1
|
Großkinsky DK, Molin EM, Bosetto F, Edelsbrunner K, Oravec M, Večeřová K, Tříska J, Roitsch T. Structure-function relation of cytokinins determines their differential efficiency in mediating tobacco resistance against Pseudomonas syringae. PHYSIOLOGIA PLANTARUM 2025; 177:e70028. [PMID: 39727031 DOI: 10.1111/ppl.70028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 12/02/2024] [Indexed: 12/28/2024]
Abstract
The classic plant growth-promoting phytohormone cytokinin has been identified and established as a mediator of pathogen resistance in different plant species. However, the resistance effect of structurally different cytokinins appears to vary and may regulate diverse mechanisms to establish resistance. Hence, we comparatively analysed the impact of six different adenine- and phenylurea-type cytokinins on the well-established pathosystem Nicotiana tabacum-Pseudomonas syringae. The efficiency of resistance effects was evaluated based on impacts on the host plant defence response by scoring infection symptoms and the direct impact on the pathogen by assessment of proliferation in planta. To identify common and cytokinin-specific components involved in resistance effects, transcriptome profiling and targeted metabolomics were conducted in leaves treated with the different cytokinins. We observed clearly different potentials of the tested cytokinins in either suppressing infection symptoms or pathogen proliferation. Gene regulation and metabolite analyses revealed cytokinin-type specific impacts on defence components, such as salicylic acid and related signalling, expression of PR proteins, and regulation of specialised metabolism. Cytokinins also strongly affected plant cell physiological parameters, such as a remarkable decrease in amino acid pools. Hence, this study provides comparative information on the efficiency of diverse cytokinins in mediating resistance in one well-studied pathosystem and insights into the specific regulation of resistance effects mediated by different cytokinin molecules. This is particularly relevant for studies on the function of cytokinins or other phytohormones and compounds interacting with cytokinin activities in the context of pathogen infections and other stress scenarios, considering the diverse cytokinins present in plants.
Collapse
Affiliation(s)
- Dominik K Großkinsky
- AIT Austrian Institute of Technology, Center for Health and Bioresources, Bioresources Unit, Tulln a. d. Donau, Austria
- Department of Plant and Environmental Sciences, University of Copenhagen, Taastrup, Denmark
| | - Eva M Molin
- AIT Austrian Institute of Technology, Center for Health and Bioresources, Bioresources Unit, Tulln a. d. Donau, Austria
| | - Federico Bosetto
- Department of Plant and Environmental Sciences, University of Copenhagen, Taastrup, Denmark
| | - Kerstin Edelsbrunner
- Department of Plant and Environmental Sciences, University of Copenhagen, Taastrup, Denmark
| | - Michal Oravec
- Global Change Research Institute of the Czech Academy of Sciences, Brno, Czech Republic
| | - Kristýna Večeřová
- Global Change Research Institute of the Czech Academy of Sciences, Brno, Czech Republic
| | - Jan Tříska
- Global Change Research Institute of the Czech Academy of Sciences, Brno, Czech Republic
| | - Thomas Roitsch
- Department of Plant and Environmental Sciences, University of Copenhagen, Taastrup, Denmark
- Global Change Research Institute of the Czech Academy of Sciences, Brno, Czech Republic
| |
Collapse
|
2
|
Yang H, Li Y, Qiao Y, Sun H, Liu W, Qiao W, Li W, Liu M, Dong B. Low light stress promotes new tiller regeneration by changing source-sink relationship and activating expression of expansin genes in wheat. PLANT, CELL & ENVIRONMENT 2023; 46:1562-1581. [PMID: 36695201 DOI: 10.1111/pce.14548] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 01/18/2023] [Indexed: 06/17/2023]
Abstract
Low light stress seriously decreased wheat grain number through the formation of aborted spike during the reproductive period and induced new tiller regeneration to offset the loss of grain number. However, the mechanism by which plants coordinate spike aborted growth and the regeneration of new tillers remains unknown. To better understand this coordinated process, morphological, physiological and transcriptomic analyses were performed under low light stress at the young microspore stage. Our findings indicated that leaves exhausted most stored carbohydrates in 1 day of darkness. However, spike and uppermost internode (UI) were converted from sink to source, due to increased abscisic acid (ABA) content and decreased cytokinin content. During this process, genes encoding amylases, Sugars Will Eventually be Exported Transporters (SWEET) and sucrose transporters or sucrose carriers (SUT/SUC) were upregulated in spike and UI, which degraded starch into soluble sugars and loaded them into the phloem. Subsequently, soluble sugars were transported to tiller node (TN) where cytokinin and auxin content increased and ABA content decreased, followed by unloading into TN cells by upregulated cell wall invertase (CWINV) genes and highly expressed H+ /hexose symporter genes. Finally, expansin genes integrated the sugar pathway and hormone pathway, and regulate the formation of new tillers directly.
Collapse
Affiliation(s)
- Hong Yang
- Key Laboratory of Agricultural Water Resources, Hebei Laboratory of Agricultural Water-Saving, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
| | - Yongpeng Li
- Key Laboratory of Agricultural Water Resources, Hebei Laboratory of Agricultural Water-Saving, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
| | - Yunzhou Qiao
- Key Laboratory of Agricultural Water Resources, Hebei Laboratory of Agricultural Water-Saving, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
| | - Hongyong Sun
- Key Laboratory of Agricultural Water Resources, Hebei Laboratory of Agricultural Water-Saving, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
| | - Wenwen Liu
- Key Laboratory of Agricultural Water Resources, Hebei Laboratory of Agricultural Water-Saving, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Wenjun Qiao
- Key Laboratory of Agricultural Water Resources, Hebei Laboratory of Agricultural Water-Saving, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Weiqiang Li
- Jilin Da'an Agro-ecosystem National Observation Research Station, Changchun Jingyuetan Remote Sensing Experiment Station, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Mengyu Liu
- Key Laboratory of Agricultural Water Resources, Hebei Laboratory of Agricultural Water-Saving, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
| | - Baodi Dong
- Key Laboratory of Agricultural Water Resources, Hebei Laboratory of Agricultural Water-Saving, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
| |
Collapse
|
3
|
Sharma S, Kaur P, Gaikwad K. Role of cytokinins in seed development in pulses and oilseed crops: Current status and future perspective. Front Genet 2022; 13:940660. [PMID: 36313429 PMCID: PMC9597640 DOI: 10.3389/fgene.2022.940660] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/11/2022] [Indexed: 11/17/2022] Open
Abstract
Cytokinins constitutes a vital group of plant hormones regulating several developmental processes, including growth and cell division, and have a strong influence on grain yield. Chemically, they are the derivatives of adenine and are the most complex and diverse group of hormones affecting plant physiology. In this review, we have provided a molecular understanding of the role of cytokinins in developing seeds, with special emphasis on pulses and oilseed crops. The importance of cytokinin-responsive genes including cytokinin oxidases and dehydrogenases (CKX), isopentenyl transferase (IPT), and cytokinin-mediated genetic regulation of seed size are described in detail. In addition, cytokinin expression in germinating seeds, its biosynthesis, source-sink dynamics, cytokinin signaling, and spatial expression of cytokinin family genes in oilseeds and pulses have been discussed in context to its impact on increasing economy yields. Recently, it has been shown that manipulation of the cytokinin-responsive genes by mutation, RNA interference, or genome editing has a significant effect on seed number and/or weight in several crops. Nevertheless, the usage of cytokinins in improving crop quality and yield remains significantly underutilized. This is primarily due to the multigene control of cytokinin expression. The information summarized in this review will help the researchers in innovating newer and more efficient ways of manipulating cytokinin expression including CKX genes with the aim to improve crop production, specifically of pulses and oilseed crops.
Collapse
Affiliation(s)
- Sandhya Sharma
- National Institute for Plant Biotechnology, Indian Council of Agricultural Research, New Delhi, India
| | | | - Kishor Gaikwad
- National Institute for Plant Biotechnology, Indian Council of Agricultural Research, New Delhi, India
- *Correspondence: Kishor Gaikwad,
| |
Collapse
|
4
|
De Rocchis V, Jammer A, Camehl I, Franken P, Roitsch T. Tomato growth promotion by the fungal endophytes Serendipita indica and Serendipita herbamans is associated with sucrose de-novo synthesis in roots and differential local and systemic effects on carbohydrate metabolisms and gene expression. JOURNAL OF PLANT PHYSIOLOGY 2022; 276:153755. [PMID: 35961165 DOI: 10.1016/j.jplph.2022.153755] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/24/2022] [Accepted: 06/08/2022] [Indexed: 05/28/2023]
Abstract
Plant growth-promoting and stress resilience-inducing root endophytic fungi represent an additional carbohydrate sink. This study aims to test if such root endophytes affect the sugar metabolism of the host plant to divert the flow of resources for their purposes. Fresh and dry weights of roots and shoots of tomato (Solanum lycopersicum) colonised by the closely related Serendipita indica and Serendipita herbamans were recorded. Plant carbohydrate metabolism was analysed by measuring sugar levels, by determining activity signatures of key enzymes of carbohydrate metabolism, and by quantifying mRNA levels of genes involved in sugar transport and turnover. During the interaction with the tomato plants, both fungi promoted root growth and shifted shoot biomass from stem to leaf tissues, resulting in increased leaf size. A common effect induced by both fungi was the inhibition of phosphofructokinase (PFK) in roots and leaves. This glycolytic-pacing enzyme shows how the glycolysis rate is reduced in plants and, eventually, how sugars are allocated to different tissues. Sucrose phosphate synthase (SPS) activity was strongly induced in colonised roots. This was accompanied by increased SPS-A1 gene expression in S. herbamans-colonised roots and by increased sucrose amounts in roots colonised by S. indica. Other enzyme activities were barely affected by S. indica, but mainly induced in leaves of S. herbamans-colonised plants and decreased in roots. This study suggests that two closely related root endophytic fungi differentially influence plant carbohydrate metabolism locally and systemically, but both induce a similar increase in plant biomass. Notably, both fungal endophytes induce an increase in SPS activity and, in the case of S. indica, sucrose resynthesis in roots. In leaves of S. indica-colonised plants, SWEET11b expression was enhanced, thus we assume that excess sucrose was exported by this transporter to the roots. .
Collapse
Affiliation(s)
- Vincenzo De Rocchis
- Leibniz Institute of Vegetable and Ornamental Crops, Theodor-Echtermeyer-Weg 1, 14979, Großbeeren, Germany
| | - Alexandra Jammer
- Institute of Biology, University of Graz, NAWI Graz, Schubertstraße 51, 8010, Graz, Austria
| | - Iris Camehl
- Leibniz Institute of Vegetable and Ornamental Crops, Theodor-Echtermeyer-Weg 1, 14979, Großbeeren, Germany
| | - Philipp Franken
- Leibniz Institute of Vegetable and Ornamental Crops, Theodor-Echtermeyer-Weg 1, 14979, Großbeeren, Germany
| | - Thomas Roitsch
- Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Adaptive Biotechnologies, Global Change Research Institute, Czech Academy of Sciences, Brno, Czech Republic.
| |
Collapse
|
5
|
Paschoal D, Costa JL, da Silva EM, da Silva FB, Capelin D, Ometto V, Aricetti JA, Carvalho GG, Pimpinato RF, de Oliveira RF, Carrera E, López-Díaz I, Rossi ML, Tornisielo V, Caldana C, Riano-Pachon DM, Cesarino I, Teixeira PJPL, Figueira A. Infection by Moniliophthora perniciosa reprograms tomato Micro-Tom physiology, establishes a sink, and increases secondary cell wall synthesis. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:3651-3670. [PMID: 35176760 DOI: 10.1093/jxb/erac057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
Witches' broom disease of cacao is caused by the pathogenic fungus Moniliophthora perniciosa. By using tomato (Solanum lycopersicum) cultivar Micro-Tom (MT) as a model system, we investigated the physiological and metabolic consequences of M. perniciosa infection to determine whether symptoms result from sink establishment during infection. Infection of MT by M. perniciosa caused reductions in root biomass and fruit yield, a decrease in leaf gas exchange, and down-regulation of photosynthesis-related genes. The total leaf area and water potential decreased, while ABA levels, water conductance/conductivity, and ABA-related gene expression increased. Genes related to sugar metabolism and those involved in secondary cell wall deposition were up-regulated upon infection, and the concentrations of sugars, fumarate, and amino acids increased. 14C-glucose was mobilized towards infected MT stems, but not in inoculated stems of the MT line overexpressing CYTOKININ OXIDASE-2 (35S::AtCKX2), suggesting a role for cytokinin in establishing a sugar sink. The up-regulation of genes involved in cell wall deposition and phenylpropanoid metabolism in infected MT, but not in 35S::AtCKX2 plants, suggests establishment of a cytokinin-mediated sink that promotes tissue overgrowth with an increase in lignin. Possibly, M. perniciosa could benefit from the accumulation of secondary cell walls during its saprotrophic phase of infection.
Collapse
Affiliation(s)
- Daniele Paschoal
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, SP, 13400-970, Brazil
- Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Piracicaba, SP, 13418-900, Brazil
| | - Juliana L Costa
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, SP, 13400-970, Brazil
| | - Eder M da Silva
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, SP, 13400-970, Brazil
| | - Fábia B da Silva
- Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Piracicaba, SP, 13418-900, Brazil
| | - Diogo Capelin
- Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Piracicaba, SP, 13418-900, Brazil
| | - Vitor Ometto
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, SP, 13400-970, Brazil
| | - Juliana A Aricetti
- Laboratório Nacional de Biorrenováveis, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, SP, 13083-100, Brazil
| | - Gabriel G Carvalho
- Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, 05508-090, Brazil
| | - Rodrigo F Pimpinato
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, SP, 13400-970, Brazil
| | - Ricardo F de Oliveira
- Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Piracicaba, SP, 13418-900, Brazil
| | - Esther Carrera
- Universitat Politècnica de València (UPV), Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - Isabel López-Díaz
- Universitat Politècnica de València (UPV), Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - Mônica L Rossi
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, SP, 13400-970, Brazil
| | - Valdemar Tornisielo
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, SP, 13400-970, Brazil
| | - Camila Caldana
- Max Planck Institute for Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Diego M Riano-Pachon
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, SP, 13400-970, Brazil
| | - Igor Cesarino
- Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, 05508-090, Brazil
| | - Paulo J P L Teixeira
- Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Piracicaba, SP, 13418-900, Brazil
| | - Antonio Figueira
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, SP, 13400-970, Brazil
| |
Collapse
|
6
|
McIntyre KE, Bush DR, Argueso CT. Cytokinin Regulation of Source-Sink Relationships in Plant-Pathogen Interactions. FRONTIERS IN PLANT SCIENCE 2021; 12:677585. [PMID: 34504504 PMCID: PMC8421792 DOI: 10.3389/fpls.2021.677585] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 07/12/2021] [Indexed: 06/01/2023]
Abstract
Cytokinins are plant hormones known for their role in mediating plant growth. First discovered for their ability to promote cell division, this class of hormones is now associated with many other cellular and physiological functions. One of these functions is the regulation of source-sink relationships, a tightly controlled process that is essential for proper plant growth and development. As discovered more recently, cytokinins are also important for the interaction of plants with pathogens, beneficial microbes and insects. Here, we review the importance of cytokinins in source-sink relationships in plants, with relation to both carbohydrates and amino acids, and highlight a possible function for this regulation in the context of plant biotic interactions.
Collapse
Affiliation(s)
- Kathryn E. McIntyre
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, United States
- Graduate Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO, United States
| | - Daniel R. Bush
- Department of Biology, Colorado State University, Fort Collins, CO, United States
| | - Cristiana T. Argueso
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, United States
- Graduate Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
7
|
Zhong Y, Xie J, Wen S, Wu W, Tan L, Lei M, Shi H, Zhu JK. TPST is involved in fructose regulation of primary root growth in Arabidopsis thaliana. PLANT MOLECULAR BIOLOGY 2020; 103:511-525. [PMID: 32279151 DOI: 10.1007/s11103-020-01006-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 04/08/2020] [Indexed: 06/11/2023]
Abstract
TPST is involved in fructose signaling to regulate the root development and expression of genes in biological processes including auxin biosynthesis and accumulation in Arabidopsis. Sulfonation of proteins by tyrosine protein sulfotransferases (TPST) has been implicated in many important biological processes in eukaryotic organisms. Arabidopsis possesses a single TPST gene and its role in auxin homeostasis and root development has been reported. Here we show that the Arabidopsis tpst mutants are hypersensitive to fructose. In contrast to sucrose and glucose, fructose represses primary root growth of various ecotypes of Arabidopsis at low concentrations. RNA-seq analysis identified 636 differentially expressed genes (DEGs) in Col-0 seedlings in response to fructose verses glucose. GO and KEGG analyses of the DEGs revealed that fructose down-regulates genes involved in photosynthesis, glucosinolate biosynthesis and IAA biosynthesis, but up-regulates genes involved in the degradation of branched amino acids, sucrose starvation response, and dark response. The fructose responsive DEGs in the tpst mutant largely overlapped with that in Col-0, and most DEGs in tpst displayed larger changes than in Col-0. Interestingly, the fructose up-regulated DEGs includes genes encoding two AtTPST substrate proteins, Phytosulfokine 2 (PSK2) and Root Meristem Growth Factor 7 (RGF7). Synthesized peptides of PSK-α and RGF7 could restore the fructose hypersensitivity of tpst mutant plants. Furthermore, auxin distribution and accumulation at the root tip were affected by fructose and the tpst mutation. Our findings suggest that fructose serves as a signal to regulate the expression of genes involved in various biological processes including auxin biosynthesis and accumulation, and that modulation of auxin accumulation and distribution in roots by fructose might be partly mediated by the TPST substrate genes PSK-α and RGF7.
Collapse
Affiliation(s)
- Yingli Zhong
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China.
- Shanghai Center for Plant Stress Biology, and Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China.
| | - Jiyong Xie
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
- Shanghai Center for Plant Stress Biology, and Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Suzhen Wen
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
- Shanghai Center for Plant Stress Biology, and Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Wenwu Wu
- Shanghai Center for Plant Stress Biology, and Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Li Tan
- Shanghai Center for Plant Stress Biology, and Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Mingguang Lei
- Shanghai Center for Plant Stress Biology, and Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Huazhong Shi
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79409, USA
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology, and Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
| |
Collapse
|
8
|
Akhtar SS, Mekureyaw MF, Pandey C, Roitsch T. Role of Cytokinins for Interactions of Plants With Microbial Pathogens and Pest Insects. FRONTIERS IN PLANT SCIENCE 2020; 10:1777. [PMID: 32140160 PMCID: PMC7042306 DOI: 10.3389/fpls.2019.01777] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 12/19/2019] [Indexed: 05/05/2023]
Abstract
It has been recognized that cytokinins are plant hormones that influence not only numerous aspects of plant growth, development and physiology, including cell division, chloroplast differentiation and delay of senescence but the interaction with other organisms, including pathogens. Cytokinins are not only produced by plants but are also by other prokaryotic and eukaryotic organism such as bacteria, fungi, microalgae and insects. Notably, cytokinins are produced both by pathogenic and also beneficial microbes and are known to induce resistance in plants against pathogen infections. In this review the contrasting role of cytokinin for the defence and susceptibility of plants against bacterial and fungal pathogen and pest insects is assessed. We also discuss the cross talk of cytokinins with other phytohormones and the underlying mechanism involved in enhancing plant immunity against pathogen infections and explore possible practical applications in crop plant production.
Collapse
Affiliation(s)
- Saqib Saleem Akhtar
- Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mengistu F. Mekureyaw
- Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Chandana Pandey
- Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Roitsch
- Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Adaptive Biotechnologies, Global Change Research Institute, CAS, Brno, Czechia
| |
Collapse
|
9
|
Gasparis S, Przyborowski M, Kała M, Nadolska-Orczyk A. Knockout of the HvCKX1 or HvCKX3 Gene in Barley ( Hordeum vulgare L.) by RNA-Guided Cas9 Nuclease Affects the Regulation of Cytokinin Metabolism and Root Morphology. Cells 2019; 8:E782. [PMID: 31357516 PMCID: PMC6721474 DOI: 10.3390/cells8080782] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 07/19/2019] [Accepted: 07/25/2019] [Indexed: 12/16/2022] Open
Abstract
Barley is among four of the most important cereal crops with respect to global production. Increasing barley yields to desired levels can be achieved by the genetic manipulation of cytokinin content. Cytokinins are plant hormones that regulate many developmental processes and have a strong influence on grain yield. Cytokinin homeostasis is regulated by members of several multigene families. CKX genes encode the cytokinin oxidase/dehydrogenase enzyme, which catalyzes the irreversible degradation of cytokinin. Several recent studies have demonstrated that the RNAi-based silencing of CKX genes leads to increased grain yields in some crop species. To assess the possibility of increasing the grain yield of barley by knocking out CKX genes, we used an RNA-guided Cas9 system to generate ckx1 and ckx3 mutant lines with knockout mutations in the HvCKX1 and HvCKX3 genes, respectively. Homozygous, transgene-free mutant lines were subsequently selected and analyzed. A significant decrease in CKX enzyme activity was observed in the spikes of the ckx1 lines, while in the ckx3 lines, the activity remained at a similar level to that in the control plants. Despite these differences, no changes in grain yield were observed in either mutant line. In turn, differences in CKX activity in the roots between the ckx1 and ckx3 mutants were reflected via root morphology. The decreased CKX activity in the ckx1 lines corresponded to greater root length, increased surface area, and greater numbers of root hairs, while the increased CKX activity in the ckx3 mutants gave the opposite results. RNA-seq analysis of the spike and root transcriptomes revealed an altered regulation of genes controlling cytokinin metabolism and signaling, as well as other genes that are important during seed development, such as those that encode nutrient transporters. The observed changes suggest that the knockout of a single CKX gene in barley may be not sufficient for disrupting cytokinin homeostasis or increasing grain yields.
Collapse
Affiliation(s)
- Sebastian Gasparis
- Department of Functional Genomics, Plant Breeding and Acclimatization Institute-National Research Institute, Radzików, 05-870 Błonie, Poland.
| | - Mateusz Przyborowski
- Department of Functional Genomics, Plant Breeding and Acclimatization Institute-National Research Institute, Radzików, 05-870 Błonie, Poland
| | - Maciej Kała
- Department of Functional Genomics, Plant Breeding and Acclimatization Institute-National Research Institute, Radzików, 05-870 Błonie, Poland
| | - Anna Nadolska-Orczyk
- Department of Functional Genomics, Plant Breeding and Acclimatization Institute-National Research Institute, Radzików, 05-870 Błonie, Poland
| |
Collapse
|
10
|
Yan W, Wu X, Li Y, Liu G, Cui Z, Jiang T, Ma Q, Luo L, Zhang P. Cell Wall Invertase 3 Affects Cassava Productivity via Regulating Sugar Allocation From Source to Sink. FRONTIERS IN PLANT SCIENCE 2019; 10:541. [PMID: 31114601 PMCID: PMC6503109 DOI: 10.3389/fpls.2019.00541] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 04/09/2019] [Indexed: 05/28/2023]
Abstract
Storage roots are the main sink for photo-assimilate accumulation and reflect cassava yield and productivity. Regulation of sugar partitioning from leaves to storage roots has not been elucidated. Cell wall invertases are involved in the hydrolysis of sugar during phloem unloading of vascular plants to control plant development and sink strength but have rarely been studied in root crops like cassava. MeCWINV3 encodes a typical cell wall invertase in cassava and is mainly expressed in vascular bundles. The gene is highly expressed in leaves, especially mature leaves, in response to diurnal rhythm. When MeCWINV3 was overexpressed in cassava, sugar export from leaves to storage roots was largely inhibited and sucrose hydrolysis in leaves was accelerated, leading to increased transient starch accumulation by blocking starch degradation and reduced overall plant growth. The progress of leaf senescence was promoted in the MeCWINV3 over-expressed cassava plants with increased expression of senescence-related genes. Storage root development was also delayed because of dramatically reduced sugar allocation from leaves. As a result, the transcriptional expression of starch biosynthetic genes such as small subunit ADP-glucose pyrophosphorylase, granule-bound starch synthase I, and starch branching enzyme I was reduced in accordance with insufficient sugar supply in the storage roots of the transgenic plants. These results show that MeCWINV3 regulates sugar allocation from source to sink and maintains sugar balance in cassava, thus affecting yield of cassava storage roots.
Collapse
Affiliation(s)
- Wei Yan
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, China
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Baoshan, China
| | - Xiaoyun Wu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yanan Li
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Baoshan, China
| | - Guanghua Liu
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Baoshan, China
| | - Zhanfei Cui
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Tailing Jiang
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Baoshan, China
| | - Qiuxiang Ma
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Lijuan Luo
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Peng Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
11
|
Wang H, Schippers JHM. The Role and Regulation of Autophagy and the Proteasome During Aging and Senescence in Plants. Genes (Basel) 2019; 10:genes10040267. [PMID: 30987024 PMCID: PMC6523301 DOI: 10.3390/genes10040267] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 03/06/2019] [Accepted: 03/27/2019] [Indexed: 12/18/2022] Open
Abstract
Aging and senescence in plants has a major impact on agriculture, such as in crop yield, the value of ornamental crops, and the shelf life of vegetables and fruits. Senescence represents the final developmental phase of the leaf and inevitably results in the death of the organ. Still, the process is completely under the control of the plant. Plants use their protein degradation systems to maintain proteostasis and transport or salvage nutrients from senescing organs to develop reproductive parts. Herein, we present an overview of current knowledge about the main protein degradation pathways in plants during senescence: The proteasome and autophagy. Although both pathways degrade proteins, autophagy appears to prevent aging, while the proteasome functions as a positive regulator of senescence.
Collapse
Affiliation(s)
- Haojie Wang
- Institute of Biology I, RWTH Aachen University, 52074 Aachen, Germany.
| | - Jos H M Schippers
- Institute of Biology I, RWTH Aachen University, 52074 Aachen, Germany.
| |
Collapse
|
12
|
Su T, Han M, Min J, Zhou H, Zhang Q, Zhao J, Fang Y. Functional Characterization of Invertase Inhibitors PtC/VIF1 and 2 Revealed Their Involvements in the Defense Response to Fungal Pathogen in Populus trichocarpa. FRONTIERS IN PLANT SCIENCE 2019; 10:1654. [PMID: 31969894 PMCID: PMC6960229 DOI: 10.3389/fpls.2019.01654] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 11/22/2019] [Indexed: 05/05/2023]
Abstract
In higher plants, cell wall invertase (CWI) and vacuolar invertase (VI) were considered to be essential coordinators in carbohydrate partitioning, sink strength determination, and stress responses. An increasing body of evidence revealed that the tight regulation of CWI and VI substantially depends on the post-translational mechanisms, which were mediated by small proteinaceous inhibitors (C/VIFs, Inhibitor of β-Fructosidases). As yet, the extensive survey of the molecular basis and biochemical property of C/VIFs remains largely unknown in black cottonwood (Populus trichocarpa Torr. & A. Gray), a model species of woody plants. In the present work, we have initiated a systematic review of the genomic structures, phylogenies, cis-regulatory elements, and conserved motifs as well as the tissue-specific expression, resulting in the identification of 39 genes encoding C/VIF in poplar genome. We characterized two putative invertase inhibitors PtC/VIF1 and 2, showing predominant transcript levels in the roots and highly divergent responses to the selected stress cues including fusarium wilt, drought, ABA, wound, and senescence. In silico prediction of the signal peptide hinted us that they both likely had the apoplastic targets. Based on the experimental visualization via the transient and stable transformation assays, we confirmed that PtC/VIF1 and 2 indeed secreted to the extracellular compartments. Further validation of their recombinant enzymes revealed that they displayed the potent inhibitory affinities on the extracted CWI, supporting the patterns that act as the typical apoplastic invertase inhibitors. To our knowledge, it is the first report on molecular characterization of the functional C/VIF proteins in poplar. Our results indicate that PtC/VIF1 and 2 may exert essential roles in defense- and stress-related responses. Moreover, novel findings of the up- and downregulated C/VIF genes and functional enzyme activities enable us to further unravel the molecular mechanisms in the promotion of woody plant performance and adapted-biotic stress, underlying the homeostatic control of sugar in the apoplast.
Collapse
Affiliation(s)
- Tao Su
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
- Key Laboratory of State Forestry Administration on Subtropical Forest Biodiversity Conservation, Nanjing Forestry University, Nanjing, China
| | - Mei Han
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
- *Correspondence: Mei Han, ;
| | - Jie Min
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Huaiye Zhou
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Qi Zhang
- College of Forest, Nanjing Forestry University, Nanjing, China
| | - Jingyi Zhao
- College of Forest, Nanjing Forestry University, Nanjing, China
| | - Yanming Fang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
- Key Laboratory of State Forestry Administration on Subtropical Forest Biodiversity Conservation, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
13
|
Otori K, Tanabe N, Tamoi M, Shigeoka S. Sugar Transporter Protein 1 (STP1) contributes to regulation of the genes involved in shoot branching via carbon partitioning in Arabidopsis. Biosci Biotechnol Biochem 2018; 83:472-481. [PMID: 30488772 DOI: 10.1080/09168451.2018.1550355] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We previously demonstrated that alterations in sugar partitioning affect the expression of genes involved in hormone biosynthesis and responses, including BRANCHED1 (BRC1), resulting in enhanced shoot branching in transgenic Arabidopsis plants overexpressing cyanobacterial fructose-1,6-bisphosphatase-II in the cytosol (AcF). The exogenous treatment of wild-type Arabidopsis plants with sugars showed the same transcript characteristics, indicating that sugars act as a signal for branching. We also found that the reductions induced in BRC1 expression levels in wild-type plants by the sugar treatments were suppressed in the knockout mutant of sugar transporter 1 (stp1-1). Intracellular sugar contents were similar in stp1-1 and wild-type plants following the sugar treatments, suggesting that STP1 acts as a factor for the regulation of shoot branching depending on extracellular sugar contents. Abbreviations: BRC1: BRABCHED1; FBP/SBPase: fructose-1,6-/sedoheptulose-1,7-bisphosphatase; Glc: glucose; HXK: hexokinase; SnRK1.1/AKIN10: SNF1-RELATED PROTEIN KINASE 1.1; Suc: sucrose; SnRK1: sucrose non-fermenting 1-related protein kinase; STP: sugar transporter protein.
Collapse
Affiliation(s)
- Kumi Otori
- a Department of Advanced Bioscience, Faculty of Agriculture , Kindai University , Nara , Japan
| | - Noriaki Tanabe
- a Department of Advanced Bioscience, Faculty of Agriculture , Kindai University , Nara , Japan
| | - Masahiro Tamoi
- a Department of Advanced Bioscience, Faculty of Agriculture , Kindai University , Nara , Japan
| | - Shigeru Shigeoka
- a Department of Advanced Bioscience, Faculty of Agriculture , Kindai University , Nara , Japan
| |
Collapse
|
14
|
Fang S, Gao K, Hu W, Snider JL, Wang S, Chen B, Zhou Z. Chemical priming of seed alters cotton floral bud differentiation by inducing changes in hormones, metabolites and gene expression. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 130:633-640. [PMID: 30130740 DOI: 10.1016/j.plaphy.2018.08.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 08/06/2018] [Accepted: 08/07/2018] [Indexed: 05/25/2023]
Abstract
Fruiting branches and floral buds are forming well before squares are visible and determine cotton (Gossypium hirsutum L.) productivity. Pre-soaking with plant growth regulators (PGRs) affects the quantity of floral buds. However, studies illustrating the physiological mechanism of floral bud differentiation in response to PGRs are lacking. To address this, cotton seeds were primed with water (control), 5 mg L-1 gibberellic acid (GA3), 25 mg L-1 N6-benzyladenine (6-BA), and 150 mg L-1 dimethyl piperidinium chloride (DPC) respectively. Results showed that plants from seed pre-treated with GA3 and 6-BA differentiated more floral buds relative to control, while DPC application initiated less floral buds than control. GA3 and 6-BA application significantly increased the levels of zeatin riboside (ZR) by up-regulating IPT expression and gibberellic acid (GA3) but decreased the indole-3-acetic acid (IAA) content. Consequently, the ZR/IAA and GA3/IAA ratios were markedly increased, contributing to higher floral bud numbers. Contrasting results were observed for DPC treatment. Additionally, GA3 and 6-BA treatments up-regulated GhSOC1, GhMADS13 and GhAGL24 expression, which was associated with higher sucrose contents mainly attributed to higher endogenous ZR levels, inducing floral initiation. Whereas the GhMADS13 was down-regulated to suppress floral bud differentiation under DPC application. Surprisingly, the floral-associated genes were more sensitive to GA3 than 6-BA, which induced the differences in bud numbers at the beginning of flower bud differentiation. Thus, we conclude that seed pre-treated with PGRs affected hormone content, induced sugar accumulation in apical buds and regulated genes involved in floral induction, which impacted floral bud differentiation.
Collapse
Affiliation(s)
- Sheng Fang
- College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - Kai Gao
- College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - Wei Hu
- College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, PR China; Department of Crop and Soil Sciences, University of Georgia, Tifton, GA, 31794, USA.
| | - John L Snider
- Department of Crop and Soil Sciences, University of Georgia, Tifton, GA, 31794, USA.
| | - Shanshan Wang
- College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - Binglin Chen
- College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - Zhiguo Zhou
- College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, PR China.
| |
Collapse
|
15
|
Su T, Han M, Min J, Chen P, Mao Y, Huang Q, Tong Q, Liu Q, Fang Y. Genome-Wide Survey of Invertase Encoding Genes and Functional Characterization of an Extracellular Fungal Pathogen-Responsive Invertase in Glycine max. Int J Mol Sci 2018; 19:E2395. [PMID: 30110937 PMCID: PMC6121457 DOI: 10.3390/ijms19082395] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 08/08/2018] [Accepted: 08/13/2018] [Indexed: 01/08/2023] Open
Abstract
Invertases are essential enzymes that irreversibly catalyze the cleavage of sucrose into glucose and fructose. Cell wall invertase (CWI) and vacuolar invertase (VI) are glycosylated proteins and exert fundamental roles in plant growth as well as in response to environmental cues. As yet, comprehensive insight into invertase encoding genes are lacking in Glycine max. In the present study, the systematic survey of gene structures, coding regions, regulatory elements, conserved motifs, and phylogenies resulted in the identification of thirty⁻two putative invertase genes in soybean genome. Concomitantly, impacts on gene expression, enzyme activities, proteins, and soluble sugar accumulation were explored in specific tissues upon stress perturbation. In combination with the observation of subcellular compartmentation of the fluorescent fusion protein that indeed exported to apoplast, heterologous expression, and purification in using Pichia pastoris system revealed that GmCWI4 was a typical extracellular invertase. We postulated that GmCWI4 may play regulatory roles and be involved in pathogenic fungi defense. The experimental evaluation of physiological significance via phenotypic analysis of mutants under stress exposure has been initiated. Moreover, our paper provides theoretical basis for elucidating molecular mechanisms of invertase in association with inhibitors underlying the stress regime, and will contribute to the improvement of plant performance to a diverse range of stressors.
Collapse
Affiliation(s)
- Tao Su
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China.
| | - Mei Han
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China.
| | - Jie Min
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China.
| | - Peixian Chen
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China.
| | - Yuxin Mao
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China.
| | - Qiao Huang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China.
| | - Qian Tong
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China.
| | - Qiuchen Liu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China.
| | - Yanming Fang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
16
|
Kuska MT, Behmann J, Großkinsky DK, Roitsch T, Mahlein AK. Screening of Barley Resistance Against Powdery Mildew by Simultaneous High-Throughput Enzyme Activity Signature Profiling and Multispectral Imaging. FRONTIERS IN PLANT SCIENCE 2018; 9:1074. [PMID: 30083181 PMCID: PMC6065056 DOI: 10.3389/fpls.2018.01074] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 07/03/2018] [Indexed: 05/13/2023]
Abstract
Molecular marker analysis allow for a rapid and advanced pre-selection and resistance screenings in plant breeding processes. During the phenotyping process, optical sensors have proved their potential to determine and assess the function of the genotype of the breeding material. Thereby, biomarkers for specific disease resistance traits provide valuable information for calibrating optical sensor approaches during early plant-pathogen interactions. In this context, the combination of physiological, metabolic phenotyping and phenomic profiles could establish efficient identification and quantification of relevant genotypes within breeding processes. Experiments were conducted with near-isogenic lines of H. vulgare (susceptible, mildew locus o (mlo) and Mildew locus a (Mla) resistant). Multispectral imaging of barley plants was daily conducted 0-8 days after inoculation (dai) in a high-throughput facility with 10 wavelength bands from 400 to 1,000 nm. In parallel, the temporal dynamics of the activities of invertase isoenzymes, as key sink specific enzymes that irreversibly cleave the transport sugar sucrose into the hexose monomers, were profiled in a semi high-throughput approach. The activities of cell wall, cytosolic and vacuole invertase revealed specific dynamics of the activity signatures for susceptible genotypes and genotypes with mlo and Mla based resistances 0-120 hours after inoculation (hai). These patterns could be used to differentiate between interaction types and revealed an early influence of Blumeria graminis f.sp. hordei (Bgh) conidia on the specific invertase activity already 0.5 hai. During this early powdery mildew pathogenesis, the reflectance intensity increased in the blue bands and at 690 nm. The Mla resistant plants showed an increased reflectance at 680 and 710 nm and a decreased reflectance in the near infrared bands from 3 dai. Applying a Support Vector Machine classification as a supervised machine learning approach, the pixelwise identification and quantification of powdery mildew diseased barley tissue and hypersensitive response spots were established. This enables an automatic identification of the barley-powdery mildew interaction. The study established a proof-of-concept for plant resistance phenotyping with multispectral imaging in high-throughput. The combination of invertase analysis and multispectral imaging showed to be a complementing validation system. This will provide a deeper understanding of optical data and its implementation into disease resistance screening.
Collapse
Affiliation(s)
- Matheus T. Kuska
- Institute for Crop Science and Resource Conservation-Plant Diseases and Plant Protection, University of Bonn, Bonn, Germany
| | - Jan Behmann
- Institute for Crop Science and Resource Conservation-Plant Diseases and Plant Protection, University of Bonn, Bonn, Germany
| | - Dominik K. Großkinsky
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, University of Copenhagen, Frederiksberg, Denmark
| | - Thomas Roitsch
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, University of Copenhagen, Taastrup, Denmark
| | - Anne-Katrin Mahlein
- Institute for Crop Science and Resource Conservation-Plant Diseases and Plant Protection, University of Bonn, Bonn, Germany
- Institute of Sugar Beet Research (IfZ), Göttingen, Germany
| |
Collapse
|
17
|
Ma N, Ma C, Liu Y, Shahid MO, Wang C, Gao J. Petal senescence: a hormone view. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:719-732. [PMID: 29425359 DOI: 10.1093/jxb/ery009] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Indexed: 05/20/2023]
Abstract
Flowers are highly complex organs that have evolved to enhance the reproductive success of angiosperms. As a key component of flowers, petals play a vital role in attracting pollinators and ensuring successful pollination. Having fulfilled this function, petals senesce through a process that involves many physiological and biochemical changes that also occur during leaf senescence. However, petal senescence is distinct, due to the abundance of secondary metabolites in petals and the fact that petal senescence is irreversible. Various phytohormones are involved in regulating petal senescence, and are thought to act both synergistically and antagonistically. In this regard, there appears to be developmental point during which such regulatory signals are sensed and senescence is initiated. Here, we review current understanding of petal senescence, and discuss associated regulatory mechanisms involving hormone interactions and epigenetic regulation.
Collapse
Affiliation(s)
- Nan Ma
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Chao Ma
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Yang Liu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Muhammad Owais Shahid
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Chengpeng Wang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Junping Gao
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| |
Collapse
|
18
|
Wan H, Wu L, Yang Y, Zhou G, Ruan YL. Evolution of Sucrose Metabolism: The Dichotomy of Invertases and Beyond. TRENDS IN PLANT SCIENCE 2018; 23:163-177. [PMID: 29183781 DOI: 10.1016/j.tplants.2017.11.001] [Citation(s) in RCA: 144] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 10/13/2017] [Accepted: 11/02/2017] [Indexed: 05/07/2023]
Abstract
In higher plants, invertases hydrolyze sucrose (Suc), the major end product of photosynthesis, into glucose (Glc) and fructose (Fru), which are used as nutrients, energy sources, and signaling molecules for plant growth, yield formation, and stress responses. The invertase enzymes, named CWINs, VINs, and CINs, are located in the cell wall, vacuole, and cytosol, respectively. We hypothesize, based on their distinctive subcellular locations and physiological roles, that invertases may have undergone different modes during evolution with important functional implications. Here, we provide phylogenetic and functional genomic evidence that CINs are evolutionarily and functionally more stable compared with CWINs and VINs, possibly reflecting their roles in maintaining cytosolic sugar homeostasis for cellular function, and that CWINs have coevolved with the vasculature, likely as a functional component of phloem unloading.
