1
|
Pesau G, Zierfuss B, Hoebaus C, Koppensteiner R, Schernthaner GH. Serum Trefoil Factor-3 Predicts Survival in Peripheral Artery Disease. Angiology 2025; 76:409-415. [PMID: 38312093 PMCID: PMC12012275 DOI: 10.1177/00033197241230973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
Trefoil factor 3 (TFF3) has been studied in processes leading to atherosclerosis. Data are scarce in manifest disease and missing in peripheral artery disease (PAD). This study aims to elucidate TFF3 with disease stages, degrees of atherosclerosis, and outcomes. TFF3 was measured in serum in 364 PAD patients without critical limb ischemia and mild to moderate chronic kidney disease (CKD). Mortality data were retrieved from the Austrian central death registry (median observation 9.6 years). Survival analyses were performed using Cox regression and the Kaplan-Meier method. A negative association between ankle-brachial index and TFF3 (P < .001) was observed, while levels were similar in asymptomatic and symptomatic PAD. TFF3 increased with history of cardiovascular and cerebrovascular disease (P < .001). TTF3 was associated with the estimated glomerular filtration rate (R = -0.617, P < .001) and urinary albumin-creatinine ratio (R = 0.229, P < .001). One SD increase in TFF3 showed a worsening in all-cause mortality (hazard ratio 1.68, CI 1.37-2.05) which persisted after multiple adjustment for cardiovascular risk, inflammatory, and angiogenetic markers (hazard ratio 1.35, CI 1.01-1.81). This study is the first to link TFF3 with both disease markers and outcomes in PAD. TFF3 demonstrated associations with renal function, PAD severity measured by ankle-brachial index, and additional atherosclerotic burden in PAD.
Collapse
Affiliation(s)
- Gerfried Pesau
- Division of Angiology, Department of Internal Medicine II, Medical University Vienna, Vienna, Austria
| | - Bernhard Zierfuss
- Division of Angiology, Department of Internal Medicine II, Medical University Vienna, Vienna, Austria
| | - Clemens Hoebaus
- Division of Angiology, Department of Internal Medicine II, Medical University Vienna, Vienna, Austria
| | - Renate Koppensteiner
- Division of Angiology, Department of Internal Medicine II, Medical University Vienna, Vienna, Austria
| | - Gerit-Holger Schernthaner
- Division of Angiology, Department of Internal Medicine II, Medical University Vienna, Vienna, Austria
| |
Collapse
|
2
|
Fasina YO, Obanla TO, Ekunseitan DA, Dosu G, Richardson J, Apalowo OO. Role of trefoil factors in maintaining gut health in food animals. Front Vet Sci 2024; 11:1434509. [PMID: 39628866 PMCID: PMC11612906 DOI: 10.3389/fvets.2024.1434509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 10/21/2024] [Indexed: 12/06/2024] Open
Abstract
It is imperative to preserve the integrity of the gastrointestinal system in spite of the persistent existence of harmful chemicals and microbial flora in the gut. This is made possible by essential healing initiators called Trefoil factors which helps in mucosal reconstitution and tissue development on the gastrointestinal surface. The trefoil factors are a class of abundant secreted proteins that are essential for epithelial continuity (TFFs). Trefoil factor family (TFF) proteins are biologically active peptides that play significant role in safeguarding, restoring and continuity of the gastrointestinal tract (GIT) epithelium, through collaborative modulations with mucins in the mucosal layer. These peptides are readily produced in reaction to epithelial damage in the digestive tract, thereby contributing to the healing and restituting of the epithelial layers of the intestine. In addition, considerable evidence indicated that TFF peptides trigger proliferation, migration and angiogenesis, all which are crucial processes for wound healing. There is also increasing evidence that TFF peptides modulate the mucosal immune system. These protective properties, suggest that dietary manipulation strategies targeted at enhancing the expression and synthesis of TFF peptides at optimal levels in the GIT epithelium, may constitute a plausible alternative strategy to the use of in-feed antibiotic growth promoters to maintain epithelial integrity and promote resistance to enteric pathogens. This review describes TFF peptides, with importance to their biological functions and involvement in gastrointestinal mucosal protection and repair in food animals.
Collapse
Affiliation(s)
- Yewande O. Fasina
- Department of Animal Sciences, North Carolina Agricultural and Technical State University, Greensboro, NC, United States
| | | | | | | | | | | |
Collapse
|
3
|
Mules TC, Vacca F, Cait A, Yumnam B, Schmidt A, Lavender B, Maclean K, Noble SL, Gasser O, Camberis M, Le Gros G, Inns S. A Small Intestinal Helminth Infection Alters Colonic Mucus and Shapes the Colonic Mucus Microbiome. Int J Mol Sci 2024; 25:12015. [PMID: 39596084 PMCID: PMC11593901 DOI: 10.3390/ijms252212015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/01/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
Infecting humans with controlled doses of small intestinal helminths, such as human hookworm, is proposed as a therapy for the colonic inflammatory disease ulcerative colitis. Strengthening the colonic mucus barrier is a potential mechanism by which small intestinal helminths could treat ulcerative colitis. In this study, we compare C57BL/6 mice infected with the small intestinal helminth Heligmosomoides polygyrus and uninfected controls to investigate changes in colonic mucus. Histology, gene expression, and immunofluorescent analysis demonstrate that this helminth induces goblet cell hyperplasia, and an upregulation of mucin sialylation, and goblet-cell-derived functional proteins resistin-like molecule-beta (RELM-β) and trefoil factors (TFFs), in the colon. Using IL-13 knockout mice, we reveal that these changes are predominantly IL-13-dependent. The assessment of the colonic mucus microbiome demonstrates that H. polygyrus infection increases the abundance of Ruminococcus gnavus, a commensal bacterium capable of utilising sialic acid as an energy source. This study also investigates a human cohort experimentally challenged with human hookworm. It demonstrates that TFF blood levels increase in individuals chronically infected with small intestinal helminths, highlighting a conserved mucus response between humans and mice. Overall, small intestinal helminths modify colonic mucus, highlighting this as a plausible mechanism by which human hookworm therapy could treat ulcerative colitis.
Collapse
Affiliation(s)
- Thomas C. Mules
- Malaghan Institute of Medical Research, Kelburn, Wellington 6012, New Zealand
- Department of Medicine, University of Otago, 23A Mein St., Newtown, Wellington 6242, New Zealand
| | - Francesco Vacca
- Malaghan Institute of Medical Research, Kelburn, Wellington 6012, New Zealand
| | - Alissa Cait
- Malaghan Institute of Medical Research, Kelburn, Wellington 6012, New Zealand
| | - Bibek Yumnam
- Malaghan Institute of Medical Research, Kelburn, Wellington 6012, New Zealand
| | - Alfonso Schmidt
- Hugh Green Technology Centre, Malaghan Institute of Medical Research, Wellington 6012, New Zealand
| | - Brittany Lavender
- Malaghan Institute of Medical Research, Kelburn, Wellington 6012, New Zealand
| | - Kate Maclean
- Malaghan Institute of Medical Research, Kelburn, Wellington 6012, New Zealand
| | - Sophia-Louise Noble
- Malaghan Institute of Medical Research, Kelburn, Wellington 6012, New Zealand
| | - Olivier Gasser
- Malaghan Institute of Medical Research, Kelburn, Wellington 6012, New Zealand
| | - Mali Camberis
- Malaghan Institute of Medical Research, Kelburn, Wellington 6012, New Zealand
| | - Graham Le Gros
- Malaghan Institute of Medical Research, Kelburn, Wellington 6012, New Zealand
| | - Stephen Inns
- Department of Medicine, University of Otago, 23A Mein St., Newtown, Wellington 6242, New Zealand
| |
Collapse
|
4
|
Kaneko H, Sato H, Suzuki Y, Ikeda A, Kuwashima H, Ikeda R, Sato T, Irie K, Sue S, Maeda S. A Novel Characteristic Gastric Mucus Named "Web-like Mucus" Potentially Induced by Vonoprazan. J Clin Med 2024; 13:4070. [PMID: 39064109 PMCID: PMC11277586 DOI: 10.3390/jcm13144070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/27/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Background: In the absence of Helicobacter pylori (HP) infection, a characteristic gastric mucus adhesion may appear during the use of vonoprazan. We named this novel characteristic mucus "web-like mucus" (WLM). This study aimed to determine the incidence and risk factors for WLM. Methods: Between January 2017 and January 2022, 5665 patients were enrolled in this study. The patients were divided into a proton-pump inhibitor (PPI)-prescribed group (n = 2000), a vonoprazan-prescribed group (n = 268), and a no-PPI/vonoprazan-prescribed (n = 3397) group, and the presence of WLM was examined. After excluding four patients with autoimmune gastritis, the remaining 264 patients in the vonoprazan group were divided into WLM and non-WLM groups, and their clinical features were analyzed. Results: A total of 55 (21%) patients had WLM, all in the vonoprazan-prescribed group. There were no significant differences in factors such as, sex, age, chronic kidney disease, diabetes mellitus, HP eradication history, smoking, or alcohol consumption between the WLM and non-WLM groups. The median duration from the start of vonoprazan administration to the endoscopic detection of WLM was 2 (1-24) months. Conclusions: WLM appears to be a characteristic feature in patients treated with vonoprazan.
Collapse
Affiliation(s)
- Hiroaki Kaneko
- Department of Gastroenterology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura Kanazawa-Ku, Yokohama 236-0004, Japan; (H.K.); (H.S.); (Y.S.); (A.I.); (R.I.); (T.S.); (K.I.); (S.S.)
| | - Hiroki Sato
- Department of Gastroenterology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura Kanazawa-Ku, Yokohama 236-0004, Japan; (H.K.); (H.S.); (Y.S.); (A.I.); (R.I.); (T.S.); (K.I.); (S.S.)
| | - Yuichi Suzuki
- Department of Gastroenterology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura Kanazawa-Ku, Yokohama 236-0004, Japan; (H.K.); (H.S.); (Y.S.); (A.I.); (R.I.); (T.S.); (K.I.); (S.S.)
| | - Aya Ikeda
- Department of Gastroenterology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura Kanazawa-Ku, Yokohama 236-0004, Japan; (H.K.); (H.S.); (Y.S.); (A.I.); (R.I.); (T.S.); (K.I.); (S.S.)
| | - Hirofumi Kuwashima
- Yokohama Hodogaya Central Hospital, 43-1 Kamadai-Chou Hodogaya-Ku, Yokohama 240-8585, Japan;
| | - Ryosuke Ikeda
- Department of Gastroenterology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura Kanazawa-Ku, Yokohama 236-0004, Japan; (H.K.); (H.S.); (Y.S.); (A.I.); (R.I.); (T.S.); (K.I.); (S.S.)
| | - Takeshi Sato
- Department of Gastroenterology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura Kanazawa-Ku, Yokohama 236-0004, Japan; (H.K.); (H.S.); (Y.S.); (A.I.); (R.I.); (T.S.); (K.I.); (S.S.)
| | - Kuniyasu Irie
- Department of Gastroenterology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura Kanazawa-Ku, Yokohama 236-0004, Japan; (H.K.); (H.S.); (Y.S.); (A.I.); (R.I.); (T.S.); (K.I.); (S.S.)
| | - Soichiro Sue
- Department of Gastroenterology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura Kanazawa-Ku, Yokohama 236-0004, Japan; (H.K.); (H.S.); (Y.S.); (A.I.); (R.I.); (T.S.); (K.I.); (S.S.)
| | - Shin Maeda
- Department of Gastroenterology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura Kanazawa-Ku, Yokohama 236-0004, Japan; (H.K.); (H.S.); (Y.S.); (A.I.); (R.I.); (T.S.); (K.I.); (S.S.)
| |
Collapse
|
5
|
Zhang L, Muirhead KJ, Syed ZA, Dimitriadis EK, Ten Hagen KG. A novel cysteine-rich adaptor protein is required for mucin packaging and secretory granule stability in vivo. Proc Natl Acad Sci U S A 2024; 121:e2314309121. [PMID: 38285943 PMCID: PMC10861859 DOI: 10.1073/pnas.2314309121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 01/02/2024] [Indexed: 01/31/2024] Open
Abstract
Mucins are large, highly glycosylated extracellular matrix proteins that line and protect epithelia of the respiratory, digestive, and urogenital tracts. Previous work has shown that mucins form large, interconnected polymeric networks that mediate their biological functions once secreted. However, how these large matrix molecules are compacted and packaged into much smaller secretory granules within cells prior to secretion is largely unknown. Here, we demonstrate that a small cysteine-rich adaptor protein is essential for proper packaging of a secretory mucin in vivo. This adaptor acts via cysteine bonding between itself and the cysteine-rich domain of the mucin. Loss of this adaptor protein disrupts mucin packaging in secretory granules, alters the mobile fraction within granules, and results in granules that are larger, more circular, and more fragile. Understanding the factors and mechanisms by which mucins and other highly glycosylated matrix proteins are properly packaged and secreted may provide insight into diseases characterized by aberrant mucin secretion.
Collapse
Affiliation(s)
- Liping Zhang
- Developmental Glycobiology Section, National Institute of Dental and Craniofacial Research, NIH, Bethesda, MD20892-4370
| | - Kayla J. Muirhead
- Developmental Glycobiology Section, National Institute of Dental and Craniofacial Research, NIH, Bethesda, MD20892-4370
- Ambry Genetics, Aliso Viejo, CA92656
| | - Zulfeqhar A. Syed
- Developmental Glycobiology Section, National Institute of Dental and Craniofacial Research, NIH, Bethesda, MD20892-4370
- Electron Microscopy Core Facility, National Heart, Lung and Blood Institute, NIH, Bethesda, MD20892
| | - Emilios K. Dimitriadis
- Trans-NIH Resource on Biomedical Engineering and Physical Science, National Institute of Biomedical Imaging and Bioengineering, NIH, Bethesda, MD20892
| | - Kelly G. Ten Hagen
- Developmental Glycobiology Section, National Institute of Dental and Craniofacial Research, NIH, Bethesda, MD20892-4370
| |
Collapse
|
6
|
Yamanoi K, Fujii C, Nakayama A, Matsuura N, Takatori Y, Kato M, Yahagi N, Nakayama J. Decreased expression of TFF2 and decreased αGlcNAc glycosylation are malignant biomarkers of pyloric gland adenoma of the duodenum. Sci Rep 2023; 13:21641. [PMID: 38062108 PMCID: PMC10703765 DOI: 10.1038/s41598-023-49040-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/03/2023] [Indexed: 12/18/2023] Open
Abstract
Pyloric gland adenoma (PGA) is a duodenal neoplasm expressing MUC6 and is often associated with high-grade dysplasia and adenocarcinoma. MUC6 secreted from the pyloric gland cells carries unique O-glycans exhibiting terminal α1,4-linked N-acetylglucosamine residues (αGlcNAc). The small peptide trefoil factor 2 (TFF2) is also secreted from pyloric gland cells and binds to αGlcNAc. We recently demonstrated that αGlcNAc serves as a tumor suppressor for gastric neoplasm including PGA, but the significance of TFF2 expression remains unknown. We examined 20 lesions representing low- and high-grade PGA in 22 cases by immunohistochemistry for αGlcNAc, TFF2, MUC6, MUC5AC, MUC2 and p53. αGlcNAc, TFF2 and MUC6 were co-expressed on the cell surface and a dot-like pattern in the cytosol in low-grade PGA lesions. High-grade PGA also expressed MUC6, but reduced αGlcNAc and TFF2 expression. The ratios of αGlcNAc or TFF2 to MUC6 score in high-grade PGA were significantly lower than low-grade PGA (P < 0.001). Co-expression of αGlcNAc-glycosylated MUC6 and TFF2 in PGA suggests the existence of αGlcNAc/TFF2 form complex in PGA cells, a finding consistent with our observations in non-neoplastic Brunner's gland cells. The decreased αGlcNAc and TFF2 expression are associated with high grade atypical cells, indicative of the malignant potential of PGA.
Collapse
Affiliation(s)
- Kazuhiro Yamanoi
- Department of Pathology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan.
- Department of Molecular Pathology, Shinshu University School of Medicine, Matsumoto, Japan.
| | - Chifumi Fujii
- Department of Molecular Pathology, Shinshu University School of Medicine, Matsumoto, Japan
- Department of Biotechnology, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Matsumoto, Japan
- Center for Medical Education and Clinical Training, Shinshu University School of Medicine, Matsumoto, Japan
| | - Atsushi Nakayama
- Division of Research and Development for Minimally Invasive Treatment, Cancer Center, Keio University School of Medicine, Tokyo, Japan
| | - Noriko Matsuura
- Division of Research and Development for Minimally Invasive Treatment, Cancer Center, Keio University School of Medicine, Tokyo, Japan
| | - Yusaku Takatori
- Division of Research and Development for Minimally Invasive Treatment, Cancer Center, Keio University School of Medicine, Tokyo, Japan
| | - Motohiko Kato
- Division of Research and Development for Minimally Invasive Treatment, Cancer Center, Keio University School of Medicine, Tokyo, Japan
| | - Naohisa Yahagi
- Division of Research and Development for Minimally Invasive Treatment, Cancer Center, Keio University School of Medicine, Tokyo, Japan
| | - Jun Nakayama
- Department of Molecular Pathology, Shinshu University School of Medicine, Matsumoto, Japan
| |
Collapse
|
7
|
Mules TC, Inns S, Le Gros G. Helminths' therapeutic potential to treat intestinal barrier dysfunction. Allergy 2023; 78:2892-2905. [PMID: 37449458 DOI: 10.1111/all.15812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/20/2023] [Accepted: 07/02/2023] [Indexed: 07/18/2023]
Abstract
The intestinal barrier is a dynamic multi-layered structure which can adapt to environmental changes within the intestinal lumen. It has the complex task of allowing nutrient absorption while limiting entry of harmful microbes and microbial antigens present in the intestinal lumen. Excessive entry of microbial antigens via microbial translocation due to 'intestinal barrier dysfunction' is hypothesised to contribute to the increasing incidence of allergic, autoimmune and metabolic diseases, a concept referred to as the 'epithelial barrier theory'. Helminths reside in the intestinal tract are in intimate contact with the mucosal surfaces and induce a range of local immunological changes which affect the layers of the intestinal barrier. Helminths are proposed to prevent, or even treat, many of the diseases implicated in the epithelial barrier theory. This review will focus on the effect of helminths on intestinal barrier function and explore whether this could explain the proposed health benefits delivered by helminths.
Collapse
Affiliation(s)
- Thomas C Mules
- Malaghan Institute of Medical Research, Wellington, New Zealand
- University of Otago, Wellington, New Zealand
| | | | - Graham Le Gros
- Malaghan Institute of Medical Research, Wellington, New Zealand
| |
Collapse
|
8
|
Taniguchi M, Okumura R, Matsuzaki T, Nakatani A, Sakaki K, Okamoto S, Ishibashi A, Tani H, Horikiri M, Kobayashi N, Yoshikawa HY, Motooka D, Okuzaki D, Nakamura S, Kida T, Kameyama A, Takeda K. Sialylation shapes mucus architecture inhibiting bacterial invasion in the colon. Mucosal Immunol 2023; 16:624-641. [PMID: 37385587 DOI: 10.1016/j.mucimm.2023.06.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 06/07/2023] [Accepted: 06/07/2023] [Indexed: 07/01/2023]
Abstract
In the intestine, mucin 2 (Muc2) forms a network structure and prevents bacterial invasion. Glycans are indispensable for Muc2 barrier function. Among various glycosylation patterns of Muc2, sialylation inhibits bacteria-dependent Muc2 degradation. However, the mechanisms by which Muc2 creates the network structure and sialylation prevents mucin degradation remain unknown. Here, by focusing on two glycosyltransferases, St6 N-acetylgalactosaminide α-2,6-sialyltransferase 6 (St6galnac6) and β-1,3-galactosyltransferase 5 (B3galt5), mediating the generation of desialylated glycans, we show that sialylation forms the network structure of Muc2 by providing negative charge and hydrophilicity. The colonic mucus of mice lacking St6galnac6 and B3galt5 was less sialylated, thinner, and more permeable to microbiota, resulting in high susceptibility to intestinal inflammation. Mice with a B3galt5 mutation associated with inflammatory bowel disease (IBD) also showed the loss of desialylated glycans of mucus and the high susceptibility to intestinal inflammation, suggesting that the reduced sialylation of Muc2 is associated with the pathogenesis of IBD. In mucins of mice with reduced sialylation, negative charge was reduced, the network structure was disturbed, and many bacteria invaded. Thus, sialylation mediates the negative charging of Muc2 and facilitates the formation of the mucin network structure, thereby inhibiting bacterial invasion in the colon to maintain gut homeostasis.
Collapse
Affiliation(s)
- Mugen Taniguchi
- Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan; Infectious Diseases Unit, Department of Medical Innovations, New Drug Research Division, Otsuka Pharmaceutical Co., Ltd., Tokushima, Japan
| | - Ryu Okumura
- Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan; WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan; Institute for Open and Transdisciplinary Research Initiative, Osaka University, Osaka, Japan
| | - Takahisa Matsuzaki
- Center for Future Innovation, Graduate School of Engineering, Osaka University, Osaka, Japan; Department of Applied Physics, Graduate School of Engineering, Osaka University, Osaka, Japan
| | - Ayaka Nakatani
- Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan; Department of Otorhinolaryngology-Head and Neck Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Kei Sakaki
- Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Shota Okamoto
- Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan; WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Airi Ishibashi
- Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan; WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Haruka Tani
- Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan; WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Momoka Horikiri
- Department of Applied Physics, Graduate School of Engineering, Osaka University, Osaka, Japan
| | - Naritaka Kobayashi
- Department of Electronic Systems Engineering, The University of Shiga Prefecture, Shiga, Japan
| | - Hiroshi Y Yoshikawa
- Department of Applied Physics, Graduate School of Engineering, Osaka University, Osaka, Japan
| | - Daisuke Motooka
- Institute for Open and Transdisciplinary Research Initiative, Osaka University, Osaka, Japan; Department of Infection Metagenomics, Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Daisuke Okuzaki
- WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan; Department of Infection Metagenomics, Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Shota Nakamura
- Department of Infection Metagenomics, Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Toshiyuki Kida
- Institute for Open and Transdisciplinary Research Initiative, Osaka University, Osaka, Japan; Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Osaka, Japan
| | - Akihiko Kameyama
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan
| | - Kiyoshi Takeda
- Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan; WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan; Institute for Open and Transdisciplinary Research Initiative, Osaka University, Osaka, Japan; Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan.
| |
Collapse
|
9
|
de Jong IE, Bodewes SB, van Leeuwen OB, Oosterhuis D, Lantinga VA, Thorne AM, Lascaris B, van den Heuvel MC, Wells RG, Olinga P, de Meijer VE, Porte RJ. Restoration of Bile Duct Injury of Donor Livers During Ex Situ Normothermic Machine Perfusion. Transplantation 2023; 107:e161-e172. [PMID: 36721302 PMCID: PMC10205124 DOI: 10.1097/tp.0000000000004531] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/06/2022] [Accepted: 11/14/2022] [Indexed: 02/02/2023]
Abstract
BACKGROUND End-ischemic ex situ normothermic machine perfusion (NMP) enables assessment of donor livers prior to transplantation. The objective of this study was to provide support for bile composition as a marker of biliary viability and to investigate whether bile ducts of high-risk human donor livers already undergo repair during NMP. METHODS Forty-two livers that were initially declined for transplantation were included in our NMP clinical trial. After NMP, livers were either secondary declined (n = 17) or accepted for transplantation (n = 25) based on the chemical composition of bile and perfusate samples. Bile duct biopsies were taken before and after NMP and assessed using an established histological injury severity scoring system and a comprehensive immunohistochemical assessment focusing on peribiliary glands (PBGs), vascular damage, and regeneration. RESULTS Bile ducts of livers that were transplanted after viability testing during NMP showed better preservation of PBGs, (micro)vasculature, and increased cholangiocyte proliferation, compared with declined livers. Biliary bicarbonate, glucose, and pH were confirmed as accurate biomarkers of bile duct vitality. In addition, we found evidence of PBG-based progenitor cell differentiation toward mature cholangiocytes during NMP. CONCLUSIONS Favorable bile chemistry during NMP correlates well with better-preserved biliary microvasculature and PBGs, with a preserved capacity for biliary regeneration. During NMP, biliary tree progenitor cells start to differentiate toward mature cholangiocytes, facilitating restoration of the ischemically damaged surface epithelium.
Collapse
Affiliation(s)
- Iris E.M. de Jong
- Surgical Research Laboratory, Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Section of Hepatobiliary Surgery and Liver Transplantation, Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Silke B. Bodewes
- Surgical Research Laboratory, Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Section of Hepatobiliary Surgery and Liver Transplantation, Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Otto B. van Leeuwen
- Section of Hepatobiliary Surgery and Liver Transplantation, Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Dorenda Oosterhuis
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen, The Netherlands
| | - Veerle A. Lantinga
- Section of Hepatobiliary Surgery and Liver Transplantation, Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Adam M. Thorne
- Section of Hepatobiliary Surgery and Liver Transplantation, Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Bianca Lascaris
- Section of Hepatobiliary Surgery and Liver Transplantation, Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Marius C. van den Heuvel
- Department of Pathology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Rebecca G. Wells
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Peter Olinga
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen, The Netherlands
| | - Vincent E. de Meijer
- Section of Hepatobiliary Surgery and Liver Transplantation, Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Robert J. Porte
- Section of Hepatobiliary Surgery and Liver Transplantation, Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Erasmus MC Transplant Institute, University Medical Center Rotterdam, Department of Surgery, Division of HPB and Transplant Surgery, Rotterdam, The Netherlands
| |
Collapse
|
10
|
Abstract
Type 2 immunity mediates protective responses to helminths and pathological responses to allergens, but it also has broad roles in the maintenance of tissue integrity, including wound repair. Type 2 cytokines are known to promote fibrosis, an overzealous repair response, but their contribution to healthy wound repair is less well understood. This review discusses the evidence that the canonical type 2 cytokines, IL-4 and IL-13, are integral to the tissue repair process through two main pathways. First, essential for the progression of effective tissue repair, IL-4 and IL-13 suppress the initial inflammatory response to injury. Second, these cytokines regulate how the extracellular matrix is modified, broken down, and rebuilt for effective repair. IL-4 and/or IL-13 amplifies multiple aspects of the tissue repair response, but many of these pathways are highly redundant and can be induced by other signals. Therefore, the exact contribution of IL-4Rα signaling remains difficult to unravel.
Collapse
Affiliation(s)
- Judith E Allen
- Lydia Becker Institute for Immunology and Inflammation and Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom;
| |
Collapse
|
11
|
Znalesniak EB, Laskou A, Salm F, Haupenthal K, Harder S, Schlüter H, Hoffmann W. The Forms of the Lectin Tff2 Differ in the Murine Stomach and Pancreas: Indications for Different Molecular Functions. Int J Mol Sci 2023; 24:ijms24087059. [PMID: 37108221 PMCID: PMC10138697 DOI: 10.3390/ijms24087059] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 03/30/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023] Open
Abstract
The lectin TFF2 belongs to the trefoil factor family (TFF). This polypeptide is typically co-secreted with the mucin MUC6 from gastric mucous neck cells, antral gland cells, and duodenal Brunner glands. Here, TFF2 fulfills a protective function by forming a high-molecular-mass complex with the MUC6, physically stabilizing the mucus barrier. In pigs and mice, and slightly in humans, TFF2 is also synthesized in the pancreas. Here, we investigated the murine stomach, pancreas, and duodenum by fast protein liquid chromatography (FPLC) and proteomics and identified different forms of Tff2. In both the stomach and duodenum, the predominant form is a high-molecular-mass complex with Muc6, whereas, in the pancreas, only low-molecular-mass monomeric Tff2 was detectable. We also investigated the expression of Tff2 and other selected genes in the stomach, pancreas, and the proximal, medial, and distal duodenum (RT-PCR analysis). The absence of the Tff2/Muc6 complex in the pancreas is due to a lack of Muc6. Based on its known motogenic, anti-apoptotic, and anti-inflammatory effects, we propose a protective receptor-mediated function of monomeric Tff2 for the pancreatic ductal epithelium. This view is supported by a report that a loss of Tff2 promotes the formation of pancreatic intraductal mucinous neoplasms.
Collapse
Affiliation(s)
- Eva B Znalesniak
- Institute of Molecular Biology and Medicinal Chemistry, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Aikaterini Laskou
- Institute of Molecular Biology and Medicinal Chemistry, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Franz Salm
- Institute of Molecular Biology and Medicinal Chemistry, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Katharina Haupenthal
- Institute of Molecular Biology and Medicinal Chemistry, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Sönke Harder
- Section Mass Spectrometry and Proteomics, Diagnostic Center, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Hartmut Schlüter
- Section Mass Spectrometry and Proteomics, Diagnostic Center, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Werner Hoffmann
- Institute of Molecular Biology and Medicinal Chemistry, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| |
Collapse
|
12
|
Eletto D, Mentucci F, Vllahu M, Voli A, Petrella A, Boccellato F, Meyer TF, Porta A, Tosco A. IFNγ-dependent silencing of TFF1 during Helicobacter pylori infection. Open Biol 2022; 12:220278. [PMID: 36514982 PMCID: PMC9748780 DOI: 10.1098/rsob.220278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Chronic Helicobacter pylori infection is the leading cause of intestinal-type adenocarcinoma, as prolonged Helicobacter colonization triggers chronic active gastritis, which may evolve into adenocarcinoma of the intestinal type. In this environment, cytokines play a significant role in determining the evolution of the infection. In combination with other factors (genetic, environmental and nutritional), the pro-inflammatory response may trigger pro-oncogenic mechanisms that lead to the silencing of tumour-suppressor genes, such as trefoil factor 1 (TFF1). The latter is known to play a protective role by maintaining the gastric mucosa integrity and retaining H. pylori in the mucus layer, preventing the progression of infection and, consequently, the development of gastric cancer (GC). Since TFF1 expression is reduced during chronic Helicobacter infection with a loss of gastric mucosa protection, we investigated the molecular pathways involved in this reduction. Specifically, we evaluated the effect of some pro-inflammatory cytokines on TFF1 regulation in GC and primary gastric cells by RT-qPCR and luciferase reporter assay analyses and the repressor role of the transcription factor C/EBPβ, overexpressed in gastric-intestinal cancer. Our results show that, among several cytokines, IFNγ stimulates C/EBPβ expression, which acts as a negative regulator of TFF1 by binding its promoter at three different sites.
Collapse
Affiliation(s)
- D. Eletto
- Department of Pharmacy, University of Salerno, Fisciano, Salerno, Italy
| | - F. Mentucci
- Department of Pharmacy, University of Salerno, Fisciano, Salerno, Italy,PhD Program in Drug Discovery and Development, University of Salerno, Fisciano, Salerno, Italy
| | - M. Vllahu
- Department of Pharmacy, University of Salerno, Fisciano, Salerno, Italy
| | - A. Voli
- Department of Pharmacy, University of Salerno, Fisciano, Salerno, Italy,PhD Program in Drug Discovery and Development, University of Salerno, Fisciano, Salerno, Italy
| | - A. Petrella
- Department of Pharmacy, University of Salerno, Fisciano, Salerno, Italy
| | - F. Boccellato
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7DQ, UK
| | - T. F. Meyer
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany,Laboratory of Infection Oncology, Institute of Clinical Molecular Biology, Christian Albrecht's University of Kiel—University Hospital Schleswig Holstein—Campus Kiel, Kiel, Germany
| | - A. Porta
- Department of Pharmacy, University of Salerno, Fisciano, Salerno, Italy
| | - A. Tosco
- Department of Pharmacy, University of Salerno, Fisciano, Salerno, Italy
| |
Collapse
|
13
|
Mortensen JS, Bohr SSR, Harloff-Helleberg S, Hatzakis NS, Saaby L, Nielsen HM. Physical and barrier changes in gastrointestinal mucus induced by the permeation enhancer sodium 8-[(2-hydroxybenzoyl)amino]octanoate (SNAC). J Control Release 2022; 352:163-178. [PMID: 36314534 DOI: 10.1016/j.jconrel.2022.09.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 09/09/2022] [Accepted: 09/15/2022] [Indexed: 11/08/2022]
Abstract
Drug delivery systems (DDS) for oral delivery of peptide drugs contain excipients that facilitate and enhance absorption. However, little knowledge exists on how DDS excipients such as permeation enhancers interact with the gastrointestinal mucus barrier. This study aimed to investigate interactions of the permeation enhancer sodium 8-[(2-hydroxybenzoyl)amino]octanoate (SNAC) with ex vivo porcine intestinal mucus (PIM), ex vivo porcine gastric mucus (PGM), as well as with in vitro biosimilar mucus (BM) by profiling their physical and barrier properties upon exposure to SNAC. Bulk mucus permeability studies using the peptides cyclosporine A and vancomycin, ovalbumin as a model protein, as well as fluorescein-isothiocyanate dextrans (FDs) of different molecular weights and different surface charges were conducted in parallel to mucus retention force studies using a texture analyzer, rheological studies, cryo-scanning electron microscopy (cryo-SEM), and single particle tracking of fluorescence-labelled nanoparticles to investigate the effects of the SNAC-mucus interaction. The exposure of SNAC to PIM increased the mucus retention force, storage modulus, viscosity, increased nanoparticle confinement within PIM as well as decreased the permeation of cyclosporine A and ovalbumin through PIM. Surprisingly, the viscosity of PGM and the permeation of cyclosporine A and ovalbumin through PGM was unaffected by the presence of SNAC, thus the effect of SNAC depended on the regional site that mucus was collected from. In the absence of SNAC, the permeation of different molecular weight and differently charged FDs through PIM was comparable to that through BM. However, while bulk permeation of neither of the FDs through PIM was affected by SNAC, the presence of SNAC decreased the permeation of FD4 and increased the permeation of FD150 kDa through BM. Additionally, and in contrast to observations in PIM, nanoparticle confinement within BM remained unaffected by the presence of SNAC. In conclusion, the present study showed that SNAC altered the physical and barrier properties of PIM, but not of PGM. The effects of SNAC in PIM were not observed in the BM in vitro model. Altogether, the study highlights the need for further understanding how permeation enhancers influence the mucus barrier and illustrates that the selected mucus model for such studies should be chosen with care.
Collapse
Affiliation(s)
- J S Mortensen
- Center for Biopharmaceuticals and Biobarriers in Drug Delivery, Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - S S-R Bohr
- Center for Biopharmaceuticals and Biobarriers in Drug Delivery, Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark; Department of Chemistry, Nano-Science Center, Faculty of Science, University of Copenhagen, Bülowsvej 17, DK-1870 Frederiksberg, Denmark
| | - S Harloff-Helleberg
- Center for Biopharmaceuticals and Biobarriers in Drug Delivery, Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark; LEO Foundation Center for Cutaneous Drug Delivery, Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - N S Hatzakis
- Department of Chemistry, Nano-Science Center, Faculty of Science, University of Copenhagen, Bülowsvej 17, DK-1870 Frederiksberg, Denmark; Novo Nordisk Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| | - L Saaby
- CNS Drug Delivery and Barrier Modelling, Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark; Bioneer A/S, Kogle Alle 2, DK-2970 Hørsholm, Denmark
| | - H M Nielsen
- Center for Biopharmaceuticals and Biobarriers in Drug Delivery, Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark.
| |
Collapse
|
14
|
Hill DB, Button B, Rubinstein M, Boucher RC. Physiology and pathophysiology of human airway mucus. Physiol Rev 2022; 102:1757-1836. [PMID: 35001665 PMCID: PMC9665957 DOI: 10.1152/physrev.00004.2021] [Citation(s) in RCA: 124] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 12/13/2021] [Accepted: 12/19/2021] [Indexed: 01/27/2023] Open
Abstract
The mucus clearance system is the dominant mechanical host defense system of the human lung. Mucus is cleared from the lung by cilia and airflow, including both two-phase gas-liquid pumping and cough-dependent mechanisms, and mucus transport rates are heavily dependent on mucus concentration. Importantly, mucus transport rates are accurately predicted by the gel-on-brush model of the mucociliary apparatus from the relative osmotic moduli of the mucus and periciliary-glycocalyceal (PCL-G) layers. The fluid available to hydrate mucus is generated by transepithelial fluid transport. Feedback interactions between mucus concentrations and cilia beating, via purinergic signaling, coordinate Na+ absorptive vs Cl- secretory rates to maintain mucus hydration in health. In disease, mucus becomes hyperconcentrated (dehydrated). Multiple mechanisms derange the ion transport pathways that normally hydrate mucus in muco-obstructive lung diseases, e.g., cystic fibrosis (CF), chronic obstructive pulmonary disease (COPD), non-CF bronchiectasis (NCFB), and primary ciliary dyskinesia (PCD). A key step in muco-obstructive disease pathogenesis is the osmotic compression of the mucus layer onto the airway surface with the formation of adherent mucus plaques and plugs, particularly in distal airways. Mucus plaques create locally hypoxic conditions and produce airflow obstruction, inflammation, infection, and, ultimately, airway wall damage. Therapies to clear adherent mucus with hydrating and mucolytic agents are rational, and strategies to develop these agents are reviewed.
Collapse
Affiliation(s)
- David B Hill
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Joint Department of Biomedical Engineering, The University of North Carolina and North Carolina State University, Chapel Hill, North Carolina
| | - Brian Button
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Michael Rubinstein
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Mechanical Engineering and Materials Science, Biomedical Engineering, Physics, and Chemistry, Duke University, Durham, North Carolina
| | - Richard C Boucher
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
15
|
Hohman LS, Osborne LC. A gut-centric view of aging: Do intestinal epithelial cells contribute to age-associated microbiota changes, inflammaging, and immunosenescence? Aging Cell 2022; 21:e13700. [PMID: 36000805 PMCID: PMC9470900 DOI: 10.1111/acel.13700] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 07/07/2022] [Accepted: 08/03/2022] [Indexed: 01/25/2023] Open
Abstract
Intestinal epithelial cells (IECs) serve as both a physical and an antimicrobial barrier against the microbiota, as well as a conduit for signaling between the microbiota and systemic host immunity. As individuals age, the balance between these systems undergoes a myriad of changes due to age-associated changes to the microbiota, IECs themselves, immunosenescence, and inflammaging. In this review, we discuss emerging data related to age-associated loss of intestinal barrier integrity and posit that IEC dysfunction may play a central role in propagating age-associated alterations in microbiota composition and immune homeostasis.
Collapse
Affiliation(s)
- Leah S. Hohman
- Department of Microbiology & Immunology, Life Sciences InstituteUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Lisa C. Osborne
- Department of Microbiology & Immunology, Life Sciences InstituteUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| |
Collapse
|
16
|
Steiner CA, Cartwright IM, Taylor CT, Colgan SP. Hypoxia-inducible factor as a bridge between healthy barrier function, wound healing, and fibrosis. Am J Physiol Cell Physiol 2022; 323:C866-C878. [PMID: 35912990 PMCID: PMC9467472 DOI: 10.1152/ajpcell.00227.2022] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/07/2022] [Accepted: 07/23/2022] [Indexed: 11/22/2022]
Abstract
The healthy mammalian intestine is lined by a single layer of epithelial cells. These cells provide a selectively permeable barrier to luminal contents and normally do so in an efficient and effective manner. Barrier function in the healthy mucosa is provided via several mechanisms including epithelial junctional complexes, mucus production, as well as mucosal-derived antimicrobial proteins. As tissue metabolism is central to the maintenance of homeostasis in the mucosa, intestinal [Formula: see text] levels are uniquely low due to counter-current blood flow and the presence of the microbiota, resulting in the stabilization of the transcription factor hypoxia-inducible factor (HIF). Ongoing studies have revealed that HIF molds normal intestinal metabolism and is central to the coordination of barrier regulation during both homeostasis and active disease. During acute inflammation, HIF is central to controlling the rapid restitution of the epithelium consistent with normal wound healing responses. In contrast, HIF may also contribute to the fibrostenotic response associated with chronic, nonresolving inflammation. As such, HIF may function as a double-edged sword in the overall course of the inflammatory response. Here, we review recent literature on the contribution of HIF to mucosal barrier function, wound healing, and fibrosis.
Collapse
Affiliation(s)
- Calen A Steiner
- Division of Gastroenterology and Hepatology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Department of Medicine and the Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, Colorado
| | - Ian M Cartwright
- Division of Gastroenterology and Hepatology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Department of Medicine and the Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, Colorado
- Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, Colorado
| | - Cormac T Taylor
- School of Medicine, Conway Institute and Systems Biology Ireland, University College Dublin, Dublin, Ireland
| | - Sean P Colgan
- Division of Gastroenterology and Hepatology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Department of Medicine and the Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, Colorado
- Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, Colorado
| |
Collapse
|
17
|
Kinoshita Y, Arita S, Ogawa T, Takenouchi A, Inagaki-Ohara K. Augmented leptin-induced trefoil factor 3 expression and epidermal growth factor receptor transactivation differentially influences neoplasia progression in the stomach and colorectum of dietary fat-induced obese mice. Arch Biochem Biophys 2022; 729:109379. [PMID: 36002083 DOI: 10.1016/j.abb.2022.109379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/07/2022] [Accepted: 08/16/2022] [Indexed: 11/02/2022]
Abstract
Obesity is a risk factor for gastrointestinal malignancies and tumors. However, which factors either protect or predispose the gastrointestinal organs to high-fat diet (HFD)-induced neoplasia remains unclear. Here, we demonstrate that HFD impacts the stomach to a greater extent as compared to the colorectum, resulting in leptin receptor (LepR) signaling-mediated neoplasia in the tissues. HFD activated leptin signaling, which in turn, accelerates the pathogenesis in the gastric mucosa more than that in the colorectum along with ectopic TFF3 expression. Moreover, in the stomach, higher levels of phosphorylated epidermal growth factor receptor (EGFR) in addition to the activation of STAT3 and Akt were observed as compared to the colorectum. The mice with LepR deletion in the gastrointestinal epithelium exhibited a suppressed induction of leptin, TFF3, and phosphorylated EGFR in the stomach, whereas the levels in the colorectum were insignificant. In co-transfected COS-7 cells with LepR and EGFR plasmid DNA, leptin transactivated EGFR to accelerate TFF3 induction along with activation of STAT3, ERK1/2, Akt, and PI3K p85/p55. Furthermore, TFF3 could bind to EGFR but did not transactivate LepR. Leptin-induced TFF3 induction was markedly suppressed by inhibitors of PI3K (LY294002) and EGFR (Erlotinib). Together, these results suggest a novel role of LepR-mediated signaling in transactivating EGFR that leads to TFF3 expression via the PI3K-Akt pathway. Therefore, this study sheds light on the identification of potentially new therapeutic targets for the treatment of pre-cancerous symptoms in stomach and colorectum.
Collapse
Affiliation(s)
- Yuta Kinoshita
- Division of Host Defense, Department of Life Sciences, Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, 5562 Nanatsuka, Shobara, Hiroshima, 727-0023, Japan
| | - Seiya Arita
- Division of Host Defense, Department of Life Sciences, Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, 5562 Nanatsuka, Shobara, Hiroshima, 727-0023, Japan
| | - Takumi Ogawa
- Division of Host Defense, Department of Life Sciences, Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, 5562 Nanatsuka, Shobara, Hiroshima, 727-0023, Japan
| | - Ayane Takenouchi
- Division of Host Defense, Department of Life Sciences, Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, 5562 Nanatsuka, Shobara, Hiroshima, 727-0023, Japan
| | - Kyoko Inagaki-Ohara
- Division of Host Defense, Department of Life Sciences, Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, 5562 Nanatsuka, Shobara, Hiroshima, 727-0023, Japan.
| |
Collapse
|
18
|
Oncel S, Basson MD. Gut homeostasis, injury, and healing: New therapeutic targets. World J Gastroenterol 2022; 28:1725-1750. [PMID: 35633906 PMCID: PMC9099196 DOI: 10.3748/wjg.v28.i17.1725] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/12/2021] [Accepted: 03/27/2022] [Indexed: 02/06/2023] Open
Abstract
The integrity of the gastrointestinal mucosa plays a crucial role in gut homeostasis, which depends upon the balance between mucosal injury by destructive factors and healing via protective factors. The persistence of noxious agents such as acid, pepsin, nonsteroidal anti-inflammatory drugs, or Helicobacter pylori breaks down the mucosal barrier and injury occurs. Depending upon the size and site of the wound, it is healed by complex and overlapping processes involving membrane resealing, cell spreading, purse-string contraction, restitution, differentiation, angiogenesis, and vasculogenesis, each modulated by extracellular regulators. Unfortunately, the gut does not always heal, leading to such pathology as peptic ulcers or inflammatory bowel disease. Currently available therapeutics such as proton pump inhibitors, histamine-2 receptor antagonists, sucralfate, 5-aminosalicylate, antibiotics, corticosteroids, and immunosuppressants all attempt to minimize or reduce injury to the gastrointestinal tract. More recent studies have focused on improving mucosal defense or directly promoting mucosal repair. Many investigations have sought to enhance mucosal defense by stimulating mucus secretion, mucosal blood flow, or tight junction function. Conversely, new attempts to directly promote mucosal repair target proteins that modulate cytoskeleton dynamics such as tubulin, talin, Ehm2, filamin-a, gelsolin, and flightless I or that proteins regulate focal adhesions dynamics such as focal adhesion kinase. This article summarizes the pathobiology of gastrointestinal mucosal healing and reviews potential new therapeutic targets.
Collapse
Affiliation(s)
- Sema Oncel
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202, United States
| | - Marc D Basson
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202, United States
- Department of Surgery, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202, United States
- Department of Pathology, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202, United States
| |
Collapse
|
19
|
Livzan MA, Bicbavova GR, Romanyuk AE. Ulcerative colitis: focus on colonic mucosal resistance. BULLETIN OF SIBERIAN MEDICINE 2022; 21:121-132. [DOI: 10.20538/1682-0363-2022-1-121-132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/17/2024]
Abstract
In recent decades, following cooperation between scientists in various specialties, new unique data on the pathogenesis of ulcerative colitis have been obtained. The role of an impaired immune response to antigens of gut microbiota in genetically predisposed individuals under the effect of certain environmental factors was proven. Assessing the interaction between the colonic mucosa and gut microbiota will help to understand the mechanisms of ulcerative colitis and develop new treatment strategies for the disease.This review presents modern views on the pathogenesis of ulcerative colitis with a focus on the imbalance between local protective and aggressive factors of the gastric and intestinal mucosa. The structure and role of the epithelial barrier both under normal conditions and in ulcerative colitis are considered in detail.The aim of this review was to summarize the data on resistance of the colonic mucosa and its damage in ulcerative colitis.
Collapse
|
20
|
Howard RL, Markovetz M, Wang Y, Ehre C, Sheikh SZ, Allbritton NL, Hill DB. Biochemical and rheological analysis of human colonic culture mucus reveals similarity to gut mucus. Biophys J 2021; 120:5384-5394. [PMID: 34695384 PMCID: PMC8715165 DOI: 10.1016/j.bpj.2021.10.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 07/19/2021] [Accepted: 10/19/2021] [Indexed: 11/19/2022] Open
Abstract
The goal of this project was to validate the functional relevance and utility of mucus produced by an in vitro intestinal cell culture model. This is facilitated by the need to physiologically replicate both healthy and abnormal mucus conditions from native intestinal tissue, where mucus properties have been connected to intestinal disease models. Mucus harvested from colonic cell cultures derived from healthy donors was compared to mucus collected from surgically resected, noninflamed transverse colon tissue. The rheological and biochemical properties of these mucus samples were compared using oscillational rheometry, particle-tracking microrheology, multiangle laser light scattering, refractometry, and immunohistochemical imaging. An air-liquid interface culture of primary human colonic epithelial cells generated a continuous monolayer with an attached mucus layer that displayed increasing weight percent (wt%) of solids over 1 week (1.3 ± 0.5% at 2 days vs. 2.4 ± 0.3% at 7 days). The full range of mucus concentrations (0.9-3.3%) observed during culture was comparable to that displayed by ex vivo mucus (1.3-1.9%). Bulk rheological measurements displayed similar wt%-based complex viscosities between in vitro and ex vivo mucus, with the complex viscosity of both systems increasing with wt% of solids. Particle-tracking microrheology showed higher complex viscosities for ex vivo mucus samples than in vitro mucus which was explained by a greater fraction of water present in in vitro mucus than ex vivo, i.e., in vitro mucus is more heterogeneous than ex vivo. Refractometry, multiangle laser light scattering, and immunostaining showed increased mucus complex size in ex vivo mucus compared with in vitro mucus, which may have been due to the admixture of mucus and cellular debris during ex vivo mucus collection. The air-liquid interface culture system produced intestinal mucus with similar composition and rheology to native human gut mucus, providing a platform to analyze pathological differences in intestinal mucus.
Collapse
Affiliation(s)
- R Logan Howard
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Matthew Markovetz
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Yuli Wang
- Department of Bioengineering, University of Washington, Seattle, Washington
| | - Camille Ehre
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Division of Pediatric Pulmonology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Shehzad Z Sheikh
- Division of Gastroenterology and Hepatology, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Nancy L Allbritton
- Department of Bioengineering, University of Washington, Seattle, Washington
| | - David B Hill
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.
| |
Collapse
|
21
|
Yuki A, Fujii C, Yamanoi K, Matoba H, Harumiya S, Kawakubo M, Nakayama J. Glycosylation of MUC6 by α1,4-linked N-acetylglucosamine enhances suppression of pancreatic cancer malignancy. Cancer Sci 2021; 113:576-586. [PMID: 34808019 PMCID: PMC8819301 DOI: 10.1111/cas.15209] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 11/04/2021] [Accepted: 11/08/2021] [Indexed: 11/27/2022] Open
Abstract
Biomarkers for early diagnosis of pancreatic cancer are greatly needed, as the high fatality of this cancer is in part due to delayed detection. α1,4‐linked N‐acetylglucosamine (αGlcNAc), a unique O‐glycan specific to gastric gland mucus, is biosynthesized by α1,4‐N‐acetylglucosaminyltransferase (α4GnT) and primarily bound at the terminal glycosylated residue to scaffold protein MUC6. We previously reported that αGlcNAc expression decreases at early stages of neoplastic pancreatic lesions, followed by decreased MUC6 expression, although functional effects of these outcomes were unknown. Here, we ectopically expressed α4GnT, the αGlcNAc biosynthetic enzyme, together with MUC6 in the human pancreatic cancer cell lines MIA PaCa‐2 and PANC‐1, neither of which expresses α4GnT and MUC6. We observed significantly suppressed proliferation in both lines following coexpression of α4GnT and MUC6. Moreover, cellular motility decreased following MUC6 ectopic expression, an effect enhanced by cotransduction with α4GnT. MUC6 expression also attenuated invasiveness of both lines relative to controls, and this effect was also enhanced by additional α4GnT expression. We found αGlcNAc‐bound MUC6 formed a complex with trefoil factor 2. Furthermore, analysis of survival curves of patients with pancreatic ductal adenocarcinoma using a gene expression database showed that samples marked by higher A4GNT or MUC6 mRNA levels were associated with relatively favorable prognosis. These results strongly suggest that αGlcNAc and MUC6 function as tumor suppressors in pancreatic cancer and that decreased expression of both may serve as a biomarker of tumor progression to pancreatic cancer.
Collapse
Affiliation(s)
- Atsuko Yuki
- Department of Molecular Pathology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Chifumi Fujii
- Department of Molecular Pathology, Shinshu University School of Medicine, Matsumoto, Japan.,Department of Biotechnology, Interdisciplinary Cluster for Cutting Edge Research, Institute for Biomedical Sciences, Shinshu University, Matsumoto, Japan
| | - Kazuhiro Yamanoi
- Department of Molecular Pathology, Shinshu University School of Medicine, Matsumoto, Japan.,Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Hisanori Matoba
- Department of Molecular Pathology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Satoru Harumiya
- Department of Molecular Pathology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Masatomo Kawakubo
- Department of Molecular Pathology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Jun Nakayama
- Department of Molecular Pathology, Shinshu University School of Medicine, Matsumoto, Japan
| |
Collapse
|
22
|
Lin YL, Li Y. The Biological Synthesis and the Function of Mucin 2 in Pseudomyxoma Peritonei. Cancer Manag Res 2021; 13:7909-7917. [PMID: 34703312 PMCID: PMC8527350 DOI: 10.2147/cmar.s324982] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 08/11/2021] [Indexed: 11/25/2022] Open
Abstract
Excessive mucus secretion is the most prominent feature of pseudomyxoma peritonei (PMP), which often leads to significant increase in abdominal circumference, intractable abdominal pain, progressive intestinal obstruction, abdominal organ adhesions, and cachexia. Excessive mucus secretion is also the main cause of death. Cytoreductive surgery (CRS) combined with hyperthermic intraperitoneal chemotherapy (HIPEC) is the recommended treatment for PMP. However, recurrence is frequently observed even after CRS and HIPEC, presenting similar clinical manifestations. Mucin 2 (MUC2) is the main type of mucin in PMP and plays a key role in the progressive sclerosis of mucus. To comprehensively demonstrate the biosynthetic process and molecular features of MUC2 and to provide new directions for the development of PMP mucolytic strategies, this review systematically summarizes the molecular biology of MUC2, including MUC2 gene structure, transcription, translation, post-translational modification, tertiary structure, and factors regulating mucus viscoelasticity. The results show that MUC2 is a highly glycosylated protein, with glycan accounts for 80% to 90% of the dry weight. The assembly pattern of MUC2 is highly complicated, presenting a bead-like filament. Salt concentration, pH, mucin concentration and trefoil factor family may contribute to the increase in mucus viscoelasticity and sclerosis, which could be used to develop drugs to soften or even dissolve mucus in the future.
Collapse
Affiliation(s)
- Yu-Lin Lin
- Department of Peritoneal Cancer Surgery, Beijing Shijitan Hospital, Capital Medical University (Beijing Technical Training Base of Tumor Deep Hyperthermia and Whole-Body Hyperthermia), Department of Oncology, Capital Medical University, Beijing, 100038, People's Republic of China
| | - Yan Li
- Department of Peritoneal Cancer Surgery, Beijing Shijitan Hospital, Capital Medical University (Beijing Technical Training Base of Tumor Deep Hyperthermia and Whole-Body Hyperthermia), Department of Oncology, Capital Medical University, Beijing, 100038, People's Republic of China
| |
Collapse
|
23
|
Fang J, Wang H, Zhou Y, Zhang H, Zhou H, Zhang X. Slimy partners: the mucus barrier and gut microbiome in ulcerative colitis. Exp Mol Med 2021; 53:772-787. [PMID: 34002011 PMCID: PMC8178360 DOI: 10.1038/s12276-021-00617-8] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/14/2021] [Accepted: 01/31/2021] [Indexed: 02/08/2023] Open
Abstract
Ulcerative colitis (UC) is a chronic recurrent intestinal inflammatory disease characterized by high incidence and young onset age. Recently, there have been some interesting findings in the pathogenesis of UC. The mucus barrier, which is composed of a mucin complex rich in O-glycosylation, not only provides nutrients and habitat for intestinal microbes but also orchestrates the taming of germs. In turn, the gut microbiota modulates the production and secretion of mucins and stratification of the mucus layers. Active bidirectional communication between the microbiota and its 'slimy' partner, the mucus barrier, seems to be a continually performed concerto, maintaining homeostasis of the gut ecological microenvironment. Any abnormalities may induce a disorder in the gut community, thereby causing inflammatory damage. Our review mainly focuses on the complicated communication between the mucus barrier and gut microbiome to explore a promising new avenue for UC therapy.
