1
|
Sanami S, Rafieian-Kopaei M, Dehkordi KA, Pazoki-Toroudi H, Azadegan-Dehkordi F, Mobini GR, Alizadeh M, Nezhad MS, Ghasemi-Dehnoo M, Bagheri N. In silico design of a multi-epitope vaccine against HPV16/18. BMC Bioinformatics 2022; 23:311. [PMID: 35918631 PMCID: PMC9344258 DOI: 10.1186/s12859-022-04784-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 06/10/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cervical cancer is the fourth most common cancer affecting women and is caused by human Papillomavirus (HPV) infections that are sexually transmitted. There are currently commercially available prophylactic vaccines that have been shown to protect vaccinated individuals against HPV infections, however, these vaccines have no therapeutic effects for those who are previously infected with the virus. The current study's aim was to use immunoinformatics to develop a multi-epitope vaccine with therapeutic potential against cervical cancer. RESULTS In this study, T-cell epitopes from E5 and E7 proteins of HPV16/18 were predicted. These epitopes were evaluated and chosen based on their antigenicity, allergenicity, toxicity, and induction of IFN-γ production (only in helper T lymphocytes). Then, the selected epitopes were sequentially linked by appropriate linkers. In addition, a C-terminal fragment of Mycobacterium tuberculosis heat shock protein 70 (HSP70) was used as an adjuvant for the vaccine construct. The physicochemical parameters of the vaccine construct were acceptable. Furthermore, the vaccine was soluble, highly antigenic, and non-allergenic. The vaccine's 3D model was predicted, and the structural improvement after refinement was confirmed using the Ramachandran plot and ProSA-web. The vaccine's B-cell epitopes were predicted. Molecular docking analysis showed that the vaccine's refined 3D model had a strong interaction with the Toll-like receptor 4. The structural stability of the vaccine construct was confirmed by molecular dynamics simulation. Codon adaptation was performed in order to achieve efficient vaccine expression in Escherichia coli strain K12 (E. coli). Subsequently, in silico cloning of the multi-epitope vaccine was conducted into pET-28a ( +) expression vector. CONCLUSIONS According to the results of bioinformatics analyses, the multi-epitope vaccine is structurally stable, as well as a non-allergic and non-toxic antigen. However, in vitro and in vivo studies are needed to validate the vaccine's efficacy and safety. If satisfactory results are obtained from in vitro and in vivo studies, the vaccine designed in this study may be effective as a therapeutic vaccine against cervical cancer.
Collapse
Affiliation(s)
- Samira Sanami
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mahmoud Rafieian-Kopaei
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Korosh Ashrafi Dehkordi
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Hamidreza Pazoki-Toroudi
- Physiology Research Center, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Azadegan-Dehkordi
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Gholam-Reza Mobini
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Morteza Alizadeh
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Muhammad Sadeqi Nezhad
- Department of Clinical Laboratory Science, Young Researchers and Elites Club, Gorgan Branch, Islamic Azad University, Gorgān, Iran
| | - Maryam Ghasemi-Dehnoo
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Nader Bagheri
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
2
|
Minhas P, Kumar BVS, Verma R. Expression of recombinant DnaK of Brucella abortus and its evaluation as immuno-modulator. Arch Microbiol 2021; 203:2719-2725. [PMID: 33606039 DOI: 10.1007/s00203-021-02190-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 01/05/2021] [Accepted: 02/04/2021] [Indexed: 11/29/2022]
Abstract
Heat shock proteins are molecular chaperones that are immunogens as well as potent inducers of an antigen-specific immunological response. In this study, we aimed to evaluate if co-immunization of Brucella rOmp22 and rDnaK proteins had boosted immunogenic activity as compared to rOmp22 immunization alone in mice. For this, gene-encoding DnaK of B. abortus was cloned, expressed in E. coli and purified using Ni-NTA agarose. Immuno-modulatory effect of rDnaK protein was evaluated in mice when co-immunized with Brucella rOmp22. Four groups of mice (n = 6 per group) were used in the study. The control group was immunized with rOmp22 alone, while rOmp22 emulsified with conventional adjuvants (Freund's complete and incomplete adjuvants) and rOmp22 mixed with rDnaK were injected to group I and group II in mice, respectively. Group III mice were immunized with rDnaK alone. IgG class switching (IgG1 and IgG2a) response to immunization was assessed by enzyme-linked immunosorbent assay and expression of IL-4 and IL-12 mRNA was assessed by real-time PCR to evaluate the immune response in mice. The ratio of IgG1-IgG2a was less than 1 in mice co-immunized with rOmp22 and rDnaK, indicating that the immune response was directed towards CMI arm in this group of mice. Moreover, IL-12 mRNA expression was also up-regulated to a greater extent in mice co-immunized with rOmp22 and rDnaK as compared to those immunized with rOmp22 along with the conventional adjuvants, or rOmp22 alone. Our data suggest that rDnaK could be responsible for modulating the immune response, specifically the CMI response.
Collapse
Affiliation(s)
- Priyanka Minhas
- Department of Microbial and Environmental Biotechnology, College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, 141004, India
| | - B V Sunil Kumar
- Department of Microbial and Environmental Biotechnology, College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, 141004, India.
| | - Ramneek Verma
- Department of Microbial and Environmental Biotechnology, College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, 141004, India
| |
Collapse
|
3
|
Minhas P, Sunil Kumar BV, Verma R. Evaluation of immuno-modulating effect of recombinant heat shock protein 40 of Brucella abortus in mice. 3 Biotech 2019; 9:366. [PMID: 31588390 DOI: 10.1007/s13205-019-1905-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 09/17/2019] [Indexed: 11/24/2022] Open
Abstract
The present study was aimed to evaluate the immuno-modulatory effect of Brucella-specific recombinant HSP40 (rDnaJ) when co-immunized with Brucella rOmp22 in mice. For this, dnaJ of Brucella abortus was cloned, expressed in E. coli, and purified to homogeneity using Ni-NTA agarose columns. Three groups of mice (n = 6 in each group) were used in the study. The control group was immunized with rOmp22 alone, while group 1 mice were injected subcutaneously with rOmp22 along with conventional adjuvants (FCA, FIA), and group 2 mice with rOmp22 mixed with rDnaJ. IgG isotype (IgG1 and IgG2a) response to rOmp22 immunization was evaluated by enzyme-linked immunosorbent assay which was found to be directed towards the cell-mediated arm of immune system (CMI) in group 2 mice in which rOmp22 was co-immunized with rDnaJ. Expression profiling of IL-4 and IL-12 was checked in all the groups by qRT PCR. IL12 mRNA was up-regulated to a greater extent in group2 mice, suggesting that the CMI arm of immune system was stimulated. Hence, it was concluded that CMI response against rOmp22 is stimulated to a greater extent in mice when co-immunized with Brucella rDnaJ.
Collapse
Affiliation(s)
- Priyanka Minhas
- College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab 141004 India
| | - B V Sunil Kumar
- College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab 141004 India
| | - Ramneek Verma
- College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab 141004 India
| |
Collapse
|
4
|
Sánchez-López EF, Corigliano MG, Albarracín RM, Sander VA, Legarralde A, Bengoa-Luoni SA, Clemente M. Plant Hsp90 is a novel adjuvant that elicits a strong humoral and cellular immune response against B- and T-cell epitopes of a Toxoplasma gondii SAG1 peptide. Parasit Vectors 2019; 12:140. [PMID: 30909938 PMCID: PMC6434815 DOI: 10.1186/s13071-019-3362-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Accepted: 02/26/2019] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND The 90-kDa heat-shock protein (Hsp90) from Nicotiana benthamiana (NbHsp90.3) is a promising adjuvant, especially for those vaccines that require a T cell-mediated immune response. Toxoplasma gondii SAG1 is considered one of the most important antigens for the development of effective subunit vaccines. Some epitopes located in the SAG1 C-terminus region have showed a strong humoral and cellular immune response. In the present study, we aimed to assess the efficacy of NbHsp90.3 as carrier/adjuvant of SAG1-derived peptide (SAG1HC) in a T. gondii infection murine model. METHODS In the present study, C57BL/6 mice were intraperitoneal immunized with the NbHsp90.3-SAG1HC fusion protein (NbHsp90.3-SAG1HC group), mature SAG1 (SAG1m group), NbHsp90.3 (NbHsp90.3 group) or PBS buffer 1× (PBS group). The levels of IgG antibodies and the cytokine profile were determined by ELISA. Two weeks after the last immunization, all mice were orally challenged with 20 cysts of T. gondii Me49 strain and the number of brain cysts was determined. In addition, both humoral and cellular immune responses were also evaluated during the acute and chronic phase of T. gondii infection by ELISA. RESULTS The characterization of the immune response generated after vaccination with NbHsp90.3 as an adjuvant showed that NbHsp90.3-SAG1HC-immunized mice produced antibodies that were able to recognize not only rSAG1m but also the native SAG1 present in the total lysate antigen extract (SAG1TLA) from T. gondii tachyzoites, while control groups did not. Furthermore, anti-rSAG1m IgG2a/2b antibodies were significantly induced. In addition, only the spleen cell cultures from NbHsp90.3-SAG1HC-immunized mice showed a significantly increased production of IFN-γ. During the chronic phase of T. gondii infection, the antibodies generated by the infection were unable to detect the recombinant protein, but they did react with TLA extract. In addition, splenocytes from all groups showed a high production of IFN-γ when stimulated with rGRA4, but only those from NbHsp90.3-SAG1HC group stimulated with rSAG1m showed high production of IFN-γ. Finally, NbHsp90.3-SAG1HC-immunized mice exhibited a significant reduction in the cyst load (56%) against T. gondii infection. CONCLUSIONS We demonstrated that NbHsp90.3 enhances the humoral and cell-mediated immune response through a Th1 type cytokine production. Mice vaccinated with NbHsp90.3-SAG1HC exhibited a partial protection against T. gondii infection and it was correlated with the induction of memory immune response. We developed and validated a vaccine formulation which, to our knowledge, for the first time includes the NbHsp90.3 protein covalently fused to a peptide from T. gondii SAG1 protein that contains T- and B-cell epitopes.