Collapse
Affiliation(s)
- Hongjian Wan
- Institute of Vegetables and State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; Australia-China Research Centre for Crop Improvement, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Limin Wu
- Australia-China Research Centre for Crop Improvement, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Yuejian Yang
- Institute of Vegetables and State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Guozhi Zhou
- Institute of Vegetables and State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yong-Ling Ruan
- Australia-China Research Centre for Crop Improvement, The University of Newcastle, Callaghan, NSW 2308, Australia; School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia.
| |
Collapse
|
19
|
Stritzler M, Muñiz García MN, Schlesinger M, Cortelezzi JI, Capiati DA. The plasma membrane H+-ATPase gene family in Solanum tuberosum L. Role of PHA1 in tuberization. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:4821-4837. [PMID: 28992210 PMCID: PMC5853856 DOI: 10.1093/jxb/erx284] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
This study presents the characterization of the plasma membrane (PM) H+-ATPases in potato, focusing on their role in stolon and tuber development. Seven PM H+-ATPase genes were identified in the Solanum tuberosum genome, designated PHA1-PHA7. PHA genes show distinct expression patterns in different plant tissues and under different stress treatments. Application of PM H+-ATPase inhibitors arrests stolon growth, promotes tuber induction, and reduces tuber size, indicating that PM H+-ATPases are involved in tuberization, acting at different stages of the process. Transgenic potato plants overexpressing PHA1 were generated (PHA1-OE). At early developmental stages, PHA1-OE stolons elongate faster and show longer epidermal cells than wild-type stolons; this accelerated growth is accompanied by higher cell wall invertase activity, lower starch content, and higher expression of the sucrose-H+ symporter gene StSUT1. PHA1-OE stolons display an increased branching phenotype and develop larger tubers. PHA1-OE plants are taller and also present a highly branched phenotype. These results reveal a prominent role for PHA1 in plant growth and development. Regarding tuberization, PHA1 promotes stolon elongation at early stages, and tuber growth later on. PHA1 is involved in the sucrose-starch metabolism in stolons, possibly providing the driving force for sugar transporters to maintain the apoplastic sucrose transport during elongation.
Collapse
Affiliation(s)
- Margarita Stritzler
- Institute of Genetic Engineering and Molecular Biology ‘Dr. Héctor Torres’ (INGEBI), National Research Council (CONICET), Vuelta de Obligado, Buenos Aires, Argentina
| | - María Noelia Muñiz García
- Institute of Genetic Engineering and Molecular Biology ‘Dr. Héctor Torres’ (INGEBI), National Research Council (CONICET), Vuelta de Obligado, Buenos Aires, Argentina
| | - Mariana Schlesinger
- Institute of Genetic Engineering and Molecular Biology ‘Dr. Héctor Torres’ (INGEBI), National Research Council (CONICET), Vuelta de Obligado, Buenos Aires, Argentina
| | - Juan Ignacio Cortelezzi
- Institute of Genetic Engineering and Molecular Biology ‘Dr. Héctor Torres’ (INGEBI), National Research Council (CONICET), Vuelta de Obligado, Buenos Aires, Argentina
| | - Daniela Andrea Capiati
- Institute of Genetic Engineering and Molecular Biology ‘Dr. Héctor Torres’ (INGEBI), National Research Council (CONICET), Vuelta de Obligado, Buenos Aires, Argentina
- Biochemistry Department, School of Exact and Natural Sciences, University of Buenos Aires, Buenos Aires, Argentina
- Correspondence: or
| |
Collapse
|
20
|
Albrecht T, Argueso CT. Should I fight or should I grow now? The role of cytokinins in plant growth and immunity and in the growth-defence trade-off. ANNALS OF BOTANY 2017; 119:725-735. [PMID: 27864225 PMCID: PMC5379597 DOI: 10.1093/aob/mcw211] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 06/28/2016] [Accepted: 08/31/2016] [Indexed: 05/05/2023]
Abstract
BACKGROUND Perception and activation of plant immunity require a remarkable level of signalling plasticity and control. In Arabidopsis and other plant species, constitutive defence activation leads to resistance to a broad spectrum of biotrophic pathogens, but also frequently to stunted growth and reduced seed set. Plant hormones are important integrators of the physiological responses that influence the outcome of plant-pathogen interactions. SCOPE We review the mechanisms by which the plant hormone cytokinin regulates both plant growth and response to pathogens, and how cytokinins may connect these two processes, ultimately affecting the growth trade-offs observed in plant immunity.
Collapse
Affiliation(s)
| | - Cristiana T. Argueso
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
21
|
Dhandapani P, Song J, Novak O, Jameson PE. Infection by Rhodococcus fascians maintains cotyledons as a sink tissue for the pathogen. ANNALS OF BOTANY 2017; 119:841-852. [PMID: 27864224 PMCID: PMC5378184 DOI: 10.1093/aob/mcw202] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 07/31/2016] [Accepted: 08/05/2016] [Indexed: 05/06/2023]
Abstract
Background and Aims Pisum sativum L. (pea) seed is a source of carbohydrate and protein for the developing plant. By studying pea seeds inoculated by the cytokinin-producing bacterium, Rhodococcus fascians , we sought to determine the impact of both an epiphytic (avirulent) strain and a pathogenic strain on source-sink activity within the cotyledons during and following germination. Methods Bacterial spread was monitored microscopically, and real-time reverse transcription-quantitative PCR was used to determine the expression of cytokinin biosynthesis, degradation and response regulator gene family members, along with expression of family members of SWEET , SUT , CWINV and AAP genes - gene families identified initially in pea by transcriptomic analysis. The endogenous cytokinin content was also determined. Key Results The cotyledons infected by the virulent strain remained intact and turned green, while multiple shoots were formed and root growth was reduced. The epiphytic strain had no such marked impact. Isopentenyl adenine was elevated in the cotyledons infected by the virulent strain. Strong expression of RfIPT , RfLOG and RfCKX was detected in the cotyledons infected by the virulent strain throughout the experiment, with elevated expression also observed for PsSWEET , PsSUT and PsINV gene family members. The epiphytic strain had some impact on the expression of these genes, especially at the later stages of reserve mobilization from the cotyledons. Conclusions The pathogenic strain retained the cotyledons as a sink tissue for the pathogen rather than the cotyledon converting completely to a source tissue for the germinating plant. We suggest that the interaction of cytokinins, CWINVs and SWEETs may lead to the loss of apical dominance and the appearance of multiple shoots.
Collapse
Affiliation(s)
- Pragatheswari Dhandapani
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| | - Jiancheng Song
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
- School of Life Sciences, Yantai University, Yantai 264005, China
| | - Ondrej Novak
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany CAS & Faculty of Science of Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Paula E. Jameson
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| |
Collapse
|
22
|
Tang X, Su T, Han M, Wei L, Wang W, Yu Z, Xue Y, Wei H, Du Y, Greiner S, Rausch T, Liu L. Suppression of extracellular invertase inhibitor gene expression improves seed weight in soybean (Glycine max). JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:469-482. [PMID: 28204559 PMCID: PMC5441900 DOI: 10.1093/jxb/erw425] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Cell wall invertase (CWI) and vacuolar invertase (VI) play multiple functions in plant growth. As well as depending on transcriptional and post-transcriptional regulation, there is growing evidence that CWI and VI are also subject to post-translational control by small inhibitory proteins. Despite the significance of this, genes encoding inhibitors, their molecular and biochemical properties, and their potential roles in regulating seed production have not been well documented in soybean (Glycine max). In this study, two invertase inhibitor isoforms, GmCIF1 and GmC/VIF2, were characterized to possess inhibitory activities in vitro via heterologous expression. Transcript analyses showed that they were predominantly expressed in developing seeds and in response to ABA. In accordance with this, surveys of primary targets showed subcellular localizations to the apoplast in tobacco epidermis after expressing YFP-fusion constructs. Investigations using RNAi transgenic plants demonstrated marked elevations of CWI activities and improvements in seed weight in conjunction with higher accumulations of hexoses, starch, and protein in mature seeds. Further co-expression analyses of GmCIF1 with several putative CWI genes corroborated the notion that GmCIF1 modulation of CWI that affects seed weight is mainly contingent on post-translational mechanisms. Overall, the results suggest that post-translational elevation of CWI by silencing of GmCIF1 expression orchestrates the process of seed maturation through fine-tuning sucrose metabolism and sink strength.
Collapse
Affiliation(s)
- Xiaofei Tang
- Soybean Research Institute, Academy of Agricultural Sciences, Harbin, China
- Plant Molecular Physiology, Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld, Heidelberg, Germany
| | - Tao Su
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and Environment, Nanjing Forestry University, Nanjing, China
- Plant Molecular Physiology, Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld, Heidelberg, Germany
| | - Mei Han
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and Environment, Nanjing Forestry University, Nanjing, China
| | - Lai Wei
- Soybean Research Institute, Academy of Agricultural Sciences, Harbin, China
| | - Weiwei Wang
- Soybean Research Institute, Academy of Agricultural Sciences, Harbin, China
| | - Zhiyuan Yu
- Soybean Research Institute, Academy of Agricultural Sciences, Harbin, China
| | - Yongguo Xue
- Soybean Research Institute, Academy of Agricultural Sciences, Harbin, China
| | - Hongbin Wei
- Plant Molecular Physiology, Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld, Heidelberg, Germany
| | - Yejie Du
- Plant Molecular Physiology, Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld, Heidelberg, Germany
| | - Steffen Greiner
- Plant Molecular Physiology, Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld, Heidelberg, Germany
| | - Thomas Rausch
- Plant Molecular Physiology, Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld, Heidelberg, Germany
| | - Lijun Liu
- Soybean Research Institute, Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
23
|
Jameson PE, Dhandapani P, Novak O, Song J. Cytokinins and Expression of SWEET, SUT, CWINV and AAP Genes Increase as Pea Seeds Germinate. Int J Mol Sci 2016; 17:E2013. [PMID: 27916945 PMCID: PMC5187813 DOI: 10.3390/ijms17122013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 11/24/2016] [Accepted: 11/25/2016] [Indexed: 02/06/2023] Open
Abstract
Transporter genes and cytokinins are key targets for crop improvement. These genes are active during the development of the seed and its establishment as a strong sink. However, during germination, the seed transitions to being a source for the developing root and shoot. To determine if the sucrose transporter (SUT), amino acid permease (AAP), Sugar Will Eventually be Exported Transporter (SWEET), cell wall invertase (CWINV), cytokinin biosynthesis (IPT), activation (LOG) and degradation (CKX) gene family members are involved in both the sink and source activities of seeds, we used RT-qPCR to determine the expression of multiple gene family members, and LC-MS/MS to ascertain endogenous cytokinin levels in germinating Pisum sativum L. We show that genes that are actively expressed when the seed is a strong sink during its development, are also expressed when the seed is in the reverse role of being an active source during germination and early seedling growth. Cytokinins were detected in the imbibing seeds and were actively biosynthesised during germination. We conclude that, when the above gene family members are targeted for seed yield improvement, a downstream effect on subsequent seed germination or seedling vigour must be taken into consideration.
Collapse
Affiliation(s)
- Paula E Jameson
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand.
| | - Pragatheswari Dhandapani
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand.
| | - Ondrej Novak
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany CAS & Faculty of Science of Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic.
| | - Jiancheng Song
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand.
- School of Life Sciences, Yantai University, Yantai 264005, China.
| |
Collapse
|
24
|
Wang W, Hao Q, Tian F, Li Q, Wang W. Cytokinin-Regulated Sucrose Metabolism in Stay-Green Wheat Phenotype. PLoS One 2016; 11:e0161351. [PMID: 27580166 PMCID: PMC5007033 DOI: 10.1371/journal.pone.0161351] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Accepted: 08/03/2016] [Indexed: 11/19/2022] Open
Abstract
A wheat stay-green mutant, tasg1, was observed to exhibit significantly delayed senescence in the late developmental stage. The photosynthetic capacity of the flag leaf was greater in tasg1 than in wild type (WT) plants. In addition, the grain volume of tasg1 was significantly higher than that of WT at the early filling stage. The content of various cytokinins (CKs) in the grain was significantly higher in tasg1 than in WT and was accompanied by an upregulated expression of some cell cycle-related genes. Examination of the metabolism of soluble sugars in tasg1 and WT revealed that the concentrations of glucose (Glu), fructose (Fru), and sucrose (Suc) were higher in the flag leaves and grains of tasg1 than in WT plants. The activities of sucrose-phosphate synthase (SPS), sucrose synthase (SuSy), and cell wall invertase (CW-invertase) were higher in tasg1, suggesting an altered metabolism and transport of soluble sugars. Furthermore, when tasg1 was treated with the CK inhibitor lovastatin, the activity of invertase was inhibited and was associated with premature senescence phenotype. However, the activity of invertase was partially recovered in tasg1 when treated with 6-benzylaminopurine (BAP). The trend of change in the concentrations of Glu, Fru, and Suc was similar to that of invertase. Our results suggest that CKs might regulate the stay-green phenotype of tasg1 by regulating the invertase activity involved in Suc remobilization.
Collapse
Affiliation(s)
- Wenqiang Wang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, Shandong, 271018, China
| | - Qunqun Hao
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, Shandong, 271018, China
| | - Fengxia Tian
- College of Life Science and Technology, Nanyang Normal University, Nanyang, Henan, 473061, China
| | - Qinxue Li
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, Shandong, 271018, China
| | - Wei Wang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, Shandong, 271018, China
| |
Collapse
|
25
|
Nguyen QT, Kisiala A, Andreas P, Neil Emery R, Narine S. Soybean Seed Development: Fatty Acid and Phytohormone Metabolism and Their Interactions. Curr Genomics 2016; 17:241-60. [PMID: 27252591 PMCID: PMC4869011 DOI: 10.2174/1389202917666160202220238] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 07/27/2015] [Accepted: 08/04/2015] [Indexed: 12/20/2022] Open
Abstract
Vegetable oil utilization is determined by its fatty acid composition. In soybean and other grain crops, during the seed development oil accumulation is important trait for value in food or industrial applications. Seed development is relatively short and sensitive to unfavorable abiotic conditions. These stresses can lead to a numerous undesirable qualitative as well as quantitative changes in fatty acid production. Fatty acid manipulation which targets a higher content of a specific single fatty acid for food or industrial application has gained more attention. Despite several successes in modifying the ratio of endogenous fatty acids in most domesticated oilseed crops, numerous obstacles in FA manipulation of seed maturation are yet to be overcome. Remarkably, connections with plant hormones have not been well studied despite their critical roles in the regulation and promotion of a plethora of processes in plant growth and development. While activities of phytohormones during the reproductive phase have been partially clarified in seed physiology, the biological role of plant hormones in oil accumulation during seed development has not been investigated. In this review seed development and numerous effects of abiotic stresses are discussed. After describing fatty acid and phytohormone metabolism and their interactions, we postulate that the endogenous plant hormones play important roles in fatty acid production in soybean seeds.
