1
|
Ricolo D, Casanova J, Giannios P. Drosophila and human Headcase define a new family of ribonucleotide granule proteins required for stress response. SCIENCE ADVANCES 2025; 11:eads2086. [PMID: 40153502 PMCID: PMC11952099 DOI: 10.1126/sciadv.ads2086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 02/25/2025] [Indexed: 03/30/2025]
Abstract
Cells have means to adapt to environmental stresses such as temperature fluctuations, toxins, or nutrient availability. Stress responses, being dynamic, extend beyond transcriptional control and encompass post-transcriptional mechanisms allowing for rapid changes in protein synthesis. Previous research has established headcase as a fundamental gene for stress responses and survival of the Drosophila adult progenitor cells (APCs). However, the molecular role of Headcase has remained elusive. Here, we identify Headcase as a component of ribonucleoprotein (RNP) granules. We also show that, Headcase is required for proper RNP granule formation and remodeling upon stress and is crucial for translation control. Likewise, the human Headcase homolog (HECA) is identified as a component of RNP granules and has similar roles in translational regulation and stress protection. Thus, Headcase proteins define a new family contributing to specific roles among the RNP heterogeneous network.
Collapse
Affiliation(s)
- Delia Ricolo
- Institut de Biologia Molecular de Barcelona (CSIC), Baldiri Reixac 4, 08028 Barcelona, Catalonia, Spain
- Institut de Recerca Biomèdica de Barcelona, (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, 08028 Barcelona, Catalonia, Spain
| | - Jordi Casanova
- Institut de Biologia Molecular de Barcelona (CSIC), Baldiri Reixac 4, 08028 Barcelona, Catalonia, Spain
- Institut de Recerca Biomèdica de Barcelona, (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, 08028 Barcelona, Catalonia, Spain
| | - Panagiotis Giannios
- Institut de Biologia Molecular de Barcelona (CSIC), Baldiri Reixac 4, 08028 Barcelona, Catalonia, Spain
- Institut de Recerca Biomèdica de Barcelona, (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, 08028 Barcelona, Catalonia, Spain
| |
Collapse
|
2
|
Hsu FTY, Smith-Bolton R. Myc and Tor drive growth and cell competition in the regeneration blastema of Drosophila wing imaginal discs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.15.643479. [PMID: 40161768 PMCID: PMC11952556 DOI: 10.1101/2025.03.15.643479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
During the regeneration of injured or lost tissues, the regeneration blastema serves as a hub for robust growth. Drosophila imaginal discs are a genetically tractable and simple model system for the study of regeneration and organization of this regrowth. Key signals that contribute to regenerative growth in these discs, such as ROS, Wnt/Wg, JNK, p38, JAK/STAT, and the Hippo pathway, have been identified. However, a detailed exploration of the spatial organization of regrowth, the factors that directly drive this growth, and the consequences of activating drivers of regeneration has not been undertaken. Here, we find that regenerative growth in imaginal discs is controlled by the transcription factor Myc and by Tor signaling, which additively drive proliferation and translation in the regeneration blastema. The spatial organization of growth in the blastema is arranged into concentric growth zones defined by Myc expression, elevated Tor activity, and elevated translation. In addition, the increased Myc expression in the innermost zone induced Xrp1-independent cell competition-like death in the adjacent zones, revealing a delicate balance between driving growth and inducing death in the regenerating tissue.
Collapse
Affiliation(s)
- Felicity Ting-Yu Hsu
- Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Rachel Smith-Bolton
- Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
3
|
Lee JW, Lee KA, Jang IH, Nam K, Kim SH, Kyung M, Cho KC, Lee JH, You H, Kim EK, Koh YH, Lee H, Park J, Hwang SY, Chung YW, Ryu CM, Kwon Y, Roh SH, Ryu JH, Lee WJ. Microbiome-emitted scents activate olfactory neuron-independent airway-gut-brain axis to promote host growth in Drosophila. Nat Commun 2025; 16:2199. [PMID: 40038269 PMCID: PMC11880416 DOI: 10.1038/s41467-025-57484-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 02/13/2025] [Indexed: 03/06/2025] Open
Abstract
While it is now accepted that the microbiome has strong impacts on animal growth promotion, the exact mechanism has remained elusive. Here we show that microbiome-emitted scents contain volatile somatotrophic factors (VSFs), which promote host growth in an olfaction-independent manner in Drosophila. We found that inhaled VSFs are readily sensed by olfactory receptor 42b non-neuronally expressed in subsets of tracheal airway cells, enteroendocrine cells, and enterocytes. Olfaction-independent sensing of VSFs activates the airway-gut-brain axis by regulating Hippo, FGF and insulin-like growth factor signaling pathways, which are required for airway branching, organ oxygenation and body growth. We found that a mutant microbiome that did not produce (2R,3R)-2,3-butanediol failed to activate the airway-gut-brain axis for host growth. Importantly, forced inhalation of (2R,3R)-2,3-butanediol completely reversed these defects. Our discovery of contact-independent and olfaction-independent airborne interactions between host and microbiome provides a novel perspective on the role of the airway-gut-brain axis in microbiome-controlled host development.
Collapse
Affiliation(s)
- Jin-Woo Lee
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Kyung-Ah Lee
- School of Biological Sciences, Seoul National University, Seoul, South Korea
- Saeloun Bio Inc., Seoul, South Korea
| | - In-Hwan Jang
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Kibum Nam
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Sung-Hee Kim
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Minsoo Kyung
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Kyu-Chan Cho
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Ji-Hoon Lee
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Hyejin You
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Eun-Kyoung Kim
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Young Hoon Koh
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea
| | - Hansol Lee
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea
| | - Junsun Park
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Soo-Yeon Hwang
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, South Korea
| | - Youn Wook Chung
- Severance Biomedical Science Institute, Graduate School of Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Choong-Min Ryu
- Molecular Phytobacteriology Laboratory, Infectious Disease Research Center, KRIBB, Daejeon, South Korea
| | - Youngjoo Kwon
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, South Korea
| | - Soung-Hun Roh
- School of Biological Sciences, Seoul National University, Seoul, South Korea
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea
| | - Ji-Hwan Ryu
- Severance Biomedical Science Institute, Graduate School of Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Won-Jae Lee
- School of Biological Sciences, Seoul National University, Seoul, South Korea.
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea.
- Wide River Institute of Immunology, Seoul National University, Hongcheon, South Korea.
| |
Collapse
|
4
|
Bhattacharya R, Kumari J, Banerjee S, Tripathi J, Parihar SS, Mohan N, Sinha P. Hippo effector, Yorkie, is a tumor suppressor in select Drosophila squamous epithelia. Proc Natl Acad Sci U S A 2024; 121:e2319666121. [PMID: 39288176 PMCID: PMC11441523 DOI: 10.1073/pnas.2319666121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 08/20/2024] [Indexed: 09/19/2024] Open
Abstract
Mammalian Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) and Drosophila Yorkie (Yki) are transcription cofactors of the highly conserved Hippo signaling pathway. It has been long assumed that the YAP/TAZ/Yki signaling drives cell proliferation during organ growth. However, its instructive role in regulating developmentally programmed organ growth, if any, remains elusive. Out-of-context gain of YAP/TAZ/Yki signaling often turns oncogenic. Paradoxically, mechanically strained, and differentiated squamous epithelia display developmentally programmed constitutive nuclear YAP/TAZ/Yki signaling. The unknown, therefore, is how a growth-promoting YAP/TAZ/Yki signaling restricts proliferation in differentiated squamous epithelia. Here, we show that reminiscent of a tumor suppressor, Yki negatively regulates the cell growth-promoting PI3K/Akt/TOR signaling in the squamous epithelia of Drosophila tubular organs. Thus, downregulation of Yki signaling in the squamous epithelium of the adult male accessory gland (MAG) up-regulates PI3K/Akt/TOR signaling, inducing cell hypertrophy, exit from their cell cycle arrest, and, finally, culminating in squamous cell carcinoma (SCC). Thus, blocking PI3K/Akt/TOR signaling arrests Yki loss-induced MAG-SCC. Further, MAG-SCCs, like other lethal carcinomas, secrete a cachectin, Impl2-the Drosophila homolog of mammalian IGFBP7-inducing cachexia and shortening the lifespan of adult males. Moreover, in the squamous epithelium of other tubular organs, like the dorsal trunk of larval tracheal airways or adult Malpighian tubules, downregulation of Yki signaling triggers PI3K/Akt/TOR-induced cell hypertrophy. Our results reveal that Yki signaling plays an instructive, antiproliferative role in the squamous epithelia of tubular organs.
Collapse
Affiliation(s)
- Rachita Bhattacharya
- Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Uttar Pradesh208016, India
- Mehta Family Center for Engineering in Medicine, Indian Institute of Technology Kanpur, Uttar Pradesh208016, India
| | - Jaya Kumari
- Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Uttar Pradesh208016, India
| | - Shweta Banerjee
- Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Uttar Pradesh208016, India
- Mehta Family Center for Engineering in Medicine, Indian Institute of Technology Kanpur, Uttar Pradesh208016, India
| | - Jyoti Tripathi
- Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Uttar Pradesh208016, India
- Mehta Family Center for Engineering in Medicine, Indian Institute of Technology Kanpur, Uttar Pradesh208016, India
| | - Saurabh Singh Parihar
- Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Uttar Pradesh208016, India
- Mehta Family Center for Engineering in Medicine, Indian Institute of Technology Kanpur, Uttar Pradesh208016, India
| | - Nitin Mohan
- Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Uttar Pradesh208016, India
- Mehta Family Center for Engineering in Medicine, Indian Institute of Technology Kanpur, Uttar Pradesh208016, India
| | - Pradip Sinha
- Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Uttar Pradesh208016, India
- Mehta Family Center for Engineering in Medicine, Indian Institute of Technology Kanpur, Uttar Pradesh208016, India
| |
Collapse
|
5
|
Blackie L, Gaspar P, Mosleh S, Lushchak O, Kong L, Jin Y, Zielinska AP, Cao B, Mineo A, Silva B, Ameku T, Lim SE, Mao Y, Prieto-Godino L, Schoborg T, Varela M, Mahadevan L, Miguel-Aliaga I. The sex of organ geometry. Nature 2024; 630:392-400. [PMID: 38811741 PMCID: PMC11168936 DOI: 10.1038/s41586-024-07463-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 04/24/2024] [Indexed: 05/31/2024]
Abstract
Organs have a distinctive yet often overlooked spatial arrangement in the body1-5. We propose that there is a logic to the shape of an organ and its proximity to its neighbours. Here, by using volumetric scans of many Drosophila melanogaster flies, we develop methods to quantify three-dimensional features of organ shape, position and interindividual variability. We find that both the shapes of organs and their relative arrangement are consistent yet differ between the sexes, and identify unexpected interorgan adjacencies and left-right organ asymmetries. Focusing on the intestine, which traverses the entire body, we investigate how sex differences in three-dimensional organ geometry arise. The configuration of the adult intestine is only partially determined by physical constraints imposed by adjacent organs; its sex-specific shape is actively maintained by mechanochemical crosstalk between gut muscles and vascular-like trachea. Indeed, sex-biased expression of a muscle-derived fibroblast growth factor-like ligand renders trachea sexually dimorphic. In turn, tracheal branches hold gut loops together into a male or female shape, with physiological consequences. Interorgan geometry represents a previously unrecognized level of biological complexity which might enable or confine communication across organs and could help explain sex or species differences in organ function.
Collapse
Affiliation(s)
- Laura Blackie
- MRC Laboratory of Medical Sciences, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
- The Francis Crick Institute, London, UK
| | - Pedro Gaspar
- MRC Laboratory of Medical Sciences, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
- The Francis Crick Institute, London, UK
| | - Salem Mosleh
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Department of Natural Sciences, University of Maryland Eastern Shore, Princess Anne, MD, USA
| | | | - Lingjin Kong
- MRC Laboratory of Medical Sciences, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Yuhong Jin
- MRC Laboratory of Medical Sciences, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Agata P Zielinska
- MRC Laboratory of Medical Sciences, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Boxuan Cao
- MRC Laboratory of Medical Sciences, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Alessandro Mineo
- MRC Laboratory of Medical Sciences, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
- The Francis Crick Institute, London, UK
| | - Bryon Silva
- MRC Laboratory of Medical Sciences, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
- The Francis Crick Institute, London, UK
| | - Tomotsune Ameku
- MRC Laboratory of Medical Sciences, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
- The Francis Crick Institute, London, UK
| | - Shu En Lim
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK
- Institute for the Physics of Living Systems, University College London, London, UK
| | - Yanlan Mao
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK
- Institute for the Physics of Living Systems, University College London, London, UK
| | | | - Todd Schoborg
- Department of Molecular Biology, University of Wyoming, Laramie, WY, USA
| | - Marta Varela
- Faculty of Medicine, National Heart & Lung Institute, Imperial College London, London, UK
| | - L Mahadevan
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Departments of Physics and Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Irene Miguel-Aliaga
- MRC Laboratory of Medical Sciences, London, UK.
