1
|
Hockeimer W, Lai RY, Natrajan M, Snider W, Knierim JJ. Leveraging place field repetition to understand positional versus nonpositional inputs to hippocampal field CA1. eLife 2025; 14:e85599. [PMID: 40298940 DOI: 10.7554/elife.85599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/20/2025] [Indexed: 04/30/2025] Open
Abstract
The hippocampus is believed to encode episodic memory by binding information about the content of experience within a spatiotemporal framework encoding the location and temporal context of that experience. Previous work implies a distinction between positional inputs to the hippocampus from upstream brain regions that provide information about an animal's location and nonpositional inputs which provide information about the content of experience, both sensory and navigational. Here, we leverage the phenomenon of 'place field repetition' to better understand the functional dissociation between positional and nonpositional information encoded in CA1. Rats navigated freely on a novel maze consisting of linear segments arranged in a rectilinear, city-block configuration, which combined elements of open-field foraging and linear-track tasks. Unlike typical results in open-field foraging, place fields were directionally tuned on the maze, even though the animal's behavior was not constrained to extended, one-dimensional (1D) trajectories. Repeating fields from the same cell tended to have the same directional preference when the fields were aligned along a linear corridor of the maze, but they showed uncorrelated directional preferences when they were unaligned across different corridors. Lastly, individual fields displayed complex time dynamics which resulted in the population activity changing gradually over the course of minutes. These temporal dynamics were evident across repeating fields of the same cell. These results demonstrate that the positional inputs that drive a cell to fire in similar locations across the maze can be behaviorally and temporally dissociated from the nonpositional inputs that alter the firing rates of the cell within its place fields, offering a potential mechanism to increase the flexibility of the system to encode episodic variables within a spatiotemporal framework provided by place cells.
Collapse
Affiliation(s)
- William Hockeimer
- Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, United States
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Ruo-Yah Lai
- Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, United States
| | - Maanasa Natrajan
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, United States
| | - William Snider
- Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, United States
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, United States
| | - James J Knierim
- Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, United States
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, United States
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, United States
| |
Collapse
|
2
|
Seger S, Kriegel J, Lega B, Ekstrom A. Differences and similarities between human hippocampal low-frequency oscillations during navigation and mental simulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.04.626897. [PMID: 39677778 PMCID: PMC11643049 DOI: 10.1101/2024.12.04.626897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Low frequency oscillations in the hippocampus emerge during by both spatial navigation and episodic memory function in humans. We have recently shown that in humans, memory-related processing is a stronger driver of low frequency oscillations than navigation. These findings and others support the idea that low-frequency oscillations are more strongly associated with a general memory function than with a specific role in spatial navigation. However, whether the low-frequency oscillations that support episodic memory and those during navigation could still share some similar functional roles remains unclear. In this study, patients undergoing intracranial electroencephalography (iEEG) monitoring performed a navigation task in which they navigated and performed internally directed route replay, similar to episodic memory. We trained a random forest classification model to use patterns in low-frequency power (2-12 Hz) to learn the position during navigation and subsequently used the same model to successfully decode position during mental simulation. We show that removal of background differences in power between navigation and mental simulation is critical to detecting the overlapping patterns. These results suggest that the low-frequency oscillations that emerge during navigation are more associated with a role in memory than specifically with a navigation related function.
Collapse
Affiliation(s)
- Sarah Seger
- Neuroscience Interdisciplinary Program, University of Arizona, 1503 E. University Blvd., Tucson, AZ 85719
- Department of Neurosurgery, University of Texas Southwestern Medical School, Dallas, TX
- Psychology Department, University of Arizona, 1503 E. University Blvd., Tucson, AZ 85719
- Evelyn McKnight Brain Institute, University of Arizona, 1503 E. University Blvd., Tucson, AZ 85719
| | - Jennifer Kriegel
- Neuroscience Interdisciplinary Program, University of Arizona, 1503 E. University Blvd., Tucson, AZ 85719
- Department of Neurosurgery, University of Texas Southwestern Medical School, Dallas, TX
- Psychology Department, University of Arizona, 1503 E. University Blvd., Tucson, AZ 85719
- Evelyn McKnight Brain Institute, University of Arizona, 1503 E. University Blvd., Tucson, AZ 85719
| | - Brad Lega
- Neuroscience Interdisciplinary Program, University of Arizona, 1503 E. University Blvd., Tucson, AZ 85719
- Department of Neurosurgery, University of Texas Southwestern Medical School, Dallas, TX
- Psychology Department, University of Arizona, 1503 E. University Blvd., Tucson, AZ 85719
- Evelyn McKnight Brain Institute, University of Arizona, 1503 E. University Blvd., Tucson, AZ 85719
| | - Arne Ekstrom
- Neuroscience Interdisciplinary Program, University of Arizona, 1503 E. University Blvd., Tucson, AZ 85719
- Department of Neurosurgery, University of Texas Southwestern Medical School, Dallas, TX
- Psychology Department, University of Arizona, 1503 E. University Blvd., Tucson, AZ 85719
- Evelyn McKnight Brain Institute, University of Arizona, 1503 E. University Blvd., Tucson, AZ 85719
| |
Collapse
|
3
|
Phan JMP, Yi J, Foote JHA, Ayabe ARK, Guan K, Garland T, Parfitt KD. Hippocampal long-term potentiation is modulated by exercise-induced alterations in dopaminergic synaptic transmission in mice selectively bred for high voluntary wheel running. Restor Neurol Neurosci 2024:9226028241290400. [PMID: 39973602 DOI: 10.1177/09226028241290400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
BackgroundHigh-Runner (HR) mice, selectively bred for increased voluntary wheel running behavior, exhibit heightened motivation to run. Exercise has been shown to influence hippocampal long-term potentiation (LTP) and memory, and is neuroprotective in several neurodegenerative diseases.ObjectiveThis study aimed to determine the impact of intense running in HR mice with wheel access on hippocampal LTP, compared to HR mice without wheels and non-selected control (C) mice with/without wheels. Additionally, we investigated the involvement of D1/D5 receptors and the dopamine transporter (DAT) in LTP modulation and examined levels of these proteins in HR and C mice.MethodsAdult female HR and C mice were individually housed with/without running wheels for at least two weeks. Hippocampal LTP of extracellular field excitatory postsynaptic potentials (fEPSPs) was measured in area CA1, and SKF-38393 (D1/D5 receptor agonist) and GBR 12909 (DAT inhibitor) were used to probe the role of D1/D5 receptors and DAT in LTP differences. Western blot analyses assessed D1/D5 receptor and DAT expression in the hippocampus, prefrontal cortex, and cerebellum.ResultsHR mice with wheel access showed significantly increased hippocampal LTP compared to those without wheels and to C mice with/without wheels. Treatment with SKF-38393 or GBR 12909 prevented the heightened LTP in HR mice with wheels, aligning it with levels in C mice. Hippocampal D1/D5 receptor levels were lower, and DAT levels were higher in HR mice compared to C mice. No significant changes were observed in other brain regions.ConclusionsThe increased hippocampal LTP seen in HR mice with wheel access may be related to alterations in dopaminergic synaptic transmission that underlie the neurophysiological basis of hyperactivity, motor disorders, and/or motivation.
Collapse
Affiliation(s)
| | - Jiwon Yi
- Department of Neuroscience, Pomona College, Claremont, CA, USA
| | | | | | - Kevin Guan
- Department of Neuroscience, Pomona College, Claremont, CA, USA
| | - Theodore Garland
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA, USA
| | - Karen Diane Parfitt
- Program in Molecular Biology, Pomona College, Claremont, CA, USA
- Department of Neuroscience, Pomona College, Claremont, CA, USA
| |
Collapse
|
4
|
Piza DB, Corrigan BW, Gulli RA, Do Carmo S, Cuello AC, Muller L, Martinez-Trujillo J. Primacy of vision shapes behavioral strategies and neural substrates of spatial navigation in marmoset hippocampus. Nat Commun 2024; 15:4053. [PMID: 38744848 PMCID: PMC11093997 DOI: 10.1038/s41467-024-48374-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 04/29/2024] [Indexed: 05/16/2024] Open
Abstract
The role of the hippocampus in spatial navigation has been primarily studied in nocturnal mammals, such as rats, that lack many adaptations for daylight vision. Here we demonstrate that during 3D navigation, the common marmoset, a new world primate adapted to daylight, predominantly uses rapid head-gaze shifts for visual exploration while remaining stationary. During active locomotion marmosets stabilize the head, in contrast to rats that use low-velocity head movements to scan the environment as they locomote. Pyramidal neurons in the marmoset hippocampus CA3/CA1 regions predominantly show mixed selectivity for 3D spatial view, head direction, and place. Exclusive place selectivity is scarce. Inhibitory interneurons are predominantly mixed selective for angular head velocity and translation speed. Finally, we found theta phase resetting of local field potential oscillations triggered by head-gaze shifts. Our findings indicate that marmosets adapted to their daylight ecological niche by modifying exploration/navigation strategies and their corresponding hippocampal specializations.
Collapse
Affiliation(s)
- Diego B Piza
- Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Robarts Research Institute, Western University, London, ON, Canada
| | - Benjamin W Corrigan
- Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Robarts Research Institute, Western University, London, ON, Canada
- Department of Biology, Faculty of Science, York University, Toronto, ON, Canada
| | | | - Sonia Do Carmo
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - A Claudio Cuello
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Lyle Muller
- Robarts Research Institute, Western University, London, ON, Canada
- Department of Applied Mathematics, Western University, London, ON, Canada
| | - Julio Martinez-Trujillo
- Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.
- Robarts Research Institute, Western University, London, ON, Canada.
- Department of Physiology and Pharmacology, Western University, London, ON, Canada.
- Department of Psychiatry, Western University, London, ON, Canada.
- Department of Clinical Neurological Sciences, Western University, London, ON, Canada.
| |
Collapse
|
5
|
Nataraj A, Kala A, Proskauer Pena SL, Jezek K, Blahna K. Impaired Dynamics of Positional and Contextual Neural Coding in an Alzheimer's Disease Rat Model. J Alzheimers Dis 2024; 101:259-276. [PMID: 39177594 PMCID: PMC11612983 DOI: 10.3233/jad-231386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2024] [Indexed: 08/24/2024]
Abstract
Background The hippocampal representation of space, formed by the collective activity of populations of place cells, is considered as a substrate of spatial memory. Alzheimer's disease (AD), a widespread severe neurodegenerative condition of multifactorial origin, typically exhibits spatial memory deficits among its early clinical signs before more severe cognitive impacts develop. Objective To investigate mechanisms of spatial memory impairment in a double transgenic rat model of AD. Methods In this study, we utilized 9-12-month-old double-transgenic TgF344-AD rats and age-matched controls to analyze the spatial coding properties of CA1 place cells. We characterized the spatial memory representation, assessed cells' spatial information content and direction-specific activity, and compared their population coding in familiar and novel conditions. Results Our findings revealed that TgF344-AD animals exhibited lower precision in coding, as evidenced by reduced spatial information and larger receptive zones. This impairment was evident in maps representing novel environments. While controls instantly encoded directional context during their initial exposure to a novel environment, transgenics struggled to incorporate this information into the newly developed hippocampal spatial representation. This resulted in impairment in orthogonalization of stored activity patterns, an important feature directly related to episodic memory encoding capacity. Conclusions Overall, the results shed light on the nature of impairment at both the single-cell and population levels in the transgenic AD model. In addition to the observed spatial coding inaccuracy, the findings reveal a significantly impaired ability to adaptively modify and refine newly stored hippocampal memory patterns.
Collapse
Affiliation(s)
- Athira Nataraj
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, , Prague, Czech Republic
| | - Annu Kala
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, , Prague, Czech Republic
| | | | - Karel Jezek
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, , Prague, Czech Republic
| | - Karel Blahna
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, , Prague, Czech Republic
| |
Collapse
|
6
|
Maoz SLL, Stangl M, Topalovic U, Batista D, Hiller S, Aghajan ZM, Knowlton B, Stern J, Langevin JP, Fried I, Eliashiv D, Suthana N. Dynamic neural representations of memory and space during human ambulatory navigation. Nat Commun 2023; 14:6643. [PMID: 37863929 PMCID: PMC10589239 DOI: 10.1038/s41467-023-42231-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 10/03/2023] [Indexed: 10/22/2023] Open
Abstract
Our ability to recall memories of personal experiences is an essential part of daily life. These episodic memories often involve movement through space and thus require continuous encoding of one's position relative to the surrounding environment. The medial temporal lobe (MTL) is thought to be critically involved, based on studies in freely moving rodents and stationary humans. However, it remains unclear if and how the MTL represents both space and memory especially during physical navigation, given challenges associated with deep brain recordings in humans during movement. We recorded intracranial electroencephalographic (iEEG) activity while participants completed an ambulatory spatