1
|
Bursali F, Touray M. The complexities of blood-feeding patterns in mosquitoes and sandflies and the burden of disease: A minireview. Vet Med Sci 2024; 10:e1580. [PMID: 39171609 PMCID: PMC11339650 DOI: 10.1002/vms3.1580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/26/2024] [Indexed: 08/23/2024] Open
Abstract
Mosquitoes and sandflies exhibit a wide range of blood feeding patterns, targeting a wide range of vertebrate species, including birds, mammals, reptiles, and amphibians, for proteins vital for egg development. This broad host range increases the opportunity for them to acquire pathogens of numerous debilitating-and-fatal diseases from various animal reservoirs, playing a significant role in disease crossover between animals and humans, also known as zoonotic transmission. This review focuses on the intricate blood-feeding habits of these dipteran vectors, their sensory systems and the complex dance between host and pathogen during disease transmission. We delve into the influence of blood sources on pathogen spread by examining the insect immune response and its intricate interplay with pathogens. The remarkable sense of smell guiding them towards food sources and hosts is explored, highlighting the interplay of multiple sensory cues in their navigation. Finally, we examine the challenges in mosquito control strategies and explore innovations in this field, emphasizing the need for sustainable solutions to combat this global health threat. By understanding the biology and behaviour of these insects, we can develop more effective strategies to protect ourselves and mitigate the burden of vector-borne diseases.
Collapse
Affiliation(s)
- Fatma Bursali
- Biology Department, Faculty of ScienceAydin Adnan Menderes UniversityAydinTürkiye
| | - Mustapha Touray
- Biology Department, Faculty of ScienceAydin Adnan Menderes UniversityAydinTürkiye
| |
Collapse
|
2
|
Ansah RK, Tackie S, Twum RA, Tawiah K, Boadi RK, Addo DA, Effah-Poku S, Zigli DD. The relationship between anaemia and the use of treated bed nets among pregnant and non-pregnant women in Ghana. PLoS One 2024; 19:e0300431. [PMID: 38696387 PMCID: PMC11065244 DOI: 10.1371/journal.pone.0300431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 02/27/2024] [Indexed: 05/04/2024] Open
Abstract
Studies have indicated that the risk of malaria, particularly its association with anaemia in pregnant women, increases when treated bed nets are not used. This paper utilizes a statistical mechanical model to investigate whether there is a statistical relationship between the presence or absence of anaemia in pregnant and non-pregnant women and their decision to sleep under treated bed nets. Data from the Ghana Malaria Indicator Survey (GMIS), which includes both rural and urban malaria-endemic areas in Ghana, were employed in this study. A total of 2,434 women, comprising 215 pregnant and 2,219 non-pregnant participants, were involved. Among these, 4.76% of the pregnant and anaemic women and 45.89% of the non-pregnant and anaemic women slept under treated bed nets, while 0.86% of the pregnant and anaemic and 6.82% of the non-pregnant and anaemic women did not. The findings revealed that, in the absence of social interaction, non-anaemic pregnant women have a lower prevalence of choosing to use bed nets compared to their anaemic counterparts. Additionally, non-pregnant anaemic women showed a positive private incentive (30.87%) to use treated bed nets, implying a positive correlation between anaemia and the choice to sleep in a treated bed net. Furthermore, the study demonstrated that both pregnancy and anaemia status have a relationship with the use of treated bed nets in Ghana, especially when social interactions are considered. The interaction strength between non-pregnant and anaemic women interacting with each other shows a negative estimate (-1.49%), implying that there is no rewarding effect from imitation. These insights are crucial for malaria prevention and control programs, emphasizing the need for targeted interventions to enhance the use of treated bed nets among both pregnant and non-pregnant women in Ghana's malaria-endemic regions.
Collapse
Affiliation(s)
- Richard Kwame Ansah
- Department of Mathematics and Statistics, University of Energy and Natural Resources, Sunyani, Ghana
| | - Sampson Tackie
- Department of Mathematics and Statistics, University of Energy and Natural Resources, Sunyani, Ghana
| | - Rhodaline Abena Twum
- Department of Mathematics and Statistics, University of Energy and Natural Resources, Sunyani, Ghana
| | - Kassim Tawiah
- Department of Mathematics and Statistics, University of Energy and Natural Resources, Sunyani, Ghana
| | - Richard Kena Boadi
- Department of Mathematics, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | | | - Samuel Effah-Poku
- School of Technology, Christ Apostolic University College, Kumasi, Ghana
| | - David Delali Zigli
- Department of Mathematical Sciences, University of Mines and Technology, Tarkwa, Ghana
| |
Collapse
|
3
|
Mseti JJ, Maasayi MS, Lugenge AG, Mpelepele AB, Kibondo UA, Tenywa FC, Odufuwa OG, Tambwe MM, Moore SJ. Temperature, mosquito feeding status and mosquito density influence the measured bio-efficacy of insecticide-treated nets in cone assays. Parasit Vectors 2024; 17:159. [PMID: 38549097 PMCID: PMC10979578 DOI: 10.1186/s13071-024-06210-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/22/2024] [Indexed: 04/01/2024] Open
Abstract
BACKGROUND The WHO cone bioassay is routinely used to evaluate the bioefficacy of insecticide-treated nets (ITNs) for product pre-qualification and confirmation of continued ITN performance during operational monitoring. Despite its standardized nature, variability is often observed between tests. We investigated the influence of temperature in the testing environment, mosquito feeding status and mosquito density on cone bioassay results. METHODS Cone bioassays were conducted on MAGNet (alphacypermethrin) and Veeralin (alphacypermethrin and piperonyl butoxide (PBO)) ITNs, using laboratory-reared pyrethroid-resistant Anopheles funestus sensu stricto (FUMOZ strain) mosquitoes. Three experiments were conducted using standard cone bioassays following WHO-recommended test parameters, with one variable changed in each bioassay: (i) environmental temperature during exposure: 22-23 °C, 26-27 °C, 29-30 °C and 32-33 °C; (ii) feeding regimen before exposure: sugar starved for 6 h, blood-fed or sugar-fed; and (iii) mosquito density per cone: 5, 10, 15 and 20 mosquitoes. For each test, 15 net samples per treatment arm were tested with four cones per sample (N = 60). Mortality after 24, 48 and 72 h post-exposure to ITNs was recorded. RESULTS There was a notable influence of temperature, feeding status and mosquito density on An. funestus mortality for both types of ITNs. Mortality at 24 h post-exposure was significantly higher at 32-33 °C than at 26-27 °C for both the MAGNet [19.33% vs 7%; odds ratio (OR): 3.96, 95% confidence interval (CI): 1.99-7.87, P < 0.001] and Veeralin (91% vs 47.33%; OR: 22.20, 95% CI: 11.45-43.05, P < 0.001) ITNs. Mosquito feeding status influenced the observed mortality. Relative to sugar-fed mosquitoes, The MAGNet ITNs induced higher mortality among blood-fed mosquitoes (7% vs 3%; OR: 2.23, 95% CI: 0.94-5.27, P = 0.068) and significantly higher mortality among starved mosquitoes (8% vs 3%, OR: 2.88, 95% CI: 1.25-6.63, P = 0.013); in comparison, the Veeralin ITNs showed significantly lower mortality among blood-fed mosquitoes (43% vs 57%; OR: 0.56, 95% CI: 0.38-0.81, P = 0.002) and no difference for starved mosquitoes (58% vs 57%; OR: 1.05, 95% CI: 0.72-1.51, P = 0.816). Mortality significantly increased with increasing mosquito density for both the MAGNet (e.g. 5 vs 10 mosquitoes: 7% vs 12%; OR: 1.81, 95% CI: 1.03-3.20, P = 0.040) and Veeralin (e.g. 5 vs 10 mosquitoes: 58% vs 71%; OR 2.06, 95% CI: 1.24-3.42, P = 0.005) ITNs. CONCLUSIONS The results of this study highlight that the testing parameters temperature, feeding status and mosquito density significantly influence the mortality measured in cone bioassays. Careful adherence to testing parameters outlined in WHO ITN testing guidelines will likely improve the repeatability of studies within and between product testing facilities.
Collapse
Affiliation(s)
- Jilly Jackson Mseti
- Vector Control Product Testing Unit, Environmental Health and Ecological Science Department, Ifakara Health Institute, 74, Bagamoyo, Tanzania.
- School of Life Sciences and Bioengineering, The Nelson Mandela African Institution of Science and Technology (NM-AIST), 447, Arusha, Tanzania.
| | - Masudi Suleiman Maasayi
- Vector Control Product Testing Unit, Environmental Health and Ecological Science Department, Ifakara Health Institute, 74, Bagamoyo, Tanzania
- School of Life Sciences and Bioengineering, The Nelson Mandela African Institution of Science and Technology (NM-AIST), 447, Arusha, Tanzania
| | - Aidi Galus Lugenge
- Vector Control Product Testing Unit, Environmental Health and Ecological Science Department, Ifakara Health Institute, 74, Bagamoyo, Tanzania
- School of Life Sciences and Bioengineering, The Nelson Mandela African Institution of Science and Technology (NM-AIST), 447, Arusha, Tanzania
| | - Ahmadi B Mpelepele
- Vector Control Product Testing Unit, Environmental Health and Ecological Science Department, Ifakara Health Institute, 74, Bagamoyo, Tanzania
| | - Ummi Abdul Kibondo
- Vector Control Product Testing Unit, Environmental Health and Ecological Science Department, Ifakara Health Institute, 74, Bagamoyo, Tanzania
| | - Frank Chelestino Tenywa
- Vector Control Product Testing Unit, Environmental Health and Ecological Science Department, Ifakara Health Institute, 74, Bagamoyo, Tanzania
- Vector Biology Unit, Epidemiology and Public Health Department, Swiss Tropical and Public Health Institute, Kreuzstrasse 2, Allschwil, 4123, Basel, Switzerland
- University of Basel, Petersplatz 1, 4001, Basel, Switzerland
| | - Olukayode G Odufuwa
- Vector Control Product Testing Unit, Environmental Health and Ecological Science Department, Ifakara Health Institute, 74, Bagamoyo, Tanzania
- Vector Biology Unit, Epidemiology and Public Health Department, Swiss Tropical and Public Health Institute, Kreuzstrasse 2, Allschwil, 4123, Basel, Switzerland
- University of Basel, Petersplatz 1, 4001, Basel, Switzerland
- MRC International Statistics and Epidemiology Group, London School of Hygiene and Tropical Medicine (LSHTM), London, WC1E 7HT, UK
| | - Mgeni Mohamed Tambwe
- Vector Control Product Testing Unit, Environmental Health and Ecological Science Department, Ifakara Health Institute, 74, Bagamoyo, Tanzania
- Vector Biology Unit, Epidemiology and Public Health Department, Swiss Tropical and Public Health Institute, Kreuzstrasse 2, Allschwil, 4123, Basel, Switzerland
- University of Basel, Petersplatz 1, 4001, Basel, Switzerland
| | - Sarah Jane Moore
- Vector Control Product Testing Unit, Environmental Health and Ecological Science Department, Ifakara Health Institute, 74, Bagamoyo, Tanzania
- School of Life Sciences and Bioengineering, The Nelson Mandela African Institution of Science and Technology (NM-AIST), 447, Arusha, Tanzania
- Vector Biology Unit, Epidemiology and Public Health Department, Swiss Tropical and Public Health Institute, Kreuzstrasse 2, Allschwil, 4123, Basel, Switzerland
- University of Basel, Petersplatz 1, 4001, Basel, Switzerland
| |
Collapse
|
4
|
Ebhodaghe FI, Sanchez-Vargas I, Isaac C, Foy BD, Hemming-Schroeder E. Sibling species of the major malaria vector Anopheles gambiae display divergent preferences for aquatic breeding sites in southern Nigeria. Malar J 2024; 23:60. [PMID: 38413961 PMCID: PMC10900747 DOI: 10.1186/s12936-024-04871-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 02/06/2024] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND When integrated with insecticide-treated bed nets, larval control of Anopheles mosquitoes could fast-track reductions in the incidence of human malaria. However, larval control interventions may deliver suboptimal outcomes where the preferred breeding places of mosquito vectors are not well known. This study investigated the breeding habitat choices of Anopheles mosquitoes in southern Nigeria. The objective was to identify priority sites for mosquito larval management in selected urban and periurban locations where malaria remains a public health burden. METHODS: Mosquito larvae were collected in urban and periurban water bodies during the wet-dry season interface in Edo, Delta, and Anambra States. Field-collected larvae were identified based on PCR gel-electrophoresis and amplicon sequencing, while the associations between Anopheles larvae and the properties and locations of water bodies were assessed using a range of statistical methods. RESULTS Mosquito breeding sites were either man-made (72.09%) or natural (27.91%) and mostly drainages (48.84%) and puddles (25.58%). Anopheles larvae occurred in drainages, puddles, stream margins, and a concrete well, and were absent in drums, buckets, car tires, and a water-holding iron pan, all of which contained culicine larvae. Wild-caught Anopheles larvae comprised Anopheles coluzzii (80.51%), Anopheles gambiae sensu stricto (s.s.) (11.54%), and Anopheles arabiensis (7.95%); a species-specific PCR confirmed the absence of the invasive urban malaria vector Anopheles stephensi among field-collected larvae. Anopheles arabiensis, An. coluzzii, and An. gambiae s.s. displayed preferences for turbid, lowland, and partially sunlit water bodies, respectively. Furthermore, An. arabiensis preferred breeding sites located outside 500 m of households, whereas An. gambiae s.s. and An. coluzzii had increased detection odds in sites within 500 m of households. Anopheles gambiae s.s. and An. coluzzii were also more likely to be present in natural water bodies; meanwhile, 96.77% of An. arabiensis were in man-made water bodies. Intraspecific genetic variations were little in the dominant vector An. coluzzii, while breeding habitat choices of populations made no statistically significant contributions to these variations. CONCLUSION Sibling malaria vectors in the An. gambiae complex display divergent preferences for aquatic breeding habitats in southern Nigeria. The findings are relevant for planning targeted larval control of An. coluzzii whose increasing evolutionary adaptations to urban ecologies are driving the proliferation of the mosquito, and An. arabiensis whose adults typically evade the effects of treated bed nets due to exophilic tendencies.
Collapse
Affiliation(s)
- Faith I Ebhodaghe
- Center for Vector-Borne Infectious Diseases, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Irma Sanchez-Vargas
- Center for Vector-Borne Infectious Diseases, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Clement Isaac
- Department of Zoology, Faculty of Life Sciences, Ambrose Alli University, Ekpoma, Edo State, Nigeria
| | - Brian D Foy
- Center for Vector-Borne Infectious Diseases, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Elizabeth Hemming-Schroeder
- Center for Vector-Borne Infectious Diseases, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
5
|
Agumba S, Moshi V, Muchoki M, Omondi S, Kosgei J, Walker ED, Abong'o B, Achee N, Grieco J, Ochomo E. Experimental hut and field evaluation of a metofluthrin-based spatial repellent against pyrethroid-resistant Anopheles funestus in Siaya County, western Kenya. Parasit Vectors 2024; 17:6. [PMID: 38178213 PMCID: PMC10768102 DOI: 10.1186/s13071-023-06096-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 12/12/2023] [Indexed: 01/06/2024] Open
Abstract
BACKGROUND Spatial repellents (SR) may complement current vector control tools and provide additional coverage when people are not under their bednets or are outdoors. Here we assessed the efficacy of a metofluthrin-based SR in reducing exposure to pyrethroid-resistant Anopheles funestus in Siaya County, western Kenya. METHODS Metofluthrin was vaporized using an emanator configured to a liquid petroleum gas (LPG) canister, placed inside experimental huts (phase 1) or outdoors (phase 2), and evaluated for reductions in human landing rate, density, knockdown and mortality rates of An. funestus, which are present in high density in the area. To demonstrate the mosquito recruiting effect of LPG, a hut with only an LPG cooker but no metofluthrin was added as a comparator and compared with an LPG cooker burning alongside the emanator and a third hut with no LPG cooker as control. Phase 2 evaluated the protective range of the SR product while emanating from the centre of a team of mosquito collectors sitting outdoors in north, south, east and west directions at 5, 10 and 20 feet from the emanating device. RESULTS Combustion of LPG with a cook stove increased the density of An. funestus indoors by 51% over controls with no cook stove. In contrast, huts with metofluthrin vaporized with LPG combustion had lower indoor density of An. funestus (99.3% less than controls), with knockdown and mortality rates of 95.5 and 87.7%, respectively, in the mosquitoes collected in the treated huts. In the outdoor study (phase 2), the outdoor landing rate was significantly lower at 5 and 10 feet than at 20 feet from the emanator. CONCLUSIONS Vaporized metofluthrin almost completely prevented An. funestus landing indoors and led to 10 times lower landing rates within 10 feet of the emanator outdoors, the first product to demonstrate such potential. Cooking with LPG inside the house could increase exposure to Anopheles mosquito bites, but the use of the metofluthrin canister eliminates this risk.
Collapse
Affiliation(s)
- Silas Agumba
- Centre for Global Health Research, Kenya Medical Research Institute, P.O. Box 1578-40100, Kisumu, Kenya.
| | - Vincent Moshi
- Centre for Global Health Research, Kenya Medical Research Institute, P.O. Box 1578-40100, Kisumu, Kenya
| | - Margaret Muchoki
- Centre for Global Health Research, Kenya Medical Research Institute, P.O. Box 1578-40100, Kisumu, Kenya
| | - Seline Omondi
- Centre for Global Health Research, Kenya Medical Research Institute, P.O. Box 1578-40100, Kisumu, Kenya
| | - Jackline Kosgei
- Centre for Global Health Research, Kenya Medical Research Institute, P.O. Box 1578-40100, Kisumu, Kenya
| | - Edward D Walker
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, 48824, USA
| | - Bernard Abong'o
- Centre for Global Health Research, Kenya Medical Research Institute, P.O. Box 1578-40100, Kisumu, Kenya
| | - Nicole Achee
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA
| | - John Grieco
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA
| | - Eric Ochomo
- Centre for Global Health Research, Kenya Medical Research Institute, P.O. Box 1578-40100, Kisumu, Kenya.
| |
Collapse
|
6
|
Araújo MF, Castanheira EMS, Sousa SF. The Buzz on Insecticides: A Review of Uses, Molecular Structures, Targets, Adverse Effects, and Alternatives. Molecules 2023; 28:molecules28083641. [PMID: 37110875 PMCID: PMC10144373 DOI: 10.3390/molecules28083641] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/14/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Insecticides play a critical role in controlling the spread of insect-borne diseases and preserving crop health. These chemical substances are specifically formulated to kill or manage insect populations. Over the years, various types of insecticides have been developed, including organophosphates, carbamates, pyrethroids, and neonicotinoids, each with unique modes of action, physiological targets, and efficacy. Despite the advantages that insecticides offer, it is imperative to recognize the potential consequences on non-target species, the environment, and human health. It is therefore crucial to follow recommended label instructions and employ integrated pest management practices for the judicious use of insecticides. This review article provides an in-depth examination of the various types of insecticides, including their modes of action, physiological targets, environmental and human health impacts, and alternatives. The aim is to furnish a comprehensive overview of insecticides and to emphasize the significance of responsible and sustainable utilization.
