1
|
Hayashi M, Takaoka C, Higashi K, Kurokawa K, Margolin W, Oshima T, Shiomi D. Septal wall synthesis is sufficient to change ameba-like cells into uniform oval-shaped cells in Escherichia coli L-forms. Commun Biol 2024; 7:1569. [PMID: 39587276 PMCID: PMC11589767 DOI: 10.1038/s42003-024-07279-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 11/15/2024] [Indexed: 11/27/2024] Open
Abstract
A cell wall is required to control cell shape and size to maintain growth and division. However, some bacterial species maintain their morphology and size without a cell wall, calling into question the importance of the cell wall to maintain shape and size. It has been very difficult to examine the dispensability of cell wall synthesis in rod-shaped bacteria such as Escherichia coli for maintenance of their shape and size because they lyse without cell walls under normal culture conditions. Here, we show that wall-less E. coli L-form cells, which have a heterogeneous cell morphology, can be converted to a mostly uniform oval shape solely by FtsZ-dependent division, even in the absence of cylindrical cell wall synthesis. This FtsZ-dependent control of cell shape and size in the absence of a cell wall requires at least either the Min or nucleoid occlusion systems for positioning FtsZ at mid cell division sites.
Collapse
Affiliation(s)
- Masafumi Hayashi
- Rikkyo University, Tokyo, Japan
- Gakushuin University, Tokyo, Japan
| | | | | | | | | | - Taku Oshima
- Toyama Prefectural University, Toyama, Japan.
| | | |
Collapse
|
2
|
Chu X, Wang L, Zhu Y, Feng Z, Guan Q, Song L, Luo Z. A unique cell division protein critical for the assembly of the bacterial divisome. eLife 2024; 12:RP87922. [PMID: 39361022 PMCID: PMC11449484 DOI: 10.7554/elife.87922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024] Open
Abstract
Identification of unique essential bacterial genes is important for not only the understanding of their cell biology but also the development of new antimicrobials. Here, we report a previously unrecognized core component of the Acinetobacter baumannii divisome. Our results reveal that the protein, termed Aeg1 interacts with multiple cell division proteins, including FtsN, which is required for components of the divisome to localize to the midcell. We demonstrate that the FtsAE202K and FtsBE65A mutants effectively bypassed the need of Aeg1 by A. baumannii, as did the activation variants FtsWM254I and FtsWS274G. Our results suggest that Aeg1 is a cell division protein that arrives at the division site to initiate cell division by recruiting FtsN, which activates FtsQLB and FtsA to induce the septal peptidoglycan synthase FtsWI. The discovery of the new essential cell division protein has provided a new target for the development of antibacterial agents.
Collapse
Affiliation(s)
- Xiao Chu
- Department of Respiratory Medicine, Infectious Diseases and Pathogen Biology Center State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Lidong Wang
- Department of Respiratory Medicine, Infectious Diseases and Pathogen Biology Center State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Yiheng Zhu
- Department of Respiratory Medicine, Infectious Diseases and Pathogen Biology Center State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Zhengshan Feng
- Department of Respiratory Medicine, Infectious Diseases and Pathogen Biology Center State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Qingtian Guan
- Bioinformatics Laboratory, The First Hospital of Jilin University, Changchun, China
| | - Lei Song
- Department of Respiratory Medicine, Infectious Diseases and Pathogen Biology Center State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Zhaoqing Luo
- Department of Respiratory Medicine, Infectious Diseases and Pathogen Biology Center State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
3
|
Gong H, Yan D, Cui Y, Li Y, Yang J, Yang W, Zhan R, Wan Q, Wang X, He H, Chen X, Lutkenhaus J, Yang X, Du S. The divisome is a self-enhancing machine in Escherichia coli and Caulobacter crescentus. Nat Commun 2024; 15:8198. [PMID: 39294118 PMCID: PMC11410940 DOI: 10.1038/s41467-024-52217-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 08/27/2024] [Indexed: 09/20/2024] Open
Abstract
During bacterial cytokinesis, polymers of the bacterial tubulin FtsZ coalesce into the Z ring to orchestrate divisome assembly and septal cell wall synthesis. Previous studies have found that Z ring condensation and stability is critical for successful cell division. However, how FtsZ filaments condense into a Z ring remains enigmatic and whether septal cell wall synthesis can feedback to the Z ring has not been investigated. Here, we show that FtsZ-associated proteins (Zaps) play important roles in Z ring condensation and stability, and discover septal cell wall synthesis as a novel player for Z ring condensation and stabilization in Escherichia coli and Caulobacter crescentus. Moreover, we find that the interaction between the Z ring membrane anchor, FtsA, and components of the septal cell wall synthetic complex are critical for septal cell wall synthesis-mediated Z ring condensation. Altogether, these findings suggest that the divisome is a self-enhancing machine in these two gram-negative bacteria, where the Z ring and the septal cell wall synthetic complex communicate with and reinforce each other to ensure robustness of cell division.
Collapse
Affiliation(s)
- Han Gong
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
- Key Laboratory of Polar Environment Monitoring and Public Governance (Ministry of Education), Wuhan University, Wuhan, China
| | - Di Yan
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Yuanyuan Cui
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Ying Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Jize Yang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Wenjie Yang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Rui Zhan
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Qianqian Wan
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Xinci Wang
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Haofeng He
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Xiangdong Chen
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Joe Lutkenhaus
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Xinxing Yang
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
| | - Shishen Du
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, China.
- Key Laboratory of Polar Environment Monitoring and Public Governance (Ministry of Education), Wuhan University, Wuhan, China.
| |
Collapse
|
4
|
Perez AJ, Xiao J. Stay on track - revelations of bacterial cell wall synthesis enzymes and things that go by single-molecule imaging. Curr Opin Microbiol 2024; 79:102490. [PMID: 38821027 PMCID: PMC11162910 DOI: 10.1016/j.mib.2024.102490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 06/02/2024]
Abstract
In this review, we explore the regulation of septal peptidoglycan (sPG) synthesis in bacterial cell division, a critical process for cell viability and proper morphology. Recent single-molecule imaging studies have revealed the processive movement of the FtsW:bPBP synthase complex along the septum, shedding light on the spatiotemporal dynamics of sPG synthases and their regulators. In diderm bacteria (E. coli and C. crescentus), the movement occurs at two distinct speeds, reflecting active synthesis or inactivity driven by FtsZ-treadmilling. In monoderm bacteria (B. subtilis, S. pneumoniae, and S. aureus), however, these enzymes exhibit only the active sPG-track-coupled processive movement. By comparing the dynamics of sPG synthases in these organisms and that of class-A penicillin-binding proteins in vivo and in vitro, we propose a unifying model for septal cell wall synthesis regulation across species, highlighting the roles of the sPG- and Z-tracks in orchestrating a robust bacterial cell wall constriction process.
Collapse
Affiliation(s)
- Amilcar J Perez
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jie Xiao
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
5
|
Käshammer L, van den Ent F, Jeffery M, Jean NL, Hale VL, Löwe J. Cryo-EM structure of the bacterial divisome core complex and antibiotic target FtsWIQBL. Nat Microbiol 2023; 8:1149-1159. [PMID: 37127704 PMCID: PMC7614612 DOI: 10.1038/s41564-023-01368-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/23/2023] [Indexed: 05/03/2023]
Abstract
In most bacteria, cell division relies on the synthesis of new cell wall material by the multiprotein divisome complex. Thus, at the core of the divisome are the transglycosylase FtsW, which synthesises peptidoglycan strands from its substrate Lipid II, and the transpeptidase FtsI that cross-links these strands to form a mesh, shaping and protecting the bacterial cell. The FtsQ-FtsB-FtsL trimeric complex interacts with the FtsWI complex and is involved in regulating its enzymatic activities; however, the structure of this pentameric complex is unknown. Here, we present the cryogenic electron microscopy structure of the FtsWIQBL complex from Pseudomonas aeruginosa at 3.7 Å resolution. Our work reveals intricate structural details, including an extended coiled coil formed by FtsL and FtsB and the periplasmic interaction site between FtsL and FtsI. Our structure explains the consequences of previously reported mutations and we postulate a possible activation mechanism involving a large conformational change in the periplasmic domain. As FtsWIQBL is central to the divisome, our structure is foundational for the design of future experiments elucidating the precise mechanism of bacterial cell division, an important antibiotic target.
Collapse
Affiliation(s)
- Lisa Käshammer
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | | | - Magnus Jeffery
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Nicolas L Jean
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Victoria L Hale
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Jan Löwe
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK.
| |
Collapse
|
6
|
In vitro studies of the protein-interaction network of cell-wall lytic transglycosylase RlpA of Pseudomonas aeruginosa. Commun Biol 2022; 5:1314. [PMID: 36451021 PMCID: PMC9712689 DOI: 10.1038/s42003-022-04230-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 11/07/2022] [Indexed: 12/03/2022] Open
Abstract
The protein networks of cell-wall-biosynthesis assemblies are largely unknown. A key class of enzymes in these assemblies is the lytic transglycosylases (LTs), of which eleven exist in P. aeruginosa. We have undertaken a pulldown strategy in conjunction with mass-spectrometry-based proteomics to identify the putative binding partners for the eleven LTs of P. aeruginosa. A total of 71 putative binding partners were identified for the eleven LTs. A systematic assessment of the binding partners of the rare lipoprotein A (RlpA), one of the pseudomonal LTs, was made. This 37-kDa lipoprotein is involved in bacterial daughter-cell separation by an unknown process. RlpA participates in both the multi-protein and multi-enzyme divisome and elongasome assemblies. We reveal an extensive protein-interaction network for RlpA involving at least 19 proteins. Their kinetic parameters for interaction with RlpA were assessed by microscale thermophoresis, surface-plasmon resonance, and isothermal-titration calorimetry. Notable RlpA binding partners include PBP1b, PBP4, and SltB1. Elucidation of the protein-interaction networks for each of the LTs, and specifically for RlpA, opens opportunities for the study of their roles in the complex protein assemblies intimately involved with the cell wall as a structural edifice critical for bacterial survival.
