1
|
Demaretz S, Seaayfan E, Bakhos-Douaihy D, Frachon N, Kömhoff M, Laghmani K. Golgi Alpha1,2-Mannosidase IA Promotes Efficient Endoplasmic Reticulum-Associated Degradation of NKCC2. Cells 2021; 11:101. [PMID: 35011665 PMCID: PMC8750359 DOI: 10.3390/cells11010101] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/24/2021] [Accepted: 12/27/2021] [Indexed: 12/18/2022] Open
Abstract
Mutations in the apically located kidney Na-K-2Cl cotransporter NKCC2 cause type I Bartter syndrome, a life-threatening kidney disorder. We previously showed that transport from the ER represents the limiting phase in NKCC2 journey to the cell surface. Yet very little is known about the ER quality control components specific to NKCC2 and its disease-causing mutants. Here, we report the identification of Golgi alpha1, 2-mannosidase IA (ManIA) as a novel binding partner of the immature form of NKCC2. ManIA interaction with NKCC2 takes place mainly at the cis-Golgi network. ManIA coexpression decreased total NKCC2 protein abundance whereas ManIA knock-down produced the opposite effect. Importantly, ManIA coexpression had a more profound effect on NKCC2 folding mutants. Cycloheximide chase assay showed that in cells overexpressing ManIA, NKCC2 stability and maturation are heavily hampered. Deleting the cytoplasmic region of ManIA attenuated its interaction with NKCC2 and inhibited its effect on the maturation of the cotransporter. ManIA-induced reductions in NKCC2 expression were offset by the proteasome inhibitor MG132. Likewise, kifunensine treatment greatly reduced ManIA effect, strongly suggesting that mannose trimming is involved in the enhanced ERAD of the cotransporter. Moreover, depriving ManIA of its catalytic domain fully abolished its effect on NKCC2. In summary, our data demonstrate the presence of a ManIA-mediated ERAD pathway in renal cells promoting retention and degradation of misfolded NKCC2 proteins. They suggest a model whereby Golgi ManIA contributes to ERAD of NKCC2, by promoting the retention, recycling, and ERAD of misfolded proteins that initially escape protein quality control surveillance within the ER.
Collapse
Affiliation(s)
- Sylvie Demaretz
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, F-75006 Paris, France; (S.D.); (E.S.); (D.B.-D.); (N.F.)
- CNRS, ERL8228, F-75006 Paris, France
| | - Elie Seaayfan
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, F-75006 Paris, France; (S.D.); (E.S.); (D.B.-D.); (N.F.)
- CNRS, ERL8228, F-75006 Paris, France
| | - Dalal Bakhos-Douaihy
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, F-75006 Paris, France; (S.D.); (E.S.); (D.B.-D.); (N.F.)
- CNRS, ERL8228, F-75006 Paris, France
| | - Nadia Frachon
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, F-75006 Paris, France; (S.D.); (E.S.); (D.B.-D.); (N.F.)
- CNRS, ERL8228, F-75006 Paris, France
| | - Martin Kömhoff
- Division of Pediatric Nephrology and Transplantation, University Children’s Hospital, Philipps-University, 35043 Marburg, Germany;
| | - Kamel Laghmani
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, F-75006 Paris, France; (S.D.); (E.S.); (D.B.-D.); (N.F.)
- CNRS, ERL8228, F-75006 Paris, France
| |
Collapse
|
2
|
Polla DL, Edmondson AC, Duvet S, March ME, Sousa AB, Lehman A, Niyazov D, van Dijk F, Demirdas S, van Slegtenhorst MA, Kievit AJA, Schulz C, Armstrong L, Bi X, Rader DJ, Izumi K, Zackai EH, de Franco E, Jorge P, Huffels SC, Hommersom M, Ellard S, Lefeber DJ, Santani A, Hand NJ, van Bokhoven H, He M, de Brouwer APM. Bi-allelic variants in the ER quality-control mannosidase gene EDEM3 cause a congenital disorder of glycosylation. Am J Hum Genet 2021; 108:1342-1349. [PMID: 34143952 PMCID: PMC8322938 DOI: 10.1016/j.ajhg.2021.05.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 05/19/2021] [Indexed: 01/10/2023] Open
Abstract
EDEM3 encodes a protein that converts Man8GlcNAc2 isomer B to Man7-5GlcNAc2. It is involved in the endoplasmic reticulum-associated degradation pathway, responsible for the recognition of misfolded proteins that will be targeted and translocated to the cytosol and degraded by the proteasome. In this study, through a combination of exome sequencing and gene matching, we have identified seven independent families with 11 individuals with bi-allelic protein-truncating variants and one individual with a compound heterozygous missense variant in EDEM3. The affected individuals present with an inherited congenital disorder of glycosylation (CDG) consisting of neurodevelopmental delay and variable facial dysmorphisms. Experiments in human fibroblast cell lines, human plasma, and mouse plasma and brain tissue demonstrated decreased trimming of Man8GlcNAc2 isomer B to Man7GlcNAc2, consistent with loss of EDEM3 enzymatic activity. In human cells, Man5GlcNAc2 to Man4GlcNAc2 conversion is also diminished with an increase of Glc1Man5GlcNAc2. Furthermore, analysis of the unfolded protein response showed a reduced increase in EIF2AK3 (PERK) expression upon stimulation with tunicamycin as compared to controls, suggesting an impaired unfolded protein response. The aberrant plasma N-glycan profile provides a quick, clinically available test for validating variants of uncertain significance that may be identified by molecular genetic testing. We propose to call this deficiency EDEM3-CDG.
