex feature that allows differentiated cells to undergo fate changes into different cell types. This process, which is conserved between plants and animals, is often achieved via dedifferentiation into pluripotent stem cells, which have the ability to generate all other types of cells and tissues of a given organism. Cellular reprogramming is thus a complex process that requires extensive modification at the epigenetic and transcriptional level, unlocking cellular programs that allow cells to acquire pluripotency. In addition to alterations in the gene expression profile, cellular reprogramming requires rearrangement of the proteome, organelles and metabolism, but these changes are comparatively less studied. In this context, autophagy, a cellular catabolic process that participates in the recycling of intracellular constituents, has the capacity to affect different aspects of cellular reprogramming, including the removal of protein signatures that might hamper reprogramming, mitophagy associated with metabolic reprogramming, and the supply of energy and metabolic building blocks to cells that undergo fate changes. In this Review, we discuss advances in our understanding of the role of autophagy during cellular reprogramming by drawing comparisons between plant and animal studies, as well as highlighting aspects of the topic that warrant further research.
Collapse
Affiliation(s)
- Morten Petersen
- Department of Biology, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Elise Ebstrup
- Department of Biology, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Eleazar Rodriguez
- Department of Biology, University of Copenhagen, 2200 Copenhagen N, Denmark
| |
Collapse
|
31
|
Ragland CJ, Shih KY, Dinneny JR. Choreographing root architecture and rhizosphere interactions through synthetic biology. Nat Commun 2024; 15:1370. [PMID: 38355570 PMCID: PMC10866969 DOI: 10.1038/s41467-024-45272-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 01/18/2024] [Indexed: 02/16/2024] Open
Abstract
Climate change is driving extreme changes to the environment, posing substantial threats to global food security and bioenergy. Given the direct role of plant roots in mediating plant-environment interactions, engineering the form and function of root systems and their associated microbiota may mitigate these effects. Synthetic genetic circuits have enabled sophisticated control of gene expression in microbial systems for years and a surge of advances has heralded the extension of this approach to multicellular plant species. Targeting these tools to affect root structure, exudation, and microbe activity on root surfaces provide multiple strategies for the advancement of climate-ready crops.
Collapse
Affiliation(s)
- Carin J Ragland
- Department of Biology, Stanford University, Stanford, CA, 94305, USA
| | - Kevin Y Shih
- Department of Biology, Stanford University, Stanford, CA, 94305, USA
| | - José R Dinneny
- Department of Biology, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
32
|
Yamauchi T, Tanaka A, Nakazono M, Inukai Y. Age-dependent analysis dissects the stepwise control of auxin-mediated lateral root development in rice. PLANT PHYSIOLOGY 2024; 194:819-831. [PMID: 37831077 PMCID: PMC10828202 DOI: 10.1093/plphys/kiad548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 09/27/2023] [Accepted: 10/12/2023] [Indexed: 10/14/2023]
Abstract
As root elongation rates are different among each individual root, the distance from the root apices does not always reflect the age of root cells. Thus, methods for correcting variations in elongation rates are needed to accurately evaluate the root developmental process. Here, we show that modeling-based age-dependent analysis is effective for dissecting stepwise lateral root (LR) development in rice (Oryza sativa). First, we measured the increases in LR and LR primordium (LRP) numbers, diameters, and lengths in wild type and an auxin-signaling-defective mutant, which has a faster main (crown) root elongation rate caused by the mutation in the gene encoding AUXIN/INDOLE-3-ACETIC ACID protein 13 (IAA13). The longitudinal patterns of these parameters were fitted by the appropriate models and the age-dependent patterns were identified using the root elongation rates. As a result, we found that LR and LRP numbers and lengths were reduced in iaa13. We also found that the duration of the increases in LR and LRP diameters were prolonged in iaa13. Subsequent age-dependent comparisons with gene expression patterns suggest that AUXIN RESPONSE FACTOR11 (ARF11), the homolog of MONOPTEROS (MP)/ARF5 in Arabidopsis (Arabidopsis thaliana), is involved in the initiation and growth of LR(P). Indeed, the arf11 mutant showed a reduction of LR and LRP numbers and lengths. Our results also suggest that PINOID-dependent rootward-to-shootward shift of auxin flux contributes to the increase in LR and LRP diameters. Together, we propose that modeling-based age-dependent analysis is useful for root developmental studies by enabling accurate evaluation of root traits' expression.
Collapse
Affiliation(s)
- Takaki Yamauchi
- Bioscience and Biotechnology Center, Nagoya University, Nagoya 464-8601, Japan
| | - Akihiro Tanaka
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Mikio Nakazono
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
- School of Agriculture and Environment, The University of Western Australia, Crawley, WA 6009, Australia
| | - Yoshiaki Inukai
- International Center for Research and Education in Agriculture, Nagoya University, Nagoya 464-8601, Japan
| |
Collapse
|
33
|
Zhang Y, Ma Y, Zhao D, Tang Z, Zhang T, Zhang K, Dong J, Zhang H. Genetic regulation of lateral root development. PLANT SIGNALING & BEHAVIOR 2023; 18:2081397. [PMID: 35642513 PMCID: PMC10761116 DOI: 10.1080/15592324.2022.2081397] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
Lateral roots (LRs) are an important part of plant root systems. In dicots, for example, after plants adapted from aquatic to terrestrial environments, filamentous pseudorhizae evolved to allow nutrient absorption. A typical plant root system comprises a primary root, LRs, root hairs, and a root cap. Classical plant roots exhibit geotropism (the tendency to grow downward into the ground) and can synthesize plant hormones and other essential substances. Root vascular bundles and complex spatial structures enable plants to absorb water and nutrients to meet their nutrient quotas and grow. The primary root carries out most functions during early growth stages but is later overtaken by LRs, underscoring the importance of LR development water and mineral uptake and the soil fixation capacity of the root. LR development is modulated by endogenous plant hormones and external environmental factors, and its underlying mechanisms have been dissected in great detail in Arabidopsis, thanks to its simple root anatomy and the ease of obtaining mutants. This review comprehensively and systematically summarizes past research (largely in Arabidopsis) on LR basic structure, development stages, and molecular mechanisms regulated by different factors, as well as future prospects in LR research, to provide broad background knowledge for root researchers.