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK.
- The Francis Crick Institute, London, UK.
| |
Collapse
|
6
|
Martin M, López-Madrigal S, Newton ILG. The Wolbachia WalE1 effector alters Drosophila endocytosis. PLoS Pathog 2024; 20:e1011245. [PMID: 38547310 PMCID: PMC11003677 DOI: 10.1371/journal.ppat.1011245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/09/2024] [Accepted: 03/18/2024] [Indexed: 04/09/2024] Open
Abstract
The most common intracellular bacterial infection is Wolbachia pipientis, a microbe that manipulates host reproduction and is used in control of insect vectors. Phenotypes induced by Wolbachia have been studied for decades and range from sperm-egg incompatibility to male killing. How Wolbachia alters host biology is less well understood. Previously, we characterized the first Wolbachia effector-WalE1, which encodes an alpha-synuclein domain at the N terminus. Purified WalE1 sediments with and bundles actin and when heterologously expressed in flies, increases Wolbachia titer in the developing oocyte. In this work, we first identify the native expression of WalE1 by Wolbachia infecting both fly cells and whole animals. WalE1 appears as aggregates in the host cell cytosol. We next show that WalE1 co-immunoprecipitates with the host protein Past1, although might not directly interact with it, and that WalE1 manipulates host endocytosis. Yeast expressing WalE1 show deficiency in uptake of FM4-64 dye, and flies harboring mutations in Past1 or overexpressing WalE1 are sensitive to AgNO3, a hallmark of endocytosis defects. We also show that flies expressing WalE1 suffer from endocytosis defects in larval nephrocytes. Finally, we also show that Past1 null flies harbor more Wolbachia overall and in late egg chambers. Our results identify interactions between Wolbachia and a host protein involved in endocytosis and point to yet another important host cell process impinged upon by Wolbachia's WalE1 effector.
Collapse
Affiliation(s)
- MaryAnn Martin
- Department of Biology, Indiana University, Bloomington, Indiana United States of America
| | - Sergio López-Madrigal
- Department of Biology, Indiana University, Bloomington, Indiana United States of America
| | - Irene L. G. Newton
- Department of Biology, Indiana University, Bloomington, Indiana United States of America
| |
Collapse
|
7
|
Tsarouhas V, Liu D, Tsikala G, Engström Y, Strigini M, Samakovlis C. A surfactant lipid layer of endosomal membranes facilitates airway gas filling in Drosophila. Curr Biol 2023; 33:5132-5146.e5. [PMID: 37992718 DOI: 10.1016/j.cub.2023.10.058] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 09/14/2023] [Accepted: 10/26/2023] [Indexed: 11/24/2023]
Abstract
The mechanisms underlying the construction of an air-liquid interface in respiratory organs remain elusive. Here, we use live imaging and genetic analysis to describe the morphogenetic events generating an extracellular lipid lining of the Drosophila airways required for their gas filing and animal survival. We show that sequential Rab39/Syx1A/Syt1-mediated secretion of lysosomal acid sphingomyelinase (Drosophila ASM [dASM]) and Rab11/35/Syx1A/Rop-dependent exosomal secretion provides distinct components for lipid film assembly. Tracheal inactivation of Rab11 or Rab35 or loss of Rop results in intracellular accumulation of exosomal, multi-vesicular body (MVB)-derived vesicles. On the other hand, loss of dASM or Rab39 causes luminal bubble-like accumulations of exosomal membranes and liquid retention in the airways. Inactivation of the exosomal secretion in dASM mutants counteracts this phenotype, arguing that the exosomal secretion provides the lipid vesicles and that secreted lysosomal dASM organizes them into a continuous film. Our results reveal the coordinated functions of extracellular vesicle and lysosomal secretions in generating a lipid layer crucial for airway gas filling and survival.
Collapse
Affiliation(s)
- Vasilios Tsarouhas
- Stockholm University, Department of Molecular Biosciences, The Wenner-Gren Institute, 10691 Stockholm, Sweden; Science for Life Laboratory, SciLifeLab, 171 65 Stockholm, Sweden.
| | - Dan Liu
- Stockholm University, Department of Molecular Biosciences, The Wenner-Gren Institute, 10691 Stockholm, Sweden
| | - Georgia Tsikala
- Stockholm University, Department of Molecular Biosciences, The Wenner-Gren Institute, 10691 Stockholm, Sweden; IMBB, 70013 Heraklion, Crete, Greece
| | - Ylva Engström
- Stockholm University, Department of Molecular Biosciences, The Wenner-Gren Institute, 10691 Stockholm, Sweden
| | | | - Christos Samakovlis
- Stockholm University, Department of Molecular Biosciences, The Wenner-Gren Institute, 10691 Stockholm, Sweden; Science for Life Laboratory, SciLifeLab, 171 65 Stockholm, Sweden; ECCPS, Justus Liebig University of Giessen, 35390 Giessen, Germany.
| |
Collapse
|
8
|
Pizzano S, Sterne GR, Veling MW, Xu LA, Hergenreder T, Ye B. The Drosophila homolog of APP promotes Dscam expression to drive axon terminal growth, revealing interaction between Down syndrome genes. Dis Model Mech 2023; 16:dmm049725. [PMID: 37712356 PMCID: PMC10508694 DOI: 10.1242/dmm.049725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/08/2023] [Indexed: 09/16/2023] Open
Abstract
Down syndrome (DS) is caused by triplication of human chromosome 21 (HSA21). Although several HSA21 genes have been found to be responsible for aspects of DS, whether and how HSA21 genes interact with each other is poorly understood. DS patients and animal models present with a number of neurological changes, including aberrant connectivity and neuronal morphology. Previous studies have indicated that amyloid precursor protein (APP) and Down syndrome cell adhesion molecule (DSCAM) regulate neuronal morphology and contribute to neuronal aberrations in DS. Here, we report the functional interaction between the Drosophila homologs of these two genes, Amyloid precursor protein-like (Appl) and Dscam (Dscam1). We show that Appl requires Dscam to promote axon terminal growth in sensory neurons. Moreover, Appl increases Dscam protein expression post-transcriptionally. We further demonstrate that regulation of Dscam by Appl does not require the Appl intracellular domain or second extracellular domain. This study presents an example of functional interactions between HSA21 genes, providing insights into the pathogenesis of neuronal aberrations in DS.
Collapse
Affiliation(s)
- Sarah Pizzano
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Gabriella R. Sterne
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Macy W. Veling
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - L. Amanda Xu
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ty Hergenreder
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Bing Ye
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
9
|
Araújo SJ, Llimargas M. Time-Lapse Imaging and Morphometric Analysis of Tracheal Development in Drosophila. Methods Mol Biol 2023; 2608:163-182. [PMID: 36653708 DOI: 10.1007/978-1-0716-2887-4_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Detailed and quantitative analyses of the cellular events underlying the formation of specific organs or tissues is essential to understand the general mechanisms of morphogenesis and pattern formation. Observation of live tissues or whole-mount fixed specimens has emerged as the method of choice for identifying and quantifying specific cellular and tissular structures within the organism. In both cases, cell and subcellular structure identification and good quality image acquisition for these analyses are essential. Many markers for live imaging and fixed tissue are now available for detecting cell membranes, subcellular structures, and extracellular structures like the extracellular matrix (ECM). Combination of live imaging and analysis of fixed tissue is ideal to obtain a general and detailed picture of the events underlying embryonic development. By applying morphometric methods to both approaches, we can, in addition, obtain a quantitative evaluation of the specific parameters under investigation in morphogenetic and cell biological studies. In this chapter, we focus on the development of the tracheal system of Drosophila melanogaster, which provides an ideal paradigm to understand the formation of branched tubular organs. We describe the most used methods of imaging and morphometric analysis in tubulogenesis using mainly (but not exclusively) examples from embryonic development. We cover embryo preparation for fixed and live analysis of tubulogenesis, together with methods to visualize larval tracheal terminal cell branching and lumen formation. Finally, we describe morphometric analysis and quantification methods using fluorescent images of tracheal cells.
Collapse
Affiliation(s)
- Sofia J Araújo
- Department of Genetics, Microbiology and Statistics, School of Biology, University of Barcelona (UB), Barcelona, Spain. .,Institute of Biomedicine, University of Barcelona (IBUB), Barcelona, Spain.
| | - Marta Llimargas
- Institute of Molecular Biology of Barcelona (IBMB), CSIC, Parc Científic de Barcelona, Barcelona, Spain.
| |
Collapse
|
10
|
Maier D, Bauer M, Boger M, Sanchez Jimenez A, Yuan Z, Fechner J, Scharpf J, Kovall RA, Preiss A, Nagel AC. Genetic and Molecular Interactions between HΔCT, a Novel Allele of the Notch Antagonist Hairless, and the Histone Chaperone Asf1 in Drosophila melanogaster. Genes (Basel) 2023; 14:205. [PMID: 36672946 PMCID: PMC9858708 DOI: 10.3390/genes14010205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/03/2023] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
Cellular differentiation relies on the highly conserved Notch signaling pathway. Notch activity induces gene expression changes that are highly sensitive to chromatin landscape. We address Notch gene regulation using Drosophila as a model, focusing on the genetic and molecular interactions between the Notch antagonist Hairless and the histone chaperone Asf1. Earlier work implied that Asf1 promotes the silencing of Notch target genes via Hairless (H). Here, we generate a novel HΔCT allele by genome engineering. Phenotypically, HΔCT behaves as a Hairless gain of function allele in several developmental contexts, indicating that the conserved CT domain of H has an attenuator role under native biological contexts. Using several independent methods to assay protein-protein interactions, we define the sequences of the CT domain that are involved in Hairless-Asf1 binding. Based on previous models, where Asf1 promotes Notch repression via Hairless, a loss of Asf1 binding should reduce Hairless repressive activity. However, tissue-specific Asf1 overexpression phenotypes are increased, not rescued, in the HΔCT background. Counterintuitively, Hairless protein binding mitigates the repressive activity of Asf1 in the context of eye development. These findings highlight the complex connections of Notch repressors and chromatin modulators during Notch target-gene regulation and open the avenue for further investigations.