Collapse
Affiliation(s)
- Quoc Thien. Nguyen
- Environmental & Life Sciences Graduate Program, Trent University, Peterborough, Ontario,Canada
| | - Anna Kisiala
- Department of Biology, Trent University, Peterborough, Ontario, Canada
| | - Peter Andreas
- Department of Biology, Trent University, Peterborough, Ontario, Canada
| | - R.J. Neil Emery
- Department of Biology, Trent University, Peterborough, Ontario, Canada
| | - Suresh Narine
- Trent Centre for Biomaterials Research, Departments of Physics & Astronomy and Chemistry, Trent University, Peterborough,Ontario, Canada
| |
Collapse
|
26
|
Bolouri Moghaddam MR, Vilcinskas A, Rahnamaeian M. Cooperative interaction of antimicrobial peptides with the interrelated immune pathways in plants. MOLECULAR PLANT PATHOLOGY 2016; 17. [PMID: 26220619 PMCID: PMC6638509 DOI: 10.1111/mpp.12299] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Plants express a diverse repertoire of functionally and structurally distinct antimicrobial peptides (AMPs) which provide innate immunity by acting directly against a wide range of pathogens. AMPs are expressed in nearly all plant organs, either constitutively or in response to microbial infections. In addition to their direct activity, they also contribute to plant immunity by modulating defence responses resulting from pathogen-associated molecular pattern/effector-triggered immunity, and also interact with other AMPs and pathways involving mitogen-activated protein kinases, reactive oxygen species, hormonal cross-talk and sugar signalling. Such links among AMPs and defence signalling pathways are poorly understood and there is no clear model for their interactions. This article provides a critical review of the empirical data to shed light on the wider role of AMPs in the robust and resource-effective defence responses of plants.
Collapse
Affiliation(s)
- Mohammad Reza Bolouri Moghaddam
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Winchester Strasse 2, Giessen, D-35394, Germany
- Institute of Phytopathology and Applied Zoology, Justus Liebig University of Giessen, Heinrich-Buff-Ring 26-32, Giessen, D-35392, Germany
| | - Andreas Vilcinskas
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Winchester Strasse 2, Giessen, D-35394, Germany
- Institute of Phytopathology and Applied Zoology, Justus Liebig University of Giessen, Heinrich-Buff-Ring 26-32, Giessen, D-35392, Germany
| | - Mohammad Rahnamaeian
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Winchester Strasse 2, Giessen, D-35394, Germany
| |
Collapse
|
27
|
Großkinsky DK, Tafner R, Moreno MV, Stenglein SA, García de Salamone IE, Nelson LM, Novák O, Strnad M, van der Graaff E, Roitsch T. Cytokinin production by Pseudomonas fluorescens G20-18 determines biocontrol activity against Pseudomonas syringae in Arabidopsis. Sci Rep 2016; 6:23310. [PMID: 26984671 PMCID: PMC4794740 DOI: 10.1038/srep23310] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 03/04/2016] [Indexed: 12/16/2022] Open
Abstract
Plant beneficial microbes mediate biocontrol of diseases by interfering with pathogens or via strengthening the host. Although phytohormones, including cytokinins, are known to regulate plant development and physiology as well as plant immunity, their production by microorganisms has not been considered as a biocontrol mechanism. Here we identify the ability of Pseudomonas fluorescens G20-18 to efficiently control P. syringae infection in Arabidopsis, allowing maintenance of tissue integrity and ultimately biomass yield. Microbial cytokinin production was identified as a key determinant for this biocontrol effect on the hemibiotrophic bacterial pathogen. While cytokinin-deficient loss-of-function mutants of G20-18 exhibit impaired biocontrol, functional complementation with cytokinin biosynthetic genes restores cytokinin-mediated biocontrol, which is correlated with differential cytokinin levels in planta. Arabidopsis mutant analyses revealed the necessity of functional plant cytokinin perception and salicylic acid-dependent defence signalling for this biocontrol mechanism. These results demonstrate microbial cytokinin production as a novel microbe-based, hormone-mediated concept of biocontrol. This mechanism provides a basis to potentially develop novel, integrated plant protection strategies combining promotion of growth, a favourable physiological status and activation of fine-tuned direct defence and abiotic stress resilience.
Collapse
Affiliation(s)
- Dominik K Großkinsky
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, University of Copenhagen, Højbakkegård Allé 13, 2630 Taastrup, Denmark.,Department of Plant Physiology, Institute of Plant Sciences, University of Graz, Schubertstraße 51, 8010 Graz, Austria
| | - Richard Tafner
- Department of Plant Physiology, Institute of Plant Sciences, University of Graz, Schubertstraße 51, 8010 Graz, Austria
| | - María V Moreno
- Department of Plant Physiology, Institute of Plant Sciences, University of Graz, Schubertstraße 51, 8010 Graz, Austria.,Laboratorio de Biología Funcional y Biotecnología (BIOLAB)-CICBA-INBIOTEC-CONICET, Facultad de Agronomía de Azul-UNCPBA, Av. República de Italia 780, 7300 Azul, Buenos Aires, Argentina.,Cátedra de Microbiología, Facultad de Agronomía de Azul-UNCPBA, Av. República de Italia 780, 7300 Azul, Buenos Aires, Argentina
| | - Sebastian A Stenglein
- Department of Plant Physiology, Institute of Plant Sciences, University of Graz, Schubertstraße 51, 8010 Graz, Austria.,Laboratorio de Biología Funcional y Biotecnología (BIOLAB)-CICBA-INBIOTEC-CONICET, Facultad de Agronomía de Azul-UNCPBA, Av. República de Italia 780, 7300 Azul, Buenos Aires, Argentina.,Cátedra de Microbiología, Facultad de Agronomía de Azul-UNCPBA, Av. República de Italia 780, 7300 Azul, Buenos Aires, Argentina
| | - Inés E García de Salamone
- Cátedra de Microbiología Agrícola, Facultad de Agronomía, Universidad de Buenos Aires, Av. San Martín 4453, Buenos Aires 1417, Argentina
| | - Louise M Nelson
- Department of Biology, Irving K Barber School of Arts and Sciences, University of British Columbia Okanagan Campus, 3333 University Way, Kelowna, BC V1V 1V7, Canada
| | - Ondřej Novák
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany ASCR &Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany ASCR &Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Eric van der Graaff
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, University of Copenhagen, Højbakkegård Allé 13, 2630 Taastrup, Denmark.,Department of Plant Physiology, Institute of Plant Sciences, University of Graz, Schubertstraße 51, 8010 Graz, Austria
| | - Thomas Roitsch
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, University of Copenhagen, Højbakkegård Allé 13, 2630 Taastrup, Denmark.,Department of Plant Physiology, Institute of Plant Sciences, University of Graz, Schubertstraße 51, 8010 Graz, Austria.,Global Change Research Centre, Czech Globe AS CR, v.v.i., Drásov 470, Cz-664 24 Drásov, Czech Republic
| |
Collapse
|
28
|
Abstract
The cytokinins have been implicated in many facets of plant growth and development including cell division and differentiation, shoot and root growth, apical dominance, senescence, fruit and seed development, and the response to biotic and abiotic stressors. Cytokinin levels are regulated by a balance between biosynthesis [isopentenyl transferase (IPT)], activation [Lonely Guy (LOG)], inactivation (O-glucosyl transferase), re-activation (β-glucosidase), and degradation [cytokinin oxidase/dehydrogenase (CKX)]. During senescence, the levels of active cytokinins decrease, with premature senescence leading to a decrease in yield. During the early stages of fruit and seed development, cytokinin levels are transiently elevated, and coincide with nuclear and cell divisions which are a determinant of final seed size. Exogenous application of cytokinin, ectopic expression of IPT, or down-regulation of CKX have, on occasions, led to increased seed yield, leading to the suggestion that cytokinin may be limiting yield. However, manipulation of cytokinins is complex, not only because of their pleiotropic nature but also because the genes coding for biosynthesis and metabolism belong to multigene families, the members of which are themselves spatially and temporally differentiated. Previous research on yield of rice showed that plant breeders could directly target the cytokinins. Modern genome editing tools could be employed to target and manipulate cytokinin levels to increase seed yield with the concurrent aim of maintaining quality. However, how the cytokinin level is modified and whether IPT or CKX is targeted may depend on whether the plant is considered to be in a source-limiting environment or to be sink limited.
Collapse
Affiliation(s)
| | - Jiancheng Song
- School of Biological Sciences, University of Canterbury, Christchurch 8140, New Zealand School of Life Sciences, Yantai University, Yantai 264005, China
| |
Collapse
|
29
|
Giron D, Huguet E, Stone GN, Body M. Insect-induced effects on plants and possible effectors used by galling and leaf-mining insects to manipulate their host-plant. JOURNAL OF INSECT PHYSIOLOGY 2016; 84:70-89. [PMID: 26723843 DOI: 10.1016/j.jinsphys.2015.12.009] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 12/21/2015] [Accepted: 12/22/2015] [Indexed: 05/04/2023]
Abstract
Gall-inducing insects are iconic examples in the manipulation and reprogramming of plant development, inducing spectacular morphological and physiological changes of host-plant tissues within which the insect feeds and grows. Despite decades of research, effectors involved in gall induction and basic mechanisms of gall formation remain unknown. Recent research suggests that some aspects of the plant manipulation shown by gall-inducers may be shared with other insect herbivorous life histories. Here, we illustrate similarities and contrasts by reviewing current knowledge of metabolic and morphological effects induced on plants by gall-inducing and leaf-mining insects, and ask whether leaf-miners can also be considered to be plant reprogrammers. We review key plant functions targeted by various plant reprogrammers, including plant-manipulating insects and nematodes, and functionally characterize insect herbivore-derived effectors to provide a broader understanding of possible mechanisms used in host-plant manipulation. Consequences of plant reprogramming in terms of ecology, coevolution and diversification of plant-manipulating insects are also discussed.
Collapse
Affiliation(s)
- David Giron
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261, CNRS/Université François-Rabelais de Tours, Parc Grandmont, 37200 Tours, France.
| | - Elisabeth Huguet
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261, CNRS/Université François-Rabelais de Tours, Parc Grandmont, 37200 Tours, France
| | - Graham N Stone
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3JT, United Kingdom
| | - Mélanie Body
- Division of Plant Sciences, Christopher S. Bond Life Sciences Center, 1201 Rollins Street, University of Missouri, Columbia, MO 65211, United States
| |
Collapse
|
30
|
Su T, Wolf S, Han M, Zhao H, Wei H, Greiner S, Rausch T. Reassessment of an Arabidopsis cell wall invertase inhibitor AtCIF1 reveals its role in seed germination and early seedling growth. PLANT MOLECULAR BIOLOGY 2016; 90:137-55. [PMID: 26546341 DOI: 10.1007/s11103-015-0402-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 10/30/2015] [Indexed: 05/19/2023]
Abstract
In higher plants, cell wall invertase (CWI) and vacuolar invertase (VI) are recognized as essential players in sugar metabolism and sugar signaling, thereby affecting source-sink interactions, plant development and responses to environmental cues. CWI and VI expression levels are transcriptionally controlled; however, both enzymes are also subject to posttranslational control by invertase inhibitor proteins. The physiological significances of inhibitor proteins during seed germination and early seedling development are not yet fully understood. Here, we demonstrate that the inhibitor isoform AtCIF1 impacted on seed germination and early seedling growth in Arabidopsis. The primary target of AtCIF1 was shown to be localized to the apoplast after expressing an AtCIF1 YFP-fusion construct in tobacco epidermis and transgenic Arabidopsis root. The analysis of expression patterns showed that AtCWI1 was co-expressed spatiotemporally with AtCIF1 within the early germinating seeds. Seed germination was observed to be accelerated independently of exogenous abscisic acid (ABA) in the AtCIF1 loss-of-function mutant cif1-1. This effect coincided with a drastic increase of CWI activity in cif1-1 mutant seeds by 24 h after the onset of germination, both in vitro and in planta. Accordingly, quantification of sugar content showed that hexose levels were significantly boosted in germinating seeds of the cif1-1 mutant. Further investigation of AtCIF1 overexpressors in Arabidopsis revealed a markedly suppressed CWI activity as well as delayed seed germination. Thus, we conclude that the posttranslational modulation of CWI activity by AtCIF1 helps to orchestrate seed germination and early seedling growth via fine-tuning sucrose hydrolysis and, possibly, sugar signaling.
Collapse
Affiliation(s)
- Tao Su
- Plant Molecular Physiology, Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 360, Heidelberg, 69120, Germany.
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada.
| | - Sebastian Wolf
- Plant Molecular Physiology, Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 360, Heidelberg, 69120, Germany.
| | - Mei Han
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada.
| | - Hongbo Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Hongbin Wei
- Plant Molecular Physiology, Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 360, Heidelberg, 69120, Germany.
| | - Steffen Greiner
- Plant Molecular Physiology, Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 360, Heidelberg, 69120, Germany.
| | - Thomas Rausch
- Plant Molecular Physiology, Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 360, Heidelberg, 69120, Germany.
| |
Collapse
|
31
|
Ferrieri AP, Arce CCM, Machado RAR, Meza-Canales ID, Lima E, Baldwin IT, Erb M. A Nicotiana attenuata cell wall invertase inhibitor (NaCWII) reduces growth and increases secondary metabolite biosynthesis in herbivore-attacked plants. THE NEW PHYTOLOGIST 2015; 208:519-30. [PMID: 26017581 DOI: 10.1111/nph.13475] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 04/12/2015] [Indexed: 05/24/2023]
Abstract
Plant invertases are sucrolytic enzymes that are essential for the regulation of carbohydrate metabolism and source-sink relationships. While their activity has been well documented during abiotic and biotic stresses, the role of proteinaceous invertase inhibitors in regulating these changes is unknown. Here, we identify a putative Nicotiana attenuata cell wall invertase inhibitor (NaCWII) which is strongly up-regulated in a jasmonate (JA)-dependent manner following simulated attack by the specialist herbivore Manduca sexta. To understand the role of NaCWII in planta, we silenced its expression by RNA interference and measured changes in primary and secondary metabolism and plant growth following simulated herbivory. NaCWII-silenced plants displayed a stronger depletion of carbohydrates and a reduced capacity to increase secondary metabolite pools relative to their empty vector control counterparts. This coincided with the attenuation of herbivore-induced CWI inhibition and growth suppression characteristic of wild-type plants. Together our findings suggest that NaCWII may act as a regulatory switch located downstream of JA accumulation which fine-tunes the plant's balance between growth and defense metabolism under herbivore attack. Although carbohydrates are not typically viewed as key factors in plant growth and defense, our study shows that interfering with their catabolism strongly influences plant responses to herbivory.