Collapse
Affiliation(s)
- Maria F Araújo
- UCIBIO/REQUIMTE, BioSIM-Department of Medicine, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Elisabete M S Castanheira
- Physics Centre of Minho and Porto Universities (CF-UM-UP), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- Associate Laboratory LaPMET, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Sérgio F Sousa
- UCIBIO/REQUIMTE, BioSIM-Department of Medicine, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| |
Collapse
|
7
|
Ondeto BM, Wang X, Atieli H, Zhong D, Zhou G, Lee MC, Orondo PW, Ochwedo KO, Omondi CJ, Muriu SM, Odongo DO, Ochanda H, Kazura J, Githeko AK, Yan G. A prospective cohort study of Plasmodium falciparum malaria in three sites of Western Kenya. Parasit Vectors 2022; 15:416. [PMID: 36352453 PMCID: PMC9647947 DOI: 10.1186/s13071-022-05503-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 09/14/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Malaria in western Kenya is currently characterized by sustained high Plasmodial transmission and infection resurgence, despite positive responses in some areas following intensified malaria control interventions since 2006. This study aimed to evaluate long-term changes in malaria transmission profiles and to assess patterns of asymptomatic malaria infections in school children aged 5-15 years at three sites in western Kenya with heterogeneous malaria transmission and simultaneous malaria control interventions. METHODS The study was conducted from 2018 to 2019 and is based on data taken every third year from 2005 to 2014 during a longitudinal parasitological and mosquito adult surveillance and malaria control programme that was initiated in 2002 in the villages of Kombewa, Iguhu, and Marani. Plasmodium spp. infections were determined using microscopy. Mosquito samples were identified to species and host blood meal source and sporozoite infections were assayed using polymerase chain reaction. RESULTS Plasmodium falciparum was the only malaria parasite evaluated during this study (2018-2019). Asymptomatic malaria parasite prevalence in school children decreased in all sites from 2005 to 2008. However, since 2011, parasite prevalence has resurged by > 40% in Kombewa and Marani. Malaria vector densities showed similar reductions from 2005 to 2008 in all sites, rose steadily until 2014, and decreased again. Overall, Kombewa had a higher risk of infection compared to Iguhu (χ2 = 552.52, df = 1, P < 0.0001) and Marani (χ2 = 1127.99, df = 1, P < 0.0001). There was a significant difference in probability of non-infection during malaria episodes (log-rank test, χ2 = 617.59, df = 2, P < 0.0001) in the study sites, with Kombewa having the least median time of non-infection during malaria episodes. Gender bias toward males in infection was observed (χ2 = 27.17, df = 1, P < 0.0001). The annual entomological inoculation rates were 5.12, 3.65, and 0.50 infective bites/person/year at Kombewa, Iguhu, and Marani, respectively, during 2018 to 2019. CONCLUSIONS Malaria prevalence in western Kenya remains high and has resurged in some sites despite continuous intervention efforts. Targeting malaria interventions to those with asymptomatic infections who serve as human reservoirs might decrease malaria transmission and prevent resurgences. Longitudinal monitoring enables detection of changes in parasitological and entomological profiles and provides core baseline data for the evaluation of vector interventions and guidance for future planning of malaria control.
Collapse
Affiliation(s)
- Benyl M. Ondeto
- grid.10604.330000 0001 2019 0495Department of Biology, University of Nairobi, Nairobi, 00100 Kenya ,Sub-Saharan Africa International Center of Excellence for Malaria Research, Tom Mboya University, Homa Bay, 40300 Kenya
| | - Xiaoming Wang
- grid.266093.80000 0001 0668 7243Program in Public Health, College of Health Sciences, University of California at Irvine, Irvine, CA 92697 USA
| | - Harrysone Atieli
- Sub-Saharan Africa International Center of Excellence for Malaria Research, Tom Mboya University, Homa Bay, 40300 Kenya
| | - Daibin Zhong
- grid.266093.80000 0001 0668 7243Program in Public Health, College of Health Sciences, University of California at Irvine, Irvine, CA 92697 USA
| | - Guofa Zhou
- grid.266093.80000 0001 0668 7243Program in Public Health, College of Health Sciences, University of California at Irvine, Irvine, CA 92697 USA
| | - Ming-Chieh Lee
- grid.266093.80000 0001 0668 7243Program in Public Health, College of Health Sciences, University of California at Irvine, Irvine, CA 92697 USA
| | - Pauline Winnie Orondo
- Sub-Saharan Africa International Center of Excellence for Malaria Research, Tom Mboya University, Homa Bay, 40300 Kenya ,grid.411943.a0000 0000 9146 7108Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, Nairobi, 00200 Kenya
| | - Kevin O. Ochwedo
- grid.10604.330000 0001 2019 0495Department of Biology, University of Nairobi, Nairobi, 00100 Kenya ,Sub-Saharan Africa International Center of Excellence for Malaria Research, Tom Mboya University, Homa Bay, 40300 Kenya
| | - Collince J. Omondi
- grid.10604.330000 0001 2019 0495Department of Biology, University of Nairobi, Nairobi, 00100 Kenya ,Sub-Saharan Africa International Center of Excellence for Malaria Research, Tom Mboya University, Homa Bay, 40300 Kenya
| | - Simon M. Muriu
- grid.449370.d0000 0004 1780 4347Department of Biological Sciences, Pwani University, Kilifi, 80108 Kenya
| | - David O. Odongo
- grid.10604.330000 0001 2019 0495Department of Biology, University of Nairobi, Nairobi, 00100 Kenya
| | - Horace Ochanda
- grid.10604.330000 0001 2019 0495Department of Biology, University of Nairobi, Nairobi, 00100 Kenya
| | - James Kazura
- grid.67105.350000 0001 2164 3847Center for Global Health and Disease, Case Western Reserve University, Cleveland, OH 44106 USA
| | - Andrew K. Githeko
- Sub-Saharan Africa International Center of Excellence for Malaria Research, Tom Mboya University, Homa Bay, 40300 Kenya ,grid.33058.3d0000 0001 0155 5938Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, 40100 Kenya
| | - Guiyun Yan
- grid.266093.80000 0001 0668 7243Program in Public Health, College of Health Sciences, University of California at Irvine, Irvine, CA 92697 USA
| |
Collapse
|
8
|
Couper LI, Farner JE, Caldwell JM, Childs ML, Harris MJ, Kirk DG, Nova N, Shocket M, Skinner EB, Uricchio LH, Exposito-Alonso M, Mordecai EA. How will mosquitoes adapt to climate warming? eLife 2021; 10:69630. [PMID: 34402424 PMCID: PMC8370766 DOI: 10.7554/elife.69630] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/13/2021] [Indexed: 12/14/2022] Open
Abstract
The potential for adaptive evolution to enable species persistence under a changing climate is one of the most important questions for understanding impacts of future climate change. Climate adaptation may be particularly likely for short-lived ectotherms, including many pest, pathogen, and vector species. For these taxa, estimating climate adaptive potential is critical for accurate predictive modeling and public health preparedness. Here, we demonstrate how a simple theoretical framework used in conservation biology-evolutionary rescue models-can be used to investigate the potential for climate adaptation in these taxa, using mosquito thermal adaptation as a focal case. Synthesizing current evidence, we find that short mosquito generation times, high population growth rates, and strong temperature-imposed selection favor thermal adaptation. However, knowledge gaps about the extent of phenotypic and genotypic variation in thermal tolerance within mosquito populations, the environmental sensitivity of selection, and the role of phenotypic plasticity constrain our ability to make more precise estimates. We describe how common garden and selection experiments can be used to fill these data gaps. Lastly, we investigate the consequences of mosquito climate adaptation on disease transmission using Aedes aegypti-transmitted dengue virus in Northern Brazil as a case study. The approach outlined here can be applied to any disease vector or pest species and type of environmental change.
Collapse
Affiliation(s)
- Lisa I Couper
- Department of Biology, Stanford University, Stanford, United States
| | | | - Jamie M Caldwell
- Department of Biology, Stanford University, Stanford, United States.,Department of Biology, University of Hawaii at Manoa, Honolulu, United States
| | - Marissa L Childs
- Emmett Interdisciplinary Program in Environment and Resources, Stanford University, Stanford, United States
| | - Mallory J Harris
- Department of Biology, Stanford University, Stanford, United States
| | - Devin G Kirk
- Department of Biology, Stanford University, Stanford, United States.,Department of Zoology, University of Toronto, Toronto, Canada
| | - Nicole Nova
- Department of Biology, Stanford University, Stanford, United States
| | - Marta Shocket
- Department of Biology, Stanford University, Stanford, United States.,Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, United States
| | - Eloise B Skinner
- Department of Biology, Stanford University, Stanford, United States.,Environmental Futures Research Institute, Griffith University, Brisbane, Australia
| | - Lawrence H Uricchio
- Department of Integrative Biology, University of California, Berkeley, Berkeley, United States
| | - Moises Exposito-Alonso
- Department of Biology, Stanford University, Stanford, United States.,Department of Plant Biology, Carnegie Institution for Science, Stanford, United States
| | - Erin A Mordecai
- Department of Biology, Stanford University, Stanford, United States
| |
Collapse
|
9
|
Thongsripong P, Hyman JM, Kapan DD, Bennett SN. Human-Mosquito Contact: A Missing Link in Our Understanding of Mosquito-Borne Disease Transmission Dynamics. ANNALS OF THE ENTOMOLOGICAL SOCIETY OF AMERICA 2021; 114:397-414. [PMID: 34249219 PMCID: PMC8266639 DOI: 10.1093/aesa/saab011] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Indexed: 05/26/2023]
Abstract
Despite the critical role that contact between hosts and vectors, through vector bites, plays in driving vector-borne disease (VBD) transmission, transmission risk is primarily studied through the lens of vector density and overlooks host-vector contact dynamics. This review article synthesizes current knowledge of host-vector contact with an emphasis on mosquito bites. It provides a framework including biological and mathematical definitions of host-mosquito contact rate, blood-feeding rate, and per capita biting rates. We describe how contact rates vary and how this variation is influenced by mosquito and vertebrate factors. Our framework challenges a classic assumption that mosquitoes bite at a fixed rate determined by the duration of their gonotrophic cycle. We explore alternative ecological assumptions based on the functional response, blood index, forage ratio, and ideal free distribution within a mechanistic host-vector contact model. We highlight that host-vector contact is a critical parameter that integrates many factors driving disease transmission. A renewed focus on contact dynamics between hosts and vectors will contribute new insights into the mechanisms behind VBD spread and emergence that are sorely lacking. Given the framework for including contact rates as an explicit component of mathematical models of VBD, as well as different methods to study contact rates empirically to move the field forward, researchers should explicitly test contact rate models with empirical studies. Such integrative studies promise to enhance understanding of extrinsic and intrinsic factors affecting host-vector contact rates and thus are critical to understand both the mechanisms driving VBD emergence and guiding their prevention and control.
Collapse
Affiliation(s)
- Panpim Thongsripong
- Department of Microbiology, California Academy of Sciences, 55 Music Concourse Drive, San Francisco, CA 94118, USA
| | - James M Hyman
- Department of Mathematics, Tulane University, 6823 St. Charles Avenue, New Orleans, LA 70118, USA
| | - Durrell D Kapan
- Department of Entomology and Center for Comparative Genomics, Institute of Biodiversity Sciences and Sustainability, California Academy of Sciences, 55 Music Concourse Drive, San Francisco, CA 94118, USA
- Center for Conservation and Research Training, Pacific Biosciences Research Center, University of Hawai’i at Manoa, 3050 Maile Way, Honolulu, HI 96822
| | - Shannon N Bennett
- Department of Microbiology, California Academy of Sciences, 55 Music Concourse Drive, San Francisco, CA 94118, USA
| |
Collapse
|
10
|
Clegban CMY, Camara S, Koffi AA, Ahoua Alou LP, Kabran Kouame JP, Koffi AF, Kouassi PK, Moiroux N, Pennetier C. Evaluation of Yahe ® and Panda ® 2.0 long-lasting insecticidal nets against wild pyrethroid-resistant Anopheles gambiae s.l. from Côte d'Ivoire: an experimental hut trial. Parasit Vectors 2021; 14:347. [PMID: 34210362 PMCID: PMC8247218 DOI: 10.1186/s13071-021-04843-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/11/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Long-lasting insecticidal nets (LLINs) have played an important role in reducing the global malaria burden since 2000. They are a core prevention tool used widely by people at risk of malaria. The Vector Control Prequalification mechanism of the Word Health Organization (WHO-Vector Control PQ) established the testing and evaluation guidelines for LLINs before registration for public use. In the present study, two new brands of deltamethrin-impregnated nets (Yahe® LN and Panda® Net 2.0) were evaluated in an experimental hut against wild pyrethroid-resistant Anopheles gambiae s.l. in M'Bé nearby Bouaké, central Côte d'Ivoire. METHODS The performance of Yahe® LN and Panda® Net 2.0 was compared with that of PermaNet 2.0, conventionally treated nets (CTN), and untreated net to assess the blood-feeding inhibition, deterrence, induced exophily, and mortality. RESULTS Cone bioassay results showed that Panda® Net 2.0, PermaNet 2.0 and Yahe® LN (both unwashed and washed 20 times) induced > 95% knockdown or > 80% mortality of the susceptible Anopheles gambiae Kisumu strain. With the pyrethroid-resistant M'Bé strain, mortality rate for all treated nets did not exceed 70%. There was a significant reduction in entry and blood feeding (p < 0.05) and an increase in exophily and mortality rates (p < 0.05) with all treatments compared to untreated nets, except the CTNs. However, the personal protection induced by these treated nets decreased significantly after 20 washes. The performance of Panda® Net 2.0 was equal to PermaNet® 2.0 in terms of inhibiting blood feeding, but better than PermaNet® 2.0 in terms of mortality. CONCLUSION This study showed that Yahe® LN and Panda® Net 2.0 met the WHO Pesticide Evaluation Scheme (WHOPES) criteria to undergo phase III trial at the community level. Due to an increasing spread and development of pyrethroid resistance in malaria vectors, control of malaria transmission must evolve into an integrated vector management relying on a large variety of efficient control tools.
Collapse
Affiliation(s)
- Cyntia-Muriel Y Clegban
- Institut Pierre Richet/Institut National de Santé Publique (INSP), Bouaké, Côte d'Ivoire. .,Université Félix Houphouët-Boigny, Abidjan, Côte d'Ivoire. .,MIVEGEC, Univ Montpellier, CNRS, IRD, Montpellier, France.
| | - Soromane Camara
- Institut Pierre Richet/Institut National de Santé Publique (INSP), Bouaké, Côte d'Ivoire.,Université Félix Houphouët-Boigny, Abidjan, Côte d'Ivoire.,MIVEGEC, Univ Montpellier, CNRS, IRD, Montpellier, France
| | - A Alphonsine Koffi
- Institut Pierre Richet/Institut National de Santé Publique (INSP), Bouaké, Côte d'Ivoire
| | - Ludovic P Ahoua Alou
- Institut Pierre Richet/Institut National de Santé Publique (INSP), Bouaké, Côte d'Ivoire
| | | | - A Fernand Koffi
- Institut Pierre Richet/Institut National de Santé Publique (INSP), Bouaké, Côte d'Ivoire
| | | | | | - Cédric Pennetier
- Institut Pierre Richet/Institut National de Santé Publique (INSP), Bouaké, Côte d'Ivoire.,MIVEGEC, Univ Montpellier, CNRS, IRD, Montpellier, France
| |
Collapse
|
11
|
Mwingira VS, Mboera LEG, Takken W. Synergism between nonane and emanations from soil as cues in oviposition-site selection of natural populations of Anopheles gambiae and Culex quinquefasciatus. Malar J 2021; 20:52. [PMID: 33478526 PMCID: PMC7819190 DOI: 10.1186/s12936-020-03575-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 12/31/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Olfactory cues have been shown to have an important role in guiding gravid mosquito females to selected sites for egg laying. The objective of this study was to determine the influence of emanations from soil from a breeding site and the putative oviposition pheromone nonane on oviposition-site selection of natural populations of Anopheles gambiae sensu lato (s.l.) and Culex quinquefasciatus. METHODS This field-based study was conducted in Mvomero District in East-central Tanzania. In a dual-choice experimental set up, clay bowls were dug into the ground and filled with one of the following treatments: (i) distilled water + autoclaved soil (control), (ii) distilled water + soil from a natural mosquito breeding site, (iii) distilled water + nonane and (iv) distilled water + nonane + soil from a natural breeding site. Soil was dried and autoclaved or dried only before use. After five days of incubation, larvae were collected daily for 10 days. The median number of larvae per bowl per day was used as outcome measure. RESULTS Autoclaved soil had a significant attractive effect on oviposition behaviour of Cx. quinquefasciatus (median values ± s.e: 8.0 ± 1.1; P < 0.005) but no effect on An. gambiae (median value ± s.e: 0.0 ± 0.2; P = 0.18). Nonane and emanations from untreated soil significantly and positively influenced the selection of oviposition sites by both An. gambiae s.l. (median values ± s.e.: 12.0 ± 2.0 and 4.5 ± 1.5, respectively; P < 0.0001) and Cx. quinquefasciatus (median values ± s.e.: 19.0 ± 1.3 and 17.0 ± 2.0, respectively; P < 0.0001). A mixture of nonane and untreated soil caused a synergistic effect on oviposition behaviour in An. gambiae s.l. (median value ± s.e.: 23.5 ± 2.5; P < 0.0001) compared to either nonane (median values ± s.e.: 12.0 ± 2.0; P < 0.0001) or untreated soil alone (median value ± s.e.: 4.5 ± 1.5; P < 0.0001). A synergistic effect of nonane mixed with untreated soil was also found in Cx. quinquefasciatus (median value ± s.e.: 41.0 ± 2.1; P < 0.0001) compared to either nonane (median value ± s.e. 19.0 ± 1.3; P < 0.0001) or untreated soil alone (median value ± s.e.: 17.0 ± 2.0; P < 0.0001). The oviposition activity index for An. gambiae was 0.56 (P < 0.001) and for Cx. quinquefasciatus 0.59 (P < 0.0001). CONCLUSIONS The larval pheromone nonane and emanations from breeding-site soil both induced oviposition in wild An. gambiae s.l. and Cx. quinquefasciatus, with a synergistic effect when both stimuli were present simultaneously. This is the first study in which nonane is shown to cause oviposition under natural conditions, suggesting that this compound can potentially be exploited for the management of mosquito vectors.
