1
|
Subhan F, Zizzo MG, Serio R. Motor dysfunction of the gut in Duchenne muscular dystrophy: A review. Neurogastroenterol Motil 2024; 36:e14804. [PMID: 38651673 DOI: 10.1111/nmo.14804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/06/2024] [Accepted: 04/09/2024] [Indexed: 04/25/2024]
Abstract
BACKGROUND Duchenne's muscular dystrophy (DMD) is a severe type of hereditary, neuromuscular disorder caused by a mutation in the dystrophin gene resulting in the absence or production of truncated dystrophin protein. Conventionally, clinical descriptions of the disorder focus principally on striated muscle defects; however, DMD manifestations involving gastrointestinal (GI) smooth muscle have been reported, even if not rigorously studied. PURPOSE The objective of the present review is to offer a comprehensive perspective on the existing knowledge concerning GI manifestations in DMD, focusing the attention on evidence in DMD patients and mdx mice. This includes an assessment of symptomatology, etiological pathways, and potential corrective approaches. This paper could provide helpful information about DMD gastrointestinal implications that could serve as a valuable orientation for prospective research endeavors in this field. This manuscript emphasizes the effectiveness of mdx mice, a DMD animal model, in unraveling mechanistic insights and exploring the pathological alterations in the GI tract. The gastrointestinal consequences evident in patients with DMD and the mdx mice models are a significant area of focus for researchers. The exploration of this area in depth could facilitate the development of more efficient therapeutic approaches and improve the well-being of individuals impacted by the condition.
Collapse
Affiliation(s)
- Fazal Subhan
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Palermo, Italy
| | - Maria Grazia Zizzo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Palermo, Italy
- ATeN (Advanced Technologies Network) Center, Viale delle Scienze, University of Palermo, Palermo, Italy
| | - Rosa Serio
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Palermo, Italy
| |
Collapse
|
2
|
Investigating the Potential for Sulforaphane to Attenuate Gastrointestinal Dysfunction in mdx Dystrophic Mice. Nutrients 2021; 13:nu13124559. [PMID: 34960110 PMCID: PMC8706299 DOI: 10.3390/nu13124559] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 12/30/2022] Open
Abstract
Gastrointestinal (GI) dysfunction is an important, yet understudied condition associated with Duchenne muscular dystrophy (DMD), with patients reporting bloating, diarrhea, and general discomfort, contributing to a reduced quality of life. In the mdx mouse, the most commonly used mouse model of DMD, studies have confirmed GI dysfunction (reported as altered contractility and GI transit through the small and large intestine), associated with increased local and systemic inflammation. Sulforaphane (SFN) is a natural isothiocyanate with anti-inflammatory and anti-oxidative properties via its activation of Nrf2 signalling that has been shown to improve aspects of the skeletal muscle pathology in dystrophic mice. Whether SFN can similarly improve GI function in muscular dystrophy was unknown. Video imaging and spatiotemporal mapping to assess gastrointestinal contractions in isolated colon preparations from mdx and C57BL/10 mice revealed that SFN reduced contraction frequency when administered ex vivo, demonstrating its therapeutic potential to improve GI function in DMD. To confirm this in vivo, four-week-old male C57BL/10 and mdx mice received vehicle (2% DMSO/corn oil) or SFN (2 mg/kg in 2% DMSO/corn oil) via daily oral gavage five days/week for 4 weeks. SFN administration reduced fibrosis in the diaphragm of mdx mice but did not affect other pathological markers. Gene and protein analysis revealed no change in Nrf2 protein expression or activation of Nrf2 signalling after SFN administration and oral SFN supplementation did not improve GI function in mdx mice. Although ex vivo studies demonstrate SFN’s therapeutic potential for reducing colon contractions, in vivo studies should investigate higher doses and/or alternate routes of administration to confirm SFN’s potential to improve GI function in DMD.
Collapse
|
3
|
Mareedu S, Million ED, Duan D, Babu GJ. Abnormal Calcium Handling in Duchenne Muscular Dystrophy: Mechanisms and Potential Therapies. Front Physiol 2021; 12:647010. [PMID: 33897454 PMCID: PMC8063049 DOI: 10.3389/fphys.2021.647010] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 03/02/2021] [Indexed: 12/18/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked muscle-wasting disease caused by the loss of dystrophin. DMD is associated with muscle degeneration, necrosis, inflammation, fatty replacement, and fibrosis, resulting in muscle weakness, respiratory and cardiac failure, and premature death. There is no curative treatment. Investigations on disease-causing mechanisms offer an opportunity to identify new therapeutic targets to treat DMD. An abnormal elevation of the intracellular calcium (Cai2+) concentration in the dystrophin-deficient muscle is a major secondary event, which contributes to disease progression in DMD. Emerging studies have suggested that targeting Ca2+-handling proteins and/or mechanisms could be a promising therapeutic strategy for DMD. Here, we provide an updated overview of the mechanistic roles the sarcolemma, sarcoplasmic/endoplasmic reticulum, and mitochondria play in the abnormal and sustained elevation of Cai2+ levels and their involvement in DMD pathogenesis. We also discuss current approaches aimed at restoring Ca2+ homeostasis as potential therapies for DMD.
Collapse
Affiliation(s)
- Satvik Mareedu
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers University, Newark, NJ, United States
| | - Emily D Million
- Department of Molecular Microbiology and Immunology, The University of Missouri, Columbia, MO, United States
| | - Dongsheng Duan
- Department of Molecular Microbiology and Immunology, The University of Missouri, Columbia, MO, United States.,Department of Biomedical, Biological & Chemical Engineering, The University of Missouri, Columbia, MO, United States
| | - Gopal J Babu
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers University, Newark, NJ, United States
| |
Collapse
|
4
|
Gama LA, Rocha Machado MP, Beckmann APS, Miranda JRDA, Corá LA, Américo MF. Gastrointestinal motility and morphology in mice: Strain-dependent differences. Neurogastroenterol Motil 2020; 32:e13824. [PMID: 32096330 DOI: 10.1111/nmo.13824] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 01/31/2020] [Accepted: 02/04/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND BALB/c and C57BL/6 mice are widely used in biomedical research; however, the differences between strains are still underestimated. Our aims were to develop an experimental protocol to evaluate the duodenal contractility and gastrointestinal transit in mice using the Alternating Current Biosusceptometry (ACB) technique and to compare gastrointestinal motor function and morphology between BALB/c and C57BL/6 strains. METHODS Male mice were used in experiments (a) duodenal contractility: animals which had a magnetic marker surgically fixed in the duodenum to determine the frequency and amplitude of contractions and (b) gastrointestinal transit: animals which ingested a magnetically marked chow to calculate the Oro-Anal Transit Time (OATT) and the Fecal Pellet Elimination Rate (FPER). The animals were killed after the experiments for organ collection and morphometric analysis. KEY RESULTS BALB/c and C57BL/6 had two different duodenal frequencies (high and low) with similar amplitudes. After 10 hours of monitoring, BALB/c eliminated around 89% of the ingested marker and C57BL/6 eliminated 33%; OATT and FPER were slower for C57BL/6 compared with BALB/c. The OATT and amplitude of low frequency had a strong positive correlation in C57BL/6. For BALB/c, the gastric muscular layer was thicker compared to that measured for C57BL/6. CONCLUSIONS AND INFERENCES The experimental protocol to evaluate duodenal contractility and fecal magnetic pellets output using the ACB technique in mice was successfully established. BALB/c strains had higher duodenal frequencies and a shorter time to eliminate the ingested marker. Our results showed differences in both motor function and gastrointestinal morphology between BALB/c and C57BL/6 strains.
Collapse
Affiliation(s)
- Loyane Almeida Gama
- Institute of Biosciences, São Paulo State University, UNESP, Botucatu, Brazil
| | | | - Ana Paula Simões Beckmann
- Institute of Biological Sciences and Health, Federal University of Mato Grosso, UFMT, Barra do Garças, Brazil
| | | | | | - Madileine Francely Américo
- Institute of Biosciences, São Paulo State University, UNESP, Botucatu, Brazil.,Institute of Biological Sciences and Health, Federal University of Mato Grosso, UFMT, Barra do Garças, Brazil
| |
Collapse
|
5
|
Lopez JR, Uryash A, Faury G, Estève E, Adams JA. Contribution of TRPC Channels to Intracellular Ca 2 + Dyshomeostasis in Smooth Muscle From mdx Mice. Front Physiol 2020; 11:126. [PMID: 32153426 PMCID: PMC7044154 DOI: 10.3389/fphys.2020.00126] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 02/04/2020] [Indexed: 12/17/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is an irreversible muscle disease characterized by a progressive loss of muscle function, decreased ambulation, and ultimately death as a result of cardiac or respiratory failure. DMD is caused by the lack of dystrophin, a protein that is important for membrane stability and signaling in excitable cells. Although vascular smooth muscle cells (VSMCs) dysfunction occurs in many pathological conditions, little is known about vascular smooth muscle function in DMD. We have previously shown that striated muscle cells, as well as neurons isolated from dystrophic (mdx) mice have higher intracellular Ca2+ ([Ca2+]i) and Na+ ([Na+]i) concentrations and decreased cell viability in comparison with wild type (Wt). Experiments were carried out in isolated VSMCs from mdx (a murine model of DMD) and congenic C57BL/10SnJ Wt mice. We found elevated [Ca2+]i and [Na+]i in VSMCs from mdx mice compared to Wt. Exposure to 1-oleoyl-2-acetyl-sn-glycerol (OAG), a TRPC3 and TRPC6 channel activator, induced a greater elevation of [Ca2+]i and [Na+]i in mdx than Wt VSMCs. The OAG induced increases in [Ca2+]i could be abolished by either removal of extracellular Ca2+ or by SAR7334, a blocker of TRPC3 and TRPC 6 channels in both genotypes. Mdx and Wt VSMCs were susceptible to muscle cell stretch-induced elevations of [Ca2+]i and [Na+]i which was completely inhibited by GsMTx-4, a mechanosensitive ion channel inhibitor. Western blots showed a significant upregulation of TRPC1 -3, -6 proteins in mdx VSMCs compare to age-matched Wt. The lack of dystrophin in mdx VSMCs produced a profound alteration of [Ca2+]i and [Na+]i homeostasis that appears to be mediated by TRPC channels. Moreover, we have been able to demonstrate pharmacologically that the enhanced stretch-induced elevation of intracellular [Ca2+] and concomitant cell damage in mdx VSMCs also appears to be mediated through TRPC1, -3 and -6 channel activation.
