1
|
Akbarin MM, Rezaee SA, Farjami Z, Rahimi H, Rafatpanah H. The role of CREB and MAPK signaling pathways in ATLL patients. AIDS Res Ther 2024; 21:81. [PMID: 39529101 PMCID: PMC11552329 DOI: 10.1186/s12981-024-00664-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 10/09/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND HTLV-1 is a worldwide distribution retrovirus with 10-20 million infected individuals. ATLL is an Adult T-cell leukaemia lymphoma caused by aggressive T-cell proliferation that is infected by HTLV-1 and is associated with an inferior prognosis. The exact molecular pathogenesis has yet to be fully understood. CREB, a transcription factor, acts as a molecular switch that controls the expression of numerous genes in response to various extracellular signals. Its activation is primarily mediated through phosphorylation by multiple kinases, including MAPKs. MAPKs, a family of serine/threonine kinases, serve as crucial mediators of intracellular signaling cascades. METHOD AND MATERIAL This study investigated, 38 HTLV-I-infected individuals, including 18 HTLV-1 asymptomatic carriers (ACs) and 20 ATLL subjects. mRNA was extracted and converted to cDNA from Peripheral blood mononuclear cells (PBMCs), and then the expression of TAX, HBZ, CREB, and MAPK was analyzed by TaqMan qPCR. The genomic HTLV-1 Proviral loads were examined among the study group. RESULTS The data analysis showed a significant difference in the mean of CREB expression amongst study groups (ATLL and carriers, (p = 0.002). There is no statistical difference between the MAPK gene expression (p = 0.35). HBZ, TAX, and HTLV-1 proviral load weree significantly higher in ATLL subjects compared to ACs (p = 0.002, 0.000, and 0.000), respectively. Moreover, our results, demonstrated a direct positive correlation among HBZ, CREB, and TAX gene expression in ATLL patients (p = 0.001), whilst between the ACs, TAX gene expression had a positive significant correlation with HBZ and HTLV-1 proviral load (p = 0.007 and p = 0.004, respectively). CONCLUSION The present study demonstrated that CREB gene expression was higher in the ATLL group than ACs, while there was no difference for MAPK. Therefore, this pathway may not strongly involve in the activation of CREB. The CREB may be a prognostic factor for the development of HTLV-I-associated diseases and can be used as a monitoring marker for the efficiency of the therapeutic regime and prognosis.
Collapse
Affiliation(s)
- Mohammad Mehdi Akbarin
- Immuology Research Centre, Faculty of Medicine, Mashhad University of Medical Sciences, Azadi Square, Mashhad, Iran
- Mashhad Medical Sciences-Medical School-Islamic Azad University, Mashhad, Iran
| | - Seyed Abdolrahim Rezaee
- Immuology Research Centre, Faculty of Medicine, Mashhad University of Medical Sciences, Azadi Square, Mashhad, Iran
| | - Zahra Farjami
- Department of Modern Sciences and Technologies, Faculty of Medicine, Mashhad University of Medical, Mashhad, Iran
| | - Hossein Rahimi
- Hematology Department, Faculty of Medicine, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Houshang Rafatpanah
- Immuology Research Centre, Faculty of Medicine, Mashhad University of Medical Sciences, Azadi Square, Mashhad, Iran.
| |
Collapse
|
2
|
Yang C, Zheng H, Amin A, Faheem MS, Duan A, Li L, Xiao P, Li M, Shang J. Follicular Atresia in Buffalo: Cocaine- and Amphetamine-Regulated Transcript (CART) and the Underlying Mechanisms. Animals (Basel) 2024; 14:2138. [PMID: 39123664 PMCID: PMC11311020 DOI: 10.3390/ani14152138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/15/2024] [Accepted: 07/18/2024] [Indexed: 08/12/2024] Open
Abstract
Atresia is a process in ovarian follicles that is regulated by hormone-induced apoptosis. During atresia, granulosa cell (GC) apoptosis is a key mechanism orchestrated through diverse signaling pathways. Cocaine- and amphetamine-regulated transcript (CART) signaling within ovarian GCs has been demonstrated to play a key role in the regulation of follicular atresia in cattle, pigs, and sheep. The present work aimed to investigate the potential local regulatory role of CART in GC apoptosis-induced follicular atresia in buffalo, focusing on the modulation of the AKT/GSK3β/β-catenin signaling pathways, which are the intracellular signaling pathways involved in cell viability. Our findings revealed increased expression of CARTPT and BAX and decreased levels of AKT, β-catenin, and CYP19A1 genes in atretic follicles compared to healthy follicles. Subsequently, CART treatment in the presence of FSH inhibited the FSH-induced increase in GC viability by reducing estradiol production and increasing apoptosis. This change was accompanied by an increase in the gene expression levels of both CARTPT and BAX. At the protein level, treatment with CART in the presence of FSH negatively affected the activity of AKT, β-catenin, and LEF1, while the activity of GSK3β was enhanced. In conclusion, our study shows how CART negatively influences buffalo GC viability, underlying the modulation of the AKT/GSK3β/β-catenin pathway and promoting apoptosis-a key factor in follicular atresia.
Collapse
Affiliation(s)
- Chunyan Yang
- Guangxi Key Laboratory of Buffalo Genetics, Reproduction and Breeding, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, China; (H.Z.); (A.A.); (A.D.); (L.L.); (P.X.); (M.L.)
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Rural Affairs, Nanning 530001, China
| | - Haiying Zheng
- Guangxi Key Laboratory of Buffalo Genetics, Reproduction and Breeding, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, China; (H.Z.); (A.A.); (A.D.); (L.L.); (P.X.); (M.L.)
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Rural Affairs, Nanning 530001, China
| | - Ahmed Amin
- Guangxi Key Laboratory of Buffalo Genetics, Reproduction and Breeding, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, China; (H.Z.); (A.A.); (A.D.); (L.L.); (P.X.); (M.L.)
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Rural Affairs, Nanning 530001, China
- Animal Production Department, Faculty of Agriculture, Cairo University, Giza 12613, Egypt;
| | - Marwa S. Faheem
- Animal Production Department, Faculty of Agriculture, Cairo University, Giza 12613, Egypt;
| | - Anqin Duan
- Guangxi Key Laboratory of Buffalo Genetics, Reproduction and Breeding, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, China; (H.Z.); (A.A.); (A.D.); (L.L.); (P.X.); (M.L.)
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Rural Affairs, Nanning 530001, China
| | - Lingyu Li
- Guangxi Key Laboratory of Buffalo Genetics, Reproduction and Breeding, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, China; (H.Z.); (A.A.); (A.D.); (L.L.); (P.X.); (M.L.)
| | - Peng Xiao
- Guangxi Key Laboratory of Buffalo Genetics, Reproduction and Breeding, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, China; (H.Z.); (A.A.); (A.D.); (L.L.); (P.X.); (M.L.)
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Rural Affairs, Nanning 530001, China
| | - Mengqi Li
- Guangxi Key Laboratory of Buffalo Genetics, Reproduction and Breeding, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, China; (H.Z.); (A.A.); (A.D.); (L.L.); (P.X.); (M.L.)
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Rural Affairs, Nanning 530001, China
| | - Jianghua Shang
- Guangxi Key Laboratory of Buffalo Genetics, Reproduction and Breeding, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, China; (H.Z.); (A.A.); (A.D.); (L.L.); (P.X.); (M.L.)
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Rural Affairs, Nanning 530001, China
| |
Collapse
|
3
|
Xu M, Li F, Xu X, Hu N, Miao J, Zhao Y, Ji S, Wang Y, Wang L. Proteomic analysis reveals that cigarette smoke exposure diminishes ovarian reserve in mice by disrupting the CREB1-mediated ovarian granulosa cell proliferation-apoptosis balance. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 271:115989. [PMID: 38242047 DOI: 10.1016/j.ecoenv.2024.115989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/31/2023] [Accepted: 01/13/2024] [Indexed: 01/21/2024]
Abstract
Exposure to cigarette smoke (CS) adversely affects ovarian health and it is currently unknown how CS exposure causes ovarian injury. This study compared the differences in proteomics between CS exposure and healthy control groups using liquid chromatography-tandem mass spectrometry quantitative proteomics to further understand the molecular mechanism of ovarian cell injury in mice exposed to CS. Furthermore, western blotting and qPCR were carried out to validate the proteomic analysis outcomes. CREB1 was selected from the differentially expressed proteins, and then the down-regulation of CREB1 and phosphorylated CREB1(Ser133) expressions were confirmed in mice ovarian tissue and human ovarian granulosa cells (KGN cells) after CS exposure. In addition, the expressions of apoptosis-related proteins BCL-2 and BCL-XL were downregulated, and BAX expression was up-regulated. Moreover, the results of cellular immunofluorescence, flow cytometry, and transmission electron microscopy (TEM) showed that cigarette smoke extract (CSE) efficiently stimulated the production of reactive oxygen species, apoptosis, G1 phase arrest, mitochondrial membrane potential decreases, and ultrastructural changes in KGN cells. KG-501 (CREB inhibitor) aggravated CSE-induced mitochondrial dysfunction and apoptosis-proliferation imbalance in KGN cells mediated by down-regulated CREB1/BCL-2 axis. In addition, CREB1 over-expression partially restores mitochondrial dysfunction and apoptosis-proliferation imbalance of KGN cells induced by CSE. The results suggested that CSE diminished ovarian reserve in mice by disrupting the CREB1-mediated ovarian granulosa cell (GCs) proliferation-apoptosis balance and provided possible therapeutic targets for the clinical intervention of premature ovarian failure (POI) caused by CS exposure.
Collapse
Affiliation(s)
- Mengting Xu
- Department of Obstetrics and Gynecology, Shengjing Hospital, China Medical University, Shenyang 110004, China; Medical Research Center of Shengjing Hospital, China Medical University, Shenyang 110004, China; Key Laboratory of Research and Application of Animal Model for Environmental and Metabolic Diseases, Liaoning Province, China
| | - Fang Li
- Department of Obstetrics and Gynecology, Shengjing Hospital, China Medical University, Shenyang 110004, China; Medical Research Center of Shengjing Hospital, China Medical University, Shenyang 110004, China; Key Laboratory of Research and Application of Animal Model for Environmental and Metabolic Diseases, Liaoning Province, China
| | - XiaoYan Xu
- Assisted Reproduction Centre of Shengjing Hospital, China Medical University, Shenyang 110004, China
| | - Nengyin Hu
- Department of Obstetrics and Gynecology, Shengjing Hospital, China Medical University, Shenyang 110004, China; Medical Research Center of Shengjing Hospital, China Medical University, Shenyang 110004, China; Key Laboratory of Research and Application of Animal Model for Environmental and Metabolic Diseases, Liaoning Province, China
| | - Jianing Miao
- Department of Obstetrics and Gynecology, Shengjing Hospital, China Medical University, Shenyang 110004, China; Medical Research Center of Shengjing Hospital, China Medical University, Shenyang 110004, China; Key Laboratory of Research and Application of Animal Model for Environmental and Metabolic Diseases, Liaoning Province, China
| | - Yanhui Zhao
- Department of Obstetrics and Gynecology, Shengjing Hospital, China Medical University, Shenyang 110004, China; Medical Research Center of Shengjing Hospital, China Medical University, Shenyang 110004, China; Key Laboratory of Research and Application of Animal Model for Environmental and Metabolic Diseases, Liaoning Province, China
| | - Sailing Ji
- Department of Obstetrics and Gynecology, Shengjing Hospital, China Medical University, Shenyang 110004, China; Medical Research Center of Shengjing Hospital, China Medical University, Shenyang 110004, China; Key Laboratory of Research and Application of Animal Model for Environmental and Metabolic Diseases, Liaoning Province, China
| | - Ying Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital, China Medical University, Shenyang 110004, China.
| | - Lili Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital, China Medical University, Shenyang 110004, China; Medical Research Center of Shengjing Hospital, China Medical University, Shenyang 110004, China; Key Laboratory of Research and Application of Animal Model for Environmental and Metabolic Diseases, Liaoning Province, China.
| |
Collapse
|
4
|
Liu S, Jia Y, Meng S, Luo Y, Yang Q, Pan Z. Mechanisms of and Potential Medications for Oxidative Stress in Ovarian Granulosa Cells: A Review. Int J Mol Sci 2023; 24:ijms24119205. [PMID: 37298157 DOI: 10.3390/ijms24119205] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/20/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
Granulosa cells are essential for follicle initiation and development, and their abnormal function or apoptosis is a crucial factor leading to follicular atresia. A state of oxidative stress occurs when the balance between the production of reactive oxygen species and the regulation of the antioxidant system is disturbed. Oxidative stress is one of the most important causes of the abnormal function and apoptosis of granulosa cells. Oxidative stress in granulosa cells causes female reproductive system diseases, such as polycystic ovary syndrome and premature ovarian failure. In recent years, studies have confirmed that the mechanism of oxidative stress in granulosa cells is closely linked to the PI3K-AKT signaling pathway, MAPK signaling pathway, FOXO axis, Nrf2 pathway, NF-κB signaling pathway, and mitophagy. It has been found that drugs such as sulforaphane, Periplaneta americana peptide, and resveratrol can mitigate the functional damage caused by oxidative stress on granulosa cells. This paper reviews some of the mechanisms involved in oxidative stress in granulosa cells and describes the mechanisms underlying the pharmacological treatment of oxidative stress in granulosa cells.