Collapse
Affiliation(s)
- Daniel L Polla
- Department of Human Genetics, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands; CAPES Foundation, Ministry of Education of Brazil, Brasília, Brazil
| | - Andrew C Edmondson
- Department of Pediatrics, Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Sandrine Duvet
- Université de Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France
| | - Michael E March
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Ana Berta Sousa
- Serviço de Genética Médica, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, 649-035 Lisboa, Portugal; Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Anna Lehman
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6H 3N1, Canada
| | - Dmitriy Niyazov
- Tulane School of Medicine, University of Queensland, 1315 Jefferson Highway, New Orleans, LA 70121, USA
| | - Fleur van Dijk
- North West Thames Regional Genetics Service, London North West University Healthcare NHS Trust, Watford Road, Harrow, HA1 3UJ London, UK
| | - Serwet Demirdas
- Department of Clinical Genetics, Erasmus University Medical Center, 3015 Rotterdam, the Netherlands
| | | | - Anneke J A Kievit
- Department of Clinical Genetics, Erasmus University Medical Center, 3015 Rotterdam, the Netherlands
| | - Celine Schulz
- Université de Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France
| | - Linlea Armstrong
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6H 3N1, Canada
| | - Xin Bi
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Daniel J Rader
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kosuke Izumi
- Department of Pediatrics, Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Elaine H Zackai
- Department of Pediatrics, Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Elisa de Franco
- Department of Molecular Genetics, Royal Devon and Exeter NHS Foundation Trust, Barrack Road, EX2 5DW Exeter, UK
| | - Paula Jorge
- Centro de Genética Médica Jacinto de Magalhães, Centro Hospitalar do Porto, CHP, E.P.E., 4099-028 Porto, Portugal; Unit for Multidisciplinary Research in Biomedicine, Abel Salazar Institute of Biomedical Sciences, University of Porto, 4099-028 Porto, Portugal
| | - Sophie C Huffels
- Department of Human Genetics, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands
| | - Marina Hommersom
- Department of Human Genetics, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands
| | - Sian Ellard
- Department of Molecular Genetics, Royal Devon and Exeter NHS Foundation Trust, Barrack Road, EX2 5DW Exeter, UK; College of Medicine and Health, University of Exeter, Barrack Road, EX2 5DW Exeter, UK
| | - Dirk J Lefeber
- Department of Neurology, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands; Department of Laboratory Medicine, Translational Metabolic Laboratory, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Avni Santani
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nicholas J Hand
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hans van Bokhoven
- Department of Human Genetics, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands
| | - Miao He
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Arjan P M de Brouwer
- Department of Human Genetics, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands.
| |
Collapse
|
3
|
Abstract
Folding of proteins is essential so that they can exert their functions. For proteins that transit the secretory pathway, folding occurs in the endoplasmic reticulum (ER) and various chaperone systems assist in acquiring their correct folding/subunit formation. N-glycosylation is one of the most conserved posttranslational modification for proteins, and in eukaryotes it occurs in the ER. Consequently, eukaryotic cells have developed various systems that utilize N-glycans to dictate and assist protein folding, or if they consistently fail to fold properly, to destroy proteins for quality control and the maintenance of homeostasis of proteins in the ER.
Collapse
|
4
|
Zhang J, Wu J, Liu L, Li J. The Crucial Role of Demannosylating Asparagine-Linked Glycans in ERADicating Misfolded Glycoproteins in the Endoplasmic Reticulum. FRONTIERS IN PLANT SCIENCE 2020; 11:625033. [PMID: 33510762 PMCID: PMC7835635 DOI: 10.3389/fpls.2020.625033] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 12/08/2020] [Indexed: 05/04/2023]
Abstract
Most membrane and secreted proteins are glycosylated on certain asparagine (N) residues in the endoplasmic reticulum (ER), which is crucial for their correct folding and function. Protein folding is a fundamentally inefficient and error-prone process that can be easily interfered by genetic mutations, stochastic cellular events, and environmental stresses. Because misfolded proteins not only lead to functional deficiency but also produce gain-of-function cellular toxicity, eukaryotic organisms have evolved highly conserved ER-mediated protein quality control (ERQC) mechanisms to monitor protein folding, retain and repair incompletely folded or misfolded proteins, or remove terminally misfolded proteins via a unique ER-associated degradation (ERAD) mechanism. A crucial event that terminates futile refolding attempts of a misfolded glycoprotein and diverts it into the ERAD pathway is executed by removal of certain terminal α1,2-mannose (Man) residues of their N-glycans. Earlier studies were centered around an ER-type α1,2-mannosidase that specifically cleaves the terminal α1,2Man residue from the B-branch of the three-branched N-linked Man9GlcNAc2 (GlcNAc for N-acetylglucosamine) glycan, but recent investigations revealed that the signal that marks a terminally misfolded glycoprotein for ERAD is an N-glycan with an exposed α1,6Man residue generated by members of a unique folding-sensitive α1,2-mannosidase family known as ER-degradation enhancing α-mannosidase-like proteins (EDEMs). This review provides a historical recount of major discoveries that led to our current understanding on the role of demannosylating N-glycans in sentencing irreparable misfolded glycoproteins into ERAD. It also discusses conserved and distinct features of the demannosylation processes of the ERAD systems of yeast, mammals, and plants.