Collapse
Affiliation(s)
- Jose R Lopez
- Department of Research, Mount Sinai Medical Center, Miami, FL, United States
| | - Arkady Uryash
- Department of Neonatology, Mount Sinai Medical Center, Miami, FL, United States
| | - Gilles Faury
- HP2, CHU Grenoble Alpes, Inserm, University Grenoble Alpes, Grenoble, France
| | - Eric Estève
- HP2, CHU Grenoble Alpes, Inserm, University Grenoble Alpes, Grenoble, France
| | - Jose A Adams
- Department of Neonatology, Mount Sinai Medical Center, Miami, FL, United States
| |
Collapse
|
6
|
Swiderski K, Bindon R, Trieu J, Naim T, Schokman S, Swaminathan M, Leembruggen AJL, Hill-Yardin EL, Koopman R, Bornstein JC, Lynch GS. Spatiotemporal Mapping Reveals Regional Gastrointestinal Dysfunction in mdx Dystrophic Mice Ameliorated by Oral L-arginine Supplementation. J Neurogastroenterol Motil 2020; 26:133-146. [PMID: 31715094 PMCID: PMC6955187 DOI: 10.5056/jnm19029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 07/09/2019] [Accepted: 07/23/2019] [Indexed: 12/25/2022] Open
Abstract
Background/Aims Patients with Duchenne muscular dystrophy exhibit significant, ongoing impairments in gastrointestinal (GI) function likely resulting from dysregulated nitric oxide production. Compounds increasing neuronal nitric oxide synthase expression and/or activity could improve GI dysfunction and enhance quality of life for dystrophic patients. We used video imaging and spatiotemporal mapping to identify GI dysfunction in mdx dystrophic mice and determine whether dietary intervention to enhance nitric oxide could alleviate aberrant colonic activity in muscular dystrophy. Methods Four-week-old male C57BL/10 and mdx mice received a specialized diet either with no supplementation (control) or supplemented (1 g/kg/day) with L-alanine, L-arginine, or L-citrulline for 8 weeks. At the conclusion of treatment, mice were sacrificed by cervical dislocation and colon motility examined by spatiotemporal (ST) mapping ex vivo. Results ST mapping identified increased contraction number in the mid and distal colon of mdx mice on control and L-alanine supplemented diets relative to C57BL/10 mice (P < 0.05). Administration of either L-arginine or L-citrulline attenuated contraction number in distal colons of mdx mice relative to C57BL/10 mice. Conclusions GI dysfunction in Duchenne muscular dystrophy has been sadly neglected as an issue affecting quality of life. ST mapping identified regional GI dysfunction in the mdx dystrophic mouse. Dietary interventions to increase nitric oxide signaling in the GI tract reduced the number of colonic contractions and alleviated colonic constriction at rest. These findings in mdx mice reveal that L-arginine can improve colonic motility and has potential therapeutic relevance for alleviating GI discomfort, improving clinical care, and enhancing quality of life in Duchenne muscular dystrophy.
Collapse
Affiliation(s)
- Kristy Swiderski
- Centre for Muscle Research, Department of Physiology, School of Biomedical Sciences, The University of Melbourne, Australia
| | - Rebecka Bindon
- Centre for Muscle Research, Department of Physiology, School of Biomedical Sciences, The University of Melbourne, Australia
| | - Jennifer Trieu
- Centre for Muscle Research, Department of Physiology, School of Biomedical Sciences, The University of Melbourne, Australia
| | - Timur Naim
- Centre for Muscle Research, Department of Physiology, School of Biomedical Sciences, The University of Melbourne, Australia
| | - Shana Schokman
- Enteric Nervous System Laboratory, Department of Physiology, The University of Melbourne, Australia
| | - Mathusi Swaminathan
- Enteric Nervous System Laboratory, Department of Physiology, The University of Melbourne, Australia
| | - Anita J L Leembruggen
- Enteric Nervous System Laboratory, Department of Physiology, The University of Melbourne, Australia
| | - Elisa L Hill-Yardin
- Enteric Nervous System Laboratory, Department of Physiology, The University of Melbourne, Australia.,Gut-Brain Axis Laboratory, School of Health and Biomedical Sciences, RMIT University, Melbourne, Australia (Current address)
| | - René Koopman
- Centre for Muscle Research, Department of Physiology, School of Biomedical Sciences, The University of Melbourne, Australia
| | - Joel C Bornstein
- Enteric Nervous System Laboratory, Department of Physiology, The University of Melbourne, Australia
| | - Gordon S Lynch
- Centre for Muscle Research, Department of Physiology, School of Biomedical Sciences, The University of Melbourne, Australia
| |
Collapse
|
7
|
Abstract
Introduction Duchenne Muscular Dystrophy is a genetic disease that is caused by a deficiency of dystrophin protein. Both Duchenne Muscular Dystrophy patients and dystrophic mice suffer from intestinal dysfunction. Methods The present study arose from a chance observation of differences in fecal output of dystrophic vs. normal mice during 20-minutes of forced continuous treadmill exercise. Here, we report on the effects of exercise on fecal output in two different dystrophic mutants and their normal background control strains. All fecal materials evacuated during exercise were counted, dried and weighed. Results Mice of both mutant dystrophic strains produced significantly more fecal material during the exercise bout than the relevant control strains. iscussion We propose that exercise--induced Colo--Rectal Activation Phenotype test could be used as a simple, highly sensitive, non-invasive biomarker to determine efficacy of dystrophin replacement therapies.
Collapse
Affiliation(s)
- Marie Nearing
- Children's National Health System, Children's Research Institute, Center for Genetic Medicine Research, Washington DC, United States
| | - James Novak
- Center for Genetic Medicine Research, Children's National Health System, Washington DC, United States
| | - Terence Partridge
- Center for Genetic Medicine Research, Children's Research Institute, Children's National Medical Center, Washington DC, United States
| |
Collapse
|
8
|
Hibberd TJ, Costa M, Travis L, Brookes SJH, Wattchow DA, Feng J, Hu H, Spencer NJ. Neurogenic and myogenic patterns of electrical activity in isolated intact mouse colon. Neurogastroenterol Motil 2017; 29:1-12. [PMID: 28418103 DOI: 10.1111/nmo.13089] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 03/16/2017] [Indexed: 01/02/2023]
Abstract
BACKGROUND Relatively little is known about the electrical rhythmicity of the whole colon, where long neural pathways are preserved. METHODS Smooth muscle electrical activity was recorded extracellularly from the serosa of isolated flat-sheet preparations consisting of the whole mouse colon (n=31). KEY RESULTS Two distinct electrical patterns were observed. The first, long intense spike bursts, occurred every 349±256 seconds (0.2±0.2 cpm), firing action potentials for 31±11 seconds at 2.1±0.5 Hz. They were hexamethonium- and tetrodotoxin-sensitive, but persisted in nicardipine as 2 Hz electrical oscillations lacking action potentials. This pattern is called here neurogenic spike bursts. The second pattern, short spike bursts, occurred about every 30 seconds (2.0±0.6 cpm), with action potentials firing at about 1 Hz for 9 seconds (1.0±0.2 Hz, 9±4 seconds). Short spike bursts were hexamethonium- and tetrodotoxin-resistant but nicardipine-sensitive and thus called here myogenic spike bursts. Neurogenic spike bursts transiently delayed myogenic spike bursts, while blocking neurogenic activity enhanced myogenic spike burst durations. External stimuli significantly affected neurogenic but not myogenic spike bursts. Aboral electrical or mechanical stimuli evoked premature neurogenic spike bursts. Circumferential stretch significantly decreased intervals between neurogenic spike bursts. Lesioning the colon down to 10 mm segments significantly increased intervals or abolished neurogenic spike bursts, while myogenic spike bursts persisted. CONCLUSIONS & INFERENCES Distinct neurogenic and myogenic electrical patterns were recorded from mouse colonic muscularis externa. Neurogenic spike bursts likely correlate with neurogenic colonic migrating motor complexes (CMMC) and are highly sensitive to mechanical stimuli. Myogenic spike bursts may correspond to slow myogenic contractions, whose duration can be modulated by enteric neural activity.