Collapse
|
7
|
Lyu Z, Yahashiri A, Yang X, McCausland JW, Kaus GM, McQuillen R, Weiss DS, Xiao J. FtsN maintains active septal cell wall synthesis by forming a processive complex with the septum-specific peptidoglycan synthases in E. coli. Nat Commun 2022; 13:5751. [PMID: 36180460 PMCID: PMC9525312 DOI: 10.1038/s41467-022-33404-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 09/16/2022] [Indexed: 01/06/2023] Open
Abstract
FtsN plays an essential role in promoting the inward synthesis of septal peptidoglycan (sPG) by the FtsWI complex during bacterial cell division. How it achieves this role is unclear. Here we use single-molecule tracking to investigate FtsN's dynamics during sPG synthesis in E. coli. We show that septal FtsN molecules move processively at ~9 nm s-1, the same as FtsWI molecules engaged in sPG synthesis (termed sPG-track), but much slower than the ~30 nm s-1 speed of inactive FtsWI molecules coupled to FtsZ's treadmilling dynamics (termed FtsZ-track). Importantly, processive movement of FtsN is exclusively coupled to sPG synthesis and is required to maintain active sPG synthesis by FtsWI. Our findings indicate that FtsN is part of the FtsWI sPG synthesis complex, and that while FtsN is often described as a "trigger" for the initiation for cell wall constriction, it must remain part of the processive FtsWI complex to maintain sPG synthesis activity.
Collapse
Affiliation(s)
- Zhixin Lyu
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Atsushi Yahashiri
- Department of Microbiology and Immunology, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA
| | - Xinxing Yang
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
- The Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Joshua W McCausland
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Gabriela M Kaus
- Department of Microbiology and Immunology, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA
| | - Ryan McQuillen
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - David S Weiss
- Department of Microbiology and Immunology, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA.
| | - Jie Xiao
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
8
|
Yahashiri A, Kaus GM, Popham DL, Houtman JCD, Weiss DS. Comparative Study of Bacterial SPOR Domains Identifies Functionally Important Differences in Glycan Binding Affinity. J Bacteriol 2022; 204:e0025222. [PMID: 36005810 PMCID: PMC9487507 DOI: 10.1128/jb.00252-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/05/2022] [Indexed: 11/20/2022] Open
Abstract
Bacterial SPOR domains target proteins to the divisome by binding septal peptidoglycan (PG) at sites where cell wall amidases have removed stem peptides. These PG structures are referred to as denuded glycans. Although all characterized SPOR domains bind denuded glycans, whether there are differences in affinity is not known. Here, we use isothermal titration calorimetry (ITC) to determine the relative PG glycan binding affinity (<i>K</i><sub>d</sub>) of four Escherichia coli SPOR domains and one Cytophaga hutchinsonii SPOR domain. We found that the <i>K</i><sub>d</sub> values ranged from approximately 1 μM for E. coli DamX<sup>SPOR</sup> and <i>C. hutchinsonii</i> CHU2221<sup>SPOR</sup> to about 10 μM for E. coli FtsN<sup>SPOR</sup>. To investigate whether these differences in PG binding affinity are important for SPOR domain protein function, we constructed and characterized a set of DamX and FtsN "swap" proteins. As expected, all SPOR domain swap proteins localized to the division site, and, in the case of FtsN, all of the heterologous SPOR domains supported cell division. However, for DamX, only the high-affinity SPOR domain from CHU2221 supported normal function in cell division. In summary, different SPOR domains bind denuded PG glycans with different affinities, which appears to be important for the functions of some SPOR domain proteins (e.g., DamX) but not for the functions of others (e.g., FtsN). <b>IMPORTANCE</b> SPOR domain proteins are prominent components of the cell division apparatus in a wide variety of bacteria. The primary function of SPOR domains is targeting proteins to the division site, which they accomplish by binding to septal peptidoglycan. However, whether SPOR domains have any functions beyond septal targeting is unknown. Here, we show that SPOR domains vary in their PG binding affinities and that, at least in the case of the E. coli cell division protein DamX, having a high-affinity SPOR domain contributes to proper function.
Collapse
Affiliation(s)
- Atsushi Yahashiri
- Department of Microbiology and Immunology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - Gabriela M. Kaus
- Department of Microbiology and Immunology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - David L. Popham
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| | - Jon C. D. Houtman
- Department of Microbiology and Immunology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - David S. Weiss
- Department of Microbiology and Immunology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
9
|
Männik J, Pichoff S, Lutkenhaus J, Männik J. Cell Cycle-Dependent Recruitment of FtsN to the Divisome in Escherichia coli. mBio 2022; 13:e0201722. [PMID: 35968943 PMCID: PMC9426451 DOI: 10.1128/mbio.02017-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 07/19/2022] [Indexed: 12/13/2022] Open
Abstract
Cell division in Escherichia coli starts with the formation of an FtsZ protofilament network at midcell, the Z ring. However, only after a considerable lag period does the cell start to form a midcell constriction. The onset of constriction depends upon the arrival of so-called late divisome proteins, among which, FtsN is the last essential one. The timing and dependency of FtsN arrival to the divisome, along with genetic evidence, suggests it triggers cell division. In this study, we used high-throughput fluorescence microscopy to determine the arrival of FtsN and the early divisome protein ZapA to midcell at a single-cell level during the cell cycle. Our data show while the recruitment of ZapA/FtsZ is gradual in the cell cycle, recruitment of FtsN is rapid and begins at about the onset of constriction. At this time, the fraction of ZapA/FtsZ in the Z ring approaches its peak value. We also find a second increase in FtsN recruitment to the divisome, which begins once the amount of ZapA/FtsZ at midcell starts decreasing. Increasing hypermorphic FtsA* (FtsA R286W), but not FtsA, accelerates FtsN recruitment but not constriction. This finding is consistent with FtsA* recruiting FtsN with some other divisome component being rate-limiting for constriction under these conditions. Finally, our data support the recently proposed idea that ZapA/FtsZ and FtsN are part of physically separate complexes in midcell throughout the whole septation process. IMPORTANCE Cell division in most bacteria starts with the formation of an FtsZ protofilament network at midcell, the Z ring. However, cells only start to constrict after a considerable lag. A factor thought to trigger the onset of constriction in Escherichia coli is FtsN, which is the last essential protein to be recruited to the Z ring. Using a high-throughput quantitative fluorescence microscopy, we determine the cell cycle-dependent recruitment of FtsN to the Z ring. Our data show rapid accumulation of FtsN to the Z ring about a quarter of the cell cycle after the formation of the Z ring. This initial wave is followed by another increase in FtsN recruitment once the FtsZ protofilament network starts to disassemble. The presence of FtsA* accelerates FtsN recruitment to the Z ring but does not lead to earlier constrictions. Our data furthermore suggest FtsZ and FtsN are part of physically separate complexes throughout the division process.
Collapse
Affiliation(s)
- Jaana Männik
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee, USA
| | - Sebastien Pichoff
- Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Joe Lutkenhaus
- Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Jaan Männik
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee, USA
| |
Collapse
|
10
|
Attaibi M, den Blaauwen T. An Updated Model of the Divisome: Regulation of the Septal Peptidoglycan Synthesis Machinery by the Divisome. Int J Mol Sci 2022; 23:3537. [PMID: 35408901 PMCID: PMC8998562 DOI: 10.3390/ijms23073537] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 02/06/2023] Open
Abstract
The synthesis of a peptidoglycan septum is a fundamental part of bacterial fission and is driven by a multiprotein dynamic complex called the divisome. FtsW and FtsI are essential proteins that synthesize the peptidoglycan septum and are controlled by the regulatory FtsBLQ subcomplex and the activator FtsN. However, their mode of regulation has not yet been uncovered in detail. Understanding this process in detail may enable the development of new compounds to combat the rise in antibiotic resistance. In this review, recent data on the regulation of septal peptidoglycan synthesis is summarized and discussed. Based on structural models and the collected data, multiple putative interactions within FtsWI and with regulators are uncovered. This elaborates on and supports an earlier proposed model that describes active and inactive conformations of the septal peptidoglycan synthesis complex that are stabilized by these interactions. Furthermore, a new model on the spatial organization of the newly synthesized peptidoglycan and the synthesis complex is presented. Overall, the updated model proposes a balance between several allosteric interactions that determine the state of septal peptidoglycan synthesis.
Collapse
Affiliation(s)
| | - Tanneke den Blaauwen
- Bacterial Cell Biology and Physiology, Swammerdam Institute for Life Science, University of Amsterdam, 1098 XH Amsterdam, The Netherlands;
| |
Collapse
|
11
|
Levin PA, Janakiraman A. Localization, Assembly, and Activation of the Escherichia coli Cell Division Machinery. EcoSal Plus 2021; 9:eESP00222021. [PMID: 34910577 PMCID: PMC8919703 DOI: 10.1128/ecosalplus.esp-0022-2021] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 11/14/2021] [Indexed: 01/01/2023]
Abstract
Decades of research, much of it in Escherichia coli, have yielded a wealth of insight into bacterial cell division. Here, we provide an overview of the E. coli division machinery with an emphasis on recent findings. We begin with a short historical perspective into the discovery of FtsZ, the tubulin homolog that is essential for division in bacteria and archaea. We then discuss assembly of the divisome, an FtsZ-dependent multiprotein platform, at the midcell septal site. Not simply a scaffold, the dynamic properties of polymeric FtsZ ensure the efficient and uniform synthesis of septal peptidoglycan. Next, we describe the remodeling of the cell wall, invagination of the cell envelope, and disassembly of the division apparatus culminating in scission of the mother cell into two daughter cells. We conclude this review by highlighting some of the open questions in the cell division field, emphasizing that much remains to be discovered, even in an organism as extensively studied as E. coli.
Collapse
Affiliation(s)
- Petra Anne Levin
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
- Center for Science & Engineering of Living Systems (CSELS), McKelvey School of Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Anuradha Janakiraman
- Department of Biology, The City College of New York, New York, New York, USA
- Programs in Biology and Biochemistry, The Graduate Center of the City University of New York, New York, New York, USA
| |
Collapse
|
12
|
The Escherichia coli Outer Membrane β-Barrel Assembly Machinery (BAM) Crosstalks with the Divisome. Int J Mol Sci 2021; 22:ijms222212101. [PMID: 34829983 PMCID: PMC8620860 DOI: 10.3390/ijms222212101] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/29/2021] [Accepted: 11/05/2021] [Indexed: 01/25/2023] Open
Abstract
The BAM is a macromolecular machine responsible for the folding and the insertion of integral proteins into the outer membrane of diderm Gram-negative bacteria. In Escherichia coli, it consists of a transmembrane β-barrel subunit, BamA, and four outer membrane lipoproteins (BamB-E). Using BAM-specific antibodies, in E. coli cells, the complex is shown to localize in the lateral wall in foci. The machinery was shown to be enriched at midcell with specific cell cycle timing. The inhibition of septation by aztreonam did not alter the BAM midcell localization substantially. Furthermore, the absence of late cell division proteins at midcell did not impact BAM timing or localization. These results imply that the BAM enrichment at the site of constriction does not require an active cell division machinery. Expression of the Tre1 toxin, which impairs the FtsZ filamentation and therefore midcell localization, resulted in the complete loss of BAM midcell enrichment. A similar effect was observed for YidC, which is involved in the membrane insertion of cell division proteins in the inner membrane. The presence of the Z-ring is needed for preseptal peptidoglycan (PG) synthesis. As BAM was shown to be embedded in the PG layer, it is possible that BAM is inserted preferentially simultaneously with de novo PG synthesis to facilitate the insertion of OMPs in the newly synthesized outer membrane.
