1
|
Matsukawa H, Ikezaki M, Nishioka K, Iwahashi N, Fujimoto M, Nishitsuji K, Ihara Y, Ino K. Calnexin Is Involved in Forskolin-induced Syncytialization in Cytotrophoblast Model BeWo Cells. Biomolecules 2022; 12:biom12081050. [PMID: 36008943 PMCID: PMC9405722 DOI: 10.3390/biom12081050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/26/2022] [Accepted: 07/26/2022] [Indexed: 11/16/2022] Open
Abstract
Calnexin (CNX), a membrane-bound molecular chaperone, is involved in protein folding and quality control of nascent glycoproteins in the endoplasmic reticulum. We previously suggested critical roles of calreticulin, a functional paralogue of CNX, in placentation, including invasion of extravillous trophoblasts and syncytialization of cytotrophoblasts. However, the roles of CNX in placentation are unclear. In human choriocarcinoma BeWo cells, which serve as an experimental model of syncytialization, CNX knockdown suppressed forskolin-induced cell fusion and β-human chorionic gonadotropin (β-hCG) induction. Cell-surface luteinizing hormone/chorionic gonadotropin receptor, a β-hCG receptor, was significantly down-regulated in CNX-knockdown cells, which suggested the presence of a dysfunctional autocrine loop of β-hCG up-regulation. In this study, we also found abundant CNX expression in normal human placentas. Collectively, our results revealed the critical role of CNX in the syncytialization-related signaling in a villous trophoblast model and suggest a link between CNX expression and placenta development.
Collapse
Affiliation(s)
- Hitomi Matsukawa
- Department of Obstetrics and Gynecology, School of Medicine, Wakayama Medical University, Wakayama 641-8509, Japan; (H.M.); (K.N.); (N.I.); (K.I.)
| | - Midori Ikezaki
- Department of Biochemistry, School of Medicine, Wakayama Medical University, Wakayama 641-8509, Japan; (M.I.); (K.N.)
| | - Kaho Nishioka
- Department of Obstetrics and Gynecology, School of Medicine, Wakayama Medical University, Wakayama 641-8509, Japan; (H.M.); (K.N.); (N.I.); (K.I.)
| | - Naoyuki Iwahashi
- Department of Obstetrics and Gynecology, School of Medicine, Wakayama Medical University, Wakayama 641-8509, Japan; (H.M.); (K.N.); (N.I.); (K.I.)
| | - Masakazu Fujimoto
- Department of Diagnostic Pathology, Kyoto University, Kyoto 606-8507, Japan;
| | - Kazuchika Nishitsuji
- Department of Biochemistry, School of Medicine, Wakayama Medical University, Wakayama 641-8509, Japan; (M.I.); (K.N.)
| | - Yoshito Ihara
- Department of Biochemistry, School of Medicine, Wakayama Medical University, Wakayama 641-8509, Japan; (M.I.); (K.N.)
- Correspondence: ; Tel.: +81-73-441-0628
| | - Kazuhiko Ino
- Department of Obstetrics and Gynecology, School of Medicine, Wakayama Medical University, Wakayama 641-8509, Japan; (H.M.); (K.N.); (N.I.); (K.I.)
| |
Collapse
|
2
|
Nduwumwami AJ, Hengst JA, Yun JK. Sphingosine Kinase Inhibition Enhances Dimerization of Calreticulin at the Cell Surface in Mitoxantrone-Induced Immunogenic Cell Death. J Pharmacol Exp Ther 2021; 378:300-310. [PMID: 34158403 DOI: 10.1124/jpet.121.000629] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/16/2021] [Indexed: 11/22/2022] Open
Abstract
Agents that induce immunogenic cell death (ICD) alter the cellular localization of calreticulin (CRT), causing it to become cell surface-exposed within the plasma membrane lipid raft microdomain [cell surface-exposed CRT (ectoCRT)] where it serves as a damage associated-molecular pattern that elicits an antitumor immune response. We have identified the sphingolipid metabolic pathway as an integral component of the process of ectoCRT exposure. Inhibition of the sphingosine kinases (SphKs) enhances mitoxantrone-induced production of hallmarks of ICD, including ectoCRT production, with an absolute mean difference of 40 MFI (95% CI: 19-62; P = 0.0014) and 1.3-fold increase of ATP secretion with an absolute mean difference of 87 RLU (95% CI: 55-120; P < 0.0001). Mechanistically, sphingosine kinase inhibition increases mitoxantrone-induced accumulation of ceramide species, including C16:0 ceramide 2.8-fold with an absolute mean difference of 1.390 pmol/nmol Pi (95% CI: 0.798-1.983; P = 0.0023). We further examined the localization of ectoCRT to the lipid raft microdomain and demonstrate that ectoCRT forms disulfide-bridged dimers. Together, our findings suggest that ceramide accumulation impinges on the homeostatic function of the endoplasmic reticulum to induce ectoCRT exposure and that structural alterations of ectoCRT may underlie its immunogenicity. Our findings further suggest that inhibition of the SphKs may represent a means to enhance the therapeutic immunogenic efficacy of ICD-inducing agents while reducing overt toxicity/immunosuppressive effects by allowing for the modification of dosing regimens or directly lowering the dosages of ICD-inducing agents employed in therapeutic regimens. SIGNIFICANCE STATEMENT: This study demonstrates that inhibition of sphingosine kinase enhances the mitoxantrone-induced cell surface exposure of a dimeric form of the normally endoplasmic reticulum resident chaperone calreticulin as part of the process of a unique form of regulated cell death termed immunogenic cell death. Importantly, inhibition of sphingosine kinase may represent a means to enhance the therapeutic efficacy of immunogenic cell death-inducing agents, such as mitoxantrone, while reducing their overt toxicity and immunosuppressive effects, leading to better therapeutic outcomes for patients.
Collapse
Affiliation(s)
- Asvelt J Nduwumwami
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Jeremy A Hengst
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Jong K Yun
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| |
Collapse
|
3
|
Mapping human calreticulin regions important for structural stability. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2021; 1869:140710. [PMID: 34358706 DOI: 10.1016/j.bbapap.2021.140710] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/24/2021] [Accepted: 08/02/2021] [Indexed: 12/28/2022]
Abstract
Calreticulin (CALR) is a highly conserved multifunctional chaperone protein primarily present in the endoplasmic reticulum, where it regulates Ca2+ homeostasis. Recently, CALR has gained special interest for its diverse functions outside the endoplasmic reticulum, including the cell surface and extracellular space. Although high-resolution structures of CALR exist, it has not yet been established how different regions and individual amino acid residues contribute to structural stability of the protein. In the present study, we have identified key residues determining the structural stability of CALR. We used a Saccharomyces cerevisiae expression system to express and purify 50 human CALR mutants, which were analysed for several parameters including secretion titer, melting temperature (Tm), stability and oligomeric state. Our results revealed the importance of a previously identified small patch of conserved surface residues, amino acids 166-187 ("cluster 2") for structural stability of the human CALR protein. Two residues, Tyr172 and Asp187, were critical for maintaining the native structure of the protein. Mutant D187A revealed a severe drop in secretion titer, it was thermally unstable, prone to degradation, and oligomer formation. Tyr172 was critical for thermal stability of CALR and interacted with the third free Cys163 residue. This illustrates an unusual thermal stability of CALR dominated by Asp187, Tyr172 and Cys163, which may interact as part of a conserved structural unit. Besides structural clusters, we found a correlation of some measured parameter values in groups of CALR mutants that cause myeloproliferative neoplasms (MPN) and in mutants that may be associated with sudden unexpected death (SUD).
Collapse
|
4
|
Extracellularly Released Calreticulin Induced by Endoplasmic Reticulum Stress Impairs Syncytialization of Cytotrophoblast Model BeWo Cells. Cells 2021; 10:cells10061305. [PMID: 34073978 PMCID: PMC8225044 DOI: 10.3390/cells10061305] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 12/12/2022] Open
Abstract
The pregnancy-specific syndrome preeclampsia is a major cause of maternal mortality throughout the world. The initial insult resulting in the development of preeclampsia is inadequate trophoblast invasion, which may lead to reduced maternal perfusion of the placenta and placental dysfunction, such as insufficient trophoblast syncytialization. Endoplasmic reticulum (ER) stress has been implicated in the pathology of preeclampsia and serves as the major risk factor. Our previous studies suggested critical roles of calreticulin (CRT), which is an ER-resident stress response protein, in extravillous trophoblast invasion and cytotrophoblast syncytialization. Here, we studied the mechanism by which ER stress exposes the placenta to the risk of preeclampsia. We found that CRT was upregulated in the serum samples, but not in the placental specimens, from preeclamptic women. By using BeWo cells, an established model of cytotrophoblasts that syncytialize in the presence of forskolin, we demonstrated that thapsigargin-induced ER stress caused extracellular release of CRT from BeWo cells and that the extracellular CRT suppressed forskolin-induced release of β-human chorionic gonadotropin and altered subcellular localization of E-cadherin, which is a key adhesion molecule associated with syncytialization. Our results together provide evidence that induction of ER stress leads to extracellular CRT release, which may contribute to placental dysfunction by suppressing cytotrophoblast syncytialization.
Collapse
|
5
|
Structural Analysis of Calreticulin, an Endoplasmic Reticulum-Resident Molecular Chaperone. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2021; 59:13-25. [PMID: 34050860 DOI: 10.1007/978-3-030-67696-4_2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Calreticulin (Calr) is an endoplasmic reticulum (ER) chaperone involved in protein quality control, Ca2+ regulation and other cellular processes. The structure of Calr is unusual, reflecting different functions of the protein: a proline-rich β-hairpin arm and an acidic C-terminal tail protrude from a globular core, composed of a β-sheet sandwich and an α-helix. The arm and tail interact in the presence of Ca2+ and cover the upper β-sheet, where a carbohydrate-binding site gives the chaperone glycoprotein affinity. At the edge of the carbohydrate-binding site is a conserved, strained disulphide bridge, formed between C106 and C137 of human Calr, which lies in a polypeptide-binding site. The lower β-sheet has several conserved residues, comprised of a characteristic triad, D166-H170-D187, Tyr172 and the free C163. In addition to its role in the ER, Calr translocates to the cell surface upon stress and functions as an immune surveillance marker. In some myeloproliferative neoplasms, the acidic Ca2+-binding C-terminal tail is transformed into a polybasic sequence.
Collapse
|
6
|
Sellaththurai S, Omeka WKM, Nadarajapillai K, Shanaka KASN, Jung S, Lee S, Lee J. Identification, molecular characterization, expression analysis and wound-healing ability of multifunctional calreticulin from big-belly seahorse Hippocampus abdominalis. FISH & SHELLFISH IMMUNOLOGY 2020; 106:410-420. [PMID: 32805417 DOI: 10.1016/j.fsi.2020.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 08/04/2020] [Accepted: 08/06/2020] [Indexed: 06/11/2023]
Abstract
Calreticulin (CRT) is a multifunctional ubiquitous protein that is widely presented in all cells in eukaryotes except erythrocytes. CRT is well known for diverse cellular functions such as endoplasmic reticulum (ER)-specialized protein quality control during protein synthesis and folding, in-vivo Ca2+ homeostasis, antigen presentation, phagocytosis, wound-healing, proliferation, adhesion, and migration of cells. In the current study, we identified CRT from Hippocampus abdominalis (HaCRT) and analyzed expression profiles and functional properties. The cDNA sequence of HaCRT was identified with an open reading frame of 1226 bp. The molecular weight of HaCRT was estimated as 49 kDa. The in-silico study revealed conserved sequence arrangements such as two CRT signature motifs (5'-KHEQSIDCGGGYVKVF-3' and 5'-LMFGPDICG-3'), triplicate repeats (5'-IKDPEAKKPEDWD-3', 5'-IPDPDDTKPEDWD-3', 5'-IPDPDAKKPDDWD-3'), signal peptide and an ER-targeting 5'-KDEL-3' sequence of HaCRT. Close sequence similarity of HaCRT was observed with Hippocampus comes from phylogenetic analysis and pairwise sequence comparison. From quantitative polymerase chain reaction (qPCR) results, HaCRT was ubiquitously distributed in all tested tissues and expression levels of HaCRT were significantly modulated in blood, liver and gill tissues after stimulation with Streptococcus iniae, Edwardsiella tarda, polyinosinic:polycytidylic acid, and lipopolysaccharides. Bacterial- and pathogen-associated molecular patterns-binding activities were observed with recombinant HaCRT (rHaCRT). The treatment of murine macrophages with rHaCRT induced the expression of immune genes, such as tumor necrosis factor-α (TNF-α), interleukin 6 (IL-6), inducible nitric oxide synthase (iNOS), and interleukin-1β (IL-1β). Furthermore, rHaCRT exhibited wound-healing ability. Based on the results from the above study, we suggest that HaCRT play an indispensable role in the immunity of big-belly seahorses by recognition and elimination of pathogens as well as the tissue repairing process.
Collapse
Affiliation(s)
- Sarithaa Sellaththurai
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - W K M Omeka
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - Kishanthini Nadarajapillai
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - K A S N Shanaka
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - Sumi Jung
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - Sukkyoung Lee
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - Jehee Lee
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea.
| |
Collapse
|
7
|
Sergeant K, Printz B, Guerriero G, Renaut J, Lutts S, Hausman JF. The Dynamics of the Cell Wall Proteome of Developing Alfalfa Stems. BIOLOGY 2019; 8:E60. [PMID: 31430995 PMCID: PMC6784106 DOI: 10.3390/biology8030060] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/06/2019] [Accepted: 08/14/2019] [Indexed: 12/24/2022]
Abstract
In this study, the cell-wall-enriched subproteomes at three different heights of alfalfa stems were compared. Since these three heights correspond to different states in stem development, a view on the dynamics of the cell wall proteome during cell maturation is obtained. This study of cell wall protein-enriched fractions forms the basis for a description of the development process of the cell wall and the linking cell wall localized proteins with the evolution of cell wall composition and structure. The sequential extraction of cell wall proteins with CaCl2, EGTA, and LiCl-complemented buffers was combined with a gel-based proteome approach and multivariate analysis. Although the highest similarities were observed between the apical and intermediate stem regions, the proteome patterns are characteristic for each region. Proteins that bind carbohydrates and have proteolytic activity, as well as enzymes involved in glycan remobilization, accumulate in the basal stem region. Beta-amylase and ferritin likewise accumulate more in the basal stem segment. Therefore, remobilization of nutrients appears to be an important process in the oldest stem segment. The intermediate and apical regions are sites of cell wall polymer remodeling, as suggested by the high abundance of proteins involved in the remodeling of the cell wall, such as xyloglucan endoglucosylase, beta-galactosidase, or the BURP-domain containing polygalacturonase non-catalytic subunit. However, the most striking change between the different stem parts is the strong accumulation of a DUF642-conserved domain containing protein in the apical region of the stem, which suggests a particular role of this protein during the early development of stem tissues.
Collapse
Affiliation(s)
- Kjell Sergeant
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 4362 Esch/Alzette, Luxembourg.
| | - Bruno Printz
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 4362 Esch/Alzette, Luxembourg
- Groupe de Recherche en Physiologie végétale (GRPV), Université catholique de Louvain, Earth and Life Institute Agronomy (ELI-A), 1348 Louvain-la-Neuve, Belgium
| | - Gea Guerriero
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 4362 Esch/Alzette, Luxembourg
| | - Jenny Renaut
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 4362 Esch/Alzette, Luxembourg
| | - Stanley Lutts
- Groupe de Recherche en Physiologie végétale (GRPV), Université catholique de Louvain, Earth and Life Institute Agronomy (ELI-A), 1348 Louvain-la-Neuve, Belgium
| | - Jean-Francois Hausman
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 4362 Esch/Alzette, Luxembourg
| |
Collapse
|
8
|
Wang X, Tao T, Song D, Mao H, Liu M, Wang J, Liu X. Calreticulin stabilizes F-actin by acetylating actin and protects microvascular endothelial cells against microwave radiation. Life Sci 2019; 232:116591. [PMID: 31228513 DOI: 10.1016/j.lfs.2019.116591] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 06/06/2019] [Accepted: 06/18/2019] [Indexed: 02/07/2023]
Abstract
AIMS Calreticulin (CRT) is a multifunctional protein that protects endothelial cells by alleviating actin cytoskeleton injury, but the underlying mechanism remains unclear. CRT was recently identified as a novel acyltransferase; acetylation at the N-terminus of actin monomers strengthens actin polymerization. This study was undertaken to determine whether CRT protects human microvascular endothelial cells (HMECs) against microwave radiation through actin acetylation. MATERIALS AND METHODS We prepared a eukaryotic-derived recombinant CRT and incubated the HMECs with it prior to microwave exposure. We then assessed cell injury and endothelial function, detected actin polymerization and acetylation after HMECs exposure to S-band high-power microwaves. Coimmunoprecipitation, pull-down, and ex vitro acetylation reaction were performed to determine whether actin is a novel substrate of CRT acyltransferase. Finally, we employed the mutant experiments to demonstrate the acetylation sites contributing to CRT acetyltransferase activity. KEY FINDINGS Microwave radiation induced severe cell injury and endothelial contact dysfunction, reduced the polymerization of actin filaments, and destroyed the actin arrangement, ultimately reducing acetylated actin expression. CRT treatment upregulated actin acetylation levels, promoted polymerization, and facilitated thicker and longer F-actin stress fibre formation. Pre-incubation with CRT rescued microwave-induced cell injury, decreased actin acetylation, and rendered the actin cytoskeleton radiation-retardant. The level of acetyl-actin was positively correlated with actin polymerization. Actin was identified as a novel substrate of CRT, being acetylated mainly through the CRT P-domain at lys-206 and -207. SIGNIFICANCE This work provides a better understanding of the underlying mechanism of CRT-induced cytoprotection, and suggests a novel therapeutic target for microwave radiation-related diseases with endothelial dysfunction.
Collapse
Affiliation(s)
- Xiaoreng Wang
- Department of Pathophysiology, Chinese PLA General Hospital, Beijing, China
| | - Tianqi Tao
- Department of Pathophysiology, Chinese PLA General Hospital, Beijing, China
| | - Dandan Song
- Department of Pathophysiology, Chinese PLA General Hospital, Beijing, China
| | - Huimin Mao
- Department of Pathophysiology, Chinese PLA General Hospital, Beijing, China
| | - Mi Liu
- Department of Pathophysiology, Chinese PLA General Hospital, Beijing, China
| | - Jianli Wang
- Department of Pathophysiology, Chinese PLA General Hospital, Beijing, China
| | - Xiuhua Liu
- Department of Pathophysiology, Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
9
|
Pandya UM, Egbuta C, Abdullah Norman TM, Chiang CYE, Wiersma VR, Panchal RG, Bremer E, Eggleton P, Gold LI. The Biophysical Interaction of the Danger-Associated Molecular Pattern (DAMP) Calreticulin with the Pattern-Associated Molecular Pattern (PAMP) Lipopolysaccharide. Int J Mol Sci 2019; 20:ijms20020408. [PMID: 30669362 PMCID: PMC6359024 DOI: 10.3390/ijms20020408] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/11/2019] [Accepted: 01/12/2019] [Indexed: 12/15/2022] Open
Abstract
The endoplasmic reticulum (ER) chaperone protein, calreticulin (CRT), is essential for proper glycoprotein folding and maintaining cellular calcium homeostasis. During ER stress, CRT is overexpressed as part of the unfolded protein response (UPR). In addition, CRT can be released as a damage-associated molecular pattern (DAMP) molecule that may interact with pathogen-associated molecular patterns (PAMPs) during the innate immune response. One such PAMP is lipopolysaccharide (LPS), a component of the gram-negative bacterial cell wall. In this report, we show that recombinant and native human placental CRT strongly interacts with LPS in solution, solid phase, and the surface of gram-negative and gram-positive bacteria. Furthermore, LPS induces oilgomerization of CRT with a disappearance of the monomeric form. The application of recombinant CRT (rCRT) to size exclusion and anion exchange chromatography shows an atypical heterogeneous elution profile, indicating that LPS affects the conformation and ionic charge of CRT. Interestingly, LPS bound to CRT is detected in sera of bronchiectasis patients with chronic bacterial infections. By ELISA, rCRT dose-dependently bound to solid phase LPS via the N- and C-domain globular head region of CRT and the C-domain alone. The specific interaction of CRT with LPS may be important in PAMP innate immunity.