Collapse
Affiliation(s)
- Jian Fang
- grid.203507.30000 0000 8950 5267Department of Preventive Medicine, Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang People’s Republic of China ,grid.412551.60000 0000 9055 7865College of Medicine, Shaoxing University, 508 Huancheng Road, Shaoxing, Zhejiang Province People’s Republic of China
| | - Hui Wang
- grid.415644.60000 0004 1798 6662Department of Colorectal Surgery, Shaoxing people’s Hospital, 568 North Zhongxing Road, Shaoxing, Zhejiang Province People’s Republic of China
| | - Yuping Zhou
- grid.203507.30000 0000 8950 5267The Affiliated Hospital of Medical School, Ningbo University, 247 Renmin Road, Ningbo, Zhejiang People’s Republic of China
| | - Hui Zhang
- grid.203507.30000 0000 8950 5267Department of Preventive Medicine, Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang People’s Republic of China
| | - Huiting Zhou
- grid.203507.30000 0000 8950 5267Department of Preventive Medicine, Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang People’s Republic of China
| | - Xiaohong Zhang
- grid.203507.30000 0000 8950 5267Department of Preventive Medicine, Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang People’s Republic of China
| |
Collapse
|
24
|
Hoffmann W. Trefoil Factor Family (TFF) Peptides and Their Links to Inflammation: A Re-evaluation and New Medical Perspectives. Int J Mol Sci 2021; 22:ijms22094909. [PMID: 34066339 PMCID: PMC8125380 DOI: 10.3390/ijms22094909] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/21/2021] [Accepted: 04/21/2021] [Indexed: 12/16/2022] Open
Abstract
Trefoil factor family peptides (TFF1, TFF2, TFF3), together with mucins, are typical exocrine products of mucous epithelia. Here, they act as a gastric tumor suppressor (TFF1) or they play different roles in mucosal innate immune defense (TFF2, TFF3). Minute amounts are also secreted as endocrine, e.g., by the immune and central nervous systems. As a hallmark, TFF peptides have different lectin activities, best characterized for TFF2, but also TFF1. Pathologically, ectopic expression occurs during inflammation and in various tumors. In this review, the role of TFF peptides during inflammation is discussed on two levels. On the one hand, the expression of TFF1-3 is regulated by inflammatory signals in different ways (upstream links). On the other hand, TFF peptides influence inflammatory processes (downstream links). The latter are recognized best in various Tff-deficient mice, which have completely different phenotypes. In particular, TFF2 is secreted by myeloid cells (e.g., macrophages) and lymphocytes (e.g., memory T cells), where it modulates immune reactions triggering inflammation. As a new concept, in addition to lectin-triggered activation, a hypothetical lectin-triggered inhibition of glycosylated transmembrane receptors by TFF peptides is discussed. Thus, TFFs are promising players in the field of glycoimmunology, such as galectins and C-type lectins.
Collapse
Affiliation(s)
- Werner Hoffmann
- Institute of Molecular Biology and Medicinal Chemistry, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| |
Collapse
|
25
|
Eletto D, Vllahu M, Mentucci F, Del Gaudio P, Petrella A, Porta A, Tosco A. TFF1 Induces Aggregation and Reduces Motility of Helicobacter pylori. Int J Mol Sci 2021; 22:ijms22041851. [PMID: 33673347 PMCID: PMC7918695 DOI: 10.3390/ijms22041851] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 12/21/2022] Open
Abstract
Gastric cancer is considered one of the most common malignancies in humans and Helicobacter pylori infection is the major environmental risk factor of gastric cancer development. Given the high spread of this bacterium whose infection is mostly asymptomatic, H. pylori colonization persists for a long time, becoming chronic and predisposing to malignant transformation. The first defensive barrier from bacterial infection is constituted by the gastric mucosa that secretes several protective factors, among which is the trefoil factor 1 (TFF1), that, as mucin 5AC, binds the bacterium. Even if the protective role of TFF1 is well-documented, the molecular mechanisms that confer a beneficial function to the interaction among TFF1 and H. pylori remain still unclear. Here we analyze the effects of this interaction on H. pylori at morphological and molecular levels by means of microscopic observation, chemiotaxis and motility assays and real-time PCR analysis. Our results show that TFF1 favors aggregation of H. pylori and significantly slows down the motility of the bacterium across the mucus. Such aggregates significantly reduce both flgE and flaB gene transcription compared with bacteria not incubated with TFF1. Finally, our results suggest that the interaction between TFF1 and the bacterium may explain the frequent persistence of H. pylori in the human host without inducing disease.
Collapse
Affiliation(s)
- Daniela Eletto
- Department of Pharmacy, University of Salerno, 84084 Fisciano (SA), Italy; (D.E.); (M.V.); (F.M.); (P.D.G.); (A.P.)
| | - Megi Vllahu
- Department of Pharmacy, University of Salerno, 84084 Fisciano (SA), Italy; (D.E.); (M.V.); (F.M.); (P.D.G.); (A.P.)
| | - Fatima Mentucci
- Department of Pharmacy, University of Salerno, 84084 Fisciano (SA), Italy; (D.E.); (M.V.); (F.M.); (P.D.G.); (A.P.)
- PhD Program in Drug Discovery and Development, University of Salerno, 84084 Fisciano (SA), Italy
| | - Pasquale Del Gaudio
- Department of Pharmacy, University of Salerno, 84084 Fisciano (SA), Italy; (D.E.); (M.V.); (F.M.); (P.D.G.); (A.P.)
| | - Antonello Petrella
- Department of Pharmacy, University of Salerno, 84084 Fisciano (SA), Italy; (D.E.); (M.V.); (F.M.); (P.D.G.); (A.P.)
| | - Amalia Porta
- Department of Pharmacy, University of Salerno, 84084 Fisciano (SA), Italy; (D.E.); (M.V.); (F.M.); (P.D.G.); (A.P.)
- Correspondence: (A.P.); (A.T.); Tel.: +39-089-969455 (A.P.); +39-089-969797 (A.T.)
| | - Alessandra Tosco
- Department of Pharmacy, University of Salerno, 84084 Fisciano (SA), Italy; (D.E.); (M.V.); (F.M.); (P.D.G.); (A.P.)
- Correspondence: (A.P.); (A.T.); Tel.: +39-089-969455 (A.P.); +39-089-969797 (A.T.)
| |
Collapse
|
26
|
Hoffmann W. Trefoil Factor Family (TFF) Peptides and Their Diverse Molecular Functions in Mucus Barrier Protection and More: Changing the Paradigm. Int J Mol Sci 2020; 21:ijms21124535. [PMID: 32630599 PMCID: PMC7350206 DOI: 10.3390/ijms21124535] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/17/2020] [Accepted: 06/19/2020] [Indexed: 02/07/2023] Open
Abstract
Trefoil factor family peptides (TFF1, TFF2, TFF3) are typically co-secreted together with mucins. Tff1 represents a gastric tumor suppressor gene in mice. TFFs are also synthesized in minute amounts in the immune and central nervous systems. In mucous epithelia, they support rapid repair by enhancing cell migration ("restitution") via their weak chemotactic and anti-apoptotic effects. For a long time, as a paradigm, this was considered as their major biological function. Within recent years, the formation of disulfide-linked heterodimers was documented for TFF1 and TFF3, e.g., with gastrokine-2 and IgG Fc binding protein (FCGBP). Furthermore, lectin activities were recognized as enabling binding to a lipopolysaccharide of Helicobacter pylori (TFF1, TFF3) or to a carbohydrate moiety of the mucin MUC6 (TFF2). Only recently, gastric TFF1 was demonstrated to occur predominantly in monomeric forms with an unusual free thiol group. Thus, a new picture emerged, pointing to diverse molecular functions for TFFs. Monomeric TFF1 might protect the gastric mucosa as a scavenger for extracellular reactive oxygen/nitrogen species. Whereas, the TFF2/MUC6 complex stabilizes the inner layer of the gastric mucus. In contrast, the TFF3-FCGBP heterodimer (and also TFF1-FCGBP) are likely part of the innate immune defense of mucous epithelia, preventing the infiltration of microorganisms.
Collapse
Affiliation(s)
- Werner Hoffmann
- Institute of Molecular Biology and Medicinal Chemistry, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| |
Collapse
|
27
|
Emidio NB, Baik H, Lee D, Stürmer R, Heuer J, Elliott AG, Blaskovich MAT, Haupenthal K, Tegtmeyer N, Hoffmann W, Schroeder CI, Muttenthaler M. Chemical synthesis of human trefoil factor 1 (TFF1) and its homodimer provides novel insights into their mechanisms of action. Chem Commun (Camb) 2020; 56:6420-6423. [PMID: 32391824 PMCID: PMC7116170 DOI: 10.1039/d0cc02321c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
TFF1 is a key peptide for gastrointestinal protection and repair. Its molecular mechanism of action remains poorly understood with synthetic intractability a recognised bottleneck. Here we describe the synthesis of TFF1 and its homodimer and their interactions with mucins and Helicobacter pylori. Synthetic access to TFF1 is an important milestone for probe and therapeutic development.
Collapse
Affiliation(s)
- Nayara Braga Emidio
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Hayeon Baik
- Institute of Biological Chemistry Faculty of Chemistry, University of Vienna, Währingerstr. 38, Vienna, 1090, Austria
| | - David Lee
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - René Stürmer
- Institute of Molecular Biology and Medicinal Chemistry, Otto-von-Guericke- University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Jörn Heuer
- Institute of Molecular Biology and Medicinal Chemistry, Otto-von-Guericke- University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Alysha G. Elliott
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Mark A. T. Blaskovich
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Katharina Haupenthal
- Institute of Molecular Biology and Medicinal Chemistry, Otto-von-Guericke- University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Nicole Tegtmeyer
- Division of Microbiology, Department of Biology, Friedrich-Alexander-University Erlangen-Nürnberg Staudtstr. 5, 91058 Erlangen, Germany
| | - Werner Hoffmann
- Institute of Molecular Biology and Medicinal Chemistry, Otto-von-Guericke- University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Christina I. Schroeder
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, 4072, Australia
- National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA
| | - Markus Muttenthaler
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, 4072, Australia
- Institute of Biological Chemistry Faculty of Chemistry, University of Vienna, Währingerstr. 38, Vienna, 1090, Austria
| |
Collapse
|
28
|
Braga Emidio N, Brierley SM, Schroeder CI, Muttenthaler M. Structure, Function, and Therapeutic Potential of the Trefoil Factor Family in the Gastrointestinal Tract. ACS Pharmacol Transl Sci 2020; 3:583-597. [PMID: 32832864 DOI: 10.1021/acsptsci.0c00023] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Indexed: 12/20/2022]
Abstract
Trefoil factor family peptides (TFF1, TFF2, and TFF3) are key players in protecting, maintaining, and repairing the gastrointestinal tract. Accordingly, they have the therapeutic potential to treat and prevent a variety of gastrointestinal disorders associated with mucosal damage. TFF peptides share a conserved motif, including three disulfide bonds that stabilize a well-defined three-loop-structure reminiscent of a trefoil. Although multiple functions have been described for TFF peptides, their mechanisms at the molecular level remain poorly understood. This review presents the status quo of TFF research relating to gastrointestinal disorders. Putative TFF receptors and protein partners are described and critically evaluated. The therapeutic potential of these peptides in gastrointestinal disorders where altered mucosal biology plays a crucial role in the underlying etiology is discussed. Finally, areas of investigation that require further research are addressed. Thus, this review provides a comprehensive update on TFF literature as well as guidance toward future research to better understand this peptide family and its therapeutic potential for the treatment of gastrointestinal disorders.
Collapse
Affiliation(s)
- Nayara Braga Emidio
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Stuart M Brierley
- Visceral Pain Research Group, College of Medicine and Public Health, Flinders Health and Medicial Research Insittitue (FHMRI), Flinders University, Bedford Park, South Australia 5042, Australia.,Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, South Australia 5000, Australia.,Discipline of Medicine, University of Adelaide, Adelaide, South Australia 5000, Australia
| | - Christina I Schroeder
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia.,National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, United States
| | - Markus Muttenthaler
- Institute of Biological Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria.,Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
29
|
Shi Y, Wang C, Wu D, Zhu Y, Wang ZE, Peng X. Mechanistic study of PDIA1-catalyzed TFF3 dimerization during sepsis. Life Sci 2020; 255:117841. [PMID: 32454156 DOI: 10.1016/j.lfs.2020.117841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 05/21/2020] [Accepted: 05/21/2020] [Indexed: 01/01/2023]
Abstract
AIMS Trefoil factor 3 (TFF3) is a gut mucosal protective molecule that is secreted by intestinal goblet cells. The dimeric structure of TFF3 enables it to function in intestinal mucosal repair and to maintain its own stability. Protein disulfide isomerase a1 (PDIA1) can directly catalyze the formation, isomerization and reduction of disulfide bonds in proteins and may play an important role in the formation of TFF3 dimer. In this study, we focused on the specific molecular mechanism of TFF3 dimerization by PDIA1 and the changes during sepsis. METHODS We examined the changes of PDIA1 and TFF3 in sepsis rats and cell models and used a variety of experimental techniques to investigate the specific molecular mechanism of PDIA1-catalyzed TFF3 dimerization. KEY FINDINGS We found that PDIA1 can directly catalyze the dimerization of TFF3. Our MD model proposed that two TFF3 monomers form hydrogen bonds with the region b' of PDIA1 through two stepwise reactions. Furthermore, we propose that the Cys24-Cys27 active site at the region a' of PDIA1 mediates disulfide bond formation between the Cys79 residues of each of the two TFF3 monomers via deprotonation and nucleophilic attack. During sepsis, PDIA1 is downregulated and the excessive release of nitric oxide (NO) promoted PDIA1 nitrosylation. This modification reduced PDIA1 activity, which resulted in the corresponding decrease of TFF3 dimerization and compromised TFF3 dimer function. SIGNIFICANCE Our study revealed a novel mechanism for the inhibition of intestinal mucosal repair during sepsis and revealed novel targets for the prevention and treatment of sepsis.