Collapse
Affiliation(s)
- Edwin F. Sánchez-López
- Unidad de Biotecnología 6-UB6, IIB-INTECH, CONICET-UNSAM, Intendente Marino Km 8.2, B7130IWA Chascomús, Buenos Aires Province Argentina
| | - Mariana G. Corigliano
- Unidad de Biotecnología 6-UB6, IIB-INTECH, CONICET-UNSAM, Intendente Marino Km 8.2, B7130IWA Chascomús, Buenos Aires Province Argentina
| | - Romina M. Albarracín
- Unidad de Biotecnología 6-UB6, IIB-INTECH, CONICET-UNSAM, Intendente Marino Km 8.2, B7130IWA Chascomús, Buenos Aires Province Argentina
| | - Valeria A. Sander
- Unidad de Biotecnología 6-UB6, IIB-INTECH, CONICET-UNSAM, Intendente Marino Km 8.2, B7130IWA Chascomús, Buenos Aires Province Argentina
| | - Ariel Legarralde
- Unidad de Biotecnología 6-UB6, IIB-INTECH, CONICET-UNSAM, Intendente Marino Km 8.2, B7130IWA Chascomús, Buenos Aires Province Argentina
| | - Sofía A. Bengoa-Luoni
- Unidad de Biotecnología 6-UB6, IIB-INTECH, CONICET-UNSAM, Intendente Marino Km 8.2, B7130IWA Chascomús, Buenos Aires Province Argentina
| | - Marina Clemente
- Unidad de Biotecnología 6-UB6, IIB-INTECH, CONICET-UNSAM, Intendente Marino Km 8.2, B7130IWA Chascomús, Buenos Aires Province Argentina
| |
Collapse
|
5
|
Zhu X, Liu J, Bai J, Liu P, Zhang T, Jiang P, Wang X. Baculovirus expression of the N-terminus of porcine heat shock protein Gp96 improves the immunogenicity of recombinant PCV2 capsid protein. J Virol Methods 2016; 230:36-44. [PMID: 26826323 DOI: 10.1016/j.jviromet.2016.01.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Revised: 01/23/2016] [Accepted: 01/24/2016] [Indexed: 01/05/2023]
Abstract
Porcine circovirus type 2 (PCV2) causes significant economic losses to the swine industry worldwide. Heat shock proteins (Hsps) can be used as modulators to enhance both innate and adaptive immune responses. In the present study, recombinant baculoviruses expressing the PCV2Cap protein and the N-terminal 22-370 amino acids of porcine Gp96 (Gp96N), Hsp90, and Hsp70 (rBac-cap/Gp96N, rBac-cap/Hsp90 and rBac-cap/Hsp70, respectively) were constructed and the immune responses were examined in mice and piglets. The mouse experiments showed that rBac-cap/Gp96N increased the titers of specific anti-PCV2 neutralizing antibodies, proliferative responses of peripheral blood mononuclear cells (PBMCs) and IFN-γ levels compared to rBac-cap/Hsp90, rBac-cap/Hsp70, or rBac-cap. The pig experiments showed that the levels of anti-PCV2 antibody, proliferative responses of PBMCs, and IFN-γ in the rBac-cap/Gp96N groups were increased compared to those in rBac-cap group. There were no clear clinical signs of infection following PCV2 challenge in pigs inoculated with recombinant rBac-cap/Gp96N and rBac-cap, and the relative daily weight gains were higher than those in the challenge control (CC) group. The pathological lesions, extent of viremia, and viral loads of the vaccinated groups were milder than those in the CC group. Meanwhile, the extent of viremia and viral load present in the rBac-cap/Gp96N group were significantly lower than those in the rBac-cap group. These results indicated that porcine Gp96N effectively increased the humoral and cell-mediated immune responses of PCV2Cap. Gp96N presents an attractive adjuvant or immunotargeting strategy to enhance the protective efficacy of PCV2 subunit vaccines in swine.
Collapse
Affiliation(s)
- Xuejiao Zhu
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Jie Liu
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Juan Bai
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Panrao Liu
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Tingjie Zhang
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Ping Jiang
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.
| | - Xianwei Wang
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
6
|
Gao J, Luo SM, Peng ML, Deng T. Enhanced immunity against hepatoma induced by dendritic cells pulsed with Hsp70-H22 peptide complexes and CD40L. J Cancer Res Clin Oncol 2012; 138:917-26. [PMID: 22327301 DOI: 10.1007/s00432-012-1166-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 01/25/2012] [Indexed: 11/24/2022]
Abstract
PURPOSE Dendritic cell (DC)-based cancer vaccines have become an attractive antitumour therapeutic approach. However, clinical application of current DC-based cancer vaccines has been limited by their ineffectiveness. Heat shock protein 70 from Mycobacterium tuberculosis (TBhsp70) is known to have a potent adjuvant capability to induce maturation of DCs and thus acts as an alternative ligand to the CD40 ligand (CD40L) on T cells to induce a T-cell response. The aim of this study is to investigate whether the combination of TBhsp70-H22 tumour-peptide complexes and CD40L might improve the antitumour efficacy for development of therapeutic DC-based vaccines against hepatoma. METHODS The CD40, CD80, CD86 and HLA-DR expression on DCs pulsed with TBhsp70-H22 tumour-peptide complexes and soluble CD40L was studied by flow cytometric analysis, and T-helper type 1 cytokine secretion, such as IL-12p70 secretion, was tested by ELISA. The H22-specific cytotoxic T-lymphocytes (CTLs) were detected by a (51)Cr-release assay, and the in vivo antitumour immunity against hepatoma was measured by utilising H22-tumour-bearing mice after therapeutic administration. RESULTS Up-regulation of CD40, CD80, CD86 and HLA-DR expression on DCs pulsed with TBhsp70-H22 tumour-peptide complexes and CD40L was found, which stimulated a high level of T-helper type 1 cytokine secretion, such as IL-12p70, and resulted in the induction of H22-specific CTLs. The therapeutic administration of DCs pulsed in vitro with TBhsp70-H22 tumour-peptide complexes and CD40L significantly reduced the progression of H22 tumours in mice compared with DC-Hsp70-H22 peptide complexes or DC-CD40L alone. CONCLUSIONS Our findings demonstrate that DCs pulsed with Hsp70-H22-peptide complexes and CD40L enhance the antitumour immunity against hepatoma, which provides a novel immunotherapeutic approach against cancer.
Collapse
Affiliation(s)
- Jian Gao
- Department of Gastroenterology, Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China.
| | | | | | | |
Collapse
|
7
|
Buriani G, Mancini C, Benvenuto E, Baschieri S. Plant heat shock protein 70 as carrier for immunization against a plant-expressed reporter antigen. Transgenic Res 2011; 20:331-44. [PMID: 20559870 DOI: 10.1007/s11248-010-9418-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Accepted: 06/04/2010] [Indexed: 01/18/2023]
Abstract
Mammalian Heat Shock Proteins (HSP), have potent immune-stimulatory properties due to the natural capability to associate with polypeptides and bind receptors on antigen presenting cells. The present study was aimed to explore whether plant HSP, and in particular HSP70, share similar properties. We wanted in particular to evaluate if HSP70 extracted in association to naturally bound polypeptides from plant tissues expressing a recombinant "reporter" antigen, carry antigen-derived polypeptides and can be used to activate antigen-specific immune responses. This application of HSP70 has been very poorly investigated so far. The analysis started by structurally modeling the plant protein and defining the conditions that ensure maximal expression levels and optimal recovery from plant tissues. Afterwards, HSP70 was purified from Nicotiana benthamiana leaves transiently expressing a heterologous "reporter" protein. The purification was carried out taking care to avoid the release from HSP70 of the polypeptides chaperoned within plant cells. The evaluation of antibody titers in mice sera subsequent to the subcutaneous delivery of the purified HSP70 demonstrated that it is highly effective in priming humoral immune responses specific to the plant expressed "reporter" protein. Overall results indicated that plant-derived HSP70 shares structural and functional properties with the mammalian homologue. This study paves the way to further investigations targeted at determining the properties of HSP70 extracted from plants expressing foreign recombinant antigens as a readily available immunological carrier for the efficient delivery of polypeptides derived from these antigens.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antibodies, Viral/blood
- Antibody Specificity
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- Antigens, Viral/metabolism
- Capsid Proteins/genetics
- Capsid Proteins/immunology
- Capsid Proteins/metabolism
- Drug Delivery Systems
- Female
- Genes, Reporter/genetics
- Genes, Reporter/physiology
- HSP70 Heat-Shock Proteins/chemistry
- HSP70 Heat-Shock Proteins/genetics
- HSP70 Heat-Shock Proteins/immunology
- HSP70 Heat-Shock Proteins/metabolism
- Immunization
- Immunoglobulin G/blood
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Models, Molecular
- Molecular Sequence Data
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/immunology
- Recombinant Fusion Proteins/metabolism
- Nicotiana/genetics
- Nicotiana/metabolism
- Vaccines, Subunit
Collapse
Affiliation(s)
- Giampaolo Buriani
- Technical Unit Radiation Biology and Human Health, Biotechnologies Laboratory, ENEA C.R. Casaccia, Via Anguillarese 301, 00123, Rome, Italy
| | | | | | | |
Collapse
|
8
|
Hosseini Jazani N, Karimzad M, Shahabi S. Gp96 rich lysate as a vaccine candidate against infection with Salmonella typhimurium. IRANIAN JOURNAL OF MICROBIOLOGY 2010; 2:172-177. [PMID: 22347568 PMCID: PMC3279793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
BACKGROUND AND OBJECTIVES Glycoprotein 96 is the primary chaperone of the endoplasmic reticulum. Immunization with it induced potent Cytotoxic T lymphocyte responses to intracellular bacteria. S. typhimurium is a facultative intracellular bacterium and acquired resistance against this bacterium mainly depends on activity of Cytotoxic T cells. This study aimed to evaluate the capacity of Glycoprotein 96 rich lysate as a vaccine candidate to induce a protective immune response in mice against a lethal dose challenge with Salmonella typhimurium. MATERIALS AND METHODS Mice were infected with S. typhimurium. Then their spleens and livers were harvested and homogenized and the protein content of whole crude lysate was enriched using ammonium sulfate precipitation. SDS-polyacrylamide gel electrophoresis transfer method was used for enrichment of the protein from crude sample. Immunoblotting was conducted to detect Glycoprotein 96. Isoelectric point was achieved through the use of isoelectric focusing. PBS and whole crude lysate (from uninfected and infected mice) were injected to mice of test group, mice of control-1 group and mice of control-2 group, respectively, on days 0 and 14. Twenty-one days after the last immunization, the LD50 and bacterial loads of livers and spleens were determined. RESULTS AND CONCLUSION Immunization with Glycoprotein 96 rich lysate isolated from livers and spleens of S. typhimuriuminfected mice induced protection against infection by S. typhimurium. Also, the bacterial burden of livers and spleens in mice that received gp96 rich lysate significantly decreased when compared to that of mice in the control groups.
Collapse
Affiliation(s)
- N Hosseini Jazani
- Center for food sciences and nutrition, Urmia University of Medical Sciences, Urmia, Iran
| | - M Karimzad
- Department of Microbiology, Immunology and Genetics, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - S Shahabi
- Center for Cellular and Molecular Research, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
9
|
Kumar S, Deepak P, Kumar S, Kishore D, Acharya A. Autologous Hsp70 induces antigen specific Th1 immune responses in a murine T-cell lymphoma. Immunol Invest 2010; 38:449-65. [PMID: 19811405 DOI: 10.1080/08820130902802673] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Heat Shock protein-70 derived from tumor cells is highly immunogenic and induces specific anti-tumor immune response by directly activating cytotoxic CD8(+) T cells. Additionally, Hsp70 is known to be a strong activator of antigen presenting cells and therefore, up regulates the production of pro-inflammatory cytokines and chemokines. In this study, we have shown the effect of tumor-derived Hsp70 on the induction of delayed type hypersensitivity reaction in a T cell lymphoma bearing mice. The autologous Hsp70 augments contact hypersensitivity and delayed type hypersensitivity responses in mice challenged with allergen in vehicle and antigens respectively. The adoptive transfer of splenocytes derived from Hsp70 immunized mice is able to enhance delayed type hypersensitivity response in antigen challenged normal and DL-bearing host. Furthermore, adoptive transfer of macrophages incubated with autologous Hsp70 also enhances DTH reactivity in mice. The pro-inflammatory cytokines and C-C chemokines are found to be elevated in the DTH footpad extract of antigen challenged normal and DL-bearing mice. Increased production of IFN-gamma and MIP-1alpha+/- suggest that autologous Hsp70 augments the recruitment of antigen specific Th1 cells, which further secretes pro-inflammatory cytokines and C-C chemokines mediating the hypersensitivity reaction upon challenge with antigens.
Collapse
Affiliation(s)
- Sanjay Kumar
- Centre of Advance Study in Zoology, Faculty of Science, Banaras Hindu University, Varanasi, U.P., India
| | | | | | | | | |
Collapse
|
10
|
Li J, Li KN, Gao J, Cui JH, Liu YF, Yang SJ. Heat shock protein 70 fused to or complexed with hantavirus nucleocapsid protein significantly enhances specific humoral and cellular immune responses in C57BL/6 mice. Vaccine 2008; 26:3175-87. [PMID: 18479786 DOI: 10.1016/j.vaccine.2008.02.066] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2007] [Revised: 02/08/2008] [Accepted: 02/21/2008] [Indexed: 10/22/2022]
Abstract
Heat shock proteins (HSPs) are known to act as an effective molecular adjuvant to enhance the induction of antigen peptide-specific cellular immunity, when coupled with the antigen or peptide. Hantaan virus (HTNV) nucleocapsid protein (NP) is relatively conserved among hantaviruses and highly immunogenic in both animals and humans. To analyze the influence of HSP70 on NP vaccine potency, and evaluate the possibility of developing a novel effective vaccine against hantaviruses, we constructed prokaryotic expression plasmids, and expressed three recombinant proteins, namely, HTNV NP, HSP70 and HSP70-NP fusion protein. As an alternative to fusion protein, we also generated HSP70 and HTNV NP complexes (HSP70+NP) in vitro. C57BL/6 mice were immunized with those recombinant proteins, the humoral and cellular responses elicited against NP were measured by ELISA, fluorescence flow cytometry, cytotoxicity assays, and IFN-gamma ELISPOT assay. We found that immunization of mice with HSP70-NP fusion protein, or HSP70+NP complexes elicited significantly higher NP-specific antibody titers, frequencies of IFN-gamma-producing cells and cytotoxic T lymphocyte (CTL) activities in vivo than conventional HTNV NP vaccination. Antibody isotype analysis showed that the antibody response was characterized by a higher HTNV NP-specific titer of IgG2a than IgG1 antibodies, resulting in a significant higher IgG2a/IgG1 ratio. By comparison, HSP70-NP fusion protein is significantly superior to HSP70+NP complexes in enhancement of NP antigenicity. These results indicated that HSP70, when fused to or complexed with HTNV NP, greatly enhance NP vaccine potency by preferential induction of a predominant Th1 immune response in a NP-specific, HSP70-dependent manner.
Collapse
Affiliation(s)
- Jing Li
- Department of Pathology, Xijing Hospital, 4th Military Medical University, No. 17 Changle Xi Road, Xi'an, Shaanxi 710032, China
| | | | | | | | | | | |
Collapse
|
11
|
Chan T, Chen Z, Hao S, Xu S, Yuan J, Saxena A, Qureshi M, Zheng C, Xiang J. Enhanced T-cell immunity induced by dendritic cells with phagocytosis of heat shock protein 70 gene-transfected tumor cells in early phase of apoptosis. Cancer Gene Ther 2007; 14:409-20. [PMID: 17235354 DOI: 10.1038/sj.cgt.7701025] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The dual role of heat shock protein 70 (HSP70), as antigenic peptide chaperone and danger signal, makes it especially important in dendritic cell (DC)-based vaccination. In this study, we investigated the impacts of apoptotic transgenic MCA/HSP tumor cells expressing HSP70 on DC maturation, T-cell stimulation and vaccine efficacy. We found that DCs with phagocytosis of MCA/HSP in early phase of apoptosis expressed more pMHC I complexes, stimulated stronger cytotoxic T lymphocyte (CTL) responses (40% specific killing at an E:T cell ratio of 50) and induced immune protection in 90% of mice against MCA tumor cell challenge, compared with 25% specific CTL killing activity and 60% immune protection seen in mice immunized with DC with phagocytosis of MCA/HSP in late phase of apoptosis (P<0.05). Similar results were confirmed in another EG7 tumor model also expressing HSP70. Taken together, our data demonstrate that HSP70 on apoptotic tumor cells stimulate DC maturation, and DC with phagocytosis of apoptotic tumor cells expressing HSP70 in early phase of apoptosis more efficiently induced tumor-specific CTL responses and immunity than DCs with phagocytosis of apoptotic tumor cells in late phase of apoptosis. These results may have an important impact in designing DC-based antitumor vaccines.
Collapse
Affiliation(s)
- T Chan
- Research Unit, Saskatchewan Cancer Agency, Department of Oncology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Li Y, Subjeck J, Yang G, Repasky E, Wang XY. Generation of anti-tumor immunity using mammalian heat shock protein 70 DNA vaccines for cancer immunotherapy. Vaccine 2006; 24:5360-70. [PMID: 16714072 DOI: 10.1016/j.vaccine.2006.04.028] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2005] [Revised: 04/18/2006] [Accepted: 04/20/2006] [Indexed: 11/16/2022]
Abstract
In this study, we explored the protective anti-tumor potency of mouse (self) Hsp70 or Hsp110-based DNA vaccination approach targeting a tumor-associated antigen, human papilloma virus (HPV) type 16 E7 protein. Linkage of E7 to the N-terminus of the mouse Hsp70 not only elicits an E7-specific cytotoxic T cell (CTL) response, but also protects mice against challenge with E7 expressing tumors. CD8+ T-cells are crucial in both priming and effector phases for the induction of tumor immunity, whereas CD4+ T-cells and NK cells do not appear to play a major role. Furthermore, the ATP-binding domain deletion mutant Hsp70(382-641), when fused to E7, was immunologically effective, suggesting that the peptide-binding region, not the ATPase domain of Hsp70, is required for the vaccine activity of the E7-Hsp70 DNA. This study demonstrates that autologous Hsp70 is highly potent in enhancing antigen-specific immune responses. Functional domain mapping and orientation of the E7 and Hsp70 in the fusion gene may have clinical implications for the design and optimization of Hsp70-based DNA vaccines.
Collapse
Affiliation(s)
- Ying Li
- Department of Immunology, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | | | | | | | | |
Collapse
|
13
|
Wang XY, Facciponte JG, Subjeck JR. Molecular chaperones and cancer immunotherapy. Handb Exp Pharmacol 2006:305-29. [PMID: 16610365 DOI: 10.1007/3-540-29717-0_13] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
As one of the most abundant and evolutionally conserved intracellular proteins, heat shock proteins, also known as stress proteins or molecular chaperones, perform critical functions in maintaining cell homeostasis under physiological as well as stress conditions. Certain chaperones in extracellular milieu are also capable of modulating innate and adaptive immunity due to their ability to chaperone polypeptides and to interact with the host's immune system, particularly professional antigen-presenting cells. The immunomodulating properties of chaperones have been exploited for cancer immunotherapy. Clinical trials using chaperone-based vaccines to treat various malignancies are ongoing.
Collapse
Affiliation(s)
- X Y Wang
- Department of Cellular Stress Biology and Urologic Oncology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA.
| | | | | |
Collapse
|
14
|
Facciponte JG, Wang XY, MacDonald IJ, Park JE, Arnouk H, Grimm MJ, Li Y, Kim H, Manjili MH, Easton DP, Subjeck JR. Heat shock proteins HSP70 and GP96: structural insights. Cancer Immunol Immunother 2006; 55:339-46. [PMID: 16032399 PMCID: PMC11031057 DOI: 10.1007/s00262-005-0020-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2005] [Accepted: 04/25/2005] [Indexed: 10/25/2022]
Abstract
Several heat shock proteins (HSPs) act as potent adjuvants for eliciting anti-tumor immunity. HSP-based tumor vaccine strategies have been highly successful in animal models and are undergoing testing in clinical trials. It is generally accepted that HSPs, functioning as chaperones for tumor antigens, elicit tumor-specific adaptive immune responses. HSPs also appear to induce innate immune responses in an antigen-independent fashion. Innate responses generated by HSPs may contribute to anti-tumor immunity. Immunologically active chaperones with anti-tumor activity are referred to as "immunochaperones". Here, we review the studies that address the role of structural domains or regions of the immunochaperones HSP70 and GP96 that may be involved in the induction of adaptive or innate immune responses.
Collapse
Affiliation(s)
- John G Facciponte
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Peng M, Chen M, Ling N, Xu H, Qing Y, Ren H. Novel vaccines for the treatment of chronic HBV infection based on mycobacterial heat shock protein 70. Vaccine 2006; 24:887-96. [PMID: 16446013 DOI: 10.1016/j.vaccine.2005.12.050] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2005] [Revised: 12/19/2005] [Accepted: 12/22/2005] [Indexed: 10/25/2022]
Abstract
Immunogenic peptide-based vaccines can raise significant cellular immune responses. Although cytotoxic T lymphocytes (CTL) peptide epitopes are generally poor immunogens, heat shock protein 70 from Mycobacterium tuberculosis (TBhsp70) can overcome this problem since it is a potent adjuvant that links innate and adaptive immune responses. Our goal is to use TBhsp70 as an adjuvant for development of therapeutic vaccines for chronic Hepatitis B virus infection (HBV). To this end, we genetically fused the HBV core 18-27 peptide (HBcAg((18-27))) as a CTL epitope to the C-terminus of TBhsp70 and expressed the resulting protein in methylotropic yeast Pichia pastoris GS115. At the same time, the TBhsp70-HBcAg((18-27)) peptide complex was reconstituted in vitro. We investigated whether TBhsp70-peptide complex and TBhsp70-peptide fusion protein could generate antigen specific CTL responses in vitro. Dendritic cells (DC) from HLA-A2(+) chronic HBV infection and healthy control pulsed with two vaccines were studied phenotypically by FACS analyses and functionally by cytokine release, and HBV-specific CTL response. Our results demonstrate that two vaccines can activate DC of chronic HBV infection and healthy control by upregulation CD40 and CD86, high production of IL-12p70 and TNF-alpha. Furthermore, autologous T cells with DC stimulated by two vaccines can produce IFN-gamma and generate HBV-specific CTL response. However, capacity for CTL response and cytokines production from HBV infections remained inferior to that of healthy controls. Thus, the strategy of utilizing TBhsp70 may provide a novel design for the development of prophylactic and therapeutic vaccines.
Collapse
Affiliation(s)
- Mingli Peng
- Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Institute for Viral Hepatitis, Chongqing University of Medical Sciences, PR China.
| | | | | | | | | | | |
Collapse
|
16
|
Qazi KR, Qazi MR, Julián E, Singh M, Abedi-Valugerdi M, Fernández C. Exposure to mycobacteria primes the immune system for evolutionarily diverse heat shock proteins. Infect Immun 2005; 73:7687-96. [PMID: 16239573 PMCID: PMC1273840 DOI: 10.1128/iai.73.11.7687-7696.2005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During stress conditions, such as infection, the synthesis of heat shock proteins (HSPs) in microorganisms is upregulated. Since a high degree of homology exists within each HSP family, we postulated that exposure to microorganisms could prime the immune system for evolutionarily diverse HSPs. We tested this hypothesis by priming mice with three microorganisms, namely, Mycobacterium bovis BCG, Mycobacterium vaccae, and Chlamydia pneumoniae. After this, mice received a dose of the various HSPs. We found that BCG and M. vaccae but not C. pneumoniae primed the immune system for the induction of secondary immunoglobulin G (IgG) responses to most of the HSPs tested. Analysis of the IgG1 and IgG2a profile and gamma interferon production induced against the HSPs revealed the induction of a mixture of responses. We also observed that sera from mice treated with M. vaccae and HSP70 were cross-reactive, but no antibody complexes were observed in their kidneys, which frequently are targets for autoantibody reactions. Our findings add further support for the use of HSPs as effective vaccine adjuvants.
Collapse
Affiliation(s)
- Khaleda Rahman Qazi
- Department of Immunology, Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden, Lionex Diagnostics & Therapeutics, Braunschweig, Germany
| | - Mousumi Rahman Qazi
- Department of Immunology, Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden, Lionex Diagnostics & Therapeutics, Braunschweig, Germany
| | - Esther Julián
- Department of Immunology, Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden, Lionex Diagnostics & Therapeutics, Braunschweig, Germany
| | - Mahavir Singh
- Department of Immunology, Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden, Lionex Diagnostics & Therapeutics, Braunschweig, Germany
| | - Manuchehr Abedi-Valugerdi
- Department of Immunology, Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden, Lionex Diagnostics & Therapeutics, Braunschweig, Germany
| | - Carmen Fernández
- Department of Immunology, Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden, Lionex Diagnostics & Therapeutics, Braunschweig, Germany
- Corresponding author. Mailing address: Department of Immunology, Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden. Phone: 46 8 16 45 99. Fax: 46 8 612 95 42. E-mail:
| |
Collapse
|
17
|
Reimann J, Schirmbeck R. DNA vaccines expressing antigens with a stress protein-capturing domain display enhanced immunogenicity. Immunol Rev 2004; 199:54-67. [PMID: 15233726 DOI: 10.1111/j.0105-2896.2004.00136.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An expression system for DNA vaccines is described, in which a fusion protein with an N-terminal, viral J-domain that captures heat-shock proteins (Hsps) is translated in-frame with C-terminal antigen-encoding sequences (of various lengths and origins). The system supports enhanced expression of chimeric antigens (of >800 residues in length) with an extended half life (>8 h). When used as a DNA vaccine, it delivers antigen together with the intrinsic adjuvant activity provided by bound Hsps. We describe the design of vectors for DNA vaccination that support the expression of different immunogenic domains of different origins as large, Hsp-capturing chimeric fusion antigens. The immunogenicity of the antigens produced by this expression system (when it is built into DNA vaccines) has been characterized in detail, with particular emphasis on priming CD8+ T-cell responses. We also discuss areas of vaccine research to which the new technology may provide useful contributions.
Collapse
Affiliation(s)
- Jörg Reimann
- Institute for Medical Microbiology and Immunology, University of Ulm, Germany.
| | | |
Collapse
|
18
|
Massa C, Guiducci C, Arioli I, Parenza M, Colombo MP, Melani C. Enhanced Efficacy of Tumor Cell Vaccines Transfected with Secretable hsp70. Cancer Res 2004; 64:1502-8. [PMID: 14973071 DOI: 10.1158/0008-5472.can-03-2936] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Tumor immunotherapy has exploited the ability of heat shock proteins to chaperone precursors of antigenic peptides to antigen-presenting cells and to activate efficiently an immune response against tumor-associated antigens. The most common strategy is based on the purification of heat shock protein-peptide complexes from tumor cell lines or from tumor surgical samples for in vivo administration. In this article, we have modified the murine-inducible hsp70 into a secreted protein and engineered tumor cells to secrete constitutively their antigenic repertoire associated with the hsp70 protein. In vitro studies showed that the relocalization of hsp70 from the cytoplasm to the secretory pathway did not modify the ability of hsp70 to interact with peptides derived either from natural tumor-associated antigens or model antigens, and that antigen-presenting cells specifically took up the secreted hsp70 and presented the chaperoned epitopes to T cells. In vivo studies showed that tumors secreting hsp70 displayed increased immunogenicity, with induction of a strong and specific CTL response. Mice injected with hsp70-secreting tumors showed increased survival and impaired tumor take compared with mice bearing parental tumors. More than 70% of mice rejected tumor cells secreting hsp70 through mechanisms that involve T lymphocytes and natural killer cells, with the induction of a memory response in the case of T lymphocytes. Moreover, hsp70 secretion increased the immunogenic potential of tumor cell vaccines.
Collapse
Affiliation(s)
- Chiara Massa
- Immunotherapy and Gene Therapy Unit, Department of Experimental Oncology, Istituto Nazionale per lo Studio e la Cura dei Tumori, via Venezian 1, 20133 Milan, Italy
| | | | | | | | | | | |
Collapse
|
19
|
Abstract
Efficient vaccines comprise a specific moiety: the structures presenting the protective antigenic determinants, and a nonspecific moiety: the adjuvant components. Dramatic advances have been reported concerning the specific moiety and new and highly purified immunogens have been defined and prepared. The use of vaccines is no longer restricted to the prevention of infections, they are now considered as therapeutic tools especially in cancer immunotherapy. In contrast, alum is still the only adjuvant suitable for clinical application. The success of the new avenues opened in vaccinology depends on the availability of appropriate immunomodulating preparations. For each given type of vaccine, the optimal profile of activity of the adjuvant moiety has to be defined, according to the response required to provide protection or cure. Thus, it is urgent to design and develop adjuvants active not only on the humoral responses but also on the cellular immune responses. This adjuvant function must have the capacity of turning on the innate responses, which play a decisive and instructive role in emanating the adaptive immune responses. These considerations encourage one to finalize immunomodulating procedures rather than to look only for new adjuvant compounds. Manipulations of dendritic cells (DCs), use of heat-shock proteins (HSPs) as carriers endowed of adjuvant activity or introduction of varying immunostimulating motives in genetic vaccines represent examples illustrating this new rationale.
Collapse
|
20
|
Schirmbeck R, Fissolo N, Chaplin P, Reimann J. Enhanced priming of multispecific, murine CD8+ T cell responses by DNA vaccines expressing stress protein-binding polytope peptides. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 171:1240-6. [PMID: 12874211 DOI: 10.4049/jimmunol.171.3.1240] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A polytope DNA vaccine (pCI/pt10) was used that encodes within a 106-residue sequence 10-well characterized epitopes binding MHC class I molecules encoded by the K, D, or L locus (of H-2(d), H-2(b), and H-2(k) haplotype mice). The pCI/pt10 DNA vaccine efficiently primed all four K(b)/D(b)-restricted CD8(+) T cell responses in H-2(b) mice, but was deficient in stimulating most CD8(+) T cell responses in H-2(d) mice. Comparing CD8(+) T cell responses elicited with the pCI/pt10 DNA vaccine in L(d+) BALB/c and L(d-) BALB/c(dm2) (dm2) mice revealed that L(d)-restricted CD8(+) T cell responses down-regulated copriming of CD8(+) T cell responses to other epitopes regardless of their restriction or epitope specificity. Although the pt10 vaccine could thus efficiently co prime multispecific CD8(+) T cell responses, this priming was impaired by copriming L(d)-restricted CD8(+) T cell responses. When the pt10 sequence was fused to a 77-residue DnaJ-homologous, heat shock protein 73-binding domain (to generate a 183-residue cT(77)-pt10 fusion protein), expression and immunogenicity (for CD8(+) T cells) of the chimeric Ag were greatly enhanced. Furthermore, priming of multispecific CD8(+) T cell responses was readily elicited even under conditions in which the suppressive, L(d)-dependent immunodominance operated. The expression of polytope vaccines as chimeric peptides that endogenously capture stress proteins during in situ production thus facilitates copriming of CD8(+) T cell populations with a diverse repertoire.
Collapse
MESH Headings
- Animals
- Antigen Presentation/genetics
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Carrier Proteins/administration & dosage
- Carrier Proteins/genetics
- Carrier Proteins/immunology
- Carrier Proteins/metabolism
- Chickens
- Cytotoxicity, Immunologic/genetics
- Down-Regulation/genetics
- Down-Regulation/immunology
- Epitopes, T-Lymphocyte/immunology
- Epitopes, T-Lymphocyte/metabolism
- Female
- Genetic Vectors
- H-2 Antigens/biosynthesis
- H-2 Antigens/immunology
- H-2 Antigens/metabolism
- HSC70 Heat-Shock Proteins
- HSP70 Heat-Shock Proteins
- Histocompatibility Antigen H-2D
- Injections, Intramuscular
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Mutant Strains
- Peptide Fragments/administration & dosage
- Peptide Fragments/genetics
- Peptide Fragments/immunology
- Peptide Fragments/metabolism
- Protein Binding/genetics
- Protein Binding/immunology
- Recombinant Fusion Proteins/administration & dosage
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/immunology
- Recombinant Fusion Proteins/metabolism
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/metabolism
- Tumor Cells, Cultured
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/genetics
- Vaccines, DNA/immunology
- Vaccines, DNA/metabolism
Collapse
Affiliation(s)
- Reinhold Schirmbeck
- Institute of Medical Microbiology and Immunology, University of Ulm, Ulm, Germany
| | | | | | | |
Collapse
|
21
|
Chen X, Tao Q, Yu H, Zhang L, Cao X. Tumor cell membrane-bound heat shock protein 70 elicits antitumor immunity. Immunol Lett 2003; 84:81-7. [PMID: 12270543 DOI: 10.1016/s0165-2478(02)00042-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A novel membrane-bound heat shock protein 70 (mbHSP70) was expressed on the surface of the mouse mastocytoma cell line P815 to enhance immunogenicity of tumor cells. The in vivo effect of mbHSP70 was evaluated by comparing the growth of mbHSP70 cells to that of mock-transfected cells in DBA/2 mice. Fifty percent mice rejected mbHSP70 cells while 100% mice developed tumors in the counterparts. We then tested whether vaccination with these cells would elicit a protective antitumor response by injecting mice with either inactivated mbHSP70 cells or mock-transfected cells and challenging them with wild-type P815 cells. MbHSP70 cells-treated mice grew small tumors that soon disappeared in all animals. In contrast, 60% of animals receiving the mock-transfected cells vaccine grew large tumors and died. Lymphocytes from mbHSP70-vaccinated mice were able to kill wild-type P815 cells, suggesting that the antitumor response involved CTL. However, the activity of NK from mbHSP70 and mock-transfected cells vaccinated mice also increased. It implied that the non-specific immunity was also involved in tumor rejection. These findings indicate that the tumor cell membrane-bound HSP70 can be used as cancer vaccine to elicit protective antitumor immunity.
Collapse
Affiliation(s)
- Xiaohong Chen
- Institute of Immunology, Zhejiang University, 353 Yan'an Road, Hangzhou 310006, People's Republic of China.
| | | | | | | | | |
Collapse
|
22
|
Oglesbee MJ, Pratt M, Carsillo T. Role for heat shock proteins in the immune response to measles virus infection. Viral Immunol 2003; 15:399-416. [PMID: 12479391 DOI: 10.1089/088282402760312296] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Heat shock proteins (HSPs) are recognized for their support of protein metabolism. Interaction with viral proteins also enhances the development of innate and adaptive immune responses against the infecting agent. At the level of the infected cell, HSPs are uniquely expressed on the cell surface, where they represent targets of lymphokine activated killer cells. Necrosis of the infected cell releases complexes of HSP and viral protein, which, in turn, binds antigen-presenting cells (APCs). One effect of binding is to stimulate APC maturation and the release of proinflammatory cytokines, an adjuvant effect that prepares the way for adaptive immune responses. A second effect of binding is to direct the antigenic cargo of the HSP into endogenous MHC presentation pathways for priming of naive cytotoxic T cells (CTL) or activation of antigen-specific CTLs. This alternate pathway of antigen presentation is essential to CTL priming following primary brain infection. Using heat shock to elevate brain levels of HSP in a mouse model of measles virus (MV) persistent infection, we provide evidence supporting a role for HSPs in promoting cell-mediated viral clearance from brain. The findings highlight the probable relevance of HSPs to anti-MV immunity, suggesting novel routes of both therapeutic intervention and preventative measures.
Collapse
Affiliation(s)
- Michael J Oglesbee
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio 43210, USA.
| | | | | |
Collapse
|
23
|
Flohé SB, Brüggemann J, Lendemans S, Nikulina M, Meierhoff G, Flohé S, Kolb H. Human heat shock protein 60 induces maturation of dendritic cells versus a Th1-promoting phenotype. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:2340-8. [PMID: 12594256 DOI: 10.4049/jimmunol.170.5.2340] [Citation(s) in RCA: 179] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Heat shock protein (HSP) 60 nonspecifically activates cells of the innate immune system. In the present study, we characterized the effects of human HSP60 maturation, cytokine release, and T cell-activating capacity of bone marrow-derived dendritic cells (DC). Furthermore, we analyzed HSP60-induced signal transduction in DC. HSP60 strongly stimulated DC for maturation and release of TNF-alpha, IL-12, and IL-1 beta. However, HSP60 elicited only a weak IL-10 response in DC suggesting a Th1 bias. HSP60-treated DC induced proliferation of allogeneic T cells. Again, a Th1 bias was noted in that cocultures of allogeneic T cells and HSP60-treated DC released IFN-gamma but only small amounts of IL-10 and no detectable IL-4. Signaling via Toll-like receptor 4 was involved in HSP60-induced cytokine release and maturation because DC of C3H/HeJ mice with a mutant Toll-like receptor 4 showed deficient response to HSP60. HSP60 was found to rapidly activate the mitogen-activated protein kinases p38, c-Jun N-terminal kinase, and extracellular signal-regulated kinase as well as I kappa B in DC. Phosphorylation of these signaling molecules was also mediated by LPS, but with much slower kinetics. Thus, HSP60 stimulates DC more rapidly than LPS and elicits a Th1-promoting phenotype. These results suggest that DC play a pivotal role in priming for destructive Th1-type responses at sites of local HSP60 release.
Collapse
Affiliation(s)
- Stefanie B Flohé
- German Diabetes Research Institute, University of Düsseldorf, Düsseldorf, Germany
| | | | | | | | | | | | | |
Collapse
|
24
|
Grommé M, Neefjes J. Antigen degradation or presentation by MHC class I molecules via classical and non-classical pathways. Mol Immunol 2002; 39:181-202. [PMID: 12200050 DOI: 10.1016/s0161-5890(02)00101-3] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Major histocompatibility complex (MHC) class I molecules usually present endogenous peptides at the cell surface. This is the result of a cascade of events involving various dedicated proteins like the peptide transporter associated with antigen processing (TAP) and the ER chaperone tapasin. However, alternative ways for class I peptide loading exist which may be highly relevant in a process called cross-priming. Both pathways are described here in detail. One major difference between these pathways is that the proteases involved in the generation of peptides are different. How proteases and peptidases influence peptide generation and degradation will be discussed. These processes determine the amount of peptides available for TAP translocation and class I binding and ultimately the immune response.
Collapse
Affiliation(s)
- Monique Grommé
- Division of Tumor Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | | |
Collapse
|
25
|
Schirmbeck R, Reimann J. Alternative processing of endogenous or exogenous antigens extends the immunogenic, H-2 class I-restricted peptide repertoire. Mol Immunol 2002; 39:249-59. [PMID: 12200054 DOI: 10.1016/s0161-5890(02)00105-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We investigated the murine, MHC class I-restricted cytotoxic T lymphocyte (CTL) response to a viral antigen delivered by different vaccination strategies to either the endogenous, or an alternative exogenous processing pathway. The immunization techniques used primed distinct (though overlapping) repertoires of CTL epitopes. In vitro studies revealed evidence for the generation of immunogenic, L(d)- and K(b)-binding peptides from endocytosed, exogenous antigen by alternative (endolysosomal) processing. Endogenous antigens expressed by DNA vaccines as a stress protein-associated fusion proteins gains access from the cytosol to endolysosomal processing. Hence, exogenous as well as endogenous protein antigens can gain access to alternative processing pathways and can give rise to an extended repertoire of antigenic epitopes. These studies indicate novel ways for the rational design of vaccine candidates that can prime CTL responses.
Collapse
Affiliation(s)
- Reinhold Schirmbeck
- Institute of Medical Microbiology and Immunology, University of Ulm, Helmholtzstr 8/1, Albert Einstein Allee 11, D-89081, Ulm, Germany
| | | |
Collapse
|
26
|
Wang Y, Kelly CG, Singh M, McGowan EG, Carrara AS, Bergmeier LA, Lehner T. Stimulation of Th1-polarizing cytokines, C-C chemokines, maturation of dendritic cells, and adjuvant function by the peptide binding fragment of heat shock protein 70. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:2422-9. [PMID: 12193710 DOI: 10.4049/jimmunol.169.5.2422] [Citation(s) in RCA: 197] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The peptide binding C-terminal portion of heat shock protein (HSP)70 (aa 359-610) stimulates human monocytes to produce IL-12, TNF-alpha, NO, and C-C chemokines. The N-terminal, ATPase portion (HSP70(1-358)) failed to stimulate any of these cytokines or chemokines. Both native and the truncated HSP70(359-610) stimulation of chemokine production is mediated by the CD40 costimulatory molecule. Maturation of dendritic cells was induced by stimulation with native HSP70, was not seen with the N-terminal HSP70(1-358), but was enhanced with HSP70(359-610), as demonstrated by up-regulation of CD83, CCR7, CD86, CD80, and HLA class II. In vivo studies in macaques showed that immunization with HSP70(359-610) enhances the production of IL-12 and RANTES. Immunization with peptide-bound HSP70(359-610) in mice induced higher serum IgG2a and IgG3 Abs than the native HSP70-bound peptide. This study suggests that the C-terminal, peptide-binding portion of HSP70 is responsible for stimulating Th1-polarizing cytokines, C-C chemokines, and an adjuvant function.