Collapse
Affiliation(s)
- Siheng Liu
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Yunbing Jia
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Shirui Meng
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Yiran Luo
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Qi Yang
- College of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Zezheng Pan
- College of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| |
Collapse
|
5
|
Téteau O, Vitorino Carvalho A, Papillier P, Mandon-Pépin B, Jouneau L, Jarrier-Gaillard P, Desmarchais A, Lebachelier de la Riviere ME, Vignault C, Maillard V, Binet A, Uzbekova S, Elis S. Bisphenol A and bisphenol S both disrupt ovine granulosa cell steroidogenesis but through different molecular pathways. J Ovarian Res 2023; 16:30. [PMID: 36737804 PMCID: PMC9896735 DOI: 10.1186/s13048-023-01114-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Ovarian granulosa cells (GC) are essential for the development and maturation of a proper oocyte. GC are sensitive to endocrine disruptors, including bisphenol A (BPA) and its analogue bisphenol S (BPS), plasticisers present in everyday consumer products. BPA exhibits greater binding affinity for the membrane oestrogen receptor (GPER) than for the nuclear oestrogen receptors (ERα and ERβ). Here, we analysed the effects of BPA and BPS on the steroidogenesis of ovine GC in vitro, as well as their early mechanisms of action, the ovine being a relevant model to study human reproductive impairment. Disruption of GC steroidogenesis might alter oocyte quality and consequently fertility rate. In addition, we compared the effects of a specific GPER agonist (G-1) and antagonist (G-15) to those of BPA and BPS. Ewe GC were cultured with BPA or BPS (10 or 50 µM) or G-1 (1 µM) and/or G-15 (10 µM) for 48 h to study steroidogenesis. RESULTS Both BPA and BPS (10 µM) altered the secretion of progesterone, however, only BPS (10 µM) affected oestradiol secretion. RNA-seq was performed on GC after 1 h of culture with BPA or BPS (50 µM) or G-1 (10 µM), followed by real-time PCR analyses of differentially expressed genes after 12, 24 and 48 h of culture. The absence of induced GPER target genes showed that BPA and BPS did not activate GPER in GC after 1 h of treatment. These molecules exhibited mainly independent early mechanisms of action. Gene ontology analysis showed that after 1 h of treatment, BPA mainly disrupted the expression of the genes involved in metabolism and transcription, while BPS had a smaller effect and impaired cellular communications. BPA had a transient effect on the expression of CHAC1 (NOTCH signalling and oxidative balance), JUN (linked to MAPK pathway), NR4A1 (oestradiol secretion inhibition), ARRDC4 (endocytose of GPCR) and KLF10 (cell growth, differentiation and apoptosis), while expression changes were maintained over time for the genes LSMEM1 (linked to MAPK pathway), TXNIP (oxidative stress) and LIF (cell cycle regulation) after 12 and 48 h, respectively. CONCLUSION In conclusion, although they exhibited similar effects, BPA and BPS impaired different molecular pathways in GC in vitro. New investigations will be necessary to follow the temporal changes of these genes over time, as well as the biological processes involved.
Collapse
Affiliation(s)
- Ophélie Téteau
- CNRS, IFCE, INRAE, Université de Tours, PRC, 37380, Nouzilly, France
| | | | - Pascal Papillier
- CNRS, IFCE, INRAE, Université de Tours, PRC, 37380, Nouzilly, France
| | | | - Luc Jouneau
- INRAE, BREED, Université Paris-Saclay, UVSQ, 78350, Jouy-en-Josas, France
| | | | - Alice Desmarchais
- CNRS, IFCE, INRAE, Université de Tours, PRC, 37380, Nouzilly, France
| | | | - Claire Vignault
- CNRS, IFCE, INRAE, Université de Tours, PRC, 37380, Nouzilly, France
| | - Virginie Maillard
- CNRS, IFCE, INRAE, Université de Tours, PRC, 37380, Nouzilly, France
| | - Aurélien Binet
- CNRS, IFCE, INRAE, Université de Tours, PRC, 37380, Nouzilly, France
- Service de Chirurgie Pédiatrique Viscérale, Urologique, Plastique Et Brûlés, CHRU de Tours, 37000, Tours, France
| | - Svetlana Uzbekova
- CNRS, IFCE, INRAE, Université de Tours, PRC, 37380, Nouzilly, France
| | - Sebastien Elis
- CNRS, IFCE, INRAE, Université de Tours, PRC, 37380, Nouzilly, France.
| |
Collapse
|
6
|
Cheng X, Li X, Liu Y, Ma Y, Zhang R, Zhang Y, Fan C, Qu L, Ning Z. DNA methylome and transcriptome identified Key genes and pathways involved in Speckled Eggshell formation in aged laying hens. BMC Genomics 2023; 24:31. [PMID: 36658492 PMCID: PMC9854222 DOI: 10.1186/s12864-022-09100-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 12/26/2022] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND The quality of poultry eggshells is closely related to the profitability of egg production. Eggshell speckles reflect an important quality trait that influences egg appearance and customer preference. However, the mechanism of speckle formation remains poorly understood. In this study, we systematically compared serum immune and antioxidant indices of hens laying speckled and normal eggs. Transcriptome and methylome analyses were used to elucidate the mechanism of eggshell speckle formation. RESULTS The results showed that seven differentially expressed genes (DEGs) were identified between the normal and speckle groups. Gene set enrichment analysis (GSEA) revealed that the expressed genes were mainly enriched in the calcium signaling pathway, focal adhesion, and MAPK signaling pathway. Additionally, 282 differentially methylated genes (DMGs) were detected, of which 15 genes were associated with aging, including ARNTL, CAV1, and GCLC. Pathway analysis showed that the DMGs were associated with T cell-mediated immunity, response to oxidative stress, and cellular response to DNA damage stimulus. Integrative analysis of transcriptome and DNA methylation data identified BFSP2 as the only overlapping gene, which was expressed at low levels and hypomethylated in the speckle group. CONCLUSIONS Overall, these results indicate that aging- and immune-related genes and pathways play a crucial role in the formation of speckled eggshells, providing useful information for improving eggshell quality.
Collapse
Affiliation(s)
- Xue Cheng
- grid.22935.3f0000 0004 0530 8290National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Xinghua Li
- grid.22935.3f0000 0004 0530 8290National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Yuchen Liu
- grid.22935.3f0000 0004 0530 8290National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Ying Ma
- grid.22935.3f0000 0004 0530 8290National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Ruiqi Zhang
- grid.22935.3f0000 0004 0530 8290National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Yalan Zhang
- grid.22935.3f0000 0004 0530 8290National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Cuidie Fan
- Rongde Breeding Company Limited, Hebei, 053000 China
| | - Lujiang Qu
- grid.22935.3f0000 0004 0530 8290National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Zhonghua Ning
- grid.22935.3f0000 0004 0530 8290National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| |
Collapse
|
7
|
Zhou S, Liu J. In vitro immunotoxicity and possible mechanisms of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) on Ruditapes philippinarum hemocytes. FISH & SHELLFISH IMMUNOLOGY 2022; 127:386-395. [PMID: 35777709 DOI: 10.1016/j.fsi.2022.06.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 06/18/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
Marine bivalves can accumulate large amounts of pollutants from sea water, sediments and microalgae due to their filter-feeding habits. BDE-47 is often the most highly concentrated congener in bivalves. BDE-47 has been found to have toxic effects on bivalves, however, the immunotoxicity and the underlying mechanisms of BDE-47 on bivalves are not well understood yet. In this study, isolated hemocytes of Manila clam Ruditapes philippinarum were exposed to five concentrations of BDE-47 (6.25 μM, 12.5 μM, 25 μM, 50 μM, 100 μM), the effects of BDE-47 on hemocyte survival rate, cell viability, granulocyte ratio, phagocytosis, bacteriolytic activity, reactive oxygen species (ROS), lysosomal membrane permeability (LMP), superoxide dismutase (SOD), and phosphorylation state of extracellular regulated protein kinase (ERK) and p38 at 2 h, 6 h and 12 h were studied. The results indicated that BDE-47 exposure declined the hemocyte cell viability, reduced the granulocyte ratio, hampered the hemocyte phagocytosis and bacteriolytic activity, elevated the ROS levels, increased the LMP, significantly changed SOD expression and depressed the phosphorylation levels of ERK and p38. Taken together, the results demonstrated that BDE-47 had significant toxic effects on the immune function, and the immunotoxicity may partly via the overproduction of ROS and the alteration of MAPK signaling pathways.
Collapse
Affiliation(s)
- Shun Zhou
- School of Marine Science and Engineering, Qingdao Agriculture University, Qingdao, 266109, PR China
| | - Jing Liu
- Central Laboratory, Laboratory Management Center, Qingdao Agriculture University, Qingdao, 266109, PR China.
| |
Collapse
|
8
|
Castro-Cruz A, Echeverría OM, Juárez-Chavero S, Sánchez-Sánchez L, Torres-Ramírez N, Vázquez-Nin GH, Muñoz-Velasco I, Escobar ML. Transcriptional activity and splicing factors are preserved during physiological apoptosis. J Struct Biol 2022; 214:107884. [PMID: 35908727 DOI: 10.1016/j.jsb.2022.107884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/20/2022] [Accepted: 07/25/2022] [Indexed: 10/16/2022]
Abstract
Apoptosis is the best-known programmed cell death that maintains tissue homeostasis in eukaryotic cells. The morphological characteristics include nuclear and cytoplasmic contraction and cytoplasmic blebbing, its biochemical hallmarks include caspase protease activity and DNA fragmentation. In rat ovaries, cell death is a normal process that occurs throughout the organism's life. Granulosa cells, the more abundant cell type forming the ovarian follicles, are eliminated via different routes of cell death. Most granulosa cells are eliminated through apoptotic cell death. In this work, we analyzed the behavior of nuclear components throughout the apoptotic process and determined how they are regionalized and conserved during follicular atresia in rat ovaries. Apoptosis was detected based on caspase-3 activity and DNA fragmentation using the TUNEL technique. We identified the transcription markers H3ac and RNA Pol II, and splicing factor SC35 by immunodetection. The nucleolar components were analyzed via light microscopy and transmission electron microscopy through immunodetection of the proteins nucleolin and nucleophosmin-1. The nuclear ultrastructure was analyzed using standard contrast and preferential ribonucleoprotein contrast. Our results demonstrate that during the progression of apoptosis, chromatin is remodeled to constitute apoptotic bodies; transcription and spliceosome elements are reorganized along with the nucleolar components. Additionally, the splicing and transcription factors are segregated into specific territories inside the apoptotic bodies, suggesting that transcriptional elements are reorganized during the apoptotic process. Our results indicate that apoptotic bodies not only are compacted, and chromatin degraded but all the nuclear components are progressively reorganized during cell elimination; moreover, the transcriptional components are preserved.
Collapse
Affiliation(s)
- A Castro-Cruz
- Laboratorio de Microscopía Electrónica, Depto. Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Av. Universidad 3000, Ciudad Universitaria, Col. Universidad Nacional Autónoma de México, Coyoacán 04510, Ciudad de México, Mexico
| | - O M Echeverría
- Laboratorio de Microscopía Electrónica, Depto. Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Av. Universidad 3000, Ciudad Universitaria, Col. Universidad Nacional Autónoma de México, Coyoacán 04510, Ciudad de México, Mexico
| | - S Juárez-Chavero
- Laboratorio de Microscopía Electrónica, Depto. Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Av. Universidad 3000, Ciudad Universitaria, Col. Universidad Nacional Autónoma de México, Coyoacán 04510, Ciudad de México, Mexico
| | - L Sánchez-Sánchez
- Laboratorio de Biología Molecular del Cáncer, UMIEZ, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Lab. 6, 2do piso, Ejercito de Oriente, Iztapalapa, 09230 México, Ciudad de México, Mexico
| | - N Torres-Ramírez
- Laboratorio de Microscopía Electrónica, Depto. Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Av. Universidad 3000, Ciudad Universitaria, Col. Universidad Nacional Autónoma de México, Coyoacán 04510, Ciudad de México, Mexico
| | - G H Vázquez-Nin
- Laboratorio de Microscopía Electrónica, Depto. Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Av. Universidad 3000, Ciudad Universitaria, Col. Universidad Nacional Autónoma de México, Coyoacán 04510, Ciudad de México, Mexico
| | - I Muñoz-Velasco
- Laboratorio de Microscopía Electrónica, Depto. Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Av. Universidad 3000, Ciudad Universitaria, Col. Universidad Nacional Autónoma de México, Coyoacán 04510, Ciudad de México, Mexico
| | - M L Escobar
- Laboratorio de Microscopía Electrónica, Depto. Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Av. Universidad 3000, Ciudad Universitaria, Col. Universidad Nacional Autónoma de México, Coyoacán 04510, Ciudad de México, Mexico.
| |
Collapse
|
9
|
Lundberg AL, Jaskiewicz NM, Maucieri AM, Townson DH. Stimulatory effects of TGFα in granulosa cells of bovine small antral follicles. J Anim Sci 2022; 100:6620783. [PMID: 35772748 DOI: 10.1093/jas/skac105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/30/2022] [Indexed: 12/16/2022] Open
Abstract
Intraovarian growth factors play a vital role in influencing the fate of ovarian follicles. They affect proliferation and apoptosis of granulosa cells (GC) and can influence whether small antral follicles continue their growth or undergo atresia. Transforming growth factor-alpha (TGFα), an oocyte-derived growth factor, is thought to regulate granulosa cell function; yet its investigation has been largely overshadowed by emerging interest in TGF-beta superfamily members, such as bone morphogenetic proteins (BMP) and anti-Mullerian hormone (AMH). Here, effects of TGFα on bovine GC proliferation, intracellular signaling, and cytokine-induced apoptosis were evaluated. Briefly, all small antral follicles (3-5 mm) from slaughterhouse specimens of bovine ovary pairs were aspirated and the cells were plated in T25 flasks containing DMEM/F12 medium, 10% FBS, and antibiotic-antimycotic, and incubated at 37 °C in 5% CO2 for 3 to 4 d. Once confluent, the cells were sub-cultured for experiments (in 96-, 12-, or 6-well plates) in serum-free conditions (DMEM/F12 medium with ITS). Exposure of the bGC to TGFα (10 or 100 ng/mL) for 24 h stimulated cell proliferation compared to control (P < 0.05; n = 7 ovary pairs). Proliferation was accompanied by a concomitant increase in mitogen-activated protein kinase (MAPK) signaling within 2 h of treatment, as evidenced by phosphorylated ERK1/2 expression (P < 0.05, n = 3 ovary pairs). These effects were entirely negated, however, by the MAPK inhibitor, U0126 (10uM, P < 0.05). Additionally, prior exposure of the bGC to TGFα (100 ng/mL) failed to prevent Fas Ligand (100 ng/mL)-induced apoptosis, as measured by caspase 3/7 activity (P < 0.05, n = 7 ovary pairs). Collectively, the results indicate TGFα stimulates proliferation of bGC from small antral follicles via a MAPK/ERK-mediated mechanism, but this action alone fails to prevent apoptosis, suggesting that TGFα may be incapable of promoting their persistence in follicles during the process of follicular selection/dominance.
Collapse
Affiliation(s)
| | - Nicole M Jaskiewicz
- Department of Animal and Veterinary Sciences, The University of Vermont, Burlington, VT 05405, USA
| | - Abigail M Maucieri
- Department of Animal and Veterinary Sciences, The University of Vermont, Burlington, VT 05405, USA
| | - David H Townson
- Department of Animal and Veterinary Sciences, The University of Vermont, Burlington, VT 05405, USA
| |
Collapse
|
10
|
Casarini L, Paradiso E, Lazzaretti C, D'Alessandro S, Roy N, Mascolo E, Zaręba K, García-Gasca A, Simoni M. Regulation of antral follicular growth by an interplay between gonadotropins and their receptors. J Assist Reprod Genet 2022; 39:893-904. [PMID: 35292926 PMCID: PMC9050977 DOI: 10.1007/s10815-022-02456-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/07/2022] [Indexed: 11/26/2022] Open
Abstract
Knowledge of the growth and maturation of human antral follicles is based mainly on concepts and deductions from clinical observations and animal models. To date, new experimental approaches and in vitro data contributed to a deep comprehension of gonadotropin receptors' functioning and may provide new insights into the mechanisms regulating still unclear physiological events. Among these, the production of androgen in the absence of proper LH levels, the programming of follicular atresia and dominance are some of the most intriguing. Starting from evolutionary issues at the basis of the gonadotropin receptor signal specificity, we draw a new hypothesis explaining the molecular mechanisms of the antral follicular growth, based on the modulation of endocrine signals by receptor-receptor interactions. The "heteromer hypothesis" explains how opposite death and life signals are delivered by gonadotropin receptors and other membrane partners, mediating steroidogenesis, apoptotic events, and the maturation of the dominant follicle.