Collapse
Affiliation(s)
- T J Hibberd
- Discipline of Human Physiology & Centre for Neuroscience, Flinders University, Adelaide, SA, Australia
| | - M Costa
- Discipline of Human Physiology & Centre for Neuroscience, Flinders University, Adelaide, SA, Australia
| | - L Travis
- Discipline of Human Physiology & Centre for Neuroscience, Flinders University, Adelaide, SA, Australia
| | - S J H Brookes
- Discipline of Human Physiology & Centre for Neuroscience, Flinders University, Adelaide, SA, Australia
| | - D A Wattchow
- Discipline of Surgery & Centre for Neuroscience, Flinders University, Adelaide, SA, Australia
| | - J Feng
- Department of Anesthesiology, The Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO, USA
| | - H Hu
- Department of Anesthesiology, The Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO, USA
| | - N J Spencer
- Discipline of Human Physiology & Centre for Neuroscience, Flinders University, Adelaide, SA, Australia
| |
Collapse
|
9
|
Supplementation action with ascorbic acid in the morphology of the muscular layer and reactive acetylcholinesterase neurons of ileum of mdx mice. Auton Neurosci 2017; 205:57-66. [PMID: 28539233 DOI: 10.1016/j.autneu.2017.05.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 04/30/2017] [Accepted: 05/02/2017] [Indexed: 02/02/2023]
Abstract
The Duchenne Muscular Dystrophy (DMD) is a genetic disorder characterized by the absence of dystrophin protein, causing severe myopathy from increases of oxidative stress. Injuries of intestinal muscle can compromise the myenteric plexus. This study aimed to evaluate the disorders occurred in the muscular layer and in the acetylcholinesterase myenteric neurons (ACHE-r) of ileum of mdx mice, and the effects of supplementation with ascorbic acid (AA) in both components. 30 male mice C57BL/10, and 30 male mice C57BL/10Mdx were separated according to the age and treatment (n=10/group): 30-days-old control group (C30); 30-days-old dystrophic group (D30); 60-days-old control group (C60); 60-days-old dystrophic group (D60); 60-days-old control group supplemented with AA (CS60); and 60-days-old dystrophic group supplemented with AA (DS60). The animals were euthanized and the ileum was collected and processed. Semi-serial sections were stained by Masson's trichrome, and acetylcholinesterase histochemical technique in whole-mounts preparations to identify the myenteric neurons. The muscular layer thickness and the area of smooth muscle of ileum were lower in dystrophic groups, especially in D30 group. The DS60 group showed the muscular layer thickness similar to C60. The density of ACHE-r neurons of myenteric plexus of ileum was lower in D30 animals; however, it was similar in animals of 60-days-old without treatment (C60 and D60) and, higher in DS60. The cell body profile area of ACHE-r neurons was similar in C30-D30 and C60-D60; however, it was higher in DS60. DMD caused damage to the ileum's musculature and myenteric plexus, and the AA prevented the ACHE-r neuronal loss.
Collapse
|
10
|
Amato A, Baldassano S, Caldara GF, Mulè F. Pancreatic polypeptide stimulates mouse gastric motor activity through peripheral neural mechanisms. Neurogastroenterol Motil 2017; 29. [PMID: 27381051 DOI: 10.1111/nmo.12901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 06/10/2016] [Indexed: 12/31/2022]
Abstract
BACKGROUND Pancreatic polypeptide (PP) is supposed to be one of the major endogenous agonists of the neuropeptide Y4 receptor. Pancreatic polypeptide can influence gastrointestinal motility, acting mainly through vagal mechanisms, but whether PP acts directly on the stomach has not been explored yet. The aims of this study were to investigate the effects of PP on mouse gastric emptying, on spontaneous tone of whole stomach in vitro and to examine the mechanism of action. METHODS Gastric emptying was measured by red phenol method after i.p. PP administration (1-3 nmol per mouse). Responses induced by PP (1-300 mmol L-1 ) on gastric endoluminal pressure were analyzed in vitro in the presence of different drugs. Gastric genic expression of Y4 receptor was verified by RT-PCR. KEY RESULTS Pancreatic polypeptide dose-dependently increased non-nutrient liquid gastric emptying rate. In vitro, PP produced a concentration-dependent contraction that was abolished by tetrodotoxin, a neural blocker of Na+ voltage-dependent channels. The contractile response was significantly reduced by atropine, a muscarinic receptor antagonist, and by SR48968, an NK2 receptor antagonist, while it was potentiated by neostigmine, an inhibitor of acetylcholinesterase. The joint application of atropine and SR48968 fully abolished PP contractile effect. Reverse transcriptase-polymerase chain reaction analysis revealed the presence of Y4 receptor mRNA in mouse stomach with a greater expression in antrum than in fundus. CONCLUSIONS & INFERENCES The present findings demonstrate that exogenous PP stimulates mouse gastric motor activity, by acting directly on the stomach. This effect appears due to the activation of enteric excitatory neurons releasing acetylcholine and tachykinins.
Collapse
Affiliation(s)
- A Amato
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Palermo, Italy
| | - S Baldassano
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Palermo, Italy
| | - G F Caldara
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Palermo, Italy
| | - F Mulè
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Palermo, Italy
| |
Collapse
|
11
|
Manning J, Buckley MM, O'Halloran KD, O'Malley D. In vivo neutralization of IL-6 receptors ameliorates gastrointestinal dysfunction in dystrophin-deficient mdx mice. Neurogastroenterol Motil 2016; 28:1016-1026. [PMID: 26920808 DOI: 10.1111/nmo.12803] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 01/25/2016] [Indexed: 01/12/2023]
Abstract
BACKGROUND Duchenne muscular dystrophy (DMD) is a fatal disease characterized by progressive deterioration and degeneration of striated muscle. A mutation resulting in the loss of dystrophin, a structural protein which protects cells from contraction-induced damage, underlies DMD pathophysiology. Damage to muscle fibers results in chronic inflammation and elevated levels of proinflammatory cytokines such as interleukin-6 (IL-6). However, loss of cellular dystrophin also affects neurons and smooth muscle in the gastrointestinal (GI) tract with complaints such as hypomotility, pseudo-obstruction, and constipation reported in DMD patients. METHODS Using dystrophin-deficient mdx mice, studies were carried out to examine colonic morphology and function compared with wild-type mice. Treatment with neutralizing IL-6 receptor antibodies (xIL-6R) and/or the corticotropin-releasing factor (CRF) 2 receptor agonist, urocortin 2 (uro2) was tested to determine if they ameliorated GI dysfunction in mdx mice. KEY RESULTS Mdx mice exhibited thickening of colonic smooth muscle layers and delayed stress-induced defecation. In organ bath studies, neurally mediated IL-6-evoked contractions were larger in mdx colons. In vivo treatment of mdx mice with xIL-6R normalized defecation rates and colon lengths. Uro2 treatment did not affect motility or morphology. The potentiated colonic contractile response to IL-6 was attenuated by treatment with xIL-6R. CONCLUSIONS & INFERENCES These findings confirm the importance of dystrophin in normal GI function and implicate IL-6 as an important regulator of GI motility in the mdx mouse. Inhibition of IL-6 signaling may offer a potential new therapeutic strategy for treating DMD-associated GI symptoms.
Collapse
Affiliation(s)
- J Manning
- Department of Physiology, University College Cork, Cork, Ireland
| | - M M Buckley
- Department of Physiology, University College Cork, Cork, Ireland
- APC Microbiome Institute, University College Cork, Cork, Ireland
| | - K D O'Halloran
- Department of Physiology, University College Cork, Cork, Ireland
| | - D O'Malley
- Department of Physiology, University College Cork, Cork, Ireland
- APC Microbiome Institute, University College Cork, Cork, Ireland
| |
Collapse
|
12
|
Alves GA, Silva LR, Rosa EF, Aboulafia J, Freymüller-Haapalainen E, Souccar C, Nouailhetas VLA. Intestine of dystrophic mice presents enhanced contractile resistance to stretching despite morphological impairment. Am J Physiol Gastrointest Liver Physiol 2014; 306:G191-9. [PMID: 24284964 DOI: 10.1152/ajpgi.00314.2013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Protein dystrophin is a component of the dystrophin-associated protein complex, which links the contractile machinery to the plasma membrane and to the extracellular matrix. Its absence leads to a condition known as Duchenne muscular dystrophy (DMD), a disease characterized by progressive skeletal muscle degeneration, motor disability, and early death. In mdx mice, the most common DMD animal model, loss of muscle cells is observed, but the overall disease alterations are less intense than in DMD patients. Alterations in gastrointestinal tissues from DMD patients and mdx mice are not yet completely understood. Thus, we investigated the possible relationships between morphological (light and electron microscopy) and contractile function (by recording the isometric contractile response) with alterations in Ca²⁺ handling in the ileum of mdx mice. We evidenced a 27% reduction in the ileal muscular layer thickness, a partial damage to the mucosal layer, and a partial damage to mitochondria of the intestinal myocytes. Functionally, the ileum from mdx presented an enhanced responsiveness during stretch, a mild impairment in both the electromechanical and pharmacomechanical signaling associated with altered calcium influx-induced contraction, with no alterations in the sarcoplasmic reticulum Ca²⁺ storage (maintenance of the caffeine and thapsigargin-induced contraction) compared with control animals. Thus, it is evidenced that the protein dystrophin plays an important role in the preservation of both the microstructure and ultrastructure of mice intestine, while exerting a minor but important role concerning the intestinal contractile responsiveness and calcium handling.