Collapse
Affiliation(s)
- Yufei Wang
- Peter Gorer Department of Immunobiology, Guy's, King's, & St. Thomas' Hospital Medical and Dental Schools, London, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
27
|
Schirmbeck R, Kwissa M, Fissolo N, Elkholy S, Riedl P, Reimann J. Priming polyvalent immunity by DNA vaccines expressing chimeric antigens with a stress protein-capturing, viral J-domain. FASEB J 2002; 16:1108-10. [PMID: 12039856 DOI: 10.1096/fj.01-0993fje] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The N-terminal domain of large tumor antigens (T-Ag) of polyomaviruses forms a DnaJ-like structure with a conserved J domain that associates with constitutively expressed stress protein heat shock protein (hsp)73. Mutant (but not wild-type) SV40 T-Ag show stable, ATP-dependent binding to the stress protein hsp73 when expressed in cells from different vertebrate tissues. Intracellular T/hsp73 complexes accumulate to high steady-state levels. From this observation, we designed a vector system that supports stable expression of a large variety of hsp73-capturing, chimeric antigens containing an N-terminal, T-Ag-derived domain, and different C-terminal antigenic domains from unrelated antigens. Most antigenic domains tested could be stably expressed only in eukaryotic cells as fusion protein/hsp73 complexes. The N-terminal 77 residues representing the J domain of T-Ag were required for stable hsp73 binding and efficient expression of chimeric antigens. Hsp73-bound chimeric antigens expressed by DNA vaccines showed strikingly enhanced immunogenicity evident in humoral (antibody) and cellular cytolytic T lymphocytes (CTL) responses. The described system supports efficient expression of chimeric, polyvalent antigens and their codelivery with hsp73 as a "natural adjuvant" for enhanced immunogenicity for T and B cells.
Collapse
Affiliation(s)
- Reinhold Schirmbeck
- Institute of Medical Microbiology and Immunology, University of Ulm, Ulm, Germany.
| | | | | | | | | | | |
Collapse
|
28
|
Wallin RPA, Lundqvist A, Moré SH, von Bonin A, Kiessling R, Ljunggren HG. Heat-shock proteins as activators of the innate immune system. Trends Immunol 2002; 23:130-5. [PMID: 11864840 DOI: 10.1016/s1471-4906(01)02168-8] [Citation(s) in RCA: 418] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Peptides bound or linked to heat-shock proteins (HSPs) of microbial or mammalian origin have been shown to elicit potent antigen-specific immunity. Some members of the HSP family, such as hsp60, hsp70, hsp90 and gp96, are able also to stimulate cells of the innate immune system directly and thus, act as 'danger'-signaling molecules. This effect is independent of HSP-associated peptides and, in many respects, resembles the effect of lipopolysaccharide (LPS). Here, we discuss the similarities between the responses to HSPs and LPS and also, emphasize that care must be taken when working with preparations of HSPs in experimental settings and interpreting experimental data.
Collapse
Affiliation(s)
- Robert P A Wallin
- Microbiology and Tumor Biology Center, Karolinska Institutet, S-171 77, Stockholm, Sweden.
| | | | | | | | | | | |
Collapse
|
29
|
Kumaraguru U, Gierynska M, Norman S, Bruce BD, Rouse BT. Immunization with chaperone-peptide complex induces low-avidity cytotoxic T lymphocytes providing transient protection against herpes simplex virus infection. J Virol 2002; 76:136-41. [PMID: 11739679 PMCID: PMC135705 DOI: 10.1128/jvi.76.1.136-141.2002] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Heat shock proteins loaded with viral peptides were shown to induce a CD8+ T cell response and confer protective immunity against challenge with herpes simplex virus (HSV). The delivery system consisted of recombinant human hsp70 coupled to the peptide SSIEFARL, which is the immunodominant peptide epitope, recognized by HSV specific T cells in C57BL/6 mice. Immunization resulted in CD8+ T-cell responses, measured by peptide-specific tetramers and peptide-induced intracellular gamma interferon expression and cytotoxicity, similar to responses resulting from immunization with a recombinant vaccinia virus that expressed SSIEFARL as a minigene (VvgB) and UV-inactivated HSV. However, the durability of the hsp70-SSIEFARL response was less than that resulting from VvgB and HSV immunization and in addition the CD8+ T-cell responses in the memory phase were functionally less effective. Mice challenged soon after immunization showed excellent immunity, but by 90 days postimmunization this had waned to be significantly less than the level of immunity in both VvgB- and HSV-immunized mice.
Collapse
Affiliation(s)
- Udayasankar Kumaraguru
- Department of Microbiology and Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996-0845, USA
| | | | | | | | | |
Collapse
|
30
|
Engler OB, Dai WJ, Sette A, Hunziker IP, Reichen J, Pichler WJ, Cerny A. Peptide vaccines against hepatitis B virus: from animal model to human studies. Mol Immunol 2001; 38:457-65. [PMID: 11741695 DOI: 10.1016/s0161-5890(01)00081-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
An estimated 400 million people are chronically infected with the hepatitis B virus (HBV). Chronic viral hepatitis infection incurs serious sequelae such as liver cirrhosis and hepatocellular carcinoma. Prevention and treatment, thus, represent an important target for public health. Preventive vaccines using HBsAg alone or combined with other antigens allow for the generation of neutralizing antibodies which effectively prevent infection in immunocompetent individuals. Cell-mediated immunological mechanisms are thought to be crucial in determining viral persistence or viral elimination. Therapeutic approaches aiming to shift cellular immunity towards viral elimination have been on the research agenda for many years. This paper summarizes pre-clinical and clinical results obtained with the use of immunogenic peptides formulated as vaccines to selectively boost cellular immune responses. Such vaccines are capable of generating cellular immune responses in animal models as well as in humans and represent an important step towards the development of a therapeutic vaccine against chronic hepatitis.
Collapse
Affiliation(s)
- O B Engler
- Clinic of Rheumatology and Clinical Immunology/Allergology, University Hospital, Inselspital Bern, 3010, Bern, Switzerland
| | | | | | | | | | | | | |
Collapse
|
31
|
Tan BH, Wang L, Gan YH. Immunomodulating activity of mycobacterial heat shock protein 65 in tumor cells. Immunobiology 2001; 203:786-99. [PMID: 11563678 DOI: 10.1016/s0171-2985(01)80007-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In recent years, heat shock proteins have been shown to be effective in enhancing the immunogenicity of tumors. In this study, we examined the effect of mycobacterial hsp65 gene transfection in a non-immunogenic and aggressive tumor cell-line in order to understand the factors that could contribute to the increase in immunogenicity mediated by Hsp65. The transfected cells were found to have indeed lost their tumorigenenicity and increased their immunogenicity. Tumor-specific cytotoxic T cells were present only in mice immunized with the Hsp65-expressing cells. Furthermore, endogenous Hsp70 was significantly increased in irradiated Hsp65-expressing cells and recombinant Hsp65 protein was able to stimulate the mRNA expression of various T helper 1 (Th1) and pro-inflammatory cytokines in splenocyte cultures, as well as a modest expansion of CD4 T cells. These results provide further evidence of the immunomodulating properties of Hsp65, which could be exploited for the treatment of cancer.
Collapse
Affiliation(s)
- B H Tan
- Department of Biochemistry, Faculty of Medicine, National University of Singapore, Singapore
| | | | | |
Collapse
|
32
|
Dijkstra JM, Fischer U, Sawamoto Y, Ototake M, Nakanishi T. Exogenous antigens and the stimulation of MHC class I restricted cell-mediated cytotoxicity: possible strategies for fish vaccines. FISH & SHELLFISH IMMUNOLOGY 2001; 11:437-458. [PMID: 11556476 DOI: 10.1006/fsim.2001.0351] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
An MHC class I restricted cytotoxic T lymphocyte (CTL) activity assay has recently been established for rainbow trout. MHC class I restricted cytotoxicity probably plays a critical role in immunity to most viral diseases in mammals and may play a similar role in fish. Therefore, it is very important to investigate what types of vaccines can stimulate this immune response. Although logical candidates for vaccine components that can stimulate an MHC class I restricted response are live attenuated viruses and DNA vaccines, these materials are generally not allowed in fish for commercial vaccine use due to potential safety issues. In mammals, however, a number of interesting vaccination strategies based on exogenous antigens that stimulate MHC class I restricted cytotoxicity have been described. Several of these strategies are discussed in this review in the context of fish vaccination.
Collapse
Affiliation(s)
- J M Dijkstra
- Immunology Section, National Research Institute of Aquaculture, Tamaki, Mie, Japan
| | | | | | | | | |
Collapse
|
33
|
Zügel U, Sponaas AM, Neckermann J, Schoel B, Kaufmann SH. gp96-peptide vaccination of mice against intracellular bacteria. Infect Immun 2001; 69:4164-7. [PMID: 11349093 PMCID: PMC98486 DOI: 10.1128/iai.69.6.4164-4167.2001] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This work demonstrates that gp96 preparations isolated from cells infected with intracellular bacteria induce cytotoxic T-lymphocyte responses and confer protection. Our findings extend previous reports on the immunogenicity of gp96-associated peptides to antigens derived from intracellular bacteria. Immunization with gp96 may therefore represent a promising vaccination strategy against bacterial pathogens.
Collapse
Affiliation(s)
- U Zügel
- Department of Immunology, University of Ulm, Germany
| | | | | | | | | |
Collapse
|
34
|
Srivastava PK, Amato RJ. Heat shock proteins: the 'Swiss Army Knife' vaccines against cancers and infectious agents. Vaccine 2001; 19:2590-7. [PMID: 11257397 DOI: 10.1016/s0264-410x(00)00492-8] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The ability of heat shock proteins to: (a) chaperone peptides, including antigenic peptides; (b) interact with antigen presenting cells through a receptor; (c) stimulate antigen presenting cells to secrete inflammatory cytokines; and (d) mediate maturation of dendritic cells, makes them a one-stop shop for the immune system. These properties also permit the utilization of heat shock proteins for development of a new generation of prophylactic and therapeutic vaccines against cancers and infectious diseases.
