1
|
Andrade GM, Campos EP, Ruiz-Rosado JDD, Canseco EGM, Lee A, Vasquez-Martinez G. Prostaglandins suppress neutrophil function after sexual intercourse and may promote urinary tract infections. Med Hypotheses 2024; 192:111481. [DOI: 10.1016/j.mehy.2024.111481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
|
2
|
Menezes TDA, Bustamante-Filho IC, Paschoal AFL, Dalberto PF, Bizarro CV, Bernardi ML, Ulguim RDR, Bortolozzo FP, Mellagi APG. Differential seminal plasma proteome signatures of boars with high and low resistance to hypothermic semen preservation at 5°C. Andrology 2021; 8:1907-1922. [PMID: 33460278 DOI: 10.1111/andr.12869] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/20/2020] [Accepted: 07/15/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND Hypothermic storage at 5°C has been investigated as an alternative to promote the prudent use of antibiotics for boar artificial insemination doses. However, this temperature is challenging for some ejaculates or boars. OBJECTIVE The present study aimed to identify putative biomarkers for semen resistance to hypothermic storage at 5°C by comparing the seminal plasma proteomes of boars with high and low seminal resistance to preservation at 5°C. MATERIALS AND METHODS From an initial group of 34 boars, 15 were selected based on the following criteria: ejaculate with ≤20% abnormal spermatozoa and at least 70% progressive motility at 120 hours of storage at 17°C. Then, based on the response to semen hypothermic storage at 5°C, boars were classified into two categories: high resistance-progressive motility of >75% in the three collections (n = 3); and low resistance-progressive motility of <75% in the three collections (n = 3). Seminal plasma proteins were analyzed in pools, and differential proteomics was performed using Multidimensional Protein Identification Technology. RESULTS Progressive motility was lower at 120 hours of storage in low resistance, compared to high resistance boars (P < .05). Acrosome and plasma membrane integrity were not affected by the boar category, storage time, or their interaction (P ≥ .104). Sixty-five proteins were considered for differential proteomics. Among the differentially expressed and exclusive proteins, the identification of proteins such cathepsin B, legumain, and cystatin B suggests significant changes in key enzymes (eg, metalloproteinases) involved in spermatogenesis, sperm integrity, and fertilizing potential. DISCUSSION AND CONCLUSION Differences in the seminal plasma suggest that proteins involved in the proteolytic activation of metalloproteinases and proteins related to immune response modulation could disrupt key cellular pathways during spermatogenesis and epididymal maturation, resulting in altered resistance to chilling injury. Further in vivo studies focusing on the immunological crosstalk between epithelial cells and gametes might explain how the immune regulators influence sperm resistance to hipothermic storage.
Collapse
Affiliation(s)
- Tila de Alcantara Menezes
- Setor de Suínos, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | | | - Pedro Ferrari Dalberto
- Centro de Pesquisas em Biologia Molecular e Funcional, Instituto Nacional de Ciência e Tecnologia em Tuberculose, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil.,Programa de Pós-Graduação em Biologia Celular e Molecular, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Cristiano Valim Bizarro
- Centro de Pesquisas em Biologia Molecular e Funcional, Instituto Nacional de Ciência e Tecnologia em Tuberculose, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil.,Programa de Pós-Graduação em Biologia Celular e Molecular, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Mari Lourdes Bernardi
- Departamento de Zootecnia, Faculdade de Agronomia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Rafael da Rosa Ulguim
- Setor de Suínos, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | | |
Collapse
|
3
|
Vojtech L, Zhang M, Davé V, Levy C, Hughes SM, Wang R, Calienes F, Prlic M, Nance E, Hladik F. Extracellular vesicles in human semen modulate antigen-presenting cell function and decrease downstream antiviral T cell responses. PLoS One 2019; 14:e0223901. [PMID: 31622420 PMCID: PMC6797208 DOI: 10.1371/journal.pone.0223901] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 10/01/2019] [Indexed: 02/06/2023] Open
Abstract
Human semen contains trillions of extracellular vesicles (SEV) similar in size to sexually transmitted viruses and loaded with potentially bioactive miRNAs, proteins and lipids. SEV were shown to inhibit HIV and Zika virus infectivity, but whether SEV are able also to affect subsequent immune responses is unknown. We found that SEV efficiently bound to and entered antigen-presenting cells (APC) and thus we set out to further dissect the impact of SEV on APC function and the impact on downstream T cell responses. In an APC–T cell co-culture system, SEV exposure to APC alone markedly reduced antigen-specific cytokine production, degranulation and cytotoxicity by antigen-specific memory CD8+ T cells. In contrast, inhibition of CD4+ T cell responses required both APC and T cell exposure to SEV. Surprisingly, SEV did not alter MHC or co-stimulatory receptor expression on APCs, but caused APCs to upregulate indoleamine 2,3 deoxygenase, an enzyme known to indirectly inhibit T cells. Thus, SEV reduce the ability of APCs to activate T cells. We propose here that these immune-inhibitory properties of SEV may be intended to prevent immune responses against semen-derived antigens, but can be hi-jacked by genitally acquired viral infections to compromise adaptive cellular immunity.
Collapse
Affiliation(s)
- Lucia Vojtech
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, United States of America
- * E-mail: (LV); (FH)
| | - Mengying Zhang
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, Washington, United States of America
| | - Veronica Davé
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
| | - Claire Levy
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, United States of America
| | - Sean M. Hughes
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, United States of America
| | - Ruofan Wang
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, United States of America
| | - Fernanda Calienes
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, United States of America
| | - Martin Prlic
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
- Department of Immunology, University of Washington, Seattle, Washington, United States of America
| | - Elizabeth Nance
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, Washington, United States of America
- Department of Chemical Engineering, University of Washington, Seattle, Washington, United States of America
| | - Florian Hladik
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, United States of America
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, United States of America
- * E-mail: (LV); (FH)
| |
Collapse
|
4
|
Archana SS, Selvaraju S, Binsila BK, Arangasamy A, Krawetz SA. Immune regulatory molecules as modifiers of semen and fertility: A review. Mol Reprod Dev 2019; 86:1485-1504. [DOI: 10.1002/mrd.23263] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 08/22/2019] [Indexed: 12/16/2022]
Affiliation(s)
- S. Siddalingappa Archana
- Reproductive Physiology Laboratory, Animal Physiology DivisionICAR‐National Institute of Animal Nutrition and Physiology Bengaluru India
- Department of BiochemistryJain University Bengaluru India
| | - Sellappan Selvaraju
- Reproductive Physiology Laboratory, Animal Physiology DivisionICAR‐National Institute of Animal Nutrition and Physiology Bengaluru India
| | - B. Krishnan Binsila
- Reproductive Physiology Laboratory, Animal Physiology DivisionICAR‐National Institute of Animal Nutrition and Physiology Bengaluru India
| | - Arunachalam Arangasamy
- Reproductive Physiology Laboratory, Animal Physiology DivisionICAR‐National Institute of Animal Nutrition and Physiology Bengaluru India
| | - Stephen A. Krawetz
- Department of Obstetrics and GynecologyWayne State University School of Medicine Detroit Michigan
- Center for Molecular Medicine and GeneticsC.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine Detroit Michigan
| |
Collapse
|
5
|
Vojtech L, Woo S, Hughes S, Levy C, Ballweber L, Sauteraud RP, Strobl J, Westerberg K, Gottardo R, Tewari M, Hladik F. Exosomes in human semen carry a distinctive repertoire of small non-coding RNAs with potential regulatory functions. Nucleic Acids Res 2014; 42:7290-304. [PMID: 24838567 PMCID: PMC4066774 DOI: 10.1093/nar/gku347] [Citation(s) in RCA: 437] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 04/01/2014] [Accepted: 04/11/2014] [Indexed: 12/21/2022] Open
Abstract
Semen contains relatively ill-defined regulatory components that likely aid fertilization, but which could also interfere with defense against infection. Each ejaculate contains trillions of exosomes, membrane-enclosed subcellular microvesicles, which have immunosuppressive effects on cells important in the genital mucosa. Exosomes in general are believed to mediate inter-cellular communication, possibly by transferring small RNA molecules. We found that seminal exosome (SE) preparations contain a substantial amount of RNA from 20 to 100 nucleotides (nts) in length. We sequenced 20-40 and 40-100 nt fractions of SE RNA separately from six semen donors. We found various classes of small non-coding RNA, including microRNA (21.7% of the RNA in the 20-40 nt fraction) as well as abundant Y RNAs and tRNAs present in both fractions. Specific RNAs were consistently present in all donors. For example, 10 (of ∼2600 known) microRNAs constituted over 40% of mature microRNA in SE. Additionally, tRNA fragments were strongly enriched for 5'-ends of 18-19 or 30-34 nts in length; such tRNA fragments repress translation. Thus, SE could potentially deliver regulatory signals to the recipient mucosa via transfer of small RNA molecules.
Collapse
Affiliation(s)
- Lucia Vojtech
- Department of Obstetrics and Gynecology, University of Washington, Seattle, USA
| | - Sangsoon Woo
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, USA
| | - Sean Hughes
- Department of Obstetrics and Gynecology, University of Washington, Seattle, USA
| | - Claire Levy
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, USA
| | - Lamar Ballweber
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, USA
| | - Renan P Sauteraud
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, USA
| | - Johanna Strobl
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, USA
| | - Katharine Westerberg
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, USA
| | - Raphael Gottardo
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, USA Department of Medicine, University of Washington, Seattle, USA
| | - Muneesh Tewari
- Department of Medicine, University of Washington, Seattle, USA Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, USA
| | - Florian Hladik
- Department of Obstetrics and Gynecology, University of Washington, Seattle, USA Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, USA Department of Medicine, University of Washington, Seattle, USA
| |
Collapse
|
6
|
Remes Lenicov F, Varese A, Merlotti A, Geffner J, Ceballos A. Prostaglandins in semen compromise the immune response against sexually transmitted pathogens. Med Hypotheses 2014; 83:208-10. [PMID: 24837236 DOI: 10.1016/j.mehy.2014.04.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 04/23/2014] [Indexed: 10/25/2022]
Abstract
Seminal plasma is not just a spermatozoa carrier. It induces the expression of inflammatory cytokines and chemokines and a massive infiltration of neutrophils, monocytes and dendritic cells in the female genital mucosa after coitus, enabling the innate immune system to fight against sexually transmitted pathogens. However, exposure to seminal plasma not only turns on an inflammatory response but also induces regulatory mechanisms that allow the fetus (a semiallograft) to grow and develop in the uterus. In mouse models it has been shown that seminal plasma induces the expansion of regulatory T cells specific to seminal Ags in the receptive partner, thus promoting tolerance to paternal alloantigens and avoiding allogeneic fetal rejection. These mechanisms appear to be mainly induced by prostaglandins of the E series (PGE) and TGF-β, which are present at huge concentrations in the seminal plasma. Moreover, we have recently shown that exposure to seminal plasma induces the differentiation of dendritic cells into a tolerogenic profile through a mechanism dependent on the activation of the prostanoid receptors EP2 and EP4 by seminal PGE. Our hypothesis proposes that this tolerogenic response induced by seminal PGE, while promoting fertility by inducing tolerance toward paternal alloantigens, might also compromise the development of the adaptive immune response against sexually transmitted pathogens in the receptive partner.
Collapse
Affiliation(s)
- F Remes Lenicov
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires C1121ABG, Argentina
| | - A Varese
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires C1121ABG, Argentina
| | - A Merlotti
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires C1121ABG, Argentina
| | - J Geffner
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires C1121ABG, Argentina
| | - A Ceballos
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires C1121ABG, Argentina.
| |
Collapse
|
7
|
Nikolopoulos I, Osman W, Haoula Z, Jayaprakasan K, Atiomo W. Scrotal cooling and its benefits to male fertility: a systematic review. J OBSTET GYNAECOL 2014; 33:338-42. [PMID: 23654310 DOI: 10.3109/01443615.2012.758088] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The aim of this study was to systematically review the evidence for the impact of scrotal cooling on spermatogenesis. EMBASE (1980-2010) and MEDLINE (1950-Sept. 2010) databases were searched using the terms 'male infertility or subfertility or fertility', combined with a separate search of 'scrotal cooling', without any limits or restrictions. A total of eight articles met the criteria for inclusion in the study. There was insufficient evidence to draw any firm conclusions about the impact of scrotal cooling on male fertility. A positive trend of improved male fertility was however observed. There is therefore a need for well designed randomised controlled trials.
Collapse
Affiliation(s)
- I Nikolopoulos
- Department of Obstetrics and Gynaecology, Queens Medical Centre, Nottingham University Hospitals, Nottingham, UK.
| | | | | | | | | |
Collapse
|
8
|
Clark GF. The role of glycans in immune evasion: the human fetoembryonic defence system hypothesis revisited. Mol Hum Reprod 2014; 20:185-99. [PMID: 24043694 PMCID: PMC3925329 DOI: 10.1093/molehr/gat064] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 08/15/2013] [Accepted: 09/03/2013] [Indexed: 02/06/2023] Open
Abstract
Emerging data suggest that mechanisms to evade the human immune system may be shared by the conceptus, tumour cells, persistent pathogens and viruses. It is therefore timely to revisit the human fetoembryonic defense system (Hu-FEDS) hypothesis that was proposed in two papers in the 1990s. The initial paper suggested that glycoconjugates expressed in the human reproductive system inhibited immune responses directed against gametes and the developing human by employing their carbohydrate sequences as functional groups. These glycoconjugates were proposed to block specific binding interactions and interact with lectins linked to signal transduction pathways that modulated immune cell functions. The second article suggested that aggressive tumour cells and persistent pathogens (HIV, H. pylori, schistosomes) either mimicked or acquired the same carbohydrate functional groups employed in this system to evade immune responses. This subterfuge enabled these pathogens and tumour cells to couple their survival to the human reproductive imperative. The Hu-FEDS model has been repeatedly tested since its inception. Data relevant to this model have also been obtained in other studies. Herein, the Hu-FEDS hypothesis is revisited in the context of these more recent findings. Far more supportive evidence for this model now exists than when it was first proposed, and many of the original predictions have been validated. This type of subterfuge by pathogens and tumour cells likely applies to all sexually reproducing metazoans that must protect their gametes from immune responses. Intervention in these pathological states will likely remain problematic until this system of immune evasion is fully understood and appreciated.