Collapse
Affiliation(s)
- Jianjun Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Jiarui Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Linchuan Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Jianming Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
- *Correspondence: Jianming Li, ;
| |
Collapse
|
5
|
Shrimal S, Gilmore R. Reduced expression of the oligosaccharyltransferase exacerbates protein hypoglycosylation in cells lacking the fully assembled oligosaccharide donor. Glycobiology 2015; 25:774-83. [PMID: 25792706 DOI: 10.1093/glycob/cwv018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 03/09/2015] [Indexed: 11/13/2022] Open
Abstract
A defect in the assembly of the oligosaccharide donor (Dol-PP-GlcNAc(2)Man(9)Glc(3)) for N-linked glycosylation causes hypoglycosylation of proteins by the oligosaccharyltransferase (OST). Mammalian cells express two OST complexes that have different catalytic subunits (STT3A or STT3B). We monitored glycosylation of proteins in asparagine-linked glycosylation 6 (ALG6) deficient cell lines that assemble Dol-PP-GlcNAc(2)Man(9) as the largest oligosaccharide donor. Based upon pulse labeling experiments, 30-40% of STT3A-dependent glycosylation sites and 20% of STT3B-dependent sites are skipped in ALG6-congenital disorders of glycosylation fibroblasts supporting previous evidence that the STT3B complex has a relaxed preference for the fully assembled oligosaccharide donor. Glycosylation of STT3B-dependent sites was more severely reduced in the ALG6 deficient MI8-5 cell line. Protein immunoblot analysis and RT-PCR revealed that MI8-5 cells express 2-fold lower levels of STT3B than the parental Chinese hamster ovary cells. The combination of reduced expression of STT3B and the lack of the optimal Dol-PP-GlcNAc(2)Man(9)Glc(3) donor synergize to cause very severe hypoglycosylation of proteins in MI8-5 cells. Thus, differences in OST subunit expression can modify the severity of hypoglycosylation displayed by cells with a primary defect in the dolichol oligosaccharide assembly pathway.
Collapse
Affiliation(s)
- Shiteshu Shrimal
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Reid Gilmore
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| |
Collapse
|
6
|
Merulla J, Fasana E, Soldà T, Molinari M. Specificity and Regulation of the Endoplasmic Reticulum-Associated Degradation Machinery. Traffic 2013; 14:767-77. [DOI: 10.1111/tra.12068] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 03/18/2013] [Accepted: 03/23/2013] [Indexed: 02/05/2023]
Affiliation(s)
| | - Elisa Fasana
- Institute for Research in Biomedicine; Protein Folding and Quality Control; CH-6500; Bellinzona; Switzerland
| | - Tatiana Soldà
- Institute for Research in Biomedicine; Protein Folding and Quality Control; CH-6500; Bellinzona; Switzerland
| | | |
Collapse
|
7
|
Roth J, Zuber C, Park S, Jang I, Lee Y, Kysela KG, Le Fourn V, Santimaria R, Guhl B, Cho JW. Protein N-glycosylation, protein folding, and protein quality control. Mol Cells 2010; 30:497-506. [PMID: 21340671 DOI: 10.1007/s10059-010-0159-z] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Accepted: 11/11/2010] [Indexed: 11/27/2022] Open
Abstract
Quality control of protein folding represents a fundamental cellular activity. Early steps of protein N-glycosylation involving the removal of three glucose and some specific mannose residues in the endoplasmic reticulum have been recognized as being of importance for protein quality control. Specific oligosaccharide structures resulting from the oligosaccharide processing may represent a glycocode promoting productive protein folding, whereas others may represent glyco-codes for routing not correctly folded proteins for dislocation from the endoplasmic reticulum to the cytosol and subsequent degradation. Although quality control of protein folding is essential for the proper functioning of cells, it is also the basis for protein folding disorders since the recognition and elimination of non-native conformers can result either in loss-of-function or pathological-gain-of-function. The machinery for protein folding control represents a prime example of an intricate interactome present in a single organelle, the endoplasmic reticulum. Here, current views of mechanisms for the recognition and retention leading to productive protein folding or the eventual elimination of misfolded glycoproteins in yeast and mammalian cells are reviewed.
