1
|
Baculovirus Display of Peptides and Proteins for Medical Applications. Viruses 2023; 15:v15020411. [PMID: 36851625 PMCID: PMC9962271 DOI: 10.3390/v15020411] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
Baculoviridae is a large family of arthropod-infective viruses. Recombinant baculoviruses have many applications, the best known is as a system for large scale protein production in combination with insect cell cultures. More recently recombinant baculoviruses have been utilized for the display of proteins of interest with applications in medicine. In the present review we analyze the different strategies for the display of proteins and peptides on the surface of recombinant baculoviruses and provide some examples of the different proteins displayed. We analyze briefly the commercially available systems for recombinant baculovirus production and display and discuss the future of this emerging and powerful technology.
Collapse
|
2
|
Riikonen R, Matilainen H, Rajala N, Pentikainen O, Johnson M, Heino J, Oker-Blom C. Functional Display of an α2 Integrin-Specific Motif (RKK) on the Surface of Baculovirus Particles. Technol Cancer Res Treat 2016; 4:437-45. [PMID: 16029062 DOI: 10.1177/153303460500400411] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The use of baculovirus vectors shows promise as a tool for gene delivery into mammalian cells. These insect viruses have been shown to transduce a variety of mammalian cell lines, and gene transfer has also been demonstrated in vivo. In this study, we generated two recombinant baculovirus vectors displaying an integrin-specific motif, RKK, as a part of two different loops of the green fluorescent protein (GFP) fused with the major envelope protein gp64 of Autographa californica M nucleopolyhedrovirus. By enzyme linked immunosorbent assays, these viruses were shown to bind a peptide representing the receptor binding site of an α2 integrin, the α2I-domain. However, the interaction was not strong enough to overcome binding of wild type gp64 to the unknown cellular receptor(s) on the surface of α2 integrin-expressing cells (CHO-α2β1) or enhance the viral uptake. After treatment of these cells with phospholipase C, internalization of all viruses was blocked or decreased significantly. However, one of the RKK displaying viruses, AcGFP(K)gp64, was still able to internalize into CHO-α2β1 cells, although at a lower level as compared to non-treated cells. This may indicate the possible utilization of a PLC independent alternative route via, in this case, the α2β1 integrin.
Collapse
Affiliation(s)
- Reetta Riikonen
- University of Jyvaskyla, Dept. of Biological and Environmental Science, PO Box 35, FIN-40351 Jyvaskyla, Finland
| | | | | | | | | | | | | |
Collapse
|
3
|
Yang N, Yu Z, Jia D, Xie Z, Zhang K, Xia Z, Lei L, Qiao M. The contribution of Pir protein family to yeast cell surface display. Appl Microbiol Biotechnol 2014; 98:2897-905. [PMID: 24493571 DOI: 10.1007/s00253-014-5538-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 01/09/2014] [Accepted: 01/10/2014] [Indexed: 12/14/2022]
Abstract
Proteins with internal repeats (Pir) in the Baker's yeast are located on the cell wall and include four highly homologous members. Recently, Pir proteins have become increasingly used as anchor proteins in yeast cell surface display systems. These display systems are classified into three types: N-terminal fusion, C-terminal fusion, and inserted fusion. In addition to the GPI (glycosylphosphatidyl inositol) and the FL/FS anchor proteins, these three Pir-based systems significantly increase the choices for target proteins to be displayed. Furthermore, Pir proteins can also be used as a fusion partner for target proteins to be effectively secreted into culture medium. Here, we summarize the development and application of Pir proteins as anchor proteins.
Collapse
Affiliation(s)
- Na Yang
- Laboratory for Conservation and Utilization of Bio-resources, Yunnan University, Kunming, Yunnan, 650091, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Luz-Madrigal A, Asanov A, Camacho-Zarco AR, Sampieri A, Vaca L. A cholesterol recognition amino acid consensus domain in GP64 fusion protein facilitates anchoring of baculovirus to mammalian cells. J Virol 2013; 87:11894-907. [PMID: 23986592 PMCID: PMC3807332 DOI: 10.1128/jvi.01356-13] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 08/22/2013] [Indexed: 02/07/2023] Open
Abstract
Baculoviridae is a large family of double-stranded DNA viruses that selectively infect insects. Autographa californica multiple nucleopolyhedrovirus (AcMNPV) is the best-studied baculovirus from the family. Many studies over the last several years have shown that AcMNPV can enter a wide variety of mammalian cells and deliver genetic material for foreign gene expression. While most animal viruses studied so far have developed sophisticated mechanisms to selectively infect specific cells and tissues in an organism, AcMNPV can penetrate and deliver foreign genes into most cells studied to this date. The details about the mechanisms of internalization have been partially described. In the present study, we have identified a cholesterol recognition amino acid consensus (CRAC) domain present in the AcMNPV envelope fusion protein GP64. We demonstrated the association of a CRAC domain with cholesterol, which is important to facilitate the anchoring of the virus at the mammalian cell membrane. Furthermore, this initial anchoring favors AcMNPV endocytosis via a dynamin- and clathrin-dependent mechanism. Under these conditions, efficient baculovirus-driven gene expression is obtained. In contrast, when cholesterol is reduced from the plasma membrane, AcMNPV enters the cell via a dynamin- and clathrin-independent mechanism. The result of using this alternative internalization pathway is a reduced level of baculovirus-driven gene expression. This study is the first to document the importance of a novel CRAC domain in GP64 and its role in modulating gene delivery in AcMNPV.
