1
|
Walker AA, Chin YKY, Guo S, Jin J, Wilbrink E, Goudarzi MH, Wirth H, Gordon E, Weirauch C, King GF. Structure and bioactivity of an insecticidal trans-defensin from assassin bug venom. Structure 2024; 32:1348-1357.e4. [PMID: 38889720 DOI: 10.1016/j.str.2024.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/30/2024] [Accepted: 05/22/2024] [Indexed: 06/20/2024]
Abstract
Disulfide-rich peptides such as defensins play diverse roles in immunity and ion channel modulation, as well as constituting the bioactive components of many animal venoms. We investigated the structure and bioactivity of U-RDTX-Pp19, a peptide previously discovered in venom of the assassin bug Pristhesancus plagipennis. Recombinant Pp19 (rPp19) was found to possess insecticidal activity when injected into Drosophila melanogaster. A bioinformatic search revealed that domains homologous to Pp19 are produced by assassin bugs and diverse other arthropods. rPp19 co-eluted with native Pp19 isolated from P. plagipennis, which we found is more abundant in hemolymph than venom. We solved the three-dimensional structure of rPp19 using 2D 1H NMR spectroscopy, finding that it adopts a disulfide-stabilized structure highly similar to known trans-defensins, with the same cystine connectivity as human α-defensin (I-VI, II-IV, and III-V). The structure of Pp19 is unique among reported structures of arthropod peptides.
Collapse
Affiliation(s)
- Andrew A Walker
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia; Centre of Excellence for Innovations in Protein and Peptide Science, St Lucia, QLD 4072, Australia.
| | - Yanni K-Y Chin
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia; Centre for Advanced Imaging, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Shaodong Guo
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Jiayi Jin
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Evienne Wilbrink
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia; Fontys University of Applied Sciences, Eindhoven 5612 AR, the Netherlands
| | - Mohaddeseh Hedayati Goudarzi
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia; Centre of Excellence for Innovations in Protein and Peptide Science, St Lucia, QLD 4072, Australia
| | - Hayden Wirth
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia; Centre of Excellence for Innovations in Protein and Peptide Science, St Lucia, QLD 4072, Australia
| | - Eric Gordon
- Department of Entomology, University of California Riverside, Riverside, CA 92521, USA
| | - Christiane Weirauch
- Department of Entomology, University of California Riverside, Riverside, CA 92521, USA
| | - Glenn F King
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia; Centre of Excellence for Innovations in Protein and Peptide Science, St Lucia, QLD 4072, Australia.
| |
Collapse
|
2
|
Antunes A, Robin P, Mourier G, Béroud R, De Waard M, Servent D, Benoit E. Rattlesnake Crotalphine Analgesic Active on Tetrodotoxin-Sensitive Na + Current in Mouse Dorsal Root Ganglion Neurons. Toxins (Basel) 2024; 16:359. [PMID: 39195769 PMCID: PMC11359915 DOI: 10.3390/toxins16080359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/04/2024] [Accepted: 08/13/2024] [Indexed: 08/29/2024] Open
Abstract
Crotalphine is an analgesic peptide identified from the venom of the South American rattlesnake Crotalus durissus terrificus. Although its antinociceptive effect is well documented, its direct mechanisms of action are still unclear. The aim of the present work was to study the action of the crotalid peptide on the NaV1.7 channel subtype, a genetically validated pain target. To this purpose, the effects of crotalphine were evaluated on the NaV1.7 component of the tetrodotoxin-sensitive Na+ current in the dorsal root ganglion neurons of adult mice, using the whole-cell patch-clamp configuration, and on cell viability, using propidium iodide fluorescence and trypan blue assays. The results show that 18.7 µM of peptide inhibited 50% of the Na+ current. The blocking effect occurred without any marked change in the current activation and inactivation kinetics, but it was more important as the membrane potential was more positive. In addition, crotalphine induced an increase in the leakage current amplitude of approximately 150% and led to a maximal 31% decrease in cell viability at a high 50 µM concentration. Taken together, these results point out, for the first time, the effectiveness of crotalphine in acting on the NaV1.7 channel subtype, which may be an additional target contributing to the peptide analgesic properties and, also, although less efficiently, on a second cell plasma membrane component, leading to cell loss.
Collapse
Affiliation(s)
- Aurélie Antunes
- Département Médicaments et Technologies pour la Santé (DMTS), Institut des Sciences du Vivant Frédéric Joliot, Université Paris-Saclay, CEA, Service d’Ingénierie Moléculaire pour la Santé (SIMoS), EMR CNRS/CEA 9004, F-91191 Gif-sur-Yvette, France; (A.A.); (P.R.); (G.M.); (D.S.)
- Smartox Biotechnology, F-38120 Saint-Egrève, France; (R.B.); (M.D.W.)
| | - Philippe Robin
- Département Médicaments et Technologies pour la Santé (DMTS), Institut des Sciences du Vivant Frédéric Joliot, Université Paris-Saclay, CEA, Service d’Ingénierie Moléculaire pour la Santé (SIMoS), EMR CNRS/CEA 9004, F-91191 Gif-sur-Yvette, France; (A.A.); (P.R.); (G.M.); (D.S.)
| | - Gilles Mourier
- Département Médicaments et Technologies pour la Santé (DMTS), Institut des Sciences du Vivant Frédéric Joliot, Université Paris-Saclay, CEA, Service d’Ingénierie Moléculaire pour la Santé (SIMoS), EMR CNRS/CEA 9004, F-91191 Gif-sur-Yvette, France; (A.A.); (P.R.); (G.M.); (D.S.)
| | - Rémy Béroud
- Smartox Biotechnology, F-38120 Saint-Egrève, France; (R.B.); (M.D.W.)
| | - Michel De Waard
- Smartox Biotechnology, F-38120 Saint-Egrève, France; (R.B.); (M.D.W.)
- L’Institut du Thorax, INSERM, CNRS, Université de Nantes, F-44007 Nantes, France
- LabEx “Ion Channels, Science and Therapeutics”, F-06560 Valbonne, France
| | - Denis Servent
- Département Médicaments et Technologies pour la Santé (DMTS), Institut des Sciences du Vivant Frédéric Joliot, Université Paris-Saclay, CEA, Service d’Ingénierie Moléculaire pour la Santé (SIMoS), EMR CNRS/CEA 9004, F-91191 Gif-sur-Yvette, France; (A.A.); (P.R.); (G.M.); (D.S.)
| | - Evelyne Benoit
- Département Médicaments et Technologies pour la Santé (DMTS), Institut des Sciences du Vivant Frédéric Joliot, Université Paris-Saclay, CEA, Service d’Ingénierie Moléculaire pour la Santé (SIMoS), EMR CNRS/CEA 9004, F-91191 Gif-sur-Yvette, France; (A.A.); (P.R.); (G.M.); (D.S.)
| |
Collapse
|
3
|
Machado Marinho AC, Chapeaurouge A, Dutra BM, Quintela BCSF, Pereira SS, Fernandes CFC. The role of venom proteomics and single-domain antibodies for antivenoms: Progress in snake envenoming treatment. Drug Discov Today 2024; 29:103967. [PMID: 38555033 DOI: 10.1016/j.drudis.2024.103967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/14/2024] [Accepted: 03/26/2024] [Indexed: 04/02/2024]
Abstract
Single-domain antibodies (sdAbs) hold promise for developing new biopharmaceuticals to treat neglected tropical diseases (NTDs), including snakebites, which are severe and occur frequently. In addition, limitations of conventional snakebite treatments, especially in terms of local action, and the global antivenom crisis incentivize the use of this biotechnological tool to design next-generation snakebite antivenoms. Conventional antivenoms for snakebite treatment are usually composed of immunoglobulin G or F(ab')2 fragments derived from the plasma of immunized animals. sdAbs, the smallest antigen-binding fragments, are derived from the variable domains of camelid heavy-chain antibodies. sdAbs may have some advantages over conventional antivenoms for local toxicity, such as better penetration into tissues due to their small size, and high solubility and affinity for venom antigens due to their unique antigen-binding loops and ability to access cryptic epitopes. We present an overview of current antivenom therapy in the context of sdAb development for toxin neutralization. Furthermore, strategies are presented for identifying snake venom's major toxins as well as for developing antisnake toxin sdAbs by employing proteomic tools for toxin neutralization.
Collapse
Affiliation(s)
- Anna Carolina Machado Marinho
- Laboratório Multiusuário de Pesquisa e Desenvolvimento, Fundação Oswaldo Cruz Ceará, FIOCRUZ CE, Eusébio-CE, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Ceará, UFC, Fortaleza, Brazil
| | - Alexander Chapeaurouge
- Laboratório Multiusuário de Pesquisa e Desenvolvimento, Fundação Oswaldo Cruz Ceará, FIOCRUZ CE, Eusébio-CE, Brazil
| | - Brunheld Maia Dutra
- Laboratório Multiusuário de Pesquisa e Desenvolvimento, Fundação Oswaldo Cruz Ceará, FIOCRUZ CE, Eusébio-CE, Brazil
| | - Barbara Cibelle S F Quintela
- Laboratório Multiusuário de Pesquisa e Desenvolvimento, Fundação Oswaldo Cruz Ceará, FIOCRUZ CE, Eusébio-CE, Brazil
| | - Soraya S Pereira
- Laboratório de Engenharia de Anticorpos, Fundação Oswaldo Cruz Rondônia, FIOCRUZ RO, Porto Velho-RO, Brazil
| | - Carla Freire C Fernandes
- Laboratório Multiusuário de Pesquisa e Desenvolvimento, Fundação Oswaldo Cruz Ceará, FIOCRUZ CE, Eusébio-CE, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Ceará, UFC, Fortaleza, Brazil
| |
Collapse
|
4
|
AlShammari AK, Abd El-Aziz TM, Al-Sabi A. Snake Venom: A Promising Source of Neurotoxins Targeting Voltage-Gated Potassium Channels. Toxins (Basel) 2023; 16:12. [PMID: 38251229 PMCID: PMC10820993 DOI: 10.3390/toxins16010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/11/2023] [Accepted: 12/19/2023] [Indexed: 01/23/2024] Open
Abstract
The venom derived from various sources of snakes represents a vast collection of predominantly protein-based toxins that exhibit a wide range of biological actions, including but not limited to inflammation, pain, cytotoxicity, cardiotoxicity, and neurotoxicity. The venom of a particular snake species is composed of several toxins, while the venoms of around 600 venomous snake species collectively encompass a substantial reservoir of pharmacologically intriguing compounds. Despite extensive research efforts, a significant portion of snake venoms remains uncharacterized. Recent findings have demonstrated the potential application of neurotoxins derived from snake venom in selectively targeting voltage-gated potassium channels (Kv). These neurotoxins include BPTI-Kunitz polypeptides, PLA2 neurotoxins, CRISPs, SVSPs, and various others. This study provides a comprehensive analysis of the existing literature on the significance of Kv channels in various tissues, highlighting their crucial role as proteins susceptible to modulation by diverse snake venoms. These toxins have demonstrated potential as valuable pharmacological resources and research tools for investigating the structural and functional characteristics of Kv channels.