Collapse
Affiliation(s)
- Gary F. Clark
- Department of Obstetrics, Gynecology and Women's Health, Division of Reproductive and Perinatal Research and Division of Reproductive Medicine and Fertility, University of Missouri School of Medicine, Columbia, MO 65211, USA
| |
Collapse
|
9
|
Remes Lenicov F, Rodriguez Rodrigues C, Sabatté J, Cabrini M, Jancic C, Ostrowski M, Merlotti A, Gonzalez H, Alonso A, Pasqualini RA, Davio C, Geffner J, Ceballos A. Semen promotes the differentiation of tolerogenic dendritic cells. THE JOURNAL OF IMMUNOLOGY 2012; 189:4777-86. [PMID: 23066152 DOI: 10.4049/jimmunol.1202089] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Seminal plasma is not just a carrier for spermatozoa. It contains high concentrations of cytokines, chemokines, and other biological compounds that are able to exert potent effects on the immune system of the receptive partner. Previous studies have shown that semen induces an acute inflammatory response at the female genital mucosa after coitus. Moreover, it induces regulatory mechanisms that allow the fetus (a semiallograft) to grow and develop in the uterus. The mechanisms underlying these regulatory mechanisms, however, are poorly understood. In this study, we show that seminal plasma redirects the differentiation of human dendritic cells (DCs) toward a regulatory profile. DCs differentiated from human monocytes in the presence of high dilutions of seminal plasma did not express CD1a but showed high levels of CD14. They were unable to develop a fully mature phenotype in response to LPS, TNF-α, CD40L, Pam2CSK4 (TLR2/6 agonist), or Pam3CSK4 (TLR1/2 agonist). Upon activation, they produced low amounts of the inflammatory cytokines IL-12p70, IL-1β, TNF-α, and IL-6, but expressed a high ability to produce IL-10 and TGF-β. Inhibition of the PG receptors E-prostanoid receptors 2 and 4 prevented the tolerogenic effect induced by seminal plasma on the phenotype and function of DCs, suggesting that E-series PGs play a major role. By promoting a tolerogenic profile in DCs, seminal plasma might favor fertility, but might also compromise the capacity of the receptive partner to mount an effective immune response against sexually transmitted pathogens.
Collapse
Affiliation(s)
- Federico Remes Lenicov
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA, Universidad de Buenos Aires, Buenos Aires C1121ABG, Argentina
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Piesta A, Maj T, Chełmońska-Soyta A. The influence of mating on estrogen receptor alpha protein level in spleen and uterine macrophages in female mice. Reprod Biol 2009; 9:225-40. [DOI: 10.1016/s1642-431x(12)60028-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
11
|
Eggert-Kruse W, Zimmermann K, Geißler W, Ehrmann A, Boit R, Strowitzki T. Clinical relevance of polymorphonuclear (PMN-) elastase determination in semen and serum during infertility investigation. ACTA ACUST UNITED AC 2009; 32:317-29. [DOI: 10.1111/j.1365-2605.2007.00852.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
12
|
Stark K, Törmä H, Oliw EH. Co-localization of COX-2, CYP4F8, and mPGES-1 in epidermis with prominent expression of CYP4F8 mRNA in psoriatic lesions. Prostaglandins Other Lipid Mediat 2006; 79:114-25. [PMID: 16516815 DOI: 10.1016/j.prostaglandins.2005.12.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2005] [Revised: 12/06/2005] [Accepted: 12/15/2005] [Indexed: 01/08/2023]
Abstract
Cyclooxygenase-2 (COX-2), cytochrome P450 4F8 (CYP4F8), and microsomal PGE synthase-1 (mPGES-1) form PGE and 19-hydroxy-PGE in human seminal vesicles. We have examined COX-2, CYP4F8, and mPGES-1 in normal skin and in psoriasis. All three enzymes were detected in epidermis by immunofluorescence and co-localized in the suprabasal cell layers. In lesional psoriasis the enzymes were also co-localized in the basal cell layers. Real-time RT-PCR analysis suggested that CYP4F8 mRNA was induced 15-fold in lesional compared to non-lesional epidermis. mRNA of all enzymes were present in cultured HEK and HaCaT cells, but the prominent induction of CYP4F8 mRNA in psoriasis could not be mimicked by treatment of these keratinocytes with a mixture of inflammatory cytokines or with phorbol 12-myristate-13-acetate. The function of CYP4F8 in epidermis might be related to lipid oxidation and keratinocyte proliferation.