Collapse
Affiliation(s)
- Victor S Mwingira
- Laboratory of Entomology, Wageningen University & Research, P.O. Box 16, 6700 AA, Wageningen, The Netherlands.,SACIDS Foundation for One Health, Sokoine University of Agriculture, Chuo Kikuu, P.O. Box 3297, Morogoro, Tanzania
| | - Leonard E G Mboera
- SACIDS Foundation for One Health, Sokoine University of Agriculture, Chuo Kikuu, P.O. Box 3297, Morogoro, Tanzania
| | - Willem Takken
- Laboratory of Entomology, Wageningen University & Research, P.O. Box 16, 6700 AA, Wageningen, The Netherlands.
| |
Collapse
|
12
|
Host feeding patterns of Nyssorhynchus darlingi (Diptera: Culicidae) in the Brazilian Amazon. Acta Trop 2021; 213:105751. [PMID: 33166514 DOI: 10.1016/j.actatropica.2020.105751] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 10/31/2020] [Indexed: 12/12/2022]
Abstract
Nyssorhynchus darlingi (Root) is the dominant malaria vector in the Brazilian Amazon River basin, with additional Anophelinae Grassi species involved in local and regional transmission. Mosquito blood-feeding behavior is an essential component to define the mosquito-human contact rate and shape the transmission cycle of vector-borne diseases. However, there is little information on the host preferences and blood-feeding behavior of Anophelinae vectors in rural Amazonian landscapes. The barrier screen sampling (BSS) method was employed to sample females from 34 peridomestic habitats in 27 rural communities from 11 municipalities in the Brazilian Amazon states of Acre, Amazonas, Pará and Rondônia, from August 2015 to November 2017. Nyssorhynchus darlingi comprised 97.94% of the females collected resting on barrier screens, and DNA sequence comparison detected 9 vertebrate hosts species. The HBI index ranged from 0.03-1.00. Results revealed the plasticity of Ny. darlingi in blood-feeding on a wide range of mainly mammalian hosts. In addition, the identification of blood meal sources using silica-dried females is appropriate for studies of human malaria vectors in remote locations.
Collapse
|
13
|
Okumu F. The fabric of life: what if mosquito nets were durable and widely available but insecticide-free? Malar J 2020; 19:260. [PMID: 32690016 PMCID: PMC7370456 DOI: 10.1186/s12936-020-03321-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/04/2020] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Bed nets are the commonest malaria prevention tool and arguably the most cost-effective. Their efficacy is because they prevent mosquito bites (a function of physical durability and integrity), and kill mosquitoes (a function of chemical content and mosquito susceptibility). This essay follows the story of bed nets, insecticides and malaria control, and asks whether the nets must always have insecticides. METHODS Key attributes of untreated or pyrethroid-treated nets are examined alongside observations of their entomological and epidemiological impacts. Arguments for and against adding insecticides to nets are analysed in contexts of pyrethroid resistance, personal-versus-communal protection, outdoor-biting, need for local production and global health policies. FINDINGS Widespread resistance in African malaria vectors has greatly weakened the historical mass mosquitocidal effects of insecticide-treated nets (ITNs), which previously contributed communal benefits to users and non-users. Yet ITNs still achieve substantial epidemiological impact, suggesting that physical integrity, consistent use and population-level coverage are increasingly more important than mosquitocidal properties. Pyrethroid-treatment remains desirable where vectors are sufficiently susceptible, but is no longer universally necessary and should be re-examined alongside other attributes, e.g. durability, coverage, acceptability and access. New ITNs with multiple actives or synergists could provide temporary relief in some settings, but their performance, higher costs, and drawn-out innovation timelines do not justify singular emphasis on insecticides. Similarly, sub-lethal insecticides may remain marginally-impactful by reducing survival of older mosquitoes and disrupting parasite development inside the mosquitoes, but such effects vanish under strong resistance. CONCLUSIONS The public health value of nets is increasingly driven by bite prevention, and decreasingly by lethality to mosquitoes. For context-appropriate solutions, it is necessary to acknowledge and evaluate the potential and cost-effectiveness of durable untreated nets across different settings. Though ~ 90% of malaria burden occurs in Africa, most World Health Organization-prequalified nets are manufactured outside Africa, since many local manufacturers lack capacity to produce the recommended insecticidal nets at competitive scale and pricing. By relaxing conditions for insecticides on nets, it is conceivable that non-insecticidal but durable, and possibly bio-degradable nets, could be readily manufactured locally. This essay aims not to discredit ITNs, but to illustrate how singular focus on insecticides can hinder innovation and sustainability.
Collapse
Affiliation(s)
- Fredros Okumu
- Environmental Health & Ecological Sciences, Ifakara Health Institute, Ifakara, Tanzania.
- School of Public Health, University of the Witwatersrand, Johannesburg, Republic of South Africa.
- Institute of Biodiversity, Animal Health & Comparative Medicine, University of Glasgow, Glasgow, UK.
- School of Life Science and Bioengineering, Nelson Mandela African Institution of Science & Technology, Arusha, Tanzania.
| |
Collapse
|
14
|
Monroe A, Moore S, Okumu F, Kiware S, Lobo NF, Koenker H, Sherrard-Smith E, Gimnig J, Killeen GF. Methods and indicators for measuring patterns of human exposure to malaria vectors. Malar J 2020; 19:207. [PMID: 32546166 PMCID: PMC7296719 DOI: 10.1186/s12936-020-03271-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 05/29/2020] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Effective targeting and evaluation of interventions that protect against adult malaria vectors requires an understanding of how gaps in personal protection arise. An improved understanding of human and mosquito behaviour, and how they overlap in time and space, is critical to estimating the impact of insecticide-treated nets (ITNs) and determining when and where supplemental personal protection tools are needed. Methods for weighting estimates of human exposure to biting Anopheles mosquitoes according to where people spend their time were first developed over half a century ago. However, crude indoor and outdoor biting rates are still commonly interpreted as indicative of human-vector contact patterns without any adjustment for human behaviour or the personal protection effects of ITNs. MAIN TEXT A small number of human behavioural variables capturing the distribution of human populations indoors and outdoors, whether they are awake or asleep, and if and when they use an ITN over the course of the night, can enable a more accurate representation of human biting exposure patterns. However, to date no clear guidance is available on what data should be collected, what indicators should be reported, or how they should be calculated. This article presents an integrated perspective on relevant indicators of human-vector interactions, the critical entomological and human behavioural data elements required to quantify human-vector interactions, and recommendations for collecting and analysing such data. CONCLUSIONS If collected and used consistently, this information can contribute to an improved understanding of how malaria transmission persists in the context of current intervention tools, how exposure patterns may change as new vector control tools are introduced, and the potential impact and limitations of these tools. This article is intended to consolidate understanding around work on this topic to date and provide a consistent framework for building upon it. Additional work is needed to address remaining questions, including further development and validation of methods for entomological and human behavioural data collection and analysis.
Collapse
Affiliation(s)
- April Monroe
- Johns Hopkins Center for Communication Programs, PMI VectorWorks Project, Baltimore, MD, USA.
- University of Basel, Basel, Switzerland.
- Swiss Tropical and Public Health Institute, Basel, Switzerland.
| | - Sarah Moore
- University of Basel, Basel, Switzerland
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Ifakara, Tanzania
| | - Fredros Okumu
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Ifakara, Tanzania
- School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Parktown, Republic of South Africa
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Samson Kiware
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Ifakara, Tanzania
| | - Neil F Lobo
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA
| | - Hannah Koenker
- Johns Hopkins Center for Communication Programs, PMI VectorWorks Project, Baltimore, MD, USA
| | - Ellie Sherrard-Smith
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, Norfolk Place, London, W2 1PG, UK
| | - John Gimnig
- Division of Parasitic Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Gerry F Killeen
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Ifakara, Tanzania
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
- School of Biological, Earth & Environmental Sciences and Environmental Research Institute, University College Cork, Cork, Republic of Ireland
| |
Collapse
|
15
|
Perugini E, Guelbeogo WM, Calzetta M, Manzi S, Virgillito C, Caputo B, Pichler V, Ranson H, Sagnon N, Della Torre A, Pombi M. Behavioural plasticity of Anopheles coluzzii and Anopheles arabiensis undermines LLIN community protective effect in a Sudanese-savannah village in Burkina Faso. Parasit Vectors 2020; 13:277. [PMID: 32487147 PMCID: PMC7268364 DOI: 10.1186/s13071-020-04142-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 05/21/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Despite the overall major impact of long-lasting insecticide treated nets (LLINs) in eliciting individual and collective protection to malaria infections, some sub-Saharan countries, including Burkina Faso, still carry a disproportionately high share of the global malaria burden. This study aims to analyse the possible entomological bases of LLIN limited impact, focusing on a LLIN-protected village in the Plateau Central region of Burkina Faso. METHODS Human landing catches (HLCs) were carried out in 2015 for 12 nights both indoors and outdoors at different time windows during the highest biting activity phase for Anopheles gambiae (s.l.). Collected specimens were morphologically and molecularly identified and processed for Plasmodium detection and L1014F insecticide-resistance allele genotyping. RESULTS Almost 2000 unfed An. gambiae (s.l.) (54% Anopheles coluzzii and 44% Anopheles arabiensis) females landing on human volunteers were collected, corresponding to a median number of 23.5 females/person/hour. No significant differences were observed in median numbers of mosquitoes collected indoors and outdoors, nor between sporozoite rates in An. coluzzii (6.1%) and An. arabiensis (5.5%). The estimated median hourly entomological inoculation rate (EIR) on volunteers was 1.4 infective bites/person/hour. Results do not show evidence of the biting peak during night hours typical for An. gambiae (s.l.) in the absence of bednet protection. The frequency of the L1014F resistant allele (n = 285) was 66% in An. coluzzii and 38% in An. arabiensis. CONCLUSIONS The observed biting rate and sporozoite rates are in line with the literature data available for An. gambiae (s.l.) in the same geographical area before LLIN implementation and highlight high levels of malaria transmission in the study village. Homogeneous biting rate throughout the night and lack of preference for indoor-biting activity, suggest the capacity of both An. coluzzii and An. arabiensis to adjust their host-seeking behaviour to bite humans despite bednet protection, accounting for the maintenance of high rates of mosquito infectivity and malaria transmission. These results, despite being limited to a local situation in Burkina Faso, represent a paradigmatic example of how high densities and behavioural plasticity in the vector populations may contribute to explaining the limited impact of LLINs on malaria transmission in holo-endemic Sudanese savannah areas in West Africa.
Collapse
Affiliation(s)
- Eleonora Perugini
- Dipartimento di Sanità Pubblica e Malattie Infettive, Laboratory affiliated to Istituto Pasteur Italia, Fondazione Cenci Bolognetti, Sapienza Università di Roma, Rome, 00185, Italy
| | - Wamdaogo Moussa Guelbeogo
- Centre National de Recherche et Formation sur le Paludisme (CNRFP), Ouagadougou 01, BP 2208, Burkina Faso
| | - Maria Calzetta
- Dipartimento di Sanità Pubblica e Malattie Infettive, Laboratory affiliated to Istituto Pasteur Italia, Fondazione Cenci Bolognetti, Sapienza Università di Roma, Rome, 00185, Italy
| | - Sara Manzi
- Dipartimento di Sanità Pubblica e Malattie Infettive, Laboratory affiliated to Istituto Pasteur Italia, Fondazione Cenci Bolognetti, Sapienza Università di Roma, Rome, 00185, Italy
| | - Chiara Virgillito
- Dipartimento di Sanità Pubblica e Malattie Infettive, Laboratory affiliated to Istituto Pasteur Italia, Fondazione Cenci Bolognetti, Sapienza Università di Roma, Rome, 00185, Italy.,Dipartimento di Biodiversità ed Ecologia Molecolare, Centro Ricerca e Innovazione, Fondazione Edmund Mach, San Michele all'Adige, Trento, Italy
| | - Beniamino Caputo
- Dipartimento di Sanità Pubblica e Malattie Infettive, Laboratory affiliated to Istituto Pasteur Italia, Fondazione Cenci Bolognetti, Sapienza Università di Roma, Rome, 00185, Italy
| | - Verena Pichler
- Dipartimento di Sanità Pubblica e Malattie Infettive, Laboratory affiliated to Istituto Pasteur Italia, Fondazione Cenci Bolognetti, Sapienza Università di Roma, Rome, 00185, Italy
| | - Hilary Ranson
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - N'Fale Sagnon
- Centre National de Recherche et Formation sur le Paludisme (CNRFP), Ouagadougou 01, BP 2208, Burkina Faso
| | - Alessandra Della Torre
- Dipartimento di Sanità Pubblica e Malattie Infettive, Laboratory affiliated to Istituto Pasteur Italia, Fondazione Cenci Bolognetti, Sapienza Università di Roma, Rome, 00185, Italy.
| | - Marco Pombi
- Dipartimento di Sanità Pubblica e Malattie Infettive, Laboratory affiliated to Istituto Pasteur Italia, Fondazione Cenci Bolognetti, Sapienza Università di Roma, Rome, 00185, Italy.
| |
Collapse
|
16
|
Abong'o B, Gimnig JE, Torr SJ, Longman B, Omoke D, Muchoki M, Ter Kuile F, Ochomo E, Munga S, Samuels AM, Njagi K, Maas J, Perry RT, Fornadel C, Donnelly MJ, Oxborough RM. Impact of indoor residual spraying with pirimiphos-methyl (Actellic 300CS) on entomological indicators of transmission and malaria case burden in Migori County, western Kenya. Sci Rep 2020; 10:4518. [PMID: 32161302 PMCID: PMC7066154 DOI: 10.1038/s41598-020-61350-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 02/25/2020] [Indexed: 11/16/2022] Open
Abstract
Indoor residual spraying (IRS) of insecticides is a major vector control strategy for malaria prevention. We evaluated the impact of a single round of IRS with the organophosphate, pirimiphos-methyl (Actellic 300CS), on entomological and parasitological parameters of malaria in Migori County, western Kenya in 2017, in an area where primary vectors are resistant to pyrethroids but susceptible to the IRS compound. Entomological monitoring was conducted by indoor CDC light trap, pyrethrum spray catches (PSC) and human landing collection (HLC) before and after IRS. The residual effect of the insecticide was assessed monthly by exposing susceptible An. gambiae s.s. Kisumu strain to sprayed surfaces in cone assays and measuring mortality at 24 hours. Malaria case burden data were extracted from laboratory records of four health facilities within the sprayed area and two adjacent unsprayed areas. IRS was associated with reductions in An. funestus numbers in the intervention areas compared to non-intervention areas by 88% with light traps (risk ratio [RR] 0.12, 95% CI 0.07-0.21, p < 0.001) and 93% with PSC collections (RR = 0.07, 0.03-0.17, p < 0.001). The corresponding reductions in the numbers of An. arabiensis collected by PSC were 69% in the intervention compared to the non-intervention areas (RR = 0.31, 0.14-0.68, p = 0.006), but there was no significant difference with light traps (RR = 0.45, 0.21-0.96, p = 0.05). Before IRS, An. funestus accounted for over 80% of Anopheles mosquitoes collected by light trap and PSC in all sites. After IRS, An. arabiensis accounted for 86% of Anopheles collected by PSC and 66% by CDC light trap in the sprayed sites while the proportion in non-intervention sites remained unchanged. No sporozoite infections were detected in intervention areas after IRS and biting rates by An. funestus were reduced to near zero. Anopheles funestus and An. arabiensis were fully susceptible to pirimiphos-methyl and resistant to pyrethroids. The residual effect of Actellic 300CS lasted ten months on mud and concrete walls. Malaria case counts among febrile patients within IRS areas was lower post- compared to pre-IRS by 44%, 65% and 47% in Rongo, Uriri and Nyatike health facilities respectively. A single application of IRS with Actellic 300CS in Migori County provided ten months protection and resulted in the near elimination of the primary malaria vector An. funestus and a corresponding reduction of malaria case count among out-patients. The impact was less on An. arabiensis, most likely due to their exophilic nature.
Collapse
Affiliation(s)
- Bernard Abong'o
- Abt Associates, PMI VectorLink Project, White House, Milimani, Ojijo Oteko Road, P.O. Box 895-40123, Kisumu, Kenya.
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK.
- Centre for Global Health Research, Kenya Medical Research Institute, P.O. Box 1578, Kisumu, Kenya.
| | - John E Gimnig
- Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, 30333, USA
| | - Stephen J Torr
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Bradley Longman
- Abt Associates, PMI VectorLink Project, White House, Milimani, Ojijo Oteko Road, P.O. Box 895-40123, Kisumu, Kenya
| | - Diana Omoke
- Abt Associates, PMI VectorLink Project, White House, Milimani, Ojijo Oteko Road, P.O. Box 895-40123, Kisumu, Kenya
| | - Margaret Muchoki
- Abt Associates, PMI VectorLink Project, White House, Milimani, Ojijo Oteko Road, P.O. Box 895-40123, Kisumu, Kenya
| | - Feiko Ter Kuile
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Eric Ochomo
- Centre for Global Health Research, Kenya Medical Research Institute, P.O. Box 1578, Kisumu, Kenya
| | - Stephen Munga
- Centre for Global Health Research, Kenya Medical Research Institute, P.O. Box 1578, Kisumu, Kenya
| | - Aaron M Samuels
- Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, 30333, USA
| | - Kiambo Njagi
- Kenya National Malaria Control Programme (NMCP), Ministry of Health, PO Box 19982, Kenyatta National Hospital, Nairobi, 00202, Kenya
| | - James Maas
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Robert T Perry
- The United States Presidents Malaria Initiative (PMI), US Embassy Nairobi, United Nations Avenue, Nairobi, Kenya
| | - Christen Fornadel
- The United States Presidents Malaria Initiative (PMI), US Agency for International Development, Washington, DC, USA
| | - Martin J Donnelly
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Richard M Oxborough
- PMI VectorLink Project, Abt Associates 6130 Executive Blv, Rockville, MD, 20852, USA
| |
Collapse
|
17
|
Herrera-Bojórquez J, Trujillo-Peña E, Vadillo-Sánchez J, Riestra-Morales M, Che-Mendoza A, Delfín-González H, Pavía-Ruz N, Arredondo-Jimenez J, Santamaría E, Flores-Suárez AE, Vazquez-Prokopec G, Manrique-Saide P. Efficacy of Long-lasting Insecticidal Nets With Declining Physical and Chemical Integrity on Aedes aegypti (Diptera: Culicidae). JOURNAL OF MEDICAL ENTOMOLOGY 2020; 57:503-510. [PMID: 31603517 DOI: 10.1093/jme/tjz176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Indexed: 06/10/2023]
Abstract
Fitting long-lasting insecticidal nets (LLIN) as screens on doors/windows has a significant impact on indoor-adult Aedes aegypti (L.), with entomological reductions measured in a previous study being significant for up to 2 yr post-installation, even in the presence of pyrethroid-resistant Aedes populations. To better understand the mode of LLIN protection, bioassays were performed to evaluate the effects of field deployment (0, 6, and 12 mo) and damage type (none, central, lateral, and multiple) on LLIN efficacy. Contact bioassays confirmed that LLIN residual activity (median knockdown time, in minutes, or MKDT) decreased significantly over time: 6.95 (95% confidence interval [CI]: 5.32-8.58) to 9.24 (95% CI: 8.69-9.79) MKDT at 0- and 12-mo age, respectively, using a pyrethroid-susceptible Aedes strain. Tunnel tests (exposing human forearm for 40 min as attractant) showed that deployment time affected negatively Aedes passage inhibition from 54.9% (95% CI: 43.5-66.2) at 0 mo to 35.7% (95% CI: 16.3-55.1) at 12 mo and blood-feeding inhibition from 65.2% (95% CI: 54.2-76.2) to 48.9% (95% CI: 26.4-71.3), respectively; both the passage/blood-feeding inhibition increased by a factor of 1.8-2.9 on LLINs with multiple and central damages compared with nets with lateral damage. Mosquito mortality was 74.6% (95% CI: 65.3-83.9) at 0 mo, 72.3% (95% CI: 64.1-80.5) at 6 mo, and 59% (95% CI: 46.7-71.3) at 12 mo. Despite the LLIN physical integrity could be compromised over time, we demonstrate that the remaining chemical effect after field conditions would still contribute to killing/repelling mosquitoes.
Collapse
Affiliation(s)
- Josué Herrera-Bojórquez
- Collaborative Unit for Entomological Bioassays, Campus de Ciencias Biologicas y Agropecuarias, Universidad Autonoma de Yucatan. Merida, Yucatan, Mexico
| | - Emilio Trujillo-Peña
- Collaborative Unit for Entomological Bioassays, Campus de Ciencias Biologicas y Agropecuarias, Universidad Autonoma de Yucatan. Merida, Yucatan, Mexico
| | - José Vadillo-Sánchez
- Collaborative Unit for Entomological Bioassays, Campus de Ciencias Biologicas y Agropecuarias, Universidad Autonoma de Yucatan. Merida, Yucatan, Mexico
| | - Martin Riestra-Morales
- Collaborative Unit for Entomological Bioassays, Campus de Ciencias Biologicas y Agropecuarias, Universidad Autonoma de Yucatan. Merida, Yucatan, Mexico
| | - Azael Che-Mendoza
- Collaborative Unit for Entomological Bioassays, Campus de Ciencias Biologicas y Agropecuarias, Universidad Autonoma de Yucatan. Merida, Yucatan, Mexico
| | - Hugo Delfín-González
- Collaborative Unit for Entomological Bioassays, Campus de Ciencias Biologicas y Agropecuarias, Universidad Autonoma de Yucatan. Merida, Yucatan, Mexico
| | - Norma Pavía-Ruz
- Centro de Investigaciones Regionales, Dr. Hideyo Noguchi, Universidad Autonoma de Yucatan. Merida, Yucatan, Mexico
| | - Juan Arredondo-Jimenez
- Universidad Autonoma de Nuevo Leon, Facultad de Ciencias Biologicas, San Nicolas de los Garza, N.L., Mexico
| | | | - Adriana E Flores-Suárez
- Universidad Autonoma de Nuevo Leon, Facultad de Ciencias Biologicas, San Nicolas de los Garza, N.L., Mexico
| | | | - Pablo Manrique-Saide
- Collaborative Unit for Entomological Bioassays, Campus de Ciencias Biologicas y Agropecuarias, Universidad Autonoma de Yucatan. Merida, Yucatan, Mexico
| |
Collapse
|
18
|
Machani MG, Ochomo E, Amimo F, Kosgei J, Munga S, Zhou G, Githeko AK, Yan G, Afrane YA. Resting behaviour of malaria vectors in highland and lowland sites of western Kenya: Implication on malaria vector control measures. PLoS One 2020; 15:e0224718. [PMID: 32097407 PMCID: PMC7041793 DOI: 10.1371/journal.pone.0224718] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 02/04/2020] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Understanding the interactions between increased insecticide resistance and resting behaviour patterns of malaria mosquitoes is important for planning of adequate vector control. This study was designed to investigate the resting behavior, host preference and rates of Plasmodium falciparum infection in relation to insecticide resistance of malaria vectors in different ecologies of western Kenya. METHODS Anopheles mosquito collections were carried out during the dry and rainy seasons in Kisian (lowland site) and Bungoma (highland site), both in western Kenya using pyrethrum spray catches (PSC), mechanical aspiration (Prokopack) for indoor collections, clay pots, pit shelter and Prokopack for outdoor collections. WHO tube bioassay was used to determine levels of phenotypic resistance of indoor and outdoor collected mosquitoes to deltamethrin. PCR-based molecular diagnostics were used for mosquito speciation, genotype for knockdown resistance mutations (1014S and 1014F) and to determine specific host blood meal origins. Enzyme-linked Immunosorbent Assay (ELISA) was used to determine mosquito sporozoite infections. RESULTS Anopheles gambiae s.l. was the most predominant species (75%, n = 2706) followed by An. funestus s.l. (25%, n = 860). An. gambiae s.s hereafter (An. gambiae) accounted for 91% (95% CI: 89-93) and An. arabiensis 8% (95% CI: 6-9) in Bungoma, while in Kisian, An. arabiensis composition was 60% (95% CI: 55-66) and An. gambiae 39% (95% CI: 34-44). The resting densities of An. gambiae s.l and An. funestus were higher indoors than outdoor in both sites (An. gambiae s.l; F1, 655 = 41.928, p < 0.0001, An. funestus; F1, 655 = 36.555, p < 0.0001). The mortality rate for indoor and outdoor resting An. gambiae s.l F1 progeny was 37% (95% CI: 34-39) vs 67% (95% CI: 62-69) respectively in Bungoma. In Kisian, the mortality rate was 67% (95% CI: 61-73) vs 76% (95% CI: 71-80) respectively. The mortality rate for F1 progeny of An. funestus resting indoors in Bungoma was 32% (95% CI: 28-35). The 1014S mutation was only detected in indoor resitng An. arabiensis. Similarly, the 1014F mutation was present only in indoor resting An. gambiae. The sporozoite rates were highest in An. funestus followed by An. gambiae, and An. arabiensis resting indoors at 11% (34/311), 8% (47/618) and 4% (1/27) respectively in Bungoma. Overall, in Bungoma, the sporozoite rate for indoor resting mosquitoes was 9% (82/956) and 4% (8/190) for outdoors. In Kisian, the sporozoite rate was 1% (1/112) for indoor resting An. gambiae. None of the outdoor collected mosquitoes in Kisian tested positive for sporozoite infections (n = 73). CONCLUSION The study reports high indoor resting densities of An. gambiae and An. funestus, insecticide resistance, and persistence of malaria transmission indoors regardless of the use of long-lasting insecticidal nets (LLINs). These findings underline the difficulties of controlling malaria vectors resting and biting indoors using the current interventions. Supplemental vector control tools and implementation of sustainable insecticide resistance management strategies are needed in western Kenya.
Collapse
Affiliation(s)
- Maxwell G. Machani
- Entomology Section, Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
- School of Health Sciences, Jaramogi Oginga Odinga University of Science and Technology, Bondo, Kenya
| | - Eric Ochomo
- Entomology Section, Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Fred Amimo
- School of Health Sciences, Jaramogi Oginga Odinga University of Science and Technology, Bondo, Kenya
| | - Jackline Kosgei
- Entomology Section, Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Stephen Munga
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Guofa Zhou
- Program in Public Health, College of Health Sciences, University of California, Irvine, California, United States of America
| | - Andrew K. Githeko
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Guiyun Yan
- Program in Public Health, College of Health Sciences, University of California, Irvine, California, United States of America
| | - Yaw A. Afrane
- Department of Medical Microbiology, University of Ghana Medical School, University of Ghana, Accra, Ghana
| |
Collapse
|
19
|
Hughes A, Lissenden N, Viana M, Toé KH, Ranson H. Anopheles gambiae populations from Burkina Faso show minimal delayed mortality after exposure to insecticide-treated nets. Parasit Vectors 2020; 13:17. [PMID: 31924276 PMCID: PMC6954553 DOI: 10.1186/s13071-019-3872-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 12/29/2019] [Indexed: 01/02/2023] Open
Abstract
Background The efficacy of long-lasting insecticidal nets (LLINs) in preventing malaria in Africa is threatened by insecticide resistance. Bioassays assessing 24-hour mortality post-LLIN exposure have established that resistance to the concentration of pyrethroids used in LLINs is widespread. However, although mosquitoes may no longer be rapidly killed by LLIN exposure, a delayed mortality effect has been shown to reduce the transmission potential of mosquitoes exposed to nets. This has been postulated to partially explain the continued efficacy of LLINs against pyrethroid-resistant populations. Burkina Faso is one of a number of countries with very high malaria burdens and pyrethroid-resistant vectors, where progress in controlling this disease has stagnated. We measured the impact of LLIN exposure on mosquito longevity in an area of the country with intense pyrethroid resistance to establish whether pyrethroid exposure was still shortening mosquito lifespan in this setting. Methods We quantified the immediate and delayed mortality effects of LLIN exposure using standard laboratory WHO cone tests, tube bioassays and experimental hut trials on Anopheles gambiae populations originating from the Cascades region of Burkina Faso using survival analysis and a Bayesian state-space model. Results Following single and multiple exposures to a PermaNet 2.0 LLIN only one of the four mosquito populations tested showed evidence of delayed mortality. No delayed mortality was seen in experimental hut studies using LLINs. A delayed mortality effect was only observed in WHO tube bioassays when deltamethrin concentration was increased above the standard diagnostic dose. Conclusions As mosquito pyrethroid-resistance increases in intensity, delayed effects from LLIN exposure are substantially reduced or absent. Given the rapid increase in resistance occurring in malaria vectors across Africa it is important to determine whether the failure of LLINs to shorten mosquito lifespan is now a widespread phenomenon as this will have important implications for the future of this pivotal malaria control tool.![]()
Collapse
Affiliation(s)
- Angela Hughes
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Natalie Lissenden
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Mafalda Viana
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Kobié Hyacinthe Toé
- Centre National de Recherche et de Formation sur le Paludisme, 01 BP 2208, Ouagadougou 01, Burkina Faso
| | - Hilary Ranson
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK.
| |
Collapse
|
20
|
O’Donnell AJ, Rund SSC, Reece SE. Time-of-day of blood-feeding: effects on mosquito life history and malaria transmission. Parasit Vectors 2019; 12:301. [PMID: 31262362 PMCID: PMC6604169 DOI: 10.1186/s13071-019-3513-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 05/17/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Biological rhythms allow organisms to compartmentalise and coordinate behaviours, physiologies, and cellular processes with the predictable daily rhythms of their environment. There is increasing recognition that the biological rhythms of mosquitoes that vector parasites are important for global health. For example, whether perturbations in blood foraging rhythms as a consequence of vector control measures can undermine disease control. To address this, we explore the impacts of altered timing of blood-feeding on mosquito life history traits and malaria transmission. METHODS We present three experiments in which Anopheles stephensi mosquitoes were fed in the morning or evening on blood that had different qualities, including: (i) chemical-induced or (ii) Plasmodium chabaudi infection-induced anaemia; (iii) Plasmodium berghei infection but no anaemia; or (iv) stemming from hosts at different times of day. We then compared whether time-of-day variation in blood meal characteristics influences mosquito fitness proxies relating to survival and reproduction, and malaria transmission proxies. RESULTS Mosquito lifespan is not influenced by the time-of-day they received a blood meal, but several reproductive metrics are affected, depending on other blood characteristics. Overall, our data suggest that receiving a blood meal in the morning makes mosquitoes more likely to lay eggs, lay slightly sooner and have a larger clutch size. In keeping with previous work, P. berghei infection reduces mosquito lifespan and the likelihood of laying eggs, but time-of-day of blood-feeding does not impact upon these metrics nor on transmission of this parasite. CONCLUSION The time-of-day of blood-feeding does not appear to have major consequences for mosquito fitness or transmission of asynchronous malaria species. If our results from a laboratory colony of mosquitoes living in benign conditions hold for wild mosquitoes, it suggests that mosquitoes have sufficient flexibility in their physiology to cope with changes in biting time induced by evading insecticide-treated bed nets. Future work should consider the impact of multiple feeding cycles and the abiotic stresses imposed by the need to forage for blood during times of day when hosts are not protected by bed nets.
Collapse
Affiliation(s)
- Aidan J. O’Donnell
- Institute of Evolutionary Biology, and Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Samuel S. C. Rund
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556 USA
| | - Sarah E. Reece
- Institute of Evolutionary Biology, and Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
21
|
Duffield GE, Acri DJ, George GF, Sheppard AD, Beebe NW, Ritchie SA, Burkot TR. Diel flight activity of wild-caught Anopheles farauti (s.s.) and An. hinesorum malaria mosquitoes from northern Queensland, Australia. Parasit Vectors 2019; 12:48. [PMID: 30670073 PMCID: PMC6341630 DOI: 10.1186/s13071-018-3271-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 12/18/2018] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Species in the Anopheles farauti complex are major malaria vectors in the Asia Pacific region. Anopheline mosquitoes exhibit circadian and diel rhythms in sugar- and blood-feeding (biting), flight activity, oviposition, and in some species, a short-lived dusk/early night associated swarming behaviour during which mating occurs. A behavioural study of wild-caught mosquitoes from Queensland, Australia was conducted to investigate the differences in diel rhythmic flight activity between two cryptic species in several reproductive states. RESULTS The 24-hour flight activity of individual adult female mosquitoes under light:dark cycle conditions were monitored with a minute-to-minute time resolution using an infrared beam break method. Mosquitoes were analyzed for reproductive state (insemination and parity) and identified to species [An. farauti (s.s.) Laveran and An. hinesorum Schmidt] by PCR analysis. We compared daily total flight activity, timing of activity onset, the peak in early nocturnal activity, and patterns of activity during the scotophase (night). Species-specific differences between An. farauti and An. hinesorum were observed. Compared to An. farauti, An. hinesorum had an earlier onset of dusk activity, an earlier peak in nocturnal activity, and a higher level of activity at the onset of darkness. Small differences between species were also observed in the pattern of the dusk/early-night bouts of activity. A second nocturnal peak in inseminated nulliparous An. hinesorum was also observed during the middle of the scotophase. CONCLUSIONS The behavioural differences between these two sympatric species of the An. farauti complex might contribute to subtle differences in habitat adaptation, the timing of host-seeking and/or sugar-feeding activity. This study provides baseline data for analysis of populations of mosquitoes from other geographical regions where these species are malaria vectors, such as in the Solomon Islands and Papua New Guinea. This is important as selective pressures due to long-term use of indoor residual spraying of insecticides and insecticide-treated bed nets are shifting the nocturnal profile of biting behaviour of these vectors to earlier in the night.