Collapse
Affiliation(s)
- Unnati M Pandya
- New York University School of Medicine--Langone Health, Departments of Medicine and Pathology, Division of Translational Medicine, 550 First Ave, New York, NY 10016, USA.
| | - Chinaza Egbuta
- New York University School of Medicine--Langone Health, Departments of Medicine and Pathology, Division of Translational Medicine, 550 First Ave, New York, NY 10016, USA.
| | | | - Chih-Yuan Edward Chiang
- Target Discovery and Experimental Microbiology Department, Molecular and Translational Sciences Division, US Army Research Institute of Infectious Diseases, Frederick, MD 21702, USA.
| | - Valerie R Wiersma
- Department of Hematology, University Medical Center Groningen, University of Groningen, 9713GZ Groningen, The Netherlands.
| | - Rekha G Panchal
- Target Discovery and Experimental Microbiology Department, Molecular and Translational Sciences Division, US Army Research Institute of Infectious Diseases, Frederick, MD 21702, USA.
| | - Edwin Bremer
- Department of Hematology, University Medical Center Groningen, University of Groningen, 9713GZ Groningen, The Netherlands.
| | - Paul Eggleton
- University of Exeter Medical School, Exeter EX1 2LU, Devon UK.
- UCB Pharma, Slough SL1 3WE, UK.
| | - Leslie I Gold
- New York University School of Medicine--Langone Health, Departments of Medicine and Pathology, Division of Translational Medicine, 550 First Ave, New York, NY 10016, USA.
| |
Collapse
|
10
|
Nitric oxide mediated redox regulation of protein homeostasis. Cell Signal 2018; 53:348-356. [PMID: 30408515 DOI: 10.1016/j.cellsig.2018.10.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 10/27/2018] [Accepted: 10/29/2018] [Indexed: 12/12/2022]
Abstract
Nitric oxide is a versatile diffusible signaling molecule, whose biosynthesis by three NO synthases (NOS) is tightly regulated at transcriptional and posttranslational levels, availability of co-factors, and calcium binding. Above normal levels of NO have beneficial protective effects for example in the cardiovascular system, but also contribute to the pathophysiology in the context of inflammatory diseases, and to aging and neurodegeneration in the nervous system. The effect specificity relies on the functional and spatial specificity of the NOS isoenzymes, and on the duality of two major signaling mechanisms (i) activation of soluble guanylycylase (sGC)-dependent cGMP production and (ii) direct S-nitrosylation of redox sensitive cysteines of susceptible proteins. The present review summarizes the functional implications of S-nitrosylation in the context of proteostasis, and focuses on two NO target proteins, heat shock cognate of 70 kDa (Hsc70/HSPA8) and the ubiquitin 2 ligase (UBE2D), because both are modified on functionally critical cysteines and are key regulators of chaperone mediated and assisted autophagy and proteasomal protein degradation. SNO modifications of these candidates are associated with protein accumulations and adoption of a senescent phenotype of neuronal cells suggesting that S-nitrosylations of protein homeostatic machineries contribute to aging phenomena.
Collapse
|
11
|
Yamamoto M, Ikezaki M, Toujima S, Iwahashi N, Mizoguchi M, Nanjo S, Minami S, Ihara Y, Ino K. Calreticulin Is Involved in Invasion of Human Extravillous Trophoblasts Through Functional Regulation of Integrin β1. Endocrinology 2017; 158:3874-3889. [PMID: 28938427 DOI: 10.1210/en.2016-1966] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 08/23/2017] [Indexed: 01/06/2023]
Abstract
Calreticulin (CRT), a molecular chaperone in the endoplasmic reticulum (ER), plays a variety of roles in cell growth, differentiation, apoptosis, immunity, and cancer biology. It has been reported that CRT is expressed in the human placenta, although its function in placental development is poorly understood. Appropriate invasion of extravillous trophoblasts (EVTs) into the maternal decidua is necessary for successful pregnancy. The objective of the present study was to investigate the expression and functional role of CRT in EVTs using the human EVT cell line HTR8/SVneo, in which CRT gene expression was knocked down. We found that CRT was highly expressed in the human placenta in the early stage of pregnancy and localized to the EVTs. CRT knockdown markedly suppressed the invasion ability of HTR8/SVneo cells. Furthermore, the adhesion to fibronectin was suppressed in the CRT-knockdown cells via the dysfunction of integrin α5β1. In the CRT-knockdown cells, terminal sialylation and fucosylation were decreased, and the core galactose-containing structure was increased in the N-glycans of integrin β1. In addition, the expression levels of several critical glycosyltransferases were changed in the CRT-knockdown cells, consistent with the changes in the N-glycans. These results showed that CRT regulates the function of integrin β1 by affecting the synthesis of N-glycans in HTR8/SVneo cells. Collectively, the results of the present study demonstrate that the ER chaperone CRT plays a regulatory role in the invasion of EVTs, suggesting the importance of CRT expression in placental development during early pregnancy.
Collapse
Affiliation(s)
- Madoka Yamamoto
- Department of Obstetrics and Gynecology, Wakayama Medical University, Wakayama 641-0012, Japan
| | - Midori Ikezaki
- Department of Biochemistry, Wakayama Medical University, Wakayama 641-0012, Japan
| | - Saori Toujima
- Department of Obstetrics and Gynecology, Wakayama Medical University, Wakayama 641-0012, Japan
| | - Naoyuki Iwahashi
- Department of Obstetrics and Gynecology, Wakayama Medical University, Wakayama 641-0012, Japan
| | - Mika Mizoguchi
- Department of Obstetrics and Gynecology, Wakayama Medical University, Wakayama 641-0012, Japan
| | - Sakiko Nanjo
- Department of Obstetrics and Gynecology, Wakayama Medical University, Wakayama 641-0012, Japan
| | - Sawako Minami
- Department of Obstetrics and Gynecology, Wakayama Medical University, Wakayama 641-0012, Japan
| | - Yoshito Ihara
- Department of Biochemistry, Wakayama Medical University, Wakayama 641-0012, Japan
| | - Kazuhiko Ino
- Department of Obstetrics and Gynecology, Wakayama Medical University, Wakayama 641-0012, Japan
| |
Collapse
|
12
|
Yamamoto S, Kinoshita M, Suzuki S. Current landscape of protein glycosylation analysis and recent progress toward a novel paradigm of glycoscience research. J Pharm Biomed Anal 2016; 130:273-300. [PMID: 27461579 DOI: 10.1016/j.jpba.2016.07.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Revised: 07/09/2016] [Accepted: 07/09/2016] [Indexed: 12/25/2022]
Abstract
This review covers the basics and some applications of methodologies for the analysis of glycoprotein glycans. Analytical techniques used for glycoprotein glycans, including liquid chromatography (LC), capillary electrophoresis (CE), mass spectrometry (MS), and high-throughput analytical methods based on microfluidics, were described to supply the essentials about biopharmaceutical and biomarker glycoproteins. We will also describe the MS analysis of glycoproteins and glycopeptides as well as the chemical and enzymatic releasing methods of glycans from glycoproteins and the chemical reactions used for the derivatization of glycans. We hope the techniques have accommodated most of the requests from glycoproteomics researchers.
Collapse
Affiliation(s)
- Sachio Yamamoto
- Faculty of Pharmaceutical Sciences, Kinki University, 3-4-1, Kowakae, Higashi-osaka, Osaka, 577-8502, Japan.
| | - Mitsuhiro Kinoshita
- Faculty of Pharmaceutical Sciences, Kinki University, 3-4-1, Kowakae, Higashi-osaka, Osaka, 577-8502, Japan
| | - Shigeo Suzuki
- Faculty of Pharmaceutical Sciences, Kinki University, 3-4-1, Kowakae, Higashi-osaka, Osaka, 577-8502, Japan
| |
Collapse
|
13
|
A molluscan calreticulin ortholog from Haliotis discus discus: Molecular characterization and transcriptional evidence for its role in host immunity. Biochem Biophys Res Commun 2016; 474:43-50. [PMID: 27086846 DOI: 10.1016/j.bbrc.2016.04.056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 12/15/2015] [Accepted: 04/12/2016] [Indexed: 11/20/2022]
Abstract
Calreticulin (CALR), a Ca(2+) binding chaperone of the endoplasmic reticulum (ER) and mainly involved in Ca(2+) storage and signaling. In this study, we report the molecular characterization and immune responses of CALR homolog from disk abalone (AbCALR). The full length AbCALR cDNA (1837 bp) had an ORF of 1224 bp. According to the multiple alignments analysis, N- and P-domains were highly conserved in all the selected members of CALRs. In contrast, the C-domain which terminated with the characteristic ER retrieval signal (HDEL) was relatively less conserved. The phylogenetic analysis showed that all the selected molluscan homologs clustered together. Genomic sequence of AbCALR revealed that cDNA sequence was dispersed into ten exons interconnected with nine introns. AbCALR mRNA expression shows the significant (P < 0.05) up-regulation of AbCALR transcripts in hemocytes upon bacterial (Listeria monocytogenes and Vibrio parahaemolyticus), viral (Viral haemorrhagic septicaemia virus; VHSV) and immune stimulants (LPS and poly I:C) challenges at middle and/or late phases. These results collectively implied that AbCALR is able to be stimulated by pathogenic signals and might play a potential role in host immunity.