Collapse
Affiliation(s)
- Jürgen Roth
- Department of Integrated OMICs for Biomedical Sciences, WCU Program of Graduate School, Yonsei University, Seoul 120-749, Korea.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Endoplasmic reticulum associated protein degradation: a chaperone assisted journey to hell. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1803:694-705. [PMID: 20219571 DOI: 10.1016/j.bbamcr.2010.02.005] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Revised: 02/11/2010] [Accepted: 02/18/2010] [Indexed: 01/16/2023]
Abstract
Recognition and elimination of misfolded proteins are essential cellular processes. More than thirty percent of the cellular proteins are proteins of the secretory pathway. They fold in the lumen or membrane of the endoplasmic reticulum from where they are sorted to their site of action. The folding process, as well as any refolding after cell stress, depends on chaperone activity. In case proteins are unable to acquire their native conformation, chaperones with different substrate specificity and activity guide them to elimination. For most misfolded proteins of the endoplasmic reticulum this requires retro-translocation to the cytosol and polyubiquitylation of the misfolded protein by an endoplasmic reticulum associated machinery. Thereafter ubiquitylated proteins are guided to the proteasome for degradation. This review summarizes our up to date knowledge of chaperone classes and chaperone function in endoplasmic reticulum associated degradation of protein waste.
Collapse
|
9
|
Aebi M, Bernasconi R, Clerc S, Molinari M. N-glycan structures: recognition and processing in the ER. Trends Biochem Sci 2009; 35:74-82. [PMID: 19853458 DOI: 10.1016/j.tibs.2009.10.001] [Citation(s) in RCA: 355] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2009] [Revised: 09/30/2009] [Accepted: 10/01/2009] [Indexed: 11/26/2022]
Abstract
The processing of N-linked glycans determines secretory protein homeostasis in the eukaryotic cell. Folding and degradation of glycoproteins in the endoplasmic reticulum (ER) are regulated by molecular chaperones and enzymes recruited by specific oligosaccharide structures. Recent findings have identified several components of this protein quality control system that specifically modify N-linked glycans, thereby generating oligosaccharide structures recognized by carbohydrate-binding proteins, lectins. In turn, lectins direct newly synthesized polypeptides to the folding, secretion or degradation pathways. The "glyco-code of the ER" displays the folding status of a multitude of cargo proteins. Deciphering this code will be instrumental in understanding protein homeostasis regulation in eukaryotic cells and for intervention because such processes can have crucial importance for clinical and industrial applications.
Collapse
Affiliation(s)
- Markus Aebi
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule (ETH) Zürich, CH-8093 Zürich, Switzerland.
| | | | | | | |
Collapse
|
10
|
Comparative structure-function analysis of mannose-specific FimH adhesins from Klebsiella pneumoniae and Escherichia coli. J Bacteriol 2009; 191:6592-601. [PMID: 19734306 DOI: 10.1128/jb.00786-09] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
FimH, the adhesive subunit of type 1 fimbriae expressed by many enterobacteria, mediates mannose-sensitive binding to target host cells. At the same time, fine receptor-structural specificities of FimH from different species can be substantially different, affecting bacterial tissue tropism and, as a result, the role of the particular fimbriae in pathogenesis. In this study, we compared functional properties of the FimH proteins from Escherichia coli and Klebsiella pneumoniae, which are both 279 amino acids in length but differ by some approximately 15% of residues. We show that K. pneumoniae FimH is unable to mediate adhesion in a monomannose-specific manner via terminally exposed Manalpha(1-2) residues in N-linked oligosaccharides, which are the structural basis of the tropism of E. coli FimH for uroepithelial cells. However, K. pneumoniae FimH can bind to the terminally exposed Manalpha(1-3)Manbeta(1-4)GlcNAcbeta1 trisaccharide, though only in a shear-dependent manner, wherein the binding is marginal at low shear force but enhanced sevenfold under increased shear. A single mutation in the K. pneumoniae FimH, S62A, converts the mode of binding from shear dependent to shear independent. This mutation has occurred naturally in the course of endemic circulation of a nosocomial uropathogenic clone and is identical to a pathogenicity-adaptive mutation found in highly virulent uropathogenic strains of E. coli, in which it also eliminates the dependence of E. coli binding on shear. The shear-dependent binding properties of the K. pneumoniae and E. coli FimH proteins are mediated via an allosteric catch bond mechanism. Thus, despite differences in FimH structure and fine receptor specificity, the shear-dependent nature of FimH-mediated adhesion is highly conserved between bacterial species, supporting its remarkable physiological significance.
Collapse
|
11
|
Yoshida Y, Tanaka K. Lectin-like ERAD players in ER and cytosol. Biochim Biophys Acta Gen Subj 2009; 1800:172-80. [PMID: 19665047 DOI: 10.1016/j.bbagen.2009.07.029] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Revised: 07/08/2009] [Accepted: 07/18/2009] [Indexed: 11/15/2022]
Abstract
Protein quality control in the endoplasmic reticulum (ER) is an elaborate process conserved from yeast to mammals, ensuring that only newly synthesized proteins with correct conformations in the ER are sorted further into the secretory pathway. It is well known that high-mannose type N-glycans are involved in protein-folding events. In the quality control process, proteins that fail to achieve proper folding or proper assembly are degraded in a process known as ER-associated degradation (ERAD). The ERAD pathway comprises multiple steps including substrate recognition and targeting to the retro-translocation machinery, retrotranslocation from the ER into the cytosol, and proteasomal degradation through ubiquitination. Recent studies have documented the important roles of sugar-recognition (lectin-type) molecules for trimmed high-mannose type N-glycans and glycosidases in the ERAD pathways in both ER and cytosol. In this review, we discuss a fundamental system that monitors glycoprotein folding in the ER and the unique roles of the sugar-recognizing ubiquitin ligase and peptide:N-glycanase (PNGase) in the cytosolic ERAD pathway.