Collapse
Affiliation(s)
- Agustin Luz-Madrigal
- Department of Biology and Center for Tissue Regeneration and Engineering, University of Dayton, Dayton, Ohio, USA
- Department of Zoology, Miami University, Oxford, Ohio, USA
| | | | - Aldo R. Camacho-Zarco
- Max Planck Institute for Biophysical Chemistry, Protein Structure Determination, Göttingen, Germany
| | - Alicia Sampieri
- Instituto de Fisiologia Celular, Universidad Nacional Autonoma de Mexico, Ciudad Universitaria, Distrito Federal, Mexico
| | - Luis Vaca
- Instituto de Fisiologia Celular, Universidad Nacional Autonoma de Mexico, Ciudad Universitaria, Distrito Federal, Mexico
| |
Collapse
|
5
|
A pH-sensitive heparin-binding sequence from Baculovirus gp64 protein is important for binding to mammalian cells but not to Sf9 insect cells. J Virol 2011; 86:484-91. [PMID: 22072779 DOI: 10.1128/jvi.06357-11] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Binding to heparan sulfate is essential for baculovirus transduction of mammalian cells. Our previous study shows that gp64, the major glycoprotein on the virus surface, binds to heparin in a pH-dependent way, with a stronger binding at pH 6.2 than at 7.4. Using fluorescently labeled peptides, we mapped the pH-dependent heparin-binding sequence of gp64 to a 22-amino-acid region between residues 271 and 292. Binding of this region to the cell surface was also pH dependent, and peptides containing this sequence could efficiently inhibit baculovirus transduction of mammalian cells at pH 6.2. When the heparin-binding peptide was immobilized onto the bead surface to mimic the high local concentration of gp64 on the virus surface, the peptide-coated magnetic beads could efficiently pull down cells expressing heparan sulfate but not cells pretreated with heparinase or cells not expressing heparan sulfate. Interestingly, although this heparin-binding function is essential for baculovirus transduction of mammalian cells, it is dispensable for infection of Sf9 insect cells. Virus infectivity on Sf9 cells was not reduced by the presence of heparin or the identified heparin-binding peptide, even though the peptide could bind to Sf9 cell surface and be efficiently internalized. Thus, our data suggest that, depending on the availability of the target molecules on the cell surface, baculoviruses can use two different methods, electrostatic interaction with heparan sulfate and more specific receptor binding, for cell attachment.
Collapse
|
6
|
Mäkelä AR, Ernst W, Grabherr R, Oker-Blom C. Baculovirus-based display and gene delivery systems. Cold Spring Harb Protoc 2010; 2010:pdb.top72. [PMID: 20194476 DOI: 10.1101/pdb.top72] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The baculovirus expression vector system has been used extensively to produce numerous proteins originating from both prokaryotic and eukaryotic sources. In addition to easy cloning techniques and abundant viral propagation, the system's insect cell environment provides eukaryotic post-translational modification machinery. The recently established eukaryotic molecular biology tool, the baculovirus display vector system (BDVS), allows the combination of genotype with phenotype, enabling presentation of foreign peptides or even complex proteins on the baculoviral envelope or capsid. This strategy is important because it can be used to enhance viral binding and entry to mammalian cells as well as to produce antibodies against the displayed antigen. In addition, the technology should enable modifications of intracellular behavior, that is, trafficking of recombinant "nanoparticles," a highly relevant feature for studies of targeted gene or protein delivery. This article discusses the design and potential uses of insect-derived baculoviral display vectors.
Collapse
|
7
|
Preparation of novel magnetic cellulose microspheres via cellulose binding domain–streptavidin linkage and use for mRNA isolation from eukaryotic cells and tissues. J Chromatogr A 2009; 1216:7670-6. [DOI: 10.1016/j.chroma.2009.09.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2009] [Revised: 09/08/2009] [Accepted: 09/11/2009] [Indexed: 11/21/2022]
|
8
|
He F, Madhan S, Kwang J. Baculovirus vector as a delivery vehicle for influenza vaccines. Expert Rev Vaccines 2009; 8:455-67. [PMID: 19348561 DOI: 10.1586/erv.09.2] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The baculovirus vector has emerged as an efficient delivery vehicle for influenza vaccines. In addition to the ease and safety in expeditious production, recent improvements in baculovirus engineering to display foreign proteins on the surface and to express transgenes with suitable promoters in various cell lines have become milestones in the development of the baculovirus expression system. Surface-displayed and shuttle promoter-mediated baculovirus vaccines for influenza present advantages in immunogenicity and safety, as studied in several animal models. A variety of strategies, including the modification of envelope proteins for surface display, the selection of novel promoters for in vivo transductions and advancements in downstream processing, aid the improvement of baculovirus-based influenza vaccines and represent progress toward next-generation vaccines for influenza.