Collapse
Affiliation(s)
- Altaf K. AlShammari
- College of Engineering and Technology, American University of the Middle East, Egaila 54200, Kuwait;
| | - Tarek Mohamed Abd El-Aziz
- Zoology Department, Faculty of Science, Minia University, El-Minia 61519, Egypt
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Ahmed Al-Sabi
- College of Engineering and Technology, American University of the Middle East, Egaila 54200, Kuwait;
| |
Collapse
|
5
|
Punetha S, Vuppu S. The sustainable conversion of floral waste into natural snake repellent and docking studies for antiophidic activity. Toxicon 2023; 233:107254. [PMID: 37597788 DOI: 10.1016/j.toxicon.2023.107254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/02/2023] [Accepted: 08/10/2023] [Indexed: 08/21/2023]
Abstract
Snakes play an important role as predators, prey, ecosystem regulators and in advancing the human economy and pharmaceutical industries by producing venom-based medications such as anti-serums and anti-venoms. On the other hand, snakebites are responsible for over 120,000 annual fatalities; due to snakebites people lose their lives and suffer from diseases such as snake envenoming, epilepsy, and symptoms such as punctures, swelling, haemorrhage, bruising, blistering, and inflammation. Moreover, there are several challenges associated with different interventions for managing snakebites. Therefore, finding a natural way of repelling snakes without harming them will save lives and decrease the disease's symptoms. Usually, snakes are exacerbated by noxious odours and shrill sounds. There are various strategies to repel snakes, including chemical, natural, and electronic repellents being the most prevalent. Chemical snake repellents such as mothballs, sulphur powder, and cayenne pepper act as a barrier; natural snake repellents produce a pungent and foul smell, while electronic repellents generate high-frequency ultrasonic waves to repel snakes. On the other hand, anti-serums are available commercially to prevent the adverse effects of snakebite, which are species-specific, expensive, have inadequate pharmacology and impaired interaction with the immune system. Similarly, there are monovalent or polyvalent anti-serums used for the production of anti-venom depending on the snake species and the number of snakebites occurred in that area, e.g., Soro antibotropicocrotalico contains specific antibodies for Pit vipers and rattlesnakes, and Antielapidico targets coral snakes. The purpose of this review is to investigate natural, effective, and inexpensive snake-repellent from Vellore Institute of Technology (VIT) floral waste, which can be mixed with natural products such as vinegar, citronella, cinnamon, garlic, cedar, and clove and allowed for bacterial degradation which will lead to the release of several gases during floral waste degradation, including ammonia, sulphur, manganese, selenium, and gallic acid due to bacterial growth like Proteus, Bacillus, Streptococcus, etc. We assumed to convert these gases into liquid form using Linde's technique which may repel snakes. Further, molecular docking studies were performed on snake venom toxins (Phospholipase A2 (PDB-1MG6), Protein Cytotoxin II (PDB-1CB9), α-Dendrotoxins (PDB-1DTX), Neurotoxin from cobra venom (PDB-1CTX) and Cardiotoxin III (PDB-2CRS). Phytocompounds of Vellore degraded floral waste from GC-MS analysis (Tetracosane, 12, Oleanen-3-yl Acetate, (3-Alpha), Eicosane-7-Hexyl, Octadecane,3-Ethyl-5(2-Ethyl Butyl), Nonadecane,4-Methyl, Hexatriacontane and Nonacosane) were used as a ligand to determine their binding affinity with venom proteins and may be assumed to be used as an antidote for snakebite. Finally, we analysed that 12-oleanen-3yl acetate,3-α (CID-45044112) a triterpenoid showing a maximum binding affinity with all snake venom proteins (-13.8k/cal) with Phospholipase A2 (PLA2), Cardiotoxin-II (-8.2k/cal), Dendrotoxin (-12.1 k/cal), Cardiotoxin-III (-8.2 kcal/mol) and alpha-Neurotoxin (-11.0 kcal/mol), which may have potential to counteract the adverse effects caused by snakebites, however, in-vitro and in-vivo studies still challenging tasks for our further analysis. Overall, we propose an innovative method for the sustainable conversion of floral waste into snake repellent, as well as molecular docking studies were performed with phytocompounds and snake venom proteins for antiophidic activity, which can be experimentally investigated further to confirm its use as anti-venom for snakebites.
Collapse
Affiliation(s)
- Swati Punetha
- Vellore Institute of Technology, School of Biosciences and Technology, Vellore, Tamil Nadu, India
| | - Suneetha Vuppu
- Vellore Institute of Technology, School of Biosciences and Technology, Vellore, Tamil Nadu, India.
| |
Collapse
|
6
|
González García MC, Radix C, Villard C, Breuzard G, Mansuelle P, Barbier P, Tsvetkov PO, De Pomyers H, Gigmes D, Devred F, Kovacic H, Mabrouk K, Luis J. Myotoxin-3 from the Pacific Rattlesnake Crotalus oreganus oreganus Venom Is a New Microtubule-Targeting Agent. Molecules 2022; 27:molecules27238241. [PMID: 36500334 PMCID: PMC9739105 DOI: 10.3390/molecules27238241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/19/2022] [Accepted: 11/19/2022] [Indexed: 11/29/2022] Open
Abstract
Microtubule targeting agents (MTA) are anti-cancer molecules that bind tubulin and interfere with the microtubule functions, eventually leading to cell death. In the present study, we used an in vitro microtubule polymerization assay to screen several venom families for the presence of anti-microtubule activity. We isolated myotoxin-3, a peptide of the crotamine family, and three isoforms from the venom of the Northern Pacific rattlesnake Crotalus oreganus oreganus, which was able to increase tubulin polymerization. Myotoxin-3 turned out to be a cell-penetrating peptide that slightly diminished the viability of U87 glioblastoma and MCF7 breast carcinoma cells. Myotoxin 3 also induced remodeling of the U87 microtubule network and decreased MCF-7 microtubule dynamic instability. These effects are likely due to direct interaction with tubulin. Indeed, we showed that myotoxin-3 binds to tubulin heterodimer with a Kd of 5.3 µM and stoichiometry of two molecules of peptide per tubulin dimer. Our results demonstrate that exogenous peptides are good candidates for developing new MTA and highlight the richness of venoms as a source of pharmacologically active molecules.
Collapse
Affiliation(s)
- María Cecilia González García
- Institut Neurophysiopathol, INP, Faculté des Sciences Médicales et Paramédicales, CNRS, Aix-Marseille Université, 13005 Marseille, France
| | - Caroline Radix
- Institut Neurophysiopathol, INP, Faculté des Sciences Médicales et Paramédicales, CNRS, Aix-Marseille Université, 13005 Marseille, France
| | - Claude Villard
- Institut Neurophysiopathol, INP, Faculté des Sciences Médicales et Paramédicales, CNRS, Aix-Marseille Université, 13005 Marseille, France
| | - Gilles Breuzard
- Institut Neurophysiopathol, INP, Faculté des Sciences Médicales et Paramédicales, CNRS, Aix-Marseille Université, 13005 Marseille, France
| | - Pascal Mansuelle
- Institut de Microbiologie de la Méditerranée (Marseille Protéomique), IMM (MaP), CNRS, Aix-Marseille Université, 31 Chemin Joseph Aiguier, 13009 Marseille, France
| | - Pascale Barbier
- Institut Neurophysiopathol, INP, Faculté des Sciences Médicales et Paramédicales, CNRS, Aix-Marseille Université, 13005 Marseille, France
| | - Philipp O. Tsvetkov
- Institut Neurophysiopathol, INP, Faculté des Sciences Médicales et Paramédicales, CNRS, Aix-Marseille Université, 13005 Marseille, France
| | - Harold De Pomyers
- Laboratoire LATOXAN SAS, 845 Avenue Pierre Brossolette, 26800 Portes-lès-Valence, France
| | - Didier Gigmes
- Institut de Chimie Radicalaire, ICR, Faculté des Sciences de Saint Jérôme, CNRS, Aix-Marseille Université, 13397 Marseille, France
| | - François Devred
- Institut Neurophysiopathol, INP, Faculté des Sciences Médicales et Paramédicales, CNRS, Aix-Marseille Université, 13005 Marseille, France
| | - Hervé Kovacic
- Institut Neurophysiopathol, INP, Faculté des Sciences Médicales et Paramédicales, CNRS, Aix-Marseille Université, 13005 Marseille, France
| | - Kamel Mabrouk
- Institut de Chimie Radicalaire, ICR, Faculté des Sciences de Saint Jérôme, CNRS, Aix-Marseille Université, 13397 Marseille, France
| | - José Luis
- Institut Neurophysiopathol, INP, Faculté des Sciences Médicales et Paramédicales, CNRS, Aix-Marseille Université, 13005 Marseille, France
- Correspondence: ; Tel.: +33-4-91-32-47-34
| |
Collapse
|
7
|
Talukdar A, Maddhesiya P, Namsa ND, Doley R. Snake venom toxins targeting the central nervous system. TOXIN REV 2022. [DOI: 10.1080/15569543.2022.2084418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Amit Talukdar
- Department of Molecular Biology and Biotechnology, Tezpur University, Assam, India
| | - Priya Maddhesiya
- Cell Biology and Anatomy, Ludwig Maximilian University (LMU), Munich, Germany
| | - Nima Dondu Namsa
- Department of Molecular Biology and Biotechnology, Tezpur University, Assam, India
| | - Robin Doley
- Department of Molecular Biology and Biotechnology, Tezpur University, Assam, India
| |
Collapse
|
8
|
Oliveira AL, Viegas MF, da Silva SL, Soares AM, Ramos MJ, Fernandes PA. The chemistry of snake venom and its medicinal potential. Nat Rev Chem 2022; 6:451-469. [PMID: 35702592 PMCID: PMC9185726 DOI: 10.1038/s41570-022-00393-7] [Citation(s) in RCA: 124] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2022] [Indexed: 12/15/2022]
Abstract
The fascination and fear of snakes dates back to time immemorial, with the first scientific treatise on snakebite envenoming, the Brooklyn Medical Papyrus, dating from ancient Egypt. Owing to their lethality, snakes have often been associated with images of perfidy, treachery and death. However, snakes did not always have such negative connotations. The curative capacity of venom has been known since antiquity, also making the snake a symbol of pharmacy and medicine. Today, there is renewed interest in pursuing snake-venom-based therapies. This Review focuses on the chemistry of snake venom and the potential for venom to be exploited for medicinal purposes in the development of drugs. The mixture of toxins that constitute snake venom is examined, focusing on the molecular structure, chemical reactivity and target recognition of the most bioactive toxins, from which bioactive drugs might be developed. The design and working mechanisms of snake-venom-derived drugs are illustrated, and the strategies by which toxins are transformed into therapeutics are analysed. Finally, the challenges in realizing the immense curative potential of snake venom are discussed, and chemical strategies by which a plethora of new drugs could be derived from snake venom are proposed.
Collapse
Affiliation(s)
- Ana L. Oliveira
- Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
- LAQV/Requimte, University of Porto, Porto, Portugal
| | - Matilde F. Viegas
- Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
- LAQV/Requimte, University of Porto, Porto, Portugal
| | - Saulo L. da Silva
- Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
- LAQV/Requimte, University of Porto, Porto, Portugal
| | - Andreimar M. Soares
- Biotechnology Laboratory for Proteins and Bioactive Compounds from the Western Amazon, Oswaldo Cruz Foundation, National Institute of Epidemiology in the Western Amazon (INCT-EpiAmO), Porto Velho, Brazil
- Sao Lucas Universitary Center (UniSL), Porto Velho, Brazil
| | - Maria J. Ramos
- Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
- LAQV/Requimte, University of Porto, Porto, Portugal
| | - Pedro A. Fernandes
- Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
- LAQV/Requimte, University of Porto, Porto, Portugal
| |
Collapse
|
9
|
Roque-Borda CA, Gualque MWDL, da Fonseca FH, Pavan FR, Santos-Filho NA. Nanobiotechnology with Therapeutically Relevant Macromolecules from Animal Venoms: Venoms, Toxins, and Antimicrobial Peptides. Pharmaceutics 2022; 14:891. [PMID: 35631477 PMCID: PMC9146920 DOI: 10.3390/pharmaceutics14050891] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/12/2022] [Accepted: 04/15/2022] [Indexed: 11/17/2022] Open
Abstract
Some diseases of uncontrolled proliferation such as cancer, as well as infectious diseases, are the main cause of death in the world, and their causative agents have rapidly developed resistance to the various existing treatments, making them even more dangerous. Thereby, the discovery of new therapeutic agents is a challenge promoted by the World Health Organization (WHO). Biomacromolecules, isolated or synthesized from a natural template, have therapeutic properties which have not yet been fully studied, and represent an unexplored potential in the search for new drugs. These substances, starting from conglomerates of proteins and other substances such as animal venoms, or from minor substances such as bioactive peptides, help fight diseases or counteract harmful effects. The high effectiveness of these biomacromolecules makes them promising substances for obtaining new drugs; however, their low bioavailability or stability in biological systems is a challenge to be overcome in the coming years with the help of nanotechnology. The objective of this review article is to describe the relationship between the structure and function of biomacromolecules of animal origin that have applications already described using nanotechnology and targeted delivery.