Collapse
Affiliation(s)
- Dieter Maier
- Institute of Biology, Genetics Department 190g, University of Hohenheim, Garbenstr. 30, D-70599 Stuttgart, Germany
| | - Milena Bauer
- Institute of Biology, Genetics Department 190g, University of Hohenheim, Garbenstr. 30, D-70599 Stuttgart, Germany
- Biozentrum, University of Basel, Spitalstrasse 41, CH-4056 Basel, Switzerland
| | - Mike Boger
- Institute of Biology, Genetics Department 190g, University of Hohenheim, Garbenstr. 30, D-70599 Stuttgart, Germany
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Straße 13–17, D-68167 Mannheim, Germany
| | - Anna Sanchez Jimenez
- Institute of Biology, Genetics Department 190g, University of Hohenheim, Garbenstr. 30, D-70599 Stuttgart, Germany
| | - Zhenyu Yuan
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Medical Sciences Building 2201, Albert Sabin Way, Cincinnati, OH 45267, USA
| | - Johannes Fechner
- Institute of Biology, Genetics Department 190g, University of Hohenheim, Garbenstr. 30, D-70599 Stuttgart, Germany
- Institute of Biomedical Genetics (IBMG), University of Stuttgart, Allmandring 31, D-70569 Stuttgart, Germany
| | - Janika Scharpf
- Institute of Biology, Genetics Department 190g, University of Hohenheim, Garbenstr. 30, D-70599 Stuttgart, Germany
| | - Rhett A. Kovall
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Medical Sciences Building 2201, Albert Sabin Way, Cincinnati, OH 45267, USA
| | - Anette Preiss
- Institute of Biology, Genetics Department 190g, University of Hohenheim, Garbenstr. 30, D-70599 Stuttgart, Germany
| | - Anja C. Nagel
- Institute of Biology, Genetics Department 190g, University of Hohenheim, Garbenstr. 30, D-70599 Stuttgart, Germany
| |
Collapse
|
11
|
Scholl A, Ndoja I, Dhakal N, Morante D, Ivan A, Newman D, Mossington T, Clemans C, Surapaneni S, Powers M, Jiang L. The Osiris family genes function as novel regulators of the tube maturation process in the Drosophila trachea. PLoS Genet 2023; 19:e1010571. [PMID: 36689473 PMCID: PMC9870157 DOI: 10.1371/journal.pgen.1010571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 12/14/2022] [Indexed: 01/24/2023] Open
Abstract
Drosophila trachea is a premier model to study tube morphogenesis. After the formation of continuous tubes, tube maturation follows. Tracheal tube maturation starts with an apical secretion pulse that deposits extracellular matrix components to form a chitin-based apical luminal matrix (aECM). This aECM is then cleared and followed by the maturation of taenidial folds. Finally, air fills the tubes. Meanwhile, the cellular junctions are maintained to ensure tube integrity. Previous research has identified several key components (ER, Golgi, several endosomes) of protein trafficking pathways that regulate the secretion and clearance of aECM, and the maintenance of cellular junctions. The Osiris (Osi) gene family is located at the Triplo-lethal (Tpl) locus on chromosome 3R 83D4-E3 and exhibits dosage sensitivity. Here, we show that three Osi genes (Osi9, Osi15, Osi19), function redundantly to regulate adherens junction (AJ) maintenance, luminal clearance, taenidial fold formation, tube morphology, and air filling during tube maturation. The localization of Osi proteins in endosomes (Rab7-containing late endosomes, Rab11-containing recycling endosomes, Lamp-containing lysosomes) and the reduction of these endosomes in Osi mutants suggest the possible role of Osi genes in tube maturation through endosome-mediated trafficking. We analyzed tube maturation in zygotic rab11 and rab7 mutants, respectively, to determine whether endosome-mediated trafficking is required. Interestingly, similar tube maturation defects were observed in rab11 but not in rab7 mutants, suggesting the involvement of Rab11-mediated trafficking, but not Rab7-mediated trafficking, in this process. To investigate whether Osi genes regulate tube maturation primarily through the maintenance of Rab11-containing endosomes, we overexpressed rab11 in Osi mutant trachea. Surprisingly, no obvious rescue was observed. Thus, increasing endosome numbers is not sufficient to rescue tube maturation defects in Osi mutants. These results suggest that Osi genes regulate other aspects of endosome-mediated trafficking, or regulate an unknown mechanism that converges or acts in parallel with Rab11-mediated trafficking during tube maturation.
Collapse
Affiliation(s)
- Aaron Scholl
- Department of Biological Sciences, Oakland University, Rochester, Michigan, United States of America
| | - Istri Ndoja
- Department of Biological Sciences, Oakland University, Rochester, Michigan, United States of America
| | - Niraj Dhakal
- Department of Biological Sciences, Oakland University, Rochester, Michigan, United States of America
| | - Doria Morante
- Department of Biological Sciences, Oakland University, Rochester, Michigan, United States of America
| | - Abigail Ivan
- Department of Biological Sciences, Oakland University, Rochester, Michigan, United States of America
| | - Darren Newman
- Department of Biological Sciences, Oakland University, Rochester, Michigan, United States of America
| | - Thomas Mossington
- Department of Biological Sciences, Oakland University, Rochester, Michigan, United States of America
| | - Christian Clemans
- Department of Biological Sciences, Oakland University, Rochester, Michigan, United States of America
| | - Sruthi Surapaneni
- Department of Biological Sciences, Oakland University, Rochester, Michigan, United States of America
| | - Michael Powers
- Department of Biological Sciences, Oakland University, Rochester, Michigan, United States of America
| | - Lan Jiang
- Department of Biological Sciences, Oakland University, Rochester, Michigan, United States of America
| |
Collapse
|
12
|
Ohta T, Tanimura T, Kimura KI. A gain-of-function mutation in head involution defective , Wrinkled, causes precocious cell death of wing epidermal cells in Drosophila. MICROPUBLICATION BIOLOGY 2022; 2022:10.17912/micropub.biology.000703. [PMID: 36606079 PMCID: PMC9808536 DOI: 10.17912/micropub.biology.000703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/08/2022] [Accepted: 12/16/2022] [Indexed: 01/07/2023]
Abstract
In Drosophila , wing epidermal cells undergo programmed cell death as the last step of metamorphosis. The aim of this study was to evaluate the role of hid , particularly the Wrinkled mutation ( hid W ), an allele of hid , in the cell death. The wing epithelial cell death is suppressed by loss-of-function mutation of hid , indicating that the death is governed by a cascade involving hid . Examination of the cell death in hid W showed that precocious death started at G stage, 3 h before eclosion. Thus, mutated-HID in the hid W mutant was activated at G stage, supporting the gain-of-function effect of hid W mutation.
Collapse
Affiliation(s)
- Takumi Ohta
- Laboratory of Biology, Hokkaido University of Education, Sapporo Campus, Sapporo, Japan
,
Department of Biology, Graduate School of Science, Kyushu University, Fukuoka, Japan
| | - Teiichi Tanimura
- Department of Biology, Graduate School of Science, Kyushu University, Fukuoka, Japan
,
Present address: Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Ken-ichi Kimura
- Laboratory of Biology, Hokkaido University of Education, Sapporo Campus, Sapporo, Japan
,
Correspondence to: Ken-ichi Kimura (
)
| |
Collapse
|
13
|
Holsopple JM, Cook KR, Popodi EM. Identification of novel split-GAL4 drivers for the characterization of enteroendocrine cells in the Drosophila melanogaster midgut. G3 (BETHESDA, MD.) 2022; 12:jkac102. [PMID: 35485968 PMCID: PMC9157172 DOI: 10.1093/g3journal/jkac102] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 04/18/2022] [Indexed: 01/09/2023]
Abstract
The Drosophila melanogaster midgut is commonly studied as a model epithelial tissue for many reasons, one of which is the presence of a diverse population of secretory cells called enteroendocrine cells. Subpopulations of these cells secrete various combinations of peptide hormones which have systemic effects on the organism. Many of these hormones are also produced in the Drosophila brain. The split-GAL4 system has been useful for identifying and manipulating discrete groups of cells, but previously characterized split-GAL4 drivers have not driven expression in high proportions of enteroendocrine cells. In this study, we screened candidate split-GAL4 drivers for enteroendocrine cell expression using known reference drivers for this cell type and discovered a new split-GAL4 driver pair that confers expression in a greater number of enteroendocrine cells than previously characterized driver pairs. The new pair demonstrates less brain expression, thereby providing better tools for disentangling the physiological roles of gut- and brain-secreted peptides. We also identified additional split-GAL4 drivers that promote expression in discrete subpopulations of enteroendocrine cells. Overall, the tools reported here will help researchers better target enteroendocrine cell subpopulations.
Collapse
Affiliation(s)
- Jessica M Holsopple
- Department of Biology, Bloomington Drosophila Stock Center, Indiana University, Bloomington, IN 47405, USA
| | - Kevin R Cook
- Department of Biology, Bloomington Drosophila Stock Center, Indiana University, Bloomington, IN 47405, USA
| | - Ellen M Popodi
- Department of Biology, Bloomington Drosophila Stock Center, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
14
|
Lam G, Beebe K, Thummel CS. A direct-drive GFP reporter for studies of tracheal development in Drosophila. Fly (Austin) 2022; 16:105-110. [PMID: 35094652 PMCID: PMC8803062 DOI: 10.1080/19336934.2022.2030191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- Geanette Lam
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Katherine Beebe
- Molecular Medicine Program, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Carl S. Thummel
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT, USA
| |
Collapse
|
15
|
Ríos-Barrera LD, Leptin M. An endosome-associated actin network involved in directed apical plasma membrane growth. J Biophys Biochem Cytol 2022; 221:212975. [PMID: 35061016 PMCID: PMC8789128 DOI: 10.1083/jcb.202106124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 12/06/2021] [Accepted: 01/04/2022] [Indexed: 12/22/2022] Open
Abstract
Membrane trafficking plays many roles in morphogenesis, from bulk membrane provision to targeted delivery of proteins and other cargos. In tracheal terminal cells of the Drosophila respiratory system, transport through late endosomes balances membrane delivery between the basal plasma membrane and the apical membrane, which forms a subcellular tube, but it has been unclear how the direction of growth of the subcellular tube with the overall cell growth is coordinated. We show here that endosomes also organize F-actin. Actin assembles around late endocytic vesicles in the growth cone of the cell, reaching from the tip of the subcellular tube to the leading filopodia of the basal membrane. Preventing nucleation of endosomal actin disturbs the directionality of tube growth, uncoupling it from the direction of cell elongation. Severing actin in this area affects tube integrity. Our findings show a new role for late endosomes in directing morphogenesis by organizing actin, in addition to their known role in membrane and protein trafficking.
Collapse
Affiliation(s)
- Luis Daniel Ríos-Barrera
- Directors’ Research Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Maria Leptin
- Directors’ Research Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Institute for Genetics, University of Cologne, Cologne, Germany
| |
Collapse
|
16
|
Kizhedathu A, Chhajed P, Yeramala L, Sain Basu D, Mukherjee T, Vinothkumar KR, Guha A. Duox-generated reactive oxygen species activate ATR/Chk1 to induce G2 arrest in Drosophila tracheoblasts. eLife 2021; 10:68636. [PMID: 34622778 PMCID: PMC8594940 DOI: 10.7554/elife.68636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 10/07/2021] [Indexed: 12/31/2022] Open
Abstract
Progenitors of the thoracic tracheal system of adult Drosophila (tracheoblasts) arrest in G2 during larval life and rekindle a mitotic program subsequently. G2 arrest is dependent on ataxia telangiectasia mutated and rad3-related kinase (ATR)-dependent phosphorylation of checkpoint kinase 1 (Chk1) that is actuated in the absence of detectable DNA damage. We are interested in the mechanisms that activate ATR/Chk1 (Kizhedathu et al., 2018; Kizhedathu et al., 2020). Here we report that levels of reactive oxygen species (ROS) are high in arrested tracheoblasts and decrease upon mitotic re-entry. High ROS is dependent on expression of Duox, an H2O2 generating dual oxidase. ROS quenching by overexpression of superoxide dismutase 1, or by knockdown of Duox, abolishes Chk1 phosphorylation and results in precocious proliferation. Tracheae deficient in Duox, or deficient in both Duox and regulators of DNA damage-dependent ATR/Chk1 activation (ATRIP/TOPBP1/claspin), can induce phosphorylation of Chk1 in response to micromolar concentrations of H2O2 in minutes. The findings presented reveal that H2O2 activates ATR/Chk1 in tracheoblasts by a non-canonical, potentially direct, mechanism.
Collapse
Affiliation(s)
- Amrutha Kizhedathu
- Regulation of Cell Fate, Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, India
| | - Piyush Chhajed
- Regulation of Cell Fate, Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, India
| | - Lahari Yeramala
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - Deblina Sain Basu
- Regulation of Cell Fate, Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, India.,Trans Disciplinary University, Bangalore, India
| | - Tina Mukherjee
- Regulation of Cell Fate, Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, India
| | - Kutti R Vinothkumar
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - Arjun Guha
- Regulation of Cell Fate, Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, India
| |
Collapse
|
17
|
Ronchi P, Mizzon G, Machado P, D’Imprima E, Best BT, Cassella L, Schnorrenberg S, Montero MG, Jechlinger M, Ephrussi A, Leptin M, Mahamid J, Schwab Y. High-precision targeting workflow for volume electron microscopy. J Cell Biol 2021; 220:e202104069. [PMID: 34160561 PMCID: PMC8225610 DOI: 10.1083/jcb.202104069] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/27/2021] [Accepted: 06/06/2021] [Indexed: 02/07/2023] Open
Abstract
Cells are 3D objects. Therefore, volume EM (vEM) is often crucial for correct interpretation of ultrastructural data. Today, scanning EM (SEM) methods such as focused ion beam (FIB)-SEM are frequently used for vEM analyses. While they allow automated data acquisition, precise targeting of volumes of interest within a large sample remains challenging. Here, we provide a workflow to target FIB-SEM acquisition of fluorescently labeled cells or subcellular structures with micrometer precision. The strategy relies on fluorescence preservation during sample preparation and targeted trimming guided by confocal maps of the fluorescence signal in the resin block. Laser branding is used to create landmarks on the block surface to position the FIB-SEM acquisition. Using this method, we acquired volumes of specific single cells within large tissues such as 3D cultures of mouse mammary gland organoids, tracheal terminal cells in Drosophila melanogaster larvae, and ovarian follicular cells in adult Drosophila, discovering ultrastructural details that could not be appreciated before.