Collapse
Affiliation(s)
- Giles E Duffield
- Department of Biological Sciences and Eck Institute for Global Health, Galvin Life Science Center, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Dominic J Acri
- Department of Biological Sciences and Eck Institute for Global Health, Galvin Life Science Center, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Gary F George
- Department of Biological Sciences and Eck Institute for Global Health, Galvin Life Science Center, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Aaron D Sheppard
- Department of Biological Sciences and Eck Institute for Global Health, Galvin Life Science Center, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Nigel W Beebe
- University of Queensland, School of Biology, St Lucia, Queensland, Australia.,CSIRO, Dutton Park, Queensland, Australia
| | - Scott A Ritchie
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - Thomas R Burkot
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| |
Collapse
|
22
|
Brown R, Hing CT, Fornace K, Ferguson HM. Evaluation of resting traps to examine the behaviour and ecology of mosquito vectors in an area of rapidly changing land use in Sabah, Malaysian Borneo. Parasit Vectors 2018; 11:346. [PMID: 29898780 PMCID: PMC6000972 DOI: 10.1186/s13071-018-2926-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 05/30/2018] [Indexed: 12/22/2022] Open
Abstract
Background Widespread deforestation occurring in the tropics is hypothesized to impact the transmission of vector-borne diseases (VBD). Predicting how environmental changes will impact VBD transmission is dependent on understanding the ecology and behaviour of potential vector species outside of domestic settings. However there are few reliable sampling tools for measuring the habitat preference and host choice of mosquito vectors; with almost none suitable for sampling recently blood-fed, resting mosquitoes. This study evaluated the use of two mosquito traps: the resting bucket (RB) and sticky resting bucket (SRB) traps relative to CDC backpack aspiration (CDC) for sampling mosquitoes resting in a range of habitats representing a gradient of deforestation. Eight habitats were selected for sampling around two villages in Kudat District, Malaysian Borneo, to reflect the range of habitats available to mosquitoes in and around human dwellings, and nearby forest habitats where reservoir hosts are present: secondary forest (edge, interior and canopy); plantations (palm and rubber); and human settlements (inside, under and around houses). Results Over 31 days, 2243 mosquitoes were collected in 5748 discrete collections. Nine mosquito genera were sampled with Aedes and Culex species being present in all habitats and most abundant. RB and CDC backpack aspiration were most efficient for sampling Culex whereas CDC backpack aspiration and SRB were most efficient for Aedes. Most Aedes identified to species level were Ae. albopictus (91%), with their abundance being highest in forest edge habitats. In contrast, Culex were most abundant under houses. Most blood-fed mosquitoes (76%) were found in human settlements; with humans and chickens being the only blood source. Conclusions RB and SRB traps proved capable of sampling mosquitoes resting in all sampled habitats. However, sampling efficiency was generally low (c.0.1 per trap per day), necessitating traps to be deployed in high numbers for mosquito detection. None of the traps were effective for sampling zoonotic malaria vectors; however, SRB collected relatively higher numbers of the dengue vector Ae. albopictus. The higher abundance of mosquitoes in forest edge habitats indicates the potential value of these traps for investigating sylvatic dengue transmission. This study has demonstrated the merits in application of simple resting traps for characterising mosquito vector resting behaviour outside of the home. Electronic supplementary material The online version of this article (10.1186/s13071-018-2926-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rebecca Brown
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK.
| | - Chua Tock Hing
- Department of Pathobiology and Medical Diagnostics, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, 88400, Kota Kinabalu, Sabah, Malaysia
| | - Kimberly Fornace
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - Heather M Ferguson
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| |
Collapse
|
23
|
Pizzitutti F, Pan W, Feingold B, Zaitchik B, Álvarez CA, Mena CF. Out of the net: An agent-based model to study human movements influence on local-scale malaria transmission. PLoS One 2018; 13:e0193493. [PMID: 29509795 PMCID: PMC5839546 DOI: 10.1371/journal.pone.0193493] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 02/12/2018] [Indexed: 01/08/2023] Open
Abstract
Though malaria control initiatives have markedly reduced malaria prevalence in recent decades, global eradication is far from actuality. Recent studies show that environmental and social heterogeneities in low-transmission settings have an increased weight in shaping malaria micro-epidemiology. New integrated and more localized control strategies should be developed and tested. Here we present a set of agent-based models designed to study the influence of local scale human movements on local scale malaria transmission in a typical Amazon environment, where malaria is transmission is low and strongly connected with seasonal riverine flooding. The agent-based simulations show that the overall malaria incidence is essentially not influenced by local scale human movements. In contrast, the locations of malaria high risk spatial hotspots heavily depend on human movements because simulated malaria hotspots are mainly centered on farms, were laborers work during the day. The agent-based models are then used to test the effectiveness of two different malaria control strategies both designed to reduce local scale malaria incidence by targeting hotspots. The first control scenario consists in treat against mosquito bites people that, during the simulation, enter at least once inside hotspots revealed considering the actual sites where human individuals were infected. The second scenario involves the treatment of people entering in hotspots calculated assuming that the infection sites of every infected individual is located in the household where the individual lives. Simulations show that both considered scenarios perform better in controlling malaria than a randomized treatment, although targeting household hotspots shows slightly better performance.
Collapse
Affiliation(s)
- Francesco Pizzitutti
- Universidad San Francisco de Quito, Instituto de Geografía, Quito, Ecuador
- Duke University, Duke global Health Institute, Durham, NC, United States of America
| | - William Pan
- Duke University, Duke global Health Institute, Durham, NC, United States of America
| | - Beth Feingold
- SUNY-Albany, School of Public Health, Rensselaer, Albany, NY, United States of America
| | - Ben Zaitchik
- Johns Hopkins University, Morton K. Blaustein Department of Earth & Planetary Sciences, Baltimore, MD, United States of America
| | | | - Carlos F. Mena
- Universidad San Francisco de Quito, Instituto de Geografía, Quito, Ecuador
| |
Collapse
|
24
|
St Laurent B, Sukowati S, Burton TA, Bretz D, Zio M, Firman S, Sumardi, Sudibyo H, Safitri A, Suwito, Asih PB, Kosasih S, Shinta, Hawley WA, Burkot TR, Collins FH, Syafruddin D, Lobo NF. Comparative evaluation of anopheline sampling methods in three localities in Indonesia. Malar J 2018; 17:13. [PMID: 29310656 PMCID: PMC5759267 DOI: 10.1186/s12936-017-2161-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 12/23/2017] [Indexed: 12/02/2022] Open
Abstract
Background The effectiveness of vector control efforts can vary based on the interventions used and local mosquito behaviour and adaptability. In many settings, biting patterns of Anopheles mosquitoes can shift in response to interventions targeting indoor-biting mosquitoes, often resulting in higher proportions of mosquitoes feeding outside or at times when people are not protected. These behaviourally resistant mosquitoes have been shown to sustain residual malaria transmission and limit control efforts. Therefore, it is important to accurately sample mosquitoes to understand their behaviour. Methods A variety of traps were evaluated in three geographically diverse sites in malaria-endemic Indonesia to investigate local mosquito feeding behaviour and determine effective traps for surveillance. Results Eight traps were evaluated in three sites: Canti village, Lampung, Kaliharjo village, Purworejo, and Saketa village, Halmahera, Indonesia, including the gold standard human landing collection (HLC) and a variety of traps targeting host-seeking and resting mosquitoes both indoors and outdoors. Trapping, using indoor and outdoor HLC, the Ifakara tent trap C, goat and human-occupied tents, resting pots and boxes, and CDC miniature light traps was conducted for 16 nights in two sites and 8 nights in a third site, using a Latin square design. Trap efficacy varied by site, with outdoor HLC yielding the highest catch rates in Canti and Kaliharjo and a goat-baited tent trap proving most effective in Saketa. In Canti village, anthropophilic Anopheles sundaicus were caught indoors and outdoors using HLCs, peaking in the early morning. In Kaliharjo, a variety of mosquitoes were caught, mostly outdoors throughout the night. HLC was ineffective in Saketa, the only site where a goat-baited tent trap was tested. This trap was effective in catching zoophilic vectors outdoors before midnight. Conclusions Different trapping methods were suitable for different species, likely reflecting differences in behaviour among species. The three villages, each located on a different island in the Indonesian archipelago, contained mosquito populations with unique behaviours. These data suggest that the effectiveness of specific vector monitoring and control measures may vary by location. Electronic supplementary material The online version of this article (10.1186/s12936-017-2161-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Brandyce St Laurent
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA. .,National Institutes of Health, Bethesda, MD, USA.
| | - Supratman Sukowati
- National Institute of Health Research and Development, Jakarta, Indonesia
| | - Timothy A Burton
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA
| | - David Bretz
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA
| | - Mulyadi Zio
- National Institute of Health Research and Development, Jakarta, Indonesia
| | - Syah Firman
- National Institute of Health Research and Development, Jakarta, Indonesia
| | - Sumardi
- National Institute of Health Research and Development, Jakarta, Indonesia
| | - Heru Sudibyo
- National Institute of Health Research and Development, Jakarta, Indonesia
| | - Amalia Safitri
- National Institute of Health Research and Development, Jakarta, Indonesia
| | - Suwito
- National Institute of Health Research and Development, Jakarta, Indonesia
| | - Puji B Asih
- Eijkman Institute for Molecular Biology, Jakarta, Indonesia
| | - Sully Kosasih
- Eijkman Institute for Molecular Biology, Jakarta, Indonesia
| | - Shinta
- National Institute of Health Research and Development, Jakarta, Indonesia
| | - William A Hawley
- Centers for Disease Control and Prevention, Atlanta, GA, USA.,Unicef, Jakarta, Indonesia
| | - Thomas R Burkot
- Queensland Tropical Health Alliance, James Cook University, Australian Institute of Tropical Health and Medicine, Cairns, Australia
| | - Frank H Collins
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA
| | - Din Syafruddin
- Eijkman Institute for Molecular Biology, Jakarta, Indonesia
| | - Neil F Lobo
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA
| |
Collapse
|
25
|
Yekabong RC, Ebile WA, Fon PN, Asongalem EA. The impact of mass distribution of long lasting insecticide-treated bed-nets on the malaria parasite burden in the Buea Health District in South-West Cameroon: a hospital based chart review of patient's laboratory records. BMC Res Notes 2017; 10:534. [PMID: 29084600 PMCID: PMC5663123 DOI: 10.1186/s13104-017-2870-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 10/24/2017] [Indexed: 11/24/2022] Open
Abstract
Background Malaria remains a leading cause of illness and deaths in Cameroon. The use of long lasting insecticide treated bed nets (LLITN) is the most effective method to reduce the burden of malaria. The aim of this study was to determine the impact of the mass distribution of LLITN on the hospital prevalence of malaria (prevalence of malaria in patients with a presumptive diagnosis of malaria), in the Buea Health District in the South-West Region of Cameroon. Methods A hospital-based chart review of records of malaria confirmatory test results in health facilities of the Buea Health District from January 2011 through December 2013. Data were extracted with the help of a grid, then analyzed with EPIinfo version 6 and Microsoft Excel 2010. Chi square test was used to compare prevalence and ANOVA was used to compare mean parasitaemia. Results A total of 17,268 records were reviewed, 3545[20.5% (19.9–21.1)] confirmed malaria positive with mean trophozoite count of 2735.3 ± 23,323.5 trophozoite/µl of blood. Prevalence was higher in males 1497 [23.5% (22.4–24.5)] than females 2047 [18.8% (18.1–19.6)], p < 0.01. Significant evidence of a reduction in the prevalence of malaria was found in under-fives in 2012 (p = 0.03). Conclusions Universal coverage with LLITN failed to guarantee effective control of malaria in the Buea Health District, as expected. Continuous and appropriate use of LLITN is indispensable, in addition to periodic sensitization, booster campaigns of LLITN distribution and evaluation research for effective prevention and control of malaria.
Collapse
Affiliation(s)
- Renda Colins Yekabong
- Faculty of Health Sciences, University of Buea, Buea, Cameroon. .,Solidarity Health Foundation/Solidarity Hospital Molyko, Buea, Cameroon.
| | - Walter Akoh Ebile
- Department of Biomedical Sciences, Faculty of Sciences, University of Dschang, Dschang, Cameroon.,M.A SANTE (Meilleure Accès aux Soins de Santé), Yaoundé, Cameroon
| | - Peter Nde Fon
- Faculty of Health Sciences, University of Buea, Buea, Cameroon.,Solidarity Health Foundation/Solidarity Hospital Molyko, Buea, Cameroon
| | | |
Collapse
|
26
|
Sutcliffe J, Ji X, Yin S. How many holes is too many? A prototype tool for estimating mosquito entry risk into damaged bed nets. Malar J 2017; 16:304. [PMID: 28764726 PMCID: PMC5540337 DOI: 10.1186/s12936-017-1951-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 07/20/2017] [Indexed: 11/18/2022] Open
Abstract
Background Insecticide-treated bed nets (ITNs) have played an integral role in malaria reduction but how insecticide depletion and accumulating physical damage affect ITN performance is poorly understood. More accurate methods are needed to assess damage to bed nets so that they can be designed, deployed and replaced optimally. Methods Video recordings of female Anopheles gambiae in near approach (1–½ cm) to occupied untreated rectangular bed nets in a laboratory study were used to quantify the amount of mosquito activity (appearances over time) around different parts of the net, the per-appearance probability of a mosquito coming close to holes of different sizes (hole encounter) and the per-encounter probability of mosquitoes passing through holes of different sizes (hole passage). Results Appearance frequency on different parts of the net reflected previously reported patterns: the area of the net under greatest mosquito pressure was the roof, followed by the bottom 30 cm of the sides, followed by the 30 cm area immediately above this, followed by the upper two-thirds of the sides. The ratio of activity in these areas was (respectively) 250:33:5:1. Per-appearance probability of hole encounter on all parts of the net was strongly predicted by a factor combining hole perimeter and area. Per-encounter probability of hole passage, in turn, was strongly predicted by hole width. For a given width, there was a 20% greater risk of passage through holes on the roof than holes on the sides. Discussion Appearance, encounter and passage predictors correspond to various mosquito behaviours that have previously been described and are combined into a prototype mosquito entry risk tool that predicts mosquito entry rates for nets with various amounts of damage. Scenarios that use the entry risk tool to test the recommendations of the WHOPES proportionate hole index (pHI) suggest that the pHI hole size categories and failure to account for hole location likely sometimes lead to incorrect conclusions about net serviceability that could be avoided by using an entry risk tool of the form presented here instead. Practical methods of collecting hole position, shape and size information for bed net assessments using the tool in the field are discussed and include using image analysis and on-line geometric analysis tools. Electronic supplementary material The online version of this article (doi:10.1186/s12936-017-1951-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- James Sutcliffe
- Department of Biology, Trent University, Peterborough, ON, Canada. .,Entomology Branch, US Centers for Disease Control and Prevention, Atlanta, GA, USA.
| | - Xin Ji
- Department of Mathematics and Statistics, Georgia State University, Atlanta, GA, USA
| | | |
Collapse
|
27
|
Spitzen J, Koelewijn T, Mukabana WR, Takken W. Effect of insecticide-treated bed nets on house-entry by malaria mosquitoes: The flight response recorded in a semi-field study in Kenya. Acta Trop 2017; 172:180-185. [PMID: 28495403 DOI: 10.1016/j.actatropica.2017.05.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 05/04/2017] [Accepted: 05/05/2017] [Indexed: 11/17/2022]
Abstract
Insecticide-treated nets are currently a major tool to reduce malaria transmission. Their level of repellency affects contact of the mosquito with the net, but may also influence the mosquito's entry into the house. The response of host-seeking malaria mosquitoes approaching the eave of an experimental house was recorded within a large screen house. We compared entry- and exit rates in relation to the presence in the house of different insecticide-treated bed nets (ITNs) with an untreated net. Mosquitoes were lured towards the house by dispensing a synthetic host-odour blend from within the net in the house. Complementary WHO bioassays revealed that the treated nets caused high knock-down- and mortality responses to the Anopheles gambiae sensu stricto strain tested. The proportion of mosquitoes that came into view of the cameras and subsequently entered the house did not differ between treated nets and the untreated net. Treated nets did not affect proportions of mosquitoes that exited the house and departed from view around the eave. However, the percentage of house-leaving and re-entering mosquitoes when an insecticide- treated net was present, was lower than in the presence of an untreated net. Our results indicated that there was no spatial repellent effect from pyrethroid-treated nets that influences house-entry at eave level. It is argued that the toxic effect of treated bed nets resulted in a reduced number of mosquitoes re-entering the house, which could thereby affect malaria transmission in neighbouring, unprotected houses.
Collapse
Affiliation(s)
- Jeroen Spitzen
- Laboratory of Entomology, Wageningen University, PO Box 16, 6700 AA Wageningen, The Netherlands.
| | - Teun Koelewijn
- Laboratory of Entomology, Wageningen University, PO Box 16, 6700 AA Wageningen, The Netherlands.
| | - W Richard Mukabana
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772-00100, Nairobi, Kenya; Science for Health, P.O. Box 44970-00100, Nairobi, Kenya.
| | - Willem Takken
- Laboratory of Entomology, Wageningen University, PO Box 16, 6700 AA Wageningen, The Netherlands.
| |
Collapse
|
28
|
Sheppard AD, Rund SSC, George GF, Clark E, Acri DJ, Duffield GE. Light manipulation of mosquito behaviour: acute and sustained photic suppression of biting activity in the Anopheles gambiae malaria mosquito. Parasit Vectors 2017; 10:255. [PMID: 28619089 PMCID: PMC5472875 DOI: 10.1186/s13071-017-2196-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 05/12/2017] [Indexed: 11/22/2022] Open
Abstract
Background Host-seeking behaviours in anopheline mosquitoes are time-of-day specific, with a greater propensity for nocturnal biting. We investigated how a short exposure to light presented during the night or late day can inhibit biting activity and modulate flight activity behaviour. Results Anopheles gambiae (s.s.), maintained on a 12:12 LD cycle, were exposed transiently to white light for 10-min at the onset of night and the proportion taking a blood meal in a human biting assay was recorded every 2 h over an 8-h duration. The pulse significantly reduced biting propensity in mosquitoes 2 h following administration, in some trials for 4 h, and with no differences detected after 6 h. Conversely, biting levels were significantly elevated when mosquitoes were exposed to a dark treatment during the late day, suggesting that light suppresses biting behaviour even during the late daytime. These data reveal a potent effect of a discrete light pulse on biting behaviour that is both immediate and sustained. We expanded this approach to develop a method to reduce biting propensity throughout the night by exposing mosquitoes to a series of 6- or 10-min pulses presented every 2 h. We reveal both an immediate suppressive effect of light during the exposure period and 2 h after the pulse. This response was found to be effective during most times of the night: however, differential responses that were time-of-day specific suggest an underlying circadian property of the mosquito physiology that results in an altered treatment efficacy. Finally, we examined the immediate and sustained effects of light on mosquito flight activity behaviour following exposure to a 30-min pulse, and observed activity suppression during early night, and elevated activity during the late night. Conclusions As mosquitoes and malaria parasites are becoming increasingly resistant to insecticide and drug treatment respectively, there is a necessity for the development of innovative control strategies beyond insecticide-treated nets (ITNs) and residual spraying. These data reveal the potent inhibitory effects of light exposure and the utility of multiple photic pulses presented at intervals during the night/late daytime, may prove to be an effective tool that complements established control methods.