Collapse
Affiliation(s)
- Fang He
- Animal Health Biotechnology, Temasek Life Sciences Laboratory, National University of Singapore, 117604 Singapore.
| | | | | |
Collapse
|
9
|
Markusic DM, Kanitz A, Oude-Elferink RPJ, Seppen J. Preferential gene transfer of lentiviral vectors to liver-derived cells, using a hepatitis B peptide displayed on GP64. Hum Gene Ther 2007; 18:673-9. [PMID: 17630838 DOI: 10.1089/hum.2007.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
One of the problems that limit the efficiency of viral gene therapy is the lack of specificity of viral particle binding. The development of techniques to target viral particles to specific cell types is therefore important. Because GP64 can efficiently pseudotype lentiviral vectors, we investigated the possibility of using GP64 for lentiviral vector particle targeting. A peptide derived from the hepatitis B virus (HBV) PreS1 protein, with known affinity for an unidentified receptor expressed on hepatocytes, was inserted at amino acid position 278 of the GP64 protein (PreS1-GP64). The GP64 and PreS1-GP64 proteins were expressed and incorporated into lentiviral particles at comparable levels. Flow cytometry measurements confirmed surface display of the PreS1 peptide. The highest titers of PreS1-GP64-pseudotyped lentiviral vectors were observed on liver-derived cell lines. Gene transfer of PreS1-GP64 lentiviral vectors was inhibited by coincubation with an antibody directed against the PreS1 peptide. These data suggest that the PreS1 peptide is involved in viral attachment to the cell surface. The insertion of targeting peptides into the GP64 envelope protein represents a potential approach for the targeting of lentiviral vectors to specific cell types.
Collapse
|
10
|
Abstract
From the viewpoint of a materials scientist, viruses can be regarded as organic nanoparticles. They are composed of a small number of different (bio)polymers: proteins and nucleic acids. Many viruses are enveloped in a lipid membrane and all viruses do not have a metabolism of their own, but rather use the metabolic machinery of a living cell for their replication. Their surface carries specific tools designed to cross the barriers of their host cells. The size and shape of viruses, and the number and nature of the functional groups on their surface, is precisely defined. As such, viruses are commonly used in materials science as scaffolds for covalently linked surface modifications. A particular quality of viruses is that they can be tailored by directed evolution by taking advantage of their inbuilt colocalization of geno- and phenotypes. The powerful techniques developed by life sciences are becoming the basis of engineering approaches towards nanomaterials, opening a wide range of applications far beyond biology and medicine.
Collapse
Affiliation(s)
- Martin Fischlechner
- Institute of Medical Physics and Biophysics, Leipzig University, Härtelstrasse 16-18, 04107 Leipzig, Germany
| | | |
Collapse
|
11
|
Fischlechner M, Donath E. Viren als Bauelemente für Materialien und Strukturen. Angew Chem Int Ed Engl 2007. [DOI: 10.1002/ange.200603445] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
12
|
Mäkelä AR, Oker-Blom C. Baculovirus display: a multifunctional technology for gene delivery and eukaryotic library development. Adv Virus Res 2006; 68:91-112. [PMID: 16997010 PMCID: PMC7112267 DOI: 10.1016/s0065-3527(06)68003-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
For over a decade, phage display has proven to be of immense value, allowing selection of a large variety of genes with novel functions from diverse libraries. However, the folding and modification requirements of complex proteins place a severe constraint on the type of protein that can be successfully displayed using this strategy, a restriction that could be resolved by similarly engineering a eukaryotic virus for display purposes. The quite recently established eukaryotic molecular biology tool, the baculovirus display vector system (BDVS), allows combination of genotype with phenotype and thereby enables presentation of eukaryotic proteins on the viral envelope or capsid. Data have shown that the baculovirus, Autographa californica multiple nucleopolyhedrovirus (AcMNPV), is a versatile tool for eukaryotic virus display. Insertion of heterologous peptides and/or proteins into the viral surface by utilizing the major envelope glycoprotein gp64, or foreign membrane-derived counterparts, allows incorporation of the sequence of interest onto the surface of infected cells and virus particles. A number of strategies are being investigated in order to further develop the display capabilities of AcMNPV and improve the complexity of a library that may be accommodated. Numerous expression vectors for various approaches of surface display have already been developed. Further improvement of both insertion and selection strategies toward development of a refined tool for use in the creation of useful eukaryotic libraries is, however, needed. Here, the status of baculovirus display with respect to alteration of virus tropism, antigen presentation, transgene expression in mammalian cells, and development of eukaryotic libraries will be reviewed.