Collapse
Affiliation(s)
- Katarina Stark
- Department of Pharmaceutical Biosciences, Division of Biochemical Pharmacology, Uppsala University, P.O. Box 591, SE-751 24 Uppsala, Sweden
| | | | | |
Collapse
|
13
|
Gopichandran N, Ekbote UV, Walker JJ, Brooke D, Orsi NM. Multiplex determination of murine seminal fluid cytokine profiles. Reproduction 2006; 131:613-21. [PMID: 16514204 DOI: 10.1530/rep.1.00959] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Seminal fluid is known to be responsible for orchestrating mating-induced immunomodulation. Central to this process are numerous cytokines that modulate uterine leukocyte recruitment and trafficking. Despite this, a comprehensive analysis of the cytokine profile of murine seminal fluid is lacking. This study addressed this issue by using multiplex immunoassays to characterise the profile of interleukin (IL)-1α , IL-1β , IL-2, IL-3, IL-4, IL-5, IL-6, IL-9, IL-10, IL-12 (p40), IL-12 (p70), IL-13, IL-17, eotaxin, granulocyte-colony stimulating factor (G-CSF), granulocyte macrophage-colony stimulating factor (GM-CSF), interferon (IFN)-γ, keratinocyte-derived chemokine (KC), monocyte chemoattractant protein (MCP)-1, macrophage inflammatory protein (MIP)-1α , MIP-1β , regulated upon activation normal T-cell expressed and secreted (RANTES), and tumour necrosis factor (TNF)-α in fluid drawn from the seminal vesicles of single mice (n= 18). Their levels and ratios were compared with those found in serum. IL-1α , IL-1β , IL-2, IL-5, IL-9, IL-12 (p40), IL-12 (p70), IL-13, IL-17, GM-CSF, IFN-γ, MCP-1 and TNF-α levels were significantly higher in serum; IL-4, G-CSF, eotaxin, KC and RANTES exhibited the opposite trend. Based on these findings, we propose a model of mating-induced immunomodulation that implicates seminal eotaxin, RANTES and MIP-1α in the relocation and concentration of extravasated migrating endometrial eosinophils to the luminal epithelium. Furthermore, KC may participate in uterine neutrophil chemotaxis and activation. Eotaxin and MIP-α , together with IL-1β and IL-9, may also enhance further cytokine synthesis for endometrial antigen-presenting cell recruitment for processing paternal ejaculate antigens. IL-4 and G-CSF could also minimise deleterious cell-mediated immunity and modulate IFN-γ production, thereby supporting the establishment of pregnancy.
Collapse
Affiliation(s)
- Nadia Gopichandran
- Perinatal Research Group, Pathology and Tumour Biology, Leeds Institute of Molecular Medicine, Level 4, JIF Building, St James's University Hospital, Beckett Street, Leeds LS9 7TF, UK
| | | | | | | | | |
Collapse
|
14
|
Stark K, Bylund J, Törmä H, Sahlén G, Oliw EH. On the mechanism of biosynthesis of 19-hydroxyprostaglandins of human seminal fluid and expression of cyclooxygenase-2, PGH 19-hydroxylase (CYP4F8) and microsomal PGE synthase-1 in seminal vesicles and vas deferens. Prostaglandins Other Lipid Mediat 2005; 75:47-64. [PMID: 15789615 DOI: 10.1016/j.prostaglandins.2004.09.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The predominating prostaglandins of human seminal fluid are 19R-hydroxyprostaglandins E1 and E2, conceivably formed sequentially by prostaglandin H (PGH) synthase-2, PGH 19-hydroxylase (CYP4F8), and microsomal PGE synthase-1 of seminal vesicles. Our aim was to study this enzyme system. Quantification by real-time PCR suggested that the transcripts of PGH synthase-2, CYP4F8, and microsomal PGE synthase-1 were abundant and correlated in seminal vesicles of seven patients (p < 0.05). The three enzymes were detected in seminal vesicles by Western blot analysis, and immunohistological analysis confirmed the localization to the epithelia of seminal vesicles and distal vas deferens. Immunofluorescence analysis showed co-localization of the three enzymes in epithelial cells of seminal vesicles and vas deferens. 19-Hydroxy-PGE compounds were detected by mass spectrometry in the mucosa of distal vas deferens. Recombinant CYP4F8 catalyzes n-2 hydroxylation of PGH1 and PGH2 and n-3 hydroxylation of arachidonic acid. Arachidonic acid was oxidized to 18-hydroxyarachidonic acid and to PGE2 and by microsomes of seminal vesicles in the presence of NADPH and GSH, and to relatively small amounts of 19-hydroxy-PGE2. We conclude that PGH synthase-2, CYP4F8, and PGE synthase-1 likely forms 19-hydroxy-PGE compounds in seminal vesicles and vas deferens, but the catalytic properties of CYP4F8 suggest additional biological functions. Recombinant CYP4F8 was also found to catalyze n-2 hydroxylation of PGI2 and carbaprostacyclin (Km to approximately 40 microM), and n-2 and n-3 hydroxylation of carbocyclic TXA2.