Collapse
Affiliation(s)
- Paolo Ronchi
- Electron Microscopy Core Facility, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Giulia Mizzon
- Electron Microscopy Core Facility, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Pedro Machado
- Electron Microscopy Core Facility, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Edoardo D’Imprima
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Benedikt T. Best
- Directors’ Research, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Lucia Cassella
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Sebastian Schnorrenberg
- Advanced Light Microscopy Facility, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Marta G. Montero
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Martin Jechlinger
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Anne Ephrussi
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Maria Leptin
- Directors’ Research, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Julia Mahamid
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Yannick Schwab
- Electron Microscopy Core Facility, European Molecular Biology Laboratory, Heidelberg, Germany
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| |
Collapse
|
18
|
Kumari J, Sinha P. Developmental expression patterns of toolkit genes in male accessory gland of Drosophila parallels those of mammalian prostate. Biol Open 2021; 10:271156. [PMID: 34342345 PMCID: PMC8419479 DOI: 10.1242/bio.058722] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/23/2021] [Indexed: 11/20/2022] Open
Abstract
Conservation of genetic toolkits in disparate phyla may help reveal commonalities in organ designs transcending their extreme anatomical disparities. A male accessory sexual organ in mammals, the prostate, for instance, is anatomically disparate from its analogous, phylogenetically distant counterpart – the male accessory gland (MAG) – in insects like Drosophila. It has not been ascertained if the anatomically disparate Drosophila MAG shares developmental parallels with those of the mammalian prostate. Here we show that the development of Drosophila mesoderm-derived MAG entails recruitment of similar genetic toolkits of tubular organs like that seen in endoderm-derived mammalian prostate. For instance, like mammalian prostate, Drosophila MAG morphogenesis is marked by recruitment of fibroblast growth factor receptor (FGFR) – a signalling pathway often seen recruited for tubulogenesis – starting early during its adepithelial genesis. A specialisation of the individual domains of the developing MAG tube, on the other hand, is marked by the expression of a posterior Hox gene transcription factor, Abd-B, while Hh-Dpp signalling marks its growth. Drosophila MAG, therefore, reveals the developmental design of a unitary bud-derived tube that appears to have been co-opted for the development of male accessory sexual organs across distant phylogeny and embryonic lineages. This article has an associated First Person interview with the first author of the paper. Summary: We show genetic toolkit conservation between Drosophila MAG and mammalian prostate may suggest a common modular developmental design.
Collapse
Affiliation(s)
- Jaya Kumari
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Pradip Sinha
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| |
Collapse
|
19
|
Tamamouna V, Rahman MM, Petersson M, Charalambous I, Kux K, Mainor H, Bolender V, Isbilir B, Edgar BA, Pitsouli C. Remodelling of oxygen-transporting tracheoles drives intestinal regeneration and tumorigenesis in Drosophila. Nat Cell Biol 2021; 23:497-510. [PMID: 33972730 PMCID: PMC8567841 DOI: 10.1038/s41556-021-00674-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 03/31/2021] [Indexed: 02/03/2023]
Abstract
The Drosophila trachea, as the functional equivalent of mammalian blood vessels, senses hypoxia and oxygenates the body. Here, we show that the adult intestinal tracheae are dynamic and respond to enteric infection, oxidative agents and tumours with increased terminal branching. Increased tracheation is necessary for efficient damage-induced intestinal stem cell (ISC)-mediated regeneration and is sufficient to drive ISC proliferation in undamaged intestines. Gut damage or tumours induce HIF-1α (Sima in Drosophila), which stimulates tracheole branching via the FGF (Branchless (Bnl))-FGFR (Breathless (Btl)) signalling cascade. Bnl-Btl signalling is required in the intestinal epithelium and the trachea for efficient damage-induced tracheal remodelling and ISC proliferation. Chemical or Pseudomonas-generated reactive oxygen species directly affect the trachea and are necessary for branching and intestinal regeneration. Similarly, tracheole branching and the resulting increase in oxygenation are essential for intestinal tumour growth. We have identified a mechanism of tracheal-intestinal tissue communication, whereby damage and tumours induce neo-tracheogenesis in Drosophila, a process reminiscent of cancer-induced neoangiogenesis in mammals.
Collapse
Affiliation(s)
- Vasilia Tamamouna
- University of Cyprus, Department of Biological Sciences, 1 Panepistimiou Avenue, 2109 Aglantzia, Cyprus
| | - M. Mahidur Rahman
- Huntsman Cancer Institute, Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Monika Petersson
- German Cancer Research Center (DKFZ)-Center for Molecular Biology (ZMBH), University of Heidelberg Alliance, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| | - Irini Charalambous
- University of Cyprus, Department of Biological Sciences, 1 Panepistimiou Avenue, 2109 Aglantzia, Cyprus
| | - Kristina Kux
- University of Cyprus, Department of Biological Sciences, 1 Panepistimiou Avenue, 2109 Aglantzia, Cyprus
| | - Hannah Mainor
- Huntsman Cancer Institute, Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Verena Bolender
- German Cancer Research Center (DKFZ)-Center for Molecular Biology (ZMBH), University of Heidelberg Alliance, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| | - Buse Isbilir
- German Cancer Research Center (DKFZ)-Center for Molecular Biology (ZMBH), University of Heidelberg Alliance, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| | - Bruce A. Edgar
- Huntsman Cancer Institute, Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112, USA,Corresponding authors ,
| | - Chrysoula Pitsouli
- University of Cyprus, Department of Biological Sciences, 1 Panepistimiou Avenue, 2109 Aglantzia, Cyprus,Corresponding authors ,
| |
Collapse
|
20
|
Wainwright SM, Hopkins BR, Mendes CC, Sekar A, Kroeger B, Hellberg JEEU, Fan SJ, Pavey A, Marie PP, Leiblich A, Sepil I, Charles PD, Thézénas ML, Fischer R, Kessler BM, Gandy C, Corrigan L, Patel R, Wigby S, Morris JF, Goberdhan DCI, Wilson C. Drosophila Sex Peptide controls the assembly of lipid microcarriers in seminal fluid. Proc Natl Acad Sci U S A 2021; 118:e2019622118. [PMID: 33495334 PMCID: PMC7865141 DOI: 10.1073/pnas.2019622118] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Seminal fluid plays an essential role in promoting male reproductive success and modulating female physiology and behavior. In the fruit fly, Drosophila melanogaster, Sex Peptide (SP) is the best-characterized protein mediator of these effects. It is secreted from the paired male accessory glands (AGs), which, like the mammalian prostate and seminal vesicles, generate most of the seminal fluid contents. After mating, SP binds to spermatozoa and is retained in the female sperm storage organs. It is gradually released by proteolytic cleavage and induces several long-term postmating responses, including increased ovulation, elevated feeding, and reduced receptivity to remating, primarily signaling through the SP receptor (SPR). Here, we demonstrate a previously unsuspected SPR-independent function for SP. We show that, in the AG lumen, SP and secreted proteins with membrane-binding anchors are carried on abundant, large neutral lipid-containing microcarriers, also found in other SP-expressing Drosophila species. These microcarriers are transferred to females during mating where they rapidly disassemble. Remarkably, SP is a key microcarrier assembly and disassembly factor. Its absence leads to major changes in the seminal proteome transferred to females upon mating. Males expressing nonfunctional SP mutant proteins that affect SP's binding to and release from sperm in females also do not produce normal microcarriers, suggesting that this male-specific defect contributes to the resulting widespread abnormalities in ejaculate function. Our data therefore reveal a role for SP in formation of seminal macromolecular assemblies, which may explain the presence of SP in Drosophila species that lack the signaling functions seen in Dmelanogaster.
Collapse
Affiliation(s)
- S Mark Wainwright
- Department of Physiology, Anatomy and Genetics, University of Oxford, OX1 3QX Oxford, United Kingdom
| | - Ben R Hopkins
- Department of Zoology, University of Oxford, OX1 3PS Oxford, United Kingdom
- Department of Evolution and Ecology, University of California, Davis, CA 95616
| | - Cláudia C Mendes
- Department of Physiology, Anatomy and Genetics, University of Oxford, OX1 3QX Oxford, United Kingdom
| | - Aashika Sekar
- Department of Physiology, Anatomy and Genetics, University of Oxford, OX1 3QX Oxford, United Kingdom
| | - Benjamin Kroeger
- Department of Physiology, Anatomy and Genetics, University of Oxford, OX1 3QX Oxford, United Kingdom
| | - Josephine E E U Hellberg
- Department of Physiology, Anatomy and Genetics, University of Oxford, OX1 3QX Oxford, United Kingdom
| | - Shih-Jung Fan
- Department of Physiology, Anatomy and Genetics, University of Oxford, OX1 3QX Oxford, United Kingdom
| | - Abigail Pavey
- Department of Physiology, Anatomy and Genetics, University of Oxford, OX1 3QX Oxford, United Kingdom
| | - Pauline P Marie
- Department of Physiology, Anatomy and Genetics, University of Oxford, OX1 3QX Oxford, United Kingdom
| | - Aaron Leiblich
- Department of Physiology, Anatomy and Genetics, University of Oxford, OX1 3QX Oxford, United Kingdom
| | - Irem Sepil
- Department of Zoology, University of Oxford, OX1 3PS Oxford, United Kingdom
| | - Philip D Charles
- Target Discovery Institute Mass Spectrometry Laboratory, Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, OX3 7BN Oxford, United Kingdom
| | - Marie L Thézénas
- Target Discovery Institute Mass Spectrometry Laboratory, Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, OX3 7BN Oxford, United Kingdom
| | - Roman Fischer
- Target Discovery Institute Mass Spectrometry Laboratory, Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, OX3 7BN Oxford, United Kingdom
| | - Benedikt M Kessler
- Target Discovery Institute Mass Spectrometry Laboratory, Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, OX3 7BN Oxford, United Kingdom
| | - Carina Gandy
- Department of Physiology, Anatomy and Genetics, University of Oxford, OX1 3QX Oxford, United Kingdom
| | - Laura Corrigan
- Department of Physiology, Anatomy and Genetics, University of Oxford, OX1 3QX Oxford, United Kingdom
| | - Rachel Patel
- Department of Physiology, Anatomy and Genetics, University of Oxford, OX1 3QX Oxford, United Kingdom
| | - Stuart Wigby
- Department of Zoology, University of Oxford, OX1 3PS Oxford, United Kingdom
- Applied Zoology, Faculty of Biology, Technische Universität Dresden, Dresden D-01069, Germany
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, L69 7ZB Liverpool, United Kingdom
| | - John F Morris
- Department of Physiology, Anatomy and Genetics, University of Oxford, OX1 3QX Oxford, United Kingdom
| | - Deborah C I Goberdhan
- Department of Physiology, Anatomy and Genetics, University of Oxford, OX1 3QX Oxford, United Kingdom
| | - Clive Wilson
- Department of Physiology, Anatomy and Genetics, University of Oxford, OX1 3QX Oxford, United Kingdom;
| |
Collapse
|
21
|
Scepanovic G, Florea A, Fernandez-Gonzalez R. Multiscale In Vivo Imaging of Collective Cell Migration in Drosophila Embryos. Methods Mol Biol 2021; 2179:199-224. [PMID: 32939723 DOI: 10.1007/978-1-0716-0779-4_17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Coordinated cell movements drive embryonic development and tissue repair, and can also spread disease. Time-lapse microscopy is an integral part in the study of the cell biology of collective cell movements. Advances in imaging techniques enable monitoring dynamic cellular and molecular events in real time within living animals. Here, we demonstrate the use of spinning disk confocal microscopy to investigate coordinated cell movements and epithelial-to-mesenchymal-like transitions during embryonic wound closure in Drosophila. We describe image-based metrics to quantify the efficiency of collective cell migration. Finally, we show the application of super-resolution radial fluctuation microscopy to obtain multidimensional, super-resolution images of protrusive activity in collectively moving cells in vivo. Together, the methods presented here constitute a toolkit for the modern analysis of collective cell migration in living animals.