Collapse
Affiliation(s)
- Abigail P Ferrieri
- Root-Herbivore Interactions Group, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745, Jena, Germany
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745, Jena, Germany
| | - Carla C M Arce
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Ricardo A R Machado
- Root-Herbivore Interactions Group, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745, Jena, Germany
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745, Jena, Germany
| | - Ivan D Meza-Canales
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745, Jena, Germany
| | - Eraldo Lima
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Ian T Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745, Jena, Germany
| | - Matthias Erb
- Root-Herbivore Interactions Group, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745, Jena, Germany
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013, Bern, Switzerland
| |
Collapse
|
32
|
Böttcher C, Burbidge CA, Boss PK, Davies C. Changes in transcription of cytokinin metabolism and signalling genes in grape (Vitis vinifera L.) berries are associated with the ripening-related increase in isopentenyladenine. BMC PLANT BIOLOGY 2015; 15:223. [PMID: 26377914 PMCID: PMC4573921 DOI: 10.1186/s12870-015-0611-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 09/10/2015] [Indexed: 05/02/2023]
Abstract
BACKGROUND Cytokinins are known to play an important role in fruit set and early fruit growth, but their involvement in later stages of fruit development is less well understood. Recent reports of greatly increased cytokinin concentrations in the flesh of ripening kiwifruit (Actinidia deliciosa (A. Chev.) C.F. Liang & A.R. Ferguson) and grapes (Vitis vinifera L.) have suggested that these hormones are implicated in the control of ripening-related processes. RESULTS A similar pattern of isopentenyladenine (iP) accumulation was observed in the ripening fruit of several grapevine cultivars, strawberry (Fragaria ananassa Duch.) and tomato (Solanum lycopersicum Mill.), suggesting a common, ripening-related role for this cytokinin. Significant differences in maximal iP concentrations between grapevine cultivars and between fruit species might reflect varying degrees of relevance or functional adaptations of this hormone in the ripening process. Grapevine orthologues of five Arabidopsis (Arabidopsis thaliana L.) gene families involved in cytokinin metabolism and signalling were identified and analysed for their expression in developing grape berries and a range of other grapevine tissues. Members of each gene family were characterised by distinct expression profiles during berry development and in different grapevine organs, suggesting a complex regulation of cellular cytokinin activities throughout the plant. The post-veraison-specific expression of a set of biosynthesis, activation, perception and signalling genes together with a lack of expression of degradation-related genes during the ripening phase were indicative of a local control of berry iP concentrations leading to the observed accumulation of iP in ripening grapes. CONCLUSIONS The transcriptional analysis of grapevine genes involved in cytokinin production, degradation and response has provided a possible explanation for the ripening-associated accumulation of iP in grapes and other fruit. The pre- and post-veraison-specific expression of different members from each of five gene families suggests a highly complex and finely-tuned regulation of cytokinin concentrations and response to different cytokinin species at particular stages of fruit development. The same complexity and specialisation is also reflected in the distinct expression profiles of cytokinin-related genes in other grapevine organs.
Collapse
Affiliation(s)
- Christine Böttcher
- CSIRO Agriculture Flagship, Waite Campus, WIC West Building, PMB2, Glen Osmond, South Australia, 5064, Australia.
| | - Crista A Burbidge
- CSIRO Agriculture Flagship, Waite Campus, WIC West Building, PMB2, Glen Osmond, South Australia, 5064, Australia.
| | - Paul K Boss
- CSIRO Agriculture Flagship, Waite Campus, WIC West Building, PMB2, Glen Osmond, South Australia, 5064, Australia.
| | - Christopher Davies
- CSIRO Agriculture Flagship, Waite Campus, WIC West Building, PMB2, Glen Osmond, South Australia, 5064, Australia.
| |
Collapse
|
33
|
Jammer A, Gasperl A, Luschin-Ebengreuth N, Heyneke E, Chu H, Cantero-Navarro E, Großkinsky DK, Albacete AA, Stabentheiner E, Franzaring J, Fangmeier A, van der Graaff E, Roitsch T. Simple and robust determination of the activity signature of key carbohydrate metabolism enzymes for physiological phenotyping in model and crop plants. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:5531-42. [PMID: 26002973 DOI: 10.1093/jxb/erv228] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The analysis of physiological parameters is important to understand the link between plant phenotypes and their genetic bases, and therefore is needed as an important element in the analysis of model and crop plants. The activities of enzymes involved in primary carbohydrate metabolism have been shown to be strongly associated with growth performance, crop yield, and quality, as well as stress responses. A simple, fast, and cost-effective method to determine activities for 13 key enzymes involved in carbohydrate metabolism has been established, mainly based on coupled spectrophotometric kinetic assays. The comparison of extraction buffers and requirement for dialysis of crude protein extracts resulted in a universal protein extraction protocol, suitable for the preparation of protein extracts from different organs of various species. Individual published kinetic activity assays were optimized and adapted for a semi-high-throughput 96-well assay format. These assays proved to be robust and are thus suitable for physiological phenotyping, enabling the characterization and diagnosis of the physiological state. The potential of the determination of distinct enzyme activity signatures as part of a physiological fingerprint was shown for various organs and tissues from three monocot and five dicot model and crop species, including two case studies with external stimuli. Differential and specific enzyme activity signatures are apparent during inflorescence development and upon in vitro cold treatment of young inflorescences in the monocot ryegrass, related to conditions for doubled haploid formation. Likewise, treatment of dicot spring oilseed rape with elevated CO2 concentration resulted in distinct patterns of enzyme activity responses in leaves.
Collapse
Affiliation(s)
- Alexandra Jammer
- Institute of Plant Sciences, Karl-Franzens-Universität Graz, Schubertstrasse 51, 8010 Graz, Austria
| | - Anna Gasperl
- Institute of Plant Sciences, Karl-Franzens-Universität Graz, Schubertstrasse 51, 8010 Graz, Austria
| | - Nora Luschin-Ebengreuth
- Institute of Plant Sciences, Karl-Franzens-Universität Graz, Schubertstrasse 51, 8010 Graz, Austria
| | - Elmien Heyneke
- Institute of Plant Sciences, Karl-Franzens-Universität Graz, Schubertstrasse 51, 8010 Graz, Austria
| | - Hyosub Chu
- Institute of Plant Sciences, Karl-Franzens-Universität Graz, Schubertstrasse 51, 8010 Graz, Austria
| | - Elena Cantero-Navarro
- Institute of Plant Sciences, Karl-Franzens-Universität Graz, Schubertstrasse 51, 8010 Graz, Austria
| | - Dominik K Großkinsky
- Institute of Plant Sciences, Karl-Franzens-Universität Graz, Schubertstrasse 51, 8010 Graz, Austria
| | - Alfonso A Albacete
- Institute of Plant Sciences, Karl-Franzens-Universität Graz, Schubertstrasse 51, 8010 Graz, Austria
| | - Edith Stabentheiner
- Institute of Plant Sciences, Karl-Franzens-Universität Graz, Schubertstrasse 51, 8010 Graz, Austria
| | - Jürgen Franzaring
- Institute of Landscape and Plant Ecology, University of Hohenheim, August-von-Hartmann-Strasse 3, D-70599 Stuttgart, Germany
| | - Andreas Fangmeier
- Institute of Landscape and Plant Ecology, University of Hohenheim, August-von-Hartmann-Strasse 3, D-70599 Stuttgart, Germany
| | - Eric van der Graaff
- Institute of Plant Sciences, Karl-Franzens-Universität Graz, Schubertstrasse 51, 8010 Graz, Austria
| | - Thomas Roitsch
- Institute of Plant Sciences, Karl-Franzens-Universität Graz, Schubertstrasse 51, 8010 Graz, Austria
| |
Collapse
|
34
|
Song J, Jiang L, Jameson PE. Expression patterns of Brassica napus genes implicate IPT, CKX, sucrose transporter, cell wall invertase, and amino acid permease gene family members in leaf, flower, silique, and seed development. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:5067-82. [PMID: 25873685 PMCID: PMC4513924 DOI: 10.1093/jxb/erv133] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Forage brassica (Brassica napus cv. Greenland) is bred for vegetative growth and biomass production, while its seed yield remains to be improved for seed producers without affecting forage yield and quality. Cytokinins affect seed yield by influencing flower, silique and seed number, and seed size. To identify specific cytokinin gene family members as targets for breeding, as well as genes associated with yield and/or quality, a B. napus transcriptome was obtained from a mixed sample including leaves, flower buds and siliques of various stages. Gene families for cytokinin biosynthesis (BnIPT1, 2, 3, 5, 7, 8 and 9), cytokinin degradation (BnCKX1 to BnCKX7), cell wall invertase (BnCWINV1 to BnCWINV6), sugar transporter (BnSUT1 to BnSUT6) and amino acid permease (BnAAP1 to BnAAP8) were identified. As B. napus is tetraploid, homoeologues of each gene family member were sought. Using multiple alignments and phylogenetic analysis, the parental genomes of the two B. napus homoeologues could be differentiated. RT-qPCR was then used to determine the expression of gene family members and their homoeologues in leaves, flowers, siliques and seeds of different developmental stages. The expression analysis showed both temporal and organ-specific expression profiles among members of these multi-gene families. Several pairs of homoeologues showed differential expression, both in terms of level of expression and differences in temporal or organ-specificity. BnCKX2 and 4 were identified as targets for TILLING, EcoTILLING and MAS.
Collapse
Affiliation(s)
- Jiancheng Song
- School of Life Sciences, Yantai University, Yantai 264005, China School of Biological Sciences, University of Canterbury, Christchurch 8140, New Zealand
| | - Lijun Jiang
- School of Life Sciences, Yantai University, Yantai 264005, China
| | | |
Collapse
|
35
|
Albacete A, Cantero-Navarro E, Großkinsky DK, Arias CL, Balibrea ME, Bru R, Fragner L, Ghanem ME, González MDLC, Hernández JA, Martínez-Andújar C, van der Graaff E, Weckwerth W, Zellnig G, Pérez-Alfocea F, Roitsch T. Ectopic overexpression of the cell wall invertase gene CIN1 leads to dehydration avoidance in tomato. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:863-78. [PMID: 25392479 PMCID: PMC4321548 DOI: 10.1093/jxb/eru448] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Drought stress conditions modify source-sink relations, thereby influencing plant growth, adaptive responses, and consequently crop yield. Invertases are key metabolic enzymes regulating sink activity through the hydrolytic cleavage of sucrose into hexose monomers, thus playing a crucial role in plant growth and development. However, the physiological role of invertases during adaptation to abiotic stress conditions is not yet fully understood. Here it is shown that plant adaptation to drought stress can be markedly improved in tomato (Solanum lycopersicum L.) by overexpression of the cell wall invertase (cwInv) gene CIN1 from Chenopodium rubrum. CIN1 overexpression limited stomatal conductance under normal watering regimes, leading to reduced water consumption during the drought period, while photosynthetic activity was maintained. This caused a strong increase in water use efficiency (up to 50%), markedly improving water stress adaptation through an efficient physiological strategy of dehydration avoidance. Drought stress strongly reduced cwInv activity and induced its proteinaceous inhibitor in the leaves of the wild-type plants. However, the CIN1-overexpressing plants registered 3- to 6-fold higher cwInv activity in all analysed conditions. Surprisingly, the enhanced invertase activity did not result in increased hexose concentrations due to the activation of the metabolic carbohydrate fluxes, as reflected by the maintenance of the activity of key enzymes of primary metabolism and increased levels of sugar-phosphate intermediates under water deprivation. The induced sink metabolism in the leaves explained the maintenance of photosynthetic activity, delayed senescence, and increased source activity under drought stress. Moreover, CIN1 plants also presented a better control of production of reactive oxygen species and sustained membrane protection. Those metabolic changes conferred by CIN1 overexpression were accompanied by increases in the concentrations of the senescence-delaying hormone trans-zeatin and decreases in the senescence-inducing ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) in the leaves. Thus, cwInv critically functions at the integration point of metabolic, hormonal, and stress signals, providing a novel strategy to overcome drought-induced limitations to crop yield, without negatively affecting plant fitness under optimal growth conditions.
Collapse
Affiliation(s)
- Alfonso Albacete
- Department of Plant Nutrition, CEBAS-CSIC, Campus de Espinardo, 30100 Murcia, Spain Institute of Plant Sciences, Department of Plant Physiology, University of Graz, 8010 Graz, Austria
| | | | - Dominik K Großkinsky
- Institute of Plant Sciences, Department of Plant Physiology, University of Graz, 8010 Graz, Austria Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, University of Copenhagen, Højbakkegård Allé 13, DK-2630 Taastrup, Denmark
| | - Cintia L Arias
- Centro de Estudios Fotosintéticos y Bioquímicos, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | | | - Roque Bru
- Departamento de Agroquímica y Bioquímica, Facultad de Ciencias, Universidad de Alicante, 03080 Alicante, Spain
| | - Lena Fragner
- Department of Molecular Systems Biology, Faculty of Life Sciences, University of Vienna, 1090 Vienna, Austria
| | - Michel E Ghanem
- Department of Plant Nutrition, CEBAS-CSIC, Campus de Espinardo, 30100 Murcia, Spain
| | | | - Jose A Hernández
- Department of Fruit Breeding, CEBAS-CSIC, Campus de Espinardo, 30100 Murcia, Spain
| | | | - Eric van der Graaff
- Institute of Plant Sciences, Department of Plant Physiology, University of Graz, 8010 Graz, Austria Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, University of Copenhagen, Højbakkegård Allé 13, DK-2630 Taastrup, Denmark
| | - Wolfram Weckwerth
- Department of Molecular Systems Biology, Faculty of Life Sciences, University of Vienna, 1090 Vienna, Austria
| | - Günther Zellnig
- Institute of Plant Sciences, Department of Plant Physiology, University of Graz, 8010 Graz, Austria
| | | | - Thomas Roitsch
- Institute of Plant Sciences, Department of Plant Physiology, University of Graz, 8010 Graz, Austria Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, University of Copenhagen, Højbakkegård Allé 13, DK-2630 Taastrup, Denmark Global Change Research Centre, Czech Globe AS CR, v.v.i., Drásov 470, Cz-664 24 Drásov, Czech Republic
| |
Collapse
|
36
|
Albacete A, Cantero-Navarro E, Balibrea ME, Großkinsky DK, de la Cruz González M, Martínez-Andújar C, Smigocki AC, Roitsch T, Pérez-Alfocea F. Hormonal and metabolic regulation of tomato fruit sink activity and yield under salinity. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:6081-95. [PMID: 25170099 PMCID: PMC4203140 DOI: 10.1093/jxb/eru347] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Salinization of water and soil has a negative impact on tomato (Solanum lycopersicum L.) productivity by reducing growth of sink organs and by inducing senescence in source leaves. It has been hypothesized that yield stability implies the maintenance or increase of sink activity in the reproductive structures, thus contributing to the transport of assimilates from the source leaves through changes in sucrolytic enzymes and their regulation by phytohormones. In this study, classical and functional physiological approaches have been integrated to study the influence of metabolic and hormonal factors on tomato fruit sink activity, growth, and yield: (i) exogenous hormones were applied to plants, and (ii) transgenic plants overexpressing the cell wall invertase (cwInv) gene CIN1 in the fruits and de novo cytokinin (CK) biosynthesis gene IPT in the roots were constructed. Although salinity reduces fruit growth, sink activity, and trans-zeatin (tZ) concentrations, it increases the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) during the actively growing period (25 days after anthesis). Indeed, exogenous application of the CK analogue kinetin to salinized actively growing fruits recovered sucrolytic activities (mainly cwInv and sucrose synthase), sink strength, and fruit weight, whereas the ethylene-releasing compound ethephon had a negative effect in equivalent non-stressed fruits. Fruit yield was increased by both the constitutive expression of CIN1 in the fruits (up to 4-fold) or IPT in the root (up to 30%), owing to an increase in the fruit number (lower flower abortion) and in fruit weight. This is possibly related to a recovery of sink activity in reproductive tissues due to both (i) increase in sucrolytic activities (cwInv, sucrose synthase, and vacuolar and cytoplasmic invertases) and tZ concentration, and (ii) a decrease in the ACC levels and the activity of the invertase inhibitor. This study provides new functional evidences about the role of metabolic and hormonal inter-regulation of local sink processes in controlling tomato fruit sink activity, growth, and yield under salinity.
Collapse
Affiliation(s)
- Alfonso Albacete
- Department of Plant Nutrition, CEBAS-CSIC, Campus de Espinardo, 30100 Murcia, Spain Institute of Plant Sciences, Department of Plant Physiology, University of Graz, 8010 Graz, Austria
| | | | - María E Balibrea
- Department of Plant Nutrition, CEBAS-CSIC, Campus de Espinardo, 30100 Murcia, Spain
| | - Dominik K Großkinsky
- Institute of Plant Sciences, Department of Plant Physiology, University of Graz, 8010 Graz, Austria Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, University of Copenhagen, Højbakkegård Allé 13, DK-2630 Taastrup, Denmark
| | | | | | - Ann C Smigocki
- Molecular Plant Pathology Laboratory, USDA, ARS, Beltsville, MD 20705, USA
| | - Thomas Roitsch
- Institute of Plant Sciences, Department of Plant Physiology, University of Graz, 8010 Graz, Austria Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, University of Copenhagen, Højbakkegård Allé 13, DK-2630 Taastrup, Denmark Global Change Research Centre, Czech Globe AS CR, v.v.i., Drásov 470, Cz-664 24 Drásov, Czech Republic
| | | |
Collapse
|
37
|
Proels RK, Hückelhoven R. Cell-wall invertases, key enzymes in the modulation of plant metabolism during defence responses. MOLECULAR PLANT PATHOLOGY 2014; 15:858-64. [PMID: 24646208 PMCID: PMC6638650 DOI: 10.1111/mpp.12139] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Most plant-pathogen interactions do not result in pathogenesis because of pre-formed defensive plant barriers or pathogen-triggered activation of effective plant immune responses. The mounting of defence reactions is accompanied by a profound modulation of plant metabolism. Common metabolic changes are the repression of photosynthesis, the increase in heterotrophic metabolism and the synthesis of secondary metabolites. This enhanced metabolic activity is accompanied by the reduced export of sucrose or enhanced import of hexoses at the site of infection, which is mediated by an induced activity of cell-wall invertase (Cw-Inv). Cw-Inv cleaves sucrose, the major transport sugar in plants, irreversibly yielding glucose and fructose, which can be taken up by plant cells via hexose transporters. These hexose sugars not only function in metabolism, but also act as signalling molecules. The picture of Cw-Inv regulation in plant-pathogen interactions has recently been broadened and is discussed in this review. An interesting emerging feature is the link between Cw-Inv and the circadian clock and new modes of Cw-Inv regulation at the post-translational level.
Collapse
Affiliation(s)
- Reinhard Korbinian Proels
- Lehrstuhl für Phytopathologie, Technische Universität München, D-85350, Freising-Weihenstephan, Germany
| | | |
Collapse
|
38
|
Griffiths CA, Gaff DF, Neale AD. Drying without senescence in resurrection plants. FRONTIERS IN PLANT SCIENCE 2014; 5:36. [PMID: 24575108 PMCID: PMC3922084 DOI: 10.3389/fpls.2014.00036] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 01/27/2014] [Indexed: 05/16/2023]
Abstract
Research into extreme drought tolerance in resurrection plants using species such as Craterostigma plantagineum, C. wilmsii, Xerophyta humilis, Tortula ruralis, and Sporobolus stapfianus has provided some insight into the desiccation tolerance mechanisms utilized by these plants to allow them to persist under extremely adverse environmental conditions. Some of the mechanisms used to ensure cellular preservation during severe dehydration appear to be peculiar to resurrection plants. Apart from the ability to preserve vital cellular components during drying and rehydration, such mechanisms include the ability to down-regulate growth-related metabolism rapidly in response to changes in water availability, and the ability to inhibit dehydration-induced senescence programs enabling reconstitution of photosynthetic capacity quickly following a rainfall event. Extensive research on the molecular mechanism of leaf senescence in non-resurrection plants has revealed a multi-layered regulatory network operates to control programed cell death pathways. However, very little is known about the molecular mechanisms that resurrection plants employ to avoid undergoing drought-related senescence during the desiccation process. To survive desiccation, dehydration in the perennial resurrection grass S. stapfianus must proceed slowly over a period of 7 days or more. Leaves detached from the plant before 60% relative water content (RWC) is attained are desiccation-sensitive indicating that desiccation tolerance is conferred in vegetative tissue of S. stapfianus when the leaf RWC has declined to 60%. Whilst some older leaves remaining attached to the plant during dehydration will senesce, suggesting dehydration-induced senescence may be influenced by leaf age or the rate of dehydration in individual leaves, the majority of leaves do not senesce. Rather these leaves dehydrate to air-dryness and revive fully following rehydration. Hence it seems likely that there are genes expressed in younger leaf tissues of resurrection plants that enable suppression of drought-related senescence pathways. As very few studies have directly addressed this phenomenon, this review aims to discuss current literature surrounding the activation and suppression of senescence pathways and how these pathways may differ in resurrection plants.
Collapse
Affiliation(s)
| | | | - Alan D. Neale
- School of Biological Sciences, Monash UniversityClayton, VIC, Australia
| |
Collapse
|
39
|
De Storme N, Geelen D. The impact of environmental stress on male reproductive development in plants: biological processes and molecular mechanisms. PLANT, CELL & ENVIRONMENT 2014; 37:1-18. [PMID: 23731015 PMCID: PMC4280902 DOI: 10.1111/pce.12142] [Citation(s) in RCA: 265] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 04/30/2013] [Accepted: 05/08/2013] [Indexed: 05/18/2023]
Abstract
In plants, male reproductive development is extremely sensitive to adverse climatic environments and (a)biotic stress. Upon exposure to stress, male gametophytic organs often show morphological, structural and metabolic alterations that typically lead to meiotic defects or premature spore abortion and male reproductive sterility. Depending on the type of stress involved (e.g. heat, cold, drought) and the duration of stress exposure, the underlying cellular defect is highly variable and either involves cytoskeletal alterations, tapetal irregularities, altered sugar utilization, aberrations in auxin metabolism, accumulation of reactive oxygen species (ROS; oxidative stress) or the ectopic induction of programmed cell death (PCD). In this review, we present the critically stress-sensitive stages of male sporogenesis (meiosis) and male gametogenesis (microspore development), and discuss the corresponding biological processes involved and the resulting alterations in male reproduction. In addition, this review also provides insights into the molecular and/or hormonal regulation of the environmental stress sensitivity of male reproduction and outlines putative interaction(s) between the different processes involved.
Collapse
Affiliation(s)
- Nico De Storme
- Department of Plant Production, Faculty of Bioscience Engineering, University of Ghent, Coupure Links, 653, B-9000, Ghent, Belgium
| | | |
Collapse
|
40
|
Lee ST, Huang WL. Cytokinin, auxin, and abscisic acid affects sucrose metabolism conduce to de novo shoot organogenesis in rice (Oryza sativa L.) callus. BOTANICAL STUDIES 2013; 54:5. [PMID: 28510848 PMCID: PMC5383921 DOI: 10.1186/1999-3110-54-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Accepted: 08/09/2013] [Indexed: 05/22/2023]
Abstract
BACKGROUND Shoot regeneration frequency in rice callus is still low and highly diverse among rice cultivars. This study aimed to investigate the association of plant hormone signaling and sucrose uptake and metabolism in rice during callus induction and early shoot organogenesis. The immatured seeds of two rice cultivars, Ai-Nan-Tsao 39 (ANT39) and Tainan 11 (TN11) are used in this study. RESULTS Callus formation is earlier, callus fresh weight is higher, but water content is significant lower in ANT39 than in TN11 while their explants are inoculated on callus induction medium (CIM). Besides, the regeneration frequency is prominently higher in ANT39 (~80%) compared to TN11 callus (0%). Levels of glucose, sucrose, and starch are all significant higher in ANT39 than in TN11 either at callus induction or early shoot organogenesis stage. Moreover, high expression levels of Cell wall-bound invertase 1, Sucrose transporter 1 (OsSUT1) and OsSUT2 are detected in ANT39 at the fourth-day in CIM but it cannot be detected in TN11 until the tenth-day. It suggested that ANT39 has higher callus growth rate and shoot regeneration ability may cause from higher activity of sucrose uptake and metabolism. As well, the expression levels of ORYZA SATIVA RESPONSE REGULATOR 1 (ORR1), PIN-formed 1 and Late embryogenesis-abundant 1, representing endogenous cytokinin, auxin and ABA signals, respectively, were also up-regulated in highly regenerable callus, ANT39, but only ORR1 was greatly enhanced in TN11 at the tenth-day in CIM. CONCLUSION Thus, phytohormone signals may affect sucrose metabolism to trigger callus initiation and further de novo shoot regeneration in rice culture.
Collapse
Affiliation(s)
- Shiang-Ting Lee
- Department of Agronomy, National Chiayi University, Chiayi City 600, Taiwan
| | - Wen-Lii Huang
- Department of Agronomy, National Chiayi University, Chiayi City 600, Taiwan
| |
Collapse
|
41
|
Improved growth, productivity and quality of tomato (Solanum lycopersicum L.) plants through application of shikimic acid. Saudi J Biol Sci 2013; 20:339-45. [PMID: 24235870 DOI: 10.1016/j.sjbs.2013.03.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2013] [Revised: 03/09/2013] [Accepted: 03/16/2013] [Indexed: 11/23/2022] Open
Abstract
A field experiment was conducted to investigate the effect of seed presoaking of shikimic acid (30, 60 and 120 ppm) on growth parameters, fruit productivity and quality, transpiration rate, photosynthetic pigments and some mineral nutrition contents of tomato plants. Shikimic acid at all concentrations significantly increased fresh and dry weights, fruit number, average fresh and dry fruit yield, vitamin C, lycopene, carotenoid contents, total acidity and fruit total soluble sugars of tomato plants when compared to control plants. Seed pretreatment with shikimic acid at various doses induces a significant increase in total leaf conductivity, transpiration rate and photosynthetic pigments (Chl. a, chl. b and carotenoids) of tomato plants. Furthermore, shikimic acid at various doses applied significantly increased the concentration of nitrogen, phosphorus and potassium in tomato leaves as compared to control non-treated tomato plants. Among all doses of shikimic acid treatment, it was found that 60 ppm treatment caused a marked increase in growth, fruit productivity and quality and most studied parameters of tomato plants when compared to other treatments. On the other hand, no significant differences were observed in total photosynthetic pigments, concentrations of nitrogen and potassium in leaves of tomato plants treated with 30 ppm of shikimic acid and control plants. According to these results, it could be suggested that shikimic acid used for seed soaking could be used for increasing growth, fruit productivity and quality of tomato plants growing under field conditions.