Collapse
Affiliation(s)
- Yan Shi
- Clinical Medical Research Center, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, The Army Medical University, Chongqing 400038, China; Institute of Trauma Orthopedic Surgery, The 920 Hospital of Joint Logistic Support Force of Chinese PLA, Kunming, Yunnan 650032, China
| | - Chao Wang
- Clinical Medical Research Center, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, The Army Medical University, Chongqing 400038, China
| | - Dan Wu
- Clinical Medical Research Center, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, The Army Medical University, Chongqing 400038, China
| | - Yuanjiao Zhu
- Clinical Medical Research Center, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, The Army Medical University, Chongqing 400038, China
| | - Zi-En Wang
- Clinical Medical Research Center, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, The Army Medical University, Chongqing 400038, China; Department of Burns, Union Hospital, Fujian Medical University, Fuzhou 350001, China
| | - Xi Peng
- Clinical Medical Research Center, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, The Army Medical University, Chongqing 400038, China; Department of Burns, Union Hospital, Fujian Medical University, Fuzhou 350001, China; Shriners Burns Hospital, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, United States of America.
| |
Collapse
|
30
|
Trefoil factors share a lectin activity that defines their role in mucus. Nat Commun 2020; 11:2265. [PMID: 32404934 PMCID: PMC7221086 DOI: 10.1038/s41467-020-16223-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 04/20/2020] [Indexed: 12/11/2022] Open
Abstract
The mucosal epithelium secretes a host of protective disulfide-rich peptides, including the trefoil factors (TFFs). The TFFs increase the viscoelasticity of the mucosa and promote cell migration, though the molecular mechanisms underlying these functions have remained poorly defined. Here, we demonstrate that all TFFs are divalent lectins that recognise the GlcNAc-α-1,4-Gal disaccharide, which terminates some mucin-like O-glycans. Degradation of this disaccharide by a glycoside hydrolase abrogates TFF binding to mucins. Structural, mutagenic and biophysical data provide insights into how the TFFs recognise this disaccharide and rationalise their ability to modulate the physical properties of mucus across different pH ranges. These data reveal that TFF activity is dependent on the glycosylation state of mucosal glycoproteins and alludes to a lectin function for trefoil domains in other human proteins. Trefoil factors (TFFs) protect the mucosa and have various reported binding activities, but whether they share a common interaction mechanism has remained unclear. Here, the authors provide structural and biochemical evidence that all three human TFFs are divalent lectins that recognise the same disaccharide.
Collapse
|
31
|
Jahan R, Shah A, Kisling SG, Macha MA, Thayer S, Batra SK, Kaur S. Odyssey of trefoil factors in cancer: Diagnostic and therapeutic implications. Biochim Biophys Acta Rev Cancer 2020; 1873:188362. [PMID: 32298747 DOI: 10.1016/j.bbcan.2020.188362] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/01/2020] [Accepted: 04/01/2020] [Indexed: 02/07/2023]
Abstract
Trefoil factors 1, 2, and 3 (TFFs) are a family of small secretory molecules involved in the protection and repair of the gastrointestinal tract (GI). TFFs maintain and restore epithelial structural integrity via transducing key signaling pathways for epithelial cell migration, proliferation, and invasion. In recent years, TFFs have emerged as key players in the pathogenesis of multiple diseases, especially cancer. Initially recognized as tumor suppressors, emerging evidence demonstrates their key role in tumor progression and metastasis, extending their actions beyond protection. However, to date, a comprehensive understanding of TFFs' mechanism of action in tumor initiation, progression and metastasis remains obscure. The present review discusses the structural, functional and mechanistic implications of all three TFF family members in tumor progression and metastasis. Also, we have garnered information from studies on their structure and expression status in different organs, along with lessons from their specific knockout in mouse models. In addition, we highlight the emerging potential of using TFFs as a biomarker to stratify tumors for better therapeutic intervention.
Collapse
Affiliation(s)
- Rahat Jahan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, NE, 68198, USA
| | - Ashu Shah
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, NE, 68198, USA
| | - Sophia G Kisling
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, NE, 68198, USA
| | - Muzafar A Macha
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, NE, 68198, USA; Department of Otolaryngology-Head & Neck Surgery, University of Nebraska Medical Center, NE, 68198, USA; Department of Biotechnology, Central University of Kashmir, Ganderbal, Jammu and Kashmir, India -191201
| | - Sarah Thayer
- Division of Surgical Oncology, Department of Surgery, University of Nebraska Medical Center, NE, 68198, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, NE, 68198, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, NE, 68198, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, NE, 68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, NE 68198, USA.
| | - Sukhwinder Kaur
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, NE, 68198, USA.
| |
Collapse
|
32
|
Zhu L, Lu X, Liu L, Voglmeir J, Zhong X, Yu Q. Akkermansia muciniphila protects intestinal mucosa from damage caused by S. pullorum by initiating proliferation of intestinal epithelium. Vet Res 2020; 51:34. [PMID: 32138776 PMCID: PMC7057645 DOI: 10.1186/s13567-020-00755-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 01/15/2020] [Indexed: 12/16/2022] Open
Abstract
Akkermansia muciniphila, a novel mucin-degrading bacterium, has been demonstrated to prevent the development of obesity and related complications. However, whether it can protect poultry from intestinal mucosal damage by enteropathogens has never been mentioned. In this study, we found that A. muciniphila colonized in the intestine and then relieved intestinal mucosal damage in chicks caused by S. pullorum, including anatomical and morphological damage, alleviation of body weight and intestinal inflammation. The repair process activated by A. muciniphila is accompanied by an increase in the number of goblet cells in the chick’s intestine and an up-regulation of Mucin 2 and trefoil factor 2 (Tff2). In addition, we also demonstrate that A. muciniphila improved colon length, crypt depth, increased the proliferating cell nuclear antigen, with the accelerated proliferation of intestinal epithelium through Wnt/β-catenin signaling pathway, thereby restoring the damaged intestinal mucosa. This study suggests that A. muciniphila activates the proliferation of intestinal cells protecting the intestinal barrier, thus relieving infection with S. pullorum in chickens.
Collapse
Affiliation(s)
- Linda Zhu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, Jiangsu, China
| | - Xiaoxi Lu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, Jiangsu, China
| | - Li Liu
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Josef Voglmeir
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xiang Zhong
- College of Animal Science and Technology, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, Jiangsu, China.
| | - Qinghua Yu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, Jiangsu, China.
| |
Collapse
|
33
|
Subcellular Localization of the TFF Peptides xP1 and xP4 in the Xenopus laevis Gastric/Esophageal Mucosa: Different Secretion Modes Reflecting Diverse Protective Functions. Int J Mol Sci 2020; 21:ijms21030761. [PMID: 31979419 PMCID: PMC7037415 DOI: 10.3390/ijms21030761] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/15/2020] [Accepted: 01/20/2020] [Indexed: 12/15/2022] Open
Abstract
The TFF peptides xP1 and xP4 from Xenopus laevis are orthologs of TFF1 and TFF2, respectively. xP1 is secreted as a monomer from gastric surface mucous cells and is generally not associated with mucins, whereas xP4 is a typical secretory peptide from esophageal goblet cells, and gastric mucous neck and antral gland cells tightly associated as a lectin with the ortholog of mucin MUC6. Both TFF peptides have diverse protective functions, xP1 as a scavenger for reactive oxygen species preventing oxidative damage and xP4 as a constituent of the water-insoluble adherent inner mucus barrier. Here, we present localization studies using immunofluorescence and immunoelectron microscopy. xP1 is concentrated in dense cores of secretory granules of surface mucous cells, whereas xP4 mixes with MUC6 in esophageal goblet cells. Of note, we observe two different types of goblet cells, which differ in their xP4 synthesis, and this is even visible morphologically at the electron microscopic level. xP4-negative granules are recognized by their halo, which is probably the result of shrinkage during the processing of samples for electron microscopy. Probably, the tight lectin binding of xP4 and MUC6 creates a crosslinked mucous network forming a stabile granule matrix, which prevents shrinkage.
Collapse
|
34
|
Popp J, Schicht M, Garreis F, Klinger P, Gelse K, Sesselmann S, Tsokos M, Etzold S, Stiller D, Claassen H, Paulsen F. Human Synovia Contains Trefoil Factor Family (TFF) Peptides 1-3 Although Synovial Membrane Only Produces TFF3: Implications in Osteoarthritis and Rheumatoid Arthritis. Int J Mol Sci 2019; 20:ijms20236105. [PMID: 31817054 PMCID: PMC6928748 DOI: 10.3390/ijms20236105] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 11/27/2019] [Accepted: 11/28/2019] [Indexed: 01/15/2023] Open
Abstract
Objective: Trefoil factor family peptide 3 (TFF3) has been shown to support catabolic functions in cases of osteoarthritis (OA). As in joint physiology and diseases such as OA, the synovial membrane (SM) of the joint capsule also plays a central role. We analyze the ability of SM to produce TFF compare healthy SM and its secretion product synovial fluid (SF) with SM and SF from patients suffering from OA or rheumatoid arthritis (RA). Methods: Real-time PCR and ELISA were used to measure the expression of TFFs in healthy SM and SM from patients suffering from OA or RA. For tissue localization, we investigated TFF1-3 in differently aged human SM of healthy donors by means of immunohistochemistry, real-time PCR and Western blot. Results: Only TFF3 but not TFF1 and -2 was expressed in SM from healthy donors as well as cases of OA or RA on protein and mRNA level. In contrast, all three TFFs were detected in all samples of SF on the protein level. No significant changes were observed for TFF1 at all. TFF2 was significantly upregulated in RA samples in comparison to OA samples. TFF3 protein was significantly downregulated in OA samples in comparison to healthy samples and cases of RA significantly upregulated compared to OA. In contrast, in SM TFF3 protein was not significantly regulated. Conclusion: The data demonstrate the production of TFF3 in SM. Unexpectedly, SF contains all three known TFF peptides. As neither articular cartilage nor SM produce TFF1 and TFF2, we speculate that these originate with high probability from blood serum.
Collapse
Affiliation(s)
- Judith Popp
- Friedrich Alexander University Erlangen-Nürnberg (FAU), Institute of Functional and Clinical Anatomy, 91054 Erlangen, Germany; (J.P.); (M.S.); (F.G.); (P.K.)
| | - Martin Schicht
- Friedrich Alexander University Erlangen-Nürnberg (FAU), Institute of Functional and Clinical Anatomy, 91054 Erlangen, Germany; (J.P.); (M.S.); (F.G.); (P.K.)
| | - Fabian Garreis
- Friedrich Alexander University Erlangen-Nürnberg (FAU), Institute of Functional and Clinical Anatomy, 91054 Erlangen, Germany; (J.P.); (M.S.); (F.G.); (P.K.)
| | - Patricia Klinger
- Friedrich Alexander University Erlangen-Nürnberg (FAU), Institute of Functional and Clinical Anatomy, 91054 Erlangen, Germany; (J.P.); (M.S.); (F.G.); (P.K.)
| | - Kolja Gelse
- University Hospital Erlangen, Department of Trauma Surgery, 91054 Erlangen, Germany;
| | - Stefan Sesselmann
- University of Applied Sciences Amberg-Weiden, Institute for Medical Engineering, 92637 Weiden, Germany;
| | - Michael Tsokos
- Charité-Universitätsmedizin Berlin, Institute of Legal Medicine and Forensic Sciences, 10117 Berlin, Germany; (M.T.); (S.E.)
| | - Saskia Etzold
- Charité-Universitätsmedizin Berlin, Institute of Legal Medicine and Forensic Sciences, 10117 Berlin, Germany; (M.T.); (S.E.)
| | - Dankwart Stiller
- Martin Luther University Halle-Wittenberg (MLU), Department of Legal Medicine, 06108 Halle (Saale), Germany;
| | - Horst Claassen
- Martin Luther University Halle-Wittenberg (MLU), Department of Anatomy and Cell Biology, 06108 Halle (Saale), Germany;
| | - Friedrich Paulsen
- Friedrich Alexander University Erlangen-Nürnberg (FAU), Institute of Functional and Clinical Anatomy, 91054 Erlangen, Germany; (J.P.); (M.S.); (F.G.); (P.K.)
- Sechenov University, Department of Topographic Anatomy and Operative Surgery, 119146 Moscow, Russia
- Correspondence: ; Tel.: +49-9131-8522865; Fax: +49-9131-8522862
| |
Collapse
|
35
|
Campbell L, Hepworth MR, Whittingham-Dowd J, Thompson S, Bancroft AJ, Hayes KS, Shaw TN, Dickey BF, Flamar AL, Artis D, Schwartz DA, Evans CM, Roberts IS, Thornton DJ, Grencis RK. ILC2s mediate systemic innate protection by priming mucus production at distal mucosal sites. J Exp Med 2019; 216:2714-2723. [PMID: 31582416 PMCID: PMC6888984 DOI: 10.1084/jem.20180610] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 12/21/2018] [Accepted: 09/05/2019] [Indexed: 01/16/2023] Open
Abstract
Host immunity to parasitic nematodes requires the generation of a robust type 2 cytokine response, characterized by the production of interleukin 13 (IL-13), which drives expulsion. Here, we show that infection with helminths in the intestine also induces an ILC2-driven, IL-13-dependent goblet cell hyperplasia and increased production of mucins (Muc5b and Muc5ac) at distal sites, including the lungs and other mucosal barrier sites. Critically, we show that type 2 priming of lung tissue through increased mucin production inhibits the progression of a subsequent lung migratory helminth infection and limits its transit through the airways. These data show that infection by gastrointestinal-dwelling helminths induces a systemic innate mucin response that primes peripheral barrier sites for protection against subsequent secondary helminth infections. These data suggest that innate-driven priming of mucus barriers may have evolved to protect from subsequent infections with multiple helminth species, which occur naturally in endemic areas.