Collapse
Affiliation(s)
- Cesar Augusto Roque-Borda
- Tuberculosis Research Laboratory, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, Brazil; (C.A.R.-B.); (F.R.P.)
| | - Marcos William de Lima Gualque
- Proteomics Laboratory, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, Brazil;
| | - Fauller Henrique da Fonseca
- Department of Biochemistry and Organic Chemistry, Chemistry Institute, São Paulo State University (UNESP), Araraquara 14800-903, Brazil;
| | - Fernando Rogério Pavan
- Tuberculosis Research Laboratory, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, Brazil; (C.A.R.-B.); (F.R.P.)
| | - Norival Alves Santos-Filho
- Department of Biochemistry and Organic Chemistry, Chemistry Institute, São Paulo State University (UNESP), Araraquara 14800-903, Brazil;
| |
Collapse
|
10
|
Rodrigues CR, Molina Molina DA, de Souza DLN, Cardenas J, Costal-Oliveira F, Guerra-Duarte C, Chávez-Olórtegui C. Biological and proteomic characterization of the venom from Peruvian Andes rattlesnake Crotalus durissus. Toxicon 2021; 207:31-42. [PMID: 34968566 DOI: 10.1016/j.toxicon.2021.12.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 12/06/2021] [Accepted: 12/13/2021] [Indexed: 12/15/2022]
Abstract
The Peruvian rattlesnake Crotalus durissus is a venomous species that is restricted to the Peruvian Departments of Puno and Madre de Dios. Although clinically meaningful in this region, Crotalus durissus venom composition remains largely elusive. In this sense, this work aimed to provide a primary description of Peruvian C. durissus venom (PCdV). The enzymatic activities (SVMP, SVSP, LAAO, Hyaluronidase and PLA2) of PCdV were analyzed and compared to Brazilian Crotalus durissus terrificus venom (BCdtV). PCdV showed higher PLA2 activity when compared to the Brazilian venom. PCdV also showed cytotoxicity in VERO cells. For proteomic analysis, PCdV proteins were separated by HPLC, followed by SDS-PAGE. Gel bands were excised and tryptic digested for MALDI-TOF/TOF identification. Approximately 21 proteins were identified, belonging to 7 families. Phospholipases A2 (PLA2, 66.63%) were the most abundant proteins of the venom, followed by snake venom serine proteinases (SVSPs, 13.37%), C-type lectins (Snaclec, 8.98%) and snake venom metalloproteinases (SVMPs, 7.13%), crotamine (2.98%) and phosphodiesterase (PDE, 0.87%). Moreover, antivenom recognition assays indicated that both Brazilian and Peruvian antivenoms recognize PCdV, indicating the presence of antigenically related proteins in crotalic venoms. The results reported here, may impact in the venom selection for the production of effective Pan-American crotalic antivenom.
Collapse
Affiliation(s)
- Carolina Rego Rodrigues
- Departamento de Bioquímica e Imunologia, Instituto Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Denis A Molina Molina
- Departamento de Bioquímica e Imunologia, Instituto Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | | | - Fernanda Costal-Oliveira
- Departamento de Bioquímica e Imunologia, Instituto Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Clara Guerra-Duarte
- Diretoria de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias, 30510-010, Belo Horizonte, MG, Brazil
| | - Carlos Chávez-Olórtegui
- Departamento de Bioquímica e Imunologia, Instituto Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
11
|
Hayashi MAF, Campeiro JD, Yonamine CM. Revisiting the potential of South American rattlesnake Crotalus durissus terrificus toxins as therapeutic, theranostic and/or biotechnological agents. Toxicon 2021; 206:1-13. [PMID: 34896407 DOI: 10.1016/j.toxicon.2021.12.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/10/2021] [Accepted: 12/08/2021] [Indexed: 02/07/2023]
Abstract
The potential biotechnological and biomedical applications of the animal venom components are widely recognized. Indeed, many components have been used either as drugs or as templates/prototypes for the development of innovative pharmaceutical drugs, among which many are still used for the treatment of human diseases. A specific South American rattlesnake, named Crotalus durissus terrificus, shows a venom composition relatively simpler compared to any viper or other snake species belonging to the Crotalus genus, although presenting a set of toxins with high potential for the treatment of several still unmet human therapeutic needs, as reviewed in this work. In addition to the main toxin named crotoxin, which is under clinical trials studies for antitumoral therapy and which has also anti-inflammatory and immunosuppressive activities, other toxins from the C. d. terrificus venom are also being studied, aiming for a wide variety of therapeutic applications, including as antinociceptive, anti-inflammatory, antimicrobial, antifungal, antitumoral or antiparasitic agent, or as modulator of animal metabolism, fibrin sealant (fibrin glue), gene carrier or theranostic agent. Among these rattlesnake toxins, the most relevant, considering the potential clinical applications, are crotamine, crotalphine and gyroxin. In this narrative revision, we propose to organize and present briefly the updates in the accumulated knowledge on potential therapeutic applications of toxins collectively found exclusively in the venom of this specific South American rattlesnake, with the objective of contributing to increase the chances of success in the discovery of drugs based on toxins.
Collapse
Affiliation(s)
- Mirian A F Hayashi
- Department of Pharmacology, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), SP, Brazil.
| | - Joana D Campeiro
- Department of Pharmacology, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), SP, Brazil
| | - Camila M Yonamine
- Department of Microbiology, Immunology and Parasitology, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), SP, Brazil.
| |
Collapse
|
12
|
Giribaldi J, Smith JJ, Schroeder CI. Recent developments in animal venom peptide nanotherapeutics with improved selectivity for cancer cells. Biotechnol Adv 2021; 50:107769. [PMID: 33989705 DOI: 10.1016/j.biotechadv.2021.107769] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/06/2021] [Accepted: 05/08/2021] [Indexed: 02/07/2023]
Abstract
Animal venoms are a rich source of bioactive peptides that efficiently modulate key receptors and ion channels involved in cellular excitability to rapidly neutralize their prey or predators. As such, they have been a wellspring of highly useful pharmacological tools for decades. Besides targeting ion channels, some venom peptides exhibit strong cytotoxic activity and preferentially affect cancer over healthy cells. This is unlikely to be driven by an evolutionary impetus, and differences in tumor cells and the tumor microenvironment are probably behind the serendipitous selectivity shown by some venom peptides. However, strategies such as bioconjugation and nanotechnologies are showing potential to improve their selectivity and potency, thereby paving the way to efficiently harness new anticancer mechanisms offered by venom peptides. This review aims to highlight advances in nano- and chemotherapeutic tools and prospective anti-cancer drug leads derived from animal venom peptides.
Collapse
Affiliation(s)
- Julien Giribaldi
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Jennifer J Smith
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Christina I Schroeder
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA.
| |
Collapse
|
13
|
Coulter-Parkhill A, McClean S, Gault VA, Irwin N. Therapeutic Potential of Peptides Derived from Animal Venoms: Current Views and Emerging Drugs for Diabetes. Clin Med Insights Endocrinol Diabetes 2021; 14:11795514211006071. [PMID: 34621137 PMCID: PMC8491154 DOI: 10.1177/11795514211006071] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/10/2021] [Indexed: 12/13/2022] Open
Abstract
The therapeutic potential of venom-derived drugs is evident today. Currently, several significant drugs are FDA approved for human use that descend directly from animal venom products, with others having undergone, or progressing through, clinical trials. In addition, there is growing awareness of the important cosmeceutical application of venom-derived products. The success of venom-derived compounds is linked to their increased bioactivity, specificity and stability when compared to synthetically engineered compounds. This review highlights advancements in venom-derived compounds for the treatment of diabetes and related disorders. Exendin-4, originating from the saliva of Gila monster lizard, represents proof-of-concept for this drug discovery pathway in diabetes. More recent evidence emphasises the potential of venom-derived compounds from bees, cone snails, sea anemones, scorpions, snakes and spiders to effectively manage glycaemic control. Such compounds could represent exciting exploitable scaffolds for future drug discovery in diabetes, as well as providing tools to allow for a better understanding of cell signalling pathways linked to insulin secretion and metabolism.
Collapse
Affiliation(s)
| | | | - Victor A Gault
- Diabetes Research Group, Ulster University, Coleraine, UK
| | - Nigel Irwin
- Diabetes Research Group, Ulster University, Coleraine, UK
| |
Collapse
|
14
|
de Carvalho Porta L, Fadel V, D'Arc Campeiro J, Oliveira EB, Godinho RO, Hayashi MAF. Biophysical and pharmacological characterization of a full-length synthetic analog of the antitumor polypeptide crotamine. J Mol Med (Berl) 2020; 98:1561-1571. [PMID: 32895732 DOI: 10.1007/s00109-020-01975-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 08/29/2020] [Accepted: 09/02/2020] [Indexed: 11/25/2022]
Abstract
Crotamine is a polypeptide isolated from the venom of a South American rattlesnake. Among the properties and biological activities of crotamine, the most extraordinary is its ability to enter cells with unique selective affinity and cytotoxic activity against actively proliferating cells, such as tumor cells. This peptide is also a cargo carrier, and anticipating commercial application of this native polypeptide as a potential theranostic compound against cancer, we performed here a side-by-side characterization of a chemically synthesized full-length crotamine compared with its native counterpart. The structural, biophysical, and pharmacological properties were evaluated. Comparative NMR studies showed structural conservation of synthetic crotamine. Moreover, similarly to native crotamine, the synthetic polypeptide was also capable of inhibiting tumor growth in vivo, increasing the survival of mice bearing subcutaneous tumor. We also confirmed the ability of synthetic crotamine to transfect and transport DNA into eukaryotic cells, in addition to the importance of proteoglycans on cell surface for its internalization. This work opens new opportunities for future evaluation of chimeric and/or point-mutated analogs of this snake polypeptide, aiming for improving crotamine properties and applications, as well as possibly diminishing its potential toxic effects. KEY MESSAGES: • Synthetic crotamine showed ex vivo and in vivo activities similar to native peptide. • Synthetic crotamine structure conservation was demonstrated by NMR analysis. • Synthetic crotamine is able to transfect and transport DNA into eukaryotic cells. • Synthetic crotamine shows tumor growth inhibition in vivo. • Synthetic crotamine increases survival of mice bearing tumor.
Collapse
Affiliation(s)
- Lucas de Carvalho Porta
- Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), Rua 3 de maio 100, Ed. INFAR, 3rd floor, São Paulo, CEP 04044-020, Brazil
| | - Valmir Fadel
- Universidade Estadual de São Paulo (UNESP), São José do Rio Preto, Brazil
| | - Joana D'Arc Campeiro
- Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), Rua 3 de maio 100, Ed. INFAR, 3rd floor, São Paulo, CEP 04044-020, Brazil
| | - Eduardo Brandt Oliveira
- Departamento de Bioquímica e Imunologia, Universidade de São Paulo (USP-FMRP), Ribeirão Preto, Brazil
| | - Rosely Oliveira Godinho
- Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), Rua 3 de maio 100, Ed. INFAR, 3rd floor, São Paulo, CEP 04044-020, Brazil
| | - Mirian Akemi Furuie Hayashi
- Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), Rua 3 de maio 100, Ed. INFAR, 3rd floor, São Paulo, CEP 04044-020, Brazil.
| |
Collapse
|
15
|
Porta LC, Campeiro JD, Papa GB, Oliveira EB, Godinho RO, Rodrigues T, Hayashi MAF. In vivo effects of the association of the psychoactive phenotiazine thioridazine on antitumor activity and hind limb paralysis induced by the native polypeptide crotamine. Toxicon 2020; 185:64-71. [PMID: 32621838 DOI: 10.1016/j.toxicon.2020.06.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/28/2020] [Accepted: 06/21/2020] [Indexed: 11/18/2022]
Abstract
Crotamine is a cationic polypeptide composed by 42 amino acid residues with several pharmacological and biological properties, including the selective ability to enter and kill actively proliferating tumour cells, which led us to propose its use as a theranostic agent for cancer therapy. At the moment, the improvement of crotamine antitumoral efficacy by association with chemotherapeutic adjuvants is envisioned. In the present work, we evaluated the association of crotamine with the antitumoral adjuvant phenotiazine thioridazine (THD). In spite of the clear efficacy of these both compounds as anticancer agents in long-term in vivo treatment of animal model bearing implanted xenograph melanoma tumor, the expected mutual potentiation of the antitumor effects was not observed here. Moreover, this association revealed for the first time the influence of THD on crotamine ability to trigger the hind limb paralysis in mice, and this discovery may represent the first report suggesting the potential involvement of the CNS in the action of this snake polypeptide on the skeletal muscle paralysis, which was classically believed to be essentially limited to a direct action in peripheral tissues as the skeletal muscle. This is also supported by the observed ability of crotamine to potentiate the sedative effects of THD which action was consistently demonstrated to be based on its central action. The better characterization of crotamine properties in CNS may certainly bring important insights for the knowledge needed to pave the way toward the use of this molecule as a theranostic compound in human diseases as cancer.
Collapse
Affiliation(s)
- Lucas C Porta
- Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), SP, Brazil
| | - Joana D Campeiro
- Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), SP, Brazil
| | - Giovanna B Papa
- Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), SP, Brazil
| | - Eduardo B Oliveira
- Departamento de Bioquímica e Imunologia, Universidade de São Paulo (USP-RP), Ribeirão Preto, Brazil
| | - Rosely O Godinho
- Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), SP, Brazil
| | | | - Mirian A F Hayashi
- Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), SP, Brazil.
| |
Collapse
|
16
|
Tasima LJ, Serino-Silva C, Hatakeyama DM, Nishiduka ES, Tashima AK, Sant'Anna SS, Grego KF, de Morais-Zani K, Tanaka-Azevedo AM. Crotamine in Crotalus durissus: distribution according to subspecies and geographic origin, in captivity or nature. J Venom Anim Toxins Incl Trop Dis 2020; 26:e20190053. [PMID: 32362925 PMCID: PMC7187639 DOI: 10.1590/1678-9199-jvatitd-2019-0053] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background: Crotalus durissus is considered one of the most important
species of venomous snakes in Brazil, due to the high mortality of its
snakebites. The venom of Crotalus durissus contains four
main toxins: crotoxin, convulxin, gyroxin and crotamine. Venoms can vary in
their crotamine content, being crotamine-negative or -positive. This
heterogeneity is of great importance for producing antivenom, due to their
different mechanisms of action. The possibility that antivenom produced by
Butantan Institute might have a different immunorecognition capacity between
crotamine-negative and crotamine-positive C. durissus
venoms instigated us to investigate the differences between these two venom
groups. Methods: The presence of crotamine was analyzed by SDS-PAGE, western blotting and
ELISA, whereas comparison between the two types of venoms was carried out
through HPLC, mass spectrometry analysis as well as assessment of antivenom
lethality and efficacy. Results: The results showed a variation in the presence of crotamine among the
subspecies and the geographic origin of snakes from nature, but not in
captive snakes. Regarding differences between crotamine-positive and
-negative venoms, some exclusive proteins are found in each pool and the
crotamine-negative pool presented more phospholipase A2 than
crotamine-positive pool. This variation could affect the time to death, but
the lethal and effective dose were not affected. Conclusion: These differences between venom pools indicate the importance of using both,
crotamine-positive and crotamine-negative venoms, to produce the
antivenom.
Collapse
Affiliation(s)
- Lídia J Tasima
- Laboratory of Herpetology, Butantan Institute, São Paulo, SP, Brazil.,Interinstitutional Postgraduate Program in Biotechnology (PPIB - IPT, IBU and USP), University of São Paulo(USP), São Paulo, SP, Brazil
| | - Caroline Serino-Silva
- Laboratory of Herpetology, Butantan Institute, São Paulo, SP, Brazil.,Interinstitutional Postgraduate Program in Biotechnology (PPIB - IPT, IBU and USP), University of São Paulo(USP), São Paulo, SP, Brazil
| | - Daniela M Hatakeyama
- Laboratory of Herpetology, Butantan Institute, São Paulo, SP, Brazil.,Interinstitutional Postgraduate Program in Biotechnology (PPIB - IPT, IBU and USP), University of São Paulo(USP), São Paulo, SP, Brazil
| | - Erika S Nishiduka
- Department of Biochemistry, Federal University of São Paulo (Unifesp), São Paulo, SP, Brazil
| | - Alexandre K Tashima
- Department of Biochemistry, Federal University of São Paulo (Unifesp), São Paulo, SP, Brazil
| | - Sávio S Sant'Anna
- Laboratory of Herpetology, Butantan Institute, São Paulo, SP, Brazil
| | - Kathleen F Grego
- Laboratory of Herpetology, Butantan Institute, São Paulo, SP, Brazil
| | - Karen de Morais-Zani
- Laboratory of Herpetology, Butantan Institute, São Paulo, SP, Brazil.,Interinstitutional Postgraduate Program in Biotechnology (PPIB - IPT, IBU and USP), University of São Paulo(USP), São Paulo, SP, Brazil
| | - Anita M Tanaka-Azevedo
- Laboratory of Herpetology, Butantan Institute, São Paulo, SP, Brazil.,Interinstitutional Postgraduate Program in Biotechnology (PPIB - IPT, IBU and USP), University of São Paulo(USP), São Paulo, SP, Brazil
| |
Collapse
|
17
|
Engineered protein containing crotoxin epitopes induces neutralizing antibodies in immunized rabbits. Mol Immunol 2020; 119:144-153. [PMID: 32023500 DOI: 10.1016/j.molimm.2020.01.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/27/2019] [Accepted: 01/20/2020] [Indexed: 10/25/2022]
Abstract
Crotoxin (Ctx) is the main lethal component of Crotalus durissus terrificus venom. It is a neurotoxin, composed of two subunits associated by noncovalent interactions, the non-toxic acid subunit (CA), named Crotapotin, and the basic subunit (CB), with phospholipase A2 (PLA2) activity. Employing the SPOT synthesis technique, we determined two epitopes located in the C-terminal of each Ctx subunit. In addition, 3 other epitopes were mapped in different regions of Ctx using subcutaneous spot implants surgically inserted in mice. All epitopes mapped here were expressed together as recombinant multi-epitopic protein (rMEPCtx), which was used to immunize New Zealand rabbits. Anti-rMEPCtx rabbit serum cross-reacted with Ctx and crude venoms from C. d. terrificus, Crotalus durissus ruruima, Peruvian C. durissus and Bothrops jararaca (with lower intensity). Furthermore, anti-rMEPCtx serum was able to neutralize Ctx lethal activity. As the recombinant multiepitopic protein is not toxic, it can be administered in larger doses without causing adverse effects on the immunized animals health. Therefore, our work evidences the identification of neutralizing epitopes of Ctx and support the use of recombinant multiepitopic proteins as an innovation to immunotherapeutics production.
Collapse
|
18
|
Disulphide-less crotamine is effective for formation of DNA-peptide complex but is unable to improve bovine embryo transfection. ZYGOTE 2019; 28:72-79. [PMID: 31662126 DOI: 10.1017/s0967199419000716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
This study aimed to investigate the ability of disulphide-less crotamine (dLCr) to complex DNA and to evaluate whether the DNA-dLCr complex is capable of improving transfection in bovine embryos. Three experiments were performed to: (i) evaluate the formation and stability of the DNA-dLCr complex; (ii) assess the dLCr embryotoxicity by exposure of bovine embryos to dLCr; and (iii) assess the efficiency of bovine embryo transfection after microinjection of the DNA-dLCr complex or green fluorescent protein (GFP) plasmid alone (control). DNA complexation by dLCr after 30 min of incubation at 1:100 and 1:50 proportions presented higher efficiency (P < 0.05) than the two controls: native crotamine (NCr) 1:10 and lipofectamine. There was no difference between DNA-dLCr 1:25 and the controls. The DNA-dLCr complexation was evaluated at different proportions and times. In all, at least half of maximum complexation was achieved within the initial 30 min. No embryotoxicity of dLCr was verified after exposure of in vitro fertilized embryos to different concentrations of the peptide. The effectiveness of dLCr to improve exogenous gene expression was evaluated by microinjection of the DNA-dLCr complex into in vitro fertilized zygotes, followed by verification of both embryo development and GFP expression. From embryos microinjected with DNA only, 4.6% and 2.8% expressed the GFP transgene at day 5 and day 7, respectively. The DNA-dLCr complex did not increase the number of GFP-positive embryos. In conclusion, dLCr forms a complex with DNA and its application in in vitro culture is possible. However, the dLCr peptide sequence should be redesigned to improve GFP expression.
Collapse
|
19
|
Abstract
Abstract
An increasing problem in the field of health protection is the emergence of drug-resistant and multi-drug-resistant bacterial strains. They cause a number of infections, including hospital infections, which currently available antibiotics are unable to fight. Therefore, many studies are devoted to the search for new therapeutic agents with bactericidal and bacteriostatic properties. One of the latest concepts is to search for this type of substances among toxins produced by venomous animals. In this approach, however, special attention is paid to snake venom because it contains molecules with antibacterial properties. Thorough investigations have shown that the phospholipases A2 (PLA2) and l-amino acids oxidases (LAAO), as well as fragments of these enzymes, are mainly responsible for the bactericidal properties of snake venoms. Some preliminary research studies also suggest that fragments of three-finger toxins (3FTx) are bactericidal. It has also been proven that some snakes produce antibacterial peptides (AMP) homologous to human defensins and cathelicidins. The presence of these proteins and peptides means that snake venoms continue to be an interesting material for researchers and can be perceived as a promising source of antibacterial agents.
Collapse
|
20
|
Silvestrini AVP, de Macedo LH, de Andrade TAM, Mendes MF, Pigoso AA, Mazzi MV. Intradermal Application of Crotamine Induces Inflammatory and Immunological Changes In Vivo. Toxins (Basel) 2019; 11:toxins11010039. [PMID: 30646542 PMCID: PMC6357061 DOI: 10.3390/toxins11010039] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 01/09/2019] [Accepted: 01/09/2019] [Indexed: 12/13/2022] Open
Abstract
Crotamine is a single-chain polypeptide with cell-penetrating properties, which is considered a promising molecule for clinical use. Nevertheless, its biosafety data are still scarce. Herein, we assessed the in vivo proinflammatory properties of crotamine, including its local effect and systemic serum parameters. Sixty male Wistar rats were intradermically injected with 200, 400 and 800 µg crotamine and analyzed after 1, 3 and 7 days. Local effect of crotamine was assessed by determination of MPO and NAG activities, NO levels and angiogenesis. Systemic inflammatory response was assessed by determination of IL-10, TNF-α, CRP, NO, TBARS and SH groups. Crotamine induced macrophages and neutrophils chemotaxis as evidenced by the upregulation of both NAG (0.5–0.6 OD/mg) and MPO (0.1–0.2 OD/mg) activities, on the first and third day of analysis, respectively. High levels of NO were observed for all concentrations and time-points. Moreover, 800 μg crotamine resulted in serum NO (64.7 μM) and local tissue NO (58.5 μM) levels higher or equivalent to those recorded for their respective histamine controls (55.7 μM and 59.0 μM). Crotamine also induced a significant angiogenic response compared to histamine. Systemically, crotamine induced a progressive increase in serum CRP levels up to the third day of analysis (22.4–45.8 mg/mL), which was significantly greater than control values. Crotamine (400 μg) also caused an increase in serum TNF-α, in the first day of analysis (1095.4 pg/mL), however a significant increase in IL-10 (122.2 pg/mL) was also recorded for the same time-point, suggesting the induction of an anti-inflammatory effect. Finally, crotamine changed the systemic redox state by inducing gradual increase in serum levels of TBARS (1.0–1.8 μM/mL) and decrease in SH levels (124.7–19.5 μM/mL) throughout the experimental period of analysis. In summary, rats intradermally injected with crotamine presented local and systemic acute inflammatory responses similarly to histamine, which limits crotamine therapeutic use on its original form.
Collapse
Affiliation(s)
- Ana Vitória Pupo Silvestrini
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, CEP 14040-903 Ribeirão Preto, SP, Brazil.
| | - Luana Henrique de Macedo
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, CEP 14040-903 Ribeirão Preto, SP, Brazil.
| | - Thiago Antônio Moretti de Andrade
- Graduate Program in Biomedical Sciences Hermínio Ometto University Center, FHO-UNIARARAS, Av. Dr. Maximiliano Baruto, 500, CEP 13607-339 Araras, SP, Brazil.
| | - Maíra Felonato Mendes
- Graduate Program in Biomedical Sciences Hermínio Ometto University Center, FHO-UNIARARAS, Av. Dr. Maximiliano Baruto, 500, CEP 13607-339 Araras, SP, Brazil.
| | - Acácio Antônio Pigoso
- Graduate Program in Biomedical Sciences Hermínio Ometto University Center, FHO-UNIARARAS, Av. Dr. Maximiliano Baruto, 500, CEP 13607-339 Araras, SP, Brazil.
| | - Maurício Ventura Mazzi
- Graduate Program in Biomedical Sciences Hermínio Ometto University Center, FHO-UNIARARAS, Av. Dr. Maximiliano Baruto, 500, CEP 13607-339 Araras, SP, Brazil.
| |
Collapse
|
21
|
Avci FG, Akbulut BS, Ozkirimli E. Membrane Active Peptides and Their Biophysical Characterization. Biomolecules 2018; 8:biom8030077. [PMID: 30135402 PMCID: PMC6164437 DOI: 10.3390/biom8030077] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/08/2018] [Accepted: 08/13/2018] [Indexed: 12/12/2022] Open
Abstract
In the last 20 years, an increasing number of studies have been reported on membrane active peptides. These peptides exert their biological activity by interacting with the cell membrane, either to disrupt it and lead to cell lysis or to translocate through it to deliver cargos into the cell and reach their target. Membrane active peptides are attractive alternatives to currently used pharmaceuticals and the number of antimicrobial peptides (AMPs) and peptides designed for drug and gene delivery in the drug pipeline is increasing. Here, we focus on two most prominent classes of membrane active peptides; AMPs and cell-penetrating peptides (CPPs). Antimicrobial peptides are a group of membrane active peptides that disrupt the membrane integrity or inhibit the cellular functions of bacteria, virus, and fungi. Cell penetrating peptides are another group of membrane active peptides that mainly function as cargo-carriers even though they may also show antimicrobial activity. Biophysical techniques shed light on peptide–membrane interactions at higher resolution due to the advances in optics, image processing, and computational resources. Structural investigation of membrane active peptides in the presence of the membrane provides important clues on the effect of the membrane environment on peptide conformations. Live imaging techniques allow examination of peptide action at a single cell or single molecule level. In addition to these experimental biophysical techniques, molecular dynamics simulations provide clues on the peptide–lipid interactions and dynamics of the cell entry process at atomic detail. In this review, we summarize the recent advances in experimental and computational investigation of membrane active peptides with particular emphasis on two amphipathic membrane active peptides, the AMP melittin and the CPP pVEC.