Collapse
Affiliation(s)
- Gordana Scepanovic
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada.,Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON, Canada
| | - Alexandru Florea
- Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON, Canada.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Rodrigo Fernandez-Gonzalez
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada. .,Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON, Canada. .,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada. .,Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada.
| |
Collapse
|
22
|
Ariyapala IS, Holsopple JM, Popodi EM, Hartwick DG, Kahsai L, Cook KR, Sokol NS. Identification of Split-GAL4 Drivers and Enhancers That Allow Regional Cell Type Manipulations of the Drosophila melanogaster Intestine. Genetics 2020; 216:891-903. [PMID: 32988987 PMCID: PMC7768249 DOI: 10.1534/genetics.120.303625] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 09/24/2020] [Indexed: 12/30/2022] Open
Abstract
The Drosophila adult midgut is a model epithelial tissue composed of a few major cell types with distinct regional identities. One of the limitations to its analysis is the lack of tools to manipulate gene expression based on these regional identities. To overcome this obstacle, we applied the intersectional split-GAL4 system to the adult midgut and report 653 driver combinations that label cells by region and cell type. We first identified 424 split-GAL4 drivers with midgut expression from ∼7300 drivers screened, and then evaluated the expression patterns of each of these 424 when paired with three reference drivers that report activity specifically in progenitor cells, enteroendocrine cells, or enterocytes. We also evaluated a subset of the drivers expressed in progenitor cells for expression in enteroblasts using another reference driver. We show that driver combinations can define novel cell populations by identifying a driver that marks a distinct subset of enteroendocrine cells expressing genes usually associated with progenitor cells. The regional cell type patterns associated with the entire set of driver combinations are documented in a freely available website, providing information for the design of thousands of additional driver combinations to experimentally manipulate small subsets of intestinal cells. In addition, we show that intestinal enhancers identified with the split-GAL4 system can confer equivalent expression patterns on other transgenic reporters. Altogether, the resource reported here will enable more precisely targeted gene expression for studying intestinal processes, epithelial cell functions, and diseases affecting self-renewing tissues.
Collapse
Affiliation(s)
| | - Jessica M Holsopple
- Department of Biology, Indiana University, Bloomington, Indiana 47405
- Bloomington Drosophila Stock Center, Department of Biology, Indiana University, Bloomington, Indiana 47405
| | - Ellen M Popodi
- Bloomington Drosophila Stock Center, Department of Biology, Indiana University, Bloomington, Indiana 47405
| | - Dalton G Hartwick
- Department of Biology, Indiana University, Bloomington, Indiana 47405
| | - Lily Kahsai
- Bloomington Drosophila Stock Center, Department of Biology, Indiana University, Bloomington, Indiana 47405
| | - Kevin R Cook
- Bloomington Drosophila Stock Center, Department of Biology, Indiana University, Bloomington, Indiana 47405
| | - Nicholas S Sokol
- Department of Biology, Indiana University, Bloomington, Indiana 47405
| |
Collapse
|
23
|
Ogienko AA, Andreyeva EN, Omelina ES, Oshchepkova AL, Pindyurin AV. Molecular and cytological analysis of widely-used Gal4 driver lines for Drosophila neurobiology. BMC Genet 2020; 21:96. [PMID: 33092520 PMCID: PMC7583314 DOI: 10.1186/s12863-020-00895-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 07/28/2020] [Indexed: 11/13/2022] Open
Abstract
Background The Drosophila central nervous system (CNS) is a convenient model system for the study of the molecular mechanisms of conserved neurobiological processes. The manipulation of gene activity in specific cell types and subtypes of the Drosophila CNS is frequently achieved by employing the binary Gal4/UAS system. However, many Gal4 driver lines available from the Bloomington Drosophila Stock Center (BDSC) and commonly used in Drosophila neurobiology are still not well characterized. Among these are three lines with Gal4 driven by the elav promoter (BDSC #8760, #8765, and #458), one line with Gal4 driven by the repo promoter (BDSC #7415), and the 69B-Gal4 line (BDSC #1774). For most of these lines, the exact insertion sites of the transgenes and the detailed expression patterns of Gal4 are not known. This study is aimed at filling these gaps. Results We have mapped the genomic location of the Gal4-bearing P-elements carried by the BDSC lines #8760, #8765, #458, #7415, and #1774. In addition, for each of these lines, we have analyzed the Gal4-driven GFP expression pattern in the third instar larval CNS and eye-antennal imaginal discs. Localizations of the endogenous Elav and Repo proteins were used as markers of neuronal and glial cells, respectively. Conclusions We provide a mini-atlas of the spatial activity of Gal4 drivers that are widely used for the expression of UAS–target genes in the Drosophila CNS. The data will be helpful for planning experiments with these drivers and for the correct interpretation of the results.
Collapse
Affiliation(s)
- Anna A Ogienko
- Institute of Molecular and Cellular Biology, Siberian Branch of RAS, Novosibirsk, 630090, Russia
| | - Evgeniya N Andreyeva
- Institute of Molecular and Cellular Biology, Siberian Branch of RAS, Novosibirsk, 630090, Russia
| | - Evgeniya S Omelina
- Institute of Molecular and Cellular Biology, Siberian Branch of RAS, Novosibirsk, 630090, Russia
| | - Anastasiya L Oshchepkova
- Institute of Molecular and Cellular Biology, Siberian Branch of RAS, Novosibirsk, 630090, Russia.,Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of RAS, Novosibirsk, 630090, Russia
| | - Alexey V Pindyurin
- Institute of Molecular and Cellular Biology, Siberian Branch of RAS, Novosibirsk, 630090, Russia. .,Novosibirsk State University, Novosibirsk, 630090, Russia.
| |
Collapse
|
24
|
Ozdowski EF, Wentzell JS, Engert SM, Abbott H, Sherwood NT. Suppression of spastin Mutant Phenotypes by Pak3 Loss Implicates a Role for Reactive Glia in AD-HSP. Front Neurosci 2020; 14:912. [PMID: 33013303 PMCID: PMC7499821 DOI: 10.3389/fnins.2020.00912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 08/06/2020] [Indexed: 11/13/2022] Open
Abstract
Neurodegenerative mechanisms due to mutations in spastin currently center on neuronal defects, primarily in microtubule and endomembrane regulation. Spastin loss in Drosophila larvae compromises neuronal microtubule distribution, alters synaptic bouton morphology, and weakens synaptic transmission at glutamatergic neuromuscular junction (NMJ) synapses. Pak3, a p21-activated kinase that promotes actin polymerization and filopodial projections, is required for these spastin mutant defects; animals lacking both genes have normal NMJs. Here we show that Pak3 is expressed in central and peripheral glial populations, and reduction of Pak3 specifically in subperineurial glial cells is sufficient to suppress the phenotypes associated with spastin loss. Subperineurial glia in the periphery ensheathe motor neuron axons and have been shown to extend actin-based projections that regulate synaptic terminals during normal NMJ development. We find that these subperineurial glial projections are Pak3-dependent and nearly twice as frequent in spastin mutants, while in Pak3, spastin double mutants, neither glial projections nor synaptic defects are observed. Spastin deficiency thus increases Pak3-dependent subperineurial glia activity, which is in turn required for neuronal defects. Our results demonstrate a central role for Pak3-mediated, altered glial behavior in the neuronal defects due to spastin loss, and suggest that a similar reactive glia-mediated mechanism may underlie human AD-HSP pathogenesis.
Collapse
Affiliation(s)
| | | | | | | | - Nina T. Sherwood
- Department of Biology, Duke University, Durham, NC, United States
| |
Collapse
|
25
|
Kizhedathu A, Kunnappallil RS, Bagul AV, Verma P, Guha A. Multiple Wnts act synergistically to induce Chk1/Grapes expression and mediate G2 arrest in Drosophila tracheoblasts. eLife 2020; 9:57056. [PMID: 32876044 PMCID: PMC7505655 DOI: 10.7554/elife.57056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 08/29/2020] [Indexed: 12/16/2022] Open
Abstract
Larval tracheae of Drosophila harbour progenitors of the adult tracheal system (tracheoblasts). Thoracic tracheoblasts are arrested in the G2 phase of the cell cycle in an ATR (mei-41)-Checkpoint Kinase1 (grapes, Chk1) dependent manner prior to mitotic re-entry. Here we investigate developmental regulation of Chk1 activation. We report that Wnt signaling is high in tracheoblasts and this is necessary for high levels of activated (phosphorylated) Chk1. We find that canonical Wnt signaling facilitates this by transcriptional upregulation of Chk1 expression in cells that have ATR kinase activity. Wnt signaling is dependent on four Wnts (Wg, Wnt5, 6,10) that are expressed at high levels in arrested tracheoblasts and are downregulated at mitotic re-entry. Interestingly, none of the Wnts are dispensable and act synergistically to induce Chk1. Finally, we show that downregulation of Wnt signaling and Chk1 expression leads to mitotic re-entry and the concomitant upregulation of Dpp signaling, driving tracheoblast proliferation.
Collapse
Affiliation(s)
- Amrutha Kizhedathu
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK Campus, Bangalore, India.,SASTRA University, Thirumalaisamudram, India
| | | | - Archit V Bagul
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK Campus, Bangalore, India
| | - Puja Verma
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK Campus, Bangalore, India
| | - Arjun Guha
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK Campus, Bangalore, India
| |
Collapse
|
26
|
Behr M, Riedel D. Glycosylhydrolase genes control respiratory tubes sizes and airway stability. Sci Rep 2020; 10:13377. [PMID: 32770153 PMCID: PMC7414880 DOI: 10.1038/s41598-020-70185-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 07/24/2020] [Indexed: 11/09/2022] Open
Abstract
Tight barriers are crucial for animals. Insect respiratory cells establish barriers through their extracellular matrices. These chitinous-matrices must be soft and flexible to provide ventilation, but also tight enough to allow oxygen flow and protection against dehydration, infections, and environmental stresses. However, genes that control soft, flexible chitin-matrices are poorly known. We investigated the genes of the chitinolytic glycosylhydrolase-family 18 in the tracheal system of Drosophila melanogaster. Our findings show that five chitinases and three chitinase-like genes organize the tracheal chitin-cuticles. Most of the chitinases degrade chitin from airway lumina to enable oxygen delivery. They further improve chitin-cuticles to enhance tube stability and integrity against stresses. Unexpectedly, some chitinases also support chitin assembly to expand the tube lumen properly. Moreover, Chitinase2 plays a decisive role in the chitin-cuticle formation that establishes taenidial folds to support tube stability. Chitinase2 is apically enriched on the surface of tracheal cells, where it controls the chitin-matrix architecture independently of other known cuticular proteins or chitinases. We suppose that the principle mechanisms of chitin-cuticle assembly and degradation require a set of critical glycosylhydrolases for flexible and not-flexible cuticles. The same glycosylhydrolases support thick laminar cuticle formation and are evolutionarily conserved among arthropods.
Collapse
Affiliation(s)
- Matthias Behr
- Institute for Biology, Leipzig University, Philipp-Rosenthal-Str. 55, 04103, Leipzig, Germany.
| | - Dietmar Riedel
- Max-Planck-Institute for Biophysical Chemistry, Electron Microscopy Group, 37077, Göttingen, Germany
| |
Collapse
|
27
|
Terzioğlu Kara E, Kiral FR, Öztürk Çolak A, Çelik A. Generation and characterization of inner photoreceptor-specific enhancer-trap lines using a novel piggyBac-Gal4 element in Drosophila. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2020; 104:e21675. [PMID: 32285519 DOI: 10.1002/arch.21675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 03/17/2020] [Accepted: 03/23/2020] [Indexed: 06/11/2023]
Abstract
The Drosophila inner photoreceptors R7 and R8 are responsible for color vision and their differentiation starts at the third instar larval stage. Only a handful of genes with R7 or R8-cell-specific expression are known. We performed an enhancer-trap screen using a novel piggyBac transposable element, pBGay, carrying a Gal4 sequence under the control of the P promoter to identify novel genes expressed specifically in R7 or R8 cells. From this screen, three lines were analyzed in detail: piggyBacAC109 and piggyBacAC783 are expressed in R8 cells and piggyBacAC887 is expressed in R7 cells at the third instar larval stage and pupal stages. Molecular analysis showed that the piggyBac elements were inserted into the first intron of CG14160 and CG7985 genes and the second intron of unzipped. We show the expression pattern in the developing eye imaginal disc, pupal retina as well as the adult retina. The photoreceptor-specific expression of these genes is reported for the first time and we propose that these lines are useful tools for studying the development of the visual system.