Collapse
Affiliation(s)
- Katarina Stark
- Department of Pharmaceutical Biosciences, Division of Biochemical Pharmacology, Uppsala University, Uppsala Biomedical Center, P.O. Box 591, SE-75124 Uppsala, Sweden
| | | | | | | | | |
Collapse
|
15
|
Lazarus M, Eguchi N, Matsumoto S, Nagata N, Yano T, Killian GJ, Urade Y. Species-specific expression of microsomal prostaglandin E synthase-1 and cyclooxygenases in male monkey reproductive organs. Prostaglandins Leukot Essent Fatty Acids 2004; 71:233-40. [PMID: 15301794 DOI: 10.1016/j.plefa.2004.03.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2004] [Accepted: 03/29/2004] [Indexed: 11/30/2022]
Abstract
We investigated the tissue distribution and cellular localization of microsomal PGE synthase-1 (mPGES-1) and cyclooxygenase (COX)-1 and -2 in male monkey reproductive organs. Western blotting revealed that monkey mPGES-1 was expressed most intensely in the seminal vesicles, moderately in the testis, and weakly in the epididymis and vas deferens. The tissue distribution profile was quite different from those profiles for rats, rabbits, and pigs, e.g., rat mPGES-1 was the most abundant in the vas deferens, and the rabbit and pig enzymes, in the testis. Immunohistochemical staining with mouse monoclonal anti-human mPGES-1 antibody revealed that monkey mPGES-1 was localized in spermatogonia, Sertoli cells, and primary spermatocytes of testis and in epithelial cells of the epididymis, vas deferens, and seminal vesicles. In monkeys, COX-1 was localized in epithelial cells of the epididymis and vas deferens, whereas COX-2 was dominantly found in epithelial cells of the seminal vesicles.
Collapse
Affiliation(s)
- M Lazarus
- Department of Molecular Behavioral Biology, Osaka Bioscience Institute, Suita, 6-2-4 Furuedai Suita, Osaka 565-0874, Japan
| | | | | | | | | | | | | |
Collapse
|
16
|
Stark K, Schauer L, Sahlén GE, Ronquist G, Oliw EH. Expression of CYP4F12 in Gastrointestinal and Urogenital Epithelia*. ACTA ACUST UNITED AC 2004; 94:177-83. [PMID: 15078342 DOI: 10.1111/j.1742-7843.2004.pto940404.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cytochrome P450 4F12 (CYP4F12) was originally cloned from human liver and small intestine. CYP4F12 can oxidize arachidonic acid, two stable prostaglandin H2 analogues, and an antihistamine, ebastine, but the tissue distribution and catalytic properties of CYP4F12 have not been fully investigated. An antipeptide polyclonal antibody was raised against the C-terminal of CYP4F12 (PLNVGLQ), evaluated by Western blot analysis and used for immunohistological analysis of 50 human tissues. Western blot analysis of recombinant CYP4F12, expressed in yeast, and microsomal proteins from adult and foetal liver, kidney, placenta at term, seminal vesicles, the prostate gland and purified prostasomes showed that the polyclonal antibody detected a protein of the expected size, approximately 60 kDa. CYP4F12 mRNA could be detected in seminal vesicles and prostate gland by reverse transcription-PCR. Prominent CYP4F12 immunoreactivity occurred, inter alia, in the epithelial cells of the gastrointestinal tract (stomach, small intestine, and colon), collecting tubules, transitional epithelium, ovarian follicles, the endothelium of microvessels of placental villi (first trimester), and epidermis. We screened recombinant CYP4F12 for catalytic activity. Arachidonic acid (20:4n-6) was hydroxylated at C18 and laurate at C11, but significant amounts of metabolites of 18:2n-6, 20:3n-9, 20:5n-3, 22:5n-6, and some prostaglandins could not be detected. We conclude that CYP4F12 is widely distributed in gastrointestinal and urogenital epithelia and exhibits a narrow substrate specificity.
Collapse
Affiliation(s)
- Katarina Stark
- Department of Pharmaceutical Biosciences, Division of Biochemical Pharmacology, Uppsala University, Uppsala, Sweden
| | | | | | | | | |
Collapse
|
17
|
Stark K, Törmä H, Cristea M, Oliw EH. Expression of CYP4F8 (prostaglandin H 19-hydroxylase) in human epithelia and prominent induction in epidermis of psoriatic lesions. Arch Biochem Biophys 2003; 409:188-96. [PMID: 12464258 DOI: 10.1016/s0003-9861(02)00511-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Our aim was to determine the tissue distribution of CYP4F8, which occurs in human seminal vesicles and catalyzes 19-hydroxylation of prostaglandin H(1) and H(2) in vitro (J. Bylund, M. Hidestrard, M. Ingelman-Sundberg, E.H. Oliw, J. Biol. Chem. 275 (2000) 21844-21849). Polyclonal antibodies were raised in rabbits against RVEPLG, the C-terminal end of CYP4F8, and purified by affinity chromatography. Screening of 50 human tissues for CYP4F8 immunoreactivity revealed protein expression, inter alia, in seminal vesicles, epidermis, hair follicles, sweat glands, corneal epithelium, proximal renal tubules, and epithelial linings of the gut and urinary tract. The CYP4F8 transcripts were detected by reverse transcription polymerase chain reaction and by Northern blot analysis. There was a prominent induction of CYP4F8 immunoreactivity and mRNA in psoriasis in comparison with unaffected epidermis of the same patients. The cDNA of CYP4F8 from plucked scalp hair roots was identical with the genital cDNA sequence. We conclude that CYP4F8 is present in epithelial linings and up regulated in epidermis of psoriatic lesions.