Collapse
Affiliation(s)
- Fatma Gizem Avci
- Bioengineering Department, Marmara University, Kadikoy, 34722 Istanbul, Turkey.
| | | | - Elif Ozkirimli
- Chemical Engineering Department, Bogazici University, Bebek, 34342 Istanbul, Turkey.
| |
Collapse
|
22
|
Marinovic MP, Campeiro JD, Lima SC, Rocha AL, Nering MB, Oliveira EB, Mori MA, Hayashi MAF. Crotamine induces browning of adipose tissue and increases energy expenditure in mice. Sci Rep 2018; 8:5057. [PMID: 29567992 PMCID: PMC5864908 DOI: 10.1038/s41598-018-22988-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 03/01/2018] [Indexed: 12/31/2022] Open
Abstract
Crotamine, originally isolated from rattlesnake venom, has been extensively studied due to its pleiotropic biological properties, and special attention has been paid to its antitumor activity. However, long-term treatment with crotamine was accompanied by a reduction in animal body weight gain and by increases in glucose tolerance. As cancer is commonly associated with cachexia, to preclude the possible cancer cachexia-like effect of crotamine, herein this polypeptide was administered in healthy wild-type C57/BL6 mice by the oral route daily, for 21 days. Reduced body weight gain, in addition to decreased white adipose tissue (WAT) and increased brown adipose tissue (BAT) mass were observed in healthy animals in the absence of tumor. In addition, we observed improved glucose tolerance and increased insulin sensitivity, accompanied by a reduction of plasma lipid levels and decreased levels of biomarkers of liver damage and kidney disfunctions. Importantly, long-term treatment with crotamine increased the basal metabolic rate in vivo, which was consistent with the increased expression of thermogenic markers in BAT and WAT. Interestingly, cultured brown adipocyte cells induced to differentiation in the presence of crotamine also showed increases in some of these markers and in lipid droplets number and size, indicating increased brown adipocyte maturation.
Collapse
Affiliation(s)
- Marcelo P Marinovic
- Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Joana D Campeiro
- Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Sunamita C Lima
- Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Andrea L Rocha
- Departamento de Biofísica, Universidade Federal de São Paulo (UNIFESP/EPM), São Paulo, SP, Brazil
| | - Marcela B Nering
- Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Eduardo B Oliveira
- Departamento de Bioquímica e Imunologia, Universidade de São Paulo (USP-RP), Ribeirão Preto, Brazil
| | - Marcelo A Mori
- Departamento de Biofísica, Universidade Federal de São Paulo (UNIFESP/EPM), São Paulo, SP, Brazil.,Departamento de Bioquímica e Biologia Tecidual, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Mirian A F Hayashi
- Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil.
| |
Collapse
|
23
|
Batista da Cunha D, Pupo Silvestrini AV, Gomes da Silva AC, Maria de Paula Estevam D, Pollettini FL, de Oliveira Navarro J, Alves AA, Remédio Zeni Beretta AL, Annichino Bizzacchi JM, Pereira LC, Mazzi MV. Mechanistic insights into functional characteristics of native crotamine. Toxicon 2018; 146:1-12. [PMID: 29574214 DOI: 10.1016/j.toxicon.2018.03.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 03/06/2018] [Accepted: 03/20/2018] [Indexed: 12/17/2022]
Abstract
The chemical composition of snake venoms is a complex mixture of proteins and peptides that can be pharmacologically active. Crotamine, a cell-penetrating peptide, has been described to have antimicrobial properties and it exerts its effects by interacting selectively with different structures, inducing changes in the ion flow pattern and cellular responses. However, its real therapeutic potential is not yet fully known. Bearing in mind that crotamine is a promising molecule in therapeutics, this study investigated the action of purified molecule in three aspects: I) antibacterial action on different species of clinical interest, II) the effect of two different concentrations of the molecule on platelet aggregation, and III) its effects on isolated mitochondria. Crotamine was purified to homogeneity in a single step procedure using Heparin Sepharose. The molecular mass of the purified enzyme was 4881.4 Da, as determined by mass spectrometry. To assess antibacterial action, changes in the parameters of bacterial oxidative stress were determined. The peptide showed antibacterial activity on Escherichia coli (MIC: 2.0 μg/μL), Staphylococcus aureus (MIC: 8-16 μg/μL) and methicillin-resistant Staphylococcus aureus (MIC: 4.0-8.0 μg/μL), inducing bacterial death by lipid peroxidation and oxidation of target proteins, determined by thiobarbituric acid reactive substances and sulfhydryl groups, respectively. Crotamine induced increased platelet aggregation (IPA) at the two concentrations analyzed (0.1 and 1.4 μg/μL) compared to ADP-induced aggregation of PRP. Mitochondrial respiratory parameters and organelle structure assays were used to elucidate the action of the compound in this organelle. The exposure of mitochondria to crotamine caused a decrease in oxidative phosphorylation and changes in mitochondrial permeability, without causing damage in the mitochondrial redox state. Together, these results support the hypothesis that, besides the antimicrobial potential, crotamine acts on different molecular targets, inducing platelet aggregation and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Daniel Batista da Cunha
- Graduate Program in Biomedical Sciences Hermínio Ometto University Center, UNIARARAS, 7 Av. Dr. Maximiliano Baruto, 500, CEP 13607-339, Araras, SP, Brazil
| | - Ana Vitória Pupo Silvestrini
- Graduate Program in Biomedical Sciences Hermínio Ometto University Center, UNIARARAS, 7 Av. Dr. Maximiliano Baruto, 500, CEP 13607-339, Araras, SP, Brazil
| | - Ana Carolina Gomes da Silva
- Graduate Program in Biomedical Sciences Hermínio Ometto University Center, UNIARARAS, 7 Av. Dr. Maximiliano Baruto, 500, CEP 13607-339, Araras, SP, Brazil
| | - Deborah Maria de Paula Estevam
- Graduate Program in Agrarian and Veterinary Sciences, State University Paulista Júlio de Mesquita Filho-UNESP, Jaboticabal, SP, Brazil
| | - Flávia Lino Pollettini
- Graduate Program in Agrarian and Veterinary Sciences, State University Paulista Júlio de Mesquita Filho-UNESP, Jaboticabal, SP, Brazil
| | - Juliana de Oliveira Navarro
- Graduate Program in Biomedical Sciences Hermínio Ometto University Center, UNIARARAS, 7 Av. Dr. Maximiliano Baruto, 500, CEP 13607-339, Araras, SP, Brazil
| | - Armindo Antônio Alves
- Graduate Program in Biomedical Sciences Hermínio Ometto University Center, UNIARARAS, 7 Av. Dr. Maximiliano Baruto, 500, CEP 13607-339, Araras, SP, Brazil
| | - Ana Laura Remédio Zeni Beretta
- Graduate Program in Biomedical Sciences Hermínio Ometto University Center, UNIARARAS, 7 Av. Dr. Maximiliano Baruto, 500, CEP 13607-339, Araras, SP, Brazil
| | - Joyce M Annichino Bizzacchi
- Blood Hemostasis Laboratory, Faculty of Medical Sciences, State University of Campinas, Campinas, SP, Brazil
| | - Lilian Cristina Pereira
- Department of Bioprocesses and Biotechnology, Faculty of Agronomic Sciences, State University Paulista Júlio Mesquita Filho-UNESP, Botucatu, SP, Brazil
| | - Maurício Ventura Mazzi
- Graduate Program in Biomedical Sciences Hermínio Ometto University Center, UNIARARAS, 7 Av. Dr. Maximiliano Baruto, 500, CEP 13607-339, Araras, SP, Brazil.
| |
Collapse
|
24
|
Nicolau CA, Prorock A, Bao Y, Neves-Ferreira AGDC, Valente RH, Fox JW. Revisiting the Therapeutic Potential of Bothrops jararaca Venom: Screening for Novel Activities Using Connectivity Mapping. Toxins (Basel) 2018; 10:toxins10020069. [PMID: 29415440 PMCID: PMC5848170 DOI: 10.3390/toxins10020069] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 01/30/2018] [Accepted: 02/02/2018] [Indexed: 12/12/2022] Open
Abstract
Snake venoms are sources of molecules with proven and potential therapeutic applications. However, most activities assayed in venoms (or their components) are of hemorrhagic, hypotensive, edematogenic, neurotoxic or myotoxic natures. Thus, other relevant activities might remain unknown. Using functional genomics coupled to the connectivity map (C-map) approach, we undertook a wide range indirect search for biological activities within the venom of the South American pit viper Bothrops jararaca. For that effect, venom was incubated with human breast adenocarcinoma cell line (MCF7) followed by RNA extraction and gene expression analysis. A list of 90 differentially expressed genes was submitted to biosimilar drug discovery based on pattern recognition. Among the 100 highest-ranked positively correlated drugs, only the antihypertensive, antimicrobial (both antibiotic and antiparasitic), and antitumor classes had been previously reported for B. jararaca venom. The majority of drug classes identified were related to (1) antimicrobial activity; (2) treatment of neuropsychiatric illnesses (Parkinson’s disease, schizophrenia, depression, and epilepsy); (3) treatment of cardiovascular diseases, and (4) anti-inflammatory action. The C-map results also indicated that B. jararaca venom may have components that target G-protein-coupled receptors (muscarinic, serotonergic, histaminergic, dopaminergic, GABA, and adrenergic) and ion channels. Although validation experiments are still necessary, the C-map correlation to drugs with activities previously linked to snake venoms supports the efficacy of this strategy as a broad-spectrum approach for biological activity screening, and rekindles the snake venom-based search for new therapeutic agents.
Collapse
Affiliation(s)
- Carolina Alves Nicolau
- Laboratory of Toxinology, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, RJ 21040-900, Brazil.
- National Institute of Science and Technology on Toxins (INCTTOX), CNPq, Brasília, DF 71605-170, Brazil.
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA 22908, USA.
| | - Alyson Prorock
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA 22908, USA.
| | - Yongde Bao
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA 22908, USA.
| | - Ana Gisele da Costa Neves-Ferreira
- Laboratory of Toxinology, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, RJ 21040-900, Brazil.
- National Institute of Science and Technology on Toxins (INCTTOX), CNPq, Brasília, DF 71605-170, Brazil.
| | - Richard Hemmi Valente
- Laboratory of Toxinology, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, RJ 21040-900, Brazil.
- National Institute of Science and Technology on Toxins (INCTTOX), CNPq, Brasília, DF 71605-170, Brazil.
| | - Jay William Fox
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA 22908, USA.
| |
Collapse
|
25
|
Ojeda PG, Ramírez D, Alzate-Morales J, Caballero J, Kaas Q, González W. Computational Studies of Snake Venom Toxins. Toxins (Basel) 2017; 10:E8. [PMID: 29271884 PMCID: PMC5793095 DOI: 10.3390/toxins10010008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 12/09/2017] [Accepted: 12/18/2017] [Indexed: 12/17/2022] Open
Abstract
Most snake venom toxins are proteins, and participate to envenomation through a diverse array of bioactivities, such as bleeding, inflammation, and pain, cytotoxic, cardiotoxic or neurotoxic effects. The venom of a single snake species contains hundreds of toxins, and the venoms of the 725 species of venomous snakes represent a large pool of potentially bioactive proteins. Despite considerable discovery efforts, most of the snake venom toxins are still uncharacterized. Modern bioinformatics tools have been recently developed to mine snake venoms, helping focus experimental research on the most potentially interesting toxins. Some computational techniques predict toxin molecular targets, and the binding mode to these targets. This review gives an overview of current knowledge on the ~2200 sequences, and more than 400 three-dimensional structures of snake toxins deposited in public repositories, as well as of molecular modeling studies of the interaction between these toxins and their molecular targets. We also describe how modern bioinformatics have been used to study the snake venom protein phospholipase A2, the small basic myotoxin Crotamine, and the three-finger peptide Mambalgin.
Collapse
Affiliation(s)
- Paola G Ojeda
- Center for Bioinformatics and Molecular Simulations (CBSM), Universidad de Talca, 3460000 Talca, Chile.
- Facultad de Ciencias de la Salud, Instituto de Ciencias Biomedicas, Universidad Autonoma de Chile, 3460000 Talca, Chile.
| | - David Ramírez
- Center for Bioinformatics and Molecular Simulations (CBSM), Universidad de Talca, 3460000 Talca, Chile.
- Facultad de Ciencias de la Salud, Instituto de Ciencias Biomedicas, Universidad Autonoma de Chile, 3460000 Talca, Chile.
| | - Jans Alzate-Morales
- Center for Bioinformatics and Molecular Simulations (CBSM), Universidad de Talca, 3460000 Talca, Chile.
| | - Julio Caballero
- Center for Bioinformatics and Molecular Simulations (CBSM), Universidad de Talca, 3460000 Talca, Chile.
| | - Quentin Kaas
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia.
| | - Wendy González
- Center for Bioinformatics and Molecular Simulations (CBSM), Universidad de Talca, 3460000 Talca, Chile.
- Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Universidad de Talca, 3460000 Talca, Chile.
| |
Collapse
|
26
|
Campeiro JD, Marinovic MP, Carapeto FC, Dal Mas C, Monte GG, Carvalho Porta L, Nering MB, Oliveira EB, Hayashi MAF. Oral treatment with a rattlesnake native polypeptide crotamine efficiently inhibits the tumor growth with no potential toxicity for the host animal and with suggestive positive effects on animal metabolic profile. Amino Acids 2017; 50:267-278. [DOI: 10.1007/s00726-017-2513-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 11/21/2017] [Indexed: 11/29/2022]
|
27
|
Dal Mas C, Pinheiro D, Campeiro J, Mattei B, Oliveira V, Oliveira E, Miranda A, Perez K, Hayashi M. Biophysical and biological properties of small linear peptides derived from crotamine, a cationic antimicrobial/antitumoral toxin with cell penetrating and cargo delivery abilities. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:2340-2349. [DOI: 10.1016/j.bbamem.2017.09.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 08/15/2017] [Accepted: 09/05/2017] [Indexed: 02/06/2023]
|
28
|
Boldrini-França J, Cologna CT, Pucca MB, Bordon KDCF, Amorim FG, Anjolette FAP, Cordeiro FA, Wiezel GA, Cerni FA, Pinheiro-Junior EL, Shibao PYT, Ferreira IG, de Oliveira IS, Cardoso IA, Arantes EC. Minor snake venom proteins: Structure, function and potential applications. Biochim Biophys Acta Gen Subj 2017; 1861:824-838. [DOI: 10.1016/j.bbagen.2016.12.022] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Revised: 12/12/2016] [Accepted: 12/20/2016] [Indexed: 12/20/2022]
|
29
|
Anthelmintic effects of a cationic toxin from a South American rattlesnake venom. Toxicon 2016; 116:49-55. [DOI: 10.1016/j.toxicon.2015.11.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 11/19/2015] [Accepted: 11/26/2015] [Indexed: 01/07/2023]
|
30
|
El Chamy Maluf S, Dal Mas C, Oliveira EB, Melo PM, Carmona AK, Gazarini ML, Hayashi MAF. Inhibition of malaria parasite Plasmodium falciparum development by crotamine, a cell penetrating peptide from the snake venom. Peptides 2016; 78:11-6. [PMID: 26806200 DOI: 10.1016/j.peptides.2016.01.013] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 01/15/2016] [Accepted: 01/19/2016] [Indexed: 01/24/2023]
Abstract
We show here that crotamine, a polypeptide from the South American rattlesnake venom with cell penetrating and selective anti-fungal and anti-tumoral properties, presents a potent anti-plasmodial activity in culture. Crotamine inhibits the development of the Plasmodium falciparum parasites in a dose-dependent manner [IC50 value of 1.87 μM], and confocal microscopy analysis showed a selective internalization of fluorescent-labeled crotamine into P. falciparum infected erythrocytes, with no detectable fluorescence in uninfected healthy erythrocytes. In addition, similarly to the crotamine cytotoxic effects, the mechanism underlying the anti-plasmodial activity may involve the disruption of parasite acidic compartments H(+) homeostasis. In fact, crotamine promoted a reduction of parasites organelle fluorescence loaded with the lysosomotropic fluorochrome acridine orange, in the same way as previously observed mammalian tumoral cells. Taken together, we show for the first time crotamine not only compromised the metabolism of the P. falciparum, but this toxin also inhibited the parasite growth. Therefore, we suggest this snake polypeptide as a promising lead molecule for the development of potential new molecules, namely peptidomimetics, with selectivity for infected erythrocytes and ability to inhibit the malaria infection by its natural affinity for acid vesicles.
Collapse
Affiliation(s)
- S El Chamy Maluf
- Departamento de Biofísica, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - C Dal Mas
- Departamento de Farmacologia, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - E B Oliveira
- Departamento de Bioquímica e Imunologia, Universidade de São Paulo (USP-RP), Ribeirão Preto, Brazil
| | - P M Melo
- Departamento de Biofísica, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - A K Carmona
- Departamento de Biofísica, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - M L Gazarini
- Departamento de Biociências, Universidade Federal de São Paulo (UNIFESP), Santos, SP, Brazil.
| | - M A F Hayashi
- Departamento de Farmacologia, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil.
| |
Collapse
|
31
|
Reeks TA, Fry BG, Alewood PF. Privileged frameworks from snake venom. Cell Mol Life Sci 2015; 72:1939-58. [PMID: 25693678 PMCID: PMC11113608 DOI: 10.1007/s00018-015-1844-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 01/22/2015] [Accepted: 01/26/2015] [Indexed: 11/25/2022]
Abstract
Venom as a form of chemical prey capture is a key innovation that has underpinned the explosive radiation of the advanced snakes (Caenophidia). Small venom proteins are often rich in disulfide bonds thus facilitating stable molecular scaffolds that present key functional residues on the protein surface. New toxin types are initially developed through the venom gland over-expression of normal body proteins, their subsequent gene duplication and diversification that leads to neofunctionalisation as random mutations modify their structure and function. This process has led to preferentially selected (privileged) cysteine-rich scaffolds that enable the snake to build arrays of toxins many of which may lead to therapeutic products and research tools. This review focuses on cysteine-rich small proteins and peptides found in snake venoms spanning natriuretic peptides to phospholipase enzymes, while highlighting their three-dimensional structures and biological functions as well as their potential as therapeutic agents or research tools.
Collapse
Affiliation(s)
- T. A. Reeks
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072 Australia
| | - B. G. Fry
- Venom Evolution Lab, School of Biological Sciences, The University of Queensland, St Lucia, QLD 4072 Australia
| | - P. F. Alewood
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072 Australia
| |
Collapse
|
32
|
Vu TTT, Jeong B, Yu J, Koo BK, Jo SH, Robinson RC, Choe H. Soluble prokaryotic expression and purification of crotamine using an N-terminal maltose-binding protein tag. Toxicon 2014; 92:157-65. [PMID: 25448388 DOI: 10.1016/j.toxicon.2014.10.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 10/08/2014] [Accepted: 10/22/2014] [Indexed: 10/24/2022]
Abstract
Crotamine is a peptide toxin found in the venom of the rattlesnake Crotalus durissus terrificus. Interestingly, crotamine demonstrates promising anticancer, antimicrobial, and antifungal activities. The crotamine peptide can also deliver plasmids into rapidly dividing cells, such as cancer and stem cells, and demonstrates potent analgesic effects. Efficiently producing crotamine in mammalian cells is difficult because it is both cell-permeable and cytotoxic. Prokaryotic expression of this peptide is also difficult to maintain because it does not fold properly in the cytoplasm, resulting in aggregation and in the formation of inclusion bodies. In our current study, we show for the first time that N-terminal fusion with three protein tags-N-utilization substance protein A (NusA), protein disulfide isomerase b'a' domain (PDIb'a'), and maltose-binding protein (MBP)-enables the soluble overexpression of crotamine in the cytoplasm of Escherichia coli. MBP-tagged crotamine was purified using Ni affinity, anion exchange, and MBP chromatography. The tag was cleaved using TEV protease, and the final product was pure on a silver-stained gels. In total, 0.9 mg pure crotamine was obtained from each liter of bacterial culture with endotoxin level approximately 0.15 EU/μg, which is low enough to use in biomedical applications. The identity and intramolecular disulfide bonds were confirmed using MALDI-TOF MS analysis. Purified crotamine inhibited the hKv1.3 channel (but not hKv1.5) in a dose-dependent manner with IC50 value of 67.2 ± 44.7 nM (n = 10), indicating the correct protein folding. The crotamine product fused with MBP at its N-terminus also inhibited the hKv1.3 channel, suggesting that the N-terminus is not involved in the channel binding of the toxin.
Collapse
Affiliation(s)
- Thu Trang Thi Vu
- Department of Physiology and Bio-Medical Institute of Technology, University of Ulsan College of Medicine, Seoul 138-736, Republic of Korea
| | - Boram Jeong
- Department of Physiology and Bio-Medical Institute of Technology, University of Ulsan College of Medicine, Seoul 138-736, Republic of Korea
| | - Jing Yu
- Department of Physiology, Institute of Bioscience and Biotechnology, Kangwon National University School of Medicine, Chuncheon 200-701, Republic of Korea
| | - Bon-Kyung Koo
- Department of Physiology and Bio-Medical Institute of Technology, University of Ulsan College of Medicine, Seoul 138-736, Republic of Korea
| | - Su-Hyun Jo
- Department of Physiology, Institute of Bioscience and Biotechnology, Kangwon National University School of Medicine, Chuncheon 200-701, Republic of Korea.
| | - Robert Charles Robinson
- Institute of Molecular and Cell Biology, A*STAR (Agency of Science, Technology and Research), Biopolis, Singapore 138673, Singapore; Department of Biochemistry, National University of Singapore, 8 Medical Drive, Singapore 117597, Singapore.
| | - Han Choe
- Department of Physiology and Bio-Medical Institute of Technology, University of Ulsan College of Medicine, Seoul 138-736, Republic of Korea.
| |
Collapse
|
33
|
Goyffon M, Tournier JN. Scorpions: a presentation. Toxins (Basel) 2014; 6:2137-48. [PMID: 25133517 PMCID: PMC4113747 DOI: 10.3390/toxins6072137] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 07/07/2014] [Accepted: 07/08/2014] [Indexed: 01/29/2023] Open
Abstract
Scorpions, at least the species of the family Buthidæ whose venoms are better known, appear as animals that have evolved very little over time. The composition of their venoms is relatively simple as most toxins have a common structural motif that is found in other venoms from primitive species. Moreover, all the scorpion venom toxins principally act on membrane ionic channels of excitable cells. The results of recent works lead to the conclusion that in scorpions there is a close relationship between venomous function and innate immune function both remarkably efficient.