Collapse
Affiliation(s)
- Ying Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agricultural University, Baoding, Hebei, China
- Pear Engineering and Technology Research Center of Hebei, College of Horticulture, Hebei Agricultural University, Baoding, Hebei, China
| | - Yuru Ma
- Ministry of Education, Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, China
| | - Dan Zhao
- Ministry of Education, Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, China
- College of Life Sciences, Hengshui University, Hengshui, Hebei, China
| | - Ziyan Tang
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agricultural University, Baoding, Hebei, China
- College of Plant Protection, Hebei Agricultural University, Baoding, Hebei, China
| | - Tengteng Zhang
- Ministry of Education, Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, China
| | - Ke Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agricultural University, Baoding, Hebei, China
- College of Agronomy, Hebei Agricultural University, Baoding, Hebei, China
| | - Jingao Dong
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agricultural University, Baoding, Hebei, China
- College of Plant Protection, Hebei Agricultural University, Baoding, Hebei, China
| | - Hao Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agricultural University, Baoding, Hebei, China
- Ministry of Education, Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, China
| |
Collapse
|
34
|
Xu C, Chang P, Guo S, Yang X, Liu X, Sui B, Yu D, Xin W, Hu Y. Transcriptional activation by WRKY23 and derepression by removal of bHLH041 coordinately establish callus pluripotency in Arabidopsis regeneration. THE PLANT CELL 2023; 36:158-173. [PMID: 37804093 PMCID: PMC10734573 DOI: 10.1093/plcell/koad255] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/22/2023] [Accepted: 09/13/2023] [Indexed: 10/08/2023]
Abstract
Induction of the pluripotent cell mass termed callus from detached organs or tissues is an initial step in typical in vitro plant regeneration, during which auxin-induced ectopic activation of root stem cell factors is required for subsequent de novo shoot regeneration. While Arabidopsis (Arabidopsis thaliana) AUXIN RESPONSE FACTOR 7 (ARF7) and ARF19 and their downstream transcription factors LATERAL ORGAN BOUNDARIES DOMAIN (LBD) are known to play key roles in directing callus formation, the molecules responsible for activation of root stem cell factors and thus establishment of callus pluripotency are unclear. Here, we identified Arabidopsis WRKY23 and BASIC HELIX-LOOP-HELIX 041 (bHLH041) as a transcriptional activator and repressor, respectively, of root stem cell factors during establishment of auxin-induced callus pluripotency. We show that auxin-induced WRKY23 downstream of ARF7 and ARF19 directly activates the transcription of PLETHORA 3 (PLT3) and PLT7 and thus that of the downstream genes PLT1, PLT2, and WUSCHEL-RELATED HOMEOBOX 5 (WOX5), while LBD-induced removal of bHLH041 derepresses the transcription of PLT1, PLT2, and WOX5. We provide evidence that transcriptional activation by WRKY23 and loss of bHLH041-imposed repression act synergistically in conferring shoot-regenerating capability on callus cells. Our findings thus disclose a transcriptional mechanism underlying auxin-induced cellular reprogramming, which, together with previous studies, outlines the molecular framework of auxin-induced pluripotent callus formation for in vitro plant regeneration programs.
Collapse
Affiliation(s)
- Chongyi Xu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, China National Botanical Garden, Beijing 100093, China
| | - Pengjie Chang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shiqi Guo
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaona Yang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinchun Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Baofeng Sui
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dongxue Yu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Xin
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuxin Hu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, China National Botanical Garden, Beijing 100093, China
- National Center for Plant Gene Research, Beijing 100093, China
| |
Collapse
|
35
|
Zeng Y, Verstraeten I, Trinh HK, Lardon R, Schotte S, Olatunji D, Heugebaert T, Stevens C, Quareshy M, Napier R, Nastasi SP, Costa A, De Rybel B, Bellini C, Beeckman T, Vanneste S, Geelen D. Chemical induction of hypocotyl rooting reveals extensive conservation of auxin signalling controlling lateral and adventitious root formation. THE NEW PHYTOLOGIST 2023; 240:1883-1899. [PMID: 37787103 DOI: 10.1111/nph.19292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 08/19/2023] [Indexed: 10/04/2023]
Abstract
Upon exposure to light, etiolated Arabidopsis seedlings form adventitious roots (AR) along the hypocotyl. While processes underlying lateral root formation are studied intensively, comparatively little is known about the molecular processes involved in the initiation of hypocotyl AR. AR and LR formation were studied using a small molecule named Hypocotyl Specific Adventitious Root INducer (HYSPARIN) that strongly induces AR but not LR formation. HYSPARIN does not trigger rapid DR5-reporter activation, DII-Venus degradation or Ca2+ signalling. Transcriptome analysis, auxin signalling reporter lines and mutants show that HYSPARIN AR induction involves nuclear TIR1/AFB and plasma membrane TMK auxin signalling, as well as multiple downstream LR development genes (SHY2/IAA3, PUCHI, MAKR4 and GATA23). Comparison of the AR and LR induction transcriptome identified SAURs, AGC kinases and OFP transcription factors as specifically upregulated by HYSPARIN. Members of the SAUR19 subfamily, OFP4 and AGC2 suppress HYS-induced AR formation. While SAUR19 and OFP subfamily members also mildly modulate LR formation, AGC2 regulates only AR induction. Analysis of HYSPARIN-induced AR formation uncovers an evolutionary conservation of auxin signalling controlling LR and AR induction in Arabidopsis seedlings and identifies SAUR19, OFP4 and AGC2 kinase as novel regulators of AR formation.