Collapse
Affiliation(s)
- P K Srivastava
- Center for Immunotherapy of Cancer and Infectious Diseases, University of Connecticut School of Medicine, Farmington, CT 06030-1601, USA.
| | | |
Collapse
|
35
|
Basu S, Srivastava PK. Heat shock proteins: the fountainhead of innate and adaptive immune responses. Cell Stress Chaperones 2001. [PMID: 11189450 DOI: 10.1379/1466-1268(2000)005<0443:hsptfo>2.0.co;2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The ability of heat shock proteins to (1) chaperone peptides, including antigenic peptides; (2) interact with antigen-presenting cells through a receptor; (3) stimulate antigen-presenting cells to secrete inflammatory cytokines; and (4) mediate maturation of dendritic cells, makes them a unique starting point for generation of immune responses. These properties also permit the use of heat shock proteins for development of a new generation of prophylactic and therapeutic vaccines against cancers and infectious diseases.
Collapse
Affiliation(s)
- S Basu
- Center for Immunotherapy of Cancer and Infectious Diseases, University of Connecticut School of Medicine, Farmington 06030-1601, USA
| | | |
Collapse
|
36
|
Basu S, Srivastava PK. Heat shock proteins: the fountainhead of innate and adaptive immune responses. Cell Stress Chaperones 2000; 5:443-51. [PMID: 11189450 PMCID: PMC312875 DOI: 10.1379/1466-1268(2000)005<0443:hsptfo>2.0.co;2] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2000] [Revised: 08/29/2000] [Accepted: 08/30/2000] [Indexed: 11/24/2022] Open
Abstract
The ability of heat shock proteins to (1) chaperone peptides, including antigenic peptides; (2) interact with antigen-presenting cells through a receptor; (3) stimulate antigen-presenting cells to secrete inflammatory cytokines; and (4) mediate maturation of dendritic cells, makes them a unique starting point for generation of immune responses. These properties also permit the use of heat shock proteins for development of a new generation of prophylactic and therapeutic vaccines against cancers and infectious diseases.
Collapse
Affiliation(s)
- Sreyashi Basu
- Center for Immunotherapy of Cancer and Infectious Diseases, University of Connecticut School of Medicine, Farmington, CT 06030-1601, USA
| | - Pramod K. Srivastava
- Center for Immunotherapy of Cancer and Infectious Diseases, University of Connecticut School of Medicine, Farmington, CT 06030-1601, USA
- Correspondence to: Pramod K. Srivastava, Tel: 860 679-4444; Fax: 860 679-4365; .
| |
Collapse
|
37
|
Chen W, Lin Y, Liao C, Hsieh S. Modulatory effects of the human heat shock protein 70 on DNA vaccination. J Biomed Sci 2000; 7:412-9. [PMID: 10971139 DOI: 10.1007/bf02255816] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
DNA vaccination with the plasmid expressing Japanese encephalitis virus (JEV) nonstructural protein 1 (pJNS1) has been shown to induce effective immunity against JEV infection. To further increase the efficacy of pJNS1 DNA vaccination, we coinjected pJNS1 with a plasmid that expresses heat shock protein 70.1 (pHSP70.1) into mice. We found that coinjection of pHSP70.1 enhanced both T cell proliferation and cytotoxic effects, but not the antibody response to JEV. Moreover, mice immunized with both pHSP70.1 and pJNS1 were resistant to lethal challenges of JEV, indicating that the protective immunity against JEV is not decreased, in spite of the low antibody titer via the immunization of pHSP70.1. Since DNA vaccination administered by pJNS1 did not elicit strong cellular immunity in our previous study, the administration of pHSP70.1 apparently could be used as an adjuvant to enhance cell-mediated immunity in this model system. Thus, coadministration of pHSP70.1 DNA with plasmid DNA encoding tumor- or virus-specific antigens might be very useful in the treatment of cancers and other infectious diseases.
Collapse
Affiliation(s)
- W Chen
- Immunology Research Center and Department of Microbiology and Immunology, National Yang-Ming University School of Medicine, Taipei, Taiwan, Republic of China
| | | | | | | |
Collapse
|
38
|
Wells AD, Malkovsky M. Heat shock proteins, tumor immunogenicity and antigen presentation: an integrated view. IMMUNOLOGY TODAY 2000; 21:129-32. [PMID: 10689300 DOI: 10.1016/s0167-5699(99)01558-3] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A broad range of studies has established that heat shock proteins (Hsps) potentially play a role in tumor immunosurveillance. Here, Andrew Wells and Miroslav Malkovsky highlight recent data that demonstrate a causal relationship between the expression of Hsps and tumor immunogenicity, and suggest several mechanisms by which Hsps might influence the capacity of a tumor to induce an immune response.
Collapse
Affiliation(s)
- A D Wells
- Dept of Medicine, University of Pennsylvania, USA.
| | | |
Collapse
|
39
|
Linderoth NA, Popowicz A, Sastry S. Identification of the peptide-binding site in the heat shock chaperone/tumor rejection antigen gp96 (Grp94). J Biol Chem 2000; 275:5472-7. [PMID: 10681525 DOI: 10.1074/jbc.275.8.5472] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Heat shock protein (HSP)-peptide complexes from tumor cells elicit specific protective immunity when injected into inbred mice bearing the same specific type of tumor. The HSP-mediated specific immunogenicity also occurs with virus-infected cells. The immune response is solely due to endogenous peptides noncovalently bound to HSP. A vesicular stomatitis virus capsid-derived peptide ligand bearing a photoreactive azido group was specifically bound by and cross-linked to murine HSP glycoprotein (gp) 96. The peptide-binding site was mapped by specific proteolysis of the cross-links followed by analysis of the cross-linked peptides using a judicious combination of SDS-gel electrophoresis, mass spectrometry, and amino acid sequencing. The minimal peptide-binding site was mapped to amino acid residues 624-630 in a highly conserved region of gp96. A model of the peptide binding pocket of gp96 was constructed based on the known crystallographic structure of major histocompatibility complex class I molecule bound to a similar peptide. The gp96-peptide model predicts that the peptide ligand is held in a groove formed by alpha-helices and lies on a surface consisting of antiparallel beta-sheets. Interestingly, in this model, the peptide binding pocket abuts the dimerization domain of gp96, which may have implications for the extraordinary stability of peptide-gp96 complexes, and for the faithful relay of peptides to major histocompatibility complex class I molecule for antigen presentation.
Collapse
Affiliation(s)
- N A Linderoth
- Laboratory of Molecular Genetics, The Rockefeller University, New York, New York 10021, USA
| | | | | |
Collapse
|
40
|
Reimann J, Schirmbeck R. Alternative pathways for processing exogenous and endogenous antigens that can generate peptides for MHC class I-restricted presentation. Immunol Rev 1999; 172:131-52. [PMID: 10631943 DOI: 10.1111/j.1600-065x.1999.tb01362.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The concept of distinct endogenous and exogenous pathways for generating peptides for MHC-I and MHC-II-restricted presentation to CD4+ or CD8+ T cells fits well with the bulk of experimental data. Nevertheless, evidence is emerging for alternative processing pathways that generate peptides for MHC-I-restricted presentation. Using a well characterized, particulate viral antigen of prominent medical importance (the hepatitis B surface antigen), we summarize our evidence that the efficient, endolysosomal processing of exogenous antigens can lead to peptide-loaded MHC-I molecules. In addition, we describe evidence for endolysosomal processing of mutant, stress protein-bound, endogenous antigens that liberate peptides binding to (and presented by) MHC-I molecules. The putative biological role of alternative processing of antigens generating cytotoxic T-lymphocyte-stimulating epitopes is discussed.
Collapse
Affiliation(s)
- J Reimann
- Department of Medical Microbiology and Immunology, University of Ulm, Germany.
| | | |
Collapse
|
41
|
Heike M, Weinmann A, Bethke K, Galle PR. Stress protein/peptide complexes derived from autologous tumor tissue as tumor vaccines. Biochem Pharmacol 1999; 58:1381-7. [PMID: 10513981 DOI: 10.1016/s0006-2952(99)00178-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Vaccination of inbred mice with tumor-derived stress proteins hsp70, hsp90, and gp96/grp94 elicits a protective immunity to the tumor from which the vaccine was purified. There is now comprehensive experimental evidence that the antigenicity of tumor-derived hsp70, hsp90, and gp96 preparations results from diverse arrays of endogenous peptide antigens complexed with these stress proteins. Vaccination with tumor-derived stress protein/peptide complexes leads to their uptake and processing by professional antigen-presenting cells and to presentation of associated tumor peptide antigens to cytotoxic T cells. This induces a tumor-specific cytotoxic T cell response. The attractiveness of the concept of using tumor-derived stress proteins as vaccines is derived from two observations: (i) tumor stress protein vaccines mirror the individual antigenicity of a tumor, which results from random mutations due to genetic instability; and (ii) stress proteins represent powerful adjuvants for the peptide antigens complexed to them.
Collapse
Affiliation(s)
- M Heike
- I. Medizinische Klinik und Poliklinik, Johannes Gutenberg-Universität Mainz, Germany.
| | | | | | | |
Collapse
|
42
|
Abstract
Heat shock proteins (hsp) are conserved molecules that play an important role in protein folding and assembly and in translocation of proteins between different compartments. Under stress, hsp synthesis is drastically increased, representing a mechanism essential for cell survival. During infection or inflammation, numerous hsp are overexpressed. Not surprisingly, hsp represent dominant antigens in many infectious and autoimmune diseases that induce strong humoral and cellular immune responses. There is substantial evidence that hsp are dominant immune targets in a number of diseases, to the benefit or detriment of man. Nevertheless, findings also exist which argue against a universal role for hsp as target antigens in disease situations. It is suggested that hsp mainly serve as 'early' targets in the immune response, thus providing support for anti-infectious or autoaggressive immune responses directed against unique pathogen- or disease-associated antigens, respectively.
Collapse
Affiliation(s)
- U Zügel
- Department of Immunology, University Clinics Ulm, Germany
| | | |
Collapse
|
43
|
Mun HS, Aosai F, Yano A. Role of Toxoplasma gondii HSP70 and Toxoplasma gondii HSP30/bag1 in antibody formation and prophylactic immunity in mice experimentally infected with Toxoplasma gondii. Microbiol Immunol 1999; 43:471-9. [PMID: 10449253 DOI: 10.1111/j.1348-0421.1999.tb02430.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Production of antibodies against Toxoplasma gondii (T. gondii)-derived stress proteins, T. gondii HSP70 (T.g.HSP70) and T.g.HSP30/bagl, in C57BL/6 and BALB/c mice perorally infected with cysts of the avirulent Fukaya strain of T. gondii was analyzed. Production of anti-T.g.HSP70 IgG antibodies was transient, whereas production of anti-T.g.HSP30/bag1 IgG antibodies persisted after infection in both C57BL/6 and BALB/c mice. C57BL/6 mice, a susceptible strain, predominantly produced IgG antibodies specific for T.g.HSP70, whereas BALB/c mice, a resistant strain, predominantly produced IgG antibodies specific for T.g.HSP30/bag1, after T. gondii infection. Immunization with rT.g.HSP30/bag1 enhanced, whereas immunization with rT.g.HSP70 reduced host protective immunity against T. gondii infection with a cyst-forming avirulent strain, Fukaya, and a virulent strain, RH.