Collapse
|
13
|
FtsA acts through FtsW to promote cell wall synthesis during cell division in Escherichia coli. Proc Natl Acad Sci U S A 2021; 118:2107210118. [PMID: 34453005 DOI: 10.1073/pnas.2107210118] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In Escherichia coli, FtsQLB is required to recruit the essential septal peptidoglycan (sPG) synthase FtsWI to FtsA, which tethers FtsZ filaments to the membrane. The arrival of FtsN switches FtsQLB in the periplasm and FtsA in the cytoplasm from a recruitment role to active forms that synergize to activate FtsWI. Genetic evidence indicates that the active form of FtsQLB has an altered conformation with an exposed domain of FtsL that acts on FtsI to activate FtsW. However, how FtsA contributes to the activation of FtsW is not clear, as it could promote the conformational change in FtsQLB or act directly on FtsW. Here, we show that the overexpression of an activated FtsA (FtsA*) bypasses FtsQ, indicating it can compensate for FtsQ's recruitment function. Consistent with this, FtsA* also rescued FtsL and FtsB mutants deficient in FtsW recruitment. FtsA* also rescued an FtsL mutant unable to deliver the periplasmic signal from FtsN, consistent with FtsA* acting on FtsW. In support of this, an FtsW mutant was isolated that was rescued by an activated FtsQLB but not by FtsA*, indicating it was specifically defective in activation by FtsA. Our results suggest that in response to FtsN, the active form of FtsA acts on FtsW in the cytoplasm and synergizes with the active form of FtsQLB acting on FtsI in the periplasm to activate FtsWI to carry out sPG synthesis.
Collapse
|
14
|
Li Y, Gong H, Zhan R, Ouyang S, Park KT, Lutkenhaus J, Du S. Genetic analysis of the septal peptidoglycan synthase FtsWI complex supports a conserved activation mechanism for SEDS-bPBP complexes. PLoS Genet 2021; 17:e1009366. [PMID: 33857142 PMCID: PMC8078798 DOI: 10.1371/journal.pgen.1009366] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 04/27/2021] [Accepted: 03/18/2021] [Indexed: 01/22/2023] Open
Abstract
SEDS family peptidoglycan (PG) glycosyltransferases, RodA and FtsW, require their cognate transpeptidases PBP2 and FtsI (class B penicillin binding proteins) to synthesize PG along the cell cylinder and at the septum, respectively. The activities of these SEDS-bPBPs complexes are tightly regulated to ensure proper cell elongation and division. In Escherichia coli FtsN switches FtsA and FtsQLB to the active forms that synergize to stimulate FtsWI, but the exact mechanism is not well understood. Previously, we isolated an activation mutation in ftsW (M269I) that allows cell division with reduced FtsN function. To try to understand the basis for activation we isolated additional substitutions at this position and found that only the original substitution produced an active mutant whereas drastic changes resulted in an inactive mutant. In another approach we isolated suppressors of an inactive FtsL mutant and obtained FtsWE289G and FtsIK211I and found they bypassed FtsN. Epistatic analysis of these mutations and others confirmed that the FtsN-triggered activation signal goes from FtsQLB to FtsI to FtsW. Mapping these mutations, as well as others affecting the activity of FtsWI, on the RodA-PBP2 structure revealed they are located at the interaction interface between the extracellular loop 4 (ECL4) of FtsW and the pedestal domain of FtsI (PBP3). This supports a model in which the interaction between the ECL4 of SEDS proteins and the pedestal domain of their cognate bPBPs plays a critical role in the activation mechanism. Bacterial cell division requires the synthesis of septal peptidoglycan by the widely conserved SEDS-bPBP protein complex FtsWI, but how the complex is activated during cell division is still poorly understood. Previous studies suggested that FtsN initiates a signaling cascade in the periplasm to activate FtsWI. Here we isolated and characterized activated FtsW and FtsI mutants and confirmed that the signaling cascade for FtsW activation goes from FtsN to FtsQLB to FtsI and then to FtsW. The residues corresponding to mutations affecting FtsWI activation are clustered to a small region of the interaction interface between the pedestal domain of FtsI and the extracellular loop 4 of FtsW, suggesting that this interaction mediates activation of FtsW. This is strikingly similar to the proposed activation mechanism for the RodA-PBP2 complex, another SEDS-bPBP complex required for cell elongation. Thus, the two homologous SEDS-bPBP complexes are activated similarly by completely unrelated activators that modulate the interaction interface between the SEDS proteins and the bPBPs.
Collapse
Affiliation(s)
- Ying Li
- Department of Microbiology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, HB, China
| | - Han Gong
- Department of Microbiology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, HB, China
| | - Rui Zhan
- Department of Microbiology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, HB, China
| | - Shushan Ouyang
- Department of Microbiology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, HB, China
| | - Kyung-Tae Park
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, KS, United States of America
| | - Joe Lutkenhaus
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, KS, United States of America
- * E-mail: (JL); (SD)
| | - Shishen Du
- Department of Microbiology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, HB, China
- * E-mail: (JL); (SD)
| |
Collapse
|
15
|
Stable inheritance of Sinorhizobium meliloti cell growth polarity requires an FtsN-like protein and an amidase. Nat Commun 2021; 12:545. [PMID: 33483499 PMCID: PMC7822825 DOI: 10.1038/s41467-020-20739-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 12/17/2020] [Indexed: 12/12/2022] Open
Abstract
In Rhizobiales bacteria, such as Sinorhizobium meliloti, cell elongation takes place only at new cell poles, generated by cell division. Here, we show that the role of the FtsN-like protein RgsS in S. meliloti extends beyond cell division. RgsS contains a conserved SPOR domain known to bind amidase-processed peptidoglycan. This part of RgsS and peptidoglycan amidase AmiC are crucial for reliable selection of the new cell pole as cell elongation zone. Absence of these components increases mobility of RgsS molecules, as well as abnormal RgsS accumulation and positioning of the growth zone at the old cell pole in about one third of the cells. These cells with inverted growth polarity are able to complete the cell cycle but show partially impaired chromosome segregation. We propose that amidase-processed peptidoglycan provides a landmark for RgsS to generate cell polarity in unipolarly growing Rhizobiales. In Sinorhizobium bacteria, cell elongation takes place only at new cell poles, generated by cell division. Here, Krol et al. show that an FtsN-like protein and a peptidoglycan amidase are crucial for reliable selection of the new cell pole as cell elongation zone.
Collapse
|
16
|
Abstract
A critical step in bacterial cytokinesis is the activation of septal peptidoglycan synthesis at the Z ring. Although FtsN is the trigger and acts through FtsQLB and FtsA to activate FtsWI the mechanism is unclear. Spatiotemporal regulation of septal peptidoglycan (PG) synthesis is achieved by coupling assembly and activation of the synthetic enzymes (FtsWI) to the Z ring, a cytoskeletal element that is required for division in most bacteria. In Escherichia coli, the recruitment of the FtsWI complex is dependent upon the cytoplasmic domain of FtsL, a component of the conserved FtsQLB complex. Once assembled, FtsWI is activated by the arrival of FtsN, which acts through FtsQLB and FtsA, which are also essential for their recruitment. However, the mechanism of activation of FtsWI by FtsN is not clear. Here, we identify a region of FtsL that plays a key role in the activation of FtsWI which we designate AWI (activation of FtsWI) and present evidence that FtsL acts through FtsI. Our results suggest that FtsN switches FtsQLB from a recruitment complex to an activator with FtsL interacting with FtsI to activate FtsW. Since FtsQLB and FtsWI are widely conserved in bacteria, this mechanism is likely to be also widely conserved.
Collapse
|
17
|
Cambré A, Aertsen A. Bacterial Vivisection: How Fluorescence-Based Imaging Techniques Shed a Light on the Inner Workings of Bacteria. Microbiol Mol Biol Rev 2020; 84:e00008-20. [PMID: 33115939 PMCID: PMC7599038 DOI: 10.1128/mmbr.00008-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The rise in fluorescence-based imaging techniques over the past 3 decades has improved the ability of researchers to scrutinize live cell biology at increased spatial and temporal resolution. In microbiology, these real-time vivisections structurally changed the view on the bacterial cell away from the "watery bag of enzymes" paradigm toward the perspective that these organisms are as complex as their eukaryotic counterparts. Capitalizing on the enormous potential of (time-lapse) fluorescence microscopy and the ever-extending pallet of corresponding probes, initial breakthroughs were made in unraveling the localization of proteins and monitoring real-time gene expression. However, later it became clear that the potential of this technique extends much further, paving the way for a focus-shift from observing single events within bacterial cells or populations to obtaining a more global picture at the intra- and intercellular level. In this review, we outline the current state of the art in fluorescence-based vivisection of bacteria and provide an overview of important case studies to exemplify how to use or combine different strategies to gain detailed information on the cell's physiology. The manuscript therefore consists of two separate (but interconnected) parts that can be read and consulted individually. The first part focuses on the fluorescent probe pallet and provides a perspective on modern methodologies for microscopy using these tools. The second section of the review takes the reader on a tour through the bacterial cell from cytoplasm to outer shell, describing strategies and methods to highlight architectural features and overall dynamics within cells.
Collapse
Affiliation(s)
- Alexander Cambré
- KU Leuven, Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, Leuven, Belgium
| | - Abram Aertsen
- KU Leuven, Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, Leuven, Belgium
| |
Collapse
|
18
|
Morphology engineering: a new strategy to construct microbial cell factories. World J Microbiol Biotechnol 2020; 36:127. [PMID: 32712725 DOI: 10.1007/s11274-020-02903-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 07/14/2020] [Indexed: 10/23/2022]
Abstract
Currently, synthetic biology approaches have been developed for constructing microbial cell factories capable of efficient synthesis of high value-added products. Most studies have focused on the construction of novel biosynthetic pathways and their regulatory processes. Morphology engineering has recently been proposed as a novel strategy for constructing efficient microbial cell factories, which aims at controlling cell shape and cell division pattern by manipulating the cell morphology-related genes. Morphology engineering strategies have been exploited for improving bacterial growth rate, enlarging cell volume and simplifying downstream separation. This mini-review summarizes cell morphology-related proteins and their function, current advances in manipulation tools and strategies of morphology engineering, and practical applications of morphology engineering for enhanced production of intracellular product polyhydroxyalkanoate and extracellular products. Furthermore, current limitations and the future development direction using morphology engineering are proposed.
Collapse
|
19
|
pH-dependent activation of cytokinesis modulates Escherichia coli cell size. PLoS Genet 2020; 16:e1008685. [PMID: 32203516 PMCID: PMC7117782 DOI: 10.1371/journal.pgen.1008685] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 04/02/2020] [Accepted: 02/19/2020] [Indexed: 01/21/2023] Open
Abstract
Cell size is a complex trait, derived from both genetic and environmental factors. Environmental determinants of bacterial cell size identified to date primarily target assembly of cytosolic components of the cell division machinery. Whether certain environmental cues also impact cell size through changes in the assembly or activity of extracytoplasmic division proteins remains an open question. Here, we identify extracellular pH as a modulator of cell division and a significant determinant of cell size across evolutionarily distant bacterial species. In the Gram-negative model organism Escherichia coli, our data indicate environmental pH impacts the length at which cells divide by altering the ability of the terminal cell division protein FtsN to localize to the cytokinetic ring where it activates division. Acidic environments lead to enrichment of FtsN at the septum and activation of division at a reduced cell length. Alkaline pH inhibits FtsN localization and suppresses division activation. Altogether, our work reveals a previously unappreciated role for pH in bacterial cell size control. Bacteria are constantly under assault from endogenous and environmental stressors. To ensure viability and reproductive fitness, many bacteria alter their growth and replication in response to stressful conditions. Previous work from many groups has identified regulatory mechanisms linking cell division with nutrient availability and metabolic state. However, comparatively little is known about how the cell division machinery responds to physical and chemical cues in the environment. Here, we identify a fundamental property of the extracellular environment—environmental pH—as a significant contributor to bacterial cell size. Our genetic and cytological data indicate pH-dependent changes in E. coli cell size are in part due to differential localization of the cell division activator FtsN across pH environments. Increased abundance of FtsN at midcell in acidic environments promotes cell division at a reduced cell volume, while decreased abundance of FtsN at midcell in alkaline environments effectively delays cell division until a larger size is reached. Altogether, our work identifies pH as an environmental determinant of E. coli cell division and illuminates FtsN recruitment as a mediator of cell size.
Collapse
|
20
|
Baranova N, Radler P, Hernández-Rocamora VM, Alfonso C, López-Pelegrín M, Rivas G, Vollmer W, Loose M. Diffusion and capture permits dynamic coupling between treadmilling FtsZ filaments and cell division proteins. Nat Microbiol 2020; 5:407-417. [PMID: 31959972 PMCID: PMC7048620 DOI: 10.1038/s41564-019-0657-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 12/06/2019] [Indexed: 11/14/2022]
Abstract
Most bacteria accomplish cell division with the help of a dynamic protein complex called the divisome, which spans the cell envelope in the plane of division. Assembly and activation of this machinery is coordinated by the tubulin-related GTPase FtsZ, which was found to form treadmilling filaments on supported bilayers in vitro1 and in live cells where they circle around the cell division site2,3. Treadmilling of FtsZ is thought to actively move proteins around the cell thereby distributing peptidoglycan synthesis and coordinating the inward growth of the septum to form the new poles of the daughter cells4. However, the molecular mechanisms underlying this function are largely unknown. Here, to study how FtsZ polymerization dynamics are coupled to downstream proteins, we reconstituted part of the bacterial cell division machinery using its purified components FtsZ, FtsA and truncated transmembrane proteins essential for cell division. We found that the membrane-bound cytosolic peptides of FtsN and FtsQ co-migrated with treadmilling FtsZ-FtsA filaments, but despite their directed collective behavior, individual peptides showed random motion and transient confinement. Our work suggests that divisome proteins follow treadmilling FtsZ filaments by a diffusion-and-capture mechanism, which can give rise to a moving zone of signaling activity at the division site.
Collapse
Affiliation(s)
- Natalia Baranova
- Institute for Science and Technology Austria, Klosterneuburg, Austria
| | - Philipp Radler
- Institute for Science and Technology Austria, Klosterneuburg, Austria
| | | | | | | | - Germán Rivas
- Centro de Investigaciones Biológicas, Madrid, Spain
| | - Waldemar Vollmer
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Martin Loose
- Institute for Science and Technology Austria, Klosterneuburg, Austria.
| |
Collapse
|
21
|
Pichoff S, Du S, Lutkenhaus J. Roles of FtsEX in cell division. Res Microbiol 2019; 170:374-380. [PMID: 31376483 PMCID: PMC6899183 DOI: 10.1016/j.resmic.2019.07.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/09/2019] [Accepted: 07/16/2019] [Indexed: 02/04/2023]
Abstract
FtsEX is a member of a small subclass of ABC transporters that uses mechano-transmission to perform work in the periplasm. FtsEX controls periplasmic peptidoglycan (PG) hydrolase activities in many Gram negative and positive organisms to ensure the safe separation of daughter cells during division. In these organisms FtsEX localizes to the Z ring and uses its ATPase activity to regulate its periplasmic effectors. In Escherichia coli, FtsEX also participates in building the divisome and coordinates PG synthesis with PG hydrolysis. This review discusses studies that are beginning to elucidate the mechanisms of FtsEX's various roles in cell division.
Collapse
Affiliation(s)
- Sebastien Pichoff
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Shishen Du
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Joe Lutkenhaus
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
| |
Collapse
|
22
|
Du S, Henke W, Pichoff S, Lutkenhaus J. How FtsEX localizes to the Z ring and interacts with FtsA to regulate cell division. Mol Microbiol 2019; 112:881-895. [PMID: 31175681 DOI: 10.1111/mmi.14324] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2019] [Indexed: 12/14/2022]
Abstract
In Escherichia coli, FtsEX, a member of the ABC transporter superfamily, is involved in regulating the assembly and activation of the divisome to couple cell wall synthesis to cell wall hydrolysis at the septum. Genetic studies indicate FtsEX acts on FtsA to begin the recruitment of the downstream division proteins but blocks septal PG synthesis until a signal is received that divisome assembly is complete. However, the details of how FtsEX localizes to the Z ring and how it interacts with FtsA are not clear. Our results show that recruitment of FtsE and FtsX is codependent and suggest that the FtsEX complex is recruited through FtsE interacting with the conserved tail of FtsZ (CCTP), thus adding FtsEX to a growing list of proteins that interacts with the CCTP of FtsZ. Furthermore, we find that the N-terminus of FtsX is not required for FtsEX localization to the Z ring but is required for its functions in cell division indicating that it interacts with FtsA. Taken together, these results suggest that FtsEX first interacts with FtsZ to localize to the Z ring and then interacts with FtsA to promote divisome assembly and regulate septal PG synthesis.
Collapse
Affiliation(s)
- Shishen Du
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Wyatt Henke
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Sebastien Pichoff
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Joe Lutkenhaus
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| |
Collapse
|
23
|
Pazos M, Peters K, Casanova M, Palacios P, VanNieuwenhze M, Breukink E, Vicente M, Vollmer W. Z-ring membrane anchors associate with cell wall synthases to initiate bacterial cell division. Nat Commun 2018; 9:5090. [PMID: 30504892 PMCID: PMC6269477 DOI: 10.1038/s41467-018-07559-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 11/08/2018] [Indexed: 12/29/2022] Open
Abstract
During the transition from elongation to septation, Escherichia coli establishes a ring-like peptidoglycan growth zone at the future division site. This preseptal peptidoglycan synthesis does not require the cell division-specific peptidoglycan transpeptidase PBP3 or most of the other cell division proteins, but it does require FtsZ, its membrane-anchor ZipA and at least one of the bi-functional transglycosylase-transpeptidases, PBP1A or PBP1B. Here we show that PBP1A and PBP1B interact with ZipA and localise to preseptal sites in cells with inhibited PBP3. ZipA stimulates the glycosyltransferase activity of PBP1A. The membrane-anchored cell division protein FtsN localises at preseptal sites and stimulates both activities of PBP1B. Genes zipA and ftsN can be individually deleted in ftsA* mutant cells, but the simultaneous depletion of both proteins is lethal and cells do not establish preseptal sites. Our data support a model according to which ZipA and FtsN-FtsA have semi-redundant roles in connecting the cytosolic FtsZ ring with the membrane-anchored peptidoglycan synthases during the preseptal phase of envelope growth. Proteins FtsZ, ZipA, and either PBP1A or PBP1B are required for the synthesis of preseptal peptidoglycan at the future cell division site in E. coli. Here, Pazos et al. provide evidence that ZipA and FtsA-FtsN connect the cytosolic FtsZ ring with the membrane-anchored PBPs.
Collapse
Affiliation(s)
- Manuel Pazos
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Richardson Road, Newcastle upon Tyne, NE2 4AX, UK
| | - Katharina Peters
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Richardson Road, Newcastle upon Tyne, NE2 4AX, UK
| | - Mercedes Casanova
- Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas (CNB-CSIC), Darwin 3, 28049, Madrid, Spain
| | - Pilar Palacios
- Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas (CNB-CSIC), Darwin 3, 28049, Madrid, Spain
| | - Michael VanNieuwenhze
- Molecular and Cellular Biochemistry Department, Biology Department, Indiana University, 212S. Hawthorne Dr, Bloomington, IN, 47405, USA
| | - Eefjan Breukink
- Membrane Biochemistry and Biophysics, Bijvoet Center for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Miguel Vicente
- Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas (CNB-CSIC), Darwin 3, 28049, Madrid, Spain
| | - Waldemar Vollmer
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Richardson Road, Newcastle upon Tyne, NE2 4AX, UK.
| |
Collapse
|
24
|
Sekar K, Rusconi R, Sauls JT, Fuhrer T, Noor E, Nguyen J, Fernandez VI, Buffing MF, Berney M, Jun S, Stocker R, Sauer U. Synthesis and degradation of FtsZ quantitatively predict the first cell division in starved bacteria. Mol Syst Biol 2018; 14:e8623. [PMID: 30397005 PMCID: PMC6217170 DOI: 10.15252/msb.20188623] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 10/01/2018] [Accepted: 10/11/2018] [Indexed: 12/21/2022] Open
Abstract
In natural environments, microbes are typically non-dividing and gauge when nutrients permit division. Current models are phenomenological and specific to nutrient-rich, exponentially growing cells, thus cannot predict the first division under limiting nutrient availability. To assess this regime, we supplied starving Escherichia coli with glucose pulses at increasing frequencies. Real-time metabolomics and microfluidic single-cell microscopy revealed unexpected, rapid protein, and nucleic acid synthesis already from minuscule glucose pulses in non-dividing cells. Additionally, the lag time to first division shortened as pulsing frequency increased. We pinpointed division timing and dependence on nutrient frequency to the changing abundance of the division protein FtsZ. A dynamic, mechanistic model quantitatively relates lag time to FtsZ synthesis from nutrient pulses and FtsZ protease-dependent degradation. Lag time changed in model-congruent manners, when we experimentally modulated the synthesis or degradation of FtsZ. Thus, limiting abundance of FtsZ can quantitatively predict timing of the first cell division.