Collapse
Affiliation(s)
- Yinwei Zeng
- Horticell, Department Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000, Ghent, Belgium
| | - Inge Verstraeten
- Horticell, Department Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000, Ghent, Belgium
| | - Hoang Khai Trinh
- Horticell, Department Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000, Ghent, Belgium
- Institute of Food and Biotechnology, Can Tho University, 900000, Can Tho City, Vietnam
| | - Robin Lardon
- Horticell, Department Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000, Ghent, Belgium
| | - Sebastien Schotte
- Horticell, Department Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000, Ghent, Belgium
| | - Damilola Olatunji
- Horticell, Department Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000, Ghent, Belgium
| | - Thomas Heugebaert
- Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Christian Stevens
- Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Mussa Quareshy
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Richard Napier
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Sara Paola Nastasi
- Department of Biosciences, University of Milan, via Celoria 26, 20133, Milan, Italy
| | - Alex Costa
- Department of Biosciences, University of Milan, via Celoria 26, 20133, Milan, Italy
- Institute of Biophysics, National Research Council of Italy (CNR), 20133, Milan, Italy
| | - Bert De Rybel
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Ghent, Belgium
- VIB Centre for Plant Systems Biology, Technologiepark 71, 9052, Ghent, Belgium
| | - Catherine Bellini
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, SE-90736, Umeå, Sweden
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France
| | - Tom Beeckman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Ghent, Belgium
- VIB Centre for Plant Systems Biology, Technologiepark 71, 9052, Ghent, Belgium
| | - Steffen Vanneste
- Horticell, Department Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000, Ghent, Belgium
| | - Danny Geelen
- Horticell, Department Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000, Ghent, Belgium
| |
Collapse
|
36
|
Liu K, Zhao Y, Zhao DG. Transcriptome analysis reveals the effect of acidic environment on adventitious root differentiation in Camellia sinensis. PLANT MOLECULAR BIOLOGY 2023; 113:205-217. [PMID: 37973765 DOI: 10.1007/s11103-023-01383-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/26/2023] [Indexed: 11/19/2023]
Abstract
The generation of adventitious roots (ARs) is the key to the success of cuttings. The appropriate environment for AR differentiation in tea plants is acidic. However, the mechanism is unclear. In this study, pH 4.5 was suitable condition for the differentiation of AR in tea plants. At the base of cuttings, the root primordia differentiated ARs more rapidly at pH 4.5 than pH 7.0, and nine AR differentiation-related genes were found to be differentially expressed in 30 days, the result was also validated by qRT-PCR. The promoter regions of these genes contained auxin and brassinosteroid response elements. The expression levels of several genes which were involved in auxin and brassinosteroid synthesis as well as signaling at pH 4.5 compared to pH 7.0 occurred differential expression. Brassinolide (BL) and indole-3-acetic acid (IAA) could affect the differentiation of ARs under pH 4.5 and pH 7.0. By qRT-PCR analysis of genes during ARs generation, BL and IAA inhibited and promoted the expression of CsIAA14 gene, respectively, to regulate auxin signal transduction. Meanwhile, the expression levels of CsKNAT4, CsNAC2, CsNAC100, CsWRKY30 and CsLBD18 genes were up-regulated upon auxin treatment and were positively correlated with ARs differentiation.This study showed that pH 4.5 was the most suitable environment for the root primordia differentiation of AR in tea plant. Proper acidic pH conditions promoted auxin synthesis and signal transduction. The auxin initiated the expression of AR differentiation-related genes, and promoted its differentiated. BL was involved in ARs formation and elongation by regulating auxin signal transduction.
Collapse
Affiliation(s)
- Kai Liu
- Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering/College of Tea Sciences, Guizhou University, Guiyang, 550025, China
| | - Yichen Zhao
- Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering/College of Tea Sciences, Guizhou University, Guiyang, 550025, China.
| | - De-Gang Zhao
- Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering/College of Tea Sciences, Guizhou University, Guiyang, 550025, China.
- Plant Conservation Technology Center, Guizhou Key Laboratory of Agricultural Biotechnology, Guizhou Academy of Agricultural Sciences, Guiyang, 550006, China.
| |
Collapse
|
37
|
Motte H, Parizot B, Xuan W, Chen Q, Maere S, Bensmihen S, Beeckman T. Interspecies co-expression analysis of lateral root development using inducible systems in rice, Medicago, and Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:1052-1063. [PMID: 37793018 DOI: 10.1111/tpj.16481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/30/2023] [Accepted: 09/13/2023] [Indexed: 10/06/2023]
Abstract
Lateral roots are crucial for plant growth and development, making them an important target for research aiming to improve crop yields and food security. However, their endogenous ontogeny and, as it were, stochastic appearance challenge their study. Lateral Root Inducible Systems (LRIS) can be used to overcome these challenges by inducing lateral roots massively and synchronously. The combination of LRISs with transcriptomic approaches significantly advanced our insights in the molecular control of lateral root formation, in particular for Arabidopsis. Despite this success, LRISs have been underutilized for other plant species or for lateral root developmental stages later than the initiation. In this study, we developed and/or adapted LRISs in rice, Medicago, and Arabidopsis to perform RNA-sequencing during time courses that cover different developmental stages of lateral root formation and primordium development. As such, our study provides three extensive datasets of gene expression profiles during lateral root development in three different plant species. The three LRISs are highly effective but timing and spatial distribution of lateral root induction vary among the species. Detailed characterization of the stages in time and space in the respective species enabled an interspecies co-expression analysis to identify conserved players involved in lateral root development, as illustrated for the AUX/IAA and LBD gene families. Overall, our results provide a valuable resource to identify potentially conserved regulatory mechanisms in lateral root development, and as such will contribute to a better understanding of the complex regulatory network underlying lateral root development.
Collapse
Affiliation(s)
- Hans Motte
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052, Ghent, Belgium
| | - Boris Parizot
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052, Ghent, Belgium
| | - Wei Xuan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qian Chen
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052, Ghent, Belgium
| | - Steven Maere
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052, Ghent, Belgium
| | - Sandra Bensmihen
- INRAE, CNRS, LIPME, Université de Toulouse, F-31326, Castanet-Tolosan, France
| | - Tom Beeckman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052, Ghent, Belgium
| |
Collapse
|
38
|
Morales-Herrera S, Jourquin J, Coppé F, Lopez-Galvis L, De Smet T, Safi A, Njo M, Griffiths CA, Sidda JD, Mccullagh JSO, Xue X, Davis BG, Van der Eycken J, Paul MJ, Van Dijck P, Beeckman T. Trehalose-6-phosphate signaling regulates lateral root formation in Arabidopsis thaliana. Proc Natl Acad Sci U S A 2023; 120:e2302996120. [PMID: 37748053 PMCID: PMC10556606 DOI: 10.1073/pnas.2302996120] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 08/08/2023] [Indexed: 09/27/2023] Open
Abstract
Plant roots explore the soil for water and nutrients, thereby determining plant fitness and agricultural yield, as well as determining ground substructure, water levels, and global carbon sequestration. The colonization of the soil requires investment of carbon and energy, but how sugar and energy signaling are integrated with root branching is unknown. Here, we show through combined genetic and chemical modulation of signaling pathways that the sugar small-molecule signal, trehalose-6-phosphate (T6P) regulates root branching through master kinases SNF1-related kinase-1 (SnRK1) and Target of Rapamycin (TOR) and with the involvement of the plant hormone auxin. Increase of T6P levels both via genetic targeting in lateral root (LR) founder cells and through light-activated release of the presignaling T6P-precursor reveals that T6P increases root branching through coordinated inhibition of SnRK1 and activation of TOR. Auxin, the master regulator of LR formation, impacts this T6P function by transcriptionally down-regulating the T6P-degrader trehalose phosphate phosphatase B in LR cells. Our results reveal a regulatory energy-balance network for LR formation that links the 'sugar signal' T6P to both SnRK1 and TOR downstream of auxin.