Collapse
Affiliation(s)
- Anna R Mäkelä
- Department of Biological and Environmental Science, NanoScience Center University of Jyväskylä, FIN-40014, Finland
| | | |
Collapse
|
13
|
Toellner L, Fischlechner M, Ferko B, Grabherr RM, Donath E. Virus-coated layer-by-layer colloids as a multiplex suspension array for the detection and quantification of virus-specific antibodies. Clin Chem 2006; 52:1575-83. [PMID: 16728470 DOI: 10.1373/clinchem.2005.065789] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Suspension array technology has surpassed ELISA for automated, simultaneous detection and quantification of soluble biomarkers such as virus-specific antibodies. We describe assays in which antigens are attached to a lipid bilayer surrounding color-coded particles. METHODS We used layer-by-layer technology to establish a multiplex suspension array with distinguishable microbeads coated with authentic viral surfaces to catch and quantify virus-specific antibodies in a flow cytometric analysis. Antigenic surfaces were generated by chimeric and wild-type baculoviruses plus 2 different influenza A virus subtypes fused to a lipid bilayer surrounding distinctly colored particles. Specificity of binding of chosen antibodies and sera was detected by immunofluorescence. Results of multiplex analysis were compared with results of ELISA. RESULTS Titrations of virus-specific antibodies in the multiplex suspension array demonstrated specific binding to the viral surface proteins. The multiplex suspension array gave positive results for up to log 5-diluted primary antibodies with an approximately 5- to 10-fold reduced dynamic range compared with the respective ELISA. CONCLUSIONS The bead-based multiplex suspension array is customizable and easy to establish. By displaying native influenza A virus surfaces and recombinant HIV-1 epitopes, the new assay provides a tool for the detection of major viral infections in humans.
Collapse
Affiliation(s)
- Lars Toellner
- Institute of Medical Physics and Biophysics, Leipzig University, Leipzig, Germany
| | | | | | | | | |
Collapse
|
14
|
Matilainen H, Mäkelä AR, Riikonen R, Saloniemi T, Korhonen E, Hyypiä T, Heino J, Grabherr R, Oker-Blom C. RGD motifs on the surface of baculovirus enhance transduction of human lung carcinoma cells. J Biotechnol 2006; 125:114-26. [PMID: 16569454 DOI: 10.1016/j.jbiotec.2006.02.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2005] [Revised: 01/17/2006] [Accepted: 02/06/2006] [Indexed: 11/23/2022]
Abstract
Baculovirus vectors have been shown to enter a variety of mammalian cell lines and gene transfer with wild-type baculovirus (WT) has been demonstrated both in vitro and in vivo. Different protein motifs have been displayed on the viral surface to serve as ligands for cell-specific receptor molecules. We have generated recombinant baculovirus vectors displaying an RGD-motif, recognized by alphaV integrin, on the viral surface. The RGD motifs within the C-terminus of coxsackie virus A9 and human parechovirus 1 VP1 proteins were fused to the N-terminus of the major envelope glycoprotein, gp64, of Autographa californica multiple nucleopolyhedrovirus. The recombinant RGD-presenting viruses bound more efficiently to the surface of human lung carcinoma cells (A549), known to contain alphaV integrins, as compared to WT baculovirus. In addition, the binding pattern of the RGD-displaying baculovirus showed extensive clustering. This most likely represents clustering of the integrin molecules on the cell surface, induced by binding of the RGD-displaying baculovirus. Finally, the transduction efficiency of an RGD-representing virus increased by almost three-fold as monitored by light emission measurements. In conclusion, these results suggest that the RGD-motif is functional on the surface of baculovirus and thereby these tropism-modified viruses bind more efficiently as well as enhance the transduction efficiency of human cancer cells expressing alphaV integrins.
Collapse
Affiliation(s)
- Heli Matilainen
- Department of Biological and Environmental Science, Division of Biotechnology, University of Jyväskylä, P.O. Box 35, FIN-40351 Jyväskylä, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Fischlechner M, Toellner L, Messner P, Grabherr R, Donath E. Virus-Engineered Colloidal Particles—A Surface Display System. Angew Chem Int Ed Engl 2006. [DOI: 10.1002/ange.200502620] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
16
|
Fischlechner M, Toellner L, Messner P, Grabherr R, Donath E. Virus-engineered colloidal particles--a surface display system. Angew Chem Int Ed Engl 2006; 45:784-9. [PMID: 16355425 PMCID: PMC4379499 DOI: 10.1002/anie.200502620] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Martin Fischlechner
- Institute of Medical Physics and Biophysics, Leipzig University, Härtelstrasse 16–18, 04107 Leipzig (Germany)
| | - Lars Toellner
- Institute of Medical Physics and Biophysics, Leipzig University, Härtelstrasse 16–18, 04107 Leipzig (Germany)
| | - Paul Messner
- Center for NanoBiotechnology, University of Natural Resources and Applied Life Sciences, 1180 Vienna (Austria)
| | - Reingard Grabherr
- Institute of Applied Microbiology, University of Natural Resources and Applied Life Sciences, 1190 Vienna (Austria)
| | - Edwin Donath
- Institute of Medical Physics and Biophysics, Leipzig University, Härtelstrasse 16–18, 04107 Leipzig (Germany)
| |
Collapse
|
17
|
Guibinga GH, Friedmann T. Baculovirus GP64-pseudotyped HIV-based lentivirus vectors are stabilized against complement inactivation by codisplay of decay accelerating factor (DAF) or of a GP64-DAF fusion protein. Mol Ther 2005; 11:645-51. [PMID: 15771967 DOI: 10.1016/j.ymthe.2004.12.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2004] [Accepted: 12/06/2004] [Indexed: 10/25/2022] Open
Abstract
The eventual development of efficient gene transfer vectors for in vivo gene delivery will require the development of a number of important new technologies such as stabilization of vectors against protective mechanisms that destroy or otherwise inactivate foreign infectious agents like gene transfer vectors. It is known that the baculovirus envelope protein GP64 of Autographa californica nucleopolyhedrovirus can efficiently pseudotype lentivirus vectors and that modified forms of the baculovirus envelope protein GP64 can also assemble efficiently into baculovirus particles to display functional foreign proteins on the baculovirus surface. In the present study we have combined these techniques to prepare HIV-based lentivirus vectors pseudotyped with GP64 envelope protein and coexpressing a fusion protein of GP64 with the complement-regulatory, decay accelerating factor (DAF, CD55). In addition, we have also prepared GP64-pseudotyped vectors in the presence of a DAF expression plasmid to allow the incorporation of DAF protein into viral particles. Our results demonstrate both the efficient expression and the high-titer production of GP64/GP64-DAF and GP64/DAF-pseudotyped particles and their stability against inactivation by human and nonhuman primate serum.
Collapse
Affiliation(s)
- Ghiabe H Guibinga
- Department of Pediatrics, Center for Molecular Genetics, University of California at San Diego School of Medicine, 9500 Gilman Drive, CMG Building Room 122, La Jolla, California, CA 92093-0634, USA
| | | |
Collapse
|
18
|
Borg J, Nevsten P, Wallenberg R, Stenstrom M, Cardell S, Falkenberg C, Holm C. Amino-terminal anchored surface display in insect cells and budded baculovirus using the amino-terminal end of neuraminidase. J Biotechnol 2005; 114:21-30. [PMID: 15464595 DOI: 10.1016/j.jbiotec.2004.05.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2004] [Revised: 04/29/2004] [Accepted: 05/12/2004] [Indexed: 11/23/2022]
Abstract
Methods currently used for surface display on insect cells and budded baculovirus, all utilize the sequences from class I transmembrane proteins. This gives rise to some problems when handling unknown genes or cDNAs encoding full-length proteins. First, the stop codon from the cloned gene will be located upstream of the sequence for the transmembrane region. Second, the chance of getting the sequences encoding the signal peptide and the transmembrane region in frame with the cloned gene is small. To minimize these problems, we here present a method by which cDNAs or genes of interest can be cloned and fused to the codons for the signal peptide and transmembrane region of neuraminidase (NA), a class II transmembrane protein of the influenza virus. By placing both the signal peptide and transmembrane region at the amino-terminal, potential problems regarding stop codons are eliminated and errors in frame-shift minimized. To obtain proof of principle, the gene encoding enhanced green fluorescent protein, EGFP, was subcloned into a shuttle vector downstream of the neuraminidase sequence and the fusion product was then transferred to a baculovirus vector and transfected into insect cells (Sf9). Using this method, EGFP was found to be expressed on the surface of both infected cells and budded virus in an accessible manner.
Collapse
Affiliation(s)
- Jorgen Borg
- Department of Cell and Molecular Biology, Section for Molecular Signalling, Lund University, BMC, C11, SE-221 84 Lund, Sweden.
| | | | | | | | | | | | | |
Collapse
|
19
|
Chatterji A, Ochoa W, Shamieh L, Salakian SP, Wong SM, Clinton G, Ghosh P, Lin T, Johnson JE. Chemical Conjugation of Heterologous Proteins on the Surface of Cowpea Mosaic Virus. Bioconjug Chem 2004; 15:807-13. [PMID: 15264868 DOI: 10.1021/bc0402888] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Genetic economy leads to symmetric distributions of chemically identical subunits in icosaherdal and helical viruses. Modification of the subunit genes of a variety of viruses has permitted the display of polypeptides on both the infectious virions and virus particles made in expression systems. Icosahedral chimeric particles of this type often display novel properties resulting in high local concentrations of the insert. Here we report an extension of this concept in which entire proteins were chemically cross-linked to lysine and cysteine residues genetically engineered on the coat protein of icosahedral Cowpea mosaic virus particles. Three exogenous proteins, the LRR domain of internalin B, the T4 lysozyme, and the Intron 8 gene product of the of the HER2 tyrosine kinase receptor were derivatized with appropriate bifunctional cross-linkers and conjugated to the virus capsid. Characterization of these particles demonstrated that (1) virtually 100% occupancy of the 60 sites was achieved; (2) biological activity (either enzyme or binding specificity) of the attached protein was preserved; (3) in one case (LRR-internalin B) the attached protein conformed with the icosahedral symmetry to the extent that a reconstruction of the derivatized particles displayed added density with a shape consistent with the X-ray structure of the attached protein. Strategies demonstrated here allow virus particle targeting to specific cell types and the use of an icosahedral virus as a platform for structure determination of small proteins at moderate resolution.
Collapse
Affiliation(s)
- Anju Chatterji
- Department of Molecular Biology, 10550 N. Torrey Pines Road, La Jolla, California 92037, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Oomens AGP, Wertz GW. The baculovirus GP64 protein mediates highly stable infectivity of a human respiratory syncytial virus lacking its homologous transmembrane glycoproteins. J Virol 2004; 78:124-35. [PMID: 14671094 PMCID: PMC303409 DOI: 10.1128/jvi.78.1.124-135.2004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2003] [Accepted: 09/26/2003] [Indexed: 11/20/2022] Open
Abstract
Baculovirus GP64 is a low-pH-dependent membrane fusion protein required for virus entry and cell-to-cell transmission. Recently, GP64 has generated interest for practical applications in mammalian systems. Here we examined the membrane fusion function of GP64 from Autographa californica multiple nucleopolyhedrovirus (AcMNPV) expressed in mammalian cells, as well as its capacity to functionally complement a mammalian virus, human respiratory syncytial virus (HRSV). Both authentic GP64 and GP(64/F), a chimeric protein in which the GP64 cytoplasmic tail domain was replaced with the 12 C-terminal amino acids of the HRSV fusion (F) protein, induced low-pH-dependent cell-cell fusion when expressed transiently in HEp-2 (human) cells. Levels of surface expression and syncytium formation were substantially higher at 33 degrees C than at 37 degrees C. The open reading frames (ORFs) encoding GP64 or GP(64/F), along with two marker ORFs encoding green fluorescent protein (GFP) and beta-glucuronidase (GUS), were used to replace all three homologous transmembrane glycoprotein ORFs (small hydrophobic SH, attachment G, and F) in a cDNA of HRSV. Infectious viruses were recovered that lacked the HRSV SH, G, and F proteins and expressed instead the GP64 or GP(64/F) protein and the two marker proteins GFP and GUS. The properties of these viruses, designated RSDeltaSH,G,F/GP64 or RSDeltaSH,G,F/GP(64/F), respectively, were compared to a previously described HRSV expressing GFP in place of SH but still containing the wild-type HRSV G and F proteins (RSDeltaSH [A. G. Oomens, A. G. Megaw, and G. W. Wertz, J. Virol., 77:3785-3798, 2003]). By immunoelectron microscopy, the GP64 and GP(64/F) proteins were shown to incorporate into HRSV-induced filaments at the cell surface. Antibody neutralization, ammonium chloride inhibition, and replication levels in cell culture showed that both GP64 proteins efficiently mediated infectivity of the respective viruses in a temperature-sensitive, low-pH-dependent manner. Furthermore, RSDeltaSH,G,F/GP64 and RSDeltaSH,G,F/GP(64/F) replicated to higher levels and had significantly higher stability of infectivity than HRSVs containing the homologous HRSV G and F proteins. Thus, GP64 and a GP64/HRSV F chimeric protein were functional and efficiently complemented an unrelated human virus in mammalian cells, producing stable, infectious virus stocks. These results demonstrate the potential of GP64 for both practical applications requiring stable pseudotypes in mammalian systems and for studies of viral glycoprotein requirements in assembly and pathogenesis.
Collapse
Affiliation(s)
- A G P Oomens
- University of Alabama School of Medicine, Birmingham, Alabama 35294, USA
| | | |
Collapse
|
21
|
Hu YC, Tsai CT, Chung YC, Lu JT, Hsu JTA. Generation of chimeric baculovirus with histidine-tags displayed on the envelope and its purification using immobilized metal affinity chromatography. Enzyme Microb Technol 2003. [DOI: 10.1016/s0141-0229(03)00143-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
22
|
Rahman MM, Gopinathan KP. Bombyx mori nucleopolyhedrovirus-based surface display system for recombinant proteins. J Gen Virol 2003; 84:2023-2031. [PMID: 12867632 DOI: 10.1099/vir.0.19225-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We describe here the development of a 'eukaryotic display system' for heterologous proteins on the viral and host cell surfaces using Bombyx mori nucleopolyhedrovirus (BmNPV). The reporter gene gfp (green fluorescent protein) was fused to either the gp64 gene encoding the full-length BmNPV envelope protein GP64 or to its 5' region encoding only the N-terminal domain harbouring the signal sequence, and recombinant viruses expressing the corresponding fusion proteins under the strong viral polyhedrin promoter were generated. On infection of the host insect B. mori or the host-derived BmN cells with the full-length GP64-GFP virus, abundant expression of the recombinant protein and its display on the cell surface were achieved. The fusion protein was also a component of the budded virions. Thus, the BmNPV-based display system provides an alternative to the previously established Autographa californica multinucleocapsid nucleopolyhedrovirus display system. The recombinant virus expressing GFP has also been used in preliminary pathological investigations on virus infection in B. mori and provides a simple method for screening for antiviral agents.
Collapse
Affiliation(s)
- Md Masmudur Rahman
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - Karumathil P Gopinathan
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
23
|
Tanaka T, Takeno T, Watanabe Y, Uchiyama Y, Murakami T, Yamashita H, Suzuki A, Aoi R, Iwanari H, Jiang SY, Naito M, Tachibana K, Doi T, Shulman AI, Mangelsdorf DJ, Reiter R, Auwerx J, Hamakubo T, Kodama T. The generation of monoclonal antibodies against human peroxisome proliferator-activated receptors (PPARs). J Atheroscler Thromb 2003; 9:233-42. [PMID: 12409633 DOI: 10.5551/jat.9.233] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Monoclonal antibodies (Mabs) are valuable reagents for the purification, characterization and immunolocalization of proteins. In this study, we raised Mabs against human peroxisome proliferator-activated receptors (PPARs) using baculovirus particles displaying surface glycoprotein gp64-fusion proteins as the immunizing agent. In this system, to display fusion proteins on the viral surface, the amino terminal sequences of human PPARd and PPARg2 are inserted in-frame between the signal sequence and the mature domain of the gp64 nucleotide sequence.Mabs were raised by immunization with whole virus without a purification of the target antigens. The Mabs generated by this novel method were shown to recognize not only the gp64-PPARs fusion protein, but also mature, expressed proteins by a wide variety of techniques, including immunohistochemistry, immunoblotting, and electrophoretic mobility shift assays (EMSAs). Transfection of the transfer vector containing a nucleotide sequence encoding less than 30 amino acids along with linearized baculovirus DNA allows for the production of a high affinity antibody against the corresponding mature form. This method is of potential utility in that it allows the production of valuable antibodies without the requirement of a protein purification step.