Collapse
Affiliation(s)
- Livio Casarini
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Ospedale di Baggiovara, via P. Giardini 1355, 41126, Modena, Italy.
- Center for Genomic Research, University of Modena and Reggio Emilia, Modena, Italy.
- SIERR, Rome, Italy.
| | - Elia Paradiso
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Ospedale di Baggiovara, via P. Giardini 1355, 41126, Modena, Italy
| | - Clara Lazzaretti
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Ospedale di Baggiovara, via P. Giardini 1355, 41126, Modena, Italy
| | - Sara D'Alessandro
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Ospedale di Baggiovara, via P. Giardini 1355, 41126, Modena, Italy
- International PhD School in Clinical and Experimental Medicine (CEM), University of Modena and Reggio Emilia, Modena, Italy
| | - Neena Roy
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Ospedale di Baggiovara, via P. Giardini 1355, 41126, Modena, Italy
| | - Elisa Mascolo
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Ospedale di Baggiovara, via P. Giardini 1355, 41126, Modena, Italy
| | - Kornelia Zaręba
- First Department of Obstetrics and Gynecology, Center of Postgraduate Medical Education, Warsaw, Poland
| | - Alejandra García-Gasca
- Laboratory of Molecular and Cellular Biology, Centro de Investigación en Alimentación y Desarrollo, 82112, Mazatlán, Sinaloa, Mexico
| | - Manuela Simoni
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Ospedale di Baggiovara, via P. Giardini 1355, 41126, Modena, Italy
- Center for Genomic Research, University of Modena and Reggio Emilia, Modena, Italy
- Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria di Modena, Modena, Italy
| |
Collapse
|
11
|
Zhang X, Li M, Huang M, Peng H, Song X, Chen L, Hu W, Xu W, Luo R, Han D, Shi Y, Cao Y, Li X, Hu C. Effect of RFRP-3, the mammalian ortholog of GnIH, on apoptosis and autophagy in porcine ovarian granulosa cells via the p38MAPK pathway. Theriogenology 2021; 180:137-145. [PMID: 34973645 DOI: 10.1016/j.theriogenology.2021.12.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 12/03/2021] [Accepted: 12/18/2021] [Indexed: 11/17/2022]
Abstract
RFamide-related peptide-3 (RFRP-3) has been proposed as a key inhibitory regulator of mammalian reproduction. Our previous studies demonstrated that RFRP-3 mediated apoptosis and autophagy of the epididymis in rats and inhibited porcine granulosa cell (GC) proliferation. However, the molecular mechanisms of the RFRP-3 effect on porcine GC apoptosis and autophagy have not been studied before. Herein, we first investigated the role of RFRP-3 in apoptosis and autophagy in cultured porcine GCs in vitro. Our results showed that different doses of RFRP-3 dose-dependently elevated the expression of autophagy markers at both the mRNA and protein levels, whereas the expression of apoptosis markers exhibited a bidirectional, dose-dependent effect. Because the p38MAPK signaling pathway plays essential roles in apoptosis and autophagy, we subsequently evaluated the effect of RFRP-3 on p38MAPK activation. The results showed that 10-6 M RFRP-3 treatment not only significantly decreased p38MAPK phosphorylation but also inhibited the p38MAPK activator U-46619 to promote p38MAPK activation in porcine GCs. Finally, we applied U-46619 to investigate the role of the p38MAPK signaling pathway in apoptosis and autophagy in RFRP-3-treated porcine GCs. The results showed that all doses of RFRP-3 significantly inhibited the U-46619-induced increase in apoptosis in a dose-dependent manner. However, except for the U-46619-induced Beclin-1 expression increase, which was significantly suppressed in high-dose RFRP-3-treated porcine GCs, other doses of RFRP-3 treatment strengthened the U-46619-induced increase in other autophagy markers. In summary, our data demonstrate a critical role for the p38MAPK signaling pathway in the porcine GC cellular response to RFRP-3 by controlling the balance between apoptosis and autophagy.
Collapse
Affiliation(s)
- Xin Zhang
- College of Animal Science and Technology, Guangxi University, Nanning Guangxi, 530004, China
| | - Ming Li
- Chengdu Research Base of Giant Panda Breeding, China
| | | | - Hao Peng
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, China
| | - Xingxing Song
- College of Animal Science and Technology, Guangxi University, Nanning Guangxi, 530004, China
| | - Lei Chen
- College of Animal Science and Technology, Guangxi University, Nanning Guangxi, 530004, China
| | - Wen Hu
- College of Animal Science and Technology, Guangxi University, Nanning Guangxi, 530004, China
| | - Wenhao Xu
- College of Animal Science and Technology, Guangxi University, Nanning Guangxi, 530004, China
| | - Rongrong Luo
- College of Animal Science and Technology, Guangxi University, Nanning Guangxi, 530004, China
| | - Dongyang Han
- College of Animal Science and Technology, Guangxi University, Nanning Guangxi, 530004, China
| | - Yan Shi
- College of Animal Science and Technology, Guangxi University, Nanning Guangxi, 530004, China
| | - Yajie Cao
- College of Animal Science and Technology, Guangxi University, Nanning Guangxi, 530004, China
| | - Xun Li
- College of Animal Science and Technology, Guangxi University, Nanning Guangxi, 530004, China.
| | - Chuanhuo Hu
- College of Animal Science and Technology, Guangxi University, Nanning Guangxi, 530004, China.
| |
Collapse
|
12
|
Wang S, Tang W, Ma L, Yang J, Huang K, Du X, Luo A, Shen W, Ding T, Ye S, Zhou S, Yang S, Wang S. MiR-145 regulates steroidogenesis in mouse primary granulosa cells through targeting Crkl. Life Sci 2021; 282:119820. [PMID: 34273377 DOI: 10.1016/j.lfs.2021.119820] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 06/28/2021] [Accepted: 07/06/2021] [Indexed: 12/13/2022]
Abstract
AIMS It has been demonstrated that miR-145 is expressed in primordial follicles and modulates the initiation of primordial follicle development. We aimed to explore the function of miR-145 in mouse granulosa cells (mGCs). MATERIALS AND METHODS The proliferation and differentiation of GCs were examined via MTT, EDU assay, QRT-PCR, ELISA and electron microscope analysis. The target of miR-145 was determined by bioinformatics analysis and luciferase reporter assay and the molecular mechanisms were examined via western blot and quantitative Real-Time RT-PCR. KEY FINDINGS We proved that down-regulation of miR-145 could inhibit GCs proliferation and differentiation. In addition, we provided evidence that Crkl was the target gene of miR-145. The miR-145 antagomir caused an increase in Crkl expression and activation of the JNK/p38 MAPK pathway. Overexpression of Crkl with pEGFP-N1-Crkl vector inhibited GCs differentiation and progesterone synthesis as well as activation of the JNK/p38 MAPK pathway. SIGNIFICANCE Our study shows that miR-145 targets Crkl and through the JNK/p38 MAPK signaling pathway promotes the GCs proliferation, differentiation, and steroidogenesis. MiR-145 may play an important role in the ovarian physiology and pathology.
Collapse
Affiliation(s)
- Shuo Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Weicheng Tang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Lanfang Ma
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China; Department of Obstetrics and Gynecology, Guiyang Maternity and Child Health Care Hospital, Guiyang, Guizhou, People's Republic of China
| | - Jun Yang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China; Department of Obstetrics and Gynecology, China-Japan Friendship Hospital, Beijing, People's Republic of China
| | - Kecheng Huang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Xiaofang Du
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China; Department of Obstetrics and Gynecology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Aiyue Luo
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Wei Shen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Ting Ding
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Shuangmei Ye
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Su Zhou
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Shuhong Yang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China.
| | - Shixuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China.
| |
Collapse
|
13
|
Meng L, Zhao K, Wang CC, Tao J, Wu Z, Teerds K, Zhang S. Characterization of Long Non-Coding RNA Profiles in Porcine Granulosa Cells of Healthy and Atretic Antral Follicles: Implications for a Potential Role in Apoptosis. Int J Mol Sci 2021; 22:ijms22052677. [PMID: 33800928 PMCID: PMC7962063 DOI: 10.3390/ijms22052677] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 02/23/2021] [Accepted: 03/01/2021] [Indexed: 12/13/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) play important roles in multiple biological processes including ovarian follicular development. Here we aimed to gain novel information regarding lncRNAs transcriptome profiles in porcine granulosa cells of advanced atretic antral (AA) and healthy antral (HA) follicles using RNA-seq. A total of 11,321 lncRNAs including 10,813 novel and 508 annotated lncRNAs were identified, of which 173 lncRNAs were differentially expressed (DE-lncRNAs); ten of these were confirmed by qRT-PCR. Gene Ontology indicated that DE-lncRNAs associated with developmental processes were highly enriched. Pathway analysis demonstrated predicted cis- and trans-targets of DE-lncRNAs. Potential mRNA targets of up-regulated DE-lncRNAs were mainly enriched in apoptosis related pathways, while targeted genes of downregulated DE-lncRNAs were primarily enriched in metabolism and ovarian steroidogenesis pathways. Linear regression analyses showed that expression of upregulated DE-lncRNAs was significantly associated with apoptosis related genes. NOVEL_00001850 is the most-downregulated DE-lncRNA (FDR = 0.04, FC = -6.53), of which miRNA binding sites were predicted. KEGG analysis of its downregulated target genes revealed that ovarian steroidogenesis was the second most highlighted pathway. qRT-PCR and linear regression analysis confirmed the expression and correlation of its potential targeted gene, CYP19A1, a key gene involved in estradiol synthesis. Our results indicate that lncRNAs may participate in granulosa cells apoptosis and thus antral follicular atresia.
Collapse
Affiliation(s)
- Li Meng
- National Engineering Research Center of Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (L.M.); (K.Z.); (J.T.); (Z.W.)
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Department of Obstetrics & Gynaecology, Li Ka Shing Institute of Health Sciences, School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China;
| | - Kun Zhao
- National Engineering Research Center of Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (L.M.); (K.Z.); (J.T.); (Z.W.)
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Chi Chiu Wang
- Department of Obstetrics & Gynaecology, Li Ka Shing Institute of Health Sciences, School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China;
| | - Jian Tao
- National Engineering Research Center of Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (L.M.); (K.Z.); (J.T.); (Z.W.)
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Zhenfang Wu
- National Engineering Research Center of Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (L.M.); (K.Z.); (J.T.); (Z.W.)
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Katja Teerds
- Human and Animal Physiology, Wageningen University, De Elst 1, 6708 WD Wageningen, The Netherlands
- Correspondence: (K.T.); (S.Z.)
| | - Shouquan Zhang
- National Engineering Research Center of Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (L.M.); (K.Z.); (J.T.); (Z.W.)
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Correspondence: (K.T.); (S.Z.)
| |
Collapse
|
14
|
Fu Q, Mo TR, Hu XY, Fu Y, Li J. miR-19a mitigates hypoxia/reoxygenation-induced injury by depressing CCL20 and inactivating MAPK pathway in human embryonic cardiomyocytes. Biotechnol Lett 2020; 43:393-405. [PMID: 33165673 DOI: 10.1007/s10529-020-03045-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 10/31/2020] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Myocardial infarction (MI) is a prevalent cardiovascular puzzle and a mainspring of disease-induced mortality. We performed this investigation to detect the role of putative important miRNAs or genes in MI. RESULTS CCL20 may be a potential therapeutic target, which was directly targeted and negatively regulated by miR-19a. CCL20 expression was significantly increased in MI tissue samples, but miR-19a was expressed at lower levels in MI. H/R treatment inhibited cell viability and induced an increase of apoptotic rate compared with Sham group. However, miR-19a mimic relieved the H/R-stimulated injury to cardiomyocytes. Protective effect of miR-19a against H/R in cardiomyocytes was reversed by CCL20 enhancement, and MAPK pathway was inactivated during this progression. CONCLUSIONS miR-19a eliminates the H/R-induced injury in cardiomyocytes through directly targeting CCL20 and attenuating the activity of MAPK signaling pathway. These observations highlighted the therapeutic roles of miR-19a and CCL20 for MI treatment.
Collapse
Affiliation(s)
- Qiang Fu
- Department of Chinese Formulae, Heilongjiang University of Chinese Medicine, No. 24, Heping Road, Xiangfang District, Harbin, 150040, Heilongjiang, China
| | - Tao-Ran Mo
- Department of Nephrology, The First Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin, 150040, Heilongjiang, China
| | - Xiao-Yang Hu
- Department of Chinese Formulae, Heilongjiang University of Chinese Medicine, No. 24, Heping Road, Xiangfang District, Harbin, 150040, Heilongjiang, China
| | - Yin Fu
- Department of Chinese Formulae, Heilongjiang University of Chinese Medicine, No. 24, Heping Road, Xiangfang District, Harbin, 150040, Heilongjiang, China
| | - Ji Li
- Department of Chinese Formulae, Heilongjiang University of Chinese Medicine, No. 24, Heping Road, Xiangfang District, Harbin, 150040, Heilongjiang, China.
| |
Collapse
|
15
|
Oxidized Oils and Oxidized Proteins Induce Apoptosis in Granulosa Cells by Increasing Oxidative Stress in Ovaries of Laying Hens. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:2685310. [PMID: 32831991 PMCID: PMC7422066 DOI: 10.1155/2020/2685310] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/27/2020] [Accepted: 07/09/2020] [Indexed: 12/14/2022]
Abstract
The storage and preparation of corn for animal feed inevitably lead to lipid and protein peroxidation. Granulosa cells play an important role in follicular development in the ovaries, and hen laying productivity is likely to be dependent on follicle health and number. We hypothesized that oxidized oil and protein induce apoptosis via oxidative stress in laying hen granulosa cells. A sample of 360 38-week-old Lohmann commercial laying hens was used in a 2 × 2 factorial design for 8 weeks. Dietary treatments included dietary oil (fresh corn oil (FO) or oxidized corn oil (OO)) and corn gluten meal (fresh corn gluten meal (FP) or oxidized corn gluten meal (OP)). Productivity, ovarian histology, granulosa cell apoptosis, and indicators of oxidative stress were evaluated in all groups. Both dietary OO and OP decreased egg production and the average daily feed intake (ADFI) of laying hens. Flow cytometry, TUNEL, and real-time PCR revealed that both dietary OO and OP induced granulosa cell apoptosis in prehierarchical and hierarchical follicles. Furthermore, dietary OO and OP caused oxidative stress in prehierarchical and hierarchical follicles, as indicated by the downregulation of antioxidant-related-gene expression. Moreover, forkhead box O1 (FoxO1), extracellular regulated protein kinase (ERK), and c-Jun NH2 kinase (JNK) are involved in potential apoptosis regulation pathways in the granulosa cells of laying hens fed OO and OP, as indicated by the upregulation of FoxO1 expression and downregulation of ERK/JNK expression. These results indicate that OO and OP induce granulosa cell apoptosis via oxidative stress, and the combined use of OO and OP aggravates the adverse effects of oxidative stress in laying hens.
Collapse
|
16
|
Warma A, Ndiaye K. Functional effects of Tribbles homolog 2 in bovine ovarian granulosa cells†. Biol Reprod 2020; 102:1177-1190. [PMID: 32159216 DOI: 10.1093/biolre/ioaa030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 12/12/2019] [Accepted: 03/07/2020] [Indexed: 12/19/2022] Open
Abstract
Tribbles homologs (TRIB) 1, 2, and 3 represent atypical members of the serine/threonine kinase superfamily. We previously identified TRIB2 as a differentially expressed gene in granulosa cells (GCs) of bovine preovulatory follicles. The current study aimed to further investigate TRIB2 regulation and study its function in the ovary. GCs were collected from follicles at different developmental stages: small antral follicles (SF), dominant follicles (DF) at day 5 of the estrous cycle, and hCG-induced ovulatory follicles (OFs). RT-qPCR analyses showed greater expression of TRIB2 in GC of DF as compared to OF and a significant downregulation of TRIB2 steady-state mRNA amounts by hCG/LH, starting at 6 h through 24 h post-hCG as compared to 0 h. Specific anti-TRIB2 polyclonal antibodies were generated and western blot analysis confirmed TRIB2 downregulation by hCG at the protein level. In vitro studies showed that FSH stimulates TRIB2 expression in GC. Inhibition of TRIB2 using CRISPR/Cas9 resulted in a significant increase in PCNA expression and an increase in steroidogenic enzyme CYP19A1 expression, while TRIB2 overexpression tended to decrease GC proliferation. TRIB2 inhibition also resulted in a decrease in transcription factors connective tissue growth factor (CTGF) and ankyrin repeat domain-containing protein 1 (ANKRD1) expression, while TRIB2 overexpression increased CTGF and ANKRD1. Additionally, western blot analyses showed reduction in ERK1/2 (MAPK3/1) and p38MAPK (MAPK14) phosphorylation levels following TRIB2 inhibition, while TRIB2 overexpression increased p-ERK1/2 and p-p38MAPK. These results provide evidence that TRIB2 modulates MAPK signaling in GC and that TRIB2 could act as a regulator of GC proliferation and function, which could affect steroidogenesis during follicular development.
Collapse
Affiliation(s)
- Aly Warma
- Département de Biomédecine Vétérinaire, Faculté de Médecine Vétérinaire, Centre de Recherche en Reproduction et Fertilité (CRRF), Université de Montréal, St-Hyacinthe, Québec, Canada
| | - Kalidou Ndiaye
- Département de Biomédecine Vétérinaire, Faculté de Médecine Vétérinaire, Centre de Recherche en Reproduction et Fertilité (CRRF), Université de Montréal, St-Hyacinthe, Québec, Canada
| |
Collapse
|
17
|
Yang J, Liu L, Yang X, Duan Y, Zeng P, Yang S, Ma C, Li X, Han J, Chen Y. Combination of MEK1/2 inhibitor and LXR ligand synergistically inhibit atherosclerosis in LDLR deficient mice. Biochem Biophys Res Commun 2020; 522:512-517. [PMID: 31784089 DOI: 10.1016/j.bbrc.2019.11.115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 11/18/2019] [Indexed: 11/20/2022]
Abstract
Combined LXR ligand (T0901317) and MEK1/2 inhibitor (U0126) not only reduces atherosclerosis in apoE deficient mice, but also blocks LXR ligand-induced fatty liver and hypertriglyceridemia. However, the atheroprotective function of combined T0901317 and U0126 should be further investigated in LDLR deficient (LDLR-/-) mice since deficiency of LDLR not apoE can occur to humans with a high frequency. Herein, we validated the effectiveness of this combinational therapy on the development of atherosclerosis in LDLR-/- mice to demonstrate its potential application in clinic. We found although T0901317 or U0126 alone reduced atherosclerotic plaques in en face and aortic root areas in HFD-fed LDLR-/- mice, their combination inhibited lesions in a synergistic manner. Combined U0126 and T0901317 had no effect on serum total cholesterol levels. T0901317 deceased HDL-cholesterol levels, which was restored by combined U0126. Meanwhile, U0126 alleviated T0901317-induced triglyceride accumulation, the major adverse effect of T0901317 which limits its clinical utility. Mechanistically, U0126 reduced fatty acid de novo synthesis by inhibiting hepatic fatty acid synthase (FASN) expression, thereby correcting T0901317-induced triglyceride overproduction. In conclusion, our study demonstrates that combination of MEK1/2 inhibitor and LXR ligand can synergistically reduce atherosclerosis in LDLR deficient mice without lipogenic side effects.
Collapse
Affiliation(s)
- Jie Yang
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, China
| | - Lipei Liu
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, China
| | - Xiaoxiao Yang
- Key Laboratory of Major Metabolic Diseases and Nutritional Regulation of Anhui Department of Education, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Yajun Duan
- Key Laboratory of Major Metabolic Diseases and Nutritional Regulation of Anhui Department of Education, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Peng Zeng
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, China
| | - Shu Yang
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, China
| | - Chuanrui Ma
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, China
| | - Xiaoju Li
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, China
| | - Jihong Han
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, China; Key Laboratory of Major Metabolic Diseases and Nutritional Regulation of Anhui Department of Education, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Yuanli Chen
- Key Laboratory of Major Metabolic Diseases and Nutritional Regulation of Anhui Department of Education, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China.
| |
Collapse
|
18
|
Xu W, Zhang L, Zhang Y, Zhang K, Wu Y, Jin D. TRAF1 Exacerbates Myocardial Ischemia Reperfusion Injury via ASK1-JNK/p38 Signaling. J Am Heart Assoc 2019; 8:e012575. [PMID: 31650881 PMCID: PMC6898833 DOI: 10.1161/jaha.119.012575] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background After acute myocardial infarction, the recovery of ischemic myocardial blood flow may cause myocardial reperfusion injury, which reduces the efficacy of myocardial reperfusion. Ways to reduce and prevent myocardial ischemia/reperfusion (I/R) injury are of great clinical significance in the treatment of patients with acute myocardial infarction. TRAF1 (tumor necrosis factor receptor-associated factor 1) is an important adapter protein that is implicated in molecular events regulating immunity, inflammation, and cell death. Little is known about the role and impact of TRAF1 in myocardial I/R injury. Methods and Results TRAF1 expression is markedly induced in wild-type mice and cardiomyocytes after I/R or hypoxia/reoxygenation stimulation. I/R models were established in TRAF1 knockout mice and wild type mice (n=10 per group). We demonstrated that TRAF1 deficiency protects against myocardial I/R-induced loss of heat function, inflammation, and cardiomyocyte death. In addition, overexpression of TRAF1 in primary cardiomyocytes promotes hypoxia/reoxygenation-induced inflammation and apoptosis in vitro. Mechanistically, TRAF1 promotes myocardial I/R injury through regulating ASK1 (apoptosis signal-regulating kinase 1)-mediated JNK/p38 (c-Jun N-terminal kinase/p38) MAPK (mitogen-activated protein kinase) cascades. Conclusions Our results indicated that TRAF1 aggravates the development of myocardial I/R injury by enhancing the activation of ASK1-mediated JNK/p38 cascades. Targeting the TRAF1-ASK1-JNK/p38 pathway provide feasible therapies for cardiac I/R injury.
Collapse
Affiliation(s)
- Weipan Xu
- Department of Cardiology Huangshi Central Hospital Affiliated Hospital of Hubei Polytechnic University Edong Healthcare Group Huang Shi China.,Hubei Key Laboratory of Kidney Disease Pathogenesis and Intervention Huang Shi China
| | - Li Zhang
- Center for Animal Experiment Wuhan University Wuhan China
| | - Yi Zhang
- Department of Cardiology Huangshi Central Hospital Affiliated Hospital of Hubei Polytechnic University Edong Healthcare Group Huang Shi China
| | - Kai Zhang
- Department of Cardiology Huangshi Central Hospital Affiliated Hospital of Hubei Polytechnic University Edong Healthcare Group Huang Shi China
| | - Yongbo Wu
- Department of Cardiology Huangshi Central Hospital Affiliated Hospital of Hubei Polytechnic University Edong Healthcare Group Huang Shi China
| | - Daoqun Jin
- Department of Cardiology Huangshi Central Hospital Affiliated Hospital of Hubei Polytechnic University Edong Healthcare Group Huang Shi China
| |
Collapse
|
19
|
Landry DA, Labrecque R, Grand FX, Vigneault C, Blondin P, Sirard MA. Effect of heifer age on the granulosa cell transcriptome after ovarian stimulation. Reprod Fertil Dev 2019; 30:980-990. [PMID: 30447702 DOI: 10.1071/rd17225] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 11/17/2017] [Indexed: 12/15/2022] Open
Abstract
Genomic selection is accelerating genetic gain in dairy cattle. Decreasing generation time by using younger gamete donors would further accelerate breed improvement programs. Although ovarian stimulation of peripubertal animals is possible and embryos produced in vitro from the resulting oocytes are viable, developmental competence is lower than when sexually mature cows are used. The aim of the present study was to shed light on how oocyte developmental competence is acquired as a heifer ages. Ten peripubertal Bos taurus Holstein heifers underwent ovarian stimulation cycles at the ages of 8, 11 (mean 10.8) and 14 (mean 13.7) months. Collected oocytes were fertilised in vitro with spermatozoa from the same adult male. Each heifer served as its own control. The transcriptomes of granulosa cells recovered with the oocytes were analysed using microarrays. Differential expression of certain genes was measured using polymerase chain reaction. Principal component analysis of microarray data revealed that the younger the animal, the more distinctive the gene expression pattern. Using ingenuity pathway analysis (IPA) and NetworkAnalyst (www.networkanalyst.ca), the main biological functions affected in younger donors were identified. The results suggest that cell differentiation, inflammation and apoptosis signalling are less apparent in peripubertal donors. Such physiological traits have been associated with a lower basal concentration of LH.
Collapse
Affiliation(s)
- David A Landry
- Centre de recherche en reproduction, développement et santé intergénérationnelle (CRDSI), Département des Sciences Animales, Faculté des sciences de l'agriculture et de l'alimentation, Université Laval, 2325 Rue de l'Université, Québec, G1V0A6, Canada
| | - Rémi Labrecque
- Boviteq Inc., 19320 Rang Grand Saint Francois Ouest, J2T 5H1, Saint-Hyacinthe, Québec, Canada
| | - François-Xavier Grand
- Boviteq Inc., 19320 Rang Grand Saint Francois Ouest, J2T 5H1, Saint-Hyacinthe, Québec, Canada
| | - Christian Vigneault
- Boviteq Inc., 19320 Rang Grand Saint Francois Ouest, J2T 5H1, Saint-Hyacinthe, Québec, Canada
| | - Patrick Blondin
- Boviteq Inc., 19320 Rang Grand Saint Francois Ouest, J2T 5H1, Saint-Hyacinthe, Québec, Canada
| | - Marc-André Sirard
- Centre de recherche en reproduction, développement et santé intergénérationnelle (CRDSI), Département des Sciences Animales, Faculté des sciences de l'agriculture et de l'alimentation, Université Laval, 2325 Rue de l'Université, Québec, G1V0A6, Canada
| |
Collapse
|
20
|
Demiray SB, Goker ENT, Tavmergen E, Yilmaz O, Calimlioglu N, Soykam HO, Oktem G, Sezerman U. Differential gene expression analysis of human cumulus cells. Clin Exp Reprod Med 2019; 46:76-86. [PMID: 31181875 PMCID: PMC6572664 DOI: 10.5653/cerm.2019.46.2.76] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 02/02/2019] [Indexed: 12/14/2022] Open
Abstract
Objective This study was performed to explore the possibility that each oocyte and its surrounding cumulus cells might have different genetic expression patterns that could affect human reproduction. Methods Differential gene expression analysis was performed for 10 clusters of cumulus cells obtained from 10 cumulus-oocyte complexes from 10 patients. Same procedures related to oocyte maturation, microinjection, and microarray analyses were performed for each group of cumulus cells. Two differential gene expression analyses were performed: one for the outcome of clinical pregnancy and one for the outcome of live birth. Results Significant genes resulting from these analyses were selected and the top 20 affected pathways in each group were analyzed. Circadian entrainment is determined to be the most affected pathway for clinical pregnancy, and proteoglycans in cancer pathway is the most affected pathway for live birth. Circadian entrainment is also amongst the 12 pathways that are found to be in top 20 affected pathways for both outcomes, and has both lowest p-value and highest number of times found count. Conclusion Although further confirmatory studies are necessary, findings of this study suggest that these pathways, especially circadian entrainment in cumulus cells, may be essential for embryo development and pregnancy.
Collapse
Affiliation(s)
- Sirin Bakti Demiray
- Assisted Reproduction Unit, Tepecik Education and Research Hospital, Izmir, Turkey
| | | | - Erol Tavmergen
- Department of Obstetrics and Gynecology, Ege University Faculty of Medicine, Izmir, Turkey
| | - Ozlem Yilmaz
- Department of Histology and Embryology, Ege University Faculty of Medicine, Izmir, Turkey
| | - Nilufer Calimlioglu
- Department of Obstetrics and Gynecology, Ege University Faculty of Medicine, Izmir, Turkey
| | | | - Gulperi Oktem
- Department of Histology and Embryology, Ege University Faculty of Medicine, Izmir, Turkey
| | - Ugur Sezerman
- Department of Biostatistics and Bioinformatics, Acibadem Mehmet Ali Aydinlar University, Institute of Health Sciences, Istanbul, Turkey
| |
Collapse
|
21
|
Abstract
The glycoprotein follicle-stimulating hormone (FSH) acts on gonadal target cells, hence regulating gametogenesis. The transduction of the hormone-induced signal is mediated by the FSH-specific G protein-coupled receptor (FSHR), of which the action relies on the interaction with a number of intracellular effectors. The stimulatory Gαs protein is a long-time known transducer of FSH signaling, mainly leading to intracellular cAMP increase and protein kinase A (PKA) activation, the latter acting as a master regulator of cell metabolism and sex steroid production. While in vivo data clearly demonstrate the relevance of PKA activation in mediating gametogenesis by triggering proliferative signals, some in vitro data suggest that pro-apoptotic pathways may be awakened as a "dark side" of cAMP/PKA-dependent steroidogenesis, in certain conditions. P38 mitogen-activated protein kinases (MAPK) are players of death signals in steroidogenic cells, involving downstream p53 and caspases. Although it could be hypothesized that pro-apoptotic signals, if relevant, may be required for regulating atresia of non-dominant ovarian follicles, they should be transient and counterbalanced by mitogenic signals upon FSHR interaction with opposing transducers, such as Gαi proteins and β-arrestins. These molecules modulate the steroidogenic pathway via extracellular-regulated kinases (ERK1/2), phosphatidylinositol-4,5-bisphosphate 3-kinases (PI3K)/protein kinase B (AKT), calcium signaling and other intracellular signaling effectors, resulting in a complex and dynamic signaling network characterizing sex- and stage-specific gamete maturation. Even if the FSH-mediated signaling network is not yet entirely deciphered, its full comprehension is of high physiological and clinical relevance due to the crucial role covered by the hormone in regulating human development and reproduction.