Collapse
Affiliation(s)
- Aaron D Sheppard
- Department of Biological Sciences and Eck Institute for Global Health, Galvin Life Science Center, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Samuel S C Rund
- Department of Biological Sciences and Eck Institute for Global Health, Galvin Life Science Center, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Gary F George
- Department of Biological Sciences and Eck Institute for Global Health, Galvin Life Science Center, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Erin Clark
- Department of Biological Sciences and Eck Institute for Global Health, Galvin Life Science Center, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Dominic J Acri
- Department of Biological Sciences and Eck Institute for Global Health, Galvin Life Science Center, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Giles E Duffield
- Department of Biological Sciences and Eck Institute for Global Health, Galvin Life Science Center, University of Notre Dame, Notre Dame, IN, 46556, USA.
| |
Collapse
|
29
|
Preliminary survey on Anopheles species distribution in Botswana shows the presence of Anopheles gambiae and Anopheles funestus complexes. Malar J 2017; 16:106. [PMID: 28270213 PMCID: PMC5339988 DOI: 10.1186/s12936-017-1756-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 02/26/2017] [Indexed: 11/10/2022] Open
Abstract
Background Botswana is one of the four front line malaria elimination countries in Southern Africa, with malaria control activities that include routine vector control. Past and recent studies have shown that Anopheles arabiensis is the only known vector of Plasmodium parasites in the country. This report presents a preliminary evaluation on Anopheles species composition in seven districts of Botswana with some inferences on their vectorial role. Results Overall, 404 Anopheles mosquito females were collected, of which 196 were larvae collected from several breeding sites, and 208 were adults obtained from indoor pyrethrum spray catches (PSC). Anopheles arabiensis (58.9%) accounted for the highest relative frequency in 5 out of 7 districts sampled. The other species collected, among those identified, were barely represented: Anopheles longipalpis type C (16.3%), Anopheles parensis (8.9%), Anopheles quadriannulatus (5.4%), and Anopheles leesoni (0.2%). PCR test for human β-globin on mosquitoes collected by PSC showed that An. arabiensis and An. parensis had bitten human hosts. Moreover, An. arabiensis showed a non-negligible Plasmodium falciparum infection rate in two sites (3.0% and 2.5% in Chobe and Kweneng West districts, respectively). Conclusions This work provides first time evidence of Anopheles diversity in several areas of Botswana. Anopheles arabiensis is confirmed to be widespread in all the sampled districts and to be vector of P. falciparum. Moreover, the presence of Anopheles funestus group in Botswana has been assessed. Further research, entomological surveillance activities and possibly vector control programmes need to be better developed and implemented as well as targeting outdoors resting vectors.
Collapse
|
30
|
Moiroux N, Chandre F, Hougard JM, Corbel V, Pennetier C. Remote Effect of Insecticide-Treated Nets and the Personal Protection against Malaria Mosquito Bites. PLoS One 2017; 12:e0170732. [PMID: 28129371 PMCID: PMC5271322 DOI: 10.1371/journal.pone.0170732] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 01/10/2017] [Indexed: 11/23/2022] Open
Abstract
Experimental huts are part of the WHO process for testing and evaluation of Insecticide Treated Nets (ITN) in semi-field conditions. Experimental Hut Trials (EHTs) mostly focus on two main indicators (i.e., mortality and blood feeding reduction) that serve as efficacy criteria to obtain WHO interim recommendation. However, several other outputs that rely on counts of vectors collected in the huts are neglected although they can give useful information about vectors’ behavior and personal protection provided by ITNs. In particular, EHTs allow to measure the deterrent effect and personal protection of ITNs. To provide a better assessment of ITNs efficacy, we performed a retrospective analysis of the deterrence and the personal protection against malaria transmission for 12 unwashed and 13 washed ITNs evaluated through EHTs conducted in West Africa. A significant deterrent effect was shown for six of the 12 unwashed ITNs tested. When washed 20 times, only three ITNs had significant deterrent effect (Rate Ratios (RR)<1; p<0.05) and three showed an apparent “attractiveness” (RR>1; p<0.01). When compared to the untreated net, all unwashed ITNs showed lower number of blood-fed Anopheles indicating a significant personal protection (RR<1, p<0.05). However, when washed 20 times, three ITNs that were found to be attractive did not significantly reduce human-vector contact (p>0.05). Current WHO efficacy criteria do not sufficiently take into account the deterrence effect of ITNs. Moreover, the deterrence variability is rarely discussed in EHT’s reports. Our findings highlighted the long-range effect (deterrent or attractive) of ITNs that may have significant consequences for personal/community protection against malaria transmission. Indicators measuring the deterrence should be further considered for the evaluation of ITNs.
Collapse
Affiliation(s)
- Nicolas Moiroux
- MIVEGEC (IRD 224 - CNRS 5290 - Université de Montpellier), Institut de Recherche pour le Développement (IRD), Montpellier, France
- Institut de Recherche en Sciences de la Santé (IRSS), Bobo-Dioulasso, Burkina Faso
- * E-mail:
| | - Fabrice Chandre
- MIVEGEC (IRD 224 - CNRS 5290 - Université de Montpellier), Institut de Recherche pour le Développement (IRD), Montpellier, France
| | - Jean-Marc Hougard
- MIVEGEC (IRD 224 - CNRS 5290 - Université de Montpellier), Institut de Recherche pour le Développement (IRD), Montpellier, France
| | - Vincent Corbel
- MIVEGEC (IRD 224 - CNRS 5290 - Université de Montpellier), Institut de Recherche pour le Développement (IRD), Montpellier, France
| | - Cédric Pennetier
- MIVEGEC (IRD 224 - CNRS 5290 - Université de Montpellier), Institut de Recherche pour le Développement (IRD), Montpellier, France
- Institut Pierre Richet (IPR), Bouaké, Côte d’Ivoire
| |
Collapse
|
31
|
Hardy MC, Barrington DJ. A Transdisciplinary Approach to Managing Emerging and Resurging Mosquito-Borne Diseases in the Western Pacific Region. Trop Med Infect Dis 2017; 2:E1. [PMID: 30270860 PMCID: PMC6082050 DOI: 10.3390/tropicalmed2010001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 12/19/2016] [Accepted: 12/26/2016] [Indexed: 11/30/2022] Open
Abstract
Mosquitoes transmit a number of harmful diseases that have an impact on local communities and visitors, and many pose a threat to neighboring countries. As federal monitoring budgets shrink across the world, the increasing importance of citizen scientists in monitoring and identifying invasive species, as well as acting to prevent these diseases, are discussed. Examples of past mosquito management programs are provided, and future directions are discussed with an emphasis on the Western Pacific Region.
Collapse
Affiliation(s)
- Margaret C Hardy
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia.
| | - Dani J Barrington
- Department of Marketing, Monash University, Clayton, VIC 3800, Australia.
- International Water Centre, Brisbane, QLD 4000, Australia.
- School of Public Health and Global Change Institute, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
32
|
Rahman R, Lesser A, Mboera L, Kramer R. Cost of microbial larviciding for malaria control in rural Tanzania. Trop Med Int Health 2016; 21:1468-1475. [PMID: 27500959 DOI: 10.1111/tmi.12767] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVE Microbial larviciding may be a potential supplement to conventional malaria vector control measures, but scant information on its relative implementation costs and effectiveness, especially in rural areas, is an impediment to expanding its uptake. We perform a costing analysis of a seasonal microbial larviciding programme in rural Tanzania. METHODS We evaluated the financial and economic costs from the perspective of the public provider of a 3-month, community-based larviciding intervention implemented in twelve villages in the Mvomero District of Tanzania in 2012-2013. Cost data were collected from financial reports and invoices and through discussion with programme administrators. Sensitivity analysis explored the robustness of our results to varying key parameters. RESULTS Over the 2-year study period, approximately 6873 breeding sites were treated with larvicide. The average annual economic costs of the larviciding intervention in rural Tanzania are estimated at 2014 US$ 1.44 per person protected per year (pppy), US$ 6.18 per household and US$ 4481.88 per village, with the larvicide and staffing accounting for 14% and 58% of total costs, respectively. CONCLUSIONS We found the costs pppy of implementing a seasonal larviciding programme in rural Tanzania to be comparable to the costs of other larviciding programmes in urban Tanzania and rural Kenya. Further research should evaluate the cost-effectiveness of larviciding relative to, and in combination with, other vector control strategies in rural settings.
Collapse
Affiliation(s)
- Rifat Rahman
- Duke Global Health Institute, Duke University, Durham, NC, USA.
| | - Adriane Lesser
- Duke Global Health Institute, Duke University, Durham, NC, USA
| | - Leonard Mboera
- National Institute for Medical Research, Dar es Salaam, Tanzania
| | - Randall Kramer
- Duke Global Health Institute, Duke University, Durham, NC, USA.,Nicholas School of the Environment, Duke University, Durham, NC, USA
| |
Collapse
|
33
|
Maia MF, Kreppel K, Mbeyela E, Roman D, Mayagaya V, Lobo NF, Ross A, Moore SJ. A crossover study to evaluate the diversion of malaria vectors in a community with incomplete coverage of spatial repellents in the Kilombero Valley, Tanzania. Parasit Vectors 2016; 9:451. [PMID: 27527601 PMCID: PMC4986272 DOI: 10.1186/s13071-016-1738-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 08/03/2016] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Malaria elimination is unlikely to occur if vector control efforts focus entirely on transmission occurring indoors without addressing vectors that bite outdoors and outside sleeping hours. Additional control tools such as spatial repellents may provide the personal protection required to fill this gap. However, since repellents do not kill mosquitoes it is unclear if vectors will be diverted from households that use spatial repellents to those that do not. METHODS A crossover study was performed over 24 weeks in Kilombero, Tanzania. The density of resting and blood-engorged mosquitoes and human blood index (HBI) of malaria vector species per household was measured among 90 households using or not using 0.03 % transfluthrin coils burned outdoors under three coverage scenarios: (i) no coverage (blank coils); (ii) complete coverage of repellent coils; and (iii) incomplete coverage of repellent and blank coils. Mosquitoes were collected three days a week for 24 weeks from the inside and outside of all participating households using mosquito aspirators. Paired indoor and outdoor human landing collections were performed in three random households for six consecutive nights to confirm repellent efficacy of the coils and local vector biting times. RESULTS The main vectors were Anopheles arabiensis and Anopheles funestus (sensu stricto), which fed outdoors, outside sleeping hours, on humans as well as animals. Anopheles arabiensis landings were reduced by 80 % by the spatial repellent although household densities were not reduced. The HBI for An. arabiensis was significantly higher among households without repellents in the incomplete coverage scenario compared to houses in the no coverage scenario (Odds ratio 1.71; 95 % CI: 1.04-2.83; P = 0.03). This indicated that An. arabiensis mosquitoes seeking a human blood meal were diverted from repellent users to non-users. The repellent coils did not affect An. funestus densities or HBI. CONCLUSIONS Substantial malaria vector activity is occurring outside sleeping hours in the Kilombero valley. Repellent coils provided some protection against local An. arabiensis but did not protect against local (and potentially pyrethroid-resistant) An. funestus. Pyrethroid-based spatial repellents may offer a degree of personal protection, however the overall public health benefit is doubtful and potentially iniquitous as their use may divert malaria vectors to those who do not use them.
Collapse
Affiliation(s)
- Marta Ferreira Maia
- Swiss Tropical and Public Health Institute, Socinstr. 57, Basel, CH-4002 Switzerland
- University of Basel, St. Petersplatz 1, CH-4002 Basel, Switzerland
- Ifakara Health Institute, P.O. Box 74, Bagamoyo, Pwani United Republic of Tanzania
| | - Katharina Kreppel
- Ifakara Health Institute, P.O. Box 74, Bagamoyo, Pwani United Republic of Tanzania
- University of Glasgow, Institute of Biodiversity Animal Health and Comparative Medicine, Glasgow, G12 8QQ UK
| | - Edgar Mbeyela
- Ifakara Health Institute, P.O. Box 74, Bagamoyo, Pwani United Republic of Tanzania
| | - Deogratius Roman
- Ifakara Health Institute, P.O. Box 74, Bagamoyo, Pwani United Republic of Tanzania
| | - Valeriana Mayagaya
- Ifakara Health Institute, P.O. Box 74, Bagamoyo, Pwani United Republic of Tanzania
| | - Neil F. Lobo
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556 USA
| | - Amanda Ross
- Swiss Tropical and Public Health Institute, Socinstr. 57, Basel, CH-4002 Switzerland
- University of Basel, St. Petersplatz 1, CH-4002 Basel, Switzerland
| | - Sarah Jane Moore
- Swiss Tropical and Public Health Institute, Socinstr. 57, Basel, CH-4002 Switzerland
- University of Basel, St. Petersplatz 1, CH-4002 Basel, Switzerland
- Ifakara Health Institute, P.O. Box 74, Bagamoyo, Pwani United Republic of Tanzania
| |
Collapse
|
34
|
Matoke-Muhia D, Gimnig JE, Kamau L, Shililu J, Bayoh MN, Walker ED. Decline in frequency of the 2La chromosomal inversion in Anopheles gambiae (s.s.) in Western Kenya: correlation with increase in ownership of insecticide-treated bed nets. Parasit Vectors 2016; 9:334. [PMID: 27286834 PMCID: PMC4903000 DOI: 10.1186/s13071-016-1621-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 06/02/2016] [Indexed: 12/22/2022] Open
Abstract
Background The 2La chromosomal inversion, a genetic polymorphism in An. gambiae (sensu stricto) (s.s.), is associated with adaptation to microclimatic differences in humidity and desiccation resistance and mosquito behaviors. Ownership of insecticide-treated bed nets (ITNs) for malaria control has increased markedly in western Kenya in the last 20 years. An increase in the frequency of ITNs indoors could select against house entering or indoor resting of Anopheles mosquitoes. Thus, the frequency of the 2La inversion is postulated to change in An. gambiae (s.s.) with the increase of ITN ownership over time. Methods Anopheles gambiae mosquitoes were sampled between 1994 and 2011 using pyrethrum knockdown, bednet traps and human landing catches (HLC) from Asembo and Seme, western Kenya. The 2La inversion was detected by a PCR assay with primers designed for proximal breakpoints of the 2La/a and 2L+a/+a chromosomal conformation. Mosquitoes were tested for malaria parasite infection by sporozoite ELISA. Results The frequency of the 2La chromosomal inversion declined from 100 % of all chromosomes in 1994 to 17 % in 2005 and remained low through 2011 (21 %). ITN ownership increased from 0 to > 90 % of houses in the study area during this interval. The decline in the frequency of the 2La chromosomal inversion was significantly, negatively correlated with year (r = -0.93) and with increase in ITN ownership (r = -0.96). The frequency of the homo- and heterokaryotypes departed significantly from Hardy-Weinberg equilibrium, suggesting that 2La/a karyotype was under selection, earlier in its favor and later, against it. Precipitation and maximum monthly temperature did not vary over time, therefore there was no trend in climate that could account for the decline. There was no significant difference in frequency of the 2La inversion in An. gambiae (s.s.) females sampled indoors or outdoors in HCL in 2011, nor was there an association between the 2La inversion and infection with Plasmodium falciparum sporozoites. Conclusions The increase in ITN ownership in the study area was negatively correlated with the frequency of 2La inversion. The decline in 2La frequency in western Kenya is postulated to be due to differential impacts of ITNs on mosquitoes with different 2La karyotypes, possibly mediated by differences in behavior associated with the 2La karyotypes. Further research is required to determine if this is a widespread phenomenon, to further determine the association of the 2La karyotypes with mosquito behavior, and to assess whether ITNs are exerting selection mediated by differences in behavior on the different karyotypes.
Collapse
Affiliation(s)
- Damaris Matoke-Muhia
- Centre for Biotechnology Research and Development, Kenya Medical Research Institute, P.O. Box 54840-00200, Nairobi, Kenya. .,Institute of Tropical of Medicine and Infectious diseases, Jomo Kenyatta University of Agriculture and Technology, P.O. Box 62000-00200, Nairobi, Kenya.
| | - John E Gimnig
- Division of Parasitic Diseases and Malaria, Center for Disease Control and Prevention, Atlanta, GA, USA
| | - Luna Kamau
- Centre for Biotechnology Research and Development, Kenya Medical Research Institute, P.O. Box 54840-00200, Nairobi, Kenya
| | - Josephat Shililu
- Institute of Tropical of Medicine and Infectious diseases, Jomo Kenyatta University of Agriculture and Technology, P.O. Box 62000-00200, Nairobi, Kenya
| | - M Nabie Bayoh
- Centers for Disease Control and Prevention, PO Box 1578, Kisumu, Kenya
| | - Edward D Walker
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
35
|
Mathania MM, Kimera SI, Silayo RS. Knowledge and awareness of malaria and mosquito biting behaviour in selected sites within Morogoro and Dodoma regions Tanzania. Malar J 2016; 15:287. [PMID: 27216605 PMCID: PMC4877798 DOI: 10.1186/s12936-016-1332-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 05/10/2016] [Indexed: 11/30/2022] Open
Abstract
Background In Tanzania there has been a downward trend in malaria prevalence partly due to use of insecticide-treated bed nets for protection against Anopheles mosquitoes. However, residual malaria transmission attributed to early biting behaviour of malaria vectors is being reported. Knowledge of mosquito feeding behaviour is key to improvements in control approaches. The present study aimed to assess knowledge and awareness on malaria and malaria vectors in—Morogoro and Dodoma regions of Tanzania. Methods A cross sectional study was undertaken in selected sites in Morogoro and Dodoma Tanzania. A structured questionnaire was administered to 218 randomly selected households from each of which the head or second in/charge and the most senior primary school child were interviewed. Results A total of 400 participants of whom 56 % were females, were recruited into the study. Their ages ranged between nine and 58 years. Among the participants, 70.7 % had primary school education and the rest attained secondary school (16.8 %), university/college (4.0 %) and not attended school at all (8.5 %). Fifteen per cent of the participants were employed, while 45.5 % were self-employed and 39.5 % were studying. Overall, 58.5 % of respondents were knowledgeable of malaria and its vector. However, 78.8 % were not aware that early mosquito bites can transmit malaria and 86.5 % said that only midnight-biting mosquito bite was responsible for malaria transmission. The majority (66 %) of respondents visited a health facility on observing malaria symptoms while 15.8 % took anti-malaria drugs without medical consultation. Conclusion This study has shown that Anopheles is well known as the night-biting vector of malaria. The majority of participants were not aware of changed biting behaviour of malaria-transmitting mosquitoes and that early outdoor mosquito bite is a risk of malaria transmission. School children have shown a better understanding of malaria and its vector. Therefore, more awareness of Anopheles feeding behaviour is needed. Electronic supplementary material The online version of this article (doi:10.1186/s12936-016-1332-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mary M Mathania
- Sokoine University of Agriculture, PO BOX 3019, Morogoro, Tanzania. .,St. John's University of Tanzania, PO BOX 40, Dodoma, Tanzania.
| | | | - Richard S Silayo
- Sokoine University of Agriculture, PO BOX 3019, Morogoro, Tanzania
| |
Collapse
|
36
|
Miller E, Dushoff J, Huppert A. The risk of incomplete personal protection coverage in vector-borne disease. J R Soc Interface 2016; 13:20150666. [PMID: 26911486 PMCID: PMC4780561 DOI: 10.1098/rsif.2015.0666] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Accepted: 02/03/2016] [Indexed: 11/12/2022] Open
Abstract
Personal protection (PP) techniques, such as insecticide-treated nets, repellents and medications, include some of the most important and commonest ways used today to protect individuals from vector-borne infectious diseases. In this study, we explore the possibility that a PP intervention with partial coverage may have the counterintuitive effect of increasing disease burden at the population level, by increasing the biting intensity on the unprotected portion of the population. To this end, we have developed a dynamic model which incorporates parameters that describe the potential effects of PP on vector searching and biting behaviour and calculated its basic reproductive rate, R0. R0 is a well-established threshold of disease risk; the higher R0 is above unity, the stronger the disease onset intensity. When R0 is below unity, the disease is typically unable to persist. The model analysis revealed that partial coverage with popular PP techniques can realistically lead to a substantial increase in the reproductive number. An increase in R0 implies an increase in disease burden and difficulties in eradication efforts within certain parameter regimes. Our findings therefore stress the importance of studying vector behavioural patterns in response to PP interventions for future mitigation of vector-borne diseases.
Collapse
Affiliation(s)
- Ezer Miller
- The Biostatistics Unit, Gertner Institute for Epidemiology and Health Policy Research, Tel Hashomer, Israel Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Jonathan Dushoff
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Amit Huppert
- The Biostatistics Unit, Gertner Institute for Epidemiology and Health Policy Research, Tel Hashomer, Israel Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
37
|
Wamae P, Githeko A, Otieno G, Kabiru E, Duombia S. Early biting of the Anopheles gambiae s.s. and its challenges to vector control using insecticide treated nets in western Kenya highlands. Acta Trop 2015. [PMID: 26209103 DOI: 10.1016/j.actatropica.2015.07.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Long term use of insecticides in malaria vector control has been shown to alter the behavior of vectors. Such behavioral shifts have the potential of undermining the effectiveness of insecticide-based control interventions. The effects of insecticide treated nets (ITNs) use on the composition, biting/feeding and sporozoite rates of Anopheles gambiae s.l. mosquitoes in Musilongo village, Vihiga County of western Kenya highlands were investigated. Adult mosquitoes were collected in selected sleeping spaces inside six randomly selected houses using miniature Centre for Disease Control and Prevention (CDC) light traps. Mosquito sampling in each house was conducted twice every week for 16 consecutive months (May 2010-August 2012). At each sampling a single trap was set in the selected space inside each house such that it collected mosquitoes alternatively from 18:00 to 21:00h and 21:00 to 06:00h every week. All collected mosquitoes were morphologically identified. Female Anopheles mosquitoes were classified according to their physiological status as unfed, fed, partially gravid and gravid, sorted and counted. Members of the A. gambiae complex were identified using a Polymerase chain reaction (PCR) method. Enzyme-linked-immunosorbent assay (ELISA) was used to determine blood meal sources and Plasmodium infection rates in A. gambiae s.l. mosquitoes. Blood meal tests were conducted on DNA extracted from gut contents of blood fed A. gambiae s.l. The head and thorax section of dried samples of A. gambiae s.l. were used in testing for the presence of Plasmodium falciparum (Pf) sporozoites. Overall, 735 adult female Anopheles comprising 708 [96.3%] A. gambiae s.l. and 27 [3.7%] Anopheles funestus mosquitoes were collected. A. gambiae s.l. population collected comprised, 615 [86.9%] unfed and 38 [5.4%] fed adult mosquitoes. The rest were either partially or fully gravid. The proportion of A. gambiae s.l. biting indoors within 18:00-21:00h was 15.8% (103/653) at a rate of 3.2bites per person per hour compared to 84.2% biting from 21:00-06:00h at a rate of 3.8 bites/per/h. An estimated 97.7% A. gambiae ss and 2.3% A. arabiensis constituted the indoor biting A. gambiae s.l. The population of An. gambiae s.l. biting from 18:00 to 21:00h had a Plasmodium faciparum (pf) sporozoite rate of 3.8% compared to 3.5% observed in populations biting within 21:00-06:00h. Human blood constituted 89% of An. gambiae s.l. blood meal sources. The risk of malaria transmission from 21:00 to 06:00h was approximately 5 fold the risk within 18:00-21:00h. Majority of the infective female A. gambiae s.l. adults were biting deep into the night than in the early hours of the night. Humans remain the preferred source of blood meal for A. gambiae s.s. the dominant malaria vector in the highlands. ITNs remain a fundamental control intervention against malaria transmission since female blood seekers were more during bed time than pre-bed time. Advocacy on enhanced net availability, integrity and usage in Kenyan highlands can reduce Pf transmission. Additional complementary interventions are required to control the biting and parasite transmission encountered before bed-time.
Collapse
|
38
|
Bernier UR, Gurman P, Clark GG, Elman N. Functional Micro-Dispensers based on Micro-Electro-Mechanical-Systems (MEMS) integrated with fabrics as functional materials to protect humans from mosquito feeding. J Control Release 2015; 220:1-4. [PMID: 26415856 DOI: 10.1016/j.jconrel.2015.09.049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 08/21/2015] [Accepted: 09/25/2015] [Indexed: 10/23/2022]
Abstract
Functional Micro-Dispensers (FMDs) based on Micro-Electro-Mechanical-Systems (MEMS) were designed to deliver spatial repellents that reduce the ability of mosquitoes to feed on humans. FMDs were integrated with fabrics as functional materials for protection against mosquito bites. The use of MEMS devices provides an unprecedented control over the release kinetics by means of integration with electronics for selective and timely activation of each device to perform controlled release of pesticides in air. In addition, because MEMS manufacturing techniques evolved from the microelectronic industry, FMDs can be mass produced at very low cost. Trials using FMDs that contained transfluthrin improved protection against mosquito feeding in human subjects above that of permethrin-treated uniform fabric worn on the arm of the volunteer. The overall reduction in feeding was approximately 90% compared to the untreated fabric control, and about 50% reduction compared to the permethrin-treated fabric control. The devices were efficacious over course of 32 days. FMDs have the potential for a simple and cost-effective implementation for mass adoption as wearable devices integrated in fabrics as active functional materials.
Collapse
Affiliation(s)
- Ulrich R Bernier
- United States Department of Agriculture-Agricultural Research Service, Center for Medical, Agricultural, and Veterinary Entomology, 1600 SW 23rd Drive, Gainesville, FL 32608, USA
| | - Pablo Gurman
- Department of Materials Science and Engineering, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Gary G Clark
- United States Department of Agriculture-Agricultural Research Service, Center for Medical, Agricultural, and Veterinary Entomology, 1600 SW 23rd Drive, Gainesville, FL 32608, USA
| | - Noel Elman
- Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, 500 Technology Square, NE47-525, Cambridge, MA 02139, USA.
| |
Collapse
|
39
|
Whidden CE, Premaratne RG, Jayanetti SR, Fernando SD. Patterns and predictive factors of long-lasting insecticidal net usage in a previously high malaria endemic area in Sri Lanka: a cross-sectional survey. Trans R Soc Trop Med Hyg 2015; 109:553-62. [PMID: 26187622 DOI: 10.1093/trstmh/trv056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Accepted: 06/25/2015] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Long-lasting insecticidal nets (LLINs) have been widely distributed in Sri Lanka for malaria control. Their effectiveness depends on proper utilisation and maintenance at the household level. METHODS A cross-sectional study was performed to examine the patterns and predictive factors of LLIN maintenance and use in Anuradhapura district. Data was collected and analysed from 530 LLIN-owning households, selected by a multi-stage cluster sampling technique. Multivariable logistic regression identified factors associated with proper maintenance at the household level. Hierarchical linear modelling identified factors associated with LLIN use the previous night. RESULTS Almost 75% (377/504) of households had used all their LLINs the previous night, while 82.9% (418/504) had used at least one. Only 3.2% (15/474) were maintaining the LLIN in such a way as to maximise its insecticidal efficacy. Six variables were significantly associated (p<0.05) with use the previous night: more residents, fewer plain nets, reporting practical benefits of LLINs, conical shape, newer nets and lack of side effects. Two variables were significantly associated with proper maintenance: increasing level of education and taking safety precautions while washing. CONCLUSIONS Results suggest LLIN practices could improve in settings of low malaria transmission if distribution programmes took into account recipient preferences, promoted LLIN use over plain nets, and emphasised the techniques and significance of proper net maintenance.
Collapse
Affiliation(s)
| | | | | | - S Deepika Fernando
- Department of Parasitology, Faculty of Medicine, P.O. Box 271, Kynsey Road, Colombo 8, Sri Lanka
| |
Collapse
|
40
|
Cooke MK, Kahindi SC, Oriango RM, Owaga C, Ayoma E, Mabuka D, Nyangau D, Abel L, Atieno E, Awuor S, Drakeley C, Cox J, Stevenson J. 'A bite before bed': exposure to malaria vectors outside the times of net use in the highlands of western Kenya. Malar J 2015; 14:259. [PMID: 26109384 PMCID: PMC4479228 DOI: 10.1186/s12936-015-0766-4] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 06/06/2015] [Indexed: 12/25/2022] Open
Abstract
Background The human population in the highlands of Nyanza Province, western Kenya, is subject to sporadic epidemics of Plasmodium falciparum. Indoor residual spraying (IRS) and long-lasting insecticide treated nets (LLINs) are used widely in this area. These interventions are most effective when Anopheles rest and feed indoors and when biting occurs at times when individuals use LLINs. It is therefore important to test the current assumption of vector feeding preferences, and late night feeding times, in order to estimate the extent to which LLINs protect the inhabitants from vector bites. Methods Mosquito collections were made for six consecutive nights each month between June 2011 and May 2012. CDC light-traps were set next to occupied LLINs inside and outside randomly selected houses and emptied hourly. The net usage of residents, their hours of house entry and exit and times of sleeping were recorded and the individual hourly exposure to vectors indoors and outdoors was calculated. Using these data, the true protective efficacy of nets (P*), for this population was estimated, and compared between genders, age groups and from month to month. Results Primary vector species (Anopheles funestus s.l. and Anopheles arabiensis) were more likely to feed indoors but the secondary vector Anopheles coustani demonstrated exophagic behaviour (p < 0.05). A rise in vector biting activity was recorded at 19:30 outdoors and 18:30 indoors. Individuals using LLINs experienced a moderate reduction in their overall exposure to malaria vectors from 1.3 to 0.47 bites per night. The P* for the population over the study period was calculated as 51% and varied significantly with age and season (p < 0.01). Conclusions In the present study, LLINs offered the local population partial protection against malaria vector bites. It is likely that P* would be estimated to be greater if the overall suppression of the local vector population due to widespread community net use could be taken into account. However, the overlap of early biting habit of vectors and human activity in this region indicates that additional methods of vector control are required to limit transmission. Regular surveillance of both vector behaviour and domestic human-behaviour patterns would assist the planning of future control interventions in this region. Electronic supplementary material The online version of this article (doi:10.1186/s12936-015-0766-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mary K Cooke
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK.
| | - Sam C Kahindi
- Kenya Medical Research Institute Centre for Global Health Research/Centers for Disease Control and Prevention, Kisumu, Kenya.
| | - Robin M Oriango
- Kenya Medical Research Institute Centre for Global Health Research/Centers for Disease Control and Prevention, Kisumu, Kenya.
| | - Chrispin Owaga
- Kenya Medical Research Institute Centre for Global Health Research/Centers for Disease Control and Prevention, Kisumu, Kenya.
| | - Elizabeth Ayoma
- Kenya Medical Research Institute Centre for Global Health Research/Centers for Disease Control and Prevention, Kisumu, Kenya.
| | - Danspaid Mabuka
- Kenya Medical Research Institute Centre for Global Health Research/Centers for Disease Control and Prevention, Kisumu, Kenya.
| | - Dennis Nyangau
- Kenya Medical Research Institute Centre for Global Health Research/Centers for Disease Control and Prevention, Kisumu, Kenya.
| | - Lucy Abel
- Kenya Medical Research Institute Centre for Global Health Research/Centers for Disease Control and Prevention, Kisumu, Kenya.
| | - Elizabeth Atieno
- Kenya Medical Research Institute Centre for Global Health Research/Centers for Disease Control and Prevention, Kisumu, Kenya.
| | - Stephen Awuor
- Kenya Medical Research Institute Centre for Global Health Research/Centers for Disease Control and Prevention, Kisumu, Kenya.
| | - Chris Drakeley
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK.
| | - Jonathan Cox
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK.
| | - Jennifer Stevenson
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK. .,Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health/Macha Research Trust, Choma, Zambia.
| |
Collapse
|
41
|
Sutcliffe JF, Yin S. Behavioural responses of females of two anopheline mosquito species to human-occupied, insecticide-treated and untreated bed nets. Malar J 2014; 13:294. [PMID: 25080389 PMCID: PMC4121435 DOI: 10.1186/1475-2875-13-294] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 07/16/2014] [Indexed: 11/10/2022] Open
Abstract
Background Insecticide-treated bed nets (ITNs), used extensively to reduce human exposure to malaria, work through physical and chemical means to block or deter host-seeking mosquitoes. Despite the importance of ITNs, very little is known about how host-seeking mosquitoes behave around occupied bed nets. As a result, evidence-based evaluations of the effects of physical damage on bed net effectiveness are not possible and there is a dearth of knowledge on which to base ITN design. Methods The dispersion of colony-raised female Anopheles gambiae and Anopheles albimanus was observed in 2-hr laboratory experiments in which up to 200 mosquitoes were released inside a mosquito-proof 3 m × 3 m tent housing a bed net arrayed with 18 30 cm × 30 cm sticky screen squares on the sides, ends and roof. Numbers of mosquitoes caught on the sticky squares were interpreted as the ‘mosquito pressure’ on that part of the net. Results Presence of a human subject in the bed net significantly increased total mosquito pressure on the net for both species and significantly re-oriented An. gambiae to the roof of the net. Anopheles albimanus pressure was greatest on the bed net roof in both host-present and no-host conditions. The effects of different human subjects in the bed net, of different ambient conditions (dry, cool conditions vs warm, humid conditions) and of bed net treatment (deltamethrin-treated or no insecticide) on mosquito pressure patterns were tested for both species. Species-specific pressure patterns did not vary greatly as a result of any of these factors though some differences were noted that may be due the size of the different human subjects. Conclusions As a result of the interaction between host-seeking responses and the convective plume from the net occupant, species-specific mosquito pressure patterns manifest more or less predictably on the bed net. This has implications for bed net design and suggests that current methods of assessing damaged bed nets, which do not take damage location into account, should be modified.
Collapse
Affiliation(s)
- James F Sutcliffe
- Department of Biology, Trent University, Peterborough, Ontario K9J 7B8, Canada.
| | | |
Collapse
|
42
|
Franco AO, Gomes MGM, Rowland M, Coleman PG, Davies CR. Controlling malaria using livestock-based interventions: a one health approach. PLoS One 2014; 9:e101699. [PMID: 25050703 PMCID: PMC4106824 DOI: 10.1371/journal.pone.0101699] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Accepted: 06/10/2014] [Indexed: 11/18/2022] Open
Abstract
Where malaria is transmitted by zoophilic vectors, two types of malaria control strategies have been proposed based on animals: using livestock to divert vector biting from people (zooprophylaxis) or as baits to attract vectors to insecticide sources (insecticide-treated livestock). Opposing findings have been obtained on malaria zooprophylaxis, and despite the success of an insecticide-treated livestock trial in Pakistan, where malaria vectors are highly zoophilic, its effectiveness is yet to be formally tested in Africa where vectors are more anthropophilic. This study aims to clarify the different effects of livestock on malaria and to understand under what circumstances livestock-based interventions could play a role in malaria control programmes. This was explored by developing a mathematical model and combining it with data from Pakistan and Ethiopia. Consistent with previous work, a zooprophylactic effect of untreated livestock is predicted in two situations: if vector population density does not increase with livestock introduction, or if livestock numbers and availability to vectors are sufficiently high such that the increase in vector density is counteracted by the diversion of bites from humans to animals. Although, as expected, insecticide-treatment of livestock is predicted to be more beneficial in settings with highly zoophilic vectors, like South Asia, we find that the intervention could also considerably decrease malaria transmission in regions with more anthropophilic vectors, like Anopheles arabiensis in Africa, under specific circumstances: high treatment coverage of the livestock population, using a product with stronger or longer lasting insecticidal effect than in the Pakistan trial, and with small (ideally null) repellency effect, or if increasing the attractiveness of treated livestock to malaria vectors. The results suggest these are the most appropriate conditions for field testing insecticide-treated livestock in an Africa region with moderately zoophilic vectors, where this intervention could contribute to the integrated control of malaria and livestock diseases.
Collapse
Affiliation(s)
- Ana O. Franco
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | | | - Mark Rowland
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Paul G. Coleman
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Clive R. Davies
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
43
|
Slater HC, Walker PGT, Bousema T, Okell LC, Ghani AC. The potential impact of adding ivermectin to a mass treatment intervention to reduce malaria transmission: a modelling study. J Infect Dis 2014; 210:1972-80. [PMID: 24951826 DOI: 10.1093/infdis/jiu351] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Ivermectin (IVM), used alongside mass treatment strategies with an artemisinin combination therapy, has been suggested as a possible tool for reducing malaria transmission. Mosquitoes ingesting a bloodmeal containing IVM have increased mortality, reducing the probability that the parasite completes sporogony. METHODS Human pharmacokinetic data and mortality data for mosquitoes taking bloodmeals containing IVM are used to quantify the mosquitocidal effect of IVM. These are incorporated into a transmission model to estimate the impact of IVM in combination with mass treatment strategies with artemether-lumefantrine on transmission metrics. RESULTS Adding IVM increases the reductions in parasite prevalence achieved and delays the reemergence of parasites compared to mass treatment alone. This transmission effect is obtained through its effect on vector mortality. IVM effectiveness depends on coverage with the highest impact achieved if given to the whole population rather than only those with existing detectable parasites. Our results suggest that including IVM in a mass treatment strategy can reduce the time taken to interrupt transmission as well as help to achieve transmission interruption in transmission settings in which mass treatment strategies alone would be insufficient. CONCLUSIONS Including IVM in mass treatment strategies could be a useful adjunct to reduce and interrupt malaria transmission.