Collapse
Affiliation(s)
- Stefania Morales-Herrera
- Department of Plant Biotechnology and Bioinformatics Ghent University, GhentB-9052, Belgium
- Vlaams Instituut voor Biotechnologie Center for Plant Systems Biology, GhentB-9052, Belgium
- Laboratory of Molecular Cell Biology, Katholieke Universiteit Leuven, LeuvenB3001, Belgium
- Vlaams Instituut voor Biotechnologie-Katholieke Universiteit Leuven Center for Microbiology, LeuvenB3001, Belgium
| | - Joris Jourquin
- Department of Plant Biotechnology and Bioinformatics Ghent University, GhentB-9052, Belgium
- Vlaams Instituut voor Biotechnologie Center for Plant Systems Biology, GhentB-9052, Belgium
| | - Frederic Coppé
- Department of Plant Biotechnology and Bioinformatics Ghent University, GhentB-9052, Belgium
- Vlaams Instituut voor Biotechnologie Center for Plant Systems Biology, GhentB-9052, Belgium
| | - Lorena Lopez-Galvis
- Department of Plant Biotechnology and Bioinformatics Ghent University, GhentB-9052, Belgium
- Vlaams Instituut voor Biotechnologie Center for Plant Systems Biology, GhentB-9052, Belgium
- Laboratory of Molecular Cell Biology, Katholieke Universiteit Leuven, LeuvenB3001, Belgium
- Vlaams Instituut voor Biotechnologie-Katholieke Universiteit Leuven Center for Microbiology, LeuvenB3001, Belgium
| | - Tom De Smet
- Department of Organic and Macromolecular Chemistry, Laboratory for Organic and Bio-Organic Synthesis, Ghent University, GhentB-9000, Belgium
| | - Alaeddine Safi
- Department of Plant Biotechnology and Bioinformatics Ghent University, GhentB-9052, Belgium
- Vlaams Instituut voor Biotechnologie Center for Plant Systems Biology, GhentB-9052, Belgium
| | - Maria Njo
- Department of Plant Biotechnology and Bioinformatics Ghent University, GhentB-9052, Belgium
- Vlaams Instituut voor Biotechnologie Center for Plant Systems Biology, GhentB-9052, Belgium
| | - Cara A. Griffiths
- Department of Sustainable Soils and Crops, Rothamsted Research, HarpendenAL5 2JQ, United Kingdom
| | - John D. Sidda
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, OxfordOX1 3TA, United Kingdom
| | - James S. O. Mccullagh
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, OxfordOX1 3TA, United Kingdom
| | - Xiaochao Xue
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, OxfordOX1 3TA, United Kingdom
| | - Benjamin G. Davis
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, OxfordOX1 3TA, United Kingdom
- Next Generation Chemistry, The Rosalind Franklin Institute, DidcotOX1 3TA, United Kingdom
- Department of Pharmacology, University of Oxford, OxfordOX1 3TA, United Kingdom
| | - Johan Van der Eycken
- Department of Organic and Macromolecular Chemistry, Laboratory for Organic and Bio-Organic Synthesis, Ghent University, GhentB-9000, Belgium
| | - Matthew J. Paul
- Department of Sustainable Soils and Crops, Rothamsted Research, HarpendenAL5 2JQ, United Kingdom
| | - Patrick Van Dijck
- Laboratory of Molecular Cell Biology, Katholieke Universiteit Leuven, LeuvenB3001, Belgium
- Vlaams Instituut voor Biotechnologie-Katholieke Universiteit Leuven Center for Microbiology, LeuvenB3001, Belgium
- Katholieke Universiteit Leuven Plant Institute, Katholieke Universiteit Leuven, LeuvenB3001, Belgium
| | - Tom Beeckman
- Department of Plant Biotechnology and Bioinformatics Ghent University, GhentB-9052, Belgium
- Vlaams Instituut voor Biotechnologie Center for Plant Systems Biology, GhentB-9052, Belgium
| |
Collapse
|
39
|
Rahmati Ishka M, Julkowska M. Tapping into the plasticity of plant architecture for increased stress resilience. F1000Res 2023; 12:1257. [PMID: 38434638 PMCID: PMC10905174 DOI: 10.12688/f1000research.140649.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/24/2023] [Indexed: 03/05/2024] Open
Abstract
Plant architecture develops post-embryonically and emerges from a dialogue between the developmental signals and environmental cues. Length and branching of the vegetative and reproductive tissues were the focus of improvement of plant performance from the early days of plant breeding. Current breeding priorities are changing, as we need to prioritize plant productivity under increasingly challenging environmental conditions. While it has been widely recognized that plant architecture changes in response to the environment, its contribution to plant productivity in the changing climate remains to be fully explored. This review will summarize prior discoveries of genetic control of plant architecture traits and their effect on plant performance under environmental stress. We review new tools in phenotyping that will guide future discoveries of genes contributing to plant architecture, its plasticity, and its contributions to stress resilience. Subsequently, we provide a perspective into how integrating the study of new species, modern phenotyping techniques, and modeling can lead to discovering new genetic targets underlying the plasticity of plant architecture and stress resilience. Altogether, this review provides a new perspective on the plasticity of plant architecture and how it can be harnessed for increased performance under environmental stress.