Collapse
Affiliation(s)
- Max Goyffon
- Department RDDM, National Museum of Natural History, 57 rue Cuvier, 75005 Paris, France.
| | | |
Collapse
|
34
|
Functional and structural insights on self-assembled nanofiber-based novel antibacterial ointment from antimicrobial peptides, bacitracin and gramicidin S. J Antibiot (Tokyo) 2014; 67:771-5. [DOI: 10.1038/ja.2014.70] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 03/24/2014] [Accepted: 04/28/2014] [Indexed: 11/08/2022]
|
35
|
Costa BA, Sanches L, Gomide AB, Bizerra F, Dal Mas C, Oliveira EB, Perez KR, Itri R, Oguiura N, Hayashi MAF. Interaction of the Rattlesnake Toxin Crotamine with Model Membranes. J Phys Chem B 2014; 118:5471-9. [DOI: 10.1021/jp411886u] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Bruno A. Costa
- Departamento
de Farmacologia, Universidade Federal de São Paulo (UNIFESP), São
Paulo 04044-020, Brazil
| | - Leonardo Sanches
- Laboratório
Especial de Ecologia e Evolução, Instituto Butantan, São
Paulo 05503-900, Brazil
| | - Andreza Barbosa Gomide
- Departamento
de Física Aplicada, Instituto de Fisica, Universidade de São Paulo (USP), São Paulo 05508-090, Brazil
| | - Fernando Bizerra
- Departamento
de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo 04021-001, Brazil
| | - Caroline Dal Mas
- Departamento
de Farmacologia, Universidade Federal de São Paulo (UNIFESP), São
Paulo 04044-020, Brazil
| | - Eduardo B. Oliveira
- Departamento
de Bioquímica e Imunologia, Universidade de São Paulo, Ribeirão
Preto, São Paulo, 14096-000, Brazil
| | - Katia Regina Perez
- Departamento
de Biofísica, Universidade Federal de São Paulo (UNIFESP), São Paulo 04021-001, Brazil
| | - Rosangela Itri
- Departamento
de Física Aplicada, Instituto de Fisica, Universidade de São Paulo (USP), São Paulo 05508-090, Brazil
| | - Nancy Oguiura
- Laboratório
Especial de Ecologia e Evolução, Instituto Butantan, São
Paulo 05503-900, Brazil
| | - Mirian A. F. Hayashi
- Departamento
de Farmacologia, Universidade Federal de São Paulo (UNIFESP), São
Paulo 04044-020, Brazil
| |
Collapse
|
36
|
Structure and antimicrobial activity of platypus 'intermediate' defensin-like peptide. FEBS Lett 2014; 588:1821-6. [PMID: 24694388 DOI: 10.1016/j.febslet.2014.03.044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 03/12/2014] [Accepted: 03/23/2014] [Indexed: 11/23/2022]
Abstract
The three-dimensional structure of a chemically synthesized peptide that we have called 'intermediate' defensin-like peptide (Int-DLP), from the platypus genome, was determined by nuclear magnetic resonance (NMR) spectroscopy; and its antimicrobial activity was investigated. The overall structural fold of Int-DLP was similar to that of the DLPs and β-defensins, however the presence of a third antiparallel β-strand makes its structure more similar to the β-defensins than the DLPs. Int-DLP displayed potent antimicrobial activity against Staphylococcus aureus and Pseudomonas aeruginosa. The four arginine residues at the N-terminus of Int-DLP did not affect the overall fold, but were important for its antimicrobial potency.
Collapse
|
37
|
Silva PM, Gonçalves S, Santos NC. Defensins: antifungal lessons from eukaryotes. Front Microbiol 2014; 5:97. [PMID: 24688483 PMCID: PMC3960590 DOI: 10.3389/fmicb.2014.00097] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 02/21/2014] [Indexed: 01/07/2023] Open
Abstract
Over the last years, antimicrobial peptides (AMPs) have been the focus of intense research toward the finding of a viable alternative to current antifungal drugs. Defensins are one of the major families of AMPs and the most represented among all eukaryotic groups, providing an important first line of host defense against pathogenic microorganisms. Several of these cysteine-stabilized peptides present a relevant effect against fungi. Defensins are the AMPs with the broader distribution across all eukaryotic kingdoms, namely, Fungi, Plantae, and Animalia, and were recently shown to have an ancestor in a bacterial organism. As a part of the host defense, defensins act as an important vehicle of information between innate and adaptive immune system and have a role in immunomodulation. This multidimensionality represents a powerful host shield, hard for microorganisms to overcome using single approach resistance strategies. Pathogenic fungi resistance to conventional antimycotic drugs is becoming a major problem. Defensins, as other AMPs, have shown to be an effective alternative to the current antimycotic therapies, demonstrating potential as novel therapeutic agents or drug leads. In this review, we summarize the current knowledge on some eukaryotic defensins with antifungal action. An overview of the main targets in the fungal cell and the mechanism of action of these AMPs (namely, the selectivity for some fungal membrane components) are presented. Additionally, recent works on antifungal defensins structure, activity, and cytotoxicity are also reviewed.
Collapse
Affiliation(s)
- Patrícia M Silva
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa Lisbon, Portugal
| | - Sónia Gonçalves
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa Lisbon, Portugal
| | - Nuno C Santos
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa Lisbon, Portugal
| |
Collapse
|
38
|
Stocco RDC, Roperto FP, Nasir L, Sircili MP. Oncogenic processes. BIOMED RESEARCH INTERNATIONAL 2014; 2014:879013. [PMID: 24551854 PMCID: PMC3914301 DOI: 10.1155/2014/879013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 11/13/2013] [Indexed: 11/24/2022]
Affiliation(s)
- Rita de Cassia Stocco
- Laboratório de Genética, Instituto Butantan, Secretaria de Estado da Saúde, Avenida Vital Brasil, 1500 Butantã, 05503-900 São Paulo, SP, Brazil
| | - Franco Peppino Roperto
- Department of Biology, Naples University Federico II, Via Mezzocannone 16, 80134 Naples, Italy
| | - Lubna Nasir
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, MRC-University of Glasgow Centre for Virus Research, Bearsden Road, Glasgow G61 1QH, UK
| | - Marcelo Palma Sircili
- Laboratório de Genética, Instituto Butantan, Secretaria de Estado da Saúde, Avenida Vital Brasil, 1500 Butantã, 05503-900 São Paulo, SP, Brazil
| |
Collapse
|
39
|
Kerkis I, Hayashi MAF, Prieto da Silva ARB, Pereira A, De Sá Júnior PL, Zaharenko AJ, Rádis-Baptista G, Kerkis A, Yamane T. State of the art in the studies on crotamine, a cell penetrating peptide from South American rattlesnake. BIOMED RESEARCH INTERNATIONAL 2014; 2014:675985. [PMID: 24551848 PMCID: PMC3914522 DOI: 10.1155/2014/675985] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 08/05/2013] [Accepted: 08/08/2013] [Indexed: 12/03/2022]
Abstract
Animal venoms comprise a naturally selected cocktail of bioactive peptides/proteins and other molecules, each of which playing a defined role thanks to the highly specific interactions with diverse molecular targets found in the prey. Research focused on isolation, structural, and functional characterizations of novel natural biologics (bioactive peptides/proteins from natural sources) has a long way to go through from the basic science to clinical applications. Herein, we overview the structural and functional characteristics of the myoneurotoxin crotamine, firstly isolated from the South American rattlesnake venom. Crotamine is the first venom peptide classified as a natural cell penetrating and antimicrobial peptide (CPP and AMP) with a more pronounced antifungal activity. In contrast to other known natural CPPs and AMPs, crotamine demonstrates a wide spectrum of biological activities with potential biotechnological and therapeutic values. More recent studies have demonstrated the selective in vitro anticancer activity of crotamine. In vivo, using a murine melanoma model, it was shown that crotamine delays tumor implantation, inhibits tumor cells proliferation, and also increases the survival of mice engrafted with subcutaneous melanoma. The structural and functional properties and also the possible biotechnological applications of minimized molecules derived from crotamine are also discussed.
Collapse
Affiliation(s)
- Irina Kerkis
- Laboratório de Genética, Instituto Butantan, Av. Vital Brasil, 1500 05503-900 São Paulo, SP, Brazil
| | - Mirian A. F. Hayashi
- Departamento de Farmacologia, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | | | - Alexandre Pereira
- Laboratório de Genética, Instituto Butantan, Av. Vital Brasil, 1500 05503-900 São Paulo, SP, Brazil
| | - Paulo Luiz De Sá Júnior
- Laboratório de Genética, Instituto Butantan, Av. Vital Brasil, 1500 05503-900 São Paulo, SP, Brazil
| | - Andre J. Zaharenko
- Laboratório de Genética, Instituto Butantan, Av. Vital Brasil, 1500 05503-900 São Paulo, SP, Brazil
| | - Gandhi Rádis-Baptista
- Labomar-Instituto de Ciências do Mar, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Alexandre Kerkis
- Laboratório de Genética, Instituto Butantan, Av. Vital Brasil, 1500 05503-900 São Paulo, SP, Brazil
| | - Tetsuo Yamane
- Universidade Estadual da Amazônia (UEA) e Laboratório de Bioquímica e Biologia Molecular, Centro de Biotecnologia da Amazônia (CBA), Manaus, AM, Brazil
| |
Collapse
|
40
|
Immunolocalization of a beta-defensin (Tu-BD-1) in the skin and subdermal granulocytes of turtles indicate the presence of an antimicrobial skin barrier. Ann Anat 2013; 195:554-61. [DOI: 10.1016/j.aanat.2013.07.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 06/27/2013] [Accepted: 07/17/2013] [Indexed: 12/16/2022]
|
41
|
Abstract
Snakebite is classified by the WHO as a neglected tropical disease. Envenoming is a significant public health problem in tropical and subtropical regions. Neurotoxicity is a key feature of some envenomings, and there are many unanswered questions regarding this manifestation. Acute neuromuscular weakness with respiratory involvement is the most clinically important neurotoxic effect. Data is limited on the many other acute neurotoxic manifestations, and especially delayed neurotoxicity. Symptom evolution and recovery, patterns of weakness, respiratory involvement, and response to antivenom and acetyl cholinesterase inhibitors are variable, and seem to depend on the snake species, type of neurotoxicity, and geographical variations. Recent data have challenged the traditional concepts of neurotoxicity in snake envenoming, and highlight the rich diversity of snake neurotoxins. A uniform system of classification of the pattern of neuromuscular weakness and models for predicting type of toxicity and development of respiratory weakness are still lacking, and would greatly aid clinical decision making and future research. This review attempts to update the reader on the current state of knowledge regarding this important issue.
Collapse
Affiliation(s)
- Udaya K. Ranawaka
- Faculty of Medicine, University of Kelaniya, Ragama, Sri Lanka
- * E-mail:
| | - David G. Lalloo
- Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | | |
Collapse
|
42
|
Coronado MA, Gabdulkhakov A, Georgieva D, Sankaran B, Murakami MT, Arni RK, Betzel C. Structure of the polypeptide crotamine from the Brazilian rattlesnake Crotalus durissus terrificus. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:1958-64. [PMID: 24100315 PMCID: PMC3792641 DOI: 10.1107/s0907444913018003] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Accepted: 06/29/2013] [Indexed: 11/10/2022]
Abstract
The crystal structure of the myotoxic, cell-penetrating, basic polypeptide crotamine isolated from the venom of Crotalus durissus terrificus has been determined by single-wavelength anomalous dispersion techniques and refined at 1.7 Å resolution. The structure reveals distinct cationic and hydrophobic surface regions that are located on opposite sides of the molecule. This surface-charge distribution indicates its possible mode of interaction with negatively charged phospholipids and other molecular targets to account for its diverse pharmacological activities. Although the sequence identity between crotamine and human β-defensins is low, the three-dimensional structures of these functionally related peptides are similar. Since crotamine is a leading member of a large family of myotoxic peptides, its structure will provide a basis for the design of novel cell-penetrating molecules.
Collapse
Affiliation(s)
- Monika A. Coronado
- Multi User Center for Biomolecular Innovation, Department of Physics, São Paulo State University, UNESP/IBILCE, C. Postal 136, 15054-000 São José do Rio Preto-SP, Brazil
- Institute of Biochemistry and Molecular Biology, Hamburg University, Martin-Luther-King Platz 6, 20146 Hamburg, Germany
| | - Azat Gabdulkhakov
- Institute of Protein Research, RAS, Pushchino, Moscow Region 142290, Russian Federation
| | - Dessislava Georgieva
- Institute of Biochemistry and Molecular Biology, Hamburg University, Martin-Luther-King Platz 6, 20146 Hamburg, Germany
| | - Banumathi Sankaran
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94702, USA
| | - Mario T. Murakami
- Biosciences National Laboratory, National Center for Energy and Materials Research, Giuseppe Maximo Scolfaro 10000, 13083-970 Campinas-SP, Brazil
| | - Raghuvir K. Arni
- Multi User Center for Biomolecular Innovation, Department of Physics, São Paulo State University, UNESP/IBILCE, C. Postal 136, 15054-000 São José do Rio Preto-SP, Brazil
| | - Christian Betzel
- Institute of Biochemistry and Molecular Biology, Hamburg University, Martin-Luther-King Platz 6, 20146 Hamburg, Germany
| |
Collapse
|
43
|
Smith JJ, Herzig V, King GF, Alewood PF. The insecticidal potential of venom peptides. Cell Mol Life Sci 2013; 70:3665-93. [PMID: 23525661 PMCID: PMC11114029 DOI: 10.1007/s00018-013-1315-3] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 02/27/2013] [Accepted: 02/28/2013] [Indexed: 12/19/2022]
Abstract
Pest insect species are a burden to humans as they destroy crops and serve as vectors for a wide range of diseases including malaria and dengue. Chemical insecticides are currently the dominant approach for combating these pests. However, the de-registration of key classes of chemical insecticides due to their perceived ecological and human health risks in combination with the development of insecticide resistance in many pest insect populations has created an urgent need for improved methods of insect pest control. The venoms of arthropod predators such as spiders and scorpions are a promising source of novel insecticidal peptides that often have different modes of action to extant chemical insecticides. These peptides have been optimized via a prey-predator arms race spanning hundreds of millions of years to target specific types of insect ion channels and receptors. Here we review the current literature on insecticidal venom peptides, with a particular focus on their structural and pharmacological diversity, and discuss their potential for deployment as insecticides.