Collapse
Affiliation(s)
- Livio Casarini
- Unit of Endocrinology, Department Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Center for Genomic Research, University of Modena and Reggio Emilia, Modena, Italy
- *Correspondence: Livio Casarini
| | - Pascale Crépieux
- PRC, UMR INRA0085, CNRS 7247, Centre INRA Val de Loire, Nouzilly, France
| |
Collapse
|
22
|
Wang JP, Huang XY, Zhang KY, Ding XM, Zeng QF, Bai SP, Celi P, Yan L, Peng HW, Mao XB. Involvement of P38 and ERK1/2 in mitochondrial pathways independent cell apoptosis in oviduct magnum epithelial cells of layers challenged with vanadium. ENVIRONMENTAL TOXICOLOGY 2018; 33:1312-1320. [PMID: 30251772 DOI: 10.1002/tox.22639] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 08/05/2018] [Accepted: 08/09/2018] [Indexed: 06/08/2023]
Abstract
Vanadium (V) can induce cell apoptosis in layers' oviduct resulting in egg quality reduction. In this study, we investigated the relationship between the mitogen-activated protein kinase (MAPK)-signaling pathway and V-induced apoptosis in poultry oviduct magnum epithelial cells (OMECs). Cultured OMECs were divided into 8 treatment groups: 0 μmol/L V (control), 100 μmol/L V (V100), V100 + P38MAPK inhibitor (SB203580), SB203580, V100 + extracellular signal-regulated kinases 1 and 2 (ERK1/2) inhibitor (U0126), U0126, V100 + c-JUN NH2 -terminal kinase (JNK) inhibitor (SP600125), and SP600125. The OMECs were pretreated with the MAPK inhibitors before their treatment with V100 for 12 h. V100 increased the apoptosis of OMECs (P < .05), while 3 MAPK inhibitors suppressed V100-induced apoptosis P < .05); V100 enhanced the depolarization of △ψm (P < .05), and SB203580 and U0126 alleviated the V100-induced △ψm decrease (P < .05); V100 downregulated B-cell lymphoma-2 (Bcl-2) and poly [Adenosine diphosphate ribose] polymerase 1 (PARP1) mRNA expression (P < .05), meanwhile it upregulated Bcl-2 associated x (Bax), Apaf1, cytochrome C (CytC) and cysteine aspartase (caspase) 3, 8, 9 mRNA expression (P < .05). All MAPKs inhibitors alleviated the up-regulation of V100 for Bax and caspase 3 mRNA expression and down-regulation of V100 for Bcl-2 expression (P < .05). SB203580 and U0126 upregulated CytC expression treated by V100 (P < .05), except SP600125, while SB203580 administration resulted in a similar upregulation of PARP1 expression (P < .05). SP600125 can alleviated V triggered p-P38MAPK (phosphor-P38), p-ERK1/2 (phosphor-ERK1/2), p-JNK (phosphor-JNK) increase on OME cells, and SB203580 and U0126 had a similar response to phosphor-P38 and p-JNK (P < .05). It concluded that V-induced apoptosis in OMECs through the activation of P38 and ERK1/2, and by increasing the ratio of Bax/Bcl-2, which resulted in △ψm decrease, CytC release into the cytosol; consequently caspase 3 is recruited and activated, PARP1 is cleaved, eventually leading to apoptosis.
Collapse
Affiliation(s)
- Jian-Ping Wang
- Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Xuan-Yang Huang
- Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Ke-Ying Zhang
- Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Xue-Mei Ding
- Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Qiu-Feng Zeng
- Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Shi-Ping Bai
- Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Pietro Celi
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
- DSM Nutritional Products, Animal Nutrition and Health, Columbia, Maryland
| | - Lei Yan
- DSM Nutritional Products, Animal Nutrition and Health, Columbia, Maryland
| | - Huan-Wei Peng
- Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Xiang-Bing Mao
- Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
23
|
Chen F, Wen X, Lin P, Chen H, Wang A, Jin Y. Activation of CREBZF Increases Cell Apoptosis in Mouse Ovarian Granulosa Cells by Regulating the ERK1/2 and mTOR Signaling Pathways. Int J Mol Sci 2018; 19:ijms19113517. [PMID: 30413092 PMCID: PMC6274897 DOI: 10.3390/ijms19113517] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 10/27/2018] [Accepted: 10/30/2018] [Indexed: 12/21/2022] Open
Abstract
CREBZF, a multifunction transcriptional regulator, participates in the regulation of numerous cellular functions. The aims of the present study were to detect the localization of CREBZF expression in the ovary and explore the role of CREBZF and related mechanisms in the apoptosis of ovarian granulosa cells. We found by immunohistochemistry that CREBZF was mainly located in granulosa cells and oocytes during the estrous cycle. Western blot analysis showed that SMILE was the main isoform of CREBZF in the ovary. The relationship between apoptosis and CREBZF was assessed via CREBZF overexpression and knockdown. Flow cytometry analysis showed that CREBZF induced cell apoptosis in granulosa cells. Western bolt analysis showed that overexpression of CREBZF upregulated BAX and cleaved Caspase-3, while it downregulated BCL-2. Furthermore, overexpression of CREBZF inhibited the ERK1/2 and mTOR signaling pathways through the phosphorylation of intracellular-regulated kinases 1/2 (ERK1/2) and p70 S6 kinase (S6K1). Moreover, we found that CREBZF also activated autophagy by increasing LC3-II. In summary, these results suggest that CREBZF might play a proapoptotic role in cell apoptosis in granulosa cells, possibly by regulating the ERK1/2 and mTOR signaling pathways.
Collapse
Affiliation(s)
- Fenglei Chen
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China.
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling 712100, Shaanxi, China.
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China.
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China.
| | - Xin Wen
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China.
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Pengfei Lin
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China.
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Huatao Chen
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China.
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Aihua Wang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Yaping Jin
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China.
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
24
|
Wang J, Huang X, Zhang K, Mao X, Ding X, Zeng Q, Bai S, Xuan Y, Peng H. Vanadate oxidative and apoptotic effects are mediated by the MAPK-Nrf2 pathway in layer oviduct magnum epithelial cells. Metallomics 2018; 9:1562-1575. [PMID: 29022012 DOI: 10.1039/c7mt00191f] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Vanadium is a metal of high physiological, environmental and industrial importance. However, vanadium-induced oxidative stress can reduce the egg quality of poultry, and be potentially harmful to humans, and the underlying mechanism is not clear. In this study, we investigated the underlying relationship between the oxidant-sensitive mitogen-activated protein kinase (MAPK) signaling pathway and vanadium-induced oxidative stress in oviduct magnum epithelial (OME) cells. Cultured OME cells were treated with 100 μmol L-1 vanadium and/or MAPK inhibitors [P38 MAPK inhibitor, SB203580; extracellular regulated protein kinase 1 and 2 (ERK1/2) inhibitor, U0126; c-JUN N-terminal kinases (JNK) inhibitor, SP600125]. Cell viability, apoptosis, and generation of reactive oxygen species (ROS) were assessed using flow cytometry. The expression of oxidative stress-related genes and their proteins was measured by reverse transcription-polymerase chain reaction and western blotting. Vanadium treatment reduced cell viability, whereas pretreated OME cells with SB203580 and U0126 prevented the reducing effect of vanadium on cell viability (P < 0.05). Likewise, MAPK inhibitors effectively suppressed vanadium-induced apoptosis and ROS generation (P < 0.05). In the OME cells treated with vanadium, SB203580 (P < 0.05) and SP600125 (P = 0.08) increased catalase activity by 89.3% and 55.3%; SB203580 and U0126 increased (P < 0.05) glutathione peroxidase activity by 44.9% and 51.1%, respectively. Incubation of OME cells with MAPK inhibitors also prevents malondialdehyde concentration increase and lactic dehydrogenase activity decrease in response to vanadium (P < 0.05). Vanadium downregulated P38, ERK1/2, JNK, Nrf2, sMaf, GCLC, NQO1 and HO-1 mRNA expression (P < 0.05). In contrast, inhibition of JNK with SP600125 upregulated P38, ERK1/2, JNK, Nrf2, GCLC and HO-1 mRNA expression (P < 0.05); inhibition of P38 with SB203580 upregulated JNK, NQO1 and HO-1 mRNA expression (P < 0.05); and inhibition of ERK1/2 with U0126 upregulated ERK1/2, GCLC and HO-1 mRNA expression (P < 0.05). Moreover, phosphorylation of P38, ERK1/2, JNK, and Nrf2 proteins was enhanced by V incubation; however, SP600125 blocked the phosphorylation of these proteins, whereas SB203580 blocked the phosphorylation of P38 and Nrf2. These results indicate that vanadium inducing oxidative stress in OME cells might be, at least, associated with the phosphorylation of the P38MAPK/JNK-Nrf2 pathway, which reduces the expression of phase II detoxifying enzymes.
Collapse
Affiliation(s)
- Jianping Wang
- Animal Nutrition Institute, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Chengdu 611130, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Rak A, Drwal E, Rame C, Knapczyk-Stwora K, Słomczyńska M, Dupont J, Gregoraszczuk E. Expression of apelin and apelin receptor (APJ) in porcine ovarian follicles and in vitro effect of apelin on steroidogenesis and proliferation through APJ activation and different signaling pathways. Theriogenology 2017; 96:126-135. [DOI: 10.1016/j.theriogenology.2017.04.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 04/05/2017] [Accepted: 04/06/2017] [Indexed: 10/19/2022]
|
26
|
Jiang Y, Tang X, Zhou B, Sun T, Chen H, Zhao X, Wang Y. The ROS-mediated pathway coupled with the MAPK-p38 signalling pathway and antioxidant system plays roles in the responses of Mytilus edulis haemocytes induced by BDE-47. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 187:55-63. [PMID: 28371659 DOI: 10.1016/j.aquatox.2017.03.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/10/2017] [Accepted: 03/14/2017] [Indexed: 06/07/2023]
Abstract
Our previous study found that BDE-47 could change the immune function of haemocytes in Mytilus edulis, and reactive oxygen species (ROS) might be involved in the process of physiological alteration. Here, we aimed to better understand this relationship. To accomplish this, we analysed changes in different ROS as well as various antioxidant system components. Additionally, the expression of MAPK-p38, a signalling protein regulated by ROS that helps to regulate numerous cellular processes, was also analysed. BDE-47 was given at low, medium, and high amounts. The results showed that (1) BDE-47 significantly affected ROS component levels in haemocytes. O2- content was increased under all conditions. H2O2 content was also increased under all conditions, except in the middle concentration group. In contrast, OH content was increased in the low and middle concentration groups and decreased in the high concentration group. (2) Estimations of the antioxidant systems revealed concentration-dependent changes. Catalase activity was increased throughout the experiment, while superoxide dismutase (SOD) exhibited a decreasing trend in the tested groups with an increase of exposure time. On day 21, only the high concentration group showed a slight increase in SOD activity compared to the control. Furthermore, glutathione peroxidase and glutathione reductase activity increased in the low and middle concentration groups but decreased in the high concentration group. The GSH/GSSG ratio increased for all treatments over time, indicating that changes in redox status occurred. (3) MAPK-p38 was activated following BDE-47 exposure. Based on our previous study, we speculate that BDE-47 exposure induces ROS production and affects the ROS-mediated pathway, which may explain the resultant functional damage observed in haemocytes. Furthermore, BDE-47 also affected the antioxidant system and altered redox status, although these changes did not ameliorate the damage caused by ROS.
Collapse
Affiliation(s)
- Yongshun Jiang
- Department of Marine Ecology, College of Marine Life Science, Ocean University of China, Qingdao, 266003, China.
| | - Xuexi Tang
- Department of Marine Ecology, College of Marine Life Science, Ocean University of China, Qingdao, 266003, China.
| | - Bin Zhou
- Department of Marine Ecology, College of Marine Life Science, Ocean University of China, Qingdao, 266003, China.
| | - Tianli Sun
- Department of Marine Ecology, College of Marine Life Science, Ocean University of China, Qingdao, 266003, China.
| | - Hongmei Chen
- Department of Marine Ecology, College of Marine Life Science, Ocean University of China, Qingdao, 266003, China.
| | - Xinyu Zhao
- Department of Marine Ecology, College of Marine Life Science, Ocean University of China, Qingdao, 266003, China.
| | - You Wang
- Department of Marine Ecology, College of Marine Life Science, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
27
|
Ba P, Duan X, Fu G, Lv S, Yang P, Sun Q. Differential effects of p38 and Erk1/2 on the chondrogenic and osteogenic differentiation of dental pulp stem cells. Mol Med Rep 2017; 16:63-68. [PMID: 28498451 PMCID: PMC5482129 DOI: 10.3892/mmr.2017.6563] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 02/14/2017] [Indexed: 12/18/2022] Open
Abstract
The extracellular signal-regulated protein kinase 1/2 (Erk1/2) and p38 mitogen-activated protein-kinase pathways serve important roles in the regulation of osteogenic and chondrogenic differentiation in mesenchymal stem cells (MSCs). However, the exact mechanism remains unclear, and the effect is controversial. In the present study, the effects of Erk1/2 and p38 on the osteogenic and chondrogenic differentiation of dental pulp stem cells (DPSCs) were compared in vitro. The results indicated that inhibition of Erk1/2 is able to enhance the osteogenic differentiation of DPSCs and inhibit chondrogenic differentiation, whereas inhibition of p38 demonstrated the opposite effect. When compared with previous studies, the present study further confirmed that Erk1/2 and p38 serve important, but complicated, roles in regulating the differentiation of MSCs. Different chemical and physical stimuli, cell types, culture methods, times of inhibitor administration and the dosage of the inhibitor may influence the effect of Erk1/2 and p38 on the differentiation of MSCs. The present study aims to better understand the mechanisms that control the differentiation of MSCs and may be helpful in creating more effective tissue regeneration.