Collapse
Affiliation(s)
- Karthik Sekar
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Roberto Rusconi
- Department of Civil, Environmental and Geomatic Engineering, Institute of Environmental Engineering, ETH Zurich, Zurich, Switzerland
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - John T Sauls
- Department of Physics, University of California at San Diego, La Jolla, CA, USA
| | - Tobias Fuhrer
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Elad Noor
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Jen Nguyen
- Department of Civil, Environmental and Geomatic Engineering, Institute of Environmental Engineering, ETH Zurich, Zurich, Switzerland
- Microbiology Graduate Program, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Vicente I Fernandez
- Department of Civil, Environmental and Geomatic Engineering, Institute of Environmental Engineering, ETH Zurich, Zurich, Switzerland
| | - Marieke F Buffing
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
- Life Science Zurich PhD Program on Systems Biology, Zurich, Switzerland
| | - Michael Berney
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Suckjoon Jun
- Department of Physics, University of California at San Diego, La Jolla, CA, USA
- Section of Molecular Biology, Division of Biological Science, University of California at San Diego, La Jolla, CA, USA
| | - Roman Stocker
- Department of Civil, Environmental and Geomatic Engineering, Institute of Environmental Engineering, ETH Zurich, Zurich, Switzerland
| | - Uwe Sauer
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
25
|
Disruption of divisome assembly rescued by FtsN-FtsA interaction in Escherichia coli. Proc Natl Acad Sci U S A 2018; 115:E6855-E6862. [PMID: 29967164 DOI: 10.1073/pnas.1806450115] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cell division requires the assembly of a protein complex called the divisome. The divisome assembles in a hierarchical manner, with FtsA functioning as a hub to connect the Z-ring with the rest of the divisome and FtsN arriving last to activate the machine to synthesize peptidoglycan. FtsEX arrives as the Z-ring forms and acts on FtsA to initiate recruitment of the other divisome components. In the absence of FtsEX, recruitment is blocked; however, a multitude of conditions allow FtsEX to be bypassed. Here, we find that all such FtsEX bypass conditions, as well as the bypass of FtsK, depend upon the interaction of FtsN with FtsA, which promotes the back-recruitment of the late components of the divisome. Furthermore, our results suggest that these bypass conditions enhance the weak interaction of FtsN with FtsA and its periplasmic partners so that the divisome proteins are brought to the Z-ring when the normal hierarchical pathway is disrupted.
Collapse
|
26
|
Jorgenson MA, Young KD. YtfB, an OapA Domain-Containing Protein, Is a New Cell Division Protein in Escherichia coli. J Bacteriol 2018; 200:e00046-18. [PMID: 29686141 PMCID: PMC5996693 DOI: 10.1128/jb.00046-18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 04/18/2018] [Indexed: 12/15/2022] Open
Abstract
While screening the Pfam database for novel peptidoglycan (PG) binding modules, we identified the OapA domain, which is annotated as a LysM-like domain. LysM domains bind PG and mediate localization to the septal ring. In the Gram-negative bacterium Escherichia coli, an OapA domain is present in YtfB, an inner membrane protein of unknown function but whose overproduction causes cells to filament. Together, these observations suggested that YtfB directly affects cell division, most likely through its OapA domain. Here, we show that YtfB accumulates at the septal ring and that its action requires the division-initiating protein FtsZ and, to a lesser extent, ZipA, an early recruit to the septalsome. While the loss of YtfB had no discernible impact, a mutant lacking both YtfB and DedD (a known cell division protein) grew as filamentous cells. The YtfB OapA domain by itself also localized to sites of division, and this localization was enhanced by the presence of denuded PGs. Finally, the OapA domain bound PG, though binding did not depend on the formation of denuded glycans. Collectively, our findings demonstrate that YtfB is a cell division protein whose function is related to cell wall hydrolases.IMPORTANCE All living cells must divide in order to thrive. In bacteria, this involves the coordinated activities of a large number of proteins that work in concert to constrict the cell. Knowing which proteins contribute to this process and how they function is fundamental. Here, we identify a new member of the cell division apparatus in the Gram-negative bacterium Escherichia coli whose function is related to the generation of a transient cell wall structure. These findings deepen our understanding of bacterial cell division.
Collapse
Affiliation(s)
- Matthew A Jorgenson
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Kevin D Young
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| |
Collapse
|
27
|
Flores SA, Howell M, Daniel JJ, Piccolo R, Brown PJB. Absence of the Min System Does Not Cause Major Cell Division Defects in Agrobacterium tumefaciens. Front Microbiol 2018; 9:681. [PMID: 29686659 PMCID: PMC5900048 DOI: 10.3389/fmicb.2018.00681] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 03/22/2018] [Indexed: 12/19/2022] Open
Abstract
In A. tumefaciens, the essential FtsZ protein is located at the growth pole before shifting to the mid-cell right before division. Loss of FtsZ causes a halt in cell separation and lysis of cells. To understand how FtsZ polymerization is regulated to properly localize the FtsZ ring at the mid-cell, we have conducted a systematic characterization of the Min system in A. tumefaciens. Our findings indicate that the Min system is not required for cell survival. Yet, we find that the deletion of either minE or minCDE results in a broad cell size distribution, including an increase in the proportion of short and long cells. We observe that the site of constriction is misplaced in the minE or minCDE deletion strains allowing for short cells to arise from sites of constriction near the cell poles. Remarkably, the short cells are viable and contain DNA. In order to observe chromosome replication and segregation in these strains, YFP-ParB is used as a proxy to track the origin of replication as cells elongate and divide. In the absence of the Min proteins, duplication and segregation of the origin of replication is frequently delayed. Taken together, our data suggest that the Min system contributes to the proper regulation of FtsZ placement and subsequent cell division. Furthermore, the failure to precisely place FtsZ rings at mid-cell in the min mutants impacts other cell cycle features including chromosome segregation.
Collapse
Affiliation(s)
- Sue A Flores
- Division of Biological Sciences, University of Missouri, Columbia, MO, United States
| | - Matthew Howell
- Division of Biological Sciences, University of Missouri, Columbia, MO, United States
| | - Jeremy J Daniel
- Division of Biological Sciences, University of Missouri, Columbia, MO, United States
| | - Rebecca Piccolo
- Division of Biological Sciences, University of Missouri, Columbia, MO, United States
| | - Pamela J B Brown
- Division of Biological Sciences, University of Missouri, Columbia, MO, United States
| |
Collapse
|
28
|
Membrane Curvature and the Tol-Pal Complex Determine Polar Localization of the Chemoreceptor Tar in Escherichia coli. J Bacteriol 2018; 200:JB.00658-17. [PMID: 29463603 DOI: 10.1128/jb.00658-17] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 02/13/2018] [Indexed: 01/15/2023] Open
Abstract
Chemoreceptors are localized at the cell poles of Escherichia coli and other rod-shaped bacteria. Over the years, different mechanisms have been put forward to explain this polar localization, including stochastic clustering, membrane curvature-driven localization, interactions with the Tol-Pal complex, and nucleoid exclusion. To evaluate these mechanisms, we monitored the cellular localization of the aspartate chemoreceptor Tar in different deletion mutants. We did not find any indication for either stochastic cluster formation or nucleoid exclusion. However, the presence of a functional Tol-Pal complex appeared to be essential to retain Tar at the cell poles. Interestingly, Tar still accumulated at midcell in tol and in pal deletion mutants. In these mutants, the protein appears to gather at the base of division septa, a region characterized by strong membrane curvature. Chemoreceptors, like Tar, form trimers of dimers that bend the cell membrane due to a rigid tripod structure. The curvature approaches the curvature of the cell membrane generated during cell division, and localization of chemoreceptor tripods at curved membrane areas is therefore energetically favorable, as it lowers membrane tension. Indeed, when we introduced mutations in Tar that abolish the rigid tripod structure, the protein was no longer able to accumulate at midcell or the cell poles. These findings favor a model where chemoreceptor localization in E. coli is driven by strong membrane curvature and association with the Tol-Pal complex.IMPORTANCE Bacteria have exquisite mechanisms to sense and adapt to the environment they live in. One such mechanism involves the chemotaxis signal transduction pathway, in which chemoreceptors specifically bind certain attracting or repelling molecules and transduce the signals to the cell. In different rod-shaped bacteria, these chemoreceptors localize specifically to cell poles. Here, we examined the polar localization of the aspartate chemoreceptor Tar in E. coli and found that membrane curvature at cell division sites and the Tol-Pal protein complex localize Tar at cell division sites, the future cell poles. This study shows how membrane curvature can guide localization of proteins in a cell.
Collapse
|
29
|
Rassam P, Long KR, Kaminska R, Williams DJ, Papadakos G, Baumann CG, Kleanthous C. Intermembrane crosstalk drives inner-membrane protein organization in Escherichia coli. Nat Commun 2018. [PMID: 29540681 PMCID: PMC5852019 DOI: 10.1038/s41467-018-03521-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Gram-negative bacteria depend on energised protein complexes that connect the two membranes of the cell envelope. However, β-barrel outer-membrane proteins (OMPs) and α-helical inner-membrane proteins (IMPs) display quite different organisation. OMPs cluster into islands that restrict their lateral mobility, while IMPs generally diffuse throughout the cell. Here, using live cell imaging of Escherichia coli, we demonstrate that when transient, energy-dependent transmembrane connections are formed, IMPs become subjugated by the inherent organisation of OMPs and that such connections impact IMP function. We show that while establishing a translocon for import, the colicin ColE9 sequesters the IMPs of the proton motive force (PMF)-linked Tol-Pal complex into islands mirroring those of colicin-bound OMPs. Through this imposed organisation, the bacteriocin subverts the outer-membrane stabilising role of Tol-Pal, blocking its recruitment to cell division sites and slowing membrane constriction. The ordering of IMPs by OMPs via an energised inter-membrane bridge represents an emerging functional paradigm in cell envelope biology.