Collapse
Affiliation(s)
- Gabriel A Alves
- Department of Biophysics, Escola Paulista de Medicina-Universidade Federal de São Paulo, São Paulo, Brazil
| | | | | | | | | | | | | |
Collapse
|
13
|
Amato A, Baldassano S, Serio R, Mulè F. Tetrodotoxin-dependent effects of menthol on mouse gastric motor function. Eur J Pharmacol 2013; 718:131-7. [DOI: 10.1016/j.ejphar.2013.08.042] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 07/30/2013] [Accepted: 08/27/2013] [Indexed: 01/16/2023]
|
14
|
Amato A, Rotondo A, Cinci L, Baldassano S, Vannucchi MG, Mulè F. Role of cholinergic neurons in the motor effects of glucagon-like peptide-2 in mouse colon. Am J Physiol Gastrointest Liver Physiol 2010; 299:G1038-44. [PMID: 20705903 DOI: 10.1152/ajpgi.00282.2010] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Glucagon-like peptide-2 (GLP-2) reduces mouse gastric tone and small intestine transit, but its action on large intestine motility is still unknown. The purposes of the present study were 1) to examine the influence of GLP-2 on spontaneous mechanical activity and on neurally evoked responses, by recording intraluminal pressure from mouse isolated colonic segments; 2) to characterize GLP-2 mechanism of action; and 3) to determine the distribution of GLP-2 receptor (GLP-2R) in the mouse colonic muscle coat by immunohistochemistry. Exogenous GLP-2 (0.1-300 nM) induced a concentration-dependent reduction of the spontaneous mechanical activity, which was abolished by the desensitization of GLP-2 receptor or by tetrodotoxin, a voltage-dependent Na(+)-channel blocker. GLP-2 inhibitory effect was not affected by N(ω)-nitro-l-arginine methyl ester (a nitric oxide synthase inhibitor), apamin (a blocker of small conductance Ca(2+)-dependent K(+) channels), or [Lys1,Pro2,5,Arg3,4,Tyr6]VIP(7-28) (a VIP receptor antagonist), but it was prevented by atropine or pertussis toxin (PTX), a G(i/o) protein inhibitor. Proximal colon responses to electrical field stimulation were characterized by nitrergic relaxation, which was followed by cholinergic contraction. GLP-2 reduced only the cholinergic evoked contractions. This effect was almost abolished by GLP-2 receptor desensitization or PTX. GLP-2 failed to affect the contractile responses to exogenous carbachol. GLP-2R immunoreactivity (IR) was detected only in the neuronal cells of both plexuses of the colonic muscle coat. More than 50% of myenteric GLP-2R-IR neurons shared the choline acetyltransferase IR. In conclusion, the activation of GLP-2R located on cholinergic neurons may modulate negatively the colonic spontaneous and electrically evoked contractions through inhibition of acetylcholine release. The effect is mediated by G(i) protein.
Collapse
Affiliation(s)
- Antonella Amato
- Dipartimento di Biologia cellulare e dello Sviluppo, Università di Palermo, Palermo, Italy
| | | | | | | | | | | |
Collapse
|
15
|
Kwon OD, Jeung SI, Lee S, Choi YS, Choi BK, Jung KY. Different stimulatory effects of methylisogermabullone on the spontaneous contractility of rat gastrointestinal segments. Arch Pharm Res 2010; 32:1613-20. [PMID: 20091276 DOI: 10.1007/s12272-009-2115-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2009] [Revised: 08/14/2009] [Accepted: 09/14/2009] [Indexed: 01/06/2023]
Abstract
Using rat gastrointestinal (GI) strips, this study investigated the stimulatory effects of methylisogermabullone (MIGB) purified from radish on the spontaneous contractility of GI smooth muscles and pharmacological mechanisms involved in the MIGB-induced GI contraction. MIGB at 30 microM differently regulated the tone and amplitude of spontaneous GI contractility according to the region (fundus through distal colon) and orientation (longitudinal and circular) of smooth muscles: a significant increase in both tone and amplitude of spontaneous contraction in the ileum longitudinal and distal colon circular muscles and in amplitude only in the fundus, jejunum and distal colon longitudinal muscles. Pretreatment of ileum longitudinal muscles with atropine (0.5 microM) or 4-DAMP (0.5 microM) significantly inhibited the acetylcholine (ACh, 1 microM)- and MIGB (30 microM)-stimulated contraction, and methoctramine (0.5 microM) also obviously reduced the tone and amplitude increased by ACh and MIGB, respectively. In the presence of methysergide (1 microM), pretreatment of ileum longitudinal muscles with both ondansetron (0.1 microM) and GR113808 (0.1 microM) significantly inhibited the contraction stimulated by 5-HT (10 microM), but not by MIGB. Taken together, it is concluded that MIGB differently regulates the spontaneous contractility (tone and/or amplitude) of GI segments according to the region of gut and orientation of smooth muscles, and these contractile responses of GI tracts to MIGB are likely mediated, at least, by activation of acetylcholinergic M2 and M3 receptors.
Collapse
Affiliation(s)
- Oh Deog Kwon
- College of Veterinary Medicine, Kyungpook National University, Daegu 702-707, Korea
| | | | | | | | | | | |
Collapse
|
16
|
Mulè F, Amato A, Serio R. Gastric emptying, small intestinal transit and fecal output in dystrophic (mdx) mice. J Physiol Sci 2010; 60:75-9. [PMID: 19784719 PMCID: PMC10717827 DOI: 10.1007/s12576-009-0060-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Accepted: 08/17/2009] [Indexed: 02/05/2023]
Abstract
Duchenne muscular dystrophy (DMD), which results from deficiency in dystrophin, a sarcolemma protein of skeletal, cardiac and smooth muscle, is characterized by progressive striated muscle degeneration, but various gastrointestinal clinical manifestations have been observed. The aim was to evaluate the possible impact of the dystrophin loss on the gastrointestinal propulsion in mdx mice (animal model for DMD). The gastric emptying of a carboxymethyl cellulose/phenol red dye non-nutrient meal was not significantly different at 20 min from gavaging between wild-type and mdx mice. The intestinal transit and the fecal output were significantly decreased in mdx versus normal animals, although the length of the intestine was similar in both animals. The present results provide evidence for motor intestinal alterations in mdx mice in in vivo conditions.
Collapse
Affiliation(s)
- Flavia Mulè
- Laboratorio di Fisiologia generale, Dipartimento di Biologia cellulare e dello Sviluppo, Università di Palermo, Viale delle Scienze, 90128 Palermo, Italy.
| | | | | |
Collapse
|
17
|
Mulè F, Amato A, Serio R. Role for NK(1) and NK(2) receptors in the motor activity in mouse colon. Eur J Pharmacol 2007; 570:196-202. [PMID: 17597603 DOI: 10.1016/j.ejphar.2007.05.036] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2007] [Revised: 05/04/2007] [Accepted: 05/22/2007] [Indexed: 01/09/2023]
Abstract
The present study examined the effects induced by endogenous and exogenous activation of NK(1) and NK(2) receptors on the mechanical activity of mouse proximal colon. Experiments were performed in vitro recording the changes in intraluminal pressure from isolated colonic segments. Electrical field stimulation in the presence of atropine and guanethidine produced a small relaxation, followed by nonadrenergic noncholinergic (NANC) contraction. SR140333, NK(1) receptor antagonist, or SR48968, NK(2) receptor antagonist, significantly reduced the contraction, although SR48968 appeared more efficacious. The co-administration of SR140333 and SR48968 virtually abolished the NANC contraction. [Sar(9), Met(O(2))(11)]-substance P, selective NK(1) receptor agonist, induced a concentration-dependent biphasic effect, contraction followed by reduction of the mechanical spontaneous activity. Both effects were antagonized by SR140333, but not by SR48968. [beta-Ala(8)]-neurokinin A (4-10), selective NK(2) receptor agonist, evoked concentration-dependent contraction, which was antagonized by SR48968, but not by SR140333. The contraction induced by [Sar(9), Met(O(2))(11)]-substance P, but not by [beta-Ala(8)]-neurokinin A (4-10), was reduced by tetrodotoxin or atropine, and increased by N(omega)-nitro-L-arginine methyl ester (L-NAME), inhibitor of nitric oxide synthase. The inhibitory effects induced by [Sar(9), Met(O(2))(11)]-substance P were abolished by tetrodotoxin or L-NAME. The results of the present study suggest that in mouse colon both NK(1) and NK(2) receptors are junctionally activated by endogenous tachykinins to cause an additive response. NK(1) receptors appear to be located on cholinergic and on nitrergic neurons as well as on smooth muscle cells, whereas NK(2) receptors seem to be present exclusively on smooth muscle cells.
Collapse
Affiliation(s)
- Flavia Mulè
- Dipartimento di Biologia cellulare e dello Sviluppo, Laboratorio di Fisiologia generale, Università di Palermo, Viale delle Scienze, 90128 Palermo, Italy.
| | | | | |
Collapse
|
18
|
Mulè F, Amato A, Vannucchi MG, Faussone-Pellegrini MS, Serio R. Altered tachykinergic influence on gastric mechanical activity in mdx mice. Neurogastroenterol Motil 2006; 18:844-52. [PMID: 16918764 DOI: 10.1111/j.1365-2982.2006.00820.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
This study investigated whether alterations in gastric activity in dystrophic mdx mouse can be attributed to dysfunctions of tachykinins. Endoluminal pressure was recorded and the expression of neuronal nitric oxide synthase (nNOS), NK1 and NK2 neurokinin receptors was investigated by immunohistochemistry. SR48968, NK2 receptor antagonist, but not SR140333, NK1 receptor antagonist, decreased the tone only in mdx gastric preparations. In the presence of N(omega)-nitro-l-arginine methyl ester (l-NAME), inhibitor of NOS, SR48968 reduced the tone also in normal stomach. [Sar(9), Met(O(2))(11)]-SP, agonist of NK1 receptors, caused tetrodotoxin-sensitive relaxations, antagonized by SR140333 or l-NAME, with no difference in the potency or efficacy between normal and mdx preparations. [beta-Ala(8)]-NKA(4-10), an NK2 receptor agonist, induced SR48968-sensitive contractions in both types of preparations, although the maximal response of mdx tissues was significantly lower than normal preparations. Immunohistochemistry demonstrated a consistent reduction of nNOS and NK2 receptor expression in mdx stomach smooth muscle cells and no change in nNOS and NK1 receptor expression in neurones. In conclusion, in mdx stomach the activation of NK2 receptors plays a role in the development of the tone, associated with a reduced NO production by muscular nNOS. The hypo-responsiveness to NK2 receptors could depend on the reduced expression of these receptors.
Collapse
Affiliation(s)
- F Mulè
- Dipartimento di Biologia Cellulare e dello Sviluppo, Laboratorio di Fisiologia generale, Università di Palermo, Palermo, Italy.
| | | | | | | | | |
Collapse
|
19
|
Mulè F, Zizzo MG, Amato A, Feo S, Serio R. Evidence for a role of inducible nitric oxide synthase in gastric relaxation of mdx mice. Neurogastroenterol Motil 2006; 18:446-54. [PMID: 16700724 DOI: 10.1111/j.1365-2982.2006.00782.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Alterations of gastric mechanical activity have been reported in mdx mouse, animal model for Duchenne muscular dystrophy. This study examined if alterations in the vasoactive intestinal polypeptide (VIP) system are present in mdx stomach. Gastric mechanical activity was recorded in vitro as changes of endoluminal pressure and neurally or pharmacologically evoked relaxations were analysed in mdxvs normal stomach. Reverse-transcription polymerase chain reaction was used to detect inducible nitric oxide synthase (iNOS) expression. Relaxations to sodium nitroprusside in mdx stomach showed no difference in comparison with normal preparations. In normal stomach, VIP produced relaxation, which was reduced by VIP6-28, antagonist of VIP receptors, but was not modified by Nomega-nitro-L-arginine methyl ester (L-NAME), 1-H-oxodiazol-[1,2,4]-[4,3-a]quinoxaline-1-one (ODQ) or by N-(3-(aminomethyl)-benzyl)acetamidine (1400W) and aminoguanidine, inhibitors of iNOS. In contrast, in mdx stomach VIP responses were antagonized not only by VIP6-28, but also by L-NAME, ODQ, 1400W or aminoguanidine. In normal stomach, the slow relaxation evoked by stimulation at high frequency was reduced by VIP6-28, but it was unaffected by 1400W or aminoguanidine. In mdx stomach, it was reduced by VIP6-28 or 1400W, which did not show additive effects. iNOS mRNA was expressed only in mdx stomach. The results suggest that in mdx gastric preparations, iNOS is functionally expressed, being involved in the slow relaxation induced by VIP.
Collapse
Affiliation(s)
- F Mulè
- Dipartimento di Biologia cellulare e dello Sviluppo, Laboratorio di Fisiologia Generale, Università di Palermo, Palermo, Italy.
| | | | | | | | | |
Collapse
|
20
|
Zizzo MG, Mulè F, Serio R. Tachykinergic neurotransmission is enhanced in duodenum from dystrophic (mdx) mice. Br J Pharmacol 2006; 145:334-41. [PMID: 15778741 PMCID: PMC1576142 DOI: 10.1038/sj.bjp.0706171] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
1 Duodenal longitudinal muscle of mdx mice, an animal model for Duchenne muscular dystrophy, showed a decrease in the electrically evoked nonadrenergic, noncholinergic (NANC) inhibitory responses associated with a reduction of the participation of nitric oxide (NO). In this study, we investigated whether the impairment of NO could also lead to alterations in the NANC excitatory transmission. 2 Nerve-evoked responses consisted of an inhibitory phase followed, at the end of stimulation, by an excitatory response characterised by an increase in amplitude of the spontaneous contractions. In mdx mice, the amplitude of the nerve-evoked contractions was significantly higher than in normals. 3 N(omega)-nitro-L-arginine methyl ester (L-NAME) or 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ), an inhibitor of soluble guanylyl cyclase, increased the amplitude of the nerve-evoked contractions only in normals, being ineffective in mdx mice. Apamin, a blocker of Ca(2+)-dependent potassium channels, failed to affect the nerve-evoked contractions. 4 In both models, substance P and neurokinin A produced concentration-dependent contractions, reduced by tachykinin NK(1) and NK(2) receptor antagonists, respectively. Moreover, NK(1) and NK(2) receptor antagonists reduced the amplitude of the nerve-evoked contractions. 5 Sodium nitroprusside (SNP) reduced the amplitude of nerve-evoked contractions similarly in normal and mdx mice. ODQ, but not apamin, prevented the SNP-induced effects. SNP did not affect the contractions induced by exogenous tachykinins. 6 The results suggest that NO can exert an inhibitory modulatory role on tachykinergic excitatory transmission via activation of guanylyl cyclase in mouse duodenum. In mdx mice, the impairment of NO function leads to an increase in the nerve-evoked contractions.
Collapse
Affiliation(s)
- Maria Grazia Zizzo
- Laboratorio di Fisiologia generale, Dipartimento di Medicina Sperimentale, Università di Palermo, Viale delle Scienze, 90128 Palermo, Italia
| | - Flavia Mulè
- Laboratorio di Fisiologia generale, Dipartimento di Biologia Cellulare e dello Sviluppo, Università di Palermo, Viale delle Scienze, 90128 Palermo, Italia
| | - Rosa Serio
- Laboratorio di Fisiologia generale, Dipartimento di Biologia Cellulare e dello Sviluppo, Università di Palermo, Viale delle Scienze, 90128 Palermo, Italia
- Author for correspondence:
| |
Collapse
|
21
|
El-Yazbi AF, Cho WJ, Boddy G, Daniel EE. Caveolin-1 gene knockout impairs nitrergic function in mouse small intestine. Br J Pharmacol 2005; 145:1017-26. [PMID: 15937515 PMCID: PMC1576236 DOI: 10.1038/sj.bjp.0706289] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Caveolin-1 is a plasma membrane-associated protein that is responsible for caveolae formation. It plays an important role in the regulation of the function of different signaling molecules, among which are the different isoforms of nitric oxide synthase (NOS). Nitric oxide (NO) is known to be an important inhibitory mediator in the mouse gut. Caveolin-1 knockout mice (Cav1(-/-)) were used to examine the effect of caveolin-1 absence on the NO function in the mouse small intestine (ileum and jejunum) compared to their genetic controls and BALB/c controls. Immunohistochemical staining showed loss of caveolin-1 and NOS in the jejunal smooth muscles and myenteric plexus interstitial cells of Cajal (ICC) of Cav1(-/-) mice; however, nNOS immunoreactive nerves were still present in myenteric ganglia. Under nonadrenergic noncholinergic (NANC) conditions, small intestinal tissues from Cav1(-/-) mice relaxed to electrical field stimulation (EFS), as did tissues from control mice. Relaxation of tissues from control mice was markedly reduced by N-omega-nitro-L-arginine (10(-4) M), but relaxation of Cav1(-/-) animals was affected much less. Also, Cav1(-/-) mice tissues showed reduced relaxation responses to sodium nitroprusside (100 microM) compared to controls; yet there were no significant differences in the relaxation responses to 8-bromoguanosine-3': 5'-cyclic monophosphate (100 microM). Apamin (10(-6) M) significantly reduced relaxations to EFS in NANC conditions in Cav1(-/-) mice, but not in controls. The data from this study suggest that caveolin-1 gene knockout causes alterations in the smooth muscles and the ICC, leading to an impaired NO function in the mouse small intestine that could possibly be compensated by apamin-sensitive inhibitory mediators.