Collapse
Affiliation(s)
- Pengfei Ba
- Department of Periodontology, School of Stomatology, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Xiaoyu Duan
- National Engineering Laboratory, WeGo Group Co., Ltd., Weihai, Shandong 264210, P.R. China
| | - Guo Fu
- Department of Periodontology, Weihai Stomatological Hospital, Weihai, Shandong 264200, P.R. China
| | - Shuyan Lv
- Department of Periodontology, Weihai Stomatological Hospital, Weihai, Shandong 264200, P.R. China
| | - Pishan Yang
- Department of Periodontology, School of Stomatology, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Qinfeng Sun
- Department of Periodontology, School of Stomatology, Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
28
|
Hu KL, Zhao H, Chang HM, Yu Y, Qiao J. Kisspeptin/Kisspeptin Receptor System in the Ovary. Front Endocrinol (Lausanne) 2017; 8:365. [PMID: 29354093 PMCID: PMC5758547 DOI: 10.3389/fendo.2017.00365] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 12/13/2017] [Indexed: 12/26/2022] Open
Abstract
Kisspeptins are a family of neuropeptides that are critical for initiating puberty and regulating ovulation in sexually mature females via the central control of the hypothalamic-pituitary-gonadal axis. Recent studies have shown that kisspeptin and its receptor kisspeptin receptor (KISS1R) are expressed in the mammalian ovary. Convincing evidence indicates that kisspeptins can activate a wide variety of signals via its binding to KISS1R. Experimental data gathered recently suggest a putative role of kisspeptin signaling in the direct control of ovarian function, including follicular development, oocyte maturation, steroidogenesis, and ovulation. Dysregulation or naturally occurring mutations of the kisspeptin/KISS1R system may negatively affect the ovarian function, leading to reproductive pathology or female infertility. A comprehensive understanding of the expression, actions, and underlying molecular mechanisms of this system in the human ovary is essential for novel approaches to therapeutic and diagnostic interventions in reproductive diseases and infertility.
Collapse
Affiliation(s)
- Kai-Lun Hu
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Hongcui Zhao
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- *Correspondence: Hongcui Zhao, ; Yang Yu,
| | - Hsun-Ming Chang
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Yang Yu
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- *Correspondence: Hongcui Zhao, ; Yang Yu,
| | - Jie Qiao
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| |
Collapse
|
29
|
Kaese M, Galuska CE, Simon P, Braun BC, Cabrera-Fuentes HA, Middendorff R, Wehrend A, Jewgenow K, Galuska SP. Polysialylation takes place in granulosa cells during apoptotic processes of atretic tertiary follicles. FEBS J 2015; 282:4595-606. [PMID: 26392163 DOI: 10.1111/febs.13519] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 08/14/2015] [Accepted: 09/16/2015] [Indexed: 11/30/2022]
Abstract
In the neuronal system, polysialic acid (polySia) is known to be involved in several cellular processes such as the modulation of cell-cell interactions. This highly negatively-charged sugar moiety is mainly present as a post-translational modification of the neural cell adhesion molecule (NCAM). More than 20 years ago, differently glycosylated forms of NCAM were detected in the ovaries. However, the exact isoform of NCAM, as well as its biological function, remained unknown. Our analysis revealed that granulosa cells of feline tertiary follicles express the polysialylated form of NCAM-140. Unexpectedly, polySia was only expressed in the granulosa layers of atretic follicles and not of healthy follicles. By contrast, only the un-polysialylated form of NCAM was present on the membrane of granulosa cells of healthy follicles. To study a possible cellular function of polySia in feline follicles, a primary granulosa cell culture model was used. Interestingly, loss of polySia leads to a significant inhibition of apoptosis, demonstrating that polySia is involved during atretic processes in granulosa cells. Thus, polySia might not only directly influence regeneration processes as shown, for example, in the neuronal system, but also apoptosis.
Collapse
Affiliation(s)
- Miriam Kaese
- Institute of Biochemistry, Medical Faculty, Justus-Liebig-University, Giessen, Germany
| | - Christina E Galuska
- Institute of Biochemistry, Medical Faculty, Justus-Liebig-University, Giessen, Germany
| | - Peter Simon
- Institute of Biochemistry, Medical Faculty, Justus-Liebig-University, Giessen, Germany.,Institute of Anatomy and Cell Biology, Medical Faculty, Justus-Liebig-University, Giessen, Germany
| | - Beate C Braun
- Leibniz Institute for Zoo and Wildlife Research (IZW), Berlin, Germany
| | - Hector A Cabrera-Fuentes
- Institute of Biochemistry, Medical Faculty, Justus-Liebig-University, Giessen, Germany.,Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore, Singapore
| | - Ralf Middendorff
- Institute of Anatomy and Cell Biology, Medical Faculty, Justus-Liebig-University, Giessen, Germany
| | - Axel Wehrend
- Clinic of Obstetrics, Gynecology and Andrology for Small and Large Animals, Justus-Liebig-University, Giessen, Germany
| | - Katarina Jewgenow
- Leibniz Institute for Zoo and Wildlife Research (IZW), Berlin, Germany
| | - Sebastian P Galuska
- Institute of Biochemistry, Medical Faculty, Justus-Liebig-University, Giessen, Germany
| |
Collapse
|
30
|
Rak A, Drwal E, Wróbel A, Gregoraszczuk EŁ. Resistin is a survival factor for porcine ovarian follicular cells. Reproduction 2015; 150:343-55. [PMID: 26159832 DOI: 10.1530/rep-15-0255] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 07/09/2015] [Indexed: 01/14/2023]
Abstract
Previously, we demonstrated the expression of resistin in the porcine ovary, the regulation of its expression and its direct effect on ovarian steroidogenesis. The objective of this study was to examine the effect of resistin on cell proliferation and apoptosis in a co-culture model of porcine granulosa and theca cells. First, we analysed the effect of resistin at 1 and 10 ng/ml alone or in combination with FSH- and IGF1 on ovarian cell proliferation with an alamarBlue assay and protein expression of cyclins A and B using western blot. Next, the mRNA and protein expression of selected pro-apoptotic and pro-survival regulators of cell apoptosis, caspase-9, -8 and -3 activity and DNA fragmentation using real time PCR, western blot, fluorescent assay and an ELISA kit, respectively, were analysed after resistin treatment. Furthermore, we determined the effect of resistin on the protein expression of ERK1/2, Stat and Akt kinase. Using specific inhibitors of these kinases, we also checked caspase-3 activity and protein expression. We found that resistin, at both doses, has no effect on cell proliferation. The results showed that resistin decreased pro-apoptotic genes, which was confirmed on protein expression of selected factors. We demonstrate an inhibitory effect of resistin on caspase activity and DNA fragmentation. Finally, resistin stimulated phosphorylation of the ERK1/2, Stat and Akt and kinases inhibitors reversed resistin action on caspase-3 activity and protein expression to control. All of these results showed that resistin has an inhibitory effect on porcine ovarian cell apoptosis by activation of the MAPK/ERK, JAK/Stat and Akt/PI3 kinase signalling pathways.
Collapse
Affiliation(s)
- Agnieszka Rak
- Department of Physiology and Toxicology of ReproductionInstitute of Zoology, Jagiellonian University in Krakow, Gronostajowa 9, 30-387 Cracow, Poland
| | - Eliza Drwal
- Department of Physiology and Toxicology of ReproductionInstitute of Zoology, Jagiellonian University in Krakow, Gronostajowa 9, 30-387 Cracow, Poland
| | - Anna Wróbel
- Department of Physiology and Toxicology of ReproductionInstitute of Zoology, Jagiellonian University in Krakow, Gronostajowa 9, 30-387 Cracow, Poland
| | - Ewa Łucja Gregoraszczuk
- Department of Physiology and Toxicology of ReproductionInstitute of Zoology, Jagiellonian University in Krakow, Gronostajowa 9, 30-387 Cracow, Poland
| |
Collapse
|
31
|
Gasperin BG, Rovani MT, Ferreira R, Ilha GF, Bordignon V, Gonçalves PB, Duggavathi R. Functional status of STAT3 and MAPK3/1 signaling pathways in granulosa cells during bovine follicular deviation. Theriogenology 2015; 83:353-9. [DOI: 10.1016/j.theriogenology.2014.09.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Revised: 09/15/2014] [Accepted: 09/21/2014] [Indexed: 01/02/2023]
|
32
|
Liu S, Yu C, Cheng D, Han X, Jiang L, Zheng R, Meng X, Zhang T, Huo L. Aroclor 1254 impairs the development of ovarian follicles by inducing the apoptosis of granulosa cells. Toxicol Res (Camb) 2015. [DOI: 10.1039/c4tx00104d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Aroclor 1254 impairs the development of follicle (primordial follicle excluded), possibly via the induction of apoptosis mainly in granulosa cells.
Collapse
Affiliation(s)
- Shuzhen Liu
- Key Laboratory of Animal Resistance Research
- College of Life Science
- Shandong Normal University
- China
| | - Chunna Yu
- Affiliated Hospital of Jining Medical University
- China
| | - Dong Cheng
- Department of Toxicology
- Shandong Center for Disease Control and Prevention
- China
- Shandong University Institute of Preventive Medicine
- China
| | - Xiaoying Han
- Key Laboratory of Animal Resistance Research
- College of Life Science
- Shandong Normal University
- China
| | - Ligang Jiang
- Key Laboratory of Animal Resistance Research
- College of Life Science
- Shandong Normal University
- China
| | - Rongbin Zheng
- Key Laboratory of Animal Resistance Research
- College of Life Science
- Shandong Normal University
- China
| | - Xiaoqian Meng
- Key Laboratory of Animal Resistance Research
- College of Life Science
- Shandong Normal University
- China
| | - Tianliang Zhang
- Department of Toxicology
- Shandong Center for Disease Control and Prevention
- China
- Shandong University Institute of Preventive Medicine
- China
| | - Lijun Huo
- Key Laboratory of Agricultural Animal Genetics
- Breeding
- and Reproduction
- Ministry of Education
- College of Animal Science and Technology
| |
Collapse
|
33
|
Elis S, Desmarchais A, Maillard V, Uzbekova S, Monget P, Dupont J. Cell proliferation and progesterone synthesis depend on lipid metabolism in bovine granulosa cells. Theriogenology 2014; 83:840-53. [PMID: 25583222 DOI: 10.1016/j.theriogenology.2014.11.019] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 11/18/2014] [Accepted: 11/18/2014] [Indexed: 12/31/2022]
Abstract
In dairy cows, lipids are essential to support energy supplies for all biological functions, especially during early lactation. Lipid metabolism is crucial for sustaining proper reproductive function. Alteration of lipid metabolism impacts follicular development and affects oocyte developmental competence. Indeed, nonesterified fatty acids are able to decrease granulosa cell (GC) proliferation and affect estradiol synthesis, thus potentially affecting follicular growth and viability. The objective of this study was to assess the impact of lipid metabolism on bovine GCs, through the use of the lipid metabolism inhibitors etomoxir, an inhibitor of fatty acid (FA) oxidation through inhibition of carnitine palmitoyl transferase 1 (CPT1), and C75, an inhibitor of FA synthesis through inhibition of fatty acid synthase. We showed that etomoxir and C75 significantly inhibited DNA synthesis in vitro; C75 also significantly decreased progesterone synthesis. Both inhibitors significantly reduced AMPK (5' adenosine monophosphate-activated protein kinase) and acetyl-CoA carboxylase phosphorylation. Etomoxir also affected the AKT (protein kinase B) signaling pathway. Combined, these data suggest that both FA oxidation and synthesis are important for the bovine GCs to express a proliferative and steroidogenic phenotype and, thus, for sustaining follicular growth. Despite these findings, it is important to note that the changes caused by the inhibitors of FA metabolism on GCs in vitro are globally mild, suggesting that lipid metabolism is not as critical in GCs as was observed in the oocyte-cumulus complex. Further studies are needed to investigate the detailed mechanisms by which lipid metabolism interacts with GC functions.
Collapse
Affiliation(s)
- Sebastien Elis
- INRA, UMR 85 Physiologie de la Reproduction et des Comportements, Nouzilly, France; CNRS, UMR 7247 Physiologie de la Reproduction et des Comportements, Nouzilly, France; Université François Rabelais de Tours, UMR Physiologie de la Reproduction et des Comportements, Nouzilly, France; IFCE, UMR Physiologie de la Reproduction et des Comportements, Nouzilly, France.
| | - Alice Desmarchais
- INRA, UMR 85 Physiologie de la Reproduction et des Comportements, Nouzilly, France; CNRS, UMR 7247 Physiologie de la Reproduction et des Comportements, Nouzilly, France; Université François Rabelais de Tours, UMR Physiologie de la Reproduction et des Comportements, Nouzilly, France; IFCE, UMR Physiologie de la Reproduction et des Comportements, Nouzilly, France
| | - Virginie Maillard
- INRA, UMR 85 Physiologie de la Reproduction et des Comportements, Nouzilly, France; CNRS, UMR 7247 Physiologie de la Reproduction et des Comportements, Nouzilly, France; Université François Rabelais de Tours, UMR Physiologie de la Reproduction et des Comportements, Nouzilly, France; IFCE, UMR Physiologie de la Reproduction et des Comportements, Nouzilly, France
| | - Svetlana Uzbekova
- INRA, UMR 85 Physiologie de la Reproduction et des Comportements, Nouzilly, France; CNRS, UMR 7247 Physiologie de la Reproduction et des Comportements, Nouzilly, France; Université François Rabelais de Tours, UMR Physiologie de la Reproduction et des Comportements, Nouzilly, France; IFCE, UMR Physiologie de la Reproduction et des Comportements, Nouzilly, France
| | - Philippe Monget
- INRA, UMR 85 Physiologie de la Reproduction et des Comportements, Nouzilly, France; CNRS, UMR 7247 Physiologie de la Reproduction et des Comportements, Nouzilly, France; Université François Rabelais de Tours, UMR Physiologie de la Reproduction et des Comportements, Nouzilly, France; IFCE, UMR Physiologie de la Reproduction et des Comportements, Nouzilly, France
| | - Joëlle Dupont
- INRA, UMR 85 Physiologie de la Reproduction et des Comportements, Nouzilly, France; CNRS, UMR 7247 Physiologie de la Reproduction et des Comportements, Nouzilly, France; Université François Rabelais de Tours, UMR Physiologie de la Reproduction et des Comportements, Nouzilly, France; IFCE, UMR Physiologie de la Reproduction et des Comportements, Nouzilly, France
| |
Collapse
|
34
|
Zielak-Steciwko AE, Browne JA, McGettigan PA, Gajewska M, Dzięcioł M, Szulc T, Evans ACO. Expression of microRNAs and their target genes and pathways associated with ovarian follicle development in cattle. Physiol Genomics 2014; 46:735-45. [PMID: 25096366 DOI: 10.1152/physiolgenomics.00036.2014] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Development of ovarian follicles is controlled at the molecular level by several gene products whose precise expression leads to regression or ovulation of follicles. MicroRNAs (miRNAs) are small noncoding RNAs that regulate gene expression through sequence-specific base pairing with target messenger RNAs (mRNAs) causing translation repression or mRNA degradation. The aim of this study was to identify miRNAs expressed in theca and/or granulosa layers and their putative target genes/pathways that are involved in bovine ovarian follicle development. By using miRCURY microarray (Exiqon) we identified 14 and 49 differentially expressed miRNAs (P < 0.01) between dominant and subordinate follicles in theca and granulosa cells, respectively. The expression levels of four selected miRNAs were confirmed by qRT-PCR. To identify target prediction and pathways of differentially expressed miRNAs we used Union of Genes option in DIANA miRPath v.2.0 software. The predicted targets for these miRNAs were enriched for pathways involving oocyte meiosis, Wnt, TGF-beta, ErbB, insulin, P13K-Akt, and MAPK signaling pathways. This study identified differentially expressed miRNAs in the theca and granulosa cells of dominant and subordinate follicles and implicates them in having important roles in regulating known molecular pathways that determine the fate of ovarian follicle development.