Collapse
Affiliation(s)
- Ece Terzioğlu Kara
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Bogazici University, Istanbul, Turkey
| | - Ferdi Rıdvan Kiral
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Bogazici University, Istanbul, Turkey
- Division of Neurobiology, Institute for Biology, Free University Berlin, Berlin, Germany
| | - Arzu Öztürk Çolak
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Bogazici University, Istanbul, Turkey
| | - Arzu Çelik
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Bogazici University, Istanbul, Turkey
- Center for Life Sciences and Technologies, Bogazici University, Istanbul, Turkey
| |
Collapse
|
28
|
Multiple Requirements for Rab GTPases in the Development of Drosophila Tracheal Dorsal Branches and Terminal Cells. G3-GENES GENOMES GENETICS 2020; 10:1099-1112. [PMID: 31980432 PMCID: PMC7056964 DOI: 10.1534/g3.119.400967] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The tracheal epithelium in fruit fly larvae is a popular model for multi- and unicellular migration and morphogenesis. Like all epithelial cells, tracheal cells use Rab GTPases to organize their internal membrane transport, resulting in the specific localization or secretion of proteins on the apical or basal membrane compartments. Some contributions of Rabs to junctional remodelling and governance of tracheal lumen contents are known, but it is reasonable to assume that they play important further roles in morphogenesis. This pertains in particular to terminal tracheal cells, specialized branch-forming cells that drastically reshape both their apical and basal membrane during the larval stages. We performed a loss-of-function screen in the tracheal system, knocking down endogenously tagged alleles of 26 Rabs by targeting the tag via RNAi. This revealed that at least 14 Rabs are required to ensure proper cell fate specification and migration of the dorsal branches, as well as their epithelial fusion with the contralateral dorsal branch. The screen implicated four Rabs in the subcellular morphogenesis of terminal cells themselves. Further tests suggested residual gene function after knockdown, leading us to discuss the limitations of this approach. We conclude that more Rabs than identified here may be important for tracheal morphogenesis, and that the tracheal system offers great opportunities for studying several Rabs that have barely been characterized so far.
Collapse
|
29
|
Sauerwald J, Backer W, Matzat T, Schnorrer F, Luschnig S. Matrix metalloproteinase 1 modulates invasive behavior of tracheal branches during entry into Drosophila flight muscles. eLife 2019; 8:48857. [PMID: 31577228 PMCID: PMC6795481 DOI: 10.7554/elife.48857] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 10/01/2019] [Indexed: 12/30/2022] Open
Abstract
Tubular networks like the vasculature extend branches throughout animal bodies, but how developing vessels interact with and invade tissues is not well understood. We investigated the underlying mechanisms using the developing tracheal tube network of Drosophila indirect flight muscles (IFMs) as a model. Live imaging revealed that tracheal sprouts invade IFMs directionally with growth-cone-like structures at branch tips. Ramification inside IFMs proceeds until tracheal branches fill the myotube. However, individual tracheal cells occupy largely separate territories, possibly mediated by cell-cell repulsion. Matrix metalloproteinase 1 (MMP1) is required in tracheal cells for normal invasion speed and for the dynamic organization of growth-cone-like branch tips. MMP1 remodels the CollagenIV-containing matrix around branch tips, which show differential matrix composition with low CollagenIV levels, while Laminin is present along tracheal branches. Thus, tracheal-derived MMP1 sustains branch invasion by modulating the dynamic behavior of sprouting branches as well as properties of the surrounding matrix.
Collapse
Affiliation(s)
- Julia Sauerwald
- Institute for Zoophysiology, University of Münster, Münster, Germany.,Cluster of Excellence EXC 1003, Cells in Motion (CiM), Münster, Germany
| | - Wilko Backer
- Institute for Zoophysiology, University of Münster, Münster, Germany.,Cluster of Excellence EXC 1003, Cells in Motion (CiM), Münster, Germany
| | - Till Matzat
- Institute for Zoophysiology, University of Münster, Münster, Germany.,Cluster of Excellence EXC 1003, Cells in Motion (CiM), Münster, Germany
| | | | - Stefan Luschnig
- Institute for Zoophysiology, University of Münster, Münster, Germany.,Cluster of Excellence EXC 1003, Cells in Motion (CiM), Münster, Germany
| |
Collapse
|
30
|
Fereres S, Hatori R, Hatori M, Kornberg TB. Cytoneme-mediated signaling essential for tumorigenesis. PLoS Genet 2019; 15:e1008415. [PMID: 31568500 PMCID: PMC6786653 DOI: 10.1371/journal.pgen.1008415] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/10/2019] [Accepted: 09/11/2019] [Indexed: 11/18/2022] Open
Abstract
Communication between neoplastic cells and cells of their microenvironment is critical to cancer progression. To investigate the role of cytoneme-mediated signaling as a mechanism for distributing growth factor signaling proteins between tumor and tumor-associated cells, we analyzed EGFR and RET Drosophila tumor models and tested several genetic loss-of-function conditions that impair cytoneme-mediated signaling. Neuroglian, capricious, Irk2, SCAR, and diaphanous are genes that cytonemes require during normal development. Neuroglian and Capricious are cell adhesion proteins, Irk2 is a potassium channel, and SCAR and Diaphanous are actin-binding proteins, and the only process to which they are known to contribute jointly is cytoneme-mediated signaling. We observed that diminished function of any one of these genes suppressed tumor growth and increased organism survival. We also noted that EGFR-expressing tumor discs have abnormally extensive tracheation (respiratory tubes) and ectopically express Branchless (Bnl, a FGF) and FGFR. Bnl is a known inducer of tracheation that signals by a cytoneme-mediated process in other contexts, and we determined that exogenous over-expression of dominant negative FGFR suppressed tumor growth. Our results are consistent with the idea that cytonemes move signaling proteins between tumor and stromal cells and that cytoneme-mediated signaling is required for tumor growth and malignancy. The growth of many types of tumors depend on productive interactions with stromal, non-tumor neighbors, and although there is evidence that tumor and stromal cells exchange signaling proteins and growth factors that they produce, the mechanism by which these proteins move between the signaling cells has not been investigated and is not known. Our previous work has shown that normal cells make transient chemical synapses at sites where specialized filopodia called cytonemes contact signaling partners, and in this work we explore the possibility that tumors use the same mechanism to communicate with stromal cells. We show that cytoneme-mediated signaling is essential for growth of Drosophila tumors that model human EGFR over-expression and RET-driven disease. Remarkably, inhibition of cytonemes cures flies of lethal tumors.
Collapse
Affiliation(s)
- Sol Fereres
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California, United States of America
| | - Ryo Hatori
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California, United States of America
| | - Makiko Hatori
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California, United States of America
| | - Thomas B. Kornberg
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
31
|
Chen PY, Tsai YW, Cheng YJ, Giangrande A, Chien CT. Glial response to hypoxia in mutants of NPAS1/3 homolog Trachealess through Wg signaling to modulate synaptic bouton organization. PLoS Genet 2019; 15:e1007980. [PMID: 31381576 PMCID: PMC6695205 DOI: 10.1371/journal.pgen.1007980] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 08/15/2019] [Accepted: 07/15/2019] [Indexed: 11/18/2022] Open
Abstract
Synaptic structure and activity are sensitive to environmental alterations. Modulation of synaptic morphology and function is often induced by signals from glia. However, the process by which glia mediate synaptic responses to environmental perturbations such as hypoxia remains unknown. Here, we report that, in the mutant for Trachealess (Trh), the Drosophila homolog for NPAS1 and NPAS3, smaller synaptic boutons form clusters named satellite boutons appear at larval neuromuscular junctions (NMJs), which is induced by the reduction of internal oxygen levels due to defective tracheal branches. Thus, the satellite bouton phenotype in the trh mutant is suppressed by hyperoxia, and recapitulated in wild-type larvae raised under hypoxia. We further show that hypoxia-inducible factor (HIF)-1α/Similar (Sima) is critical in mediating hypoxia-induced satellite bouton formation. Sima upregulates the level of the Wnt/Wingless (Wg) signal in glia, leading to reorganized microtubule structures within presynaptic sites. Finally, hypoxia-induced satellite boutons maintain normal synaptic transmission at the NMJs, which is crucial for coordinated larval locomotion.
Collapse
Affiliation(s)
- Pei-Yi Chen
- Institute of Neuroscience, National Yang-Ming University, Taipei, Taiwan
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Yi-Wei Tsai
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Ying-Ju Cheng
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Angela Giangrande
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, Illkirch, France
- Université de Strasbourg, Illkirch, France
| | - Cheng-Ting Chien
- Institute of Neuroscience, National Yang-Ming University, Taipei, Taiwan
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
32
|
Guo C, Pan Y, Gong Z. Recent Advances in the Genetic Dissection of Neural Circuits in Drosophila. Neurosci Bull 2019; 35:1058-1072. [PMID: 31119647 DOI: 10.1007/s12264-019-00390-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 12/17/2018] [Indexed: 11/28/2022] Open
Abstract
Nervous systems endow animals with cognition and behavior. To understand how nervous systems control behavior, neural circuits mediating distinct functions need to be identified and characterized. With superior genetic manipulability, Drosophila is a model organism at the leading edge of neural circuit analysis. We briefly introduce the state-of-the-art genetic tools that permit precise labeling of neurons and their interconnectivity and investigating what is happening in the brain of a behaving animal and manipulating neurons to determine how behaviors are affected. Brain-wide wiring diagrams, created by light and electron microscopy, bring neural circuit analysis to a new level and scale. Studies enabled by these tools advances our understanding of the nervous system in relation to cognition and behavior.
Collapse
Affiliation(s)
- Chao Guo
- Key Laboratory of Developmental Genes and Human Disease of the Ministry of Education of China, Institute of Life Sciences, Southeast University, Nanjing, 210096, China.
| | - Yufeng Pan
- Key Laboratory of Developmental Genes and Human Disease of the Ministry of Education of China, Institute of Life Sciences, Southeast University, Nanjing, 210096, China
| | - Zhefeng Gong
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| |
Collapse
|
33
|
WASH phosphorylation balances endosomal versus cortical actin network integrities during epithelial morphogenesis. Nat Commun 2019; 10:2193. [PMID: 31097705 PMCID: PMC6522504 DOI: 10.1038/s41467-019-10229-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 04/24/2019] [Indexed: 12/16/2022] Open
Abstract
Filamentous actin (F-actin) networks facilitate key processes like cell shape control, division, polarization and motility. The dynamic coordination of F-actin networks and its impact on cellular activities are poorly understood. We report an antagonistic relationship between endosomal F-actin assembly and cortical actin bundle integrity during Drosophila airway maturation. Double mutants lacking receptor tyrosine phosphatases (PTP) Ptp10D and Ptp4E, clear luminal proteins and disassemble apical actin bundles prematurely. These defects are counterbalanced by reduction of endosomal trafficking and by mutations affecting the tyrosine kinase Btk29A, and the actin nucleation factor WASH. Btk29A forms protein complexes with Ptp10D and WASH, and Btk29A phosphorylates WASH. This phosphorylation activates endosomal WASH function in flies and mice. In contrast, a phospho-mimetic WASH variant induces endosomal actin accumulation, premature luminal endocytosis and cortical F-actin disassembly. We conclude that PTPs and Btk29A regulate WASH activity to balance the endosomal and cortical F-actin networks during epithelial tube maturation.
Collapse
|
34
|
DeAguero AA, Castillo L, Oas ST, Kiani K, Bryantsev AL, Cripps RM. Regulation of fiber-specific actin expression by the Drosophila SRF ortholog Blistered. Development 2019; 146:dev.164129. [PMID: 30872277 PMCID: PMC6467476 DOI: 10.1242/dev.164129] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 03/06/2019] [Indexed: 01/05/2023]
Abstract
Serum response factor (SRF) has an established role in controlling actin homeostasis in mammalian cells, yet its role in non-vertebrate muscle development has remained enigmatic. Here, we demonstrate that the single Drosophila SRF ortholog, termed Blistered (Bs), is expressed in all adult muscles, but Bs is required for muscle organization only in the adult indirect flight muscles. Bs is a direct activator of the flight muscle actin gene Act88F, via a conserved promoter-proximal binding site. However, Bs only activates Act88F expression in the context of the flight muscle regulatory program provided by the Pbx and Meis orthologs Extradenticle and Homothorax, and appears to function in a similar manner to mammalian SRF in muscle maturation. These studies place Bs in a regulatory framework where it functions to sustain the flight muscle phenotype in Drosophila Our studies uncover an evolutionarily ancient role for SRF in regulating muscle actin expression, and provide a model for how SRF might function to sustain muscle fate downstream of pioneer factors.
Collapse
Affiliation(s)
- Ashley A DeAguero
- Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Lizzet Castillo
- Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Sandy T Oas
- Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA.,Department of Biology, San Diego State University, San Diego, CA 92182, USA
| | - Kaveh Kiani
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA 30144, USA
| | - Anton L Bryantsev
- Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA .,Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA 30144, USA
| | - Richard M Cripps
- Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA .,Department of Biology, San Diego State University, San Diego, CA 92182, USA
| |
Collapse
|
35
|
Imaging Flies by Fluorescence Microscopy: Principles, Technologies, and Applications. Genetics 2019; 211:15-34. [PMID: 30626639 PMCID: PMC6325693 DOI: 10.1534/genetics.118.300227] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 11/05/2018] [Indexed: 02/07/2023] Open
Abstract
The development of fluorescent labels and powerful imaging technologies in the last two decades has revolutionized the field of fluorescence microscopy, which is now widely used in diverse scientific fields from biology to biomedical and materials science. Fluorescence microscopy has also become a standard technique in research laboratories working on Drosophila melanogaster as a model organism. Here, we review the principles of fluorescence microscopy technologies from wide-field to Super-resolution microscopy and its application in the Drosophila research field.
Collapse
|
36
|
The Caspase-3 homolog DrICE regulates endocytic trafficking during Drosophila tracheal morphogenesis. Nat Commun 2019; 10:1031. [PMID: 30833576 PMCID: PMC6399233 DOI: 10.1038/s41467-019-09009-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 02/13/2019] [Indexed: 12/30/2022] Open
Abstract
Although well known for its role in apoptosis, the executioner caspase DrICE has a non-apoptotic function that is required for elongation of the epithelial tubes of the Drosophila tracheal system. Here, we show that DrICE acts downstream of the Hippo Network to regulate endocytic trafficking of at least four cell polarity, cell junction and apical extracellular matrix proteins involved in tracheal tube size control: Crumbs, Uninflatable, Kune-Kune and Serpentine. We further show that tracheal cells are competent to undergo apoptosis, even though developmentally-regulated DrICE function rarely kills tracheal cells. Our results reveal a developmental role for caspases, a pool of DrICE that co-localizes with Clathrin, and a mechanism by which the Hippo Network controls endocytic trafficking. Given reports of in vitro regulation of endocytosis by mammalian caspases during apoptosis, we propose that caspase-mediated regulation of endocytic trafficking is an evolutionarily conserved function of caspases that can be deployed during morphogenesis. Caspases are well-known drivers of apoptosis, although recent studies suggest potential non-apoptotic functions. Here, McSharry and Beitel show that the Drosophila executioner caspase DrICE regulates endocytic trafficking of key proteins downstream of Hippo during tracheal morphogenesis.
Collapse
|
37
|
Skouloudaki K, Papadopoulos DK, Tomancak P, Knust E. The apical protein Apnoia interacts with Crumbs to regulate tracheal growth and inflation. PLoS Genet 2019; 15:e1007852. [PMID: 30645584 PMCID: PMC6333334 DOI: 10.1371/journal.pgen.1007852] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 11/25/2018] [Indexed: 12/21/2022] Open
Abstract
Most organs of multicellular organisms are built from epithelial tubes. To exert their functions, tubes rely on apico-basal polarity, on junctions, which form a barrier to separate the inside from the outside, and on a proper lumen, required for gas or liquid transport. Here we identify apnoia (apn), a novel Drosophila gene required for tracheal tube elongation and lumen stability at larval stages. Larvae lacking Apn show abnormal tracheal inflation and twisted airway tubes, but no obvious defects in early steps of tracheal maturation. apn encodes a transmembrane protein, primarily expressed in the tracheae, which exerts its function by controlling the localization of Crumbs (Crb), an evolutionarily conserved apical determinant. Apn physically interacts with Crb to control its localization and maintenance at the apical membrane of developing airways. In apn mutant tracheal cells, Crb fails to localize apically and is trapped in retromer-positive vesicles. Consistent with the role of Crb in apical membrane growth, RNAi-mediated knockdown of Crb results in decreased apical surface growth of tracheal cells and impaired axial elongation of the dorsal trunk. We conclude that Apn is a novel regulator of tracheal tube expansion in larval tracheae, the function of which is mediated by Crb.
Collapse
Affiliation(s)
- Kassiani Skouloudaki
- Max-Planck Institute for Molecular Cell Biology and Genetics, Dresden, Germany
- * E-mail: (EK); (KS)
| | | | - Pavel Tomancak
- Max-Planck Institute for Molecular Cell Biology and Genetics, Dresden, Germany
| | - Elisabeth Knust
- Max-Planck Institute for Molecular Cell Biology and Genetics, Dresden, Germany
- * E-mail: (EK); (KS)
| |
Collapse
|
38
|
Poon CLC, Liu W, Song Y, Gomez M, Kulaberoglu Y, Zhang X, Xu W, Veraksa A, Hergovich A, Ghabrial A, Harvey KF. A Hippo-like Signaling Pathway Controls Tracheal Morphogenesis in Drosophila melanogaster. Dev Cell 2018; 47:564-575.e5. [PMID: 30458981 DOI: 10.1016/j.devcel.2018.09.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 08/26/2018] [Accepted: 09/28/2018] [Indexed: 11/29/2022]
Abstract
Hippo-like pathways are ancient signaling modules first identified in yeasts. The best-defined metazoan module forms the core of the Hippo pathway, which regulates organ size and cell fate. Hippo-like kinase modules consist of a Sterile 20-like kinase, an NDR kinase, and non-catalytic protein scaffolds. In the Hippo pathway, the upstream kinase Hippo can be activated by another kinase, Tao-1. Here, we delineate a related Hippo-like signaling module that Tao-1 regulates to control tracheal morphogenesis in Drosophila melanogaster. Tao-1 activates the Sterile 20-like kinase GckIII by phosphorylating its activation loop, a mode of regulation that is conserved in humans. Tao-1 and GckIII act upstream of the NDR kinase Tricornered to ensure proper tube formation in trachea. Our study reveals that Tao-1 activates two related kinase modules to control both growth and morphogenesis. The Hippo-like signaling pathway we have delineated has a potential role in the human vascular disease cerebral cavernous malformation.
Collapse
Affiliation(s)
- Carole L C Poon
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Weijie Liu
- Department of Pathology and Cell Biology, Columbia University College of Physicians and Surgeons, 630 West 168th Street, New York, NY 10032, USA
| | - Yanjun Song
- Department of Pathology and Cell Biology, Columbia University College of Physicians and Surgeons, 630 West 168th Street, New York, NY 10032, USA
| | - Marta Gomez
- University College London, Cancer Institute, London WC1E 6BT, UK
| | | | - Xiaomeng Zhang
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Wenjian Xu
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Alexey Veraksa
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125, USA
| | | | - Amin Ghabrial
- Department of Pathology and Cell Biology, Columbia University College of Physicians and Surgeons, 630 West 168th Street, New York, NY 10032, USA
| | - Kieran F Harvey
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia; Department of Pathology, University of Melbourne, Parkville, VIC 3010, Australia; Department of Anatomy and Developmental Biology and Biomedicine Discovery Institute, Monash University, Clayton, VIC 3168, Australia.
| |
Collapse
|
39
|
Schretter CE, Vielmetter J, Bartos I, Marka Z, Marka S, Argade S, Mazmanian SK. A gut microbial factor modulates locomotor behaviour in Drosophila. Nature 2018; 563:402-406. [PMID: 30356215 PMCID: PMC6237646 DOI: 10.1038/s41586-018-0634-9] [Citation(s) in RCA: 177] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 09/11/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Catherine E Schretter
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
| | - Jost Vielmetter
- Protein Expression Center, Beckman Institute, California Institute of Technology, Pasadena, CA, USA
| | - Imre Bartos
- Department of Physics, Columbia University, New York, NY, USA
| | - Zsuzsa Marka
- Department of Physics, Columbia University, New York, NY, USA
| | - Szabolcs Marka
- Department of Physics, Columbia University, New York, NY, USA
| | - Sulabha Argade
- GlycoAnalytics Core, University of California, San Diego, CA, USA
| | - Sarkis K Mazmanian
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
40
|
The Drosophila homologue of MEGF8 is essential for early development. Sci Rep 2018; 8:8790. [PMID: 29884872 PMCID: PMC5993795 DOI: 10.1038/s41598-018-27076-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 05/23/2018] [Indexed: 12/15/2022] Open
Abstract
Mutations of the gene MEGF8 cause Carpenter syndrome in humans, and the mouse orthologue has been functionally associated with Nodal and Bmp4 signalling. Here, we have investigated the phenotype associated with loss-of-function of CG7466, a gene that encodes the Drosophila homologue of MEGF8. We generated three different frame-shift null mutations in CG7466 using CRISPR/Cas9 gene editing. Heterozygous flies appeared normal, but homozygous animals had disorganised denticle belts and died as 2nd or 3rd instar larvae. Larvae were delayed in transition to 3rd instars and showed arrested growth, which was associated with abnormal feeding behaviour and prolonged survival when yeast food was supplemented with sucrose. RNAi-mediated knockdown using the Gal4-UAS system resulted in lethality with ubiquitous and tissue-specific Gal4 drivers, and growth defects including abnormal bristle number and orientation in a subset of escapers. We conclude that CG7466 is essential for larval development and that diminished function perturbs denticle and bristle formation.
Collapse
|
41
|
Rosa JB, Metzstein MM, Ghabrial AS. An Ichor-dependent apical extracellular matrix regulates seamless tube shape and integrity. PLoS Genet 2018; 14:e1007146. [PMID: 29309404 PMCID: PMC5774827 DOI: 10.1371/journal.pgen.1007146] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 01/19/2018] [Accepted: 12/09/2017] [Indexed: 01/25/2023] Open
Abstract
During sprouting angiogenesis in the vertebrate vascular system, and primary branching in the Drosophila tracheal system, specialized tip cells direct branch outgrowth and network formation. When tip cells lumenize, they form subcellular (seamless) tubes. How these seamless tubes are made, shaped and maintained remains poorly understood. Here we characterize a Drosophila mutant called ichor (ich), and show that ich is essential for the integrity and shape of seamless tubes in tracheal terminal cells. We find that Ich regulates seamless tubulogenesis via its role in promoting the formation of a mature apical extracellular matrix (aECM) lining the lumen of the seamless tubes. We determined that ich encodes a zinc finger protein (CG11966) that acts, as a transcriptional activator required for the expression of multiple aECM factors, including a novel membrane-anchored trypsin protease (CG8213). Thus, the integrity and shape of seamless tubes are regulated by the aECM that lines their lumens.
Collapse
Affiliation(s)
- Jeffrey B. Rosa
- Department of Cell & Developmental Biology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Mark M. Metzstein
- Department of Human Genetics, University of Utah, Salt Lake City, Utah, United States of America
| | - Amin S. Ghabrial
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York, United States of America
| |
Collapse
|
42
|
Ochoa-Espinosa A, Harmansa S, Caussinus E, Affolter M. Myosin II is not required for Drosophila tracheal branch elongation and cell intercalation. Development 2017; 144:2961-2968. [PMID: 28811312 DOI: 10.1242/dev.148940] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 07/05/2017] [Indexed: 01/04/2023]
Abstract
The Drosophila tracheal system consists of an interconnected network of monolayered epithelial tubes that ensures oxygen transport in the larval and adult body. During tracheal dorsal branch (DB) development, individual DBs elongate as a cluster of cells, led by tip cells at the front and trailing cells in the rear. Branch elongation is accompanied by extensive cell intercalation and cell lengthening of the trailing stalk cells. Although cell intercalation is governed by Myosin II (MyoII)-dependent forces during tissue elongation in the Drosophila embryo that lead to germ-band extension, it remained unclear whether MyoII plays a similar active role during tracheal branch elongation and intercalation. Here, we have used a nanobody-based approach to selectively knock down MyoII in tracheal cells. Our data show that, despite the depletion of MyoII function, tip cell migration and stalk cell intercalation (SCI) proceed at a normal rate. This confirms a model in which DB elongation and SCI in the trachea occur as a consequence of tip cell migration, which produces the necessary forces for the branching process.