Collapse
Affiliation(s)
- Jennifer J. Smith
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072 Australia
| | - Volker Herzig
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072 Australia
| | - Glenn F. King
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072 Australia
| | - Paul F. Alewood
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072 Australia
| |
Collapse
|
44
|
Liu R, Zhang Z, Liu H, Hou P, Lang J, Wang S, Yan H, Li P, Huang Z, Wu H, Rong M, Huang J, Wang H, Lv L, Qiu M, Ding J, Lai R. Human β-defensin 2 is a novel opener of Ca2+-activated potassium channels and induces vasodilation and hypotension in monkeys. Hypertension 2013; 62:415-25. [PMID: 23734009 DOI: 10.1161/hypertensionaha.111.01076] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Human β-defensin 2 (HBD2) is a cysteine-rich cationic antimicrobial peptide known for its important role in innate immune system. Intensive studies have demonstrated its antimicrobial and chemotactic activities in vitro. In this study, ELISA analysis showed that HBD2 was significantly downregulated in sera of patients with hypertension. It relaxed vessel smooth muscle by acting on the major regulatory pathways, contributing to vessel smooth muscle contraction. Electrophysiology analysis indicated that HBD2 acted as an opener of large-conductance Ca(2+)-activated potassium (BKCa)-mSlo+hβ1 channels and increased BKCa currents. Mutation analysis revealed that HBD2 activated BKCa-mSlo+hβ1 channels via interacting with Leu41 and Gln43 of β1-loop. In vivo experiments suggested that HBD2 at 4 × to 6 × of physiological concentration exerted hypotensive effect in monkeys significantly, whereas the selective blocker of BKCa channels, Paxilline, inhibited the effect. HBD2 is the first peptide opener of BKCa-mSlo+hβ1 channels. It may be a novel regulator of blood pressure and provides a new therapeutic target for the treatment of hypertension. The HBD2 blockade of the BKCa channels may represent a new type of cross-talk between immune and cardiovascular systems.
Collapse
Affiliation(s)
- Rui Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
A novel beta-defensin antimicrobial peptide in Atlantic cod with stimulatory effect on phagocytic activity. PLoS One 2013; 8:e62302. [PMID: 23638029 PMCID: PMC3636224 DOI: 10.1371/journal.pone.0062302] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Accepted: 03/22/2013] [Indexed: 11/19/2022] Open
Abstract
A novel defensin antimicrobial peptide gene was identified in Atlantic cod, Gadus morhua. This three exon/two intron defensin gene codes for a peptide precursor consisting of two domains: a signal peptide of 26 amino acids and a mature peptide of 40 residues. The mature cod defensin has six conserved cysteine residues that form 1–5, 2–4 and 3–6 disulphide bridges. This pattern is typical of beta-defensins and this gene was therefore named cod beta-defensin (defb). The tertiary structure of Defb exhibits an α/β fold with one α helix and β1β2β3 sheets. RT-PCR analysis indicated that defb transcripts were present mainly in the swim bladder and peritoneum wall but could also be detected at moderate to low levels in skin, head- and excretory kidneys. In situ hybridisation revealed that defb was specifically expressed by cells located in the swim bladder submucosa and the oocytes. During embryonic development, defb gene transcripts were detectable from the golden eye stage onwards and their expression was restricted to the swim bladder and retina. Defb was differentially expressed in several tissues following antigenic challenge with Vibrio anguillarum, being up-regulated up to 25-fold in head kidney. Recombinant Defb displayed antibacterial activity, with a minimal inhibitory concentration of 0.4–0.8 µM and 25–50 µM against the Gram-(+) bacteria Planococcus citreus and Micrococcus luteus, respectively. In addition, Defb stimulated phagocytic activity of cod head kidney leucocytes invitro. These findings imply that beta-defensins may play an important role in the innate immune response of Atlantic cod.
Collapse
|
46
|
Yamane ES, Bizerra FC, Oliveira EB, Moreira JT, Rajabi M, Nunes GL, de Souza AO, da Silva ID, Yamane T, Karpel RL, Silva PI, Hayashi MA. Unraveling the antifungal activity of a South American rattlesnake toxin crotamine. Biochimie 2013; 95:231-40. [DOI: 10.1016/j.biochi.2012.09.019] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Accepted: 09/14/2012] [Indexed: 01/05/2023]
|
47
|
Mandal SM, Migliolo L, Franco OL. The use of MALDI-TOF-MS and in silico studies for determination of antimicrobial peptides' affinity to bacterial cells. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2012; 23:1939-1948. [PMID: 22926961 DOI: 10.1007/s13361-012-0453-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Revised: 06/28/2012] [Accepted: 07/18/2012] [Indexed: 06/01/2023]
Abstract
Several methods have been proposed for determining the binding affinity of antimicrobial peptides (AMPs) to bacterial cells. Here the utilization of MALDI-TOF-MS was proposed as a reliable and efficient method for high throughput AMP screening. The major advantage of the technique consists of finding AMPs that are selective and specific to a wide range of Gram-negative and -positive bacteria, providing a simple reliable screening tool to determine the potential candidates for broad spectrum antimicrobial drugs. As a prototype, amp-1 and -2 were used, showing highest activity toward Gram-negative and -positive membranes respectively. In addition, in silico molecular docking studies with both peptides were carried out for the membranes. In silico results indicated that both peptides presented affinity for DPPG and DPPE phospholipids, constructed in order to emulate an in vivo membrane bilayer. As a result, amp-1 showed a higher complementary surface for Gram-negative while amp-2 showed higher affinity to Gram-positive membranes, corroborating MS analyses. In summary, results here obtained suggested that in vitro methodology using MALDI-TOF-MS in addition to theoretical studies may be able to improve AMP screening quality.
Collapse
Affiliation(s)
- Santi M Mandal
- Mass Spectrometry and Proteomics Laboratory Central Research Facility, Indian Institute of Technology Kharagpur, Kharagpur, WB, India
| | | | | |
Collapse
|
48
|
Coronado MA, Georgieva D, Buck F, Gabdoulkhakov AH, Ullah A, Spencer PJ, Arni RK, Betzel C. Purification, crystallization and preliminary X-ray diffraction analysis of crotamine, a myotoxic polypeptide from the Brazilian snake Crotalus durissus terrificus. Acta Crystallogr Sect F Struct Biol Cryst Commun 2012; 68:1052-4. [PMID: 22949192 PMCID: PMC3433195 DOI: 10.1107/s1744309112032721] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 07/18/2012] [Indexed: 06/01/2023]
Abstract
Crotamine, a highly basic myotoxic polypeptide (molecular mass 4881 Da) isolated from the venom of the Brazilian rattlesnake Crotalus durissus terrificus, causes skeletal muscle contraction and spasms, affects the functioning of voltage-sensitive sodium channels by inducing sodium influx and possesses antitumour activity, suggesting potential pharmaceutical applications. Crotamine was purified from C. durissus terrificus venom; the crystals diffracted to 1.9 Å resolution and belonged to the orthorhombic space group I2(1)2(1)2(1) or I222, with unit-cell parameters a = 67.75, b = 74.4, c = 81.01 Å. The self-rotation function indicated that the asymmetric unit contained three molecules. However, structure determination by molecular replacement using NMR-determined coordinates was unsuccessful and a search for potential derivatives has been initiated.
Collapse
Affiliation(s)
- Mônika A. Coronado
- Centro Multiusuário de Inovação Biomolecular, Departamento de Física, Universidade Estadual Paulista (UNESP), São José do Rio Preto-SP 15054-000, Brazil
| | - Dessislava Georgieva
- Laboratory for Structural Biology of Infection and Inflammation, University of Hamburg, c/o DESY, Notkestrasse 85, 22603 Hamburg, Germany
| | - Friedrich Buck
- Institute of Clinical Chemistry, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Azat H. Gabdoulkhakov
- Institute of Crystallography, Russian Academy of Sciences, 59 Leninsky Prospect, Moscow 119333, Russian Federation
| | - Anwar Ullah
- Centro Multiusuário de Inovação Biomolecular, Departamento de Física, Universidade Estadual Paulista (UNESP), São José do Rio Preto-SP 15054-000, Brazil
| | - Patrick J. Spencer
- Centro de Biotecnologia, Instituto de Pesquisas Energéticas e Nucleares–CNEN/SP, Avenida Professor Lineu Prestes 2242, São Paulo-SP 05508-000, Brazil
| | - Raghuvir K. Arni
- Centro Multiusuário de Inovação Biomolecular, Departamento de Física, Universidade Estadual Paulista (UNESP), São José do Rio Preto-SP 15054-000, Brazil
| | - Christian Betzel
- Laboratory for Structural Biology of Infection and Inflammation, University of Hamburg, c/o DESY, Notkestrasse 85, 22603 Hamburg, Germany
| |
Collapse
|
49
|
Abstract
Venoms and toxins are of significant interest due to their ability to cause a wide range of pathophysiological conditions that can potentially result in death. Despite their wide distribution among plants and animals, the biochemical pathways associated with these pathogenic agents remain largely unexplored. Impoverished and underdeveloped regions appear especially susceptible to increased incidence and severity due to poor socioeconomic conditions and lack of appropriate medical treatment infrastructure. To facilitate better management and treatment of envenomation victims, it is essential that the biochemical mechanisms of their action be elucidated. This review aims to characterize downstream envenomation mechanisms by addressing the major neuro-, cardio-, and hemotoxins as well as ion-channel toxins. Because of their use in folk and traditional medicine, the biochemistry behind venom therapy and possible implications on conventional medicine will also be addressed.
Collapse
|
50
|
Peigneur S, Orts DJB, Prieto da Silva AR, Oguiura N, Boni-Mitake M, de Oliveira EB, Zaharenko AJ, de Freitas JC, Tytgat J. Crotamine pharmacology revisited: novel insights based on the inhibition of KV channels. Mol Pharmacol 2012; 82:90-6. [PMID: 22498659 DOI: 10.1124/mol.112.078188] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Crotamine, a 5-kDa peptide, possesses a unique biological versatility. Not only has its cell-penetrating activity become of clinical interest but, moreover, its potential selective antitumor activity is of great pharmacological importance. In the past, several studies have attempted to elucidate the exact molecular target responsible for the crotamine-induced skeletal muscle spasm. The aim of this study was to investigate whether crotamine affects voltage-gated potassium (K(V)) channels in an effort to explain its in vivo effects. Crotamine was studied on ion channel function using the two-electrode voltage clamp technique on 16 cloned ion channels (12 K(V) channels and 4 Na(V) channels), expressed in Xenopus laevis oocytes. Crotamine selectively inhibits K(V)1.1, K(V)1.2, and K(V)1.3 channels with an IC(50) of ∼300 nM, and the key amino acids responsible for this molecular interaction are suggested. Our results demonstrate for the first time that the symptoms, which are observed in the typical crotamine syndrome, may result from the inhibition of K(V) channels. The ability of crotamine to inhibit the potassium current through K(V) channels unravels it as the first snake peptide with the unique multifunctionality of cell-penetrating and antitumoral activity combined with K(V) channel-inhibiting properties. This new property of crotamine might explain some experimental observations and opens new perspectives on pharmacological uses.
Collapse
Affiliation(s)
- Steve Peigneur
- Laboratory of Toxicology, University of Leuven (K.U. Leuven), Campus Gasthuisberg O&N2, Herestraat 49, P.O. Box 922, B-3000 Leuven, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|