Collapse
Affiliation(s)
- Ahmed F El-Yazbi
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, 9-10 Medical Sciences Bldg., Edmonton, AB, Canada T6G 2H7
| | - Woo-Jung Cho
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, 9-10 Medical Sciences Bldg., Edmonton, AB, Canada T6G 2H7
| | - Geoffrey Boddy
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, 9-10 Medical Sciences Bldg., Edmonton, AB, Canada T6G 2H7
| | - Edwin E Daniel
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, 9-10 Medical Sciences Bldg., Edmonton, AB, Canada T6G 2H7
- Author for correspondence:
| |
Collapse
|
22
|
De Stefano ME, Leone L, Lombardi L, Paggi P. Lack of dystrophin leads to the selective loss of superior cervical ganglion neurons projecting to muscular targets in genetically dystrophic mdx mice. Neurobiol Dis 2005; 20:929-42. [PMID: 16023353 DOI: 10.1016/j.nbd.2005.06.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2005] [Revised: 05/26/2005] [Accepted: 06/03/2005] [Indexed: 12/31/2022] Open
Abstract
Autonomic imbalance is a pathological aspect of Duchenne muscular dystrophy. Here, we show that the sympathetic superior cervical ganglion (SCG) of mdx mice, which lack dystrophin (Dp427), has 36% fewer neurons than that of wild-type animals. Cell loss occurs around P10 and affects those neurons innervating muscular targets (heart and iris), which, differently from the submandibular gland (non-muscular target), are precociously damaged by the lack of Dp427. In addition, although we reveal altered axonal defasciculation in the submandibular gland and reduced terminal sprouting in all SCG target organs, poor adrenergic innervation is observed only in the heart and iris. These alterations, detected as early as P5, when neuronal loss has not yet occurred, suggest that in mdx mice the absence of Dp427 directly impairs the axonal growth and terminal sprouting of sympathetic neurons. However, when these intrinsic alterations combine with structural and/or functional damages of muscular targets, neuronal death occurs.
Collapse
MESH Headings
- Animals
- Autonomic Nervous System Diseases/genetics
- Autonomic Nervous System Diseases/metabolism
- Autonomic Nervous System Diseases/physiopathology
- Cell Death/genetics
- Disease Models, Animal
- Dystrophin/deficiency
- Growth Cones/metabolism
- Growth Cones/ultrastructure
- Heart/growth & development
- Heart/innervation
- Iris/growth & development
- Iris/innervation
- Iris/ultrastructure
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Inbred mdx
- Microscopy, Electron, Transmission
- Muscle, Smooth/innervation
- Muscle, Smooth/physiopathology
- Muscles/innervation
- Muscles/ultrastructure
- Muscular Dystrophy, Duchenne/metabolism
- Muscular Dystrophy, Duchenne/pathology
- Muscular Dystrophy, Duchenne/physiopathology
- Myocardium/ultrastructure
- Nerve Degeneration/genetics
- Nerve Degeneration/metabolism
- Nerve Degeneration/physiopathology
- Neuronal Plasticity/genetics
- Neurons/metabolism
- Neurons/pathology
- Superior Cervical Ganglion/metabolism
- Superior Cervical Ganglion/pathology
- Superior Cervical Ganglion/physiopathology
Collapse
Affiliation(s)
- M Egle De Stefano
- Dipartimento di Biologia Cellulare e dello Sviluppo, Università La Sapienza, Piazzale Aldo Moro 5, 00185 Roma, Italy.
| | | | | | | |
Collapse
|
23
|
Spencer NJ, Hennig GW, Dickson E, Smith TK. Synchronization of enteric neuronal firing during the murine colonic MMC. J Physiol 2005; 564:829-47. [PMID: 15731189 PMCID: PMC1464464 DOI: 10.1113/jphysiol.2005.083600] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
DiI (1,1'didodecyl-3,3,3',3'-tetramethylindocarbecyanine perchlorate) retrograde labelling and intracellular electrophysiological techniques were used to investigate the mechanisms underlying the generation of spontaneously occurring colonic migrating myoelectric complexes (colonic MMCs) in mice. In isolated, intact, whole colonic preparations, simultaneous intracellular electrical recordings were made from pairs of circular muscle (CM) cells during colonic MMC activity in the presence of nifedipine (1-2 microm). During the intervals between colonic MMCs, spontaneous inhibitory junction potentials (IJPs) were always present. The amplitudes of spontaneous IJPs were highly variable (range 1-20 mV) and occurred asynchronously in the two CM cells, when separated by 1 mm in the longitudinal axis. Colonic MMCs occurred every 151 +/- 7 s in the CM and consisted of a repetitive discharge of cholinergic rapid oscillations in membrane potential (range: 1-20 mV) that were superimposed on a slow membrane depolarization (mean amplitude: 9.6 +/- 0.5 mV; half-duration: 25.9 +/- 0.7 s). During the rising (depolarizing) phase of each colonic MMC, cholinergic rapid oscillations occurred simultaneously in both CM cells, even when the two electrodes were separated by up to 15 mm along the longitudinal axis of the colon. Smaller amplitude oscillations (< 5 mV) showed poor temporal correlation between two CM cells, even at short electrode separation distances (i.e. < 1 mm in the longitudinal axis). When the two electrodes were separated by 20 mm, all cholinergic rapid oscillations and IJPs in the CM (regardless of amplitude) were rarely, if ever, coordinated in time during the colonic MMC. Cholinergic rapid oscillations were blocked by atropine (1 microm) or tetrodotoxin (1 microm). Slow waves were never recorded from any CM cells. DiI labelling showed that the maximum projection length of CM motor neurones and interneurones along the bowel was 2.8 mm and 13 mm, respectively. When recordings were made adjacent to either oral or anal cut ends of the colon, the inhibitory or excitatory phases of the colonic MMC were absent, respectively. In summary, during the colonic MMC, cholinergic rapid oscillations of similar amplitudes occur simultaneously in two CM cells separated by large distances (up to 15 mm). As this distance was found to be far greater than the projection length of any single CM motor neurone, we suggest that the generation of each discrete cholinergic rapid oscillation represents a discreet cholinergic excitatory junction potential (EJP) that involves the synaptic activation of many cholinergic motor neurones simultaneously, by synchronous firing in many myenteric interneurones. Our data also suggest that ascending excitatory and descending inhibitory nerve pathways interact and reinforce each other.
Collapse
Affiliation(s)
- Nick J Spencer
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA
| | | | | | | |
Collapse
|
24
|
Vannucchi MG, Corsani L, Azzena GB, Faussone-Pellegrini MS, Mancinelli R. Functional activity and expression of inducible nitric oxide synthase (iNOS) in muscle of the isolated distal colon of mdx mice. Muscle Nerve 2004; 29:795-803. [PMID: 15170612 DOI: 10.1002/mus.20010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The inducible isoform of nitric oxide (NO) synthase (iNOS), expressed in endothelium, epithelium, and inflammatory cells, produces a large amount of NO. Previous studies on mouse intestine indicate that a muscular iNOS may have a role in the storage of intraluminal content. In this study we investigated the presence and function of iNOS in the colonic smooth muscle cells of 2- and 12-month-old dystrophic (mdx) mice. By using an in vitro isovolumic technique, and immunohistochemical and Western blot analysis, we demonstrated that iNOS is expressed and active in the smooth muscle cells of normal mouse and defective in young adult (2-month-old) mdx mice. Therefore, an altered activity of the muscle iNOS might explain the motility disorders observed in the colon of mdx mice and, from a clinical point of view, the impairment of intestinal function in dystrophic patients.