Collapse
|
40
|
Roulé T, Legascue MF, Barrios A, Gaggion N, Crespi M, Ariel F, Blein T. The long intergenic noncoding RNA ARES modulates root architecture in Arabidopsis. IUBMB Life 2023; 75:880-892. [PMID: 37409758 DOI: 10.1002/iub.2761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 05/24/2023] [Indexed: 07/07/2023]
Abstract
Long noncoding RNAs (lncRNAs) have emerged as important regulators of gene expression in plants. They have been linked to a wide range of molecular mechanisms, including epigenetics, miRNA activity, RNA processing and translation, and protein localization or stability. In Arabidopsis, characterized lncRNAs have been implicated in several physiological contexts, including plant development and the response to the environment. Here we searched for lncRNA loci located nearby key genes involved in root development and identified the lncRNA ARES (AUXIN REGULATOR ELEMENT DOWNSTREAM SOLITARYROOT) downstream of the lateral root master gene IAA14/SOLITARYROOT (SLR). Although ARES and IAA14 are co-regulated during development, the knockdown and knockout of ARES did not affect IAA14 expression. However, in response to exogenous auxin, ARES knockdown impairs the induction of its other neighboring gene encoding the transcription factor NF-YB3. Furthermore, knockdown/out of ARES results in a root developmental phenotype in control conditions. Accordingly, a transcriptomic analysis revealed that a subset of ARF7-dependent genes is deregulated. Altogether, our results hint at the lncRNA ARES as a novel regulator of the auxin response governing lateral root development, likely by modulating gene expression in trans.
Collapse
Affiliation(s)
- Thomas Roulé
- Institute of Plant Sciences Paris Saclay IPS2, CNRS, INRA, Université Evry, Université Paris-Saclay, Gif-sur-Yvette, France
- Institute of Plant Sciences Paris-Saclay IPS2, Université de Paris, Gif-sur-Yvette, France
| | - María Florencia Legascue
- Instituto de Agrobiotecnología del Litoral, CONICET, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Andana Barrios
- Institute of Plant Sciences Paris Saclay IPS2, CNRS, INRA, Université Evry, Université Paris-Saclay, Gif-sur-Yvette, France
- Institute of Plant Sciences Paris-Saclay IPS2, Université de Paris, Gif-sur-Yvette, France
- Instituto de Agrobiotecnología del Litoral, CONICET, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Nicolás Gaggion
- Institute for Signals, Systems and Computational Intelligence, sinc(i) CONICET-Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Martin Crespi
- Institute of Plant Sciences Paris Saclay IPS2, CNRS, INRA, Université Evry, Université Paris-Saclay, Gif-sur-Yvette, France
- Institute of Plant Sciences Paris-Saclay IPS2, Université de Paris, Gif-sur-Yvette, France
| | - Federico Ariel
- Instituto de Agrobiotecnología del Litoral, CONICET, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Thomas Blein
- Institute of Plant Sciences Paris Saclay IPS2, CNRS, INRA, Université Evry, Université Paris-Saclay, Gif-sur-Yvette, France
- Institute of Plant Sciences Paris-Saclay IPS2, Université de Paris, Gif-sur-Yvette, France
| |
Collapse
|
41
|
Mao Y, Zhou S, Yang J, Wen J, Wang D, Zhou X, Wu X, He L, Liu M, Wu H, Yang L, Zhao B, Tadege M, Liu Y, Liu C, Chen J. The MIO1-MtKIX8 module regulates the organ size in Medicago truncatula. PHYSIOLOGIA PLANTARUM 2023; 175:e14046. [PMID: 37882293 DOI: 10.1111/ppl.14046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/19/2023] [Accepted: 10/04/2023] [Indexed: 10/27/2023]
Abstract
Plant organ size is an important agronomic trait tightly related to crop yield. However, the molecular mechanisms underlying organ size regulation remain largely unexplored in legumes. We previously characterized a key regulator F-box protein MINI ORGAN1 (MIO1)/SMALL LEAF AND BUSHY1 (SLB1), which controls plant organ size in the model legume Medicago truncatula. In order to further dissect the molecular mechanism, MIO1 was used as the bait to screen its interacting proteins from a yeast library. Subsequently, a KIX protein, designated MtKIX8, was identified from the candidate list. The interaction between MIO1 and MtKIX8 was confirmed further by Y2H, BiFC, split-luciferase complementation and pull-down assays. Phylogenetic analyses indicated that MtKIX8 is highly homologous to Arabidopsis KIX8, which negatively regulates organ size. Moreover, loss-of-function of MtKIX8 led to enlarged leaves and seeds, while ectopic expression of MtKIX8 in Arabidopsis resulted in decreased cotyledon area and seed weight. Quantitative reverse-transcription PCR and in situ hybridization showed that MtKIX8 is expressed in most developing organs. We also found that MtKIX8 serves as a crucial molecular adaptor, facilitating interactions with BIG SEEDS1 (BS1) and MtTOPLESS (MtTPL) proteins in M. truncatula. Overall, our results suggest that the MIO1-MtKIX8 module plays a significant and conserved role in the regulation of plant organ size. This module could be a good target for molecular breeding in legume crops and forages.
Collapse
Affiliation(s)
- Yawen Mao
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Science, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shaoli Zhou
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Science, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jing Yang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Science, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
- School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - Jiangqi Wen
- Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, Oklahoma, USA
| | - Dongfa Wang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Science, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
- School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Xuan Zhou
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Science, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xinyuan Wu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Science, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Liangliang He
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Science, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
| | - Mingli Liu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Science, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
- Southwest Forestry University, Kunming, China
| | - Huan Wu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Science, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
- School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Liling Yang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Science, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
| | - Baolin Zhao
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Science, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
| | - Million Tadege
- Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, Oklahoma, USA
| | - Yu Liu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Science, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
| | - Changning Liu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Science, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
| | - Jianghua Chen
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Science, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
- School of Ecology and Environmental Science, Yunnan University, Kunming, China
| |
Collapse
|
42
|
Fehér A. A Common Molecular Signature Indicates the Pre-Meristematic State of Plant Calli. Int J Mol Sci 2023; 24:13122. [PMID: 37685925 PMCID: PMC10488067 DOI: 10.3390/ijms241713122] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/20/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
In response to different degrees of mechanical injury, certain plant cells re-enter the division cycle to provide cells for tissue replenishment, tissue rejoining, de novo organ formation, and/or wound healing. The intermediate tissue formed by the dividing cells is called a callus. Callus formation can also be induced artificially in vitro by wounding and/or hormone (auxin and cytokinin) treatments. The callus tissue can be maintained in culture, providing starting material for de novo organ or embryo regeneration and thus serving as the basis for many plant biotechnology applications. Due to the biotechnological importance of callus cultures and the scientific interest in the developmental flexibility of somatic plant cells, the initial molecular steps of callus formation have been studied in detail. It was revealed that callus initiation can follow various ways, depending on the organ from which it develops and the inducer, but they converge on a seemingly identical tissue. It is not known, however, if callus is indeed a special tissue with a defined gene expression signature, whether it is a malformed meristem, or a mass of so-called "undifferentiated" cells, as is mostly believed. In this paper, I review the various mechanisms of plant regeneration that may converge on callus initiation. I discuss the role of plant hormones in the detour of callus formation from normal development. Finally, I compare various Arabidopsis gene expression datasets obtained a few days, two weeks, or several years after callus induction and identify 21 genes, including genes of key transcription factors controlling cell division and differentiation in meristematic regions, which were upregulated in all investigated callus samples. I summarize the information available on all 21 genes that point to the pre-meristematic nature of callus tissues underlying their wide regeneration potential.