Collapse
Affiliation(s)
- Yukiko Yoshida
- Laboratory of Frontier Science, The Tokyo Metropolitan Institute of Medical Science, 2-1-6, Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan.
| | | |
Collapse
|
12
|
Clerc S, Hirsch C, Oggier DM, Deprez P, Jakob C, Sommer T, Aebi M. Htm1 protein generates the N-glycan signal for glycoprotein degradation in the endoplasmic reticulum. ACTA ACUST UNITED AC 2009; 184:159-72. [PMID: 19124653 PMCID: PMC2615083 DOI: 10.1083/jcb.200809198] [Citation(s) in RCA: 191] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
To maintain protein homeostasis in secretory compartments, eukaryotic cells harbor a quality control system that monitors protein folding and protein complex assembly in the endoplasmic reticulum (ER). Proteins that do not fold properly or integrate into cognate complexes are degraded by ER-associated degradation (ERAD) involving retrotranslocation to the cytoplasm and proteasomal peptide hydrolysis. N-linked glycans are essential in glycoprotein ERAD; the covalent oligosaccharide structure is used as a signal to display the folding status of the host protein. In this study, we define the function of the Htm1 protein as an alpha1,2-specific exomannosidase that generates the Man(7)GlcNAc(2) oligosaccharide with a terminal alpha1,6-linked mannosyl residue on degradation substrates. This oligosaccharide signal is decoded by the ER-localized lectin Yos9p that in conjunction with Hrd3p triggers the ubiquitin-proteasome-dependent hydrolysis of these glycoproteins. The Htm1p exomannosidase activity requires processing of the N-glycan by glucosidase I, glucosidase II, and mannosidase I, resulting in a sequential order of specific N-glycan structures that reflect the folding status of the glycoprotein.
Collapse
Affiliation(s)
- Simone Clerc
- Department of Biology, Institute of Microbiology, Eidgenössische Technische Hochschule Zürich, Zürich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
13
|
Bosis E, Nachliel E, Cohen T, Takeda Y, Ito Y, Bar-Nun S, Gutman M. Endoplasmic reticulum glucosidase II is inhibited by its end products. Biochemistry 2008; 47:10970-80. [PMID: 18803404 DOI: 10.1021/bi801545d] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The calnexin/calreticulin cycle is a quality control system responsible for promoting the folding of newly synthesized glycoproteins entering the endoplasmic reticulum (ER). The association of calnexin and calreticulin with the glycoproteins is regulated by ER glucosidase II, which hydrolyzes Glc 2Man X GlcNAc 2 glycans to Glc 1Man X GlcNAc 2 and further to Glc 0Man X GlcNAc 2 ( X represents any number between 5 and 9). To gain new insights into the reaction mechanism of glucosidase II, we developed a kinetic model that describes the interactions between glucosidase II, calnexin/calreticulin, and the glycans. Our model accurately reconstructed the hydrolysis of glycans with nine mannose residues and glycans with seven mannose residues, as measured by Totani et al. [Totani, K., Ihara, Y., Matsuo, I., and Ito, Y. (2006) J. Biol. Chem. 281, 31502-31508]. Intriguingly, our model predicted that glucosidase II was inhibited by its nonglucosylated end products, where the inhibitory effect of Glc 0Man 7GlcNAc 2 was much stronger than that of Glc 0Man 9GlcNAc 2. These predictions were confirmed experimentally. Moreover, our model suggested that glycans with a different number of mannose residues can be equivalent substrates of glucosidase II, in contrast to what had been previously thought. We discuss the possibility that nonglucosylated glycans, existing in the ER, might regulate the entry of newly synthesized glycoproteins into the calnexin/calreticulin cycle. Our model also shows that glucosidase II does not interact with monoglucosylated glycans while they are bound to calnexin or calreticulin.