Collapse
Affiliation(s)
- H S Mun
- Department of Parasitology, Chiba University School of Medicine, Japan
| | | | | |
Collapse
|
44
|
Schirmbeck R, Gerstner O, Reimann J. Truncated or chimeric endogenous protein antigens gain immunogenicity for B cells by stress protein-facilitated expression. Eur J Immunol 1999; 29:1740-9. [PMID: 10359129 DOI: 10.1002/(sici)1521-4141(199905)29:05<1740::aid-immu1740>3.0.co;2-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Truncated variants of the SV40 large T antigen (T-Ag) with an intact N terminus are as efficiently expressed in eukaryotic transfectants as wild-type (wt) T-Ag. Coprecipitation of N-terminal T-Ag fragments with the constitutively expressed, cytosolic stress protein hsp73 suggests that this chaperone stabilized expression of the truncated T-Ag fragments. In contrast to T-Ag, the 163-residue N-terminal preS domain of the hepatitis B surface antigen (HBsAg) is difficult to express. When the preS domain is C-terminally fused to a hsp73-binding cytoplasmic T-Ag (cT-Ag) fragment its stable expression as a chimeric cT-preS protein is obtained. DNA-based vaccination with plasmid DNA encoding either wt or hsp-associated mutant T-Ag elicited potent MHC class I-restricted, T-Ag-specific T cell responses. In contrast, DNA vaccination with hsp73-binding (mutant or chimeric) T-Ag variants, but not with wt T-Ag elicited T-Ag-specific antibody responses. Furthermore, vaccination with cT-preS-encoding plasmid DNA induced antibodies binding to the preS domain of the large HBsAg. Hence, hsp73-bound endogenous antigens efficiently stimulate antibody responses. These findings may be relevant for tumor immunology and autoimmunity.
Collapse
Affiliation(s)
- R Schirmbeck
- Institute of Medical Microbiology, University of Ulm, Germany
| | | | | |
Collapse
|
45
|
Sastry S, Linderoth N. Molecular mechanisms of peptide loading by the tumor rejection antigen/heat shock chaperone gp96 (GRP94). J Biol Chem 1999; 274:12023-35. [PMID: 10207025 DOI: 10.1074/jbc.274.17.12023] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Complexes of gp96/GRP94 and peptides have been shown to elicit immunogenicity. We used fluorescence to understand peptide association with gp96. A pyrene-peptide conjugate was complexed with gp96 under a variety of conditions. At room temperature in low salt (20 mM NaCl), the peptide binds gp96 with a strong affinity (approximately 100-150 nM) and forms pyrene excimers, suggesting that the peptides were assembled as dimers. In high salt (2.2 M NaCl), although peptide binding was stronger (Ka approximately 55 nM) than in low salt, pyrene excimers were absent, implying that peptides were farther apart in the complex. Heat shock-activated peptide binding exhibited characteristics of both low salt and high salt modes of binding. Anisotropy and average lifetime of the bound pyrene suggested that peptides were probably located in a solvent-accessible hydrophobic binding pocket in low salt, whereas in high salt, the peptide may be buried in a less hydrophobic (more hydrophilic) environment. These results suggested that peptide-gp96 complexes were assembled in several different ways, depending on the assembly conditions. Resonance energy transfer between the intrinsic tryptophan(s) in gp96 and pyrene suggested that one or more tryptophan residues were within the critical Forster distance of 27-30 A from the pyrene in the bound peptide. It is proposed that peptides are assembled within higher order gp96 complexes (dimers, etc.) in a hydrophobic pocket and that there may be a conformational change in gp96 leading to an open configuration for peptide loading.
Collapse
Affiliation(s)
- S Sastry
- Laboratory of Molecular Genetics, The Rockefeller University, New York, New York 10021, USA.
| | | |
Collapse
|
46
|
Schild H, Arnold-Schild D, Lammert E, Rammensee HG. Stress proteins and immunity mediated by cytotoxic T lymphocytes. Curr Opin Immunol 1999; 11:109-13. [PMID: 10047535 DOI: 10.1016/s0952-7915(99)80019-3] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Chaperone molecules, including members of the heat shock protein family, are able to stimulate alphabeta and gammadelta T cells as well as natural killer cells. For alphabeta T cells, specificity is induced by chaperone-assisted peptides; this has lead to detailed investigations of peptides that bind to these chaperones and their possible role in antigen presentation.
Collapse
Affiliation(s)
- H Schild
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Germany
| | | | | | | |
Collapse
|
47
|
Fujihara SM, Nadler SG. Intranuclear targeted delivery of functional NF-kappaB by 70 kDa heat shock protein. EMBO J 1999; 18:411-9. [PMID: 9889197 PMCID: PMC1171135 DOI: 10.1093/emboj/18.2.411] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The 70 kDa heat shock protein (Hsp70) is a highly conserved, ubiquitous protein involved in chaperoning proteins to various cellular organelles. Here we show that when added exogenously to cells, Hsp70 is readily imported into both cytoplasmic and nuclear compartments in a cell-type-specific fashion. We exploited this ability of Hsp70 to deliver NF-kappaB, a key transcriptional regulator of inflammatory responses. We demonstrate that a fusion protein composed of a C-terminal Hsp70 peptide and the p50 subunit of NF-kappaB was directed into the nucleus of cells, could bind DNA specifically, and activated Igkappa expression and TNFalpha production. We therefore propose that Hsp70 can be used as a vehicle for intracytoplasmic and intranuclear delivery of proteins or DNA to modulate gene expression and thereby control immune responses.
Collapse
Affiliation(s)
- S M Fujihara
- Bristol-Myers Squibb Pharmaceutical Research Institute, PO Box 4000, Princeton, NJ 08543, USA
| | | |
Collapse
|
48
|
Zügel U, Kaufmann SH. Role of heat shock proteins in protection from and pathogenesis of infectious diseases. Clin Microbiol Rev 1999; 12:19-39. [PMID: 9880473 PMCID: PMC88905 DOI: 10.1128/cmr.12.1.19] [Citation(s) in RCA: 399] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Increased synthesis of heat shock proteins (hsp) occurs in prokaryotic and eukaryotic cells when they are exposed to stress. By increasing their hsp content, cells protect themselves from lethal assaults, primarily because hsp interfere with the uncontrolled protein unfolding that occurs under stress. However, hsp are not produced only by stressed cells; some hsp are synthesized constitutively and perform important housekeeping functions. Accordingly, hsp are involved in the assembly of molecules which play important roles in the immune system. It is not surprising that due to their wide distribution and their homology among different species, hsp represent target antigens of the immune response. Frequent confrontation of the immune system with conserved regions of hsp which are shared by various microbial pathogens can potentiate antimicrobial immunity. However, long-term confrontation of the immune system with hsp antigens which are similar in the host and invaders may convert the immune response against these host antigens and promote autoimmune disease. This review provides an overview of the role of hsp in immunity with a focus on infectious and autoimmune diseases.
Collapse
Affiliation(s)
- U Zügel
- Department of Immunology, University Clinics Ulm, 89070 Ulm, Germany.
| | | |
Collapse
|
49
|
Motta I, Lone YC, Kourilsky P. In vitro induction of naive cytotoxic T lymphocytes with complexes of peptide and recombinant MHC class I molecules coated onto beads: role of TCR/ligand density. Eur J Immunol 1998; 28:3685-95. [PMID: 9842911 DOI: 10.1002/(sici)1521-4141(199811)28:11<3685::aid-immu3685>3.0.co;2-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We previously reported that complexes of peptide with soluble single-chain recombinant MHC (SC-MHC) class I molecules are able to induce cytotoxic T lymphocytes (CTL) in vitro in a murine system with an efficiency comparable to that observed with peptide-pulsed dendritic cells as antigen-presenting cells. In this report, we have assessed the capacity of preformed peptide/SC-Kd complexes in monomeric or dimeric form as well as of peptide/SC-Kd-loaded beads to generate in vitro specific CTL responses from naive DBA/2 spleen cells. Peptide/SC-Kd-coated beads were consistently more efficient. We evaluated the role of costimulatory molecules, using monoclonal antibodies anti-CD80 or anti-CD86. In addition, the capacity of peptide/SC-Kd-coated beads to generate a CTL response from purified naive CD8+ T cells was ascertained. Taken together, the results indicate that, under our conditions, CTL priming does not require the participation of co-stimulatory molecules and is the consequence of a direct interaction between the cognate TCR on peptide-specific CTL precursors and the peptide/SC-Kd-loaded beads. Titration of the amount of preformed complexes of SC-Kd and peptide 170-179 of HLA-CW3 that need to be coated onto the beads to prime CTL precursors shows an activation threshold which can be calculated to be between 25000 and 50000 complexes. In effect, in cultures stimulated with specific peptide CW3/SC-Kd complexes representing less than 50% occupancy of the total (10(5)) complexes on the beads, no peptide-specific cytolytic activity was observed. These results suggest that the efficiency of the primary CTL induction depends on the density of specific peptide/SC-Kd complexes present on the beads.
Collapse
Affiliation(s)
- I Motta
- Unité de Biologie Moléculaire du Gène, INSERM U277, Département d'Immunologie - Institut Pasteur, Paris, France
| | | | | |
Collapse
|
50
|
Srivastava PK, Menoret A, Basu S, Binder RJ, McQuade KL. Heat shock proteins come of age: primitive functions acquire new roles in an adaptive world. Immunity 1998; 8:657-65. [PMID: 9655479 DOI: 10.1016/s1074-7613(00)80570-1] [Citation(s) in RCA: 376] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- P K Srivastava
- Center for Immunotherapy of Cancer and Infectious Diseases, University of Connecticut School of Medicine, Farmington 06030-1601, USA.
| | | | | | | | | |
Collapse
|