Collapse
Affiliation(s)
- Patrice Rassam
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK.,Laboratoire de Bioimagerie et Pathologie, UMR 7021, CNRS, Université de Strasbourg, Faculté de pharmacie, 74 Route du Rhin, 67401, Illkirch, France
| | - Kathleen R Long
- Department of Biology, University of York, York, YO10 5DD, UK.,Wellcome Trust Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK
| | - Renata Kaminska
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - David J Williams
- Department of Biology, University of York, York, YO10 5DD, UK.,Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK
| | - Grigorios Papadakos
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK.,Division of Neurobiology, The Roslin Institute, The University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | | | - Colin Kleanthous
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK.
| |
Collapse
|
30
|
Du S, Lutkenhaus J. Assembly and activation of the Escherichia coli divisome. Mol Microbiol 2017; 105:177-187. [PMID: 28419603 DOI: 10.1111/mmi.13696] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 04/10/2017] [Accepted: 04/13/2017] [Indexed: 12/20/2022]
Abstract
Cell division in Escherichia coli is mediated by a large protein complex called the divisome. Most of the divisome proteins have been identified, but how they assemble onto the Z ring scaffold to form the divisome and work together to synthesize the septum is not well understood. In this review, we summarize the latest findings on divisome assembly and activation as well as provide our perspective on how these two processes might be regulated.
Collapse
Affiliation(s)
- Shishen Du
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Joe Lutkenhaus
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| |
Collapse
|
31
|
Du S, Lutkenhaus J. The N-succinyl-l,l-diaminopimelic acid desuccinylase DapE acts through ZapB to promote septum formation in Escherichia coli. Mol Microbiol 2017; 105:326-345. [PMID: 28470834 DOI: 10.1111/mmi.13703] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Spatial regulation of cell division in Escherichia coli occurs at the stage of Z ring formation. It consists of negative (the Min and NO systems) and positive (Ter signal mediated by MatP/ZapA/ZapB) regulators. Here, we find that N-succinyl-L,L-diaminopimelic acid desuccinylase (DapE) facilitates functional Z ring formation by strengthening the Ter signal via ZapB. DapE depends on ZapB to localize to the Z ring and its overproduction suppresses the division defect caused by loss of both the Min and NO systems. DapE shows a strong interaction with ZapB and requires the presence of ZapB to exert its function in division. Consistent with the idea that DapE strengthens the Ter signal, overproduction of DapE supports cell division with reduced FtsZ levels and provides some resistance to the FtsZ inhibitors MinCD and SulA, while deletion of dapE, like deletion of zapB, exacerbates the phenotypes of cells impaired in Z ring formation such as ftsZ84 or a min mutant. Taken together, our results report DapE as a new component of the divisome that promotes the integrity of the Z ring by acting through ZapB and raises the possibility of the existence of additional divisome proteins that also function in other cellular processes.
Collapse
Affiliation(s)
- Shishen Du
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Joe Lutkenhaus
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| |
Collapse
|
32
|
A New Essential Cell Division Protein in Caulobacter crescentus. J Bacteriol 2017; 199:JB.00811-16. [PMID: 28167520 DOI: 10.1128/jb.00811-16] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 01/31/2017] [Indexed: 11/20/2022] Open
Abstract
Bacterial cell division is a complex process that relies on a multiprotein complex composed of a core of widely conserved and generally essential proteins and on accessory proteins that vary in number and identity in different bacteria. The assembly of this complex and, particularly, the initiation of constriction are regulated processes that have come under intensive study. In this work, we characterize the function of DipI, a protein conserved in Alphaproteobacteria and Betaproteobacteria that is essential in Caulobacter crescentus Our results show that DipI is a periplasmic protein that is recruited late to the division site and that it is required for the initiation of constriction. The recruitment of the conserved cell division proteins is not affected by the absence of DipI, but localization of DipI to the division site occurs only after a mature divisome has formed. Yeast two-hybrid analysis showed that DipI strongly interacts with the FtsQLB complex, which has been recently implicated in regulating constriction initiation. A possible role of DipI in this process is discussed.IMPORTANCE Bacterial cell division is a complex process for which most bacterial cells assemble a multiprotein complex that consists of conserved proteins and of accessory proteins that differ among bacterial groups. In this work, we describe a new cell division protein (DipI) present only in a group of bacteria but essential in Caulobacter crescentus Cells devoid of DipI cannot constrict. Although a mature divisome is required for DipI recruitment, DipI is not needed for recruiting other division proteins. These results, together with the interaction of DipI with a protein complex that has been suggested to regulate cell wall synthesis during division, suggest that DipI may be part of the regulatory mechanism that controls constriction initiation.
Collapse
|
33
|
Abstract
Cytokinesis in E. coli is organized by a cytoskeletal element designated the Z ring. The Z ring is formed at midcell by the coalescence of FtsZ filaments tethered to the membrane by interaction of FtsZ's conserved C-terminal peptide (CCTP) with two membrane-associated proteins, FtsA and ZipA. Although interaction between an FtsZ monomer and either of these proteins is of low affinity, high affinity is achieved through avidity - polymerization linked CCTPs interacting with the membrane tethers. The placement of the Z ring at midcell is ensured by antagonists of FtsZ polymerization that are positioned within the cell and target FtsZ filaments through the CCTP. The placement of the ring is reinforced by a protein network that extends from the terminus (Ter) region of the chromosome to the Z ring. Once the Z ring is established, additional proteins are recruited through interaction with FtsA, to form the divisome. The assembled divisome is then activated by FtsN to carry out septal peptidoglycan synthesis, with a dynamic Z ring serving as a guide for septum formation. As the septum forms, the cell wall is split by spatially regulated hydrolases and the outer membrane invaginates in step with the aid of a transenvelope complex to yield progeny cells.
Collapse
Affiliation(s)
- Joe Lutkenhaus
- University of Kansas Medical Center, Kansas City, KS, USA.
| | - Shishen Du
- University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
34
|
Abstract
Bacterial cell division is driven by the divisome, a ring-shaped protein complex organized by the bacterial tubulin homolog FtsZ. Although most of the division proteins in Escherichia coli have been identified, how they assemble into the divisome and synthesize the septum remains poorly understood. Recent studies suggest that the bacterial actin homolog FtsA plays a critical role in divisome assembly and acts synergistically with the FtsQLB complex to regulate the activity of the divisome. FtsEX, an ATP-binding cassette transporter-like complex, is also necessary for divisome assembly and inhibits division when its ATPase activity is inactivated. However, its role in division is not clear. Here, we find that FtsEX acts on FtsA to regulate both divisome assembly and activity. FtsX interacts with FtsA and this interaction is required for divisome assembly and inhibition of divisome function by ATPase mutants of FtsEX. Our results suggest that FtsEX antagonizes FtsA polymerization to promote divisome assembly and the ATPase mutants of FtsEX block divisome activity by locking FtsA in the inactive form or preventing FtsA from communicating with other divisome proteins. Because FtsEX is known to govern cell wall hydrolysis at the septum, our findings indicate that FtsEX acts on FtsA to promote divisome assembly and to coordinate cell wall synthesis and hydrolysis at the septum. Furthermore, our study provides evidence that FtsA mutants impaired for self-interaction are favored for division, and FtsW plays a critical role in divisome activation in addition to the FtsQLB complex.
Collapse
|
35
|
Wu H, Fan Z, Jiang X, Chen J, Chen GQ. Enhanced production of polyhydroxybutyrate by multiple dividing E. coli. Microb Cell Fact 2016; 15:128. [PMID: 27465264 PMCID: PMC4964105 DOI: 10.1186/s12934-016-0531-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 07/21/2016] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Most bacteria are grown in a binary fission way meaning a bacterial cell is equally divided into two. Polyhydroxyalkanoates (PHA) can be accumulated as inclusion bodies by bacteria. The cell division way and morphology have been shown to play an important role in regulating the bacterial growth and PHA storages. RESULTS The common growth pattern of Escherichia coli was changed to multiple fission patterns by deleting fission related genes minC and minD together, allowing the formation of multiple fission rings (Z-rings) in several positions of an elongated cell, thus a bacterial cell was observed to be divided into more than two daughter cells at same time. To further improve cell growth and PHA production, some genes related with division process including ftsQ, ftsL, ftsW, ftsN and ftsZ, together with the cell shape control gene mreB, were all overexpressed in E. coli JM109 ∆minCD. The changing pattern of E. coli cell growth and morphology resulted in more cell dry weights (CDW) and more than 80 % polyhydroxybutyrate (PHB) accumulation increases compared to its binary fission control grown under the same conditions. CONCLUSIONS This study clearly demonstrated that combined over-expression genes ftsQ, ftsW, ftsN, ftsL and ftsZ together with shape control gene mreB in multiple division bacterial E. coli JM109 ∆minCD benefited PHA accumulation. Our study provides useful information on increasing the yield of PHA by changing the cell division pattern and cell morphology of E. coli.
Collapse
Affiliation(s)
- Hong Wu
- School of Life Sciences, Tsinghua University, Beijing, 100084, China.,Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, China.,Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Zhongyun Fan
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xiaoran Jiang
- School of Life Sciences, Tsinghua University, Beijing, 100084, China.,Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, China.,Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Jinchun Chen
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Guo-Qiang Chen
- School of Life Sciences, Tsinghua University, Beijing, 100084, China. .,Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, China. .,Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China. .,Center for Nano and Micro Mechanics, MOE, Tsinghua University, Beijing, 100084, China. .,MOE Key Lab of Industrial Biocatalysis, Dept Chemical Engineering, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
36
|
Screening for transmembrane association in divisome proteins using TOXGREEN, a high-throughput variant of the TOXCAT assay. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:2573-2583. [PMID: 27453198 DOI: 10.1016/j.bbamem.2016.07.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Revised: 07/15/2016] [Accepted: 07/19/2016] [Indexed: 11/21/2022]
Abstract
TOXCAT is a widely used genetic assay to study interactions of transmembrane helices within the inner membrane of the bacterium Escherichia coli. TOXCAT is based on a fusion construct that links a transmembrane domain of interest with a cytoplasmic DNA-binding domain from the Vibrio cholerae ToxR protein. Interaction driven by the transmembrane domain results in dimerization of the ToxR domain, which, in turn, activates the expression of the reporter gene chloramphenicol acetyl transferase (CAT). Quantification of CAT is used as a measure of the ability of the transmembrane domain to self-associate. Because the quantification of CAT is relatively laborious, we developed a high-throughput variant of the assay, TOXGREEN, based on the expression of super-folded GFP and detection of fluorescence directly in unprocessed cell cultures. Careful side-by-side comparison of TOXCAT and TOXGREEN demonstrates that the methods have comparable response, dynamic range, sensitivity and intrinsic variability both in LB and minimal media. The greatly enhanced workflow makes TOXGREEN much more scalable and ideal for screening, since hundreds of constructs can be rapidly assessed in 96 well plates. Even for small scale investigations, TOXGREEN significantly reduces time, labor and cost associated with the procedure. We demonstrate applicability with a large screening for self-association among the transmembrane domains of bitopic proteins of the divisome (FtsL, FtsB, FtsQ, FtsI, FtsN, ZipA and EzrA) belonging to 11 bacterial species. The analysis confirms a previously reported tendency for FtsB to self-associate, and suggests that the transmembrane domains of ZipA, EzrA and FtsN may also possibly oligomerize.