Collapse
Affiliation(s)
- Eran Bosis
- Department of Biochemistry, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | | | | | | | | | |
Collapse
|
14
|
Wellens A, Garofalo C, Nguyen H, Van Gerven N, Slättegård R, Hernalsteens JP, Wyns L, Oscarson S, De Greve H, Hultgren S, Bouckaert J. Intervening with urinary tract infections using anti-adhesives based on the crystal structure of the FimH-oligomannose-3 complex. PLoS One 2008; 3:e2040. [PMID: 18446213 PMCID: PMC2323111 DOI: 10.1371/journal.pone.0002040] [Citation(s) in RCA: 163] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2008] [Accepted: 03/17/2008] [Indexed: 11/19/2022] Open
Abstract
Background Escherichia coli strains adhere to the normally sterile human uroepithelium using type 1 pili, that are long, hairy surface organelles exposing a mannose-binding FimH adhesin at the tip. A small percentage of adhered bacteria can successfully invade bladder cells, presumably via pathways mediated by the high-mannosylated uroplakin-Ia and α3β1 integrins found throughout the uroepithelium. Invaded bacteria replicate and mature into dense, biofilm-like inclusions in preparation of fluxing and of infection of neighbouring cells, being the major cause of the troublesome recurrent urinary tract infections. Methodology/Principal Findings We demonstrate that α-d-mannose based inhibitors of FimH not only block bacterial adhesion on uroepithelial cells but also antagonize invasion and biofilm formation. Heptyl α-d-mannose prevents binding of type 1-piliated E. coli to the human bladder cell line 5637 and reduces both adhesion and invasion of the UTI89 cystitis isolate instilled in mouse bladder via catheterization. Heptyl α-d-mannose also specifically inhibited biofilm formation at micromolar concentrations. The structural basis of the great inhibitory potential of alkyl and aryl α-d-mannosides was elucidated in the crystal structure of the FimH receptor-binding domain in complex with oligomannose-3. FimH interacts with Manα1,3Manβ1,4GlcNAcβ1,4GlcNAc in an extended binding site. The interactions along the α1,3 glycosidic bond and the first β1,4 linkage to the chitobiose unit are conserved with those of FimH with butyl α-d-mannose. The strong stacking of the central mannose with the aromatic ring of Tyr48 is congruent with the high affinity found for synthetic inhibitors in which this mannose is substituted for by an aromatic group. Conclusions/Significance The potential of ligand-based design of antagonists of urinary tract infections is ruled by the structural mimicry of natural epitopes and extends into blocking of bacterial invasion, intracellular growth and capacity to fluxing and of recurrence of the infection.
Collapse
Affiliation(s)
- Adinda Wellens
- Department of Molecular and Cellular Interactions, Vrije Universiteit Brussel, Brussels, Belgium
- Ultrastructure, Vrije Universiteit Brussel, Brussels, Belgium
| | - Corinne Garofalo
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Hien Nguyen
- Department of Molecular and Cellular Interactions, Vrije Universiteit Brussel, Brussels, Belgium
- Ultrastructure, Vrije Universiteit Brussel, Brussels, Belgium
| | - Nani Van Gerven
- Viral Genetics, Vrije Universiteit Brussel, Brussels, Belgium
| | - Rikard Slättegård
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, Stockholm, Sweden
| | | | - Lode Wyns
- Department of Molecular and Cellular Interactions, Vrije Universiteit Brussel, Brussels, Belgium
- Ultrastructure, Vrije Universiteit Brussel, Brussels, Belgium
| | - Stefan Oscarson
- Centre for Synthesis and Chemical Biology, University College Dublin, Belfield, Dublin, Ireland
| | - Henri De Greve
- Department of Molecular and Cellular Interactions, Vrije Universiteit Brussel, Brussels, Belgium
- Ultrastructure, Vrije Universiteit Brussel, Brussels, Belgium
| | - Scott Hultgren
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Julie Bouckaert
- Department of Molecular and Cellular Interactions, Vrije Universiteit Brussel, Brussels, Belgium
- Ultrastructure, Vrije Universiteit Brussel, Brussels, Belgium
- * E-mail:
| |
Collapse
|
15
|
Calì T, Vanoni O, Molinari M. The endoplasmic reticulum crossroads for newly synthesized polypeptide chains. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2008; 83:135-79. [PMID: 19186254 DOI: 10.1016/s0079-6603(08)00604-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Tito Calì
- Institute for Research in Biomedicine, Bellizona, Switzerland
| | | | | |
Collapse
|
16
|
Abstract
Stress within the endoplasmic reticulum (ER) induces a sophisticated network of pathways termed the unfolded protein response (UPR), which is mediated through the ER transmembrane sensors PERK, ATF6, and IRE1. The UPR coordinates the temporary downregulation of protein translation, the upregulation of ER chaperones and folding machinery, and the enhanced expression of components necessary for ER-associated degradation (ERAD) essential for decreasing ER stress by clearing terminally misfolded proteins from the ER. Repetitive but futile folding attempts not only prolong ER stress but can also result in reactive oxygen species (ROS) generation, both of which may result in cell death. Additional mechanisms for decreasing stress and the protein load in the ER have been recently revealed. They include a newly identified function of IRE1 in degradation of select secretory protein mRNAs, a "preemptive" quality control responsible for averting translocation of select secretory proteins into the ER, upregulation of forward trafficking to allow misfolded proteins with intact exit signals to exit the ER, and upregulation of autophagy. The saturation or failure of some or all of these mechanisms can result in cell death and disease, including diabetes and a number of late-onset neurologic diseases.