Collapse
MESH Headings
- Animals
- Colon/cytology
- Colon/enzymology
- Colon/physiopathology
- Gene Expression Regulation, Enzymologic
- Immunohistochemistry
- Mice
- Mice, Inbred C57BL
- Mice, Inbred mdx
- Muscle, Smooth/cytology
- Muscle, Smooth/enzymology
- Muscle, Smooth/physiopathology
- Muscular Dystrophy, Animal/metabolism
- Muscular Dystrophy, Animal/physiopathology
- Muscular Dystrophy, Duchenne/metabolism
- Muscular Dystrophy, Duchenne/physiopathology
- Myocytes, Smooth Muscle/enzymology
- Nitric Oxide Synthase/metabolism
- Nitric Oxide Synthase Type II
- Peristalsis/physiology
Collapse
Affiliation(s)
- Maria Giuliana Vannucchi
- Department of Anatomy, Histology, and Forensic Medicine, University of Florence, Florence, Italy
| | | | | | | | | |
Collapse
|
25
|
Tameyasu T, Ogura S, Ogihara K. The Effect of e-, i-, and n-Nitric Oxide Synthase Inhibition on Colonic Motility in Normal and Muscular Dystrophy (Mdx) Mice. ACTA ACUST UNITED AC 2004; 54:555-66. [PMID: 15760488 DOI: 10.2170/jjphysiol.54.555] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
To explore the origin of diarrhea or constipation in human Duchenne muscular dystrophy (DMD), the effect of the inhibition of e- , i-, and n-nitric oxide synthase (NOS) on the motility of proximal and distal segments of colon of muscular dystrophy (mdx) and control mice was studied. The frequency of migrating motor complexes (MMC) was higher in the proximal than in the distal segments in mdx colon (0.56 vs. 0.25 cpm) and in the control colon (0.7 vs. 0.25 cpm), and there was no difference when mdx was compared to control segments. High concentrations of NOS inhibitors, including 1,3-PBIT dihydrobromide (1,3-PBIT) and spermine, inhibited MMC. The dose of spermine required to inhibit MMC was lower for the proximal mdx colon than for the distal mdx or control colon. In the presence of tetrodotoxin, spermine (1 mM) and 1,3-PBIT (5 mM) reduced the magnitude of local, rhythmic contractions (LC) paced by the interstitial cells of Cajal (ICC), but 1,3-PBIT (50 microM) increased their magnitude. There was no difference in the effect of spermine and 1,3-PBIT on the LC between mdx and control colon. The results suggest an inhibition of MMC by high concentrations of e-, i-, and n-NOS inhibitors, modulation of ICC activity by e-NOS, and greater susceptibility of MMC to n-NOS inhibition in the mdx proximal than in the control colon, which is very likely because of a deficit in n-NOS in the mdx smooth muscle affecting the MMC pacemaker. A deficit in the effect of mdx smooth muscle n-NOS on an MMC pacemaker may be the origin of diarrhea or constipation in human DMD.
Collapse
Affiliation(s)
- Tsukasa Tameyasu
- Department of Physiology, St. Marianna University School of Medicine, Kawasaki 216-8511, Japan.
| | | | | |
Collapse
|
26
|
Zizzo MG, Mulè F, Serio R. Duodenal contractile activity in dystrophic (mdx) mice: reduction of nitric oxide influence. Neurogastroenterol Motil 2003; 15:559-65. [PMID: 14507355 DOI: 10.1046/j.1365-2982.2003.00438.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The present study was undertaken to analyse duodenal contractility in adult dystrophic (mdx) mice. The spontaneous changes of the isometric tension and the responses of longitudinal duodenal muscle to nonadrenergic, noncholinergic (NANC) nerve stimulation and to exogenous drugs were compared between normal and mdx mice. Duodenal segments from mdx mice displayed spontaneous contractions with higher frequency than normals. N omega-nitro-L-arginine methyl ester (L-NAME) increased the frequency of contractions in normals without affecting that in mdx mice. In normals, NANC nerve stimulation elicited a transient relaxation abolished by L-NAME. In mdx mice a frank relaxation was not observed, the inhibitory response consisted just in the suppression of the phasic activity. This response was reduced by L-NAME and abolished by the subsequent addition of alpha-chymotrypsin. In normals, alpha-chymotrypsin hardly affected NANC relaxation, whilst it significantly antagonised that in mdx mice. Mdx duodenal muscle also showed a reduced responsiveness to sodium nitroprusside, and to 8-bromoguanosine 3', 5'-cyclic monophosphate in comparison with normal preparations. The results indicate that mdx mice experience duodenal contractile disturbances due to an impairment of NO function with defective responsiveness of the muscle to NO. The reduction in NO influence is functionally compensated by the peptidergic system.
Collapse
Affiliation(s)
- M G Zizzo
- Dipartimento di Biologia Cellulare e dello Sviluppo, Laboratorio di Fisiologia generale, Università di Palermo, Viale delle Scienze, Palermo, Italy
| | | | | |
Collapse
|
27
|
Vannucchi MG, Corsani L, Faussone-Pellegrini MS. Synaptic vesicle morphology and recycling are altered in myenteric neurons of mice lacking dystrophin (mdx mice). J Cell Physiol 2003; 197:232-42. [PMID: 14502563 DOI: 10.1002/jcp.10305] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Several dystrophin isoforms are known. The full-length isoform is present in striated and smooth muscles and neurons and its lack causes Duchenne Muscular Dystrophy, a progressive myopathy accompanied by mild cognitive deficits and gastrointestinal dismotility. An ultrastructural study was undertaken in the colon of mice lacking full-length dystrophin and maintaining shorter isoforms (mdx mice) to ascertain whether myenteric neurons have an altered morphology. Results showed a significant increase in the size of synaptic vesicle and in the number of recycling vesicles. An enlargement of endoplasmic reticulum cisternae in a subpopulation of neurons was also seen. Immunohistochemistry confirmed that the shorter isoforms were expressed in mdx mice myenteric neurons. These findings indicate the presence of a neuropathy at the myenteric plexus which might justify the defective neuronal control of gastrointestinal motility reported for these animals and which might be correlated with full-length dystrophin loss, since the shorter isoforms are present.
Collapse
Affiliation(s)
- Maria Giuliana Vannucchi
- Department of Human Anatomy, Histology and Forensic Medicine, Section of Histology E. Allara, University of Florence, Florence, Italy
| | | | | |
Collapse
|
28
|
Powell AK, Fida R, Bywater RAR. Motility in the isolated mouse colon: migrating motor complexes, myoelectric complexes and pressure waves. Neurogastroenterol Motil 2003; 15:257-66. [PMID: 12787335 DOI: 10.1046/j.1365-2982.2003.00412.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This study has used mechanical, together with pressure/volume recordings or electrophysiological recordings, to investigate the spontaneous activity in isolated preparations of mouse colon. In the former preparations, when not distended with fluid, spontaneous colonic migrating motor complexes (CMMCs) were observed using isotonic transducers. When the colons were distended with fluid, CMMCs continued at an increased frequency and in addition were associated temporally, with rises in intraluminal pressure and pulses of distally ejected fluid. 5-Hydroxytryptamine (1 micro mol L-1) or NG-nitro-l-arginine (100 micro mol L-1) increased the frequency of propulsive activity and this activity was abolished by hexamethonium (500 micro mol L-1). In a second preparation, myoelectric complexes recorded from circular muscle cells in colons using intracellular microelectrodes, were found to correlate in frequency and phase with CMMCs. The experiments indicate that CMMCs are intimately related to pressure waves in the fluid-filled viscus and the muscle membrane potential changes that have been recorded during myoelectric complexes are likely to be analogous to those occurring during fluid-filled propulsive activity.
Collapse
Affiliation(s)
- A K Powell
- Department of Physiology, Monash University, Victoria, Australia.
| | | | | |
Collapse
|
29
|
Serio R, Zizzo MG, Mulè F. Nitric oxide induces muscular relaxation via cyclic GMP-dependent and -independent mechanisms in the longitudinal muscle of the mouse duodenum. Nitric Oxide 2003; 8:48-52. [PMID: 12586541 DOI: 10.1016/s1089-8603(02)00144-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The aim of this study was to investigate, in mouse duodenum, the role of nitric oxide (NO) in the relaxation of longitudinal muscle evoked by nerve activation and the coupled action mechanism. Electrical field stimulation (EFS; 0.5 ms, 10-s train duration, supramaximal voltage, at various frequencies) under nonadrenergic noncholinergic conditions evoked muscular relaxation occasionally followed, at the higher stimulus frequencies, by rebound contractions. Inhibition of the synthesis of NO by N(omega)-nitro-L-arginine methyl ester (L-NAME; 100 microM) virtually abolished the evoked relaxation. The relaxation was reduced also by apamin (0.1 microM) and by 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ; 1 microM), a guanylyl cyclase inhibitor. The coadministration of apamin and ODQ produced additive effects on the responses to EFS. Sodium nitroprusside (0.1-100 microM) produced a concentration-dependent reduction of the phasic spontaneous activity and at the highest dose used suppressed phasic activity and induced muscular relaxation. These effects were tetrodotoxin and L-NAME resistant and were antagonized both by apamin and by ODQ. 8-Bromoguanosine 3',5'-cyclic monophosphate (0.1-100 microM) reduced in a concentration-dependent manner the spontaneous mechanical activity and at 100 microM suppressed the phasic activity and induced muscular relaxation, not antagonized by apamin. This study indicates that NO is the primary transmitter released by inhibitory nerves supplying the longitudinal muscle of mouse duodenum and that guanylate cyclase stimulation and opening of Ca(2+)-dependent K(+) channels are independent mechanisms working in parallel to mediate NO action.