Collapse
|
37
|
Rowlett VW, Margolin W. The bacterial divisome: ready for its close-up. Philos Trans R Soc Lond B Biol Sci 2016; 370:rstb.2015.0028. [PMID: 26370940 DOI: 10.1098/rstb.2015.0028] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Bacterial cells divide by targeting a transmembrane protein machine to the division site and regulating its assembly and disassembly so that cytokinesis occurs at the correct time in the cell cycle. The structure and dynamics of this machine (divisome) in bacterial model systems are coming more clearly into focus, thanks to incisive cell biology methods in combination with biochemical and genetic approaches. The main conserved structural element of the machine is the tubulin homologue FtsZ, which assembles into a circumferential ring at the division site that is stabilized and anchored to the inner surface of the cytoplasmic membrane by FtsZ-binding proteins. Once this ring is in place, it recruits a series of transmembrane proteins that ultimately trigger cytokinesis. This review will survey the methods used to characterize the structure of the bacterial divisome, focusing mainly on the Escherichia coli model system, as well as the challenges that remain. These methods include recent super-resolution microscopy, cryo-electron tomography and synthetic reconstitution.
Collapse
Affiliation(s)
- Veronica W Rowlett
- Microbiology and Molecular Genetics, University of Texas Medical School at Houston, 6431 Fannin, Houston, TX 77030, USA
| | - William Margolin
- Microbiology and Molecular Genetics, University of Texas Medical School at Houston, 6431 Fannin, Houston, TX 77030, USA
| |
Collapse
|
38
|
Pichoff S, Du S, Lutkenhaus J. The bypass of ZipA by overexpression of FtsN requires a previously unknown conserved FtsN motif essential for FtsA-FtsN interaction supporting a model in which FtsA monomers recruit late cell division proteins to the Z ring. Mol Microbiol 2015; 95:971-87. [PMID: 25496259 DOI: 10.1111/mmi.12907] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2014] [Indexed: 11/29/2022]
Abstract
Assembly of the divisome in Escherichia coli occurs in two temporally distinct steps. First, FtsZ filaments attached to the membrane through interaction with FtsA and ZipA coalesce into a Z ring at midcell. Then, additional proteins are recruited to the Z ring in a hierarchical manner to form a complete divisome, activated by the arrival of FtsN. Recently, we proposed that the interaction of FtsA with itself competes with its ability to recruit downstream division proteins (both require the IC domain of FtsA) and ZipA's essential function is to promote the formation of FtsA monomers. Here, we tested whether overexpression of a downstream division protein could make ZipA dispensable, presumably by shifting the FtsA equilibrium to monomers. Only overexpression of FtsN bypassed ZipA and a conserved motif in the cytoplasmic domain of FtsN was required for both the bypass and interaction with FtsA. Also, this cytoplasmic motif had to be linked to the periplasmic E domain of FtsN to bypass ZipA, indicating that linkage of FtsA to periplasmic components of the divisome through FtsN was essential under these conditions. These results are used to further elaborate our model for the role of FtsA in recruiting downstream division proteins.
Collapse
Affiliation(s)
- Sebastien Pichoff
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS, 66160, USA
| | | | | |
Collapse
|
39
|
Weiss DS. Last but not least: new insights into how FtsN triggers constriction duringEscherichia colicell division. Mol Microbiol 2015; 95:903-9. [DOI: 10.1111/mmi.12925] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2015] [Indexed: 11/26/2022]
Affiliation(s)
- David S. Weiss
- Department of Microbiology; Carver College of Medicine; The University of Iowa; Iowa City IA 52242 USA
| |
Collapse
|
40
|
Tsang MJ, Bernhardt TG. Guiding divisome assembly and controlling its activity. Curr Opin Microbiol 2015; 24:60-5. [PMID: 25636132 DOI: 10.1016/j.mib.2015.01.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 01/01/2015] [Accepted: 01/08/2015] [Indexed: 01/11/2023]
Abstract
Cell division in bacteria requires the construction of two new polar caps for the daughter cells. To constrict the cell membrane and build these new surface layers, bacteria employ a multiprotein machine called the divisome. Over the years, most of the essential division proteins have been identified and localized to the ring-like divisome apparatus. The challenge now is to determine the molecular function of these factors, how they cooperate to bring about the dramatic transformation of the mother cell envelope, and what coordinates their activity with other major cell cycle events. In this review, we discuss recent progress in these areas with an emphasis on results from the model organisms Escherichia coli and Bacillus subtilis.
Collapse
Affiliation(s)
- Mary-Jane Tsang
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, United States
| | - Thomas G Bernhardt
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, United States.
| |
Collapse
|
41
|
Liu B, Persons L, Lee L, de Boer PAJ. Roles for both FtsA and the FtsBLQ subcomplex in FtsN-stimulated cell constriction in Escherichia coli. Mol Microbiol 2015; 95:945-70. [PMID: 25496160 DOI: 10.1111/mmi.12906] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2014] [Indexed: 12/18/2022]
Abstract
Escherichia coli FtsN is a bitopic membrane protein that is essential for triggering active cell constriction. A small periplasmic subdomain ((E) FtsN) is required and sufficient for function, but its mechanism of action is unclear. We isolated extragenic (E) FtsN*-suppressing mutations that restore division in cells producing otherwise non-functional variants of FtsN. These mapped to the IC domain of FtsA in the cytoplasm and to small subdomains of the FtsB and FtsL proteins in the periplasm. All FtsB and FtsL variants allowed survival without (E) FtsN, but many then imposed a new requirement for interaction between the cytoplasmic domain of FtsN ((N) FtsN) and FtsA. Alternatively, variants of FtsA, FtsB or FtsL acted synergistically to allow cell division in the complete absence of FtsN. Strikingly, moreover, substitution of a single residue in FtsB (E56) proved sufficient to rescue ΔftsN cells as well. In FtsN(+) cells, (E) FtsN*-suppressing mutations promoted cell fission at an abnormally small cell size, and caused cell shape and integrity defects under certain conditions. This and additional evidence support a model in which FtsN acts on either side of the membrane to induce a conformational switch in both FtsA and the FtsBLQ subcomplex to de-repress septal peptidoglycan synthesis and membrane invagination.
Collapse
Affiliation(s)
- Bing Liu
- Department of Molecular Biology & Microbiology, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106-4960, USA
| | | | | | | |
Collapse
|
42
|
Tsang MJ, Bernhardt TG. A role for the FtsQLB complex in cytokinetic ring activation revealed by an ftsL allele that accelerates division. Mol Microbiol 2015; 95:925-44. [PMID: 25496050 DOI: 10.1111/mmi.12905] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2014] [Indexed: 01/19/2023]
Abstract
The cytokinetic apparatus of bacteria is initially formed by the polymerization of the tubulin-like FtsZ protein into a ring structure at midcell. This so-called Z-ring facilitates the recruitment of many additional proteins to the division site to form the mature divisome machine. Although the assembly pathway leading to divisome formation has been well characterized, the mechanisms that trigger cell constriction remain unclear. In this report, we study a 'forgotten' allele of ftsL from Escherichia coli, which encodes a conserved division gene of unknown function. We discovered that this allele promotes the premature initiation of cell division. Further analysis also revealed that the mutant bypasses the requirement for the essential division proteins ZipA, FtsK and FtsN, and partially bypasses the need for FtsA. These findings suggest that rather than serving simply as a protein scaffold within the divisome, FtsL may play a more active role in the activation of the machine. Our results support a model in which FtsL, along with its partners FtsB and FtsQ, function as part of a sensing mechanism that promotes the onset of cell wall remodeling processes needed for the initiation of cell constriction once assembly of the divisome complex is deemed complete.
Collapse
Affiliation(s)
- Mary-Jane Tsang
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, 02115, USA
| | | |
Collapse
|
43
|
Busiek KK, Margolin W. A role for FtsA in SPOR-independent localization of the essential Escherichia coli cell division protein FtsN. Mol Microbiol 2014; 92:1212-26. [PMID: 24750258 DOI: 10.1111/mmi.12623] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2014] [Indexed: 11/30/2022]
Abstract
FtsN is a bitopic membrane protein and the last essential component to localize to the Escherichia coli cell division machinery, or divisome. The periplasmic SPOR domain of FtsN was previously shown to localize to the divisome in a self-enhancing manner, relying on the essential activity of FtsN and the peptidoglycan synthesis and degradation activities of FtsI and amidases respectively. Because FtsN has a known role in recruiting amidases and is predicted to stimulate the activity of FtsI, it follows that FtsN initially localizes to division sites in a SPOR-independent manner. Here, we show that the cytoplasmic and transmembrane domains of FtsN (FtsN(Cyto - TM)) facilitated localization of FtsN independently of its SPOR domain but dependent on the early cell division protein FtsA. In addition, SPOR-independent localization preceded SPOR-dependent localization, providing a mechanism for the initial localization of FtsN. In support of the role of FtsNCyto - TM in FtsN function, a variant of FtsN lacking the cytoplasmic domain localized to the divisome but failed to complement an ftsN deletion unless it was overproduced. Simultaneous removal of the cytoplasmic and SPOR domains abolished localization and complementation. These data support a model in which FtsA-FtsN interaction recruits FtsN to the divisome, where it can then stimulate the peptidoglycan remodelling activities required for SPOR-dependent localization.