Collapse
Affiliation(s)
- Margaret M Kincaid
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | | |
Collapse
|
17
|
Hebert DN, Molinari M. In and out of the ER: protein folding, quality control, degradation, and related human diseases. Physiol Rev 2007; 87:1377-408. [PMID: 17928587 DOI: 10.1152/physrev.00050.2006] [Citation(s) in RCA: 490] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
A substantial fraction of eukaryotic gene products are synthesized by ribosomes attached at the cytosolic face of the endoplasmic reticulum (ER) membrane. These polypeptides enter cotranslationally in the ER lumen, which contains resident molecular chaperones and folding factors that assist their maturation. Native proteins are released from the ER lumen and are transported through the secretory pathway to their final intra- or extracellular destination. Folding-defective polypeptides are exported across the ER membrane into the cytosol and destroyed. Cellular and organismal homeostasis relies on a balanced activity of the ER folding, quality control, and degradation machineries as shown by the dozens of human diseases related to defective maturation or disposal of individual polypeptides generated in the ER.
Collapse
Affiliation(s)
- Daniel N Hebert
- Department of Biochemistry and Molecular Biology, Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, Massachusetts 01003, USA.
| | | |
Collapse
|
18
|
Hosokawa N, You Z, Tremblay LO, Nagata K, Herscovics A. Stimulation of ERAD of misfolded null Hong Kong alpha1-antitrypsin by Golgi alpha1,2-mannosidases. Biochem Biophys Res Commun 2007; 362:626-32. [PMID: 17727818 DOI: 10.1016/j.bbrc.2007.08.057] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2007] [Accepted: 08/03/2007] [Indexed: 11/28/2022]
Abstract
Terminally misfolded or unassembled proteins are degraded by the cytoplasmic ubiquitin-proteasome pathway in a process known as ERAD (endoplasmic reticulum-associated protein degradation). Overexpression of ER alpha1,2-mannosidase I and EDEMs target misfolded glycoproteins for ERAD, most likely due to trimming of N-glycans. Here we demonstrate that overexpression of Golgi alpha1,2-mannosidase IA, IB, and IC also accelerates ERAD of terminally misfolded human alpha1-antitrypsin variant null (Hong Kong) (NHK), and mannose trimming from the N-glycans on NHK in 293 cells. Although transfected NHK is primarily localized in the ER, some NHK also co-localizes with Golgi markers, suggesting that mannose trimming by Golgi alpha1,2-mannosidases can also contribute to NHK degradation.
Collapse
Affiliation(s)
- Nobuko Hosokawa
- Department of Molecular and Cellular Biology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto 606-8397, Saitama 332-0012, Japan
| | | | | | | | | |
Collapse
|
19
|
Kuokkanen E, Smith W, Mäkinen M, Tuominen H, Puhka M, Jokitalo E, Duvet S, Berg T, Heikinheimo P. Characterization and subcellular localization of human neutral class IIα-mannosidase cytosolic enzymes/free oligosaccharides/glycosidehydrolase family 38/M2C1/N-glycosylation. Glycobiology 2007; 17:1084-93. [PMID: 17681998 DOI: 10.1093/glycob/cwm083] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A glycosyl hydrolase family 38 enzyme, neutral alpha-mannosidase, has been proposed to be involved in hydrolysis of cytosolic free oligosaccharides originating either from ER-misfolded glycoproteins or the N-glycosylation process. Although this enzyme has been isolated from the cytosol, it has also been linked to the ER by subcellular fractionations. We have studied the subcellular localization of neutral alpha-mannosidase by immunofluorescence microscopy and characterized the human recombinant enzyme with natural substrates to elucidate the biological function of this enzyme. Immunofluorescence microscopy showed neutral alpha-mannosidase to be absent from the ER, lysosomes, and autophagosomes, and being granularly distributed in the cytosol. In experiments with fluorescent recovery after photo bleaching, neutral alpha-mannosidase had slower than expected two-phased diffusion in the cytosol. This result together with the granular appearance in immunostaining suggests that portion of the neutral alpha-mannosidase pool is somehow complexed. The purified recombinant enzyme is a tetramer and has a neutral pH optimum for activity. It hydrolyzed Man(9)GlcNAc to Man(5)GlcNAc in the presence of Fe(2+), Co(2+), and Mn(2+), and uniquely to neutral alpha-mannosidases from other organisms, the human enzyme was more activated by Fe(2+) than Co(2+). Without activating cations the main reaction product was Man(8)GlcNAc, and Cu(2+) completely inhibited neutral alpha-mannosidase. Our findings from enzyme-substrate characterizations and subcellular localization studies support the suggested role for neutral alpha-mannosidase in hydrolysis of soluble cytosolic oligomannosides.
Collapse
Affiliation(s)
- Elina Kuokkanen
- Institute of Biotechnology, University of Helsinki, FIN-00014, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
The endoplasmic reticulum (ER) is the site of folding for proteins that are resident in the ER or that are destined for the Golgi, endosomes, lysosomes, the plasma membrane, or secretion. Cotranslational addition of preassembled glucose(3)-mannose(9)-N-acetylglucosamine(2) core oligosaccharides (N-glycosylation) is a common event for polypeptides synthesized in this compartment. Protein-bound oligosaccharides are exposed to several ER glycanases that sequentially remove terminal glucose or mannose residues. Their activity must be tightly regulated because the N-glycan composition determines whether the associated protein is subjected to folding attempts in the ER lumen or whether it is retrotranslocated into the cytosol and degraded.
Collapse
Affiliation(s)
- Maurizio Molinari
- Institute for Research in Biomedicine, Via V. Vela 6, CH-6500 Bellinzona, Switzerland.
| |
Collapse
|
21
|
Abstract
Glycosylation of asparagine residues in Asn-x-Ser/Thr motifs is a common covalent modification of proteins in the lumen of the endoplasmic reticulum (ER). By substantially contributing to the overall hydrophilicity of the polypeptide, pre-assembled core glycans inhibit possible aggregation caused by the inevitable exposure of hydrophobic patches on the as yet unstructured chains. Thereafter, N-glycans are modified by ER-resident enzymes glucosidase I (GI), glucosidase II (GII), UDP-glucose:glycoprotein glucosyltransferase (UGT) and mannosidase(s) and become functional appendices that determine the fate of the associated polypeptide. Recent work has improved our understanding of how the removal of terminal glucose residues from N-glycans allows newly synthesized proteins to access the calnexin chaperone system; how substrate retention in this specialized chaperone system is regulated by de-/re-glucosylation cycles catalyzed by GII and UGT1; and how acceleration of N-glycan dismantling upon induction of EDEM variants promotes ER-associated degradation (ERAD) under conditions of ER stress. In particular, characterization of cells lacking certain ER chaperones has revealed important new information on the mechanisms regulating protein folding and quality control. Tight regulation of N-glycan modifications is crucial to maintain protein quality control, to ensure the synthesis of functional polypeptides and to avoid constipation of the ER with folding-defective polypeptides.
Collapse
Affiliation(s)
- Lloyd W Ruddock
- Biocenter Oulu and Department of Biochemistry, University of Oulu, FIN-90014 Oulu, Finland
| | | |
Collapse
|
22
|
Olivari S, Cali T, Salo KEH, Paganetti P, Ruddock LW, Molinari M. EDEM1 regulates ER-associated degradation by accelerating de-mannosylation of folding-defective polypeptides and by inhibiting their covalent aggregation. Biochem Biophys Res Commun 2006; 349:1278-84. [PMID: 16987498 DOI: 10.1016/j.bbrc.2006.08.186] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2006] [Accepted: 08/28/2006] [Indexed: 11/28/2022]
Abstract
Proteins expressed in the endoplasmic reticulum (ER) are covalently modified by co-translational addition of pre-assembled core glycans (glucose(3)-mannose(9)-N-acetylglucosamine(2)) to asparagines in Asn-X-Ser/Thr motifs. N-Glycan processing is essential for protein quality control in the ER. Cleavages and re-additions of the innermost glucose residue prolong folding attempts in the calnexin cycle. Progressive loss of mannoses is a symptom of long retention in the ER and elicits preparation of terminally misfolded polypeptides for dislocation into the cytosol and proteasome-mediated degradation. The ER stress-induced protein EDEM1 regulates disposal of folding-defective glycoproteins and has been described as a mannose-binding lectin. Here we show that elevation of the intralumenal concentration of EDEM1 accelerates ER-associated degradation (ERAD) by accelerating de-mannosylation of terminally misfolded glycoproteins and by inhibiting formation of covalent aggregates upon release of terminally misfolded ERAD candidates from calnexin. Acceleration of Man(9) or Man(5)N-glycans dismantling upon overexpression was fully blocked by substitution in EDEM1 of one catalytic residue conserved amongst alpha1,2-mannosidases, thus suggesting that EDEM1 is an active mannosidase. This mutation did not affect the chaperone function of EDEM1.
Collapse
Affiliation(s)
- Silvia Olivari
- Institute for Research in Biomedicine, CH-6500 Bellinzona, Switzerland
| | | | | | | | | | | |
Collapse
|
23
|
Lederkremer GZ, Glickman MH. A window of opportunity: timing protein degradation by trimming of sugars and ubiquitins. Trends Biochem Sci 2005; 30:297-303. [PMID: 15950873 DOI: 10.1016/j.tibs.2005.04.010] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2005] [Revised: 03/14/2005] [Accepted: 04/25/2005] [Indexed: 11/15/2022]
Abstract
Of the many post-translational modifications of proteins, ubiquitination and N-glycosylation stand out because they are polymeric additions. In contrast to single-unit modifications, the fate of the modified protein is determined by the dynamic equilibrium of polymerization versus depolymerization, rather than by the initial addition itself. Notably, it is the trimming of sugar chains and elongation of polyubiquitin that target the protein to degradation. Recent research suggests that, for each process, special receptors recognize chains that reach an appropriate length and commit the conjugated substrate for proteasomal disposal. We propose that the 'magic numbers' are loss of at least three mannose residues from the initial chain, or extension to at least four ubiquitins. Although these processes are compartmentalized to either side of the endoplasmic reticulum (ER) membrane, some proteins are sequentially subjected to both because they transverse this membrane for ER-associated degradation.
Collapse
Affiliation(s)
- Gerardo Z Lederkremer
- Department of Cell Research and Immunology, George Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
| | | |
Collapse
|