Collapse
Affiliation(s)
- Attila Fehér
- Institute of Plant Biology, Biological Research Centre, 62 Temesvári Körút, 6726 Szeged, Hungary; or
- Department of Plant Biology, University of Szeged, 52 Közép Fasor, 6726 Szeged, Hungary
| |
Collapse
|
43
|
Šmeringai J, Schrumpfová PP, Pernisová M. Cytokinins - regulators of de novo shoot organogenesis. FRONTIERS IN PLANT SCIENCE 2023; 14:1239133. [PMID: 37662179 PMCID: PMC10471832 DOI: 10.3389/fpls.2023.1239133] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023]
Abstract
Plants, unlike animals, possess a unique developmental plasticity, that allows them to adapt to changing environmental conditions. A fundamental aspect of this plasticity is their ability to undergo postembryonic de novo organogenesis. This requires the presence of regulators that trigger and mediate specific spatiotemporal changes in developmental programs. The phytohormone cytokinin has been known as a principal regulator of plant development for more than six decades. In de novo shoot organogenesis and in vitro shoot regeneration, cytokinins are the prime candidates for the signal that determines shoot identity. Both processes of de novo shoot apical meristem development are accompanied by changes in gene expression, cell fate reprogramming, and the switching-on of the shoot-specific homeodomain regulator, WUSCHEL. Current understanding about the role of cytokinins in the shoot regeneration will be discussed.
Collapse
Affiliation(s)
- Ján Šmeringai
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czechia
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Brno, Czechia
| | - Petra Procházková Schrumpfová
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czechia
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Brno, Czechia
| | - Markéta Pernisová
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czechia
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Brno, Czechia
| |
Collapse
|
44
|
Djemal R, Bradai M, Amor F, Hanin M, Ebel C. Wheat type one protein phosphatase promotes salt and osmotic stress tolerance in arabidopsis via auxin-mediated remodelling of the root system. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107832. [PMID: 37327648 DOI: 10.1016/j.plaphy.2023.107832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/31/2023] [Accepted: 06/09/2023] [Indexed: 06/18/2023]
Abstract
The control of optimal root growth and plant stress responses depends largely on a variety of phytohormones among which auxin and brassinosteroids (BRs) are the most influential. We have previously reported that the durum wheat type 1 protein phosphatase TdPP1 participates in the control of root growth by modulating BR signaling. In this study, we pursue our understanding of how TdPP1 fulfills this regulatory function on root growth by evaluating the physiological and molecular responses of Arabidopsis TdPP1 over-expressing lines to abiotic stresses. Our results showed that when exposed to 300 mM Mannitol or 100 mM NaCl, the seedlings of TdPP1 over-expressors exhibit modified root architecture with higher lateral root density, and longer root hairs concomitant with a lower inhibition of the primary root growth. These lines also exhibit faster gravitropic response and a decrease in primary root growth inhibition when exposed to high concentrations of exogenous IAA. On another hand, a cross between TdPP1 overexpressors and DR5:GUS marker line was performed to monitor auxin accumulation in roots. Remarkably, the TdPP1 overexpression resulted in an enhanced auxin gradient under salt stress with a higher accumulation in primary and lateral root tips. Moreover, TdPP1 transgenics exhibit a significant induction of a subset of auxin-responsive genes under salt stress conditions. Therefore, our results reveal a role of PP1 in enhancing auxin signaling to help shape greater root plasticity thus improving plant stress resilience.
Collapse
Affiliation(s)
- Rania Djemal
- Plant Physiology and Functional Genomics Research Unit, Higher Institute of Biotechnology, University of Sfax, BP "1175", 3038, Sfax, Tunisia
| | - Mariem Bradai
- Plant Physiology and Functional Genomics Research Unit, Higher Institute of Biotechnology, University of Sfax, BP "1175", 3038, Sfax, Tunisia
| | - Fatma Amor
- Plant Physiology and Functional Genomics Research Unit, Higher Institute of Biotechnology, University of Sfax, BP "1175", 3038, Sfax, Tunisia
| | - Moez Hanin
- Plant Physiology and Functional Genomics Research Unit, Higher Institute of Biotechnology, University of Sfax, BP "1175", 3038, Sfax, Tunisia
| | - Chantal Ebel
- Plant Physiology and Functional Genomics Research Unit, Higher Institute of Biotechnology, University of Sfax, BP "1175", 3038, Sfax, Tunisia.
| |
Collapse
|
45
|
Zhao P, Zhang J, Chen S, Zhang Z, Wan G, Mao J, Wang Z, Tan S, Xiang C. ERF1 inhibits lateral root emergence by promoting local auxin accumulation and repressing ARF7 expression. Cell Rep 2023; 42:112565. [PMID: 37224012 DOI: 10.1016/j.celrep.2023.112565] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 02/28/2023] [Accepted: 05/09/2023] [Indexed: 05/26/2023] Open
Abstract
Lateral roots (LRs) are crucial for plants to sense environmental signals in addition to water and nutrient absorption. Auxin is key for LR formation, but the underlying mechanisms are not fully understood. Here, we report that Arabidopsis ERF1 inhibits LR emergence by promoting local auxin accumulation with altered distribution and regulating auxin signaling. Loss of ERF1 increases LR density compared with the wild type, whereas ERF1 overexpression causes the opposite phenotype. ERF1 enhances auxin transport by upregulating PIN1 and AUX1, resulting in excessive auxin accumulation in the endodermal, cortical, and epidermal cells surrounding LR primordia. Furthermore, ERF1 represses ARF7 transcription, thereby downregulating the expression of cell-wall remodeling genes that facilitate LR emergence. Together, our study reveals that ERF1 integrates environmental signals to promote local auxin accumulation with altered distribution and repress ARF7, consequently inhibiting LR emergence in adaptation to fluctuating environments.
Collapse
Affiliation(s)
- Pingxia Zhao
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Interdisciplinary Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province 230027, China.
| | - Jing Zhang
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Interdisciplinary Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province 230027, China
| | - Siyan Chen
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Interdisciplinary Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province 230027, China
| | - Zisheng Zhang
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Interdisciplinary Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province 230027, China
| | - Guangyu Wan
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Interdisciplinary Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province 230027, China
| | - Jieli Mao
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Interdisciplinary Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province 230027, China
| | - Zhen Wang
- College of Life Sciences, Anhui Agricultural University, Hefei, Anhui Province 230036, China
| | - Shutang Tan
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Interdisciplinary Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province 230027, China
| | - Chengbin Xiang
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Interdisciplinary Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province 230027, China.
| |
Collapse
|
46
|
Cummins AJ, Siler CJ, Olson JM, Kaur A, Hamdani AK, Olson LK, Dilkes BP, Sieburth LE. A cryptic natural variant allele of BYPASS2 suppresses the bypass1 mutant phenotype. PLANT PHYSIOLOGY 2023; 192:1016-1027. [PMID: 36905371 PMCID: PMC10231379 DOI: 10.1093/plphys/kiad124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 06/01/2023]
Abstract
The Arabidopsis (Arabidopsis thaliana) BYPASS1 (BPS1) gene encodes a protein with no functionally characterized domains, and loss-of-function mutants (e.g. bps1-2 in Col-0) present a severe growth arrest phenotype that is evoked by a root-derived graft-transmissible small molecule that we call dalekin. The root-to-shoot nature of dalekin signaling suggests it could be an endogenous signaling molecule. Here, we report a natural variant screen that allowed us to identify enhancers and suppressors of the bps1-2 mutant phenotype (in Col-0). We identified a strong semi-dominant suppressor in the Apost-1 accession that largely restored shoot development in bps1 and yet continued to overproduce dalekin. Using bulked segregant analysis and allele-specific transgenic complementation, we showed that the suppressor is the Apost-1 allele of a BPS1 paralog, BYPASS2 (BPS2). BPS2 is one of four members of the BPS gene family in Arabidopsis, and phylogenetic analysis demonstrated that the BPS family is conserved in land plants and the four Arabidopsis paralogs are retained duplicates from whole genome duplications. The strong conservation of BPS1 and paralogous proteins throughout land plants, and the similar functions of paralogs in Arabidopsis, suggests that dalekin signaling might be retained across land plants.
Collapse
Affiliation(s)
- Alexander J Cummins
- School of Biological Sciences, University of Utah, Salt Lake City, Utah 84112, USA
| | - C J Siler
- School of Biological Sciences, University of Utah, Salt Lake City, Utah 84112, USA
| | - Jacob M Olson
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907, USA
| | - Amanpreet Kaur
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907, USA
| | - Adam K Hamdani
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907, USA
| | - L Kate Olson
- School of Biological Sciences, University of Utah, Salt Lake City, Utah 84112, USA
| | - Brian P Dilkes
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907, USA
| | - Leslie E Sieburth
- School of Biological Sciences, University of Utah, Salt Lake City, Utah 84112, USA
| |
Collapse
|
47
|
Świeżawska-Boniecka B, Szmidt-Jaworska A. Phytohormones and cyclic nucleotides - Long-awaited couples? JOURNAL OF PLANT PHYSIOLOGY 2023; 286:154005. [PMID: 37186984 DOI: 10.1016/j.jplph.2023.154005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/09/2023] [Indexed: 05/17/2023]
Affiliation(s)
- Brygida Świeżawska-Boniecka
- Nicolaus Copernicus University, Faculty of Biological and Veterinary Sciences, Department of Plant Physiology and Biotechnology, Lwowska St. 1, PL 87-100, Torun, Poland.
| | - Adriana Szmidt-Jaworska
- Nicolaus Copernicus University, Faculty of Biological and Veterinary Sciences, Department of Plant Physiology and Biotechnology, Lwowska St. 1, PL 87-100, Torun, Poland.
| |
Collapse
|
48
|
Ferreira SS, Anderson CE, Antunes MS. A logical way to reprogram plants. Biochem Biophys Res Commun 2023; 654:80-86. [PMID: 36898227 DOI: 10.1016/j.bbrc.2023.02.080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023]
Abstract
Living cells constantly monitor their external and internal environments for changing conditions, stresses or developmental cues. Networks of genetically encoded components sense and process these signals following pre-defined rules in such a way that specific combinations of the presence or absence of certain signals activate suitable responses. Many biological signal integration mechanisms approximate Boolean logic operations, whereby presence or absence of signals are computed as variables with values described as either true or false, respectively. Boolean logic gates are commonly used in algebra and in computer sciences, and have long been recognized as useful information processing devices in electronic circuits. In these circuits, logic gates integrate multiple input values and produce an output signal according to pre-defined Boolean logic operations. Recent implementation of these logic operations using genetic components to process information in living cells has allowed genetic circuits to enable novel traits with decision-making capabilities. Although several literature reports describe the design and use of these logic gates to introduce new functions in bacterial, yeast and mammalian cells, similar approaches in plants remain scarce, likely due to challenges posed by the complexity of plants and the lack of some technological advances, e.g., species-independent genetic transformation. In this mini review, we have surveyed recent reports describing synthetic genetic Boolean logic operators in plants and the different gate architectures used. We also briefly discuss the potential of deploying these genetic devices in plants to bring to fruition a new generation of resilient crops and improved biomanufacturing platforms.