Collapse
Affiliation(s)
- Kimberly K Busiek
- Department of Microbiology and Molecular Genetics, University of Texas Medical School at Houston, Houston, TX, USA
| | | |
Collapse
|
44
|
Natale P, Pazos M, Vicente M. TheEscherichia colidivisome: born to divide. Environ Microbiol 2013; 15:3169-82. [DOI: 10.1111/1462-2920.12227] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 07/18/2013] [Accepted: 07/23/2013] [Indexed: 11/27/2022]
Affiliation(s)
- Paolo Natale
- Centro Nacional de Biotecnología (CNB-CSIC); C/Darwin n° 3 E-28049 Madrid Spain
| | - Manuel Pazos
- Centro Nacional de Biotecnología (CNB-CSIC); C/Darwin n° 3 E-28049 Madrid Spain
| | - Miguel Vicente
- Centro Nacional de Biotecnología (CNB-CSIC); C/Darwin n° 3 E-28049 Madrid Spain
| |
Collapse
|
45
|
Massidda O, Nováková L, Vollmer W. From models to pathogens: how much have we learned about Streptococcus pneumoniae cell division? Environ Microbiol 2013; 15:3133-57. [PMID: 23848140 DOI: 10.1111/1462-2920.12189] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 06/08/2013] [Accepted: 06/09/2013] [Indexed: 12/22/2022]
Abstract
Streptococcus pneumoniae is an oval-shaped Gram-positive coccus that lives in intimate association with its human host, both as a commensal and pathogen. The seriousness of pneumococcal infections and the spread of multi-drug resistant strains call for new lines of intervention. Bacterial cell division is an attractive target to develop antimicrobial drugs. This review discusses the recent advances in understanding S. pneumoniae growth and division, in comparison with the best studied rod-shaped models, Escherichia coli and Bacillus subtilis. To maintain their shape, these bacteria propagate by peripheral and septal peptidoglycan synthesis, involving proteins that assemble into distinct complexes called the elongasome and the divisome, respectively. Many of these proteins are conserved in S. pneumoniae, supporting the notion that the ovococcal shape is also achieved by rounds of elongation and division. Importantly, S. pneumoniae and close relatives with similar morphology differ in several aspects from the model rods. Overall, the data support a model in which a single large machinery, containing both the peripheral and septal peptidoglycan synthesis complexes, assembles at midcell and governs growth and division. The mechanisms generating the ovococcal or coccal shape in lactic-acid bacteria have likely evolved by gene reduction from a rod-shaped ancestor of the same group.
Collapse
Affiliation(s)
- Orietta Massidda
- Department of Surgical Sciences, University of Cagliari, Via Porcell, 4, 09100, Cagliari, Italy
| | | | | |
Collapse
|
46
|
van den Berg van Saparoea HB, Glas M, Vernooij IGWH, Bitter W, den Blaauwen T, Luirink J. Fine-mapping the contact sites of the Escherichia coli cell division proteins FtsB and FtsL on the FtsQ protein. J Biol Chem 2013; 288:24340-50. [PMID: 23846696 DOI: 10.1074/jbc.m113.485888] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Escherichia coli cell division is effected by a large assembly of proteins called the divisome, of which a subcomplex consisting of three bitopic inner membrane proteins, FtsQ, FtsB, and FtsL, is an essential part. These three proteins, hypothesized to link cytoplasmic to periplasmic events during cell division, contain large periplasmic domains that are of major importance for function and complex formation. The essential nature of this subcomplex, its low abundance, and its multiple interactions with key divisome components in the relatively accessible periplasm make it an attractive target for the development of protein-protein interaction inhibitors. Although the crystal structure of the periplasmic domain of FtsQ has been solved, the structure of the FtsQBL complex is unknown, with only very crude indications of the interactions in this complex. In this study, we used in vivo site-specific photo cross-linking to probe the surface of the FtsQ periplasmic domain for its interaction interfaces with FtsB and FtsL. An interaction hot spot for FtsB was identified around residue Ser-250 in the C-terminal region of FtsQ and a membrane-proximal interaction region for both proteins around residue Lys-59. Sequence alignment revealed a consensus motif overlapping with the C-terminal interaction hot spot, underlining the importance of this region in FtsQ. The identification of contact sites in the FtsQBL complex will guide future development of interaction inhibitors that block cell division.
Collapse
Affiliation(s)
- H Bart van den Berg van Saparoea
- Section of Molecular Microbiology, Department of Molecular Cell Biology, Amsterdam Institute of Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
47
|
Direct interaction of FtsZ and MreB is required for septum synthesis and cell division in Escherichia coli. EMBO J 2013; 32:1953-65. [PMID: 23756461 DOI: 10.1038/emboj.2013.129] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 05/10/2013] [Indexed: 11/08/2022] Open
Abstract
How bacteria coordinate cell growth with division is not well understood. Bacterial cell elongation is controlled by actin-MreB while cell division is governed by tubulin-FtsZ. A ring-like structure containing FtsZ (the Z ring) at mid-cell attracts other cell division proteins to form the divisome, an essential protein assembly required for septum synthesis and cell separation. The Z ring exists at mid-cell during a major part of the cell cycle without contracting. Here, we show that MreB and FtsZ of Escherichia coli interact directly and that this interaction is required for Z ring contraction. We further show that the MreB-FtsZ interaction is required for transfer of cell-wall biosynthetic enzymes from the lateral to the mature divisome, allowing cells to synthesise the septum. Our observations show that bacterial cell division is coupled to cell elongation via a direct and essential interaction between FtsZ and MreB.
Collapse
|
48
|
Sharma R, Hoti SL, Vasuki V, Sankari T, Meena RL, Das PK. Filamentation temperature-sensitive protein Z (FtsZ) of Wolbachia, endosymbiont of Wuchereria bancrofti: a potential target for anti-filarial chemotherapy. Acta Trop 2013; 125:330-8. [PMID: 23262214 DOI: 10.1016/j.actatropica.2012.12.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 11/30/2012] [Accepted: 12/01/2012] [Indexed: 01/13/2023]
Abstract
Lymphatic filariasis (LF) is a leading cause of morbidity in the tropical world. It is caused by the filarial parasites Wuchereria bancrofti, Brugia malayi and Brugia timori and transmitted by vector mosquitoes. Currently a programme for the elimination of LF, Global programme for Elimination of Lymphatic Filariasis (GPELF), is underway with the strategy of mass administration of single dose of diethylcarbamazine or ivermectin, in combination with an anthelmintic drug, albendazole. However, antifilarial drugs used in the programme are only microfilaricidal but not or only partially macrofilaricidal. Hence, there is a need to identify new targets for developing antifilarial drugs. Filarial parasites harbor rickettsial endosymbionts, Wolbachia sp., which play an important role in their biology and hence are considered as potential targets for antifilarial chemotherapy development. In this study, one of the cell division proteins of Wolbachia of the major lymphatic filarial parasite, W. bancrofti, viz., filamentation temperature-sensitive protein Z (FtsZ), was explored as a drug target. The gene coding for FtsZ protein was amplified from the genomic DNA of W. bancrofti, cloned and sequenced. The derived amino acid sequence of the gene revealed that FtsZ protein is 396 amino acids long and contained the tubulin motif (GGGTGTG) involved in GTP binding and the GTP hydrolyzing motif (NLDFAD). The FtsZ gene of endosymbiont showed limited sequence homology, but exhibited functional homology with β-tubulin of its host, W. bancrofti, as it had both the functional motifs and conserved amino acids that are critical for enzymatic activity. β-tubulin is the target for the anti-helminthic activity of albendazole and since FtsZ shares functional homology with, β-tubulin it may also be sensitive to albendazole. Therefore, the effect of albendazole was tested against Wolbachia occurring in mosquitoes instead of filarial parasites as the drug has lethal effect on the latter. Third instar larvae of Culex quinquefasciatus were treated with 0.25mg/ml of albendazole (test) or tetracycline (positive control) in the rearing medium for different intervals and tested for the presence of Wolbachia by FtsZ PCR. All the treated larvae were negative for the presence of the FtsZ band, whereas all the control larvae were positive. The findings of the study, thus indicated that FtsZ is sensitive to albendazole. In view of this albendazole appears to have dual targets; FtsZ in Wolbachia and β-tubulin in W. bancrofti. Further, the functional domain of the gene was assessed for polymorphism among recombinant clones representing 120 W. bancrofti parasites, prevalent across wide geographic areas of India and found to be highly conserved among them. Since it is highly conserved and plays an important role in Wolbachia cell division it appears to be a potential target for anti-filarial chemotherapy development.
Collapse
Affiliation(s)
- Rohit Sharma
- Vector Control Research Centre, Indira Nagar, Medical Complex, Puducherry, India
| | | | | | | | | | | |
Collapse
|
49
|
The β-lactam resistance protein Blr, a small membrane polypeptide, is a component of the Escherichia coli cell division machinery. J Bacteriol 2012; 194:5576-88. [PMID: 22885295 DOI: 10.1128/jb.00774-12] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
In Escherichia coli, cell division is performed by a multimolecular machinery called the divisome, made of 10 essential proteins and more than 20 accessory proteins. Through a bacterial two-hybrid library screen, we identified the E. coli β-lactam resistance protein Blr, a short membrane polypeptide of 41 residues, as an interacting partner of the essential cell division protein FtsL. In addition to FtsL, Blr was found to associate with several other divisomal proteins, including FtsI, FtsK, FtsN, FtsQ, FtsW, and YmgF. Using fluorescently tagged Blr, we showed that this peptide localizes to the division septum and that its colocalization requires the presence of the late division protein FtsN. Although Blr is not essential, previous studies have shown that the inactivation of the blr gene increased the sensitivity of bacteria to β-lactam antibiotics or their resistance to cell envelope stress. Here, we found that Blr, when overproduced, restores the viability of E. coli ftsQ1(Ts) cells, carrying a thermosensitive allele of the ftsQ gene, during growth under low-osmotic-strength conditions (e.g., in synthetic media or in Luria-Bertani broth without NaCl). In contrast, the inactivation of blr increases the osmosensitivity of ftsQ1(Ts) cells, and blr ftsQ1 double mutants exhibit filamentous growth in LB broth even at a moderate salt concentration (0.5% NaCl) compared to parental ftsQ1(Ts) cells. Altogether, our results suggest that the small membrane polypeptide Blr is a novel component of the E. coli cell division apparatus involved in the stabilization of the divisome under certain stress conditions.
Collapse
|
50
|
The early divisome protein FtsA interacts directly through its 1c subdomain with the cytoplasmic domain of the late divisome protein FtsN. J Bacteriol 2012; 194:1989-2000. [PMID: 22328664 DOI: 10.1128/jb.06683-11] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In Escherichia coli, FtsN localizes late to the cell division machinery, only after a number of additional essential proteins are recruited to the early FtsZ-FtsA-ZipA complex. FtsN has a short, positively charged cytoplasmic domain (FtsN(Cyto)), a single transmembrane domain (FtsN(TM)), and a periplasmic domain that is essential for FtsN function. Here we show that FtsA and FtsN interact directly in vitro. FtsN(Cyto) is sufficient to bind to FtsA, but only when it is tethered to FtsN(TM) or to a leucine zipper. Mutation of a conserved patch of positive charges in FtsN(Cyto) to negative charges abolishes the interaction with FtsA. We also show that subdomain 1c of FtsA is sufficient to mediate this interaction with FtsN. Finally, although FtsN(Cyto-TM) is not essential for FtsN function, its overproduction causes a modest dominant-negative effect on cell division. These results suggest that basic residues within a dimerized FtsN(Cyto) protein interact directly with residues in subdomain 1c of FtsA. Since FtsA binds directly to FtsZ and FtsN interacts with enzymes involved in septum synthesis and splitting, this interaction between early and late divisome proteins may be one of several feedback controls for Z ring constriction.
Collapse
|