Collapse
Affiliation(s)
- Rosa Serio
- Dipartimento di Biologia Cellulare e dello Sviluppo, Laboratorio di Fisiologia Generale, Università di Palermo, 90128 Palermo, Italy.
| | | | | |
Collapse
|
30
|
Mulè F, Serio R. Spontaneous mechanical activity and evoked responses in isolated gastric preparations from normal and dystrophic (mdx) mice. Neurogastroenterol Motil 2002; 14:667-75. [PMID: 12464089 DOI: 10.1046/j.1365-2982.2002.00368.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
This study examined whether alterations of the spontaneous and evoked mechanical activity are present in the stomach of the mdx mouse, the animal model for Duchenne muscular dystrophy. The gastric mechanical activity from whole-organ of normal and mdx mice was recorded in vitro as changes of intraluminal pressure. All gastric preparations developed spontaneous tone and phasic contractions, although the tone of the mdx preparations was significantly greater. Atropine reduced the tone of the two preparations by the same degree. Nomega-nitro-l-arginine methyl ester (l-NAME) significantly increased the tone and spontaneous contractions only in the stomach from normal animals, but did not affect on the mdx preparations. Effects ofl-NAME on tone and contractility were preserved in the presence of tetrodotoxin. In both types of tissues electrical field stimulation (EFS) induced a biphasic response: cholinergic contraction followed by slow relaxation. In nonadrenergic noncholinergic conditions, EFS induced a rapid relaxation followed by a slow component in both types of tissues. l-NAME abolished the rapid component, reduced the slow component and unmasked tachychinergic contractions. No significant difference was found in evoked responses. The enteric neurotransmission is preserved in mdx gastric preparations, although alterations in the ongoing production of nitric oxide are present.
Collapse
Affiliation(s)
- F Mulè
- Dipartimento di Biologia cellulare e dello Sviluppo, Università di Palermo, Italia.
| | | |
Collapse
|
31
|
Mulè F, Vannucchi MG, Corsani L, Serio R, Faussone-Pellegrini MS. Myogenic NOS and endogenous NO production are defective in colon from dystrophic (mdx) mice. Am J Physiol Gastrointest Liver Physiol 2001; 281:G1264-70. [PMID: 11668035 DOI: 10.1152/ajpgi.2001.281.5.g1264] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The aim of the present study was to evaluate whether alterations in the distribution and/or function of nitric oxide synthase (NOS) could be involved in the development of the spontaneous mechanical tone observed in colon from dystrophic (mdx) mice. By recording the intraluminal pressure of isolated colon from normal mice, we showed that N(omega)-nitro- L-arginine methyl ester (L-NAME) increased the tone, even in the presence of tetrodotoxin. The effect was prevented by L-arginine, nifedipine, or Ca(2+)-free solution. In colon from mdx mice, L-NAME was ineffective. Immunohistochemistry revealed that the presence and distribution of neuronal (nNOS), endothelial, and inducible NOS isoforms in smooth muscle cells and neurons of colon from mdx mice were the same as in controls. However, the expression of myogenic nNOS was markedly reduced in mdx mice. We conclude that there is a myogenic NOS in mouse colon that can tonically produce nitric oxide to limit influx of Ca(2+) through L-type voltage-dependent channels and modulate the mechanical tone. This mechanism appears to be defective in mdx mice.
Collapse
Affiliation(s)
- F Mulè
- Dipartimento Farmaco-Biologico, Università della Calabria, 87036 Arcavacata di Rende (CS), Italy.
| | | | | | | | | |
Collapse
|
32
|
Mulè F, Serio R. Increased calcium influx is responsible for the sustained mechanical tone in colon from dystrophic (mdx) mice. Gastroenterology 2001; 120:1430-7. [PMID: 11313313 DOI: 10.1053/gast.2001.24054] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND & AIMS Proximal colon from dystrophic mice develops spontaneous tone increment, but the mechanisms involved in its development have not been investigated. This study examined whether alterations in the properties of cell membrane calcium channels and/or sarcoplasmic reticular (SR) Ca2+-adenosine triphosphatase (ATPase) contribute to tone development. METHODS Effects of calcium-free solution, nifedipine, pinaverium (calcium channel blockers), and cyclopiazonic acid (CPA; SR Ca2+-ATPase inhibitor) on the contractile activity of colon from mdx and control mice were determined. RESULTS Calcium-free solution abolished spontaneous contractions in both preparations, but decreased the tone only in mdx mice. Nifedipine or pinaverium abolished phasic contractions, acting with different sensitivities on the 2 preparations. They also decreased the tone in colons of mdx mice, and Ca2+-free solution did not cause any further loss of tone. CPA, after an early contractile effect, abolished spontaneous contractions in control animals. It did not suppress the contractile activity in mdx mice. CPA inhibited the repletion of intracellular calcium stores in both tissues to the same degree. CONCLUSIONS Increased Ca2+ influx through L-type voltage-dependent Ca2+ channels seems to be responsible for the sustained mechanical tone of proximal colon from mdx mice. The mechanisms for sequestering calcium appear to be unaltered.
Collapse
Affiliation(s)
- F Mulè
- Dipartimento Farmaco-Biologico, Università della Calabria, Arcavacata di Rende, Cs, Palermo, Italy.
| | | |
Collapse
|
33
|
Serio R, Bonvissuto F, Mulè F. Altered electrical activity in colonic smooth muscle cells from dystrophic (mdx) mice. Neurogastroenterol Motil 2001; 13:169-75. [PMID: 11298996 DOI: 10.1046/j.1365-2982.2001.00257.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Because the colon from dystrophic (mdx) mice shows an altered motor pattern, probably due to neural disorders, our aim was to examine the electrophysiological properties of muscle cells and the functionality of nitrergic transmission in circular muscle from normal and mdx colon. Normal colonic cells (resting membrane potential [RMP] about -50 mV) showed spontaneous hyperpolarizations (inhibitory junction potentials; IJPs) and cyclic slow depolarizations were sometimes recorded. Mdx colon had a depolarized RMP (about -36 mV) and spontaneous IJPs, but the cyclic activity was never observed. In the normal colon, Nomega-nitro-L-arginine methyl ester (L-NAME) induced depolarization and abolished the cyclic activity. In the mdx colon, L-NAME caused a slight depolarization. Both preparations displayed the same value of RMP in the presence of L-NAME. In normals, neural stimulation induced nonadrenergic, noncholinergic IJPs composed of fast hyperpolarizations followed by a nitrergic slow hyperpolarization, selectively abolished by L-NAME. In the mdx colon the evoked IJPs were composed only of the initial fast hyperpolarization, the nitrergic component being absent. The hyperpolarization to sodium nitroprusside was not significantly different in both preparations. We conclude that the colon from animals lacking in dystrophin displays different electrophysiological features because of an impairment of nitric oxide function.
Collapse
Affiliation(s)
- R Serio
- Dipartimento di Biologia cellulare e dello Sviluppo, Laboratorio di Fisiologia generale, Università di Palermo, Palermo, Italy.
| | | | | |
Collapse
|
34
|
Vannucchi MG, Corsani L, Giovannini MG, Faussone-Pellegrini MS. Expression of dystrophin in the mouse myenteric neurones. Neurosci Lett 2001; 300:120-4. [PMID: 11207389 DOI: 10.1016/s0304-3940(01)01555-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Dystrophin, a membrane-associated protein, plays relevant roles in cell functions. Its lack or trunkated expression results in Duchenne muscular dystrophy (DMD), a pathology associated with alterations in gastrointestinal motility considered to be neural in origin. No data are available on the presence of dystrophin in myenteric neurones. We labelled mouse myenteric neurones with DYS1-, DYS2-, DYS3-antibodies; staining was located on the perikarya and processes, with no differences in distribution or intensity among the antibodies; the western immunoblot analysis indicated that myenteric neurones express several dystrophin isoforms; anti-dystrophins/anti-neuronal specific enolase double-labeling confirmed that all neurones express dystrophin. Dystrophin in myenteric neurones might play a role in cytoskeletal organization, axonal transport and signal pathways; its lack might cause the intestinal motor abnormalities reported in DMD patients.
Collapse
Affiliation(s)
- M G Vannucchi
- Department of Human Anatomy, Histology and Forensic Medicine, University of Florence, Italy
| | | | | | | |
Collapse
|
35
|
Bush TG, Spencer NJ, Watters N, Sanders KM, Smith TK. Spontaneous migrating motor complexes occur in both the terminal ileum and colon of the C57BL/6 mouse in vitro. Auton Neurosci 2000; 84:162-8. [PMID: 11111848 DOI: 10.1016/s1566-0702(00)00201-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We have studied migrating motor complexes (MMCs) in the isolated terminal ileum or colon (IMMCs and CMMCs respectively) of the C57BL/6 mouse. Periodic contractions occurred spontaneously in both preparations in the absence of intraluminal stimulation. After an initial period, complexes became synchronized between the oral and anal ends of the tissue, and could be observed for in excess of 7 h. The propagation velocity was 3.1+/-1.0 and 3.9+/-0.6 mm s(-1) in the ileum and colon respectively. IMMCs occurred every 6.01+/-0.39 min and had a duration of 86.3+/-10.4 s. The interval between CMMCs was smaller (3.52+/-0.31 min) and contractions were shorter in duration (30.7+/-3.6 s). In both preparations, these motor events were dependent on cholinergic transmission: blocked by hexamethonium (500 microM) and attenuated or blocked by atropine (1 microM). This study is the first demonstration of spontaneous migrating contractions in the isolated ileum or colon of the C57BL/6 mouse, the strain of choice for neurological transgenic and targeted mice.
Collapse
Affiliation(s)
- T G Bush
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno 89557-0046, USA
| | | | | | | | | |
Collapse
|