Collapse
Affiliation(s)
- Toshiya Tanaka
- Department of Molecular Biology and Medicine, Research Center for Advanced Science and Technology, The Tokyo University, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Stanbridge LJ, Dussupt V, Maitland NJ. Baculoviruses as Vectors for Gene Therapy against Human Prostate Cancer. J Biomed Biotechnol 2003; 2003:79-91. [PMID: 12721513 PMCID: PMC323953 DOI: 10.1155/s1110724303209049] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2002] [Accepted: 07/19/2002] [Indexed: 11/18/2022] Open
Abstract
Current curative strategies for prostate cancer are restricted to the primary tumour, and the effect of treatments to control metastatic disease is not sustained. Therefore, the application of gene therapy to prostate cancer is an attractive alternative. Baculoviruses are highly restricted insect viruses, which can enter, but not replicate in mammalian cells. Baculoviruses can incorporate large amounts of extra genetic material, and will express transgenes in mammalian cells when under the control of a mammalian or strong viral promoter. Successful gene delivery has been achieved both in vitro and in vivo and into both dividing and nondividing cells, which is important since prostate cancers divide relatively slowly. In addition, the envelope protein gp64 is sufficiently mutable to allow targeted transduction of particular cell types. In this review, the advantages of using baculoviruses for prostate cancer gene therapy are explored, and the mechanisms of viral entry and transgene expression are described.
Collapse
Affiliation(s)
- Lindsay J. Stanbridge
- YCR Cancer Research Unit, Department of Biology (Area 13), University of York Heslington, York YO10 5DD, UK
| | - Vincent Dussupt
- YCR Cancer Research Unit, Department of Biology (Area 13), University of York Heslington, York YO10 5DD, UK
| | - Norman J. Maitland
- YCR Cancer Research Unit, Department of Biology (Area 13), University of York Heslington, York YO10 5DD, UK
| |
Collapse
|
25
|
Spenger A, Grabherr R, Töllner L, Katinger H, Ernst W. Altering the surface properties of baculovirus Autographa californica NPV by insertional mutagenesis of the envelope protein gp64. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:4458-67. [PMID: 12230557 DOI: 10.1046/j.1432-1033.2002.03135.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The envelope protein gp64 of the baculovirus Autographa californica nuclear polyhedrosis virus is essential for viral entry into insect cells, as the glycoprotein both mediates pH-dependent membrane fusion and binds to host cell receptors. Surface modification of baculovirus particles by genetic engineering of gp64 has been demonstrated by various strategies and thus has become an important and powerful tool in molecular biology. To improve further the presentation of peptides on the surface of baculovirus particles, several insertion sites within the gp64 envelope protein were selected by their theoretical maximum surface probability and investigated for efficient peptide presentation. The ELDKWA peptide of the gp41 of HIV-1, specific for the human mAb 2F5, was inserted into 17 different positions of the glycoprotein gp64. Propagation of viruses was successful in 13 cases, mutagenesis at four positions did not result in production of intact virus particles. Western blotting, FACS analysis and ELISA were used for characterization of the different binding properties of the mutants. Insertion of this peptide into the native envelope protein resulted in high avidity display on the surface of baculovirus particles. This approach offers the possibility of effective modification of surface properties in regard to host range specificity and antigen display.
Collapse
Affiliation(s)
- Alexandra Spenger
- Institute of Applied Microbiology, University of Agricultural Sciences, Vienna, Austria
| | | | | | | | | |
Collapse
|
26
|
Lu W, Chapple SD, Lissini O, Jones IM. Characterization of a truncated soluble form of the baculovirus (AcMNPV) major envelope protein Gp64. Protein Expr Purif 2002; 24:196-201. [PMID: 11858713 DOI: 10.1006/prep.2001.1561] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A truncated tagged form of the Autographica californica multiple nuclear polyhedrosis virus major surface glycoprotein, gp64, has been expressed using the baculovirus expression system and purified to homogeneity by immune-affinity chromatography. The protein, which is responsible for virus-cell fusion, was a trimer in solution and retained this oligomeric form at pH 5, the pH of fusion. Circular dichroism spectroscopy indicated a protein with mixed alpha-helix and beta-sheet content that did not undergo significant change at pH 5. The soluble protein showed no detectable binding to the insect cell surface. These data suggest a novel fusion mechanism for gp64 compared to models such as the influenza HA. In a crystal screen, deglycosylated, but not glycosylated, preparations of the protein were found to form small needle-shaped crystals that may form the basis of a dedicated structural study.
Collapse
Affiliation(s)
- Weixian Lu
- NERC Institute of Virology, Mansfield Road, Oxford OX1 3SR, United Kingdom
| | | | | | | |
Collapse
|
27
|
Marchal I, Cerutti M, Mir AM, Juliant S, Devauchelle G, Cacan R, Verbert A. Expression of a membrane-bound form of Trypanosoma cruzi trans-sialidase in baculovirus-infected insect cells: a potential tool for sialylation of glycoproteins produced in the baculovirus-insect cells system. Glycobiology 2001; 11:593-603. [PMID: 11447139 DOI: 10.1093/glycob/11.7.593] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A chimeric protein containing the catalytic domain of Trypanosoma cruzi trans-sialidase, the transmembrane domain of the major envelope glycoprotein of the baculovirus (gp67), and the signal peptide of ecdysteroid glucosyltransferase of the baculovirus was expressed under the control of the very late promoter p10 in baculovirus-infected lepidopteran cells. The recombinant protein was found to be enzymatically active. Three days after infection, equal amounts of activity were found associated to the plasma membrane and in the infection medium, both forms having the same apparent molecular weight and being N-glycosylated. When exogenous galactosylated acceptors (lactose or asialo-alpha1-acid glycoprotein) were added in the culture medium of cells infected with the recombinant baculovirus in the presence of a sialylated donor, a sialylation could be observed. Therefore, we propose the use of trans-sialidase as a potential tool for sialylation of glycoconjugates in the baculovirus-insect cells system.
Collapse
Affiliation(s)
- I Marchal
- Laboratoire de glycobiologie structurale et fonctionnelle, Unité Mixte de Recherche du CNRS no. 8576, Université des Sciences et Technologies de Lille I, 59655 Villeneuve d'Ascq cedex, France
| | | | | | | | | | | | | |
Collapse
|
28
|
Ojala K, Mottershead DG, Suokko A, Oker-Blom C. Specific binding of baculoviruses displaying gp64 fusion proteins to mammalian cells. Biochem Biophys Res Commun 2001; 284:777-84. [PMID: 11396970 DOI: 10.1006/bbrc.2001.5048] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Viral vectors displaying specific ligand binding moieties have raised an increasing interest in the area of targeted gene therapy. In this report, we describe baculovirus vectors displaying either a functional single chain antibody fragment (scFv) specific for the carcinoembryonic antigen (CEA) or the synthetic IgG binding domains (ZZ) derived from protein A of Staphylococcus aureus. In addition, the vectors were engineered to incorporate a reporter gene encoding the enhanced green fluorescent protein (EGFP) under the transcriptional regulation of the cytomegalovirus (CMV) IE promoter. Display of the targeting moieties on the viral surface was achieved through fusion to the N-terminus of gp64, the major envelope protein of the Autographa californica nuclear polyhedrosis virus (AcNPV). Specific binding of the gp64 fusion viruses to mammalian target cells was demonstrated by using monoclonal anti-gp64 antibodies followed by fluorescence and/or confocal microscopy. The anti-CEA scFv displaying baculovirus was shown to bind specifically to CEA expressing cells (PC-3). Similarly, the virus displaying the ZZ domains of protein A was targeted to BHK cells via binding of an appropriate IgG antibody. In all cases, the reporter gene was expressed in the transduced mammalian cells as shown by fluorescence microscopy and flow cytometric analyses.
Collapse
Affiliation(s)
- K Ojala
- Department of Biological and Environmental Science, Division of Biotechnology, University of Jyväskylä, FIN-40351 Jyväskylä, Finland
| | | | | | | |
Collapse
|
29
|
Grabherr R, Ernst W, Oker-Blom C, Jones I. Developments in the use of baculoviruses for the surface display of complex eukaryotic proteins. Trends Biotechnol 2001; 19:231-6. [PMID: 11356285 DOI: 10.1016/s0167-7799(01)01610-9] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The ability to couple genotype to phenotype has proven to be of immense value in systems such as phage display and has allowed genes encoding novel functions to be selected directly from complex libraries. However, the complexity of many eukaryotic proteins places a severe constraint on successful display in Escherichia coli. This restriction could be resolved if a eukaryotic virus could be similarly engineered for display purposes. Preliminary data have suggested that the baculovirus Autographa californica, a multiple nuclear polyhedrosis virus (AcMNPV) is a candidate for eukaryotic virus display because the insertion of peptides into the native virus coat protein, or the expression of foreign proteins as coat protein fusions, results in incorporation of the sequence of interest onto the surface of virus particles. A variety of strategies are currently under investigation to develop further the display capabilities of AcMNPV and to improve the complexity of library that might be accommodated. Several expression vectors for different forms of surface display have been developed and, coupled with improved recombination strategies, represent progress towards a refined tool for use in functional genomics and in vitro protein evolution.
Collapse
Affiliation(s)
- R Grabherr
- University of Agriculture, Institute of Applied Microbiology, Muthgasse 18, A-1190, Vienna, Austria.
| | | | | | | |
Collapse
|