Collapse
|
14
|
Garbati MR, Welgan CA, Landefeld SH, Newell LF, Agarwal A, Dunlap JB, Chourasia TK, Lee H, Elferich J, Traer E, Rattray R, Cascio MJ, Press RD, Bagby GC, Tyner JW, Druker BJ, Dao KHT. Mutant calreticulin-expressing cells induce monocyte hyperreactivity through a paracrine mechanism. Am J Hematol 2016; 91:211-9. [PMID: 26573090 DOI: 10.1002/ajh.24245] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 11/12/2015] [Indexed: 01/05/2023]
Abstract
Mutations in the calreticulin gene (CALR) were recently identified in approximately 70-80% of patients with JAK2-V617F-negative essential thrombocytosis and primary myelofibrosis. All frameshift mutations generate a recurring novel C-terminus. Here we provide evidence that mutant calreticulin does not accumulate efficiently in cells and is abnormally enriched in the nucleus and extracellular space compared to wildtype calreticulin. The main determinant of these findings is the loss of the calcium-binding and KDEL domains. Expression of type I mutant CALR in Ba/F3 cells confers minimal IL-3-independent growth. Interestingly, expression of type I and type II mutant CALR in a nonhematopoietic cell line does not directly activate JAK/STAT signaling compared to wildtype CALR and JAK2-V617F expression. These results led us to investigate paracrine mechanisms of JAK/STAT activation. Here we show that conditioned media from cells expressing type I mutant CALR exaggerate cytokine production from normal monocytes with or without treatment with a toll-like receptor agonist. These effects are not dependent on the novel C-terminus. These studies offer novel insights into the mechanism of JAK/STAT activation in patients with JAK2-V617F-negative essential thrombocytosis and primary myelofibrosis.
Collapse
Affiliation(s)
- Michael R. Garbati
- Knight Cancer Institute, Hematology and Medical Oncology, Oregon Health and Science University; Portland Oregon
| | - Catherine A. Welgan
- Knight Cancer Institute, Hematology and Medical Oncology, Oregon Health and Science University; Portland Oregon
| | - Sally H. Landefeld
- Knight Cancer Institute, Hematology and Medical Oncology, Oregon Health and Science University; Portland Oregon
| | - Laura F. Newell
- Knight Cancer Institute, Hematology and Medical Oncology, Oregon Health and Science University; Portland Oregon
| | - Anupriya Agarwal
- Knight Cancer Institute, Hematology and Medical Oncology, Oregon Health and Science University; Portland Oregon
| | - Jennifer B. Dunlap
- Knight Cancer Institute, Oregon Health and Science University; Portland Oregon
- Department of Pathology; Oregon Health and Science University; Portland Oregon
| | - Tapan K. Chourasia
- Knight Cancer Institute, Hematology and Medical Oncology, Oregon Health and Science University; Portland Oregon
| | - Hyunjung Lee
- Knight Cancer Institute, Hematology and Medical Oncology, Oregon Health and Science University; Portland Oregon
| | - Johannes Elferich
- Department of Biochemistry and Molecular Biology; Oregon Health and Science University; Portland Oregon
| | - Elie Traer
- Knight Cancer Institute, Hematology and Medical Oncology, Oregon Health and Science University; Portland Oregon
| | - Rogan Rattray
- Knight Cancer Institute, Oregon Health and Science University; Portland Oregon
- Department of Pathology; Oregon Health and Science University; Portland Oregon
| | - Michael J. Cascio
- Department of Pathology; Oregon Health and Science University; Portland Oregon
| | - Richard D. Press
- Knight Cancer Institute, Oregon Health and Science University; Portland Oregon
- Department of Pathology; Oregon Health and Science University; Portland Oregon
| | - Grover C. Bagby
- Knight Cancer Institute, Hematology and Medical Oncology, Oregon Health and Science University; Portland Oregon
| | - Jeffrey W. Tyner
- Knight Cancer Institute, Hematology and Medical Oncology, Oregon Health and Science University; Portland Oregon
- Department of Cell, Development, and Cancer Biology; Oregon Health and Science University, Knight Cancer Institute; Portland Oregon
| | - Brian J. Druker
- Knight Cancer Institute, Hematology and Medical Oncology, Oregon Health and Science University; Portland Oregon
- Department of Cell, Development, and Cancer Biology; Oregon Health and Science University, Knight Cancer Institute; Portland Oregon
- Howard Hughes Medical Institute, Oregon Health and Science University; Portland Oregon
| | - Kim-Hien T. Dao
- Knight Cancer Institute, Hematology and Medical Oncology, Oregon Health and Science University; Portland Oregon
| |
Collapse
|
15
|
Čiplys E, Žitkus E, Gold LI, Daubriac J, Pavlides SC, Højrup P, Houen G, Wang WA, Michalak M, Slibinskas R. High-level secretion of native recombinant human calreticulin in yeast. Microb Cell Fact 2015; 14:165. [PMID: 26471510 PMCID: PMC4608220 DOI: 10.1186/s12934-015-0356-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 10/07/2015] [Indexed: 01/01/2023] Open
Abstract
Background Calreticulin (CRT) resides in the endoplasmic reticulum (ER) and functions to chaperone proteins, ensuring proper folding, and intracellular Ca2+ homeostasis. Emerging evidence shows that CRT is a multifunctional protein with significant roles in physiological and pathological processes with presence both inside and outside of the ER, including the cell surface and extracellular space. These recent findings suggest the possible use of this ER chaperone in development of new therapeutic pharmaceuticals. Our study was focused on human CRT production in two yeast species, Saccharomyces cerevisiae and Pichia pastoris. Results Expression of a full-length human CRT precursor including its native signal sequence resulted in high-level secretion of mature recombinant protein into the culture medium by both S. cerevisiae and P. pastoris. To ensure the structural and functional quality of the yeast-derived CRTs, we compared yeast-secreted human recombinant CRT with native CRT isolated from human placenta. In ESI–MS (electrospray ionization mass spectrometry), both native and recombinant full-length CRT showed an identical molecular weight (mass) of 46,466 Da and were monomeric by non-denaturing PAGE. Moreover, limited trypsin digestion yielded identical fragment patterns of calcium-binding recombinant and native CRT suggesting that the yeast-derived CRT was correctly folded. Furthermore, both native and recombinant CRT induced cellular proliferation (MTS assay) and migration of human dermal fibroblasts (in vitro wound healing assay) with the same specific activities (peak responses at 1–10 ng/ml) indicating that the functional integrity of yeast-derived CRT was completely preserved. Simple one-step purification of CRT from shake-flask cultures resulted in highly pure recombinant CRT protein with yields reaching 75 % of total secreted protein and with production levels of 60 and 200 mg/l from S. cerevisiae and P. pastoris, respectively. Finally, cultivation of P. pastoris in a bioreactor yielded CRT secretion titer to exceed 1.5 g/l of culture medium. Conclusions Yeasts are able to correctly process and secrete large amounts of mature recombinant human CRT equally and fully biologically active as native human CRT. This allows efficient production of high-quality CRT protein in grams per liter scale. Electronic supplementary material The online version of this article (doi:10.1186/s12934-015-0356-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Evaldas Čiplys
- Department of Eukaryote Gene Engineering, Institute of Biotechnology, Vilnius University, V.A. Graičiūno 8, 02241, Vilnius, Lithuania.
| | - Eimantas Žitkus
- Department of Eukaryote Gene Engineering, Institute of Biotechnology, Vilnius University, V.A. Graičiūno 8, 02241, Vilnius, Lithuania.
| | - Leslie I Gold
- Division of Translational Medicine, Department of Medicine, New York University School of Medicine, 550 First Avenue, NB17E4, New York, NY, 10016, USA.
| | - Julien Daubriac
- Division of Translational Medicine, Department of Medicine, New York University School of Medicine, 550 First Avenue, NB17E4, New York, NY, 10016, USA.
| | - Savvas C Pavlides
- Division of Translational Medicine, Department of Medicine, New York University School of Medicine, 550 First Avenue, NB17E4, New York, NY, 10016, USA.
| | - Peter Højrup
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230, Odense, Denmark.
| | - Gunnar Houen
- Department of Autoimmunology and Biomarkers, Statens Serum Institut, Artillerivej 5, 2300, Copenhagen, Denmark.
| | - Wen-An Wang
- Department of Biochemistry, University of Alberta, Edmonton, AB, T6G 2H7, Canada.
| | - Marek Michalak
- Department of Biochemistry, University of Alberta, Edmonton, AB, T6G 2H7, Canada.
| | - Rimantas Slibinskas
- Department of Eukaryote Gene Engineering, Institute of Biotechnology, Vilnius University, V.A. Graičiūno 8, 02241, Vilnius, Lithuania.
| |
Collapse
|
16
|
Peng L, Rasmussen MI, Chailyan A, Houen G, Højrup P. Probing the structure of human protein disulfide isomerase by chemical cross-linking combined with mass spectrometry. J Proteomics 2014; 108:1-16. [PMID: 24792702 DOI: 10.1016/j.jprot.2014.04.037] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 04/07/2014] [Accepted: 04/24/2014] [Indexed: 11/18/2022]
Abstract
UNLABELLED Protein disulfide-isomerase (PDI) is a four-domain flexible protein that catalyzes the formation of disulfide bonds in the endoplasmic reticulum. Here we have analyzed native PDI purified from human placenta by chemical cross-linking followed by mass spectrometry (CXMS). In addition to PDI the sample contained soluble calnexin and ERp72. Extensive cross-linking was observed within the PDI molecule, both intra- and inter-domain, as well as between the different components in the mixture. The high sensitivity of the analysis in the current experiments, combined with a likely promiscuous interaction pattern of the involved proteins, revealed relatively densely populated cross-link heat maps. The established X-ray structure of the monomeric PDI could be confirmed; however, the dimer as presented in the existing models does not seem to be prevalent in solution as modeling on the observed cross-links revealed new models of dimeric PDI. The observed inter-protein cross-links confirmed the existence of a peptide binding area on calnexin that binds strongly both PDI and ERp72. On the other hand, interaction sites on PDI and ERp72 could not be uniquely identified, indicating a more non-specific interaction pattern. BIOLOGICAL SIGNIFICANCE The present work demonstrates the use of chemical cross-linking and mass spectrometry (CXMS) for the determination of a solution structure of natural human PDI and its interaction with the chaperones ERp72 and calnexin. The data shows that the dimeric structure of PDI may be more diverse than indicated by present models. We further observe that the temperature influences the cross-linking pattern of PDI, but this does not influence the overall folding pattern of the molecule.