Collapse
Affiliation(s)
- A E Zielak-Steciwko
- Institute of Animal Breeding, Wrocław University of Environmental and Life Sciences, Wrocław, Poland;
| | - J A Browne
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
| | - P A McGettigan
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
| | - M Gajewska
- Department of Physiological Sciences, Warsaw University of Life Sciences, Warsaw, Poland; and
| | - M Dzięcioł
- Department of Reproduction and Clinic of Farm Animals, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - T Szulc
- Institute of Animal Breeding, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - A C O Evans
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
| |
Collapse
|
35
|
Meng Y, Qian Y, Gao L, Cai LB, Cui YG, Liu JY. Downregulated expression of peroxiredoxin 4 in granulosa cells from polycystic ovary syndrome. PLoS One 2013; 8:e76460. [PMID: 24098506 PMCID: PMC3789707 DOI: 10.1371/journal.pone.0076460] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 08/26/2013] [Indexed: 11/18/2022] Open
Abstract
Peroxiredoxin 4 (PRDX4), a member of Peroxiredoxin (PRDX) family, is a typical 2-Cys PRDX. PRDX4 monitors the oxidative burden within cellular compartment and reduces hydrogen peroxide and alkyl hydroperoxide related to oxidative stress and apoptosis. Antioxidant, like PRDX4, may promote follicle development and participate in the pathophysiology of PCOS. In our previous study, we found that PRDX4 was expressed in mice oocyte cumulus oophorus complex, and that PRDX4 could be associated with follicle development. In this study, we explored the expression of PRDX4 in human follicles and possible role of PRDX4 in PCOS pathophysiology. Our data showed that PRDX4 was mainly expressed in granulosa cells in human ovaries. When compared to control group, both PRDX4 mRNA level and protein level decreased in PCOS group. The lowered levels of PRDX4 may relate to oxidative stress in the pathophysiologic progress of PCOS. Furthermore, expression of PRDX4 in the granulosa cells of in vivo or in vitro matured follicles was higher than that in immatured follicles, which suggested that PRDX4 may have a close relationship with follicular development. Altogether, our findings may provide new clues of the pathophysiologic mechanism of PCOS and potential therapeutic strategy using antioxidant, like PRDX4.
Collapse
Affiliation(s)
- Yan Meng
- The State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, the First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yi Qian
- The State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, the First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Li Gao
- The State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, the First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Ling-Bo Cai
- The State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, the First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yu-Gui Cui
- The State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, the First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Jia-Yin Liu
- The State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, the First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
- * E-mail:
| |
Collapse
|
36
|
Tsolmongyn B, Koide N, Odkhuu E, Haque A, Naiki Y, Komatsu T, Yoshida T, Yokochi T. Lipopolysaccharide prevents valproic acid-induced apoptosis via activation of nuclear factor-κB and inhibition of p53 activation. Cell Immunol 2013; 282:100-5. [PMID: 23770718 DOI: 10.1016/j.cellimm.2013.04.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 03/26/2013] [Accepted: 04/23/2013] [Indexed: 12/21/2022]
Abstract
The effect of lipopolysaccharide (LPS) on valproic acid (VPA)-induced cell death was examined by using mouse RAW 264.7 macrophage cells. LPS inhibited the activation of caspase 3 and poly (ADP-ribose) polymerase and prevented VPA-induced apoptosis. LPS inhibited VPA-induced p53 activation and pifithrin-α as a p53 inhibitor as well as LPS prevented VPA-induced apoptosis. LPS abolished the increase of Bax/Bcl-2 ratio, which is a critical indicator of p53-mediated mitochondrial damage, in response to VPA. The nuclear factor (NF)-κB inhibitors, Bay 11-7082 and parthenolide, abolished the preventive action of LPS on VPA-induced apoptosis. A series of toll-like receptor ligands, Pam3CSK4, poly I:C, and CpG DNA as well as LPS prevented VPA-induced apoptosis. Taken together, LPS was suggested to prevent VPA-induced apoptosis via activation of anti-apoptotic NF-κB and inhibition of pro-apoptotic p53 activation. The detailed inhibitory mechanism of VPA-induced apoptosis by LPS is discussed.
Collapse
Affiliation(s)
- Bilegtsaikhan Tsolmongyn
- Department of Microbiology and Immunology, Aichi Medical University School of Medicine, Nagakute, Aichi 480-1195, Japan
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Cerium oxide nanoparticles induce cytotoxicity in human hepatoma SMMC-7721 cells via oxidative stress and the activation of MAPK signaling pathways. Toxicol In Vitro 2013; 27:1082-8. [PMID: 23416263 DOI: 10.1016/j.tiv.2013.02.005] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 01/05/2013] [Accepted: 02/05/2013] [Indexed: 02/07/2023]
Abstract
BACKGROUND Lanthanide cerium oxide (CeO2) nanoparticles have extensive applications in industrial fields, and concerns regarding their potential toxicity in humans and their environmental impact have increased. We investigated the underlying molecular mechanisms by which CeO2 nanoparticles induce toxicity in human hepatoma SMMC-7721 cells. RESULTS Our results demonstrated that CeO2 nanoparticles reduced viability, caused dramatic morphological damage, and induced apoptosis in SMMC-7721 cells. CeO2 nanoparticles significantly increased the production of reactive oxygen species (ROS) and malondialdehyde (MDA), and significantly reduced the activity of superoxide dismutase (SOD), glutathione peroxidase (GSH-px) and catalase (CAT). The phosphorylation levels of ERK1/2, JNK and p38 MAPK were significantly elevated after treatment with CeO2 nanoparticles. Pretreatment with the antioxidant N-acetyl-cysteine (NAC): reduced the induction of ROS and MDA by CeO2 nanoparticles; recovered the activity of SOD, GSH-px and CAT; reduced the phosphorylation levels of ERK1/2, JNK and p38; and attenuated CeO2 nanoparticles-induced damage and apoptosis in SMMC-7721 cells. CONCLUSIONS Our data demonstrated that CeO2 nanoparticles induced damage and apoptosis in human SMMC-7721 cells via oxidative stress and the activation of MAPK signaling pathways.
Collapse
|
38
|
Yu J, Liu F, Yin P, Zhao H, Luan W, Hou X, Zhong Y, Jia D, Zan J, Ma W, Shu B, Xu J. Involvement of oxidative stress and mitogen-activated protein kinase signaling pathways in heat stress-induced injury in the rat small intestine. Stress 2013; 16:99-113. [PMID: 22452662 DOI: 10.3109/10253890.2012.680526] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Extreme heat stress-induced gastrointestinal injury and dysfunction may occur during summer. We investigated possible mechanisms of heat stress-induced damage in the small intestine using male Sprague-Dawley rats subjected to 2 h of heat stress (40 °C, 60% relative humidity) daily for 10 consecutive days. Rats were killed at specific times immediately following heat treatment to determine: morphological changes by optical and electron microscopy; intestinal permeability using fluorescein isothiocyanate-dextran; production of reactive oxygen species (ROS), malondialdehyde (MDA), and activities of superoxide-dismutase and glutathione-peroxidase by specific assays; phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2), c-Jun N-terminal kinase (JNK), and p38 mitogen-activated protein kinase (MAPK) by immunocytochemistry and western-blot analysis. The rat intestinal epithelial cell line (IEC-6) and specific MAPK inhibitors were used for in vitro investigation of effects of activation of MAPKs by heat stress. Heat stress caused marked morphological damage to the small intestine and significantly increased intestinal permeability. Heat stress increased ROS and MDA production, and significantly reduced anti-oxidase activity. MAPK activity in small intestine was increased by heat stress. In vitro, heat stress caused damage and apoptosis in IEC-6 cells; inhibition of ERK1/2 activation (by U0126) exacerbated these effects, which were attenuated by inhibition of JNK (by SP600125) and p38 (by SB203580) activation. Hence, heat stress caused severe small intestine injury, increased oxidative stress, and activated MAPK signaling pathways. The in vitro studies indicated that ERK1/2 activation is anti-apoptotic, and JNK and p38 activation are pro-apoptotic in heat stressed intestinal epithelial cells.
Collapse
Affiliation(s)
- Jin Yu
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, PR China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Casarini L, Lispi M, Longobardi S, Milosa F, La Marca A, Tagliasacchi D, Pignatti E, Simoni M. LH and hCG action on the same receptor results in quantitatively and qualitatively different intracellular signalling. PLoS One 2012; 7:e46682. [PMID: 23071612 PMCID: PMC3465272 DOI: 10.1371/journal.pone.0046682] [Citation(s) in RCA: 187] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 09/03/2012] [Indexed: 11/19/2022] Open
Abstract
Human luteinizing hormone (hLH) and chorionic gonadotropin (hCG) act on the same receptor (LHCGR) but it is not known whether they elicit the same cellular and molecular response. This study compares for the first time the activation of cell-signalling pathways and gene expression in response to hLH and hCG. Using recombinant hLH and recombinant hCG we evaluated the kinetics of cAMP production in COS-7 and hGL5 cells permanently expressing LHCGR (COS-7/LHCGR, hGL5/LHCGR), as well as cAMP, ERK1/2, AKT activation and progesterone production in primary human granulosa cells (hGLC). The expression of selected target genes was measured in the presence or absence of ERK- or AKT-pathways inhibitors. In COS-7/LHCGR cells, hCG is 5-fold more potent than hLH (cAMP ED50: 107.1±14.3 pM and 530.0±51.2 pM, respectively). hLH maximal effect was significantly faster (10 minutes by hLH; 1 hour by hCG). In hGLC continuous exposure to equipotent doses of gonadotropins up to 36 hours revealed that intracellular cAMP production is oscillating and significantly higher by hCG versus hLH. Conversely, phospho-ERK1/2 and -AKT activation was more potent and sustained by hLH versus hCG. ERK1/2 and AKT inhibition removed the inhibitory effect on NRG1 (neuregulin) expression by hLH but not by hCG; ERK1/2 inhibition significantly increased hLH- but not hCG-stimulated CYP19A1 (aromatase) expression. We conclude that: i) hCG is more potent on cAMP production, while hLH is more potent on ERK and AKT activation; ii) hGLC respond to equipotent, constant hLH or hCG stimulation with a fluctuating cAMP production and progressive progesterone secretion; and iii) the expression of hLH and hCG target genes partly involves the activation of different pathways depending on the ligand. Therefore, the LHCGR is able to differentiate the activity of hLH and hCG.
Collapse
Affiliation(s)
- Livio Casarini
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Center for Genomic Research, University of Modena and Reggio Emilia, Modena, Italy
| | - Monica Lispi
- Medical Liaison Office, Merck Serono S.p.A., Rome, Italy
| | | | - Fabiola Milosa
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Antonio La Marca
- Mother-Infant Department, Institute of Obstetrics and Gynecology, University Hospital of Modena, Modena, Italy
| | - Daniela Tagliasacchi
- Mother-Infant Department, Institute of Obstetrics and Gynecology, University Hospital of Modena, Modena, Italy
| | - Elisa Pignatti
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Center for Genomic Research, University of Modena and Reggio Emilia, Modena, Italy
| | - Manuela Simoni
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Center for Genomic Research, University of Modena and Reggio Emilia, Modena, Italy
- Azienda USL di Modena, Modena, Italy
- * E-mail:
| |
Collapse
|
40
|
Reader KL, Heath DA, Lun S, McIntosh CJ, Western AH, Littlejohn RP, McNatty KP, Juengel JL. Signalling pathways involved in the cooperative effects of ovine and murine GDF9+BMP15-stimulated thymidine uptake by rat granulosa cells. Reproduction 2011; 142:123-31. [PMID: 21474603 DOI: 10.1530/rep-10-0490] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Growth differentiation factor 9 (GDF9) and bone morphogenetic protein 15 (BMP15) are oocyte-secreted factors known to be involved in regulating the proliferation and differentiation of granulosa cells during follicular growth. The aims of this study were to determine the signalling pathways used by recombinant forms of murine and ovine GDF9 and BMP15 in combination (GDF9+BMP15) and the molecular complexes formed by combinations of these factors. Differences in the molecular forms of combinations of murine and ovine GDF9+BMP15 were observed by western blot analysis. Ovine GDF9+BMP15-stimulated (3)H-thymidine uptake was completely blocked by SMAD2/3 and nuclear factor-κB pathway inhibitors and partially blocked by a p38-mitogen-activated protein kinase (MAPK) inhibitor. Thymidine uptake by murine GDF9+BMP15 was reduced by the SMAD2/3 and extracellular signal-regulated kinase-MAPK pathway inhibitors and increased after addition of a c-Jun N-terminal kinase inhibitor. Stimulation of (3)H-thymidine uptake by GDF9+BMP15 from either species was not affected by the SMAD1/5/8 pathway inhibitor. In conclusion, both murine and ovine GDF9+BMP15-stimulated thymidine incorporation in rat granulosa cells was dependent on the SMAD2/3 signalling pathway but not the SMAD1/5/8 pathway. Divergence in the non-SMAD signalling pathways used by murine and ovine GDF9+BMP15 was also evident and may be due to the differences observed in the molecular complexes formed by these factors. These results are consistent with the hypothesis that the disparate cooperative functions of GDF9 and BMP15 in different species are mediated by divergent non-SMAD signalling pathways.