Collapse
Affiliation(s)
| | - Stefan Harmansa
- Biozentrum, University of Basel, Klingelbergstr. 50/70, 4056 Basel, Switzerland
| | - Emmanuel Caussinus
- Institute of Molecular Life Sciences (IMLS), University of Zurich, 8057 Zurich, Switzerland
| | - Markus Affolter
- Biozentrum, University of Basel, Klingelbergstr. 50/70, 4056 Basel, Switzerland
| |
Collapse
|
43
|
Development of an optimized synthetic Notch receptor as an in vivo cell-cell contact sensor. Proc Natl Acad Sci U S A 2017; 114:5467-5472. [PMID: 28490499 DOI: 10.1073/pnas.1703205114] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Detection and manipulation of direct cell-cell contact in complex tissues is a fundamental and challenging problem in many biological studies. Here, we report an optimized Notch-based synthetic receptor (synNQ) useful to study direct cell-cell interactions in Drosophila With the synNQ system, cells expressing a synthetic receptor, which contains Notch activation machinery and a downstream transcriptional activator, QF, are activated by a synthetic GFP ligand expressed by contacting neighbor cells. To avoid cis-inhibition, mutually exclusive expression of the synthetic ligand and receptor is achieved using the "flippase-out" system. Expression of the synthetic GFP ligand is controlled by the Gal4/UAS system for easy and broad applications. Using synNQ, we successfully visualized cell-cell interactions within and between most fly tissues, revealing previously undocumented cell-cell contacts. Importantly, in addition to detection of cells in contact with one another, synNQ allows for genetic manipulation in all cells in contact with a targeted cell population, which we demonstrate in the context of cell competition in developing wing disks. Altogether, the synNQ genetic system will enable a broad range of studies of cell contact in developmental biology.
Collapse
|
44
|
Sauerwald J, Soneson C, Robinson MD, Luschnig S. Faithful mRNA splicing depends on the Prp19 complex subunit faint sausage and is required for tracheal branching morphogenesis in Drosophila. Development 2017; 144:657-663. [PMID: 28087625 DOI: 10.1242/dev.144535] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 12/30/2016] [Indexed: 01/26/2023]
Abstract
Morphogenesis requires the dynamic regulation of gene expression, including transcription, mRNA maturation and translation. Dysfunction of the general mRNA splicing machinery can cause surprisingly specific cellular phenotypes, but the basis for these effects is not clear. Here, we show that the Drosophila faint sausage (fas) locus, which is implicated in epithelial morphogenesis and has previously been reported to encode a secreted immunoglobulin domain protein, in fact encodes a subunit of the spliceosome-activating Prp19 complex, which is essential for efficient pre-mRNA splicing. Loss of zygotic fas function globally impairs the efficiency of splicing, and is associated with widespread retention of introns in mRNAs and dramatic changes in gene expression. Surprisingly, despite these general effects, zygotic fas mutants show specific defects in tracheal cell migration during mid-embryogenesis when maternally supplied splicing factors have declined. We propose that tracheal branching, which relies on dynamic changes in gene expression, is particularly sensitive for efficient spliceosome function. Our results reveal an entry point to study requirements of the splicing machinery during organogenesis and provide a better understanding of disease phenotypes associated with mutations in general splicing factors.
Collapse
Affiliation(s)
- Julia Sauerwald
- Institute of Neurobiology, University of Münster, Badestrasse 9, 48149 Münster, Germany.,Cluster of Excellence EXC 1003, Cells in Motion (CiM), 48149 Münster, Germany.,Institute of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Charlotte Soneson
- Institute of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland.,SIB Swiss Institute of Bioinformatics, 8057 Zürich, Switzerland
| | - Mark D Robinson
- Institute of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland.,SIB Swiss Institute of Bioinformatics, 8057 Zürich, Switzerland
| | - Stefan Luschnig
- Institute of Neurobiology, University of Münster, Badestrasse 9, 48149 Münster, Germany .,Cluster of Excellence EXC 1003, Cells in Motion (CiM), 48149 Münster, Germany.,Institute of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| |
Collapse
|
45
|
Miao G, Hayashi S. Escargot controls the sequential specification of two tracheal tip cell types by suppressing FGF signaling in Drosophila. Development 2016; 143:4261-4271. [PMID: 27742749 PMCID: PMC5117212 DOI: 10.1242/dev.133322] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 10/04/2016] [Indexed: 01/05/2023]
Abstract
Extrinsic branching factors promote the elongation and migration of tubular organs. In the Drosophila tracheal system, Branchless (Drosophila FGF) stimulates the branching program by specifying tip cells that acquire motility and lead branch migration to a specific destination. Tip cells have two alternative cell fates: the terminal cell (TC), which produces long cytoplasmic extensions with intracellular lumen, and the fusion cell (FC), which mediates branch connections to form tubular networks. How Branchless controls this specification of cells with distinct shapes and behaviors is unknown. Here we report that this cell type diversification involves the modulation of FGF signaling by the zinc-finger protein Escargot (Esg), which is expressed in the FC and is essential for its specification. The dorsal branch begins elongation with a pair of tip cells with high FGF signaling. When the branch tip reaches its final destination, one of the tip cells becomes an FC and expresses Esg. FCs and TCs differ in their response to FGF: TCs are attracted by FGF, whereas FCs are repelled. Esg suppresses ERK signaling in FCs to control this differential migratory behavior. Summary: The migratory behavior of tracheal fusion cells is controlled by the FGF-induced expression of the transcription factor Escargot, which subsequently suppresses ERK signaling.
Collapse
Affiliation(s)
- Guangxia Miao
- Laboratory for Morphogenetic Signaling, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.,Department of Biology, Kobe University Graduate School of Science, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8051, Japan
| | - Shigeo Hayashi
- Laboratory for Morphogenetic Signaling, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan .,Department of Biology, Kobe University Graduate School of Science, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8051, Japan
| |
Collapse
|
46
|
Busto GU, Guven-Ozkan T, Chakraborty M, Davis RL. Developmental inhibition of miR-iab8-3p disrupts mushroom body neuron structure and adult learning ability. Dev Biol 2016; 419:237-249. [PMID: 27634569 PMCID: PMC5204246 DOI: 10.1016/j.ydbio.2016.09.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 09/08/2016] [Accepted: 09/10/2016] [Indexed: 01/15/2023]
Abstract
MicroRNAs are small non-coding RNAs that inhibit protein expression post-transcriptionally. They have been implicated in many different physiological processes, but little is known about their individual involvement in learning and memory. We recently identified several miRNAs that either increased or decreased intermediate-term memory when inhibited in the central nervous system, including miR-iab8-3p. We report here a new developmental role for this miRNA. Blocking the expression of miR-iab8-3p during the development of the organism leads to hypertrophy of individual mushroom body neuron soma, a reduction in the field size occupied by axonal projections, and adult intellectual disability. We further identified four potential mRNA targets of miR-iab8-3p whose inhibition modulates intermediate-term memory including ceramide phosphoethanolamine synthase, which may account for the behavioral effects produced by miR-iab8-3p inhibition. Our results offer important new information on a microRNA required for normal neurodevelopment and the capacity to learn and remember normally.
Collapse
Affiliation(s)
- Germain U Busto
- Department of Neuroscience, The Scripps Research Institute Florida, Jupiter FL 33458, USA.
| | - Tugba Guven-Ozkan
- Department of Neuroscience, The Scripps Research Institute Florida, Jupiter FL 33458, USA
| | - Molee Chakraborty
- Department of Neuroscience, The Scripps Research Institute Florida, Jupiter FL 33458, USA
| | - Ronald L Davis
- Department of Neuroscience, The Scripps Research Institute Florida, Jupiter FL 33458, USA.
| |
Collapse
|
47
|
Microtubule-dependent balanced cell contraction and luminal-matrix modification accelerate epithelial tube fusion. Nat Commun 2016; 7:11141. [PMID: 27067650 PMCID: PMC4832058 DOI: 10.1038/ncomms11141] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 02/25/2016] [Indexed: 01/22/2023] Open
Abstract
Connection of tubules into larger networks is the key process for the development of circulatory systems. In Drosophila development, tip cells of the tracheal system lead the migration of each branch and connect tubules by adhering to each other and simultaneously changing into a torus-shape. We show that as adhesion sites form between fusion cells, myosin and microtubules form polarized bundles that connect the new adhesion site to the cells' microtubule-organizing centres, and that E-cadherin and retrograde recycling endosomes are preferentially deposited at the new adhesion site. We demonstrate that microtubules help balancing tip cell contraction, which is driven by myosin, and is required for adhesion and tube fusion. We also show that retrograde recycling and directed secretion of a specific matrix protein into the fusion-cell interface promote fusion. We propose that microtubule bundles connecting these cell–cell interfaces coordinate cell contractility and apical secretion to facilitate tube fusion. During tracheal tube fusion in Drosophila, a pair of tip cells form an adherens junction and then fuse their plasma membranes. Here the authors show that a balanced pulling force mediated by myosin and microtubules, as well as localized deposition of matrix, promotes plasma membrane fusion.
Collapse
|
48
|
The sexual identity of adult intestinal stem cells controls organ size and plasticity. Nature 2016; 530:344-8. [PMID: 26887495 PMCID: PMC4800002 DOI: 10.1038/nature16953] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 12/21/2015] [Indexed: 01/01/2023]
Abstract
Sex differences in physiology and disease susceptibility are commonly attributed to developmental and/or hormonal factors, but there is increasing realisation that cell-intrinsic mechanisms play important and persistent roles1,2. Here we use the Drosophila melanogaster intestine to investigate the nature and significance of cellular sex in an adult somatic organ in vivo. We find that the adult intestinal epithelium is a cellular mosaic of different sex differentiation pathways, and displays extensive sex differences in expression of genes with roles in growth and metabolism. Cell-specific reversals of the sexual identity of adult intestinal stem cells uncover its key roles in controlling organ size, its reproductive plasticity and its response to genetically induced tumours. Unlike previous examples of sexually dimorphic somatic stem cell activity, the sex differences in intestinal stem cell behaviour arise from intrinsic mechanisms, which control cell cycle duration and involve a new doublesex- and fruitless-independent branch of the sex differentiation pathway downstream of transformer. Together, our findings indicate that the plasticity of an adult somatic organ is reversibly controlled by its sexual identity, imparted by a new mechanism that may be active in more tissues than previously recognised.
Collapse
|
49
|
Levine BD, Cagan RL. Drosophila Lung Cancer Models Identify Trametinib plus Statin as Candidate Therapeutic. Cell Rep 2016; 14:1477-1487. [PMID: 26832408 DOI: 10.1016/j.celrep.2015.12.105] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 10/26/2015] [Accepted: 12/30/2015] [Indexed: 12/20/2022] Open
Abstract
We have developed a Drosophila lung cancer model by targeting Ras1(G12V)--alone or in combination with PTEN knockdown--to the Drosophila tracheal system. This led to overproliferation of tracheal tissue, formation of tumor-like growths, and animal lethality. Screening a library of FDA-approved drugs identified several that improved overall animal survival. We explored two hits: the MEK inhibitor trametinib and the HMG-CoA reductase inhibitor fluvastatin. Oral administration of these drugs inhibited Ras and PI3K pathway activity, respectively; in addition, fluvastatin inhibited protein prenylation downstream of HMG-CoA reductase to promote survival. Combining drugs led to synergistic suppression of tumor formation and rescue lethality; similar synergy was observed in human A549 lung adenocarcinoma cells. Notably, fluvastatin acted both within transformed cells and also to reduce whole-body trametinib toxicity in flies. Our work supports and provides further context for exploring the potential of combining statins with MAPK inhibitors such as trametinib to improve overall therapeutic index.
Collapse
Affiliation(s)
- Benjamin D Levine
- Department of Developmental and Regenerative Biology and the Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY 10029-1020, USA
| | - Ross L Cagan
- Department of Developmental and Regenerative Biology and the Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY 10029-1020, USA.
| |
Collapse
|
50
|
Abstract
The field of "Developmental Biology" has dramatically changed over the past three decades. While genetic analysis had been center stage in the 1980s and continues to be a corner stone for investigations, the introduction of green fluorescent protein (GFP) in the 1990s has allowed us to look into living, developing embryos, and see how cells form tissues and how organ morphogenesis proceeds in real time. The introduction of protein binders into developmental studies some years ago has raised the precision yet another step, since it will allow the manipulation and study of how proteins function in real time. This chapter is a personal account on how GFP has, and how protein binders may, change the design of studies in the field of developmental biology.
Collapse
|