Collapse
Affiliation(s)
- Laura Campbell
- Wellcome Trust Centre for Cell Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Matthew R Hepworth
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
- Manchester Centre for Collaborative Inflammation Research, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Jayde Whittingham-Dowd
- Wellcome Trust Centre for Cell Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Seona Thompson
- Wellcome Trust Centre for Cell Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Allison J Bancroft
- Wellcome Trust Centre for Cell Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Kelly S Hayes
- Wellcome Trust Centre for Cell Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Tovah N Shaw
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
- Manchester Centre for Collaborative Inflammation Research, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Burton F Dickey
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Anne-Laure Flamar
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY
| | - David Artis
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY
| | - David A Schwartz
- University of Colorado, School of Medicine, Department of Medicine, Aurora, CO
| | - Christopher M Evans
- University of Colorado Denver School of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, Aurora, CO
| | - Ian S Roberts
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - David J Thornton
- Wellcome Trust Centre for Cell Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Richard K Grencis
- Wellcome Trust Centre for Cell Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| |
Collapse
|
36
|
The TFF Peptides xP1 and xP4 Appear in Distinctive Forms in the Xenopus laevis Gastric Mucosa: Indications for Different Protective Functions. Int J Mol Sci 2019; 20:ijms20236052. [PMID: 31801293 PMCID: PMC6929139 DOI: 10.3390/ijms20236052] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/13/2019] [Accepted: 11/29/2019] [Indexed: 12/23/2022] Open
Abstract
The gastric secretory trefoil factor family (TFF) peptides xP1 and xP4 are the Xenopus laevis orthologs of mammalian TFF1 and TFF2, respectively. The aim of this study was to analyze the molecular forms of xP1 and xP4 in the X. laevis gastric mucosa by FPLC. xP1 mainly occurred in a monomeric low-molecular-mass form and only a minor subset is associated with the mucus fraction. The occurrence of monomeric xP1 is unexpected because of its odd number of cysteine residues. Probably a conserved acidic residue flanking Cys55 allows monomeric secretion. Furthermore, Cys55 is probably post-translationally modified. For the first time, we hypothesize that the free thiol of monomeric xP1-and probably also its mammalian ortholog TFF1-could have a protective scavenger function, e.g., for reactive oxygen/nitrogen species. In contrast, xP4 mainly occurs in a high-molecular-mass form and is non-covalently bound to a mucin similarly as TFF2. In vitro binding studies with radioactively labeled porcine TFF2 even showed binding to X. laevis gastric mucin. Thus, xP4 is expected to bind as a lectin to an evolutionary conserved sugar epitope of the X. laevis ortholog of mucin MUC6 creating a tight mucus barrier. Taken together, xP1 and xP4 appear to have different gastric protective functions.
Collapse
|
37
|
Heuer F, Stürmer R, Heuer J, Kalinski T, Lemke A, Meyer F, Hoffmann W. Different Forms of TFF2, A Lectin of the Human Gastric Mucus Barrier: In Vitro Binding Studies. Int J Mol Sci 2019; 20:ijms20235871. [PMID: 31771101 PMCID: PMC6928932 DOI: 10.3390/ijms20235871] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 11/13/2019] [Accepted: 11/21/2019] [Indexed: 12/19/2022] Open
Abstract
Trefoil factor family 2 (TFF2) and the mucin MUC6 are co-secreted from human gastric and duodenal glands. TFF2 binds MUC6 as a lectin and is a constituent of the gastric mucus. Herein, we investigated human gastric extracts by FPLC and identified mainly high- but also low-molecular-mass forms of TFF2. From the high-molecular-mass forms, TFF2 can be completely released by boiling in SDS or by harsh denaturing extraction. The low-molecular-mass form representing monomeric TFF2 can be washed out in part from gastric mucosa specimens with buffer. Overlay assays with radioactively labeled TFF2 revealed binding to the mucin MUC6 and not MUC5AC. This binding is modulated by Ca2+ and can be blocked by the lectin GSA-II and the monoclonal antibody HIK1083. TFF2 binding was also inhibited by Me-β-Gal, but not the α anomer. Thus, both the α1,4GlcNAc as well as the juxtaperipheral β-galactoside residues of the characteristic GlcNAcα1→4Galβ1→R moiety of human MUC6 are essential for TFF2 binding. Furthermore, there are major differences in the TFF2 binding characteristics when human is compared with the porcine system. Taken together, TFF2 appears to fulfill an important role in stabilizing the inner insoluble gastric mucus barrier layer, particularly by its binding to the mucin MUC6.
Collapse
Affiliation(s)
- Franziska Heuer
- Institute of Molecular Biology and Medicinal Chemistry, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - René Stürmer
- Institute of Molecular Biology and Medicinal Chemistry, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Jörn Heuer
- Institute of Molecular Biology and Medicinal Chemistry, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Thomas Kalinski
- Institute of Pathology, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
| | - Antje Lemke
- Institute of Pathology, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
| | - Frank Meyer
- Department of Surgery, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
| | - Werner Hoffmann
- Institute of Molecular Biology and Medicinal Chemistry, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
- Correspondence:
| |
Collapse
|
38
|
Belle NM, Ji Y, Herbine K, Wei Y, Park J, Zullo K, Hung LY, Srivatsa S, Young T, Oniskey T, Pastore C, Nieves W, Somsouk M, Herbert DR. TFF3 interacts with LINGO2 to regulate EGFR activation for protection against colitis and gastrointestinal helminths. Nat Commun 2019; 10:4408. [PMID: 31562318 PMCID: PMC6764942 DOI: 10.1038/s41467-019-12315-1] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 08/26/2019] [Indexed: 12/14/2022] Open
Abstract
Intestinal epithelial cells (IEC) have important functions in nutrient absorption, barrier integrity, regeneration, pathogen-sensing, and mucus secretion. Goblet cells are a specialized cell type of IEC that secrete Trefoil factor 3 (TFF3) to regulate mucus viscosity and wound healing, but whether TFF3-responsiveness requires a receptor is unclear. Here, we show that leucine rich repeat receptor and nogo-interacting protein 2 (LINGO2) is essential for TFF3-mediated functions. LINGO2 immunoprecipitates with TFF3, co-localizes with TFF3 on the cell membrane of IEC, and allows TFF3 to block apoptosis. We further show that TFF3-LINGO2 interactions disrupt EGFR-LINGO2 complexes resulting in enhanced EGFR signaling. Excessive basal EGFR activation in Lingo2 deficient mice increases disease severity during colitis and augments immunity against helminth infection. Conversely, TFF3 deficiency reduces helminth immunity. Thus, TFF3-LINGO2 interactions de-repress inhibitory LINGO2-EGFR complexes, allowing TFF3 to drive wound healing and immunity.
Collapse
Affiliation(s)
- Nicole Maloney Belle
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, 19140, USA
| | - Yingbiao Ji
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, 19140, USA
| | - Karl Herbine
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, 19140, USA
| | - Yun Wei
- Division of Experimental Medicine, University of California, San Francisco, San Francisco, CA, 94110, USA.,Department of Inflammation and Oncology, Amgen Inc., 1120 Veterans Boulevard, South San Francisco, CA, 94080, USA
| | - JoonHyung Park
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, 19140, USA
| | - Kelly Zullo
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, 19140, USA
| | - Li-Yin Hung
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, 19140, USA.,Division of Experimental Medicine, University of California, San Francisco, San Francisco, CA, 94110, USA
| | - Sriram Srivatsa
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, 19140, USA
| | - Tanner Young
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, 19140, USA
| | - Taylor Oniskey
- Division of Experimental Medicine, University of California, San Francisco, San Francisco, CA, 94110, USA
| | - Christopher Pastore
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, 19140, USA
| | - Wildaliz Nieves
- Division of Gastroenterology at ZSFG, University of California, San Francisco, San Francisco, CA, 94110, USA
| | - Ma Somsouk
- Division of Gastroenterology at ZSFG, University of California, San Francisco, San Francisco, CA, 94110, USA
| | - De'Broski R Herbert
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, 19140, USA. .,Division of Experimental Medicine, University of California, San Francisco, San Francisco, CA, 94110, USA.
| |
Collapse
|
39
|
The Interaction of Helicobacter pylori with TFF1 and Its Role in Mediating the Tropism of the Bacteria Within the Stomach. Int J Mol Sci 2019; 20:ijms20184400. [PMID: 31500233 PMCID: PMC6769565 DOI: 10.3390/ijms20184400] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 08/27/2019] [Accepted: 09/06/2019] [Indexed: 02/07/2023] Open
Abstract
Helicobacter pylori colonises the human stomach and has tropism for the gastric mucin, MUC5AC. The majority of organisms live in the adherent mucus layer within their preferred location, close to the epithelial surface where the pH is near neutral. Trefoil factor 1 (TFF1) is a small trefoil protein co-expressed with the gastric mucin MUC5AC in surface foveolar cells and co-secreted with MUC5AC into gastric mucus. Helicobacter pylori binds with greater avidity to TFF1 dimer, which is present in gastric mucus, than to TFF1 monomer. Binding of H. pylori to TFF1 is mediated by the core oligosaccharide subunit of H. pylori lipopolysaccharide at pH 5.0–6.0. Treatment of H. pylori lipopolysaccharide with mannosidase or glucosidase inhibits its interaction with TFF1. Both TFF1 and H. pylori have a propensity for binding to mucins with terminal non-reducing α- or β-linked N-acetyl-d-glucosamine or α-(2,3) linked sialic acid or Gal-3-SO42−. These findings are strong evidence that TFF1 has carbohydrate-binding properties that may involve a conserved patch of aromatic hydrophobic residues on the surface of its trefoil domain. The pH-dependent lectin properties of TFF1 may serve to locate H. pylori deep in the gastric mucus layer close to the epithelium rather than at the epithelial surface. This restricted localisation could limit the interaction of H. pylori with epithelial cells and the subsequent host signalling events that promote inflammation.
Collapse
|
40
|
Abstract
Mucus selectively controls the transport of molecules, particulate matter, and microorganisms to the underlying epithelial layer. It may be desirable to weaken the mucus barrier to enable effective delivery of drug carriers. Alternatively, the mucus barrier can be strengthened to prevent epithelial interaction with pathogenic microbes or other exogenous materials. The dynamic mucus layer can undergo changes in structure (e.g., pore size) and/or composition (e.g., protein concentrations, mucin glycosylation) in response to stimuli that occur naturally or are purposely administered, thus altering its barrier function. This review outlines mechanisms by which mucus provides a selective barrier and methods to engineer the mucus layer from the perspective of strengthening or weakening its barrier properties. In addition, we discuss strategic design of drug carriers and dosing formulation properties for efficient delivery across the mucus barrier.
Collapse
Affiliation(s)
- T L Carlson
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, USA;
| | - J Y Lock
- Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, USA
| | - R L Carrier
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, USA; .,Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, USA
| |
Collapse
|
41
|
Fabisiak A, Bartoszek A, Kardas G, Fabisiak N, Fichna J. Possible application of trefoil factor family peptides in gastroesophageal reflux and Barrett's esophagus. Peptides 2019; 115:27-31. [PMID: 30831146 DOI: 10.1016/j.peptides.2019.02.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 02/16/2019] [Accepted: 02/24/2019] [Indexed: 12/14/2022]
Abstract
Gastroesophageal reflux disease (GERD) is a chronic disorder of the digestive tract characterised mainly by a heartburn. Being one of the most common gastrointestinal diseases, the prevalence of GERD reaches up to 25.9% in Europe. Barrett's esophagus (BE) is an acquired condition characterized by the replacement of the normal stratified squamous epithelium with metaplastic columnar epithelium. BE is believed to develop mainly from chronic GERD and is the most important risk factor of esophageal adenocarcinoma. Despite the availability of drugs such as proton pomp inhibitors and antacids, GERD is still a burden to local economy and impairs health-related quality of life in patients. Also, the endoscopic surveillance in patients with BE is burdensome and expensive what drives the need for biomarker of intestinal metaplasia and dysplasia. Trefoil factor family (TFF), consisting of TFF1, TFF2 and TFF3 peptides is gaining more and more attention due to its unique biochemical features and numerous functions. In this review the role of TFF1, TFF2 and TFF3 as potential treatment option and/or biomarker in the upper GI tract is discussed with particular focus on GERD and BE.
Collapse
Affiliation(s)
- Adam Fabisiak
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland; Department of Digestive Tract Diseases, Faculty of Medicine, Medical University of Lodz, Poland
| | - Adrian Bartoszek
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Grzegorz Kardas
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Natalia Fabisiak
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland; Department of Gastroenterology, Faculty of Military Medicine, Medical University of Lodz, Poland
| | - Jakub Fichna
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland.
| |
Collapse
|
42
|
Cao XZ, Forest MG. Rheological Tuning of Entangled Polymer Networks by Transient Cross-links. J Phys Chem B 2019; 123:974-982. [DOI: 10.1021/acs.jpcb.8b09357] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Xue-Zheng Cao
- Department of Mathematics and Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - M. Gregory Forest
- Department of Mathematics and Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
43
|
Sardelli L, Pacheco DP, Ziccarelli A, Tunesi M, Caspani O, Fusari A, Briatico Vangosa F, Giordano C, Petrini P. Towards bioinspired in vitro models of intestinal mucus. RSC Adv 2019; 9:15887-15899. [PMID: 35521409 PMCID: PMC9064393 DOI: 10.1039/c9ra02368b] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 05/09/2019] [Indexed: 12/22/2022] Open
Abstract
Intestinal mucus is a biological structure that acts as a barrier between the external environment and the epithelium. It actively selects nutrient and drug intake, regulates the symbiosis with the intestinal microbiota and keeps the epithelium protected from the attack of pathogens. All these functions are closely connected to the chemical and structural complexity of this biological material, on which its viscoelastic and diffusive properties depend. Many models have been proposed to replicate these characteristics using glycoproteins in solution and possibly the addition of other mucus components, such as lipids and other proteins. In the field of mucus modelling, an overall view of the mucus as a material, having its own viscous, rheological and diffusive characteristics, has been undersized with respect to a pure biological-functional analysis. In this review, we propose a description of the mucus as a biomaterial, including a presentation of its chemical and structural complexity, and of its main viscoelastic-diffusive properties, in order to provide a synthesis of the characteristics necessary for the engineering of more advanced mucus models. Intestinal mucus is an anisotropic biological structure that acts as a barrier between the external environment and the epithelium.![]()
Collapse
Affiliation(s)
- Lorenzo Sardelli
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”
- Politecnico di Milano
- Milan
- Italy
| | - Daniela Peneda Pacheco
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”
- Politecnico di Milano
- Milan
- Italy
| | - Anna Ziccarelli
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”
- Politecnico di Milano
- Milan
- Italy
| | - Marta Tunesi
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”
- Politecnico di Milano
- Milan
- Italy
| | - Omar Caspani
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”
- Politecnico di Milano
- Milan
- Italy
| | - Andrea Fusari
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”
- Politecnico di Milano
- Milan
- Italy
| | - Francesco Briatico Vangosa
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”
- Politecnico di Milano
- Milan
- Italy
| | - Carmen Giordano
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”
- Politecnico di Milano
- Milan
- Italy
| | - Paola Petrini
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”
- Politecnico di Milano
- Milan
- Italy
| |
Collapse
|
44
|
Stürmer R, Harder S, Schlüter H, Hoffmann W. Commercial Porcine Gastric Mucin Preparations, also Used as Artificial Saliva, are a Rich Source for the Lectin TFF2: In Vitro Binding Studies. Chembiochem 2018; 19:2598-2608. [PMID: 30371971 DOI: 10.1002/cbic.201800622] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Indexed: 12/22/2022]
Abstract
Mucous gels (mucus) cover internal body surfaces. The secretory mucins MUC5AC and MUC6 and the protective peptide TFF2 are characteristic constituents of gastric mucus; TFF2 is co-secreted with MUC6. Herein, we investigated two commercial mucin preparations by FPLC and proteomics, because they are model systems for studying the rheology of gastric mucins. One preparation is also used as a saliva substitute, for example, after radiation therapy. We show that both preparations contain TFF2 (≈0.6 to 1.1 %, w/w). The majority of TFF2 is strongly bound noncovalently to mucin in a manner that is resistant to boiling in SDS. First overlay assays with 125 I-labeled porcine TFF2 revealed that mucin binding is modulated by Ca2+ and can be blocked by the lectin GSA-II and the antibody HIK1083, both recognizing the peripheral GlcNAcα1→4Galβ1→R moiety of MUC6. TFF2 binding was also inhibited in the presence of Me-β-Gal but less so by the α anomer. TFF2 may play a role in the oligomerization and secretion of MUC6, the rheology of gastric mucus, and the adherence of gastric microbiota. TFF2 in artificial saliva may be of benefit. TFF2 might also interact with the sugar moiety of various receptors.
