1
|
Pierpont TM, Elmore J, Redko A, Anannya O, Imbiakha B, O’Hare K, Villanueva A, Anronikov S, Bondah N, Chang S, Sahler J, August A. Effects of Perfluorohexane Sulfonate Exposure on Immune Cell Populations in Naive Mice. Immunohorizons 2024; 8:538-549. [PMID: 39109956 PMCID: PMC11374752 DOI: 10.4049/immunohorizons.2300049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 07/10/2024] [Indexed: 09/08/2024] Open
Abstract
Perfluorohexane sulfonate (PFHxS) is a member of the per- and polyfluoroalkyls (PFAS) superfamily of molecules, characterized by their fluorinated carbon chains and use in a wide range of industrial applications. PFHxS and perfluorooctane sulfonate are able to accumulate in the environment and in humans with the approximated serum elimination half-life in the range of several years. More recently, some PFAS compounds have also been suggested as potential immunosuppressants. In this study, we analyze immune cell numbers in mice following 28-d repeated oral exposure to potassium PFHxS at 12, 120, 1,200, and 12,000 ng/kg/d, with resulting serum levels ranging up to ∼1,600 ng/ml, approximating ranges found in the general population and at higher levels in PFAS workers. The immunosuppressant cyclophosphamide was analyzed as a positive control. B cells, T cells, and granulocytes from the bone marrow, liver, spleen, lymph nodes, and thymus were evaluated. We found that at these exposures, there was no effect of PFHxS on major T or B cell populations, macrophages, dendritic cells, basophils, mast cells, eosinophils, neutrophils, or circulating Ab isotypes. By contrast, mice exposed to cyclophosphamide exhibited depletion of several granulocyte and T and B cell populations in the thymus, bone marrow, and spleen, as well as reductions in IgG1, IgG2b, IgG2c, IgG3, IgE, and IgM. These data indicate that exposures of up to 12,000 ng/kg of PFHxS for 28 d do not affect immune cell numbers in naive mice, which provides valuable information for assessing the risks and health influences of exposures to this compound.
Collapse
Affiliation(s)
| | - Jessica Elmore
- Department of Microbiology & Immunology, Cornell University, Ithaca, NY
| | - Amie Redko
- Department of Microbiology & Immunology, Cornell University, Ithaca, NY
| | - Orchi Anannya
- Department of Microbiology & Immunology, Cornell University, Ithaca, NY
| | - Brian Imbiakha
- Department of Microbiology & Immunology, Cornell University, Ithaca, NY
| | - Katelyn O’Hare
- Department of Microbiology & Immunology, Cornell University, Ithaca, NY
| | - Alanis Villanueva
- Department of Microbiology & Immunology, Cornell University, Ithaca, NY
| | - Sasha Anronikov
- Department of Microbiology & Immunology, Cornell University, Ithaca, NY
| | - Narda Bondah
- Department of Microbiology & Immunology, Cornell University, Ithaca, NY
| | | | - Julie Sahler
- Department of Microbiology & Immunology, Cornell University, Ithaca, NY
| | - Avery August
- Department of Microbiology & Immunology, Cornell University, Ithaca, NY
| |
Collapse
|
2
|
Neisiani AK, Mousavi MK, Soltani M, Aliomrani M. Perfluorooctanoic acid exposure and its neurodegenerative consequences in C57BL6/J mice. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:2357-2367. [PMID: 36700988 DOI: 10.1007/s00210-023-02387-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 01/03/2023] [Indexed: 01/27/2023]
Abstract
Perfluorooctanoic acid (PFOA) is a member of Per- and polyfluoroalkyl substances (PFASs), an industrial pollutant that has been produced for decades and widely used in various industries. Accumulation of this compound in the environment and body of organisms led to increased concerns about this compound. The toxic effects of PFOA on the nervous system are unknown yet. We aimed to assess the myelination and neurogenesis in brain tissue. In this study, PFOA at doses of 1, 5, 10, and 20 mg/kg were injected intraperitoneally into C57BL/6 J mice for 14 days, and the myelin content, CD4 + and CD8 + cell infiltration to brain regions were evaluated. Also, bromodeoxyuridine (BrdU) labeling was performed to compare neurogenesis among the groups. Luxol Fast Blue (LFB) staining revealed a significant decrease in myelin content in both sex at high concentrations (p < 0.001). The BrdU incorporation changes were observed in both sexes especially females which was highly related to the dose of PFOA and region of the brain. The infiltration rates of CD4 + and CD8 + cells to the brain were shown to be decreased; meanwhile the lymphocyte count was not significantly changed among groups over time and vice versa for the monocyte and neutrophils. Our results showed that PFOA had a negative impact on neurogenesis and the myelination process through the specific region of the brain depending on the dose and sex. Also, PFOA could disturb the number of CD4 + and CD8 + cells infiltrating the brain, which plays a crucial role in neurogenesis, leading to toxicity and neurological abnormalities. It seems that more research is needed to determine the exact mechanisms of PFOA neurotoxicity and its long-term behavioral consequences.
Collapse
Affiliation(s)
- Azadeh Khosravi Neisiani
- School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences and Health Services, Isfahan, Iran
| | - Mahboobeh Kafi Mousavi
- School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences and Health Services, Isfahan, Iran
| | - Masoud Soltani
- School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences and Health Services, Isfahan, Iran
| | - Mehdi Aliomrani
- Department of Toxicology and Pharmacology, Isfahan Pharmaceutical Science Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
3
|
Shi H, Zhao XH, Peng Q, Zhou XL, Liu SS, Sun CC, Cao QY, Zhu SP, Sun SY. Green tea polyphenols alleviate di-(2-ethylhexyl) phthalate-induced liver injury in mice. World J Gastroenterol 2023; 29:5054-5074. [PMID: 37753369 PMCID: PMC10518738 DOI: 10.3748/wjg.v29.i34.5054] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/19/2023] [Accepted: 08/21/2023] [Indexed: 09/08/2023] Open
Abstract
BACKGROUND Di (2-ethylhexyl) phthalate (DEHP) is a common plasticizer known to cause liver injury. Green tea is reported to exert therapeutic effects on heavy metal exposure-induced organ damage. However, limited studies have examined the therapeutic effects of green tea polyphenols (GTPs) on DEHP-induced liver damage. AIM To evaluate the molecular mechanism underlying the therapeutic effects of GTPs on DEHP-induced liver damage. METHODS C57BL/6J mice were divided into the following five groups: Control, model [DEHP (1500 mg/kg bodyweight)], treatment [DEHP (1500 mg/kg bodyweight) + GTP (70 mg/kg bodyweight), oil, and GTP (70 mg/kg bodyweight)] groups. After 8 wk, the liver function, blood lipid profile, and liver histopathology were examined. Differentially expressed micro RNAs (miRNAs) and mRNAs in the liver tissues were examined using high-throughput sequencing. Additionally, functional enrichment analysis and immune infiltration prediction were performed. The miRNA-mRNA regulatory axis was elucidated using the starBase database. Protein expression was evaluated using immunohistochemistry. RESULTS GTPs alleviated DHEP-induced liver dysfunction, blood lipid dysregulation, fatty liver disease, liver fibrosis, and mitochondrial and endoplasmic reticulum lesions in mice. The infiltration of macrophages, mast cells, and natural killer cells varied between the model and treatment groups. mmu-miR-141-3p (a differentially expressed miRNA), Zcchc24 (a differentially expressed mRNA), and Zcchc24 (a differentially expressed protein) constituted the miRNA-mRNA-protein regulatory axis involved in mediating the therapeutic effects of GTPs on DEHP-induced liver damage in mice. CONCLUSION This study demonstrated that GTPs mitigate DEHP-induced liver dysfunction, blood lipid dysregulation, fatty liver disease, and partial liver fibrosis, and regulate immune cell infiltration. Additionally, an important miRNA-mRNA-protein molecular regulatory axis involved in mediating the therapeutic effects of GTPs on DEHP-induced liver damage was elucidated.
Collapse
Affiliation(s)
- Heng Shi
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Jinan University, Guangzhou 522000, Guangdong Province, China
- Department of Gastroenterology, The Central Hospital of Shaoyang, Shaoyang 422000, Hunan Province, China
| | - Xin-Hai Zhao
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Jinan University, Guangzhou 522000, Guangdong Province, China
| | - Qin Peng
- Department of Gastroenterology, The Central Hospital of Shaoyang, Shaoyang 422000, Hunan Province, China
| | - Xian-Ling Zhou
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Jinan University, Guangzhou 522000, Guangdong Province, China
| | - Si-Si Liu
- Department of Pathology, The Central Hospital of Shaoyang, Shaoyang 422000, Hunan Province, China
| | - Chuan-Chuan Sun
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Jinan University, Guangzhou 522000, Guangdong Province, China
| | - Qiu-Yu Cao
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Jinan University, Guangzhou 522000, Guangdong Province, China
| | - Shi-Ping Zhu
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Jinan University, Guangzhou 522000, Guangdong Province, China
| | - Sheng-Yun Sun
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Jinan University, Guangzhou 522000, Guangdong Province, China
| |
Collapse
|
4
|
Qu W, Yan Y, Gerrish K, Scappini E, Tucker CJ, Dixon D, Merrick BA. Chronic PFOA exposure in vitro causes acquisition of multiple tumor cell characteristics in rat liver cells. Toxicol In Vitro 2023; 89:105577. [PMID: 36849026 PMCID: PMC10427995 DOI: 10.1016/j.tiv.2023.105577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 02/09/2023] [Accepted: 02/18/2023] [Indexed: 02/27/2023]
Abstract
Perfluorooctanoic acid (PFOA) is tumorigenic in rats and mice and potentially tumorigenic in humans. Here, we studied long-term PFOA exposure with an in vitro transformation model using the rat liver epithelial cell, TRL 1215. Cells were cultured in 10 μM (T10), 50 μM (T50) and 100 μM (T100) PFOA for 38 weeks and compared to passage-matched control cells. T100 cells showed morphological changes, loss of cell contact inhibition, formation of multinucleated giant and spindle-shaped cells. T10, T50, and T100 cells showed increased LC50 values 20%, 29% to 35% above control with acute PFOA treatment, indicating a resistance to PFOA toxicity. PFOA-treated cells showed increases in Matrix metalloproteinase-9 secretion, cell migration, and developed more and larger colonies in soft agar. Microarray data showed Myc pathway activation at T50 and T100, associating Myc upregulation with PFOA-induced morphological transformation. Western blot confirmed that PFOA produced significant increases in c-MYC protein expression in a time- and concentration-related manner. Tumor invasion indicators MMP-2 and MMP-9, cell cycle regulator cyclin D1, and oxidative stress protein GST were all significantly overexpressed in T100 cells. Taken together, chronic in vitro PFOA exposure produced multiple cell characteristics of malignant progression and differential gene expression changes suggestive of rat liver cell transformation.
Collapse
Affiliation(s)
- Wei Qu
- Mechanistic Toxicology Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences (NIEHS), 111 TW Alexander Drive, Research Triangle Park, NC 27709, USA.
| | - Yitang Yan
- Mechanistic Toxicology Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences (NIEHS), 111 TW Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Kevin Gerrish
- Molecular Genomics Core Laboratory, NIEHS, 111 TW Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Erica Scappini
- Fluorescence Microscopy and Imaging Center, Signal Transduction Laboratory, NIEHS, 111 TW Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Charles J Tucker
- Fluorescence Microscopy and Imaging Center, Signal Transduction Laboratory, NIEHS, 111 TW Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Darlene Dixon
- Mechanistic Toxicology Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences (NIEHS), 111 TW Alexander Drive, Research Triangle Park, NC 27709, USA
| | - B Alex Merrick
- Mechanistic Toxicology Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences (NIEHS), 111 TW Alexander Drive, Research Triangle Park, NC 27709, USA
| |
Collapse
|
5
|
Wagner N, Wagner KD. Peroxisome Proliferator-Activated Receptors and the Hallmarks of Cancer. Cells 2022; 11:cells11152432. [PMID: 35954274 PMCID: PMC9368267 DOI: 10.3390/cells11152432] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 12/11/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) function as nuclear transcription factors upon the binding of physiological or pharmacological ligands and heterodimerization with retinoic X receptors. Physiological ligands include fatty acids and fatty-acid-derived compounds with low specificity for the different PPAR subtypes (alpha, beta/delta, and gamma). For each of the PPAR subtypes, specific pharmacological agonists and antagonists, as well as pan-agonists, are available. In agreement with their natural ligands, PPARs are mainly focused on as targets for the treatment of metabolic syndrome and its associated complications. Nevertheless, many publications are available that implicate PPARs in malignancies. In several instances, they are controversial for very similar models. Thus, to better predict the potential use of PPAR modulators for personalized medicine in therapies against malignancies, it seems necessary and timely to review the three PPARs in relation to the didactic concept of cancer hallmark capabilities. We previously described the functions of PPAR beta/delta with respect to the cancer hallmarks and reviewed the implications of all PPARs in angiogenesis. Thus, the current review updates our knowledge on PPAR beta and the hallmarks of cancer and extends the concept to PPAR alpha and PPAR gamma.
Collapse
Affiliation(s)
- Nicole Wagner
- Correspondence: (N.W.); (K.-D.W.); Tel.: +33-489-153-713 (K.-D.W.)
| | | |
Collapse
|
6
|
Lee HY, You DJ, Taylor-Just AJ, Linder KE, Atkins HM, Ralph LM, De la Cruz G, Bonner JC. Pulmonary exposure of mice to ammonium perfluoro(2-methyl-3-oxahexanoate) (GenX) suppresses the innate immune response to carbon black nanoparticles and stimulates lung cell proliferation. Inhal Toxicol 2022; 34:244-259. [PMID: 35704474 DOI: 10.1080/08958378.2022.2086651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Per- and polyfluoroalkyl substances (PFAS) have been associated with respiratory diseases in humans, yet the mechanisms through which PFAS cause susceptibility to inhaled agents is unknown. Herein, we investigated the effects of ammonium perfluoro(2-methyl-3-oxahexanoate) (GenX), an emerging PFAS, on the pulmonary immune response of mice to carbon black nanoparticles (CBNP). We hypothesized that pulmonary exposure to GenX would increase susceptibility to CBNP through suppression of innate immunity. METHODS Male C57BL/6 mice were exposed to vehicle, 4 mg/kg CBNP, 10 mg/kg GenX, or CBNP and GenX by oropharyngeal aspiration. Bronchoalveolar lavage fluid (BALF) was collected at 1 and 14 days postexposure for cytokines and total protein. Lung tissue was harvested for histopathology, immunohistochemistry (Ki67 and phosphorylated (p)-STAT3), western blotting (p-STAT3 and p-NF-κB), and qRT-PCR for cytokine mRNAs. RESULTS CBNP increased CXCL-1 and neutrophils in BALF at both time points evaluated. However, GenX/CBNP co-exposure reduced CBNP-induced CXCL-1 and neutrophils in BALF. Moreover, CXCL-1, CXCL-2 and IL-1β mRNAs were increased by CBNP in lung tissue but reduced by GenX. Western blotting showed that CBNP induced p-NF-κB in lung tissue, while the GenX/CBNP co-exposed group displayed decreased p-NF-κB. Furthermore, mice exposed to GenX or GenX/CBNP displayed increased numbers of BALF macrophages undergoing mitosis and increased Ki67 immunostaining. This was correlated with increased p-STAT3 by western blotting and immunohistochemistry in lung tissue from mice co-exposed to GenX/CBNP. CONCLUSIONS Pulmonary exposure to GenX suppressed CBNP-induced innate immune response in the lungs of mice yet promoted the proliferation of macrophages and lung epithelial cells.
Collapse
Affiliation(s)
- Ho Young Lee
- Toxicology Program, Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Dorothy J You
- Toxicology Program, Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Alexia J Taylor-Just
- Toxicology Program, Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Keith E Linder
- Department of Population Health and Pathobiology, North Carolina State University, Raleigh, NC, USA
| | - Hannah M Atkins
- Department of Population Health and Pathobiology, North Carolina State University, Raleigh, NC, USA.,Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Lauren M Ralph
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Gabriela De la Cruz
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - James C Bonner
- Toxicology Program, Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
7
|
Woodlief T, Vance S, Hu Q, DeWitt J. Immunotoxicity of Per- and Polyfluoroalkyl Substances: Insights into Short-Chain PFAS Exposure. TOXICS 2021; 9:100. [PMID: 34062743 PMCID: PMC8147192 DOI: 10.3390/toxics9050100] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/13/2021] [Accepted: 04/23/2021] [Indexed: 01/22/2023]
Abstract
Novel per- and polyfluoroalkyl substances (PFAS) were recently identified in drinking water sources throughout North Carolina. These include the perfluoroether acids (PFEAs) perfluoro-2-methoxyacetic acid (PFMOAA), perfluoro-2-methoxypropanoic acid (PFMOPrA), and perfluoro-4-methoxybutanioc acid (PFMOBA). Little toxicological data exist for these PFEAs. Therefore, the present study described signs of toxicity and immunotoxicity following oral exposure. Adult male and female C57BL/6 mice were exposed once/day for 30 days to PFMOAA (0, 0.00025, 0.025, or 2.5 mg/kg), PFMOPrA, or PFMOBA (0, 0.5, 5, or 50 mg/kg). A dose of 7.5 mg/kg of perfluorooctanoic acid (PFOA) was used as a positive control. Terminal body weights, and absolute liver, spleen, or thymus weights did not differ by dose for any compound; exposure to 50 mg/kg of PFMOBA increased relative liver weights in males. Changes in splenic cellularity were observed in males exposed to PFMOPrA and decreased numbers of B and natural killer (NK) cells were observed in males and females exposed to PFMOBA. Exposure did not alter NK cell cytotoxicity or T cell-dependent antibody responses at doses administered. Our results indicate that these "understudied" PFAS have toxicological potential but require additional investigation across endpoints and species, including humans, to understand health effects via drinking water exposure.
Collapse
Affiliation(s)
- Tracey Woodlief
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University, Greenville, NC 27858, USA; (S.V.); (Q.H.); (J.D.)
| | | | | | | |
Collapse
|
8
|
Guo H, Zhang H, Sheng N, Wang J, Chen J, Dai J. Perfluorooctanoic acid (PFOA) exposure induces splenic atrophy via overactivation of macrophages in male mice. JOURNAL OF HAZARDOUS MATERIALS 2021; 407:124862. [PMID: 33360190 DOI: 10.1016/j.jhazmat.2020.124862] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 11/27/2020] [Accepted: 12/12/2020] [Indexed: 06/12/2023]
Abstract
Perfluorooctanoic acid (PFOA), a synthetic and widely used chemical, has aroused wide public concern due to its persistence, bioaccumulation, and potential toxicity. To investigate splenic atrophy induced by PFOA, male mice were exposed to 0, 0.4, 2, or 10 mg/kg/d PFOA for 28 d. Results demonstrated that spleen weight and relative spleen weight (RSW) decreased in the 2 and 10 mg/kg/d PFOA exposure groups. Iron levels in the spleen and serum were also reduced in all PFOA exposure groups. Weighted gene co-expression network analysis (WGCNA) of 7 043 genes highlighted enrichment in cell cycle, autoimmunity, and anemia in the spleen. In addition, changes in the levels of hemoglobin, platelets, bilirubin, and heme oxygenase-1 were consistent with anemia. The ratio of total macrophages to M1 macrophages in the spleen, phagocytic ability of macrophages, and levels of cytokines such as TNF-α, IL-1β, and IL-6 all increased, thus suggesting the occurrence of autoimmune disorder. Therefore, we concluded that overactivation of macrophages may be an important reason for splenic atrophy induced by PFOA exposure.
Collapse
Affiliation(s)
- Hua Guo
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongxia Zhang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Nan Sheng
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jinghua Wang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jiamiao Chen
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jiayin Dai
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
9
|
Brown SR, Flynn RW, Hoverman JT. Perfluoroalkyl Substances Increase Susceptibility of Northern Leopard Frog Tadpoles to Trematode Infection. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:689-694. [PMID: 31995841 DOI: 10.1002/etc.4678] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/23/2019] [Accepted: 01/23/2020] [Indexed: 06/10/2023]
Abstract
Per/polyfluoroalkyl substances (PFAS) are contaminants of emerging concern that can impair immune function, yet few studies have tested whether exposure increases infection risk. Using laboratory experiments, we found that exposure to 10 ppb of perfluorohexanesulfonic acid increased trematode (Echinoparyphium lineage 3) infections in larval northern leopard frogs (Lithobates pipiens). However, there was no effect of perfluorooctanesulfonic acid. Our results demonstrate that PFAS can potentially enhance infection risk in natural systems. Environ Toxicol Chem 2021;40:689-694. © 2020 SETAC.
Collapse
Affiliation(s)
- Sophia R Brown
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, Indiana, USA
| | - R Wesley Flynn
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, Indiana, USA
| | - Jason T Hoverman
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
10
|
Lai TT, Eken Y, Wilson AK. Binding of Per- and Polyfluoroalkyl Substances to the Human Pregnane X Receptor. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:15986-15995. [PMID: 33228354 DOI: 10.1021/acs.est.0c04651] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) are a class of environmentally persistent industrial compounds that disrupt various metabolic pathways. Among the protein receptors to which PFASs bind, the human pregnane X receptor (hPXR) is found to be a host for a variety of long- and short-chain PFASs that lead to its overactivation. Overactivation of hPXR is linked to potential endocrine disruption, oxidative stress, hepatic steatosis, and adverse drug interactions. In this study, molecular dynamics (MD) is used to study the binding between hPXR and a number of PFAS compounds, including alternatives whose activity on hPXR has not been experimentally tested. This is the first-time MD is used to study the interactions between PFASs and hPXR, showing how relative binding free energies of PFASs relate to hPXR agonism. Binding free energy calculations, hydrogen bond analysis, per-residue decomposition calculations, and alanine scanning studies are done to provide further insight. Activities on hPXR for several short-chain and alternative PFAS compounds to long-chain PFASs that have yet to be reported will also be considered. These short-chain and alternative species include perfluorobutane sulfonic acid (PFBS), Gen-X (trade name for 2,3,3,3-tetrafluoro-2-heptafluoropropoxy propanoic acid), ADONA (trade name for 4,8-dioxa-3H-perfluorononanoic acid), and 6:2 fluorotelomer carboxylic acid (6:2 FTCA). The study shows key aspects of PFAS recognition on the hPXR, the link between PFAS binding to hPXR and the hPXR activity change observed upon the PFAS exposure, and the potential effects of alternative PFASs on hPXR activity.
Collapse
Affiliation(s)
- Thanh T Lai
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48864, United States
| | - Yiğitcan Eken
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48864, United States
| | - Angela K Wilson
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48864, United States
| |
Collapse
|
11
|
López-Berenguer G, Bossi R, Eulaers I, Dietz R, Peñalver J, Schulz R, Zubrod J, Sonne C, Martínez-López E. Stranded cetaceans warn of high perfluoroalkyl substance pollution in the western Mediterranean Sea. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115367. [PMID: 32866862 DOI: 10.1016/j.envpol.2020.115367] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/16/2020] [Accepted: 08/02/2020] [Indexed: 06/11/2023]
Abstract
Perfluoroalkyl substances (PFASs) are a class of organohalogenated compounds of environmental concern due to similar characteristics as the well-studied legacy persistent organic pollutants (POPs) that typically show environmental persistence, biomagnification and toxicity. Nevertheless, PFAS are still poorly regulated internationally and in many aspects poorly understood. Here, we studied liver and muscle concentrations in five cetacean species stranded at the southeastern coast of Spain during 2009-2018. Twelve of the fifteen targeted compounds were detected in >50% of the liver samples. Hepatic concentrations were significantly higher than those in muscle reflecting the particular toxicokinetics of these compounds. Bottlenose dolphins Tursiops truncatus showed the highest hepatic ΣPFAS (n = 5; 796.8 ± 709.0 ng g-1 ww) concentrations, followed by striped dolphin Stenella coeruleoalba (n = 29; 259.5 ± 136.2 ng g-1 ww), sperm whale Physeter macrocephalus (n = 1; 252.8 ng g-1 ww), short-beaked common dolphin Delphinus delphis (n = 2; 240.3 ± 218.6 ng g-1 ww) and Risso's dolphin Grampus griseus (n = 1; 78.7 ng g-1 ww). These interspecies differences could be partially explained by habitat preferences, although they could generally not be related to trophic position or food chain proxied by stable N (δ15N) and C (δ13C) isotope values, respectively. PFAS profiles in all species showed a similar pattern of concentration prevalence in the order PFOS>PFOSA>PFNA≈PFFUnA>PFDA. The higher number of samples available for striped dolphin allowed for evaluating their PFAS burden and profile in relation to the stranding year, stable isotope values, and biological variables including sex and length. However, we could only find links between δ15N and PFAS burdens in muscle tissue, and between stranding year and PFAS profile composition. Despite reductions in the manufacturing industry, these compounds still appear in high concentrations compared to more than two decades ago in the Mediterranean Sea and PFOS remains the dominating compound.
Collapse
Affiliation(s)
| | - R Bossi
- Department of Environmental Science, Aarhus University, Denmark
| | - I Eulaers
- Section of Marine Mammals, Department of Bioscience, Aarhus University, Denmark
| | - R Dietz
- Section of Marine Mammals, Department of Bioscience, Aarhus University, Denmark
| | - J Peñalver
- Area of Toxicology, Veterinary Faculty, University of Murcia, Spain; Fishing and Aquaculture Service (CARM), Murcia, Spain
| | - R Schulz
- IES Landau, Institute for Environmental Sciences, University of Koblenz-Landau, Landau, Germany
| | - J Zubrod
- IES Landau, Institute for Environmental Sciences, University of Koblenz-Landau, Landau, Germany
| | - C Sonne
- Section of Marine Mammals, Department of Bioscience, Aarhus University, Denmark
| | - E Martínez-López
- Area of Toxicology, Veterinary Faculty, University of Murcia, Spain; Biomedical Research Institute of Murcia (IMIB-Arrixaca), Spain.
| |
Collapse
|
12
|
Giuliani A, Zuccarini M, Cichelli A, Khan H, Reale M. Critical Review on the Presence of Phthalates in Food and Evidence of Their Biological Impact. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E5655. [PMID: 32764471 PMCID: PMC7460375 DOI: 10.3390/ijerph17165655] [Citation(s) in RCA: 172] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/01/2020] [Accepted: 08/03/2020] [Indexed: 12/14/2022]
Abstract
Phthalates are a huge class of chemicals with a wide spectrum of industrial uses, from the manufacture of plastics to food contact applications, children's toys, and medical devices. People and animals can be exposed through different routes (i.e., ingestion, inhalation, dermal, or iatrogenic exposure), as these compounds can be easily released from plastics to water, food, soil, air, making them ubiquitous environmental contaminants. In the last decades, phthalates and their metabolites have proven to be of concern, particularly in products for pregnant women or children. Moreover, many authors reported high concentrations of phthalates in soft drinks, mineral waters, wine, oil, ready-to-eat meals, and other products, as a possible consequence of their accumulation along the food production chain and their accidental release from packaging materials. However, due to their different physical and chemical properties, phthalates do not have the same human and environmental impacts and their association to several human diseases is still under debate. In this review we provide an overview of phthalate toxicity, pointing out the health and legal issues related to their occurrence in several types of food and beverage.
Collapse
Affiliation(s)
- Angela Giuliani
- "G.d'Annunzio" School of Advanced Studies, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Mariachiara Zuccarini
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
- Aging Research Center, Ce.S.I., "G. d'Annunzio" University Foundation, 66100 Chieti, Italy
| | - Angelo Cichelli
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan 23200, Pakistan
| | - Marcella Reale
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
- Interuniversity Center on Interactions between Electromagnetic Fields and Biosystems, National Research Council-Institute for Electromagnetic Detection of The Environment, (ICEMB-CNR-IREA), 80124 Naples, Italy
| |
Collapse
|
13
|
Baralić K, Živančević K, Javorac D, Buha Djordjevic A, Anđelković M, Jorgovanović D, Antonijević Miljaković E, Ćurčić M, Bulat Z, Antonijević B, Đukić-Ćosić D. Multi-strain probiotic ameliorated toxic effects of phthalates and bisphenol A mixture in Wistar rats. Food Chem Toxicol 2020; 143:111540. [PMID: 32645469 DOI: 10.1016/j.fct.2020.111540] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/10/2020] [Accepted: 06/18/2020] [Indexed: 02/08/2023]
Abstract
Phthalates and bisphenol A, to which people are mainly exposed through food, interfere with the body's endocrine system, along with various other toxic effects. Literature data suggest that probiotic cultures might be able to decrease the adverse effects of toxic substances by various mechanisms. The aim of this study was to investigate if treatment with multi-strained probiotic could reduce the toxicity of phthalates and bisphenol A mixture in Wistar rats. Animals were divided into four experimental groups (n = 6): (1) Control (corn oil); (2) P (probiotic (8.78 * 108 CFU/kg/day): Saccharomyces boulardii + Lactobacillus rhamnosus + Lactobacillus planarum LP 6595+ Lactobacillus planarum HEAL9); (3) MIX (50 mg/kg b.w./day DEHP + 50 mg/kg b.w/day DBP + 25 mg/kg b.w./day BPA); (4) MIX + P. Animals were euthanized after 28 days of daily oral gavage treatment; blood and organs were collected for further analysis. Probiotic reduced systemic inflammation and had protective effects on liver, kidneys, spleen, lipid status and serum glucose level. It almost completely annulled the changes in biochemical, hematological and hormonal parameters and mitigated changes in relative liver size, food consumption and organ histology. These results suggest considering multi-strained probiotics as a dietary therapeutic strategy against toxicity of the investigated mixture.
Collapse
Affiliation(s)
- Katarina Baralić
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade, Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia.
| | - Katarina Živančević
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade, Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Dragana Javorac
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade, Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Aleksandra Buha Djordjevic
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade, Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Milena Anđelković
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade, Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Dragica Jorgovanović
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade, Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Evica Antonijević Miljaković
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade, Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Marijana Ćurčić
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade, Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Zorica Bulat
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade, Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Biljana Antonijević
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade, Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Danijela Đukić-Ćosić
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade, Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| |
Collapse
|
14
|
Dutta S, Haggerty DK, Rappolee DA, Ruden DM. Phthalate Exposure and Long-Term Epigenomic Consequences: A Review. Front Genet 2020; 11:405. [PMID: 32435260 PMCID: PMC7218126 DOI: 10.3389/fgene.2020.00405] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 03/30/2020] [Indexed: 12/27/2022] Open
Abstract
Phthalates are esters of phthalic acid which are used in cosmetics and other daily personal care products. They are also used in polyvinyl chloride (PVC) plastics to increase durability and plasticity. Phthalates are not present in plastics by covalent bonds and thus can easily leach into the environment and enter the human body by dermal absorption, ingestion, or inhalation. Several in vitro and in vivo studies suggest that phthalates can act as endocrine disruptors and cause moderate reproductive and developmental toxicities. Furthermore, phthalates can pass through the placental barrier and affect the developing fetus. Thus, phthalates have ubiquitous presence in food and environment with potential adverse health effects in humans. This review focusses on studies conducted in the field of toxicogenomics of phthalates and discusses possible transgenerational and multigenerational effects caused by phthalate exposure during any point of the life-cycle.
Collapse
Affiliation(s)
- Sudipta Dutta
- Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Diana K Haggerty
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, United States
| | - Daniel A Rappolee
- Department of Obstetrics and Gynecology, Reproductive Endocrinology and Infertility, CS Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, United States.,Reproductive Stress, Inc., Grosse Pointe Farms, MI, United States
| | - Douglas M Ruden
- Department of Obstetrics and Gynecology, Reproductive Endocrinology and Infertility, CS Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, United States.,Institutes for Environmental Health Science, Wayne State University School of Medicine, Detroit, MI, United States
| |
Collapse
|
15
|
Toxicology and carcinogenesis studies of perfluorooctanoic acid administered in feed to Sprague Dawley (Hsd:Sprague Dawley SD) rats (revised). NATIONAL TOXICOLOGY PROGRAM TECHNICAL REPORT SERIES 2020:NTP-TR-598. [PMID: 33556048 PMCID: PMC8039881 DOI: 10.22427/ntp-tr-598] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Perfluorooctanoic acid (PFOA) is a perfluorinated alkyl substance (PFAS) with widespread exposure in the environment and human population. Lifetime exposure to this chemical is likely, which includes in utero and postnatal development. Previously conducted chronic carcinogenicity studies of PFOA began exposure after these critical periods of development, so it is unknown whether the carcinogenic response is altered if exposure during gestation and lactation is included. The current PFOA chronic studies were designed to assess the contribution of combined gestational and lactational exposure (herein referred to as perinatal exposure) to the chronic toxicity and carcinogenicity of PFOA. The hypothesis tested was that including exposure during gestation and lactation (perinatal exposure) with postweaning exposure would change the PFOA carcinogenic response quantitatively (more neoplasms) or qualitatively (different neoplasm types) compared to postweaning exposure alone. (Abstract Abridged).
Collapse
|
16
|
Wen Y, Chen J, Li J, Arif W, Kalsotra A, Irudayaraj J. Effect of PFOA on DNA Methylation and Alternative Splicing in Mouse Liver. Toxicol Lett 2020; 329:38-46. [PMID: 32320774 DOI: 10.1016/j.toxlet.2020.04.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 03/13/2020] [Accepted: 04/16/2020] [Indexed: 02/07/2023]
Abstract
Perfluorooctanoic acid (PFOA) is a persistent organic pollutant prevalent in the environment and implicated in damage to the liver leading to a fatty liver phenotype called hepatocellular steatosis. Our goal is to provide a basis for PFOA-induced hepatocellular steatosis in relation to epigenetic alterations and mRNA splicing. Young adult female mice exposed to different concentrations of PFOA showed an increase in liver weight with decreased global DNA methylation (5-mC). At higher concentrations, the expression of DNA methyltransferase 3A (Dnmt3a) was significantly reduced and the expression of tet methycytosine dioxygenase 1 (Tet1) was significantly increased. There was no significant change in the other Dnmts and Tets. PFOA exposure significantly increased the expression of cell cycle regulators and anti-apoptotic genes. The expression of multiple genes involved in mTOR (mammalian target of rapamycin) signaling pathway were altered significantly with reduction in Pten (phosphatase and tensin homolog, primary inhibitor of mTOR pathway) expression. Multiple splicing factors whose protein but not mRNA levels affected by PFOA exposure were identified. The changes in protein abundance of the splicing factors was also reflected in altered splicing pattern of their target genes, which provided new insights on the previously unexplored mechanisms of PFOA-mediated hepatotoxicity and pathogenesis.
Collapse
Affiliation(s)
- Yi Wen
- Department of Bioengineering. University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA; Biomedical Research Center in Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, IL 61801, USA; Cancer Center at Illinois (CCIL), University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jackie Chen
- Department of Biochemistry, School of Molecular and Cell Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Junya Li
- Department of Biochemistry, School of Molecular and Cell Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Waqar Arif
- Department of Biochemistry, School of Molecular and Cell Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Auinash Kalsotra
- Department of Biochemistry, School of Molecular and Cell Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Cancer Center at Illinois (CCIL), University of Illinois at Urbana-Champaign, Urbana, IL, USA; Carl R. Woese Institute of Genomic Biology, University of Illinois, Urbana-Champaign, Illinois, USA
| | - Joseph Irudayaraj
- Department of Bioengineering. University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA; Biomedical Research Center in Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, IL 61801, USA; Micro and Nanotechnology Laboratory. University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA; Cancer Center at Illinois (CCIL), University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
17
|
Temkin AM, Hocevar BA, Andrews DQ, Naidenko OV, Kamendulis LM. Application of the Key Characteristics of Carcinogens to Per and Polyfluoroalkyl Substances. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E1668. [PMID: 32143379 PMCID: PMC7084585 DOI: 10.3390/ijerph17051668] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/11/2020] [Accepted: 02/12/2020] [Indexed: 01/09/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) constitute a large class of environmentally persistent chemicals used in industrial and consumer products. Human exposure to PFAS is extensive, and PFAS contamination has been reported in drinking water and food supplies as well as in the serum of nearly all people. The most well-studied member of the PFAS class, perfluorooctanoic acid (PFOA), induces tumors in animal bioassays and has been associated with elevated risk of cancer in human populations. GenX, one of the PFOA replacement chemicals, induces tumors in animal bioassays as well. Using the Key Characteristics of Carcinogens framework for cancer hazard identification, we considered the existing epidemiological, toxicological and mechanistic data for 26 different PFAS. We found strong evidence that multiple PFAS induce oxidative stress, are immunosuppressive, and modulate receptor-mediated effects. We also found suggestive evidence indicating that some PFAS can induce epigenetic alterations and influence cell proliferation. Experimental data indicate that PFAS are not genotoxic and generally do not undergo metabolic activation. Data are currently insufficient to assess whether any PFAS promote chronic inflammation, cellular immortalization or alter DNA repair. While more research is needed to address data gaps, evidence exists that several PFAS exhibit one or more of the key characteristics of carcinogens.
Collapse
Affiliation(s)
- Alexis M. Temkin
- Environmental Working Group, Washington, DC 20009, USA; (D.Q.A.); (O.V.N.)
| | - Barbara A. Hocevar
- Department of Environmental and Occupational Health, School of Public Health, Indiana University, Bloomington, IN 47405, USA; (B.A.H.); (L.M.K.)
| | - David Q. Andrews
- Environmental Working Group, Washington, DC 20009, USA; (D.Q.A.); (O.V.N.)
| | - Olga V. Naidenko
- Environmental Working Group, Washington, DC 20009, USA; (D.Q.A.); (O.V.N.)
| | - Lisa M. Kamendulis
- Department of Environmental and Occupational Health, School of Public Health, Indiana University, Bloomington, IN 47405, USA; (B.A.H.); (L.M.K.)
| |
Collapse
|
18
|
Bogdanska J, Borg D, Bergström U, Mellring M, Bergman Å, DePierre J, Nobel S. Tissue distribution of 14C-labelled perfluorooctanoic acid in adult mice after 1-5 days of dietary exposure to an experimental dose or a lower dose that resulted in blood levels similar to those detected in exposed humans. CHEMOSPHERE 2020; 239:124755. [PMID: 31726523 DOI: 10.1016/j.chemosphere.2019.124755] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/29/2019] [Accepted: 09/03/2019] [Indexed: 06/10/2023]
Abstract
Perfluorooctanoic acid (PFOA), a global environmental pollutant detected in both wildlife and human populations, has several pathophysiological effects in experimental animals, including hepatotoxicity, immunotoxicity, and developmental toxicity. However, details concerning the tissue distribution of PFOA, in particular at levels relevant to humans, are lacking, which limits our understanding of how humans, and other mammals, may be affected by this compound. Therefore, we characterized the tissue distribution of 14C-PFOA in mice in the same manner as we earlier examined its analogues perfluorooctanesulfonate (PFOS) and perfluorobutanesulfonate (PFBS) in order to allow direct comparisons. Following dietary exposure of adult male C57/BL6 mice for 1, 3 or 5 days to a low dose (0.06 mg/kg/day) or a higher experimental dose (22 mg/kg/day) of 14C-PFOA, both scintillation counting and whole-body autoradiography revealed the presence of PFOA in most of the 19 different tissues examined, demonstrating its ability to leave the bloodstream and enter tissues. There were no differences in the pattern of tissue distribution with the low and high dose and the tissue-to-blood ratios were similar. At both doses, PFOA levels were highest in the liver, followed by blood, lungs and kidneys. The body compartments estimated to contain the largest amounts of PFOA were the liver, blood, skin and muscle. In comparison with our identical studies on PFOS and PFBS, PFOA reached considerably higher tissue levels than PFBS, but lower than PFOS. Furthermore, the distribution of PFOA differed notably from that of PFOS, with lower tissue-to-blood ratios in the liver, lungs, kidneys and skin.
Collapse
Affiliation(s)
- Jasna Bogdanska
- Department of Biochemistry and Biophysics, Stockholm University, SE-10691, Stockholm, Sweden.
| | - Daniel Borg
- Swedish Chemicals Agency, SE-17267, Stockholm, Sweden.
| | - Ulrika Bergström
- Department of Environmental Toxicology, Uppsala University, SE-75236, Uppsala, Sweden.
| | - Maria Mellring
- Department of Analytical Chemistry and Environmental Science, Stockholm University, SE-106 91, Stockholm, Sweden.
| | - Åke Bergman
- Department of Analytical Chemistry and Environmental Science, Stockholm University, SE-106 91, Stockholm, Sweden; School of Science and Technology, Örebro University, SE-701 82, Örebro, Sweden.
| | - Joseph DePierre
- Department of Biochemistry and Biophysics, Stockholm University, SE-10691, Stockholm, Sweden.
| | - Stefan Nobel
- Department of Molecular Medicine and Surgery, Section of Integrative Physiology, Karolinska Institutet, SE-17177, Stockholm, Sweden.
| |
Collapse
|
19
|
DeWitt JC, Blossom SJ, Schaider LA. Exposure to per-fluoroalkyl and polyfluoroalkyl substances leads to immunotoxicity: epidemiological and toxicological evidence. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2019; 29:148-156. [PMID: 30482935 PMCID: PMC6380927 DOI: 10.1038/s41370-018-0097-y] [Citation(s) in RCA: 151] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/15/2018] [Accepted: 10/19/2018] [Indexed: 05/17/2023]
Abstract
In this perspective, we evaluate key and emerging epidemiological and toxicological data concerning immunotoxicity of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) and seek to reconcile conflicting conclusions from two reviews published in 2016. We summarize ways that immunosuppression and immunoenhancement are defined and explain how specific outcomes are used to evaluate immunotoxicity in humans and experimental animals. We observe that different approaches to defining immunotoxicological outcomes, particularly those that do not produce clinical disease, may lead to different conclusions from epidemiological and toxicological studies. The fundamental point that we make is that aspects of epidemiological studies considered as limitations can be minimized when data from toxicological studies support epidemiological findings. Taken together, we find that results of epidemiological studies, supported by findings from toxicological studies, provide strong evidence that humans exposed to PFOA and PFOS are at risk for immunosuppression.
Collapse
Affiliation(s)
- Jamie C DeWitt
- Department of Pharmacology & Toxicology, Brody School of Medicine, East Carolina University, 600 Moye Blvd, Greenville, NC, 27834, USA.
| | - Sarah J Blossom
- Department of Pediatrics, College of Medicine, Arkansas Children's Research Institute, University of Arkansas for Medical Sciences, 13 Children's Way, Little Rock, AR, 72202, USA
| | - Laurel A Schaider
- Silent Spring Institute, 320 Nevada Street, Suite 302, Newton, MA, 02460, USA
| |
Collapse
|
20
|
Protein Hydrolyzates from Changbai Mountain Walnut ( Juglans mandshurica Maxim.) Boost Mouse Immune System and Exhibit Immunoregulatory Activities. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:4576561. [PMID: 29997676 PMCID: PMC5994573 DOI: 10.1155/2018/4576561] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 04/21/2018] [Accepted: 04/26/2018] [Indexed: 11/17/2022]
Abstract
The Changbai Mountain walnut (Juglans mandshurica Maxim.) is a rich source of essential amino acids. Walnut dregs are byproducts of edible oil production and primarily used as fodder and fertilizers. We systematically examined the effect of three types of walnut protein hydrolyzates—albumin, glutelin, and globin—on the immune system of mice and aimed to provide the theoretical basis for developing and utilizing J. mandshurica Maxim. protein resources. In comparison with the normal control mice, those treated with different doses of walnut proteins showed improved immune indices, including organ index, spleen lymphocyte proliferation, macrophage activity, number of CD4+ and CD8+ T cells, immunoglobulin A (IgA) and secretory IgA content, and mRNA and protein expression levels of cytokine factors. Our results indicated that these walnut proteins may have positive effects on the immune system and perform their immunomodulatory functions by inducing splenic enlargement. These findings support the use of walnut proteins as nutritional sources to boost the immune system.
Collapse
|
21
|
Chang S, Butenhoff JL, Parker GA, Coder PS, Zitzow JD, Krisko RM, Bjork JA, Wallace KB, Seed JG. Reproductive and developmental toxicity of potassium perfluorohexanesulfonate in CD-1 mice. Reprod Toxicol 2018; 78:150-168. [PMID: 29694846 DOI: 10.1016/j.reprotox.2018.04.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 04/05/2018] [Accepted: 04/09/2018] [Indexed: 01/14/2023]
Abstract
Potassium perfluorohexanesulfonate (K+PFHxS) was evaluated for reproductive/developmental toxicity in CD-1 mice. Up to 3 mg/kg-d K+PFHxS was administered (n = 30/sex/group) before mating, for at least 42 days in F0 males, and for F0 females, through gestation and lactation. F1 pups were directly dosed with K+PFHxS for 14 days after weaning. There was an equivocal decrease in live litter size at 1 and 3 mg/kg-d, but the pup-born-to-implant ratio was unaffected. Adaptive hepatocellular hypertrophy was observed, and in 3 mg/kg-d F0 males, it was accompanied by concomitant decreased serum cholesterol and increased alkaline phosphatase. There were no other toxicologically significant findings on reproductive parameters, hematology/clinical pathology/TSH, neurobehavioral effects, or histopathology. There were no treatment-related effects on postnatal survival, development, or onset of preputial separation or vaginal opening in F1 mice. Consistent with previous studies, our data suggest that the potency of PFHxS is much lower than PFOS in rodents.
Collapse
Affiliation(s)
- Sue Chang
- 3M Company, Medical Department, St. Paul, MN 55144, United States.
| | | | - George A Parker
- Charles River Pathology Associates Inc, Durham NC 27703, United States
| | - Prägati S Coder
- Charles River Laboratories, Ashland, OH 44805, United States
| | | | - Ryan M Krisko
- 3M Company, Medical Department, St. Paul, MN 55144, United States
| | - James A Bjork
- University of Minnesota Medical School, Duluth, MN 55812, United States
| | - Kendall B Wallace
- University of Minnesota Medical School, Duluth, MN 55812, United States
| | | |
Collapse
|
22
|
Frawley RP, Smith M, Cesta MF, Hayes-Bouknight S, Blystone C, Kissling GE, Harris S, Germolec D. Immunotoxic and hepatotoxic effects of perfluoro-n-decanoic acid (PFDA) on female Harlan Sprague–Dawley rats and B6C3F1/N mice when administered by oral gavage for 28 days. J Immunotoxicol 2018. [DOI: 10.1080/1547691x.2018.1445145] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Affiliation(s)
- Rachel P. Frawley
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Matthew Smith
- Richard Bland College of William & Mary, South Prince George, VA, USA
| | - Mark F. Cesta
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | | | - Chad Blystone
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Grace E. Kissling
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Shawn Harris
- Social & Scientific Systems, Inc., Durham, NC, USA
| | - Dori Germolec
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| |
Collapse
|
23
|
Perfluorooctanoic acid (PFOA) exposure promotes proliferation, migration and invasion potential in human breast epithelial cells. Arch Toxicol 2018; 92:1729-1739. [PMID: 29502166 PMCID: PMC5962621 DOI: 10.1007/s00204-018-2181-4] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 02/28/2018] [Indexed: 12/05/2022]
Abstract
Despite significant advances in early detection and treatment, breast cancer remains a major cause of morbidity and mortality. Perfluorooctanoic acid (PFOA) is a suspected endocrine disruptor and a common environmental pollutant associated with various diseases including cancer. However, the effects of PFOA and its mechanisms of action on hormone-responsive cells remain unclear. Here, we explored the potential tumorigenic activity of PFOA (100 nM–1 mM) in human breast epithelial cells (MCF-10A). MCF-10A cells exposed to 50 and 100 µM PFOA demonstrated a higher growth rate compared to controls. The compound promoted MCF-10A proliferation by accelerating G0/G1 to S phase transition of the cell cycle. PFOA increased cyclin D1 and CDK4/6 levels, concomitant with a decrease in p27. In contrast to previous studies of perfluorooctane sulfate (PFOS), the estrogen receptor antagonist ICI 182,780 had no effect on PFOA-induced cell proliferation, whereas the PPARα antagonist GW 6471 was able to prevent the MCF-10A proliferation, indicating that the underlying mechanisms involve PPARα-dependent pathways. Interestingly, we also showed that PFOA is able to stimulate cell migration and invasion, demonstrating its potential to induce neoplastic transformation of human breast epithelial cells. These results suggest that more attention should be paid to the roles of PFOA in the development and progression of breast cancer.
Collapse
|
24
|
Zarei MH, Hosseini Shirazi SF, Aghvami M, Pourahmad J. Perfluorooctanesulfonate (PFOS) Induces Apoptosis Signaling and Proteolysis in Human Lymphocytes through ROS Mediated Mitochondrial Dysfunction and Lysosomal Membrane Labialization. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2018; 17:995-1007. [PMID: 30127822 PMCID: PMC6094418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Perfluorinated compounds (PFCs) such as perfluorooctanesulfonate (PFOS) are stable chemicals that accumulate in biological matrix. Toxicity of these compounds including immunotoxicity has been demonstrated in experimental models and wildlife. Although limited number of studies examined the effects of PFOS on human lymphocytes but so far no research has investigated the complete mechanisms of PFOS cytotoxicity toward human lymphocytes. The main goal of this investigation was to find out the mechanisms underlying the cytotoxic effect of PFOS toward human lymphocytes using accelerated cytotoxicity mechanisms screening (ACMS) technique. Human lymphocytes were isolated from blood of healthy donors using Ficoll-paquePLUS standard method. Cell viability was determined following 12 h of incubation of human lymphocytes with 100-500 µM PFOS. Our results showed that IC50 concentration (163.5 µM) of PFOS reduced viability of human lymphocytes approximately 50% via increased ROS formation, lipid peroxidation, glutathione depletion and damage to cell sub organelles such as mitochondria and lysosomes. Besides, in this study we demonstrated involvement of cellular proteolysis and activation of caspase-3 in PFOS induced lymphocyte cytotoxicity. We finally concluded that at environmentally related concentration, PFOS can induce toxic effect toward human lymphocytes through induction of oxidative stress and damage to cell sub organelles.
Collapse
Affiliation(s)
- Mohammad Hadi Zarei
- Department of Toxicology, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Seyed Farshad Hosseini Shirazi
- Department of Toxicology, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Pharmaceutical Sciences Research Center, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Marjan Aghvami
- Department of Toxicology, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Jalal Pourahmad
- Department of Toxicology, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Pharmaceutical Sciences Research Center, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
25
|
Wang X, Liu L, Zhang W, Zhang J, Du X, Huang Q, Tian M, Shen H. Serum metabolome biomarkers associate low-level environmental perfluorinated compound exposure with oxidative /nitrosative stress in humans. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 229:168-176. [PMID: 28599201 DOI: 10.1016/j.envpol.2017.04.086] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 03/22/2017] [Accepted: 04/29/2017] [Indexed: 05/26/2023]
Abstract
Previous in vivo and in vitro studies have linked perfluorinated compound (PFC) exposure with metabolic interruption, but the inter-species difference and high treatment doses usually make the results difficult to be extrapolated to humans directly. The best strategy for identifying the metabolic interruption may be to establish the direct correlations between monitored PFCs data and metabolic data on human samples. In this study, serum metabolome data and PFC concentrations were acquired for a Chinese adult male cohort. The most abundant PFCs are PFOA and PFOS with concentration medians 7.56 and 12.78 nM, respectively; in together they count around 81.6% of the total PFCs. PFC concentration-related serum metabolic profile changes and the related metabolic biomarkers were explored by using partial least squares-discriminant analysis (PLS-DA). Respectively taking PFOS, PFOA and total PFC as the classifiers, serum metabolome can be differentiated between the lowest dose group (1st quartile PFCs) and the highest PFC dose group (4th quartile PFCs). Ten potential PFC biomarkers were identified, mainly involving in pollutant detoxification, antioxidation and nitric oxide (NO) signal pathways. These suggested that low-level environmental PFC exposure has significantly adverse impacts on glutathione (GSH) cycle, Krebs cycle, nitric oxide (NO) generation and purine oxidation in humans. To the best of our knowledge, this is the first report investigating the association of environmental PFC exposure with human serum metabolome alteration. Given the important biological functions of the identified biomarkers, we suggest that PFC could increase the metabolism syndromes risk including diabetes and cardiovascular diseases.
Collapse
Affiliation(s)
- Xiaofei Wang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China; Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, China
| | - Liangpo Liu
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, China
| | - Weibing Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Jie Zhang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, China.
| | - Xiaoyan Du
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, China
| | - Qingyu Huang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, China
| | - Meiping Tian
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, China
| | - Heqing Shen
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, China.
| |
Collapse
|
26
|
Reduction of Asthmatic Parameters by Sea Hare Hydrolysates in a Mouse Model of Allergic Asthma. Nutrients 2017; 9:nu9070699. [PMID: 28678189 PMCID: PMC5537814 DOI: 10.3390/nu9070699] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 06/30/2017] [Accepted: 07/03/2017] [Indexed: 02/07/2023] Open
Abstract
Sea hare has a variety of biological activities. However, little is known regarding the anti-asthmatic effects of sea hare. This study was performed to identify the effect of sea hare hydrolysates (SHH) on an ovalbumin (OVA)-induced allergic asthma model. The experimental asthma model was sensitized and challenged with OVA. We found that a high-dose of SHH (HSHH) significantly inhibited OVA-induced airway inflammation and mucus production around the airway in lung sections, while low- and medium-dose SHH showed an insignificant effect. In addition, HSHH highly reduced OVA-induced production of interleukin-4, -5, -13, leukotriene D4, E4, and histamine in bronchoalveolar lavage fluid. HSHH decreased the histamine-induced increase in the intracellular Ca2+ level and contractions in asthmatic smooth muscle cells. Furthermore, HSHH did not affect the weights of the spleen nor thymus, whereas dexamethasone (DEX), a steroidal anti-inflammatory drug, reduced them. Taken together, these results showed that HSHH reduced asthmatic parameters in a mouse model of allergic asthma, and suggest that SHH could be used as a potential therapeutic agent for asthma.
Collapse
|
27
|
Liu X, Zhao XH. Immune potentials of the Mucor-fermented Mao-tofu and especially its soluble extracts for the normal mice. FOOD AGR IMMUNOL 2017. [DOI: 10.1080/09540105.2017.1318834] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Xin Liu
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, People’s Republic of China
- Department of Food Engineering, Harbin University, Harbin, People’s Republic of China
| | - Xin-Huai Zhao
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, People’s Republic of China
| |
Collapse
|
28
|
Li K, Gao P, Xiang P, Zhang X, Cui X, Ma LQ. Molecular mechanisms of PFOA-induced toxicity in animals and humans: Implications for health risks. ENVIRONMENT INTERNATIONAL 2017; 99:43-54. [PMID: 27871799 DOI: 10.1016/j.envint.2016.11.014] [Citation(s) in RCA: 157] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 11/13/2016] [Accepted: 11/13/2016] [Indexed: 05/22/2023]
Abstract
As an emerging persistent organic pollutant (POP), perfluorooctanoate (PFOA) is one of the most abundant perfluorinated compounds (PFCs) in the environment. This review summarized the molecular mechanisms and signaling pathways of PFOA-induced toxicity in animals and humans as well as their implications for health risks in humans. Traditional PFOA-induced signal pathways such as peroxisome proliferating receptor alpha (PPARα), constitutive androstane receptor (CAR), farnesoid X receptor (FXR), and pregnane-X receptor (PXR) may not be important for PFOA-induced health effects on humans. Instead, pathways including p53/mitochondrial pathway, nuclear lipid hyperaccumulation, phosphatidylinositol 3-kinase-serine/threonine protein kinase (PI3K-AKT), and tumor necrosis factor-α/nuclear factor κB (TNF-α/NF-κB) may play an important role for PFOA-induced health risks in humans. Both in vivo and in vitro studies are needed to better understand the PFOA-induced toxicity mechanisms as well as the associated health risk in humans.
Collapse
Affiliation(s)
- Kan Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210046, China
| | - Peng Gao
- Soil and Water Science Department, University of Florida, Gainesville, FL 32611, United States
| | - Ping Xiang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210046, China
| | - Xuxiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210046, China
| | - Xinyi Cui
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210046, China.
| | - Lena Q Ma
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210046, China; Soil and Water Science Department, University of Florida, Gainesville, FL 32611, United States.
| |
Collapse
|
29
|
Rushing BR, Hu Q, Franklin JN, McMahen R, Dagnino S, Higgins CP, Strynar MJ, DeWitt JC. Evaluation of the immunomodulatory effects of 2,3,3,3-tetrafluoro-2-(heptafluoropropoxy)-propanoate in C57BL/6 mice. Toxicol Sci 2017:kfw251. [PMID: 28115649 PMCID: PMC6085165 DOI: 10.1093/toxsci/kfw251] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 11/16/2016] [Accepted: 11/17/2016] [Indexed: 11/14/2022] Open
Abstract
2,3,3,3-tetrafluoro-2-(heptafluoropropoxy)-propanoate was designed to replace perfluorooctanoic acid (PFOA), which has been mostly phased out of U.S. production due to environmental persistence, detectable human and wildlife serum concentrations, and reports of systemic toxicity. In rodent models, PFOA exposure suppresses T cell-dependent antibody responses (TDAR) and vaccine responses in exposed humans. To determine replacement compound effects on TDAR and related parameters, male and female C57BL/6 mice were gavaged with 0, 1, 10, or 100 mg/kg/day for 28 days. Mice immunized with antigen on day 24 were evaluated for TDAR and splenic lymphocyte subpopulations five days later. Serum and urine were collected for test compound concentrations and liver peroxisome proliferation was measured. Relative liver weight at 10 and 100 mg/kg and peroxisome proliferation at 100 mg/kg were increased in both sexes. TDAR was suppressed in females at 100 mg/kg. T lymphocyte numbers were increased in males at 100 mg/kg; B lymphocyte numbers were unchanged in both sexes. Females had less serum accumulation and higher clearance than males, and males had higher urine concentrations than females at all times and doses. While this PFOA-replacement compound appears less potent at suppressing TDAR relative to PFOA, it produces detectable changes in parameters affected by PFOA; further studies are necessary to determine its full immunomodulatory profile and potential synergism with other per- and polyfluoroalkyl substances of environmental concern.
Collapse
Affiliation(s)
- Blake R Rushing
- Department of Pharmacology & Toxicology, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, ; ; ;
| | - Qing Hu
- Department of Pharmacology & Toxicology, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, ; ; ;
| | - Jason N Franklin
- Department of Pharmacology & Toxicology, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, ; ; ;
- National Exposure Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711,
| | - Rebecca McMahen
- Oak Ridge Institute for Science Education (ORISE) Fellows, U.S. Environmental Protection Agency, Research Triangle Park, NC,27711, ;
| | - Sonia Dagnino
- Oak Ridge Institute for Science Education (ORISE) Fellows, U.S. Environmental Protection Agency, Research Triangle Park, NC,27711, ;
- Current address: Toxicology Assessment Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711
| | - Christopher P Higgins
- Oak Ridge Institute for Science Education (ORISE) Fellows, U.S. Environmental Protection Agency, Research Triangle Park, NC,27711, ;
| | - Mark J Strynar
- Oak Ridge Institute for Science Education (ORISE) Fellows, U.S. Environmental Protection Agency, Research Triangle Park, NC,27711, ;
| | - Jamie C DeWitt
- Department of Pharmacology & Toxicology, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, ; ; ; .
| |
Collapse
|
30
|
Is there a human health risk associated with indirect exposure to perfluoroalkyl carboxylates (PFCAs)? Toxicology 2017; 375:28-36. [DOI: 10.1016/j.tox.2016.11.011] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 11/07/2016] [Accepted: 11/14/2016] [Indexed: 11/19/2022]
|
31
|
Ren D, Wang M, Shen M, Liu C, Liu W, Min W, Liu J. In vivo assessment of immunomodulatory activity of hydrolysed peptides from Corylus heterophylla Fisch. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2016; 96:3508-3514. [PMID: 26585315 DOI: 10.1002/jsfa.7535] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 10/03/2015] [Accepted: 11/16/2015] [Indexed: 06/05/2023]
Abstract
BACKGROUND Hazelnut dregs are by-products of hazelnut oil expression, which have not been fully exploited. This research aims to assess the immunomodulatory function of hazelnut hydrolysed peptides (HHPs). RESULTS HHPs with a hydrolysis degree of 38.08% were divided into three fractions by ultra-filtration: the high molecular weight peptide (>10 kDa), medium molecular weight peptide (3 kDa to 10 kDa), and low molecular weight peptide (<3 kDa). Mice were fed daily with HHPs of different molecular weights at doses of 200, 400, and 800 mg kg(-1) body weight. On the 10th, 20th and 30th day of feeding, representative immune indexes were measured. Results showed that HHPs can regulate the immune system of mice, which is affected by the molecular weight of HHP and the feeding time. Generally, short-term feeding (10 d to 20 d) with HHPs of different molecular weights can improve most immune indexes (organ index, spleen lymphocyte proliferation, macrophage activity, secretory immunoglobulin A content, and number of CD4(+) and CD8(+) T cells), whereas during long-term feeding (30 d), low molecular weight HHP can better sustain immune regulation. CONCLUSION HHPs exhibit potential immunomodulatory properties, which has promising implications for the development of new functional foods. © 2015 Society of Chemical Industry.
Collapse
Affiliation(s)
- Dayong Ren
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118, Jilin, China
- National Engineering Laboratory on Wheat and Corn Further Processing, Changchun, 130118, Jilin, China
| | - Mingshuang Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118, Jilin, China
- National Engineering Laboratory on Wheat and Corn Further Processing, Changchun, 130118, Jilin, China
| | - Minghao Shen
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118, Jilin, China
- National Engineering Laboratory on Wheat and Corn Further Processing, Changchun, 130118, Jilin, China
| | - Chunlei Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118, Jilin, China
- National Engineering Laboratory on Wheat and Corn Further Processing, Changchun, 130118, Jilin, China
| | - Wei Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118, Jilin, China
- National Engineering Laboratory on Wheat and Corn Further Processing, Changchun, 130118, Jilin, China
| | - Weihong Min
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118, Jilin, China
- National Engineering Laboratory on Wheat and Corn Further Processing, Changchun, 130118, Jilin, China
| | - Jingsheng Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118, Jilin, China
- National Engineering Laboratory on Wheat and Corn Further Processing, Changchun, 130118, Jilin, China
| |
Collapse
|
32
|
Ahmad S, Khan MF, Parvez S, Akhtar M, Raisuddin S. Molecular docking reveals the potential of phthalate esters to inhibit the enzymes of the glucocorticoid biosynthesis pathway. J Appl Toxicol 2016; 37:265-277. [DOI: 10.1002/jat.3355] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 05/08/2016] [Accepted: 05/10/2016] [Indexed: 02/06/2023]
Affiliation(s)
- Shahzad Ahmad
- Department of Medical Elementology and Toxicology; Jamia Hamdard (Hamdard University); New Delhi 110062 India
| | - Mohemmed Faraz Khan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy; Jamia Hamdard (Hamdard University); New Delhi 110062 India
| | - Suhel Parvez
- Department of Medical Elementology and Toxicology; Jamia Hamdard (Hamdard University); New Delhi 110062 India
| | - Mohammad Akhtar
- Department of Pharmacology, Faculty of Pharmacy; Jamia Hamdard (Hamdard University); New Delhi 110062 India
| | - Sheikh Raisuddin
- Department of Medical Elementology and Toxicology; Jamia Hamdard (Hamdard University); New Delhi 110062 India
| |
Collapse
|
33
|
Buser MC, Scinicariello F. Perfluoroalkyl substances and food allergies in adolescents. ENVIRONMENT INTERNATIONAL 2016; 88:74-79. [PMID: 26722671 PMCID: PMC8132312 DOI: 10.1016/j.envint.2015.12.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 12/11/2015] [Accepted: 12/16/2015] [Indexed: 05/21/2023]
Abstract
Perfluoroalkyl and polyfluoroalkyl substances (PFASs) are a class of organic compounds that are persistent in the environment due to their stable carbon-fluorine backbone, which is not susceptible to degradation. Research suggests these chemicals may exert an immunotoxic effect. The aim of this study is to investigate the associations between four PFASs - perfluorooctane sulfonic acid (PFOS), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), and perfluorohexane sulfonic acid (PFHxS) - with food sensitization and food allergies in adolescent participants (ages 12-19years) in the National Health and Nutrition Examination Survey (NHANES) 2005-2006 and 2007-2010, respectively. We performed multivariate logistic regression to analyze the association between individual PFASs with food sensitization (defined as having at least 1 food-specific IgE level≥0.35kU/L) in NHANES 2005-2006 and food allergies (self-reported) in NHANES 2007-2010. Serum PFOA, PFOS, and PFHxS were statistically significantly associated with higher odds to have self-reported food allergies in NHANES 2007-2010. When using IgE levels as a marker of food sensitization, we found that serum PFNA was inversely associated with food sensitization (NHANES 2005-2006). In conclusion, we found that serum levels of PFASs were associated with higher odds to have self-reported food allergies. Conversely, adolescents with higher serum PFNA were less likely to be sensitized to food allergens. These results, along with previous studies, warrant further investigation, such as well-designed longitudinal studies.
Collapse
Affiliation(s)
- Melanie C Buser
- Division of Toxicology and Human Health Sciences, Agency for Toxic Substances and Disease Registry (ATSDR), Atlanta, GA, 30341, USA
| | - Franco Scinicariello
- Division of Toxicology and Human Health Sciences, Agency for Toxic Substances and Disease Registry (ATSDR), Atlanta, GA, 30341, USA.
| |
Collapse
|
34
|
Chang ET, Adami HO, Boffetta P, Wedner HJ, Mandel JS. A critical review of perfluorooctanoate and perfluorooctanesulfonate exposure and immunological health conditions in humans. Crit Rev Toxicol 2016; 46:279-331. [PMID: 26761418 PMCID: PMC4819831 DOI: 10.3109/10408444.2015.1122573] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Whether perfluorooctanoate (PFOA) and perfluorooctanesulfonate (PFOS), two widely used and biopersistent synthetic chemicals, are immunotoxic in humans is unclear. Accordingly, this article systematically and critically reviews the epidemiologic evidence on the association between exposure to PFOA and PFOS and various immune-related health conditions in humans. Twenty-four epidemiologic studies have reported associations of PFOA and/or PFOS with immune-related health conditions, including ten studies of immune biomarker levels or gene expression patterns, ten studies of atopic or allergic disorders, five studies of infectious diseases, four studies of vaccine responses, and five studies of chronic inflammatory or autoimmune conditions (with several studies evaluating multiple endpoints). Asthma, the most commonly studied condition, was evaluated in seven studies. With few, often methodologically limited studies of any particular health condition, generally inconsistent results, and an inability to exclude confounding, bias, or chance as an explanation for observed associations, the available epidemiologic evidence is insufficient to reach a conclusion about a causal relationship between exposure to PFOA and PFOS and any immune-related health condition in humans. When interpreting such studies, an immunodeficiency should not be presumed to exist when there is no evidence of a clinical abnormality. Large, prospective studies with repeated exposure assessment in independent populations are needed to confirm some suggestive associations with certain endpoints.
Collapse
Affiliation(s)
- Ellen T Chang
- a Health Sciences Practice, Exponent, Inc , Menlo Park , CA , USA ;,b Division of Epidemiology, Department of Health Research and Policy , Stanford University School of Medicine , Stanford , CA , USA
| | - Hans-Olov Adami
- c Department of Epidemiology , Harvard T. H. Chan School of Public Health , Boston , MA , USA
| | - Paolo Boffetta
- d Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute , New York , NY , USA
| | - H James Wedner
- e Division of Allergy and Immunology , Washington University School of Medicine , St. Louis , MO , USA
| | - Jack S Mandel
- a Health Sciences Practice, Exponent, Inc , Menlo Park , CA , USA
| |
Collapse
|
35
|
DeWitt JC, Williams WC, Creech NJ, Luebke RW. Suppression of antigen-specific antibody responses in mice exposed to perfluorooctanoic acid: Role of PPARα and T- and B-cell targeting. J Immunotoxicol 2015; 13:38-45. [PMID: 25594567 DOI: 10.3109/1547691x.2014.996682] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
T-cell-dependent antibody responses (TDAR) are suppressed in female C57BL/6N mice exposed to ≥3.75 mg/kg of perfluorooctanoic acid (PFOA) for 15 days. To determine if suppression of humoral immunity by PFOA is peroxisome proliferator activated receptor alpha (PPARα)-dependent and if suppression is associated with specific targeting of T- or B-cells, three separate experiments were conducted: (1) female PPARα constitutive knockout (PPARα KO; B6.129S4-Ppar(tm1Gonz)N12) and wild-type controls (WT; C57BL/6-Tac) exposed to 0, 7.5, or 30 mg PFOA/kg for 15 days were immunized on Day 11 with a T-cell-dependent antigen and sera then collected for measures of antigen-specific IgM titers (TDAR) 5 days later; (2) female C57BL/6N WT mice exposed to 0, 0.94, 1.88, 3.75, or 7.5 mg PFOA/kg for 15 days were immunized with a T-cell-independent antigen on Day 11 and sera were then collected for analyses of antigen-specific IgM titers (TIAR) 7 days later; and (3) splenic lymphocyte phenotypes were assessed in unimmunized female C57BL/6N WT mice exposed to 0, 3.75, or 7.5 mg PFOA/kg for 10 days to investigate effects of PFOA in the absence of specific immunization. Separate groups of mice were immunized with a T-cell-dependent antigen after 11 days of exposure and splenic lymphocyte sub-populations were assessed after 13 or 15 days of exposure to assess numbers of stimulated cells. The results indicated that exposure to ≥1.88 mg PFOA/kg suppressed the TIAR; exposure to 30 mg PFOA/kg suppressed the TDAR in both PPARα KO and WT mice. The percentage of splenic B-cells was unchanged. Results obtained in the PPARα KO mice indicated that PPARα suppression of TDAR was independent of PPARα involvement. Suppression of the TIAR and the TDAR with minimal lymphocyte sub-population effects suggested that effects on humoral immunity are likely mediated by disruption of B-cell/plasma cell function.
Collapse
Affiliation(s)
- Jamie C DeWitt
- a Department of Pharmacology and Toxicology , Brody School of Medicine, East Carolina University , Greenville , NC , USA
| | - Wanda C Williams
- b Cardiopulmonary and Immunotoxicology Branch, Environmental Public health Division, NHEERL, U.S. Environmental Protection Agency , Research Triangle Park , NC , and
| | - N Jonathan Creech
- c Department of Biology , East Carolina University , Greenville , NC , USA
| | - Robert W Luebke
- b Cardiopulmonary and Immunotoxicology Branch, Environmental Public health Division, NHEERL, U.S. Environmental Protection Agency , Research Triangle Park , NC , and
| |
Collapse
|
36
|
Midgett K, Peden-Adams MM, Gilkeson GS, Kamen DL. In vitro evaluation of the effects of perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) on IL-2 production in human T-cells. J Appl Toxicol 2014; 35:459-65. [PMID: 25056757 DOI: 10.1002/jat.3037] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 05/22/2014] [Accepted: 05/23/2014] [Indexed: 12/30/2022]
Abstract
Perfluorinated compounds, such as perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA), have been shown to alter various immune functions suggesting they are immunotoxic. This study assessed the effects of PFOS and PFOA on interleukin (IL)-2 production in the human Jurkat T-cell line and PFOS in healthy human primary T cells. Jurkat cells were stimulated with phytohemagglutinin (PHA)/phorbol myristate acetate (PMA), anti CD-3/anti CD-28, or anti CD-3, and dosed with 0, 0.05, 0.1, 0.5, 1, 5, 10, 50, 75, or 100 µg ml(-1) PFOS or 0, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 5, or 10 µg ml(-1) PFOA. Jurkat cells stimulated with PHA/PMA or anti CD-3 exhibited decreased IL-2 production beginning at 50 µg PFOS ml(-1) and 5 µg PFOS ml(-1) respectively, but stimulation with anti-CD3/anti-CD28 resulted in no changes compared with the control. Addition of the PPAR-alpha antagonist GW6471 to PFOS-dosed cells stimulated with PHA/PMA resulted in decreases in IL-2 production starting at 50 µg PFOS ml(-1), which suggests PFOS affected T-cell IL-2 production via PPAR-alpha-independent mechanisms. Exposure to PFOA, PFOA + GW6471, or PFOS + PFOA in Jurkat cells resulted in no significant differences in IL-2 production. In vitro dosing studies using healthy primary human CD4+ T cells were consistent with the Jurkat results. These data demonstrated that PFOA did not impact IL-2 production, but PFOS suppressed IL-2 production in both a human cell line and human primary cells at dose levels within the high end of the human exposure range. A decrease in IL-2 production is characteristic of autoimmune diseases such as systemic lupus erythematosus and should be further investigated.
Collapse
Affiliation(s)
- Kristin Midgett
- Department of Natural Sciences, Northwest Florida State College
| | | | | | | |
Collapse
|
37
|
Corsini E, Luebke RW, Germolec DR, DeWitt JC. Perfluorinated compounds: emerging POPs with potential immunotoxicity. Toxicol Lett 2014; 230:263-70. [PMID: 24503008 DOI: 10.1016/j.toxlet.2014.01.038] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 12/06/2013] [Accepted: 01/27/2014] [Indexed: 01/09/2023]
Abstract
Perfluorinated compounds (PFCs) have been recognized as an important class of environmental contaminants commonly detected in blood samples of both wildlife and humans. These compounds have been in use for more than 60 years as surface treatment chemicals, polymerization aids, and surfactants. They possess a strong carbon-fluorine bond, which leads to their environmental persistence. There is evidence from both epidemiology and laboratory studies that PFCs may be immunotoxic, affecting both cell-mediated and humoral immunity. Reported effects of PFCs include decreased spleen and thymus weights and cellularity, reduced specific antibody production, reduced survival after influenza infection, and altered cytokine production. Immunosuppression is a critical effect associated with exposure to PFCs, as it has been reported to reduce antibody responses to vaccination in children. Mounting evidence suggests that immunotoxicity in experimental animals can occur at serum concentrations below, within, or just above the reported range for highly exposed humans and wildlife. Considering bioaccumulation and exposure to multiple PFCs, the risk of immunotoxicity for humans and wildlife cannot be discounted. This review will discuss current and recently published work exploring the immunomodulatory effects of PFCs in experimental animals and humans.
Collapse
Affiliation(s)
- Emanuela Corsini
- Laboratory of Toxicology, Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Italy.
| | - Robert W Luebke
- U.S. Environmental Protection Agency/Office of Research and Development/National Health and Environmental Effects Research Laboratory, Research Triangle Park, NC, USA
| | - Dori R Germolec
- National Toxicology Program, National Institute of Environmental Health Sciences, NIH, RTP, NC, USA
| | - Jamie C DeWitt
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| |
Collapse
|
38
|
Wang Y, Wang L, Li J, Liang Y, Ji H, Zhang J, Zhou Q, Jiang G. The mechanism of immunosuppression by perfluorooctanoic acid in BALB/c mice. Toxicol Res (Camb) 2014. [DOI: 10.1039/c3tx50096a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
39
|
Steenland K, Zhao L, Winquist A, Parks C. Ulcerative colitis and perfluorooctanoic acid (PFOA) in a highly exposed population of community residents and workers in the mid-Ohio valley. ENVIRONMENTAL HEALTH PERSPECTIVES 2013; 121:900-5. [PMID: 23735465 PMCID: PMC3734500 DOI: 10.1289/ehp.1206449] [Citation(s) in RCA: 152] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 05/30/2013] [Indexed: 05/18/2023]
Abstract
BACKGROUND Little is known about environmental determinants of autoimmune diseases. OBJECTIVES We studied autoimmune diseases in relation to level of exposure to perfluorooctanoic acid (PFOA), which was introduced in the late 1940s and is now ubiquitous in the serum of residents of industrialized countries. METHODS In 2008-2011 we interviewed 32,254 U.S. adults with high serum PFOA serum levels (median, 28 ng/mL) associated with drinking contaminated water near a chemical plant. Disease history was assessed retrospectively from 1952 or birth (if later than 1952) until interview. Self-reported history of autoimmune disease was validated via medical records. Cumulative exposure to PFOA was derived from estimates of annual mean serum PFOA levels during follow-up, which were based on plant emissions, residential and work history, and a fate-transport model. Cox regression models were used to estimate associations between quartiles of cumulative PFOA serum levels and the incidence of autoimmune diseases with ≥ 50 validated cases, including ulcerative colitis (n = 151), Crohn's disease (n = 96), rheumatoid arthritis (n = 346), insulin-dependent diabetes (presumed to be type 1) (n = 160), lupus (n = 75), and multiple sclerosis (n = 98). RESULTS The incidence of ulcerative colitis was significantly increased in association with PFOA exposure, with adjusted rate ratios by quartile of exposure of 1.00 (referent), 1.76 (95% CI: 1.04, 2.99), 2.63 (95% CI: 1.56, 4.43), and 2.86 (95% CI: 1.65, 4.96) (ptrend < 0.0001). A prospective analysis of ulcerative colitis diagnosed after the baseline 2005-2006 survey (n = 29 cases) suggested a positive but non-monotonic trend (ptrend = 0.21). DISCUSSION To our knowledge, this is the first study of associations between this common environmental exposure and autoimmune diseases in humans. We found evidence that PFOA is associated with ulcerative colitis.
Collapse
Affiliation(s)
- Kyle Steenland
- Rollins School of Public Health, Emory University, Atlanta, Georgia 30322, USA.
| | | | | | | |
Collapse
|
40
|
Fair PA, Romano T, Schaefer AM, Reif JS, Bossart GD, Houde M, Muir D, Adams J, Rice C, Hulsey TC, Peden-Adams M. Associations between perfluoroalkyl compounds and immune and clinical chemistry parameters in highly exposed bottlenose dolphins (Tursiops truncatus). ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2013; 32:736-746. [PMID: 23322558 DOI: 10.1002/etc.2122] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 10/16/2012] [Accepted: 11/05/2012] [Indexed: 06/01/2023]
Abstract
Perfluoroalkyl compounds (PFCs) are ubiquitous, persistent chemical contaminants found in the environment, wildlife, and humans. Despite the widespread occurrence of PFCs, little is known about the impact these contaminants have on the health of wildlife populations. The authors investigated the relationship between PFCs (including ∑perfluorocarboxylates, ∑perfluoroalkyl sulfonates, perfluorooctane sulfonate, perfluorooctanoic acid, and perfluorodecanoic acid) and the clinocopathologic and immune parameters in a highly exposed population (n = 79) of Atlantic bottlenose dolphins (mean ∑PFCs = 1970 ng/ml; range 574-8670 ng/ml) sampled from 2003 to 2005 near Charleston, South Carolina, USA. Age-adjusted linear regression models showed statistically significant positive associations between exposure to one or more of the PFC totals and/or individual analytes and the following immunological parameters: absolute numbers of CD2+ T cells, CD4+ helper T cells, CD19+ immature B cells, CD21+ mature B cells, CD2/CD21 ratio, MHCII+ cells, B cell proliferation, serum IgG1, granulocytic, and monocytic phagocytosis. Several PFC analyte groups were also positively associated with serum alanine aminotransferase, gamma-glutamyltransferase, creatinine, phosphorus, amylase, and anion gap and negatively associated with cholesterol levels, creatinine phosphokinase, eosinophils, and monocytes. Based on these relationships, the authors suggest that the PFC concentrations found in Charleston dolphins may have effects on immune, hematopoietic, kidney, and liver function. The results contribute to the emerging data on PFC health effects in this first study to describe associations between PFCs and health parameters in dolphins.
Collapse
Affiliation(s)
- Patricia A Fair
- National Oceanic and Atmospheric Administration, National Ocean Service, Center for Coastal Environmental Health and Biomolecular Research, Charleston, South Carolina, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Rockwell CE, Turley AE, Cheng X, Fields PE, Klaassen CD. Acute Immunotoxic Effects of Perfluorononanoic Acid (PFNA) in C57BL/6 Mice. ACTA ACUST UNITED AC 2013; Suppl 4. [PMID: 25568816 DOI: 10.4172/2161-1459.s4-002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
otrganic perfluorochemicals (PFCs) have become an environmental concern due to widespread detection in human blood and experimental evidence for immune, developmental, and liver toxicity. Whereas the blood concentrations of many PFCs are declining, blood levels of Perfluorononanoic Acid (PFNA) are rising in the United States. The purpose of the present studies was to determine the effects of PFNA on lymphoid organs and immune cells of C57BL/6 mice. The present study demonstrates that PFNA produces immunotoxic effects in both male and female C57BL/6 mice as evidenced by splenic atrophy, decreased splenocyte numbers, and a marked reduction in thymocyte viability. The current study also demonstrates that the effects of PFNA on different leukocyte populations are not uniform. The CD4+CD8+ double-positive thymocytes were particularly sensitive to PFNA in which the proportion of this population was >95% decreased relative to the entire CD4+ thymocyte population in PFNA-treated mice. Interestingly, PFNA also markedly increased serum levels of TNFα in response to LPS in mice. Collectively, the present studies demonstrate that PFNA decreases lymphocyte viability and alters the immune response to LPS in C57BL/6 mice.
Collapse
Affiliation(s)
- Cheryl E Rockwell
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI 48824, USA
| | - Alexandra E Turley
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI 48824, USA
| | - Xingguo Cheng
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Patrick E Fields
- Department of Pathology & Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Curtis D Klaassen
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
42
|
Nilsson H, Kärrman A, Rotander A, van Bavel B, Lindström G, Westberg H. Biotransformation of fluorotelomer compound to perfluorocarboxylates in humans. ENVIRONMENT INTERNATIONAL 2013; 51:8-12. [PMID: 23138016 DOI: 10.1016/j.envint.2012.09.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Revised: 08/14/2012] [Accepted: 09/04/2012] [Indexed: 05/03/2023]
Abstract
Levels of perfluorocarboxylates (PFCAs) in biological compartments have been known for some time but their transport routes and distribution patterns are not properly elucidated. The opinions diverge whether the exposure of the general population occurs indirect through precursors or direct via PFCAs. Previous results showed that ski wax technicians are exposed to levels up to 92 000 ng/m(3) of 8:2 fluorotelomer alcohol (FTOH) via air and have elevated blood levels of PFCAs. Blood samples were collected in 2007-2011 and analyzed for C(4)-C(18) PFCAs, 6:2, 8:2 and 10:2 unsaturated fluorotelomer acids (FTUCAs) and 3:3, 5:3 and 7:3 fluorotelomer acids (FTCAs) using UPLC-MS/MS. Perfluorooctanoic acid (PFOA) was detected in levels ranging from 1.90 to 628 ng/mL whole blood (wb). Metabolic intermediates 5:3 and 7:3 FTCA were detected in all samples at levels up to 6.1 and 3.9 ng/mL wb. 6:2, 8:2 and 10:2 FTUCAs showed maximum levels of 0.07, 0.64 and 0.11 ng/mL wb. Also, for the first time levels of PFHxDA and PFOcDA were detected in the human blood at mean concentrations up to 4.22 ng/mL wb and 4.25 ng/mL wb respectively. The aim of this study was to determine concentrations of PFCAs and FTOH metabolites in blood from ski wax technicians.
Collapse
Affiliation(s)
- Helena Nilsson
- Man-Technology-Environment (MTM) Research Centre, Örebro University, SE-701 82 Örebro, Sweden.
| | | | | | | | | | | |
Collapse
|
43
|
Hu Q, Franklin JN, Bryan I, Morris E, Wood A, DeWitt JC. Does developmental exposure to perfluorooctanoic acid (PFOA) induce immunopathologies commonly observed in neurodevelopmental disorders? Neurotoxicology 2012; 33:1491-1498. [DOI: 10.1016/j.neuro.2012.10.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Revised: 10/28/2012] [Accepted: 10/29/2012] [Indexed: 12/11/2022]
|
44
|
High-dose dietary exposure of mice to perfluorooctanoate or perfluorooctane sulfonate exerts toxic effects on myeloid and B-lymphoid cells in the bone marrow and these effects are partially dependent on reduced food consumption. Food Chem Toxicol 2012; 50:2955-63. [DOI: 10.1016/j.fct.2012.06.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 06/11/2012] [Accepted: 06/13/2012] [Indexed: 01/15/2023]
|
45
|
Post GB, Cohn PD, Cooper KR. Perfluorooctanoic acid (PFOA), an emerging drinking water contaminant: a critical review of recent literature. ENVIRONMENTAL RESEARCH 2012; 116:93-117. [PMID: 22560884 DOI: 10.1016/j.envres.2012.03.007] [Citation(s) in RCA: 386] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Revised: 02/03/2012] [Accepted: 03/12/2012] [Indexed: 05/17/2023]
Abstract
Perfluorooctanoic acid (PFOA) is an anthropogenic contaminant that differs in several ways from most other well-studied organic chemicals found in drinking water. PFOA is extremely resistant to environmental degradation processes and thus persists indefinitely. Unlike most other persistent and bioaccumulative organic pollutants, PFOA is water-soluble, does not bind well to soil or sediments, and bioaccumulates in serum rather than in fat. It has been detected in finished drinking water and drinking water sources impacted by releases from industrial facilities and waste water treatment plants, as well as in waters with no known point sources. However, the overall occurrence and population exposure from drinking water is not known. PFOA persists in humans with a half-life of several years and is found in the serum of almost all U.S. residents and in populations worldwide. Exposure sources include food, food packaging, consumer products, house dust, and drinking water. Continued exposure to even relatively low concentrations in drinking water can substantially increase total human exposure, with a serum:drinking water ratio of about 100:1. For example, ongoing exposures to drinking water concentrations of 10 ng/L, 40 ng/L, 100 ng/L, or 400 ng/L are expected to increase mean serum levels by about 25%, 100%, 250%, and 1000%, respectively, from the general population background serum level of about 4 ng/mL. Infants are potentially a sensitive subpopulation for PFOA's developmental effects, and their exposure through breast milk from mothers who use contaminated drinking water and/or from formula prepared with contaminated drinking water is higher than in adults exposed to the same drinking water concentration. Numerous health endpoints are associated with human PFOA exposure in the general population, communities with contaminated drinking water, and workers. As is the case for most such epidemiology studies, causality for these effects is not proven. Unlike most other well-studied drinking water contaminants, the human dose-response curve for several effects appears to be steepest at the lower exposure levels, including the general population range, with no apparent threshold for some endpoints. There is concordance in animals and humans for some effects, while humans and animals appear to react differently for other effects such as lipid metabolism. PFOA was classified as "likely to be carcinogenic in humans" by the USEPA Science Advisory Board. In animal studies, developmental effects have been identified as more sensitive endpoints for toxicity than carcinogenicity or the long-established hepatic effects. Notably, exposure to an environmentally relevant drinking water concentration caused adverse effects on mammary gland development in mice. This paper reviews current information relevant to the assessment of PFOA as an emerging drinking water contaminant. This information suggests that continued human exposure to even relatively low concentrations of PFOA in drinking water results in elevated body burdens that may increase the risk of health effects.
Collapse
Affiliation(s)
- Gloria B Post
- Office of Science, New Jersey Department of Environmental Protection, Trenton, NJ 08625, USA.
| | | | | |
Collapse
|
46
|
Inoue Y, Hashizume N, Yakata N, Murakami H, Suzuki Y, Kikushima E, Otsuka M. Unique physicochemical properties of perfluorinated compounds and their bioconcentration in common carp Cyprinus carpio L. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2012; 62:672-80. [PMID: 22127646 DOI: 10.1007/s00244-011-9730-7] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Accepted: 11/08/2011] [Indexed: 05/21/2023]
Abstract
Carp (Cyprinus carpio L.) was exposed to perfluorinated compounds (PFCs)-perfluoroalkyl carboxylic acids (number of carbon atoms, C = 8, 11, 12, 14, 16, and 18) and perfluorooctane sulfonate (PFOS)-in bioconcentration tests to compare the bioconcentration factors (BCFs) and physicochemical properties of each specific compound. Despite having the same number of carbon atoms (C = 8), the BCFs of perfulorooctanoic acid (PFOA) and PFOS differed by more than two orders of magnitude (PFOA BCF = < 5.1 to 9.4; PFOS BCF = 720 to 1300). The highest BCFs were obtained from perfluorododecanoic acid (BCF = 10,000 to 16,000) and perfluorotetradecanoic acid (BCF = 16,000 to 17,000). The longest observed depuration half-lives were for perfluorohexadecanoic acid (48 to 54 days) and PFOS (45 to 52 days). The concentrations of PFCs were highest in the viscera, followed by the head, integument, and remaining parts of the test fish. PFCs concentrations in the integument, which was in direct contact with the test substances, were relatively greater than that of other lipophilic substance (hexachlorobenzene). It is likely that Clog P would be a better parameter than log K (ow) for the prediction of BCFs for PFCs. Threshold values for PFCs bioaccumulation potential (molecular weight = 700, maximum diameter = 2 nm) seemed to deviate from those generally reported because of the specific steric bulk effect of molecule size.
Collapse
Affiliation(s)
- Yoshiyuki Inoue
- Chemicals Evaluation and Research Institute, CERI Kurume, Miyanojin, Kurume-shi, Fukuoka, Japan.
| | | | | | | | | | | | | |
Collapse
|
47
|
|
48
|
Hirata-Koizumi M, Fujii S, Furukawa M, Ono A, Hirose A. Repeated dose and reproductive/developmental toxicity of perfluorooctadecanoic acid in rats. J Toxicol Sci 2012; 37:63-79. [DOI: 10.2131/jts.37.63] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Mutsuko Hirata-Koizumi
- Division of Risk Assessment, Biological Safety Research Center, National Institute of Health Sciences
| | - Sakiko Fujii
- Safety Research Institute for Chemical Compounds Co., Ltd
| | | | - Atsushi Ono
- Division of Risk Assessment, Biological Safety Research Center, National Institute of Health Sciences
| | - Akihiko Hirose
- Division of Risk Assessment, Biological Safety Research Center, National Institute of Health Sciences
| |
Collapse
|
49
|
DeWitt JC, Peden-Adams MM, Keller JM, Germolec DR. Immunotoxicity of Perfluorinated Compounds: Recent Developments. Toxicol Pathol 2011; 40:300-11. [DOI: 10.1177/0192623311428473] [Citation(s) in RCA: 272] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Jamie C. DeWitt
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | - Margie M. Peden-Adams
- Harry Reid Center for Environmental Studies, University of Nevada Las Vegas, Las Vegas, Nevada, USA
| | - Jennifer M. Keller
- National Institute of Standards and Technology, Hollings Marine Laboratory, Charleston, South Carolina, USA
| | - Dori R. Germolec
- National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| |
Collapse
|
50
|
White SS, Fenton SE, Hines EP. Endocrine disrupting properties of perfluorooctanoic acid. J Steroid Biochem Mol Biol 2011; 127:16-26. [PMID: 21397692 PMCID: PMC3335904 DOI: 10.1016/j.jsbmb.2011.03.011] [Citation(s) in RCA: 208] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 02/18/2011] [Accepted: 03/04/2011] [Indexed: 01/11/2023]
Abstract
Perfluoroalkyl acids (PFAAs) have attracted attention in recent years for their environmental ubiquity, as well as their toxicity. Several PFAAs are found in human tissues globally, as humans are exposed on a daily basis through intake of contaminated food, water, and air, irrespective of proximity to industry. Perfluorooctanoic acid (PFOA) is a PFAA shown to be developmentally toxic in mice, with broad and varied health consequences that may include long-lasting effects in reproductive tissues and metabolic reprogramming. To date, the only demonstrated mode of action by which the health effects of PFOA are mediated is via the activation of the peroxisome proliferator-activated receptor alpha (PPARα). The endogenous roles for this receptor, as well as the adverse outcomes of activation by exogenous agents during development, are currently under investigation. Recent studies suggest that PFOA may alter steroid hormone production or act indirectly, via ovarian effects, as a novel means of endocrine disruption. Here we review the existing literature on the known health effects of PFOA in animal models, focusing on sensitive developmental periods. To complement this, we also present epidemiologic health data, with the caveat that these studies largely address only associations between adult exposures and outcomes, rarely focusing on endocrine-specific endpoints, susceptible subpopulations, or windows of sensitivity. Further research in these areas is needed.
Collapse
Affiliation(s)
- Sally S. White
- National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Suzanne E. Fenton
- National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Erin P. Hines
- National Center for Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| |
Collapse
|