Collapse
Affiliation(s)
- Karen L Reader
- AgResearch, Reproductive Biology, Invermay Agricultural Centre, Mosgiel, New Zealand
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Maillard V, Froment P, Ramé C, Uzbekova S, Elis S, Dupont J. Expression and effect of resistin on bovine and rat granulosa cell steroidogenesis and proliferation. Reproduction 2011; 141:467-79. [PMID: 21239528 DOI: 10.1530/rep-10-0419] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Resistin, initially identified in adipose tissue and macrophages, was implicated in insulin resistance. Recently, its mRNA was found in hypothalamo-pituitary axis and rat testis, leading us to hypothesize that resistin may be expressed in ovary. In this study, we determined in rats and cows 1) the characterization of resistin in ovary by RT-PCR, immunoblotting, and immunohistochemistry and 2) the effects of recombinant resistin (10, 100, 333, and 667 ng/ml) ± IGF1 (76 ng/ml) on steroidogenesis, proliferation, and signaling pathways of granulosa cells (GC) measured by enzyme immunoassay, [(3)H]thymidine incorporation, and immunoblotting respectively. We observed that resistin mRNA and protein were present in several bovine and rat ovarian cells. Nevertheless, only bovine GC abundantly expressed resistin mRNA and protein. Resistin treatment decreased basal but not IGF1-induced progesterone (P<0.05; whatever the dose) and estradiol (P<0.005; for 10 and 333 ng/ml) production by bovine GC. In rats, resistin (10 ng/ml) increased basal and IGF1-induced progesterone secretion (P<0.0001), without effect on estradiol release. We found no effect of resistin on rat GC proliferation. Conversely, in cows, resistin increased basal proliferation (P<0.0001; for 100-667 ng/ml) and decreased IGF1-induced proliferation of GC (P<0.0001; for 10-333 ng/ml) associated with a decrease in cyclin D2 protein level (P<0.0001). Finally, resistin stimulated AKT and p38-MAPK phosphorylation in both species, ERK1/2-MAPK phosphorylation in rats and had the opposite effect on the AMPK pathway (P<0.05). In conclusion, our results show that resistin is expressed in rat and bovine ovaries. Furthermore, it can modulate GC functions in basal state or in response to IGF1 in vitro.
Collapse
Affiliation(s)
- Virginie Maillard
- Unité de Physiologie de la Reproduction et des Comportements, UMR85, Equipe Métabolisme et Reproduction, Institut National de la Recherche Agronomique, F-37 380 Nouzilly, France
| | | | | | | | | | | |
Collapse
|
42
|
Scaramuzzi RJ, Brown HM, Dupont J. Nutritional and Metabolic Mechanisms in the Ovary and Their Role in Mediating the Effects of Diet on Folliculogenesis: A Perspective. Reprod Domest Anim 2010; 45 Suppl 3:32-41. [DOI: 10.1111/j.1439-0531.2010.01662.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
43
|
Honeybee venom induces calcium-dependent but caspase-independent apoptotic cell death in human melanoma A2058 cells. Toxicon 2008; 52:318-29. [PMID: 18602939 DOI: 10.1016/j.toxicon.2008.06.007] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2008] [Revised: 05/08/2008] [Accepted: 06/02/2008] [Indexed: 12/21/2022]
Abstract
Honeybee (Apis mellifera) venom (BV) has been reported to exhibit anticancer effects, but its mode of action at the cellular and molecular levels remains largely unknown. We found that honeybee venom induced apoptosis in human melanoma A2058 cells but not in normal skin fibroblast Detroit 551 cells. The BV-induced apoptosis was accompanied by generation of reactive oxygen species and alteration of mitochondrial membrane potential transition. Treatment with antioxidants significantly attenuated BV-induced apoptosis. Although caspase-2 and -3 were slightly activated by BV, inhibitors of caspase-2 and -3 could not block BV-induced apoptosis in A2058 cells. Data from immunostaining indicated that EndoG and AIF were translocated from mitochondria to the cytosol or nucleus, suggesting that BV induces apoptosis in A2058 cells via a caspase-independent pathway. In addition, cJun N-terminal kinases (JNK) and ERK were rapidly activated after a 5 min incubation with BV, while p38 and AKT were inactivated after 30 min administration of BV. Inhibition of JNK significantly attenuated BV-triggered apoptotic death. Moreover, BV induced a rapid and marked increase in cytosolic calcium ion. Incubation of cells under calcium-free conditions effectively diminished BV-induced apoptosis. Furthermore, when the calcium-free treatment was combined with ouabain, the recovery of cellular calcium fluctuation protected A2058 cells against BV-induced apoptosis. Finally, treatment of A2058 cells with melittin, the major component of BV, resulted in similar elevation of calcium levels and cell killing effects, suggesting that melittin is the major determinant in BV-triggered cell death. These observations provide a molecular explanation for the antiproliferative properties of BV, and suggest that this agent may be useful in treating melanoma.
Collapse
|
44
|
Ryan KE, Casey SM, Canty MJ, Crowe MA, Martin F, Evans ACO. Akt and Erk signal transduction pathways are early markers of differentiation in dominant and subordinate ovarian follicles in cattle. Reproduction 2007; 133:617-26. [PMID: 17379656 DOI: 10.1530/rep-06-0130] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Dominant follicles are those that continue to develop and have the potential to ovulate while subordinate follicles regress. Characteristics of dominant follicles include a larger diameter, higher intrafollicular estradiol, and lower IGF-binding protein (IGFBP)-4 concentrations compared with other cohort follicles. Follicle development is regulated by endocrine hormones that act via intracellular signaling pathways. Here, we show the differences in Akt, Erk, c-Jun N-terminal protein kinase, and p-38 signaling pathways between dominant and subordinate follicles at the dominance stage of the follicle wave. However, earlier in the follicle wave (dominant follicle selection), there were only differences in the levels of Akt and Erk signal transduction proteins among dominant and subordinate follicles. Using this profile of Akt and Erk protein expression in granulosa and theca cells of selected dominant follicles compared with subordinate follicles, we suggest a predictive model to identify future dominant and subordinate follicles from the pool of otherwise similar cohort follicles at the time of follicle wave emergence. We conclude that the Erk and Akt signal transduction pathways are important for dominant follicle selection and development and, furthermore, that the observed differences in these pathways mark the future dominant follicle from subordinate follicles before differences in follicular diameter, follicular fluid estradiol, and IGFBP-4 concentrations are apparent.
Collapse
Affiliation(s)
- K E Ryan
- School of Agriculture, Food Science and Veterinary Medicine, College of Life Science, Conway Institute for Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | | | | | | | | | | |
Collapse
|
45
|
Abstract
Cell death was first described in rabbit ovaries (Graaffian follicles), the phenomenon being called 'chromatolysis' rather than apoptosis. In humans, the ovarian endowment of primordial follicles is established during fetal life. Apoptotic cell death depletes this endowment by at least two-thirds before birth, executed with the help of several players and pathways conserved from worms to humans. To date, apoptosis has been reported to be involved in oogenesis, folliculogenesis, oocyte loss/selection and atresia. Several pro-survival and pro-apoptotic molecules are involved in ovarian apoptosis with the delicate balance between them being the determinant for the final destiny of the follicular cells. This review critically analyses the current knowledge about the biological roles of these molecules and their relevance to the dynamics of follicle development. It also presents the existing literature and assesses the gaps in our knowledge.
Collapse
|
46
|
Argov N, Sklan D. Expression of mRNA of lipoprotein receptor related protein 8, low density lipoprotein receptor, and very low density lipoprotein receptor in bovine ovarian cells during follicular development and corpus luteum formation and regression. Mol Reprod Dev 2005; 68:169-75. [PMID: 15095337 DOI: 10.1002/mrd.20072] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Lipoproteins in the plasma are the major source of cholesterol obtained by the ovarian theca and granulosa cells for steroidogenesis. In this study, we have identified mRNA expression in bovine theca and granulosa cells of two lipoprotein receptors, low density lipoprotein receptor (LDLr) and very low density lipoprotein receptor (VLDLr) in granulosa cells from small antral follicles through preovulatory follicles and in theca cells from large and medium sized antral follicles. In the corpus luteum (CL) both these receptors were found in the developing and differentiating stages whereas only mRNA for VLDLr was detected in the regression stage. This study also described for the first time, the presence of lipoprotein receptor related protein (LRP8) in granulosa cells from small antral follicles through preovulatory follicles and in theca cells from large and medium sized antral follicles. This may indicate a role of LRP8 in cholesterol delivery to steriodogenic cells. LRP8 was not detected in any of the CL stages. The roles of the LDLr superfamily in lipid transport to ovarian cells and its participation in follicular and CL development and regression is discussed.
Collapse
Affiliation(s)
- Nurit Argov
- Faculty of Agriculture, PO Box 12, Hebrew University, Rehovot 76-100, Israel
| | | |
Collapse
|
47
|
Peluso JJ, Pappalardo A. Progesterone regulates granulosa cell viability through a protein kinase G-dependent mechanism that may involve 14-3-3sigma. Biol Reprod 2004; 71:1870-8. [PMID: 15286034 DOI: 10.1095/biolreprod.104.031716] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Progesterone (P4) inhibits granulosa cell and spontaneously immortalized granulosa cell (SIGC) apoptosis by regulating membrane-initiated events. However, the nature of the signal transduction pathway that is induced by these membrane-initiated events has not been defined. To gain insights into the P4-regulated signal transduction pathway, mouse granulosa cells and SIGCs were cultured with 8-br-cGMP and P4. In culture, 8-br-cGMP mimicked P4's antiapoptotic actions. Because cGMP activates protein kinase G (PKG), the effect of PKG antagonists on P4-regulated SIGC viability was assessed. P4's antiapoptotic action was attenuated by the PKG inhibitors, Rp-8-pCPT-cGMP, KT5823, the PKG-1alpha-specific inhibitor, DT-3, and a dominant negative PKG-1alpha. Further, the type I isoform of PKG was shown to be expressed by SIGCs and activated by P4. P4's antiapoptotic action was not affected by the PKA inhibitor, KT5720. Collectively, these findings indicate that P4 maintains SIGC viability by activating PKG-1alpha. PKG-1alpha-GFP was shown to localize predominantly to the cytoplasm of SIGCs. To identify potential cytoplasmic targets of PKG-1alpha, SIGCs were cultured for 5 h with P4 in the presence or absence of DT-3. Cell lysates were prepared and subjected to two-dimensional electrophoresis. The resulting gels were sequentially stained with ProQ-Diamond Gel Stain and Coomassie Blue to reveal phosphorylated proteins. The two-dimensional gels revealed one major protein, the phosphorylation status of which was abrogated by DT-3. Mass spectrometric analysis identified this protein as 14-3-3sigma, with 14-3-3sigma being phosphorylated on tyrosine 19, serine 28, serine 69, serine 74, threonine 90, threonine 98, and serine 116. Finally, difopein, a specific 14-3-3 inhibitor, was shown to induce apoptosis even in the presence of serum. These data suggest that 1) P4 regulates the phosphorylation status of 14-3-3sigma through a PKG-dependent pathway and 2) 14-3-3sigma plays a central and essential role in maintaining the viability of SIGCs.
Collapse
Affiliation(s)
- J J Peluso
- Department of Cell Biology, University of Connecticut Health Center, Farmington, 06030, USA. peluso@
| | | |
Collapse
|
48
|
Abstract
Cystic ovarian degeneration (COD) is considered to be one of the most important causes of reproductive failure in cattle. There is a severe economic loss to dairy industry because COD increases days-open in the postpartum period and the culling rates. The disease process is a consequence of a mature follicle that fails to ovulate at the appointed time of ovulation in the oestrous cycle. This anovulatory follicular structure either regresses or persists as a follicular or luteal cyst depending upon its structural/functional characteristics. The cells lining the follicular cyst synthesize oestrogen that, in certain instances, forces the animal to exhibit clinical signs of nymphomania. Besides oestrogen production, as per recent findings, they are also capable of secreting varying amount of progesterone which may dictate their fate. The animals that carry a luteal cyst may tend to be in anoestrus as the higher amount of progesterone secreted by this luteinized structure may change the pattern of gonadotrophins' secretion. Present findings suggest that perturbation of the hypothalamo-hypophyseal-ovarian (HHO) axis, due to many exogenous and endogenous factors, as the cause for anovulation. For example, it has been suggested that lack of hypothalamic or hypophyseal response to the positive feedback effect of oestrogens that are secreted by the dominant follicle as one of the many causes. The non-physiological changes that occur in the receptor expression of the HHO axis for the hormones involved in maturation, deviation, dominance and ovulation of the follicle may be yet another cause. The changes that occur at the cellular and molecular level in the ovary (in response to the factors mentioned above) that contribute to anovulation remain to be documented. This approach would allow us to completely understand the disease process. Hitherto, hormonal preparations that release luteinizing hormone from the anterior pituitary or have luteinizing hormone-like action are used to treat follicular cysts. GnRH belongs to the former group and human chorionic gonadotrophin (hCG) hormone forms the latter group. Treatment with a luteolytic agent, prostaglandin F2alpha (PGF2alpha), is successful if a luteal cyst is diagnosed properly. Many agents may be developed in the future if the cellular and molecular pathways of the disease process are delineated. This article will review recent advances in our understanding of the pathogenesis of COD and suggest direction for future studies to completely understand the disease mechanism. This review will also discuss the existing method of treatments for cysts and methods proposed for treatment of cysts that tend to be refractory in nature.
Collapse
Affiliation(s)
- A T Peter
- Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Lynn Hall, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
49
|
Jung YS, Kim CS, Park HS, Sohn S, Lee BH, Moon CK, Lee SH, Baik EJ, Moon CH. N-Nitrosocarbofuran Induces Apoptosis in Mouse Brain Microvascular Endothelial Cells (bEnd.3). J Pharmacol Sci 2003; 93:489-95. [PMID: 14737022 DOI: 10.1254/jphs.93.489] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
In this study, we investigated whether carbofuran, a commonly used carbamate pesticide, and N-nitrosocarbofuran (NOCF), the N-nitroso metabolite of carbofuran, have cytotoxicity in mouse brain microvascular endothelial cells (bEnd.3). Results from the MTT assay in bEnd.3 cells showed that NOCF but not carbofuran caused a remarkable decrease in cell viability. The cell death induced by NOCF appeared to involve apoptosis, based on our results from annexin V staining and electron microscopy. To investigate the mechanism of the NOCF-induced cell death, we examined the effects of selective inhibitors for MAP kinase pathways, PD98059 (for MEK/ERK), SB202190 (for p38 MAP kinase), and SP600125 (for JNK), on the NOCF-induced cell death. The NOCF-induced cell death was significantly reduced by PD98059, but not by SB202190 or SP600125. NOCF increased ERK phosphorylation as early as 15 min after the treatment and this increase was maintained for 2 h. In summary, our results suggest that NOCF can induce apoptotic cell death, at least in part, through the ERK pathway in brain microvascular endothelial cells.
Collapse
Affiliation(s)
- Yi-Sook Jung
- Department of Physiology, School of Medicine, Ajou University, Suwon, Korea.
| | | | | | | | | | | | | | | | | |
Collapse
|