Collapse
Affiliation(s)
- Savio S Ferreira
- Department of Biological Sciences, University of North Texas, Denton, TX, 76203, USA; BioDiscovery Institute, University of North Texas, Denton, TX, 76203, USA.
| | - Charles E Anderson
- Department of Biological Sciences, University of North Texas, Denton, TX, 76203, USA; BioDiscovery Institute, University of North Texas, Denton, TX, 76203, USA.
| | - Mauricio S Antunes
- Department of Biological Sciences, University of North Texas, Denton, TX, 76203, USA; BioDiscovery Institute, University of North Texas, Denton, TX, 76203, USA.
| |
Collapse
|
49
|
Jourquin J, Fernandez AI, Wang Q, Xu K, Chen J, Šimura J, Ljung K, Vanneste S, Beeckman T. GOLVEN peptides regulate lateral root spacing as part of a negative feedback loop on the establishment of auxin maxima. JOURNAL OF EXPERIMENTAL BOTANY 2023:erad123. [PMID: 37004244 DOI: 10.1093/jxb/erad123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Indexed: 06/19/2023]
Abstract
Lateral root initiation requires the accumulation of auxin in lateral root founder cells, yielding a local auxin maximum. The positioning of auxin maxima along the primary root determines the density and spacing of lateral roots. The GOLVEN6 (GLV6) and GLV10 signaling peptides and their receptors have been established as regulators of lateral root spacing via their inhibitory effect on lateral root initiation in Arabidopsis. However, it remained unclear how these GLV peptides interfere with auxin signaling or homeostasis. Here, we show that GLV6/10 signaling regulates the expression of a subset of auxin response genes, downstream of the canonical auxin signaling pathway, while simultaneously inhibiting the establishment of auxin maxima within xylem-pole pericycle cells that neighbor lateral root initiation sites. We present genetic evidence that this inhibitory effect relies on the activity of the PIN3 and PIN7 auxin export proteins. Furthermore, GLV6/10 peptide signaling was found to enhance PIN7 abundance in the plasma membranes of xylem-pole pericycle cells, which likely stimulates auxin efflux from these cells. Based on these findings, we propose a model in which the GLV6/10 signaling pathway serves as a negative feedback mechanism that contributes to the robust patterning of auxin maxima along the primary root.
Collapse
Affiliation(s)
- Joris Jourquin
- Department of Plant Biotechnology and Bioinformatics, Faculty of Sciences, Ghent University, Ghent 9052, Belgium
- Center for Plant Systems Biology, VIB-UGent, Ghent 9052, Belgium
| | - Ana Ibis Fernandez
- Department of Plant Biotechnology and Bioinformatics, Faculty of Sciences, Ghent University, Ghent 9052, Belgium
- Center for Plant Systems Biology, VIB-UGent, Ghent 9052, Belgium
| | - Qing Wang
- Department of Plant Biotechnology and Bioinformatics, Faculty of Sciences, Ghent University, Ghent 9052, Belgium
- Center for Plant Systems Biology, VIB-UGent, Ghent 9052, Belgium
| | - Ke Xu
- Department of Plant Biotechnology and Bioinformatics, Faculty of Sciences, Ghent University, Ghent 9052, Belgium
- Center for Plant Systems Biology, VIB-UGent, Ghent 9052, Belgium
| | - Jian Chen
- Department of Plant Biotechnology and Bioinformatics, Faculty of Sciences, Ghent University, Ghent 9052, Belgium
- Center for Plant Systems Biology, VIB-UGent, Ghent 9052, Belgium
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent 9000, Belgium
| | - Jan Šimura
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, 90183 Umeå, Sweden
| | - Karin Ljung
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, 90183 Umeå, Sweden
| | - Steffen Vanneste
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent 9000, Belgium
| | - Tom Beeckman
- Department of Plant Biotechnology and Bioinformatics, Faculty of Sciences, Ghent University, Ghent 9052, Belgium
- Center for Plant Systems Biology, VIB-UGent, Ghent 9052, Belgium
| |
Collapse
|
50
|
Nakagami S, Aoyama T, Sato Y, Kajiwara T, Ishida T, Sawa S. CLE3 and its homologs share overlapping functions in the modulation of lateral root formation through CLV1 and BAM1 in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 113:1176-1191. [PMID: 36628476 DOI: 10.1111/tpj.16103] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 12/23/2022] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
Lateral roots are important for a wide range of processes, including uptake of water and nutrients. The CLAVATA3 (CLV3)/EMBRYO SURROUNDING REGION-RELATED (CLE) 1 ~ 7 peptide family and their cognate receptor CLV1 have been shown to negatively regulate lateral root formation under low-nitrate conditions. However, little is known about how CLE signaling regulates lateral root formation. A persistent obstacle in CLE peptide research is their functional redundancies, which makes functional analyses difficult. To address this problem, we generate the cle1 ~ 7 septuple mutant (cle1 ~ 7-cr1, cr stands for mutant allele generated with CRISPR/Cas9). cle1 ~ 7-cr1 exhibits longer lateral roots under normal conditions. Specifically, in cle1 ~ 7-cr1, the lateral root density is increased, and lateral root primordia initiation is found to be accelerated. Further analysis shows that cle3 single mutant exhibits slightly longer lateral roots. On the other hand, plants that overexpress CLE2 and CLE3 exhibit decreased lateral root lengths. To explore cognate receptor(s) of CLE2 and CLE3, we analyze lateral root lengths in clv1 barely any meristem 1(bam1) double mutant. Mutating both the CLV1 and BAM1 causes longer lateral roots, but not in each single mutant. In addition, genetic analysis reveals that CLV1 and BAM1 are epistatic to CLE2 and CLE3. Furthermore, gene expression analysis shows that the LATERAL ORGAN BOUNDARIES DOMAIN/ASYMMETRIC LEAVES2-LIKE (LBD/ASL) genes, which promote lateral root formation, are upregulated in cle1 ~ 7-cr1 and clv1 bam1. We therefore propose that CLE2 and CLE3 peptides are perceived by CLV1 and BAM1 to mediate lateral root formation through LBDs regulation.
Collapse
Affiliation(s)
- Satoru Nakagami
- Graduate School of Science and Technology, Kumamoto University, Kumamoto, 860-8555, Japan
| | - Tsuyoshi Aoyama
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, 464-8601, Japan
| | - Yoshikatsu Sato
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, 464-8601, Japan
| | - Taiki Kajiwara
- Graduate School of Science and Technology, Kumamoto University, Kumamoto, 860-8555, Japan
| | - Takashi Ishida
- Graduate School of Science and Technology, Kumamoto University, Kumamoto, 860-8555, Japan
- International Research Organization for Advanced Science and Technology (IROAST), Kumamoto University, Kumamoto, 860-8555, Japan
| | - Shinichiro Sawa
- Graduate School of Science and Technology, Kumamoto University, Kumamoto, 860-8555, Japan
- International Research Organization for Advanced Science and Technology (IROAST), Kumamoto University, Kumamoto, 860-8555, Japan
- International Research Center for Agriculture and Environmental Biology, Kumamoto University, Kumamoto, 860-8555, Japan
| |
Collapse
|