Collapse
Affiliation(s)
- Hannah C Slater
- MRC Centre for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, Imperial College London, Norfolk Place, United Kingdom
| | - Patrick G T Walker
- MRC Centre for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, Imperial College London, Norfolk Place, United Kingdom
| | - Teun Bousema
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, Netherlands Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, United Kingdom
| | - Lucy C Okell
- MRC Centre for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, Imperial College London, Norfolk Place, United Kingdom
| | - Azra C Ghani
- MRC Centre for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, Imperial College London, Norfolk Place, United Kingdom
| |
Collapse
|
44
|
Lutambi AM, Chitnis N, Briët OJT, Smith TA, Penny MA. Clustering of vector control interventions has important consequences for their effectiveness: a modelling study. PLoS One 2014; 9:e97065. [PMID: 24823656 PMCID: PMC4019655 DOI: 10.1371/journal.pone.0097065] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 04/14/2014] [Indexed: 11/23/2022] Open
Abstract
Vector control interventions have resulted in considerable reductions in malaria morbidity and mortality. When universal coverage cannot be achieved for financial or logistical reasons, the spatial arrangement of vector control is potentially important for optimizing benefits. This study investigated the effect of spatial clustering of vector control interventions on reducing the population of biting mosquitoes. A discrete-space continuous-time mathematical model of mosquito population dynamics and dispersal was extended to incorporate vector control interventions of insecticide treated bednets (ITNs), Indoor residual Spraying (IRS), and larviciding. Simulations were run at varying levels of coverage and degree of spatial clustering. At medium to high coverage levels of each of the interventions or in combination was more effective to spatially spread these interventions than to cluster them. Suggesting that when financial resources are limited, unclustered distribution of these interventions is more effective. Although it is often stated that locally high coverage is needed to achieve a community effect of ITNs or IRS, our results suggest that if the coverage of ITNs or IRS are insufficient to achieve universal coverage, and there is no targeting of high risk areas, the overall effects on mosquito densities are much greater if they are distributed in an unclustered way, rather than clustered in specific localities. Also, given that interventions are often delivered preferentially to accessible areas, and are therefore clustered, our model results show this may be inefficient. This study provides evidence that the effectiveness of an intervention can be highly dependent on its spatial distribution. Vector control plans should consider the spatial arrangement of any intervention package to ensure effectiveness is maximized.
Collapse
Affiliation(s)
- Angelina Mageni Lutambi
- Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
- Ifakara Health Institute, Dar es Salaam, Tanzania
| | - Nakul Chitnis
- Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
- Fogarty International Center, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Olivier J. T. Briët
- Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Thomas A. Smith
- Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Melissa A. Penny
- Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| |
Collapse
|
45
|
Sougoufara S, Diédhiou SM, Doucouré S, Diagne N, Sembène PM, Harry M, Trape JF, Sokhna C, Ndiath MO. Biting by Anopheles funestus in broad daylight after use of long-lasting insecticidal nets: a new challenge to malaria elimination. Malar J 2014; 13:125. [PMID: 24678587 PMCID: PMC3973838 DOI: 10.1186/1475-2875-13-125] [Citation(s) in RCA: 156] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 03/25/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Malaria control is mainly based on indoor residual spraying and insecticide-treated bed nets. The efficacy of these tools depends on the behaviour of mosquitoes, which varies by species. With resistance to insecticides, mosquitoes adapt their behaviour to ensure their survival and reproduction. The aim of this study was to assess the biting behaviour of Anopheles funestus after the implementation of long-lasting insecticidal nets (LLINs). METHODS A study was conducted in Dielmo, a rural Senegalese village, after a second massive deployment of LLINs in July 2011. Adult mosquitoes were collected by human landing catch and by pyrethrum spray catch monthly between July 2011 and April 2013. Anophelines were identified by stereomicroscope and sub-species by PCR. The presence of circumsporozoite protein of Plasmodium falciparum and the blood meal origin were detected by ELISA. RESULTS Anopheles funestus showed a behavioural change in biting activity after introduction of LLINs, remaining anthropophilic and endophilic, while adopting diurnal feeding, essentially on humans. Six times more An. funestus were captured in broad daylight than at night. Only one infected mosquito was found during day capture. The mean of day CSP rate was 1.28% while no positive An. funestus was found in night captures. CONCLUSION Mosquito behaviour is an essential component for assessing vectorial capacity to transmit malaria. The emergence of new behavioural patterns of mosquitoes may significantly increase the risk for malaria transmission and represents a new challenge for malaria control. Additional vector control strategies are, therefore, necessary.
Collapse
Affiliation(s)
- Seynabou Sougoufara
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, IRD198, UM63, CNRS7278, INSERMU1095, Aix-Marseille Université, Campus UCAD-IRD, BP 1386, CP 18524 Dakar, Sénégal
- Département de Biologie Animale, FST/UCAD, BP 5005 Dakar Fann, Sénégal
| | - Seynabou Mocote Diédhiou
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, IRD198, UM63, CNRS7278, INSERMU1095, Aix-Marseille Université, Campus UCAD-IRD, BP 1386, CP 18524 Dakar, Sénégal
- Département de Biologie Animale, FST/UCAD, BP 5005 Dakar Fann, Sénégal
| | - Souleymane Doucouré
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, IRD198, UM63, CNRS7278, INSERMU1095, Aix-Marseille Université, Campus UCAD-IRD, BP 1386, CP 18524 Dakar, Sénégal
| | - Nafissatou Diagne
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, IRD198, UM63, CNRS7278, INSERMU1095, Aix-Marseille Université, Campus UCAD-IRD, BP 1386, CP 18524 Dakar, Sénégal
| | | | - Myriam Harry
- Laboratoire Evolution, Génomes et Spéciation, Université Paris-Sud 11, 91198 Gif-sur-Yvette, Cedex, France
| | - Jean-François Trape
- Laboratoire de Paludologie, Campus International UCAD-IRD Hann, BP 1386 CP 18524 Dakar, Sénégal
| | - Cheikh Sokhna
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, IRD198, UM63, CNRS7278, INSERMU1095, Aix-Marseille Université, Campus UCAD-IRD, BP 1386, CP 18524 Dakar, Sénégal
| | - Mamadou Ousmane Ndiath
- Laboratoire de Paludologie, Campus International UCAD-IRD Hann, BP 1386 CP 18524 Dakar, Sénégal
- G4 International Group, Institut Pasteur International Network, Entomology Unit, Institute Pasteur of Bangui, BP 926 Bangui, Central African Republic
| |
Collapse
|
46
|
Kabbale FG, Akol AM, Kaddu JB, Onapa AW. Biting patterns and seasonality of Anopheles gambiae sensu lato and Anopheles funestus mosquitoes in Kamuli District, Uganda. Parasit Vectors 2013; 6:340. [PMID: 24304974 PMCID: PMC3866981 DOI: 10.1186/1756-3305-6-340] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2013] [Accepted: 11/25/2013] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND We investigated the biting patterns and seasonal abundances of Anopheles gambiae s.l. and An. funestus mosquitoes in Kamuli District, Uganda. METHODS Hourly indoor and outdoor catches of human biting mosquitoes were sampled from 19.00 to 07.00 hours for four consecutive nights each month using bed net traps in forty-eight houses randomly selected from Bugabula county where insecticide-treated bed nets (ITNs) had been used for at least five years and Budiope county where ITNs had not been used. The indoor and outdoor human-biting fractions, time of biting of the anophelines and climatic data were recorded from January to December 2010. Data were analysed using Multi-way analysis of variance, Kruskal-wallis rank sum test and Pearson correlation. The number of mosquitoes caught biting humans and resting indoors, the indoor and outdoor human biting densities and biting rates during different hours of the night, and mosquito abundances for a twelve-month sampling period in both zones are reported. RESULTS Approximately four times more Anopheles mosquitoes were caught biting humans in Budiope County than in the Bugabula zone, with An. gambiae s. l. catches exceeding those of An. funestus. In both zones, peak night biting occurred between 23.00 and 05.00 hours. The majority of bites occurred between 03.00 and 06.00 hours for both Anopheles gambiae s. l. and funestus group. Outdoor biting densities of Anopheles gambiae s. l. exceeded the indoor biting densities throughout the night in both zones, while the indoor and outdoor human biting densities of An. funestus group were apparently equal. The outdoor and indoor human biting rates were similar in both zones. In Bugabula county, the abundance of An. gambiae s.l. was rainfall-dependent, while the An. funestus group could thrive with or without rain fall. In Budiope county, both An. gambiae s.l. and An. funestus mosquitoes thrived all year round regardless of the amount of rainfall. CONCLUSION Considering the biting patterns, and seasonal abundances exhibited by Anopheles gambiae s.l. and An. funestus mosquitoes in Kamuli district, intensive use of ITNs combined with indoor residual spraying, environmental management and improved house designs in the context of integrated vector management may be the appropriate vector control strategy.
Collapse
Affiliation(s)
- Fredrick G Kabbale
- Department of Biological Sciences, College of Natural Sciences, Makerere University, P.O. Box 7062, Kampala, Uganda
| | - Anne M Akol
- Department of Biological Sciences, College of Natural Sciences, Makerere University, P.O. Box 7062, Kampala, Uganda
| | - John B Kaddu
- Department of Biological Sciences, College of Natural Sciences, Makerere University, P.O. Box 7062, Kampala, Uganda
| | | |
Collapse
|
47
|
Hodges TK, Athrey G, Deitz KC, Overgaard HJ, Matias A, Caccone A, Slotman MA. Large fluctuations in the effective population size of the malaria mosquito Anopheles gambiae s.s. during vector control cycle. Evol Appl 2013; 6:1171-83. [PMID: 24478799 PMCID: PMC3901547 DOI: 10.1111/eva.12094] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 06/21/2013] [Indexed: 11/28/2022] Open
Abstract
On Bioko Island, Equatorial Guinea, indoor residual spraying (IRS) has been part of the Bioko Island Malaria Control Project since early 2004. Despite success in reducing childhood infections, areas of high transmission remain on the island. We therefore examined fluctuations in the effective population size (N e ) of the malaria vector Anopheles gambiae in an area of persistent high transmission over two spray rounds. We analyzed data for 13 microsatellite loci from 791 An. gambiae specimens collected at six time points in 2009 and 2010 and reconstructed the demographic history of the population during this period using approximate Bayesian computation (ABC). Our analysis shows that IRS rounds have a large impact on N e , reducing it by 65%-92% from prespray round N e . More importantly, our analysis shows that after 3-5 months, the An. gambiae population rebounded by 2818% compared shortly following the spray round. Our study underscores the importance of adequate spray round frequency to provide continuous suppression of mosquito populations and that increased spray round frequency should substantially improve the efficacy of IRS campaigns. It also demonstrates the ability of ABC to reconstruct a detailed demographic history across only a few tens of generations in a large population.
Collapse
Affiliation(s)
- Theresa K Hodges
- Department of Entomology, Texas A&M UniversityCollege Station, TX, USA
| | - Giridhar Athrey
- Department of Entomology, Texas A&M UniversityCollege Station, TX, USA
| | - Kevin C Deitz
- Department of Entomology, Texas A&M UniversityCollege Station, TX, USA
| | - Hans J Overgaard
- Department of Mathematical Sciences and Technology, Norwegian University of Life SciencesÅs, Norway
| | - Abrahan Matias
- Medical Care Development International Inc. Malabo, Equatorial GuineaNew Haven, CT, USA
| | - Adalgisa Caccone
- Department of Ecology and Evolutionary Biology, Yale UniversityNew Haven, CT, USA
| | - Michel A Slotman
- Department of Entomology, Texas A&M UniversityCollege Station, TX, USA
| |
Collapse
|
48
|
Ochomo EO, Bayoh NM, Walker ED, Abongo BO, Ombok MO, Ouma C, Githeko AK, Vulule J, Yan G, Gimnig JE. The efficacy of long-lasting nets with declining physical integrity may be compromised in areas with high levels of pyrethroid resistance. Malar J 2013; 12:368. [PMID: 24156715 PMCID: PMC4016513 DOI: 10.1186/1475-2875-12-368] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 10/23/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Long-lasting insecticide-treated mosquito nets (LLINs) are a primary malaria prevention strategy in sub-Saharan Africa. However, emergence of insecticide resistance threatens the effectiveness of LLINs. METHODS Cross-sectional surveys of LLINs were conducted in houses of seven and four villages in Gem and Bungoma Districts in western Kenya, respectively. Condition (number and area of holes in the nets), number and species of mosquitoes resting inside them, and insecticidal activity of nets were quantified. Mosquitoes collected inside nets were allowed to lay eggs and progeny tested for susceptibility to deltamethrin and permethrin, pyrethoids commonly deployed in LLINs in western Kenya. RESULTS In Gem, 83.3% of nets were less than three years old and 32.4% had at least one hole of any size; while in Bungoma, 92% were less than three years old and 48% had at least one hole. No anopheline and five Culex spp. mosquitoes were found resting inside nets in Gem regardless of the number and size of holes, while 552 Anopheles gambiae s.l., five Anopheles funestus s.l. and 137 Culex spp. were in nets in Bungoma. The number of mosquitoes resting inside nets increased with hole areas >50 cm in Bungoma. In WHO resistance assays, f1 offspring of samples collected in nets in Bungoma were 94 and 65% resistant to deltamethrin and permethrin, respectively. Nets from Bungoma retained strong activity against a susceptible laboratory strain, but not against f1 offspring of field-collected An. gambiae s.s. All An. gambiae s.s. samples collected in nets were homozygous for the kdr genotype L1014S. CONCLUSIONS In areas with pyrethroid resistant vectors, LLINs with modest hole areas permit mosquito entry and feeding, providing little protection against the vectors. LLIN formulations develop large holes within three years of use, diminishing their presupposed lifetime effectiveness.
Collapse
Affiliation(s)
- Eric O Ochomo
- KEMRI/CDC Research and Public Health Collaboration, PO Box 1578, Kisumu 40100, Kenya.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Smithuis FM, Kyaw MK, Phe UO, van der Broek I, Katterman N, Rogers C, Almeida P, Kager PA, Stepniewska K, Lubell Y, Simpson JA, White NJ. The effect of insecticide-treated bed nets on the incidence and prevalence of malaria in children in an area of unstable seasonal transmission in western Myanmar. Malar J 2013; 12:363. [PMID: 24119916 PMCID: PMC3854704 DOI: 10.1186/1475-2875-12-363] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 09/20/2013] [Indexed: 12/02/2022] Open
Abstract
Background Insecticide-treated bed nets (ITN) reduce malaria morbidity and mortality consistently in Africa, but their benefits have been less consistent in Asia. This study’s objective was to evaluate the malaria protective efficacy of village-wide usage of ITN in Western Myanmar and estimate the cost-effectiveness of ITN compared with extending early diagnosis and treatment services. Methods A cluster-randomized controlled trial was conducted in Rakhine State to assess the efficacy of ITNs in preventing malaria and anaemia in children and their secondary effects on nutrition and development. The data were aggregated for each village to obtain cluster-level infection rates. In total 8,175 children under 10 years of age were followed up for 10 months, which included the main malaria transmission period. The incidence and prevalence of Plasmodium falciparum and Plasmodium vivax infections, and the biting behaviour of Anopheles mosquitoes in the area were studied concurrently. The trial data along with costs for current recommended treatment practices were modelled to estimate the cost-effectiveness of ITNs compared with, or in addition to extending the coverage of early diagnosis and treatment services. Results In aggregate, malaria infections, spleen rates, haemoglobin concentrations, and weight for height, did not differ significantly during the study period between villages with and without ITNs, with a weighted mean difference of −2.6 P. falciparum episodes per 1,000 weeks at risk (95% Confidence Interval −7 to 1.8). In areas with a higher incidence of malaria there was some evidence ITN protective efficacy. The economic analysis indicated that, despite the uncertainty and variability in their protective efficacy in the different study sites, ITN could still be cost-effective, but not if they displaced funding for early diagnosis and effective treatment which is substantially more cost-effective. Conclusion In Western Myanmar deployment of ITNs did not provide consistent protection against malaria in children living in malaria endemic villages. Early diagnosis and effective treatment is a more cost effective malaria control strategy than deployment of ITNs in this area where the main vector bites early in the evening, often before people are protected by an ITN.
Collapse
Affiliation(s)
- Frank M Smithuis
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, 3rd Floor, 60th Anniversary Chalermprakiat Building, 420/6 Rajvithi Rd,, Ratchathewi District, Bangkok 10400, Thailand.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Reimer LJ, Thomsen EK, Tisch DJ, Henry-Halldin CN, Zimmerman PA, Baea ME, Dagoro H, Susapu M, Hetzel MW, Bockarie MJ, Michael E, Siba PM, Kazura JW. Insecticidal bed nets and filariasis transmission in Papua New Guinea. N Engl J Med 2013; 369:745-53. [PMID: 23964936 PMCID: PMC3835352 DOI: 10.1056/nejmoa1207594] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND Global efforts to eliminate lymphatic filariasis are based on the annual mass administration of antifilarial drugs to reduce the microfilaria reservoir available to the mosquito vector. Insecticide-treated bed nets are being widely used in areas in which filariasis and malaria are coendemic. METHODS We studied five villages in which five annual mass administrations of antifilarial drugs, which were completed in 1998, reduced the transmission of Wuchereria bancrofti, one of the nematodes that cause lymphatic filariasis. A total of 21,899 anopheles mosquitoes were collected for 26 months before and 11 to 36 months after bed nets treated with long-lasting insecticide were distributed in 2009. We evaluated the status of filarial infection and the presence of W. bancrofti DNA in anopheline mosquitoes before and after the introduction of insecticide-treated bed nets. We then used a model of population dynamics to estimate the probabilities of transmission cessation. RESULTS Village-specific rates of bites from anopheline mosquitoes ranged from 6.4 to 61.3 bites per person per day before the bed-net distribution and from 1.1 to 9.4 bites for 11 months after distribution (P<0.001). During the same period, the rate of detection of W. bancrofti in anopheline mosquitoes decreased from 1.8% to 0.4% (P=0.005), and the rate of detection of filarial DNA decreased from 19.4% to 14.9% (P=0.13). The annual transmission potential was 5 to 325 infective larvae inoculated per person per year before the bed-net distribution and 0 after the distribution. Among all five villages with a prevalence of microfilariae of 2 to 38%, the probability of transmission cessation increased from less than 1.0% before the bed-net distribution to a range of 4.9 to 95% in the 11 months after distribution. CONCLUSIONS Vector control with insecticide-treated bed nets is a valuable tool for W. bancrofti elimination in areas in which anopheline mosquitoes transmit the parasite. (Funded by the U.S. Public Health Service and the National Institutes of Health.).
Collapse
Affiliation(s)
- Lisa J Reimer
- Papua New Guinea Institute of Medical Research, Goroka and Madang, Papua New Guinea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|