Collapse
Affiliation(s)
- Katarina Stark
- Department of Pharmaceutical Biosciences, Division of Biochemical Pharmacology, Uppsala University, Uppsala Biomedical Center, P.O. Box 591, Sweden
| | | | | | | |
Collapse
|
18
|
Zorn B, Sesek-Briski A, Osredkar J, Meden-Vrtovec H. Semen polymorphonuclear neutrophil leukocyte elastase as a diagnostic and prognostic marker of genital tract inflammation--a review. Clin Chem Lab Med 2003; 41:2-12. [PMID: 12636042 DOI: 10.1515/cclm.2003.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Elastase is a protease released by polymorphonuclear neutrophils (PMN) during the inflammatory process. Since 1987, seminal elastase-inhibitor complex (Ela/alpha1-PI) has been proposed as a marker of male silent genital tract inflammation. Measured by immunoassay in seminal plasma, Ela/alpha1-PI at a cut-off level of > or = 230 microg/l, is useful in the detection of genital tract inflammation. The prevalence of increased seminal Ela/alpha1-PI in infertile men is significantly higher than that observed in fertile men. The Ela/alpha1-PI level is positively correlated with other seminal fluid markers of male genital tract inflammation: reduced semen volume, citric acid, fructose, and increased albumin, complement component C3, caeruloplasmin, immunoglobulins IgG and IgA, and cytokines interleukins-8 and -6. A higher seminal Ela/alpha1-PI level is significantly associated with tubal damage in female partners. After antibiotic therapy, a decrease of Ela/alpha1-PI level is observed. The presence of tubal damage in the partner may negatively affect the response to antibiotic treatment. A higher seminal Ela/alpha1-PI is associated with lower percentage of sperm with single-stranded deoxyribonucleic acid (DNA) and better fertilization rate in in vitro fertilization. Besides infertility, the determination of Ela/alpha1-PI is useful to confirm the presence of prostate and other male accessory gland bacterial inflammation. Screening for PMN Ela/alpha1-PI is easy to perform and reproducible and is a reliable quantitative test for diagnosis and prognosis of silent genital tract inflammation of couples. Moreover, sequential determinations allow the follow-up of inflammation during and after therapy.
Collapse
Affiliation(s)
- Branko Zorn
- Andrology Centre, Department of Obstetrics and Gynecology, University Medical Centre Ljubljana, Ljubljana, Slovenia.
| | | | | | | |
Collapse
|
19
|
Harris CL, Vigar MA, Rey Nores JE, Horejsi V, Labeta MO, Morgan BP. The lipopolysaccharide co-receptor CD14 is present and functional in seminal plasma and expressed on spermatozoa. Immunology 2001; 104:317-23. [PMID: 11722646 PMCID: PMC1783311 DOI: 10.1046/j.1365-2567.2001.01312.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
CD14 is a 54 000-molecular weight (MW) glycolipid-anchored membrane glycoprotein, expressed on myeloid cells, which functions as a member of the lipopolysaccharide (LPS) receptor complex. Soluble forms of CD14 have been reported in plasma, cerebrospinal fluid, amniotic fluid and breast milk. In plasma and breast milk, soluble CD14 has been implicated as a regulator of T- and B-cell activation and function. Expression of CD14 in the male reproductive system has not previously been investigated. We here show that soluble CD14 is present in seminal plasma at levels comparable to those in serum. Spermatozoa expressed CD14 on their membranes, as demonstrated by fluorescence microscopy and flow cytometry. Post-vasectomy, the levels of seminal plasma CD14 (spCD14) were much reduced, implying an origin distal to the point of transection of the vas deferens. Ultracentrifugation analyses demonstrated that spCD14 was not associated with lipid complexes, indicating that it lacks the glycolipid anchor. Purified spCD14 mediated activation by LPS of CD14-negative cells. These findings suggest that CD14 may play a hitherto unexplored role in immune defence and cell activation in the male reproductive tract.
Collapse
Affiliation(s)
- C L Harris
- Department of Medical Biochemistry, University of Wales College of Medicine, Cardiff, UK
| | | | | | | | | | | |
Collapse
|
20
|
Abstract
Successful pregnancy requires a state of maternal immune 'tolerance' to accommodate antigens expressed by the conceptus. Implantation failure and placental pathologies largely reflect insufficiencies in maternal immune adaptation, but progress in devising therapeutic strategies to treat these conditions is stalled because the mechanisms underlying the induction and maintenance of maternal tolerance are unknown. Increasingly, clinical and experimental data support the proposal that insemination has consequences for the reproductive process beyond delivery of male gametes. An emerging hypothesis, based mainly on clinical observations and experiments in mice, is that insemination is causally linked to the activation and expansion of populations of lymphocytes mediating forms of 'active' immune tolerance in the implantation site. This review examines existing evidence for a role for semen in the immunology of pregnancy, highlighting the limitations of our existing knowledge and the prospects for future research and its clinical application.