Collapse
Affiliation(s)
- René Stürmer
- Institute of Molecular Biology and Medicinal Chemistry, Otto-von-Guericke University Magdeburg, Leipziger Strasse 44, 39120, Magdeburg, Germany
| | - Sönke Harder
- Institute for Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Hartmut Schlüter
- Institute for Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Werner Hoffmann
- Institute of Molecular Biology and Medicinal Chemistry, Otto-von-Guericke University Magdeburg, Leipziger Strasse 44, 39120, Magdeburg, Germany
| |
Collapse
|
45
|
Abstract
Mucins are large glycoproteins that are ubiquitous in the animal kingdom. Mucins coat the surfaces of many cell types and can be secreted to form mucus gels that assume important physiological roles in many animals. Our growing understanding of the structure and function of mucin molecules and their functionalities has sparked interest in investigating the use of mucins as building blocks for innovative functional biomaterials. These pioneering studies have explored how new biomaterials can benefit from the barrier properties, hydration and lubrication properties, unique chemical diversity, and bioactivities of mucins. Owing to their multifunctionality, mucins have been used in a wide variety of applications, including as antifouling coatings, as selective filters, and artificial tears and saliva, as basis for cosmetics, as drug delivery materials, and as natural detergents. In this review, we summarize the current knowledge regarding key mucin properties and survey how they have been put to use. We offer a vision for how mucins could be used in the near future and what challenges await the field before biomaterials made of mucins and mucin-mimics can be translated into commercial products.
Collapse
Affiliation(s)
- Georgia Petrou
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Chemistry, Kungliga Tekniska Hogskolan, Stockholm, Sweden.
| | | |
Collapse
|
46
|
Meesala D, Penmetsa GS, Dwarakanath CD, Manyam R. Effect of Initial Periodontal Therapy on Salivary Trefoil Factor (TFF3) in otherwise Healthy Patients with Gingivitis and Chronic Periodontitis. Contemp Clin Dent 2018; 9:S11-S16. [PMID: 29962757 PMCID: PMC6006892 DOI: 10.4103/ccd.ccd_665_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Background: The search for an ideal biomarker which can determine the current disease status that predicts the sites and individuals with increased susceptibility to periodontal disease has been going on since a long time. One such group of molecules which have been investigated recently are the trefoil factors, and the present study aims to determine the role of salivary trefoil factor 3 (TFF3) in periodontitis and gingivitis patients. Materials and Methods: A total of fifty participants, of which 25 were diagnosed with moderate-to-severe periodontitis and 25 with chronic gingivitis were included in the study. The routine periodontal parameters were recorded at baseline and at 6 weeks which included plaque index, gingival index, bleeding index, probing depth, and clinical attachment level. The saliva samples were collected from both the groups at baseline and 6 weeks after nonsurgical periodontal therapy and analyzed by enzyme-linked immunosorbent assay to estimate the concentration of trefoil factor 3. Results: All the periodontal parameters improved at 6-week reevaluation in both the groups. There was a significant change in the TFF3 levels in the periodontitis group from baseline to 6 weeks, and the concentrations were found to be higher following nonsurgical therapy, whereas the quantum of change in the gingivitis group was negligible. The levels of TFF3 remained unchanged in those periodontitis participants who required surgical intervention at the 6th-week reevaluation. Conclusion: The estimation of TFF3 levels may aid in decision-making in the treatment strategy of patients with moderate-to-severe periodontitis.
Collapse
Affiliation(s)
- Devika Meesala
- Department of Periodontics and Implantology, Vishnu Dental College, Bhimavaram, Andhra Pradesh, India
| | - Gautami S Penmetsa
- Department of Periodontics and Implantology, Vishnu Dental College, Bhimavaram, Andhra Pradesh, India
| | - C D Dwarakanath
- Department of Periodontics and Implantology, Vishnu Dental College, Bhimavaram, Andhra Pradesh, India
| | - Ravikanth Manyam
- Department of Oral Pathology, Vishnu Dental College, Bhimavaram, Andhra Pradesh, India
| |
Collapse
|
47
|
Sáenz JB, Mills JC. Acid and the basis for cellular plasticity and reprogramming in gastric repair and cancer. Nat Rev Gastroenterol Hepatol 2018; 15:257-273. [PMID: 29463907 PMCID: PMC6016373 DOI: 10.1038/nrgastro.2018.5] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Subjected to countless daily injuries, the stomach still functions as a remarkably efficient digestive organ and microbial filter. In this Review, we follow the lead of the earliest gastroenterologists who were fascinated by the antiseptic and digestive powers of gastric secretions. We propose that it is easiest to understand how the stomach responds to injury by stressing the central role of the most important gastric secretion, acid. The stomach follows two basic patterns of adaptation. The superficial response is a pattern whereby the surface epithelial cells migrate and rapidly proliferate to repair erosions induced by acid or other irritants. The stomach can also adapt through a glandular response when the source of acid is lost or compromised (that is, the process of oxyntic atrophy). We primarily review the mechanisms governing the glandular response, which is characterized by a metaplastic change in cellular differentiation known as spasmolytic polypeptide-expressing metaplasia (SPEM). We propose that the stomach, like other organs, exhibits marked cellular plasticity: the glandular response involves reprogramming mature cells to serve as auxiliary stem cells that replace lost cells. Unfortunately, such plasticity might mean that the gastric epithelium undergoes cycles of differentiation and de-differentiation that increase the risk of accumulating cancer-predisposing mutations.
Collapse
Affiliation(s)
- José B. Sáenz
- Division of Gastroenterology, Department of Internal Medicine, Washington University School of Medicine
| | - Jason C. Mills
- Division of Gastroenterology, Department of Internal Medicine, Washington University School of Medicine
- Department of Developmental Biology, Washington University School of Medicine
- Department of Pathology and Immunology, Washington University School of Medicine
| |
Collapse
|
48
|
Campos JC, Cunha JD, Ferreira DC, Reis S, Costa PJ. Challenges in the local delivery of peptides and proteins for oral mucositis management. Eur J Pharm Biopharm 2018; 128:131-146. [PMID: 29702221 DOI: 10.1016/j.ejpb.2018.04.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 04/21/2018] [Accepted: 04/23/2018] [Indexed: 12/20/2022]
Abstract
Oral mucositis, a common inflammatory side effect of oncological treatments, is a disorder of the oral mucosa that can cause painful ulcerations, local motor disabilities, and an increased risk of infections. Due to the discomfort it produces and the associated health risks, it can lead to cancer treatment restrains, such as the need for dose reduction, cycle delays or abandonment. Current mucositis management has low efficiency in prevention and treatment. A topical drug application for a local action can be a more effective approach than systemic routes when addressing oral cavity pathologies. Local delivery of growth factors, antibodies, and anti-inflammatory cytokines have shown promising results. However, due to the peptide and protein nature of these novel agents, and the several anatomic, physiological and environmental challenges of the oral cavity, their local action might be limited when using traditional delivering systems. This review is an awareness of the issues and strategies in the local delivery of macromolecules for the management of oral mucositis.
Collapse
Affiliation(s)
- João C Campos
- UCIBIO, REQUIMTE, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Portugal(1).
| | - João D Cunha
- UCIBIO, REQUIMTE, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Portugal(1)
| | - Domingos C Ferreira
- UCIBIO, REQUIMTE, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Portugal(1)
| | - Salette Reis
- LAQV, REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Portugal(1)
| | - Paulo J Costa
- UCIBIO, REQUIMTE, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Portugal(1)
| |
Collapse
|
49
|
Heitkemper MM, Cain KC, Shulman RJ, Burr RL, Ko C, Hollister EB, Callen N, Zia J, Han CJ, Jarrett ME. Stool and urine trefoil factor 3 levels: associations with symptoms, intestinal permeability, and microbial diversity in irritable bowel syndrome. Benef Microbes 2018; 9:345-355. [PMID: 29633639 DOI: 10.3920/bm2017.0059] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Previously we showed that urine trefoil factor 3 (TFF3) levels were higher in females with irritable bowel syndrome (IBS) compared to non-IBS females. To assess if TFF3 is associated with symptoms and/or reflect alterations in gastrointestinal permeability and gut microbiota in an IBS population, we correlated stool and urine TFF3 levels with IBS symptoms, intestinal permeability, stool microbial diversity and relative abundance of predominant bacterial families and genera. We also tested the relationship of stool TFF3 to urine TFF3, and compared results based on hormone contraception use. Samples were obtained from 93 females meeting Rome III IBS criteria and completing 4-week symptom diaries. TFF3 levels were measured by ELISA. Permeability was assessed with the urine lactulose/mannitol (L/M) ratio. Stool microbiota was assessed using 16S rRNA. Stool TFF3, but not urine TFF3, was associated positively with diarrhoea and loose stool consistency. Higher stool TFF3 was also associated with lower L/M ratio and microbial diversity. Of the 20 most abundant bacterial families Mogibacteriaceae and Christensenellaceae were inversely related to stool TFF3, with only Christensenellaceae remaining significant after multiple comparison adjustment. There were no significant relationships between stool or urine TFF3 levels and other symptoms, nor between stool and urine levels. In premenopausal females, urine TFF3 levels were higher in those reporting hormone contraception. Collectively these results suggest that higher stool TFF3 levels are associated with IBS symptoms (loose/diarrhoeal stools), lower gut permeability, and altered stool bacteria composition (decreased diversity and decreased Christensenellaceae), which further suggests that TFF3 may be an important marker of host-bacteria interaction.
Collapse
Affiliation(s)
- M M Heitkemper
- 1 Department of Biobehavioral Nursing and Health Informatics, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195-7266, USA
| | - K C Cain
- 2 Department of Biostatistics and Office of Nursing Research, University of Washington, 1959 NE Pacific Street, Seattle, WA, USA
| | - R J Shulman
- 3 Children's Nutrition Research Center, Baylor College of Medicine, Texas Children's Hospital, 6621 Fannin Street, Houston, TX 77030, USA
| | - R L Burr
- 1 Department of Biobehavioral Nursing and Health Informatics, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195-7266, USA
| | - C Ko
- 4 University of Washington Medical Center, 1959 NE Pacific Street, Seattle, WA 98195, USA
| | - E B Hollister
- 5 Department of Pathology and Immunology, Baylor College of Medicine, Texas Children's Microbiome Center, Texas Children's Hospital, 6621 Fannin Street, Houston, TX 77030, USA
| | - N Callen
- 6 Department of Family and Child Nursing, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, USA
| | - J Zia
- 4 University of Washington Medical Center, 1959 NE Pacific Street, Seattle, WA 98195, USA
| | - C J Han
- 1 Department of Biobehavioral Nursing and Health Informatics, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195-7266, USA
| | - M E Jarrett
- 1 Department of Biobehavioral Nursing and Health Informatics, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195-7266, USA
| |
Collapse
|
50
|
Duraj-Thatte AM, Praveschotinunt P, Nash TR, Ward FR, Nguyen PQ, Joshi NS. Modulating bacterial and gut mucosal interactions with engineered biofilm matrix proteins. Sci Rep 2018; 8:3475. [PMID: 29472619 PMCID: PMC5823925 DOI: 10.1038/s41598-018-21834-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 02/12/2018] [Indexed: 12/22/2022] Open
Abstract
Extracellular appendages play a significant role in mediating communication between bacteria and their host. Curli fibers are a class of bacterial fimbria that is highly amenable to engineering. We demonstrate the use of engineered curli fibers to rationally program interactions between bacteria and components of the mucosal epithelium. Commensal E. coli strains were engineered to produce recombinant curli fibers fused to the trefoil family of human cytokines. Biofilms formed from these strains bound more mucins than those producing wild-type curli fibers, and modulated mucin rheology as well. When treated with bacteria producing the curli-trefoil fusions mammalian cells behaved identically in terms of their migration behavior as when they were treated with the corresponding soluble trefoil factors. Overall, this demonstrates the potential utility of curli fibers as a scaffold for the display of bioactive domains and an untapped approach to rationally modulating host-microbe interactions using bacterial matrix proteins.
Collapse
Affiliation(s)
- Anna M Duraj-Thatte
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, United States.,John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, United States
| | - Pichet Praveschotinunt
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, United States.,John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, United States
| | - Trevor R Nash
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, United States.,John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, United States
| | - Frederick R Ward
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, United States
| | - Peter Q Nguyen
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, United States.,John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, United States
| | - Neel S Joshi
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, United States. .,John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, United States.
| |
Collapse
|