Collapse
Affiliation(s)
- Li Peng
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Morten Ib Rasmussen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Anna Chailyan
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Gunnar Houen
- Department of Clinical Biochemistry, Immunology and Genetics, Statens Serum Institut, Copenhagen, Denmark
| | - Peter Højrup
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
17
|
Olsen DT, Peng L, Træholt SD, Duus K, Højrup P, Houen G. Purification and characterization of a soluble calnexin from human placenta. Protein Expr Purif 2013; 92:105-11. [PMID: 24056258 DOI: 10.1016/j.pep.2013.09.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 08/26/2013] [Accepted: 09/10/2013] [Indexed: 11/16/2022]
Abstract
Calreticulin (Crt) and calnexin (Cnx) are homologous endoplasmic reticulum (ER) chaperones involved in protein folding and quality control. Crt is a soluble ER luminal Mr 46 kDa protein and Cnx is a Mr 67kDa ER membrane protein. During purification of Crt from human placenta a soluble form of Cnx (sCnx) was consistently identified in a separate ion exchange chromatography peak. The sCnx was further purified and characterised. This showed that the protein had been cleaved after residue 472 (between Gln and Met), thus liberating it from the transmembrane and cytoplasmic parts of Cnx. The extraction and initial purification steps were carried out in the presence of protease inhibitors, thus ruling out that the cleavage was an artefact of the isolation procedure. This indicates that sCnx may have a physiological chaperone function similar to that of Crt.
Collapse
Affiliation(s)
- Dorthe T Olsen
- Department of Clinical Biochemistry, Immunology and Genetics, Statens Serum Institut, Artillerivej 5, DK-2300 Copenhagen, Denmark
| | | | | | | | | | | |
Collapse
|
18
|
Castillo C, Ramírez G, Valck C, Aguilar L, Maldonado I, Rosas C, Galanti N, Kemmerling U, Ferreira A. The interaction of classical complement component C1 with parasite and host calreticulin mediates Trypanosoma cruzi infection of human placenta. PLoS Negl Trop Dis 2013; 7:e2376. [PMID: 23991234 PMCID: PMC3749977 DOI: 10.1371/journal.pntd.0002376] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 07/03/2013] [Indexed: 01/28/2023] Open
Abstract
Background 9 million people are infected with Trypanosoma cruzi in Latin America, plus more than 300,000 in the United States, Canada, Europe, Australia, and Japan. Approximately 30% of infected individuals develop circulatory or digestive pathology. While in underdeveloped countries transmission is mainly through hematophagous arthropods, transplacental infection prevails in developed ones. Methodology/Principal Findings During infection, T. cruzi calreticulin (TcCRT) translocates from the endoplasmic reticulum to the area of flagellum emergence. There, TcCRT acts as virulence factor since it binds maternal classical complement component C1q that recognizes human calreticulin (HuCRT) in placenta, with increased parasite infectivity. As measured ex vivo by quantitative PCR in human placenta chorionic villi explants (HPCVE) (the closest available correlate of human congenital T. cruzi infection), C1q mediated up to a 3–5-fold increase in parasite load. Because anti-TcCRT and anti-HuCRT F(ab′)2 antibody fragments are devoid of their Fc-dependent capacity to recruit C1q, they reverted the C1q-mediated increase in parasite load by respectively preventing its interaction with cell-bound CRTs from both parasite and HPCVE origins. The use of competing fluid-phase recombinant HuCRT and F(ab′)2 antibody fragments anti-TcCRT corroborated this. These results are consistent with a high expression of fetal CRT on placental free chorionic villi. Increased C1q-mediated infection is paralleled by placental tissue damage, as evidenced by histopathology, a damage that is ameliorated by anti-TcCRT F(ab′)2 antibody fragments or fluid-phase HuCRT. Conclusions/Significance T. cruzi infection of HPCVE is importantly mediated by human and parasite CRTs and C1q. Most likely, C1q bridges CRT on the parasite surface with its receptor orthologue on human placental cells, thus facilitating the first encounter between the parasite and the fetal derived placental tissue. The results presented here have several potential translational medicine aspects, specifically related with the capacity of antibody fragments to inhibit the C1q/CRT interactions and thus T. cruzi infectivity. The Trypanosoma cruzi protozoan infects 9 million people in Latin America and increasing numbers in North America, Europe, Australia, and Japan. It is an important neglected parasitic disease in the Americas with no safe treatment available. One third of those infected develops incapacitating pathology. While in poor countries transmission of the parasite is mainly through blood feeding insects, transplacental infection is increasingly important in developed regions. Herein we show that T. cruzi calreticulin (TcCRT), a multifunctional protein, exteriorized by the parasite, mediates infection of human placenta, since it binds human complement component C1, a “danger signal” detector. (Complement is an innate immune defense system, with more than 40 plasma or membrane-bound proteins). However, in a parasite strategy, maternal C1 is utilized to infect placenta. Fetal calreticulin (HuCRT) is also easily detectable in placental tissues that are in direct contact with maternal blood. Thus, C1q by bridging parasite and HuCRT mediates high increases in cultured placental tissue infection with damaging consequences. Complete reversion of C1-mediated infection and a decreased placental damage, is observed in the presence of anti-TcCRT and anti-HuCRT antibody fragments, or fluid-phase competing HuCRT. It remains to be determined whether these mechanisms also operate in other intracellular protozoa.
Collapse
Affiliation(s)
- Christian Castillo
- Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Crawford KE, Stevenson JL, Wlodek ME, Gude NM. No change in calreticulin with fetal growth restriction in human and rat pregnancies. Placenta 2013; 34:1066-71. [PMID: 23972286 DOI: 10.1016/j.placenta.2013.07.068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 07/24/2013] [Accepted: 07/29/2013] [Indexed: 01/25/2023]
Abstract
INTRODUCTION Calreticulin is a ubiquitously expressed protein that was detected in the circulation and is significantly increased in maternal blood during human pregnancy compared to the non-pregnant state. Calreticulin is further increased in the plasma of women with the pregnancy-related disorder pre-eclampsia compared to normotensive pregnancy. The aims of this study were to compare calreticulin in human pregnancy with calreticulin in rat pregnancy, and to compare calreticulin during fetal growth restriction with normal control pregnancies. METHODS Women were recruited who either had normal pregnancies or had pregnancies complicated with fetal growth restriction; maternal blood samples and placentas were collected. Blood was also taken from women who were not-pregnant. Growth restriction was induced in pregnant rats by uterine vessel ligation; blood and placental samples were collected. Blood was also taken from non-pregnant rats. Western blot was used to quantify the placental expression of calreticulin and the concentrations of calreticulin in plasma. RESULTS Although calreticulin was significantly increased in maternal plasma during human pregnancy compared to the non-pregnant state; it did not increase in plasma during rat pregnancy. These results suggest that there may be differences in the role of extracellular calreticulin in human compared to rat pregnancy. Calreticulin was not significantly altered in either placental extracts or maternal plasma in both the human and rat pregnancies complicated by fetal growth restriction compared to gestational matched control pregnancies. CONCLUSION This study found that there was no change in calreticulin during human pregnancy complicated with fetal growth restriction or when growth restriction is induced in rats.
Collapse
Affiliation(s)
- K E Crawford
- Department of Perinatal Medicine, Royal Women's Hospital, Parkville 3052, Victoria, Australia; Department of Obstetrics and Gynaecology, University of Melbourne, Parkville 3052, Victoria, Australia.
| | | | | | | |
Collapse
|
20
|
Huang SH, Zhao LX, Hong C, Duo CC, Guo BN, Zhang LJ, Gong Z, Xiong SD, Gong FY, Gao XM. Self-oligomerization is essential for enhanced immunological activities of soluble recombinant calreticulin. PLoS One 2013; 8:e64951. [PMID: 23762269 PMCID: PMC3677884 DOI: 10.1371/journal.pone.0064951] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 04/19/2013] [Indexed: 12/11/2022] Open
Abstract
We have recently reported that calreticulin (CRT), a luminal resident protein, can be found in the sera of patients with rheumatoid arthritis and also that recombinant CRT (rCRT) exhibits extraordinarily strong immunological activities. We herein further demonstrate that rCRT fragments 18-412 (rCRT/18-412), rCRT/39-272, rCRT/120-308 and rCRT/120-250 can self-oligomerize in solution and are 50-100 fold more potent than native CRT (nCRT, isolated from mouse livers) in activating macrophages in vitro. We narrowed down the active site of CRT to residues 150-230, the activity of which also depends on dimerization. By contrast, rCRT/18-197 is almost completely inactive. When rCRT/18-412 is fractionated into oligomers and monomers by gel filtration, the oligomers maintain most of their immunological activities in terms of activating macrophages in vitro and inducing specific antibodies in vivo, while the monomers were much less active by comparison. Additionally, rCRT/18-412 oligomers are much better than monomers in binding to, and uptake by, macrophages. Inhibition of macrophage endocytosis partially blocks the stimulatory effect of rCRT/18-412. We conclude that the immunologically active site of CRT maps between residues 198-230 and that soluble CRT could acquire potent immuno-pathological activities in microenvironments favoring its oligomerization.
Collapse
Affiliation(s)
- Shang-Hui Huang
- Institute of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu Province, China
| | - Li-Xiang Zhao
- Institute of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu Province, China
| | - Chao Hong
- Institute of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu Province, China
| | - Cui-Cui Duo
- Institute of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu Province, China
| | - Bing-Nan Guo
- Institute of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu Province, China
| | - Li-Juan Zhang
- Institute of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu Province, China
| | - Zheng Gong
- Institute of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu Province, China
| | - Si-Dong Xiong
- Institute of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu Province, China
| | - Fang-Yuan Gong
- Institute of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu Province, China
- * E-mail: (XMG); (FYG)
| | - Xiao-Ming Gao
- Institute of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu Province, China
- * E-mail: (XMG); (FYG)
| |
Collapse
|
21
|
Pinto RD, Moreira AR, Pereira PJB, dos Santos NMS. Molecular cloning and characterization of sea bass (Dicentrarchus labrax, L.) calreticulin. FISH & SHELLFISH IMMUNOLOGY 2013; 34:1611-1618. [PMID: 23523749 DOI: 10.1016/j.fsi.2013.03.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 02/15/2013] [Accepted: 03/04/2013] [Indexed: 06/02/2023]
Abstract
Mammalian calreticulin (CRT) is a key molecular chaperone and regulator of Ca(2+) homeostasis in endoplasmic reticulum (ER), also being implicated in a variety of physiological/pathological processes outside the ER. Importantly, it is involved in assembly of MHC class I molecules. In this work, sea bass (Dicentrarchus labrax) CRT (Dila-CRT) gene and cDNA have been isolated and characterized. The mature protein retains two conserved motifs, three structural/functional domains (N, P and C), three type 1 and 2 motifs repeated in tandem, a conserved pair of cysteines and ER-retention motif. It is a single-copy gene composed of 9 exons. Dila-CRT three-dimensional homology models are consistent with the structural features described for mammalian molecules. Together, these results are supportive of a highly conserved structure of CRT through evolution. Moreover, the present data provides information that will allow further studies on sea bass CRT involvement in immunity and in particular class I antigen presentation.
Collapse
Affiliation(s)
- Rute D Pinto
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal.
| | | | | | | |
Collapse
|
22
|
Cloning and characterization of the calreticulin gene in Asian seabass (Lates calcarifer). Animal 2012; 6:887-93. [DOI: 10.1017/s1751731111002199] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
23
|
Duus K, Thielens NM, Lacroix M, Tacnet P, Frachet P, Holmskov U, Houen G. CD91 interacts with mannan-binding lectin (MBL) through the MBL-associated serine protease-binding site. FEBS J 2010; 277:4956-64. [PMID: 21054788 DOI: 10.1111/j.1742-4658.2010.07901.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
CD91 plays an important role in the scavenging of apoptotic material, possibly through binding to soluble pattern-recognition molecules. In this study, we investigated the interaction of CD91 with mannan-binding lectin (MBL), ficolins and lung surfactant proteins. Both MBL and L-ficolin were found to bind CD91. The MBL-CD91 interaction was time- and concentration-dependent and could be inhibited by known ligands of CD91. MBL-associated serine protease 3 (MASP-3) also inhibited binding between MBL and CD91, suggesting that the site of interaction is located at or near the MASP-MBL interaction site. This was confirmed by using MBL mutants deficient for MASP binding that were unable to interact with CD91. These findings demonstrate that MBL and L-ficolin interact with CD91, strongly suggesting that they have the potential to function as soluble recognition molecules for scavenging microbial and apoptotic material by CD91.
Collapse
Affiliation(s)
- Karen Duus
- Department of Clinical Biochemistry and Immunology, Statens Serum Institut, Artillerivej 5, Copenhagen, Denmark.
| | | | | | | | | | | | | |
Collapse
|
24
|
Duus K, Hansen EW, Tacnet P, Frachet P, Arlaud GJ, Thielens NM, Houen G. Direct interaction between CD91 and C1q. FEBS J 2010; 277:3526-37. [PMID: 20716178 DOI: 10.1111/j.1742-4658.2010.07762.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
C1q-mediated removal of immune complexes and apoptotic cells plays an important role in tissue homeostasis and the prevention of autoimmune conditions. It has been suggested that C1q mediates phagocytosis of apoptotic cells through a receptor complex assembled from CD91 (alpha-2- macroglobulin receptor, or low-density lipoprotein receptor-related protein) and calreticulin, with CD91 being the transmembrane part and calreticulin acting as the C1q-binding molecule. In the present study, we observe that C1q binds cells from a CD91 expressing monocytic cell line as well as monocytes from human blood. C1q binding to monocytes was shown to be correlated with CD91 expression and could be inhibited by the CD91 chaperone, receptor-associated protein. We also report data showing a direct interaction between CD91 and C1q. The interaction was investigated using various protein interaction assays. A direct interaction between purified C1q and CD91 was observed both by ELISA and a surface plasmon resonance assay, with either C1q or CD91 immobilized. The interaction showed characteristics of specificity because it was time-dependent, saturable and could be inhibited by known ligands of both CD91 and C1q. The results obtained show for the first time that CD91 recognizes C1q directly. On the basis of these findings, we propose that CD91 is a receptor for C1q and that this multifunctional scavenger receptor uses a subset of its ligand-binding sites for clearance of C1q and C1q bound material.
Collapse
Affiliation(s)
- Karen Duus
- Department of Clinical Biochemistry and Immunology, Statens Serum Institut, Copenhagen, Denmark
| | | | | | | | | | | | | |
Collapse
|
25
|
A mechanism of release of calreticulin from cells during apoptosis. J Mol Biol 2010; 401:799-812. [PMID: 20624402 DOI: 10.1016/j.jmb.2010.06.064] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Revised: 06/25/2010] [Accepted: 06/30/2010] [Indexed: 11/21/2022]
Abstract
Calreticulin (CRT) is an endoplasmic reticulum (ER) chaperone responsible for glycoprotein folding and Ca(2+) homeostasis. CRT also has extracellular functions, e.g. tumor and apoptotic cell recognition and wound healing, but the mechanism of CRT extracellular release is unknown. Cytosolic localization of CRT is determined by signal peptide and subsequent retrotranslocation of CRT into the cytoplasm. Here, we show that under apoptotic stress conditions, the cytosolic concentration of CRT increases and associates with phosphatidylserine (PS) in a Ca(2)(+)-dependent manner. PS distribution is regulated by aminophospholipid translocase (APLT), which maintains PS on the cytosolic side of the cell membrane. APLT is sensitive to redox modifications of its SH groups by reactive nitrogen species. During apoptosis, both CRT expression and the concentration of nitric oxide (NO) increase. By using S-nitroso-l-cysteine-ethyl-ester, an intracellular NO donor and inhibitor of APLT, we showed that PS and CRT externalization occurred together in an S-nitrosothiol-dependent and caspase-independent manner. Furthermore, the CRT and PS are relocated as punctate clusters on the cell surface. Thus, CRT induced nitrosylation and its externalization with PS could explain how CRT acts as a bridging molecule during apoptotic cell clearance.
Collapse
|
26
|
Leonard SE, Reddie KG, Carroll KS. Mining the thiol proteome for sulfenic acid modifications reveals new targets for oxidation in cells. ACS Chem Biol 2009; 4:783-99. [PMID: 19645509 DOI: 10.1021/cb900105q] [Citation(s) in RCA: 233] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Oxidation of cysteine to sulfenic acid has emerged as a biologically relevant post-translational modification with particular importance in redox-mediated signal transduction; however, the identity of modified proteins remains largely unknown. We recently reported DAz-1, a cell-permeable chemical probe capable of detecting sulfenic acid modified proteins directly in living cells. Here we describe DAz-2, an analogue of DAz-1 that exhibits significantly improved potency in vitro and in cells. Application of this new probe for global analysis of the sulfenome in a tumor cell line identifies most known sulfenic acid modified proteins: 14 in total, plus more than 175 new candidates, with further testing confirming oxidation in several candidates. The newly identified proteins have roles in signal transduction, DNA repair, metabolism, protein synthesis, redox homeostasis, nuclear transport, vesicle trafficking, and ER quality control. Cross-comparison of these results with those from disulfide, S-glutathionylation, and S-nitrosylation proteomes reveals moderate overlap, suggesting fundamental differences in the chemical and biological basis for target specificity. The combination of selective chemical enrichment and live-cell compatibility makes DAz-2 a powerful new tool with the potential to reveal new regulatory mechanisms in signaling pathways and identify new therapeutic targets.
Collapse
Affiliation(s)
| | | | - Kate S. Carroll
- Chemical Biology Graduate Program
- Life Sciences Institute
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-2216
| |
Collapse
|
27
|
Hassanein M, Bojja AS, Glazewski L, Lu G, Mason RW. Protein processing by the placental protease, cathepsin P. Mol Hum Reprod 2009; 15:433-42. [PMID: 19346238 DOI: 10.1093/molehr/gap029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cathepsin P is a member of a family of placentally expressed cathepsins (PECs). The closest human homolog of cathepsin P is cathepsin L, a broad specificity enzyme that has functions in many tissues in addition to placenta. The gene duplications that gave rise to the PECs provide a rare opportunity to define proteolytic functions in placenta, a transient organ unique to mammals. Peptidyl substrate and inhibitor libraries have shown that cathepsin P has evolved an unusually restricted preference for substrates containing hydrophobic amino acids. Proteomic techniques were used to probe for substrates of this enzyme. Recombinant cathepsin P was incubated with rat choriocarcinoma (Rcho-1) cell proteins to identify substrates using two-dimensional difference gel electrophoresis. Substrate proteins were excised from gels and characterized by trypsin digestion and MALDI MS/MS. Two endoplasmic reticulum (ER) proteins, gp96 and calreticulin, emerged as potential substrates, and western blotting showed that these proteins are processed by cathepsin P from their C-terminus, removing the KDEL ER retention signal. Immunohistochemistry showed that a portion of cathepsin P co-localizes with calreticulin in Rcho-1 cells. Extracellular calreticulin induces differentiation of Rcho-1 cells, indicating a potential role of cathepsin P in processing and secretion of calreticulin during differentiation of trophoblast giant cells.
Collapse
Affiliation(s)
- M Hassanein
- Department of Biomedical Research, Alfred I duPont Hospital for Children, Wilmington, DE 19803, USA
| | | | | | | | | |
Collapse
|
28
|
Sánchez D, Palová-Jelínková L, Felsberg J, Simsová M, Pekáriková A, Pecharová B, Swoboda I, Mothes T, Mulder CJJ, Benes Z, Tlaskalová-Hogenová H, Tucková L. Anti-calreticulin immunoglobulin A (IgA) antibodies in refractory coeliac disease. Clin Exp Immunol 2008; 153:351-9. [PMID: 18637103 DOI: 10.1111/j.1365-2249.2008.03701.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Refractory coeliac disease (RCD) is a very rare and dangerous form of CD, in which gluten-free diet loses its therapeutic effect and the damage of intestinal mucosa persists. Because of the adherence to the diet, serological markers of CD [immunoglobulin A (IgA) antibodies against gliadin, tissue transglutaminase (tTG) and endomysium] are often missing in RCD patients. We found substantially elevated levels of IgA anti-calreticulin (CRT) antibodies in the sera of almost all RCD patients tested. These sera were negative for IgA antibodies to gliadin and tTG and only some of them showed IgA antibodies to enterocytes. Analysis of patients' IgA reactivity to CRT fragments (quarters and halves) by Western blotting revealed differences in the specificity of IgA antibodies between RCD and CD patients. We therefore used the Pepscan technique with synthetic overlapping decapeptides of CRT to characterize antigenic epitopes recognized by serum IgA antibodies of RCD patients. Employing this method we demonstrated several dominant antigenic epitopes recognized by IgA antibodies of RCD patients on the CRT molecule. Epitope GVTKAAEKQMKD was recognized predominantly by serum IgA of RCD patients. Our results suggest that testing for serum IgA antibodies against CRT and its selected peptide could be a very useful tool in RCD differential diagnosis.
Collapse
Affiliation(s)
- D Sánchez
- Department of Immunology, Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Nørgaard Toft K, Larsen N, Steen Jørgensen F, Højrup P, Houen G, Vestergaard B. Small angle X-ray scattering study of calreticulin reveals conformational plasticity. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2008; 1784:1265-70. [PMID: 18559259 DOI: 10.1016/j.bbapap.2008.05.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2007] [Revised: 04/17/2008] [Accepted: 05/13/2008] [Indexed: 10/22/2022]
Abstract
Calreticulin plays a central role in vital cell processes such as protein folding, Ca(2+) homeostasis and immunogenicity. Even so, only limited three-dimensional structural information is presently available. We present a series of Small-Angle X-ray Scattering data on human placenta calreticulin. The data from the calreticulin monomer reveal the shape of calreticulin in solution: The previously structurally un-described C-terminal is seen as a globular domain, and the P-domain beta-hairpin extends from the N-domain in a spiral like conformation. In the calreticulin solution dimer, the N-, C-, and P-domains are easily identified, and the P-domain is in an extended conformation connecting to the second calreticulin molecule. The SAXS solution data enables the construction of a medium-resolution model of calreticulin. In the light of the unresolved chaperone mechanism of calreticulin and calnexin, we discuss the functional consequences of the conformational plasticity of the calreticulin P-domain.
Collapse
Affiliation(s)
- Katrine Nørgaard Toft
- Department of Medicinal Chemistry, University of Copenhagen, DK-2100 Copenhagen, Denmark.
| | | | | | | | | | | |
Collapse
|
30
|
Gu VY, Wong MH, Stevenson JL, Crawford KE, Brennecke SP, Gude NM. Calreticulin in human pregnancy and pre-eclampsia. Mol Hum Reprod 2008; 14:309-15. [PMID: 18417548 DOI: 10.1093/molehr/gan017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Pre-eclampsia is a disorder of human pregnancy that involves pregnancy-induced maternal hypertension and proteinuria. Evidence indicates that pre-eclampsia involves widespread activation of maternal endothelial cells. Calreticulin is a ubiquitously expressed, multi-functional protein that has been shown to have both pro- and anti-inflammatory effects on cultured endothelial cells in vitro and in whole animals. In order to clarify the role of this protein in normal human pregnancy and in pre-eclampsia, this study has measured expression of calreticulin in maternal blood and in placenta in patients with pre-eclampsia and in control pregnancies. There was a significant increase (approximately 5-fold) in calreticulin in plasma in term pregnant women compared with women who were not pregnant. There was no difference, however, in calreticulin in plasma from women who were sampled at first trimester, second trimester and at term. In addition, there was a significant increase (approximately 50%) in calreticulin in plasma from pre-eclamptic women compared to controls. Calreticulin mRNA and protein expression in placenta were not changed between pre-eclampsia and control pregnancies. These novel results indicate that calreticulin is increased in peripheral maternal blood early in pregnancy and remains elevated throughout normal gestation and that there is a further increase in calreticulin in pre-eclampsia.
Collapse
Affiliation(s)
- V Y Gu
- Department of Perinatal Medicine, Pregnancy Research Centre, Royal Women's Hospital, 132 Grattan Street, Carlton, VIC 3053, Australia
| | | | | | | | | | | |
Collapse
|
31
|
Pagh R, Duus K, Laursen I, Hansen PR, Mangor J, Thielens N, Arlaud GJ, Kongerslev L, Højrup P, Houen G. The chaperone and potential mannan-binding lectin (MBL) co-receptor calreticulin interacts with MBL through the binding site for MBL-associated serine proteases. FEBS J 2008; 275:515-26. [DOI: 10.1111/j.1742-4658.2007.06218.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
32
|
Duus K, Pagh RT, Holmskov U, Højrup P, Skov S, Houen G. Interaction of Calreticulin with CD40 Ligand, TRAIL and Fas Ligand. Scand J Immunol 2007; 66:501-7. [DOI: 10.1111/j.1365-3083.2007.01999.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
33
|
Sandhu N, Duus K, Jørgensen CS, Hansen PR, Bruun SW, Pedersen LØ, Højrup P, Houen G. Peptide binding specificity of the chaperone calreticulin. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2007; 1774:701-13. [PMID: 17499031 DOI: 10.1016/j.bbapap.2007.03.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2006] [Revised: 03/28/2007] [Accepted: 03/29/2007] [Indexed: 10/23/2022]
Abstract
Calreticulin is a molecular chaperone with specificity for polypeptides and N-linked monoglucosylated glycans. In order to determine the specificity of polypeptide binding, the interaction of calreticulin with polypeptides was investigated using synthetic peptides of different length and composition. A large set of available synthetic peptides (n=127) was tested for binding to calreticulin and the results analysed by multivariate data analysis. The parameter that correlated best with binding was hydrophobicity while beta-turn potential disfavoured binding. Only hydrophobic peptides longer than 5 amino acids showed binding and a clear correlation with hydrophobicity was demonstrated for oligomers of different hydrophobic amino acids. Insertion of hydrophilic amino acids in a hydrophobic sequence diminished or abolished binding. In conclusion our results show that calreticulin has a peptide-binding specificity for hydrophobic sequences and delineate the fine specificity of calreticulin for hydrophobic amino acid residues.
Collapse
Affiliation(s)
- Noreen Sandhu
- Department of Autoimmunology, Statens Serum Institut, Artillerivej 5, DK-2300 Copenhagen, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Gianazza E, Wait R, Begum S, Eberini I, Campagnoli M, Labò S, Galliano M. Mapping the 5–50-kDa fraction of human amniotic fluid proteins by 2-DE and ESI-MS. Proteomics Clin Appl 2007; 1:167-75. [DOI: 10.1002/prca.200600543] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
35
|
Kumari R, Gupta G, Saluja D, Kumar A, Goel S, Tyagi YK, Gulati R, Vinocha A, Muralidhar K, Dwarakanth BS, Rastogi RC, Parmar VS, Patkar SA, Raj HG. Characterization of protein transacetylase from human placenta as a signaling molecule calreticulin using polyphenolic peracetates as the acetyl group donors. Cell Biochem Biophys 2007; 47:53-64. [PMID: 17420526 DOI: 10.1385/cbb:47:1:53] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 02/02/2023]
Abstract
We have earlier shown that a unique membrane-bound enzyme mediates the transfer of acetyl group(s) from polyphenolic peracetates (PA) to functional proteins, which was termed acetoxy drug: protein transacetylase (TAase) because it acted upon several classes of PA. Here, we report the purification of TAase from human placental microsomes to homogeneity with molecular mass of 60 kDa, exhibiting varying degrees of specificity to several classes of PA confirming the structure-activity relationship for the microsome-bound TAase. The TAase catalyzed protein acetylation by a model acetoxy drug, 7,8-diacetoxy-4-methyl coumarin (DAMC) was established by the demonstration of immunoreactivity of the acetylated target protein with anti-acetyl lysine antibody. TAase activity was severely inhibited in calcium-aggregated microsomes as well as when Ca2+ was added to purified TAase, suggesting that TAase could be a calcium binding protein. Furthermore, the N-terminal sequence analysis of purified TAase (EPAVYFKEQFLD) using Swiss Prot Database perfectly matched with calreticulin (CRT), a major microsomal calcium binding protein of the endoplasmic reticulum (ER). The identity of TAase with CRT was substantiated by the observation that the purified TAase avidly reacted with commercially available antibody raised against the C-terminus of human CRT (13 residues peptide, DEEDATGQAKDEL). Purified TAase also showed Ca2+ binding and acted as a substrate for phosphorylation catalyzed by protein kinase C (PKC), which are hallmark characteristics of CRT. Further, purified placental CRT as well as the commercially procured pure CRT yielded significant TAase catalytic activity and were also found effective in mediating the acetylation of the target protein NADPH cytochrome P-450 reductase by DAMC as detected by Western blot using anti-acetyl lysine antibody. These observations for the first time convincingly attribute the transacetylase function to CRT. Hence, this transacetylase function of CRT is designated calreticulin transacetylase (CRTAase). We envisage that CRTAase plays an important role in protein modification by way of acetylation independent of Acetyl CoA.