Collapse
|
42
|
Schäfer M, Brütting C, Gase K, Reichelt M, Baldwin I, Meldau S. 'Real time' genetic manipulation: a new tool for ecological field studies. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 76:506-18. [PMID: 23906159 PMCID: PMC4190501 DOI: 10.1111/tpj.12301] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 05/05/2013] [Accepted: 07/25/2013] [Indexed: 05/21/2023]
Abstract
Field experiments with transgenic plants often reveal the functional significance of genetic traits that are important for the performance of the plants in their natural environments. Until now, only constitutive overexpression, ectopic expression and gene silencing methods have been used to analyze gene-related phenotypes in natural habitats. These methods do not allow sufficient control over gene expression for the study of ecological interactions in real time, of genetic traits that play essential roles in development, or of dose-dependent effects. We applied the sensitive dexamethasone (DEX)-inducible pOp6/LhGR expression system to the ecological model plant Nicotiana attenuata and established a lanolin-based DEX application method to facilitate ectopic gene expression and RNA interference-mediated gene silencing in the field and under challenging conditions (e.g. high temperature, wind and UV radiation). Fully established field-grown plants were used to silence phytoene desaturase and thereby cause photobleaching only in specific plant sectors, and to activate expression of the cytokinin (CK) biosynthesis gene isopentenyl transferase (ipt). We used ipt expression to analyze the role of CKs in both the glasshouse and the field to understand resistance to the native herbivore Tupiocoris notatus, which attacks plants at small spatial scales. By spatially restricting ipt expression and elevating CK levels in single leaves, damage by T. notatus increased, demonstrating the role of CKs in this plant-herbivore interaction at a small scale. As the arena of most ecological interactions is highly constrained in time and space, these tools will advance the genetic analysis of dynamic traits that matter for plant performance in nature.
Collapse
Affiliation(s)
- Martin Schäfer
- Max Planck Institute for Chemical Ecology, Department of Molecular Ecology, Hans Knöll Str. 8, Jena 07745, Germany
| | - Christoph Brütting
- Max Planck Institute for Chemical Ecology, Department of Molecular Ecology, Hans Knöll Str. 8, Jena 07745, Germany
| | - Klaus Gase
- Max Planck Institute for Chemical Ecology, Department of Molecular Ecology, Hans Knöll Str. 8, Jena 07745, Germany
| | - Michael Reichelt
- Max Planck Institute for Chemical Ecology, Department of Biochemistry, Hans Knöll Str. 8, Jena 07745, Germany
| | - Ian Baldwin
- Max Planck Institute for Chemical Ecology, Department of Molecular Ecology, Hans Knöll Str. 8, Jena 07745, Germany
| | - Stefan Meldau
- Max Planck Institute for Chemical Ecology, Department of Molecular Ecology, Hans Knöll Str. 8, Jena 07745, Germany
- German Centre for integrative Biodiversity Research (iDiv), Deutscher Platz 5, Leipzig 04107, Germany
| |
Collapse
|
43
|
Albacete AA, Martínez-Andújar C, Pérez-Alfocea F. Hormonal and metabolic regulation of source-sink relations under salinity and drought: from plant survival to crop yield stability. Biotechnol Adv 2013; 32:12-30. [PMID: 24513173 DOI: 10.1016/j.biotechadv.2013.10.005] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 10/17/2013] [Accepted: 10/20/2013] [Indexed: 10/26/2022]
Abstract
Securing food production for the growing population will require closing the gap between potential crop productivity under optimal conditions and the yield captured by farmers under a changing environment, which is termed agronomical stability. Drought and salinity are major environmental factors contributing to the yield gap ultimately by inducing premature senescence in the photosynthetic source tissues of the plant and by reducing the number and growth of the harvestable sink organs by affecting the transport and use of assimilates between and within them. However, the changes in source-sink relations induced by stress also include adaptive changes in the reallocation of photoassimilates that influence crop productivity, ranging from plant survival to yield stability. While the massive utilization of -omic technologies in model plants is discovering hundreds of genes with potential impacts in alleviating short-term applied drought and salinity stress (usually measured as plant survival), only in relatively few cases has an effect on crop yield stability been proven. However, achieving the former does not necessarily imply the latter. Plant survival only requires water status conservation and delayed leaf senescence (thus maintaining source activity) that is usually accompanied by growth inhibition. However, yield stability will additionally require the maintenance or increase in sink activity in the reproductive structures, thus contributing to the transport of assimilates from the source leaves and to delayed stress-induced leaf senescence. This review emphasizes the role of several metabolic and hormonal factors influencing not only the source strength, but especially the sink activity and their inter-relations, and their potential to improve yield stability under drought and salinity stresses.
Collapse
Affiliation(s)
- Alfonso A Albacete
- Departamento de Nutrición Vegetal, Centro de Edafología y Biología Aplicada del Segura (C.E.B.A.S.), Consejo Superior de Investigaciones Científicas (C.S.I.C.), Campus Universitario de Espinardo, P.O. Box 164, E-30100 Murcia, Spain
| | - Cristina Martínez-Andújar
- Departamento de Nutrición Vegetal, Centro de Edafología y Biología Aplicada del Segura (C.E.B.A.S.), Consejo Superior de Investigaciones Científicas (C.S.I.C.), Campus Universitario de Espinardo, P.O. Box 164, E-30100 Murcia, Spain
| | - Francisco Pérez-Alfocea
- Departamento de Nutrición Vegetal, Centro de Edafología y Biología Aplicada del Segura (C.E.B.A.S.), Consejo Superior de Investigaciones Científicas (C.S.I.C.), Campus Universitario de Espinardo, P.O. Box 164, E-30100 Murcia, Spain.
| |
Collapse
|
44
|
Großkinsky D, Edelsbrunner K, Pfeifhofer H, van der Graaff E, Roitsch T. Cis- and trans-zeatin differentially modulate plant immunity. PLANT SIGNALING & BEHAVIOR 2013; 8:e24798. [PMID: 23656869 PMCID: PMC3906432 DOI: 10.4161/psb.24798] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 04/24/2013] [Accepted: 04/24/2013] [Indexed: 05/13/2023]
Abstract
Phytohormones are essential regulators of various processes in plant growth and development. Several phytohormones are also known to regulate plant responses to environmental stress and pathogens. Only recently, cytokinins have been demonstrated to play an important role in plant immunity. Increased levels of cytokinins such as trans-zeatin, which are considered highly active, induced resistance against mainly (hemi)biotrophic pathogens in different plant species. In contrast, cis-zeatin is commonly regarded as a cytokinin exhibiting low or no activity. Here we comparatively study the impact of both zeatin isomers on the infection of Nicotiana tabacum by the (hemi)biotrophic microbial pathogen Pseudomonas syringae. We demonstrate a biological effect of cis-zeatin and a differential effect of the two zeatin isomers on symptom development, defense responses and bacterial multiplication.
Collapse
Affiliation(s)
- Dominik Großkinsky
- Department of Plant Physiology; Institute of Plant Sciences; University of Graz; Graz, Austria
| | - Kerstin Edelsbrunner
- Department of Plant Physiology; Institute of Plant Sciences; University of Graz; Graz, Austria
| | - Hartwig Pfeifhofer
- Department of Plant Physiology; Institute of Plant Sciences; University of Graz; Graz, Austria
| | | | | |
Collapse
|
45
|
Zwack PJ, Rashotte AM. Cytokinin inhibition of leaf senescence. PLANT SIGNALING & BEHAVIOR 2013; 8:e24737. [PMID: 23656876 PMCID: PMC3908980 DOI: 10.4161/psb.24737] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 04/18/2013] [Indexed: 05/18/2023]
Abstract
The senescence delaying effect of cytokinin is well known, however, the details behind how this process occurs remain unclear. Efforts to improve understanding of this phenomenon have led to the identification in Arabidopsis of specific cytokinin signaling components through which senescence signal responses are regulated. These include the cytokinin receptor (AHK3), the type-B response regulator (ARR2) and the recently identified cytokinin response factor (CRF6). At the mechanistic end of this process, it was found that increased cell-wall invertase activity which occurs in response to cytokinin is both necessary and sufficient for the inhibition of senescence. Yet, a direct link between the signaling and mechanistic steps of a cytokinin regulated senescence process has yet to be demonstrated. This may be in part because the relationship between senescence and primary metabolism implied by the key role of cell-wall invertase is the subject of two apparently opposing bodies of evidence. Here we briefly summarize and propose a model in which cytokinin mediated changes in sink/source relationships leads to delayed senescence which is consistent with existing evidence both for and against sugars as a trigger for developmental senescence.
Collapse
|
46
|
Body M, Kaiser W, Dubreuil G, Casas J, Giron D. Leaf-Miners Co-opt Microorganisms to Enhance their Nutritional Environment. J Chem Ecol 2013; 39:969-77. [DOI: 10.1007/s10886-013-0307-y] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 05/29/2013] [Accepted: 06/04/2013] [Indexed: 01/05/2023]
|
47
|
Bolouri Moghaddam MR, Van den Ende W. Sweet immunity in the plant circadian regulatory network. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:1439-49. [PMID: 23564957 DOI: 10.1093/jxb/ert046] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
All organisms have an internal timing mechanism, termed the circadian clock, to anticipate the light/dark cycle. The clock, with an oscillating rhythm that approximates 24h, is a rather robust system persisting to a great extent in continuous light and dark. It is widely accepted that plant growth and development are regulated by the clock, hormones, and sugar signals. On the one hand, sugar signalling can affect circadian rhythms by altering the expression pattern of clock-regulated genes. More in particular, the clock seems to be particularly sensitive to sucrose-mediated signalling which is also associated with immunity and abiotic stress responses. Also, hormonal interaction with the clock can contribute to appropriate plant immune responses. Recent data show a prominent role for the clock in growth and stress responses. On the other hand, the clock seems to be essential in controlling the gene expression and activity of an array of carbohydrate-metabolizing enzymes, suggesting a complex reciprocal relationship between the clock and metabolic signalling processes. Therefore, the clock fulfils a crucial role at the heart of cellular networks. The players involved in the complex plant circadian network and their possible contribution to the novel 'sweet immunity' concept are discussed.
Collapse
|
48
|
Giron D, Frago E, Glevarec G, Pieterse CMJ, Dicke M. Cytokinins as key regulators in plant–microbe–insect interactions: connecting plant growth and defence. Funct Ecol 2013. [DOI: 10.1111/1365-2435.12042] [Citation(s) in RCA: 134] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- David Giron
- Institut de Recherche sur la Biologie de l'Insecte UMR 7261, CNRS – Université François‐Rabelais Tours France
| | - Enric Frago
- Department of Zoology University of Oxford South Parks Road Oxford OX1 3PS UK
| | - Gaëlle Glevarec
- Biomolécules et Biotechnologies Végétales EA 2106 Université François‐Rabelais Tours France
| | - Corné M. J. Pieterse
- Plant‐Microbe Interactions, Department of Biology Utrecht University Padualaan 8 Utrecht 3584 CH the Netherlands
| | - Marcel Dicke
- Laboratory of Entomology Wageningen University P.O. Box 8031 Wageningen NL‐6700 EH the Netherlands
| |
Collapse
|
49
|
Liu YH, Offler CE, Ruan YL. Regulation of fruit and seed response to heat and drought by sugars as nutrients and signals. FRONTIERS IN PLANT SCIENCE 2013; 4:282. [PMID: 23914195 PMCID: PMC3729977 DOI: 10.3389/fpls.2013.00282] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 07/10/2013] [Indexed: 05/21/2023]
Abstract
A large body of evidence shows that sugars function both as nutrients and signals to regulate fruit and seed set under normal and stress conditions including heat and drought. Inadequate sucrose import to, and its degradation within, reproductive organs cause fruit and seed abortion under heat and drought. As nutrients, sucrose-derived hexoses provide carbon skeletons and energy for growth and development of fruits and seeds. Sugar metabolism can also alleviate the impact of stress on fruit and seed through facilitating biosynthesis of heat shock proteins (Hsps) and non-enzymic antioxidants (e.g., glutathione, ascorbic acid), which collectively maintain the integrity of membranes and prevent programmed cell death (PCD) through protecting proteins and scavenging reactive oxygen species (ROS). In parallel, sugars (sucrose, glucose, and fructose), also exert signaling roles through cross-talk with hormone and ROS signaling pathways and by mediating cell division and PCD. At the same time, emerging data indicate that sugar-derived signaling systems, including trehalose-6 phosphate (T6P), sucrose non-fermenting related kinase-1 (SnRK), and the target of rapamycin (TOR) kinase complex also play important roles in regulating plant development through modulating nutrient and energy signaling and metabolic processes, especially under abiotic stresses where sugar availability is low. This review aims to evaluate recent progress of research on abiotic stress responses of reproductive organs focusing on roles of sugar metabolism and signaling and addressing the possible biochemical and molecular mechanism by which sugars regulate fruit and seed set under heat and drought.
Collapse
Affiliation(s)
- Yong-Hua Liu
- Department of Biology, School of Environmental and Life Sciences, The University of NewcastleNewcastle, NSW, Australia
- Institute of Vegetables, Zhejiang Academy of Agricultural SciencesHangzhou, China
| | - Christina E. Offler
- Department of Biology, School of Environmental and Life Sciences, The University of NewcastleNewcastle, NSW, Australia
| | - Yong-Ling Ruan
- Department of Biology, School of Environmental and Life Sciences, The University of NewcastleNewcastle, NSW, Australia
- *Correspondence: Yong-Ling Ruan, Department of Biology, School of Environmental and Life Sciences, The University of Newcastle, Newcastle, NSW, Australia e-mail:
| |
Collapse
|
50
|
Bolouri Moghaddam MR, Van den Ende W. Sugars and plant innate immunity. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:3989-98. [PMID: 22553288 DOI: 10.1093/jxb/ers129] [Citation(s) in RCA: 205] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Sugars are involved in many metabolic and signalling pathways in plants. Sugar signals may also contribute to immune responses against pathogens and probably function as priming molecules leading to pathogen-associated molecular patterns (PAMP)-triggered immunity and effector-triggered immunity in plants. These putative roles also depend greatly on coordinated relationships with hormones and the light status in an intricate network. Although evidence in favour of sugar-mediated plant immunity is accumulating, more in-depth fundamental research is required to unravel the sugar signalling pathways involved. This might pave the way for the use of biodegradable sugar-(like) compounds to counteract plant diseases as cheaper and safer alternatives for toxic agrochemicals.
Collapse
|