Collapse
Affiliation(s)
- S A Robertson
- Reproductive Medicine Unit and Department of Obstetrics and Gynaecology, Adelaide University, Adelaide, SA 5005, Australia.
| | | |
Collapse
|
21
|
Bylund J, Oliw EH. Cloning and characterization of CYP4F21: a prostaglandin E2 20-hydroxylase of ram seminal vesicles. Arch Biochem Biophys 2001; 389:123-9. [PMID: 11370662 DOI: 10.1006/abbi.2001.2322] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ram semen contains high concentrations of PGE1, PGE2, 20-hydroxy-PGE1, and 20-hydroxy-PGE2, which mainly originate from the ram seminal vesicles. The 20-hydroxy-PGE compounds are formed by a tentatively identified cytochrome P450, designated PGE2 20-hydroxylase. Our aim was to clone the enzyme and express it in yeast. Total RNA was isolated from ram seminal vesicle. Reverse transcription-polymerase chain reaction (RT-PCR) with degenerate primers for the CYP4 family yielded a novel cDNA sequence of a cytochrome P450. The full coding region (1584 bp) was cloned by RT-PCR and designated CYP4F21. The deduced protein sequence of CYP4F21 contained 528 amino acids and showed 74% amino acid identity with CYP4F8 of human seminal vesicles. CYP4F21 was expressed in yeast, and its catalytic properties were studied by liquid chromatography-mass spectrometry. Recombinant CYP4F21 oxidizes three stable PGH2 analogs (U44069, U46619, and U51605) and PGE2 to their 20-hydroxy metabolites, whereas PGH1, PGH2, PGE1, and PGF2alpha appeared to be poor substrates. The apparent Km for hydroxylation of PGE2 was 0.05 mM. Microsomes of ram seminal vesicles and NADPH metabolized PGE2 and the three PGH2 analogs essentially in the same way as CYP4F21. Our results suggest that CYP4F21 might be a sheep homolog to CYP4F8 of human seminal vesicles. The reproductive function of CYP4F21 is likely to biosynthesize 20-hydroxy-PGE1 and 20-hydroxy-PGE2, which is excreted by the seminal vesicles.
Collapse
Affiliation(s)
- J Bylund
- Department of Pharmaceutical Biosciences, Uppsala Biomedical Center, Uppsala University, Sweden
| | | |
Collapse
|
22
|
Bylund J, Hidestrand M, Ingelman-Sundberg M, Oliw EH. Identification of CYP4F8 in human seminal vesicles as a prominent 19-hydroxylase of prostaglandin endoperoxides. J Biol Chem 2000; 275:21844-9. [PMID: 10791960 DOI: 10.1074/jbc.m001712200] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A novel cytochrome P450, CYP4F8, was recently cloned from human seminal vesicles. CYP4F8 was expressed in yeast. Recombinant CYP4F8 oxygenated arachidonic acid to (18R)-hydroxyarachidonate, whereas prostaglandin (PG) D(2), PGE(1), PGE(2), PGF(2alpha), and leukotriene B(4) appeared to be poor substrates. Three stable PGH(2) analogues, 9,11-epoxymethano-PGH(2) (U-44069), 11, 9-epoxymethano-PGH(2) (U-46619), and 9,11-diazo-15-deoxy-PGH(2) (U-51605) were rapidly metabolized by omega2- and omega3-hydroxylation. U-44069 was oxygenated with a V(max) of approximately 260 pmol min(-)(1) pmol P450(-1) and a K(m) of approximately 7 micrometer. PGH(2) decomposes mainly to PGE(2) in buffer and to PGF(2alpha) by reduction with SnCl(2). CYP4F8 metabolized PGH(2) to 19-hydroxy-PGH(2), which decomposed to 19-hydroxy-PGE(2) in buffer and could be reduced to 19-hydroxy-PGF(2alpha) with SnCl(2). 18-Hydroxy metabolites were also formed (approximately 17%). PGH(1) was metabolized to 19- and 18-hydroxy-PGH(1) in the same way. Microsomes of human seminal vesicles oxygenated arachidonate, U-44069, U-46619, U-51605, and PGH(2), similar to CYP4F8. (19R)-Hydroxy-PGE(1) and (19R)-hydroxy-PGE(2) are the main prostaglandins of human seminal fluid. We propose that they are formed by CYP4F8-catalyzed omega2-hydroxylation of PGH(1) and PGH(2) in the seminal vesicles and isomerization to (19R)-hydroxy-PGE by PGE synthase. CYP4F8 is the first described hydroxylase with specificity and catalytic competence for prostaglandin endoperoxides.
Collapse
Affiliation(s)
- J Bylund
- Division of Biochemical Pharmacology, Department of Pharmaceutical Biosciences, Uppsala Biomedical Centre, Uppsala University, SE-751 24 Uppsala, Sweden.
| | | | | | | |
Collapse
|