Collapse
|
36
|
Kales S, Fujiki K, Dixon B. Molecular cloning and characterization of calreticulin from rainbow trout ( Oncorhynchus mykiss). Immunogenetics 2003; 55:717-23. [PMID: 14669059 DOI: 10.1007/s00251-003-0631-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2003] [Revised: 11/11/2003] [Indexed: 11/27/2022]
Abstract
Calreticulin (CRT) is a highly conserved, high-capacity, calcium-binding protein shared among vertebrates, invertebrates and higher plants. Its biological importance, highlighted by its highly conserved nature, is supported by its crucial physiological and immunological functions. Within the endoplasmic reticulum, CRT serves as a calcium modulator and a lectin-like chaperone for glycoproteins, especially class I major histocompatibility receptors. To date, CRT cDNA clones have been isolated from a wide range of phyla, yet little is known about this gene in fish species, the largest and most diverse group of jawed vertebrates. This report describes the cloning of a cDNA from a rainbow trout pronephros library that encodes a deduced 419-amino acid protein, which includes a predicted 20-amino acid signal peptide and has a 69% amino acid identity to both murine and human CRT. Like its mammalian counterparts, this cDNA contains conserved cysteine residues believed to form a disulphide bond, a proline-rich region which includes a potential N-glycosylation site, and a highly acidic C-terminal domain terminating with the endoplasmic reticulum retrieval sequence, KDEL. Reverse transcription tissue-distribution assays indicate it is ubiquitously expressed in all tissues tested with highest expression in liver, while Southern blotting indicates it is a single copy gene.
Collapse
Affiliation(s)
- Stephen Kales
- Department of Biology, University of Waterloo, 200 University Avenue, West, N2L 3G1, Waterloo, ON, Canada
| | | | | |
Collapse
|
37
|
Jørgensen CS, Ryder LR, Steinø A, Højrup P, Hansen J, Beyer NH, Heegaard NHH, Houen G. Dimerization and oligomerization of the chaperone calreticulin. ACTA ACUST UNITED AC 2003; 270:4140-8. [PMID: 14519126 DOI: 10.1046/j.1432-1033.2003.03808.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The chaperone calreticulin is a highly conserved eukaryotic protein mainly located in the endoplasmic reticulum. It contains a free cysteine SH group but does not form disulfide-bridged dimers under physiological conditions, indicating that the SH group may not be fully accessible in the native protein. Using PAGE, urea gradient gel electrophoresis, capillary electrophoresis and MS, we show that dimerization through the SH group can be induced by lowering the pH to 5-6, heating, or under conditions that favour partial unfolding such as urea concentrations above 2.6 m or SDS concentrations above 0.025%. Moreover, we show that calreticulin also has the ability to self-oligomerize through noncovalent interactions at urea concentrations above 2.6 m at pH below 4.6 or above pH 10, at temperatures above 40 degrees C, or in the presence of high concentrations of organic solvents (25%), conditions that favour partial unfolding or an intramolecular local conformational change that allows oligomerization, resulting in a heterogeneous mixture of oligomers consisting of up to 10 calreticulin monomers. The oligomeric calreticulin was very stable, but oligomerization was partially reversed by addition of 8 m urea or 1% SDS, and heat-induced oligomerization could be inhibited by 8 m urea or 1% SDS when present during heating. Comparison of the binding properties of monomeric and oligomeric calreticulin in solid-phase assays showed increased binding to peptides and denatured proteins when calreticulin was oligomerized. Thus, calreticulin shares the ability to self-oligomerize with other important chaperones such as GRP94 and HSP90, a property possibly associated with their chaperone activity.
Collapse
|
38
|
Schlosser A, Klockow B, Manstein DJ, Lehmann WD. Analysis of post-translational modification and characterization of the domain structure of dynamin A from Dictyostelium discoideum. JOURNAL OF MASS SPECTROMETRY : JMS 2003; 38:277-282. [PMID: 12644989 DOI: 10.1002/jms.438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The post-translational modifications of the 96 kDa protein dynamin A from Dictyostelium discoideum were analyzed using Q-TOF mass spectrometry. The accurate molecular mass of the intact protein revealed a covalent modification causing an additional mass of 42 Da. The modification could be identified as N-terminal acetylation by tandem mass spectrometry. Extracted ion chromatograms for the a(1) and b(1) ion of the tryptic T1 peptide were used to detect the acetylated peptide within 54 nanoelectrospray ionization tandem mass spectra. Owing to the accurate molecular mass of the intact protein, additional covalent modifications could be excluded. In addition to the covalent modification, the domain structure of dynamin A was determined by applying a combination of limited proteolysis, sodium dodecylsulfate polyacrylamide gel electrophoresis, automated tandem mass spectrometry and protein database searching.
Collapse
Affiliation(s)
- Andreas Schlosser
- Central Spectroscopy, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
| | | | | | | |
Collapse
|
39
|
Evans TJ, James-Kracke MR, Kleiboeker SB, Casteel SW. Lead enters Rcho-1 trophoblastic cells by calcium transport mechanisms and complexes with cytosolic calcium-binding proteins. Toxicol Appl Pharmacol 2003; 186:77-89. [PMID: 12639499 DOI: 10.1016/s0041-008x(02)00030-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Within the placenta, a specialized Ca(2+) transport pathway develops in trophoblasts to promote growth of the fetus and hypothetically to enhance fetal uptake of Pb(2+). This hypothesis could not be tested until a method to monitor Pb(2+) influx by indo-1 fluorescence quench became available. We have applied this new method to cultured undifferentiated and differentiated Rcho-1 trophoblastic cells. Pb(2+) concentrations of 1 and 10 microM are equivalent to blood levels of 20 and 200 microg/dl in pregnant women. Over this range, Pb(2+) uptake increased with time and concentration in medium containing 1 mM Ca(2+) but was greater in Ca(2+)-omitted solutions. Activation of capacitative Ca(2+) entry (CCE) with thapsigargin, an endoplasmic reticulum (ER) Ca(2+) pump inhibitor, increased Pb(2+) uptake, while inhibition of CCE by La(3+) decreased influx. Parathyroid hormone-related peptide (PTHrP) stimulates the synthesis of Ca(2+)-binding proteins (CaBPs), as well as Ca(2+) transporters, during trophoblastic differentiation. Pretreatment for 72 h with PTHrP increased Pb(2+) uptake by undifferentiated Rcho-1 cells but had little effect on the quench in differentiated cells, probably due to their greater content of CaBPs which competed for Pb(2+)-binding with indo-1. This competition was most evident in differentiated cells when 1 microM Pb(2+) caused an initial quench, followed by a rise in fluorescence. This rise was not inhibited by thapsigargin, thereby ruling out sequestration into the ER and leaving complexation of Pb(2+) by CaBPs as the most plausible interpretation. We conclude that trophoblasts have the ability to clear Pb(2+) from the maternal circulation and deliver it to the fetus.
Collapse
Affiliation(s)
- Tim J Evans
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA.
| | | | | | | |
Collapse
|
40
|
|
41
|
Persson S, Rosenquist M, Sommarin M. Identification of a novel calreticulin isoform (Crt2) in human and mouse. Gene 2002; 297:151-8. [PMID: 12384296 DOI: 10.1016/s0378-1119(02)00880-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Calreticulin is a Ca(2+)-binding chaperone localized mainly in the endoplasmic/sarcoplasmic reticulum in all higher organisms. To date, only one calreticulin isoform has been identified in human and mouse. Here we report a novel calreticulin isoform (Crt2) in human and mouse, with 53 (human) and 49% (mouse) identity to the previously identified calreticulin in respective species. The gene encoding the novel human calreticulin isoform spans 17 kb of genomic DNA and is expressed in testis, showing a similar expression as the chaperone calmegin. Phylogenetic analysis shows that two or more calreticulin (crt) genes are present both in plants and in mammals. The duplication of the crt gene in human and mouse suggests functional diversity, and variations in expression patterns among calreticulins. Two novel calreticulin (Crt2) isoforms, with high homology to the human and mouse calreticulin isoform (Crt2), were also identified in pig and rat via expressed sequence tags.
Collapse
Affiliation(s)
- Staffan Persson
- Department of Plant Biochemistry, Center for Chemistry and Chemical Engineering, Lund University, P.O. Box 124, SE-22100, Lund, Sweden.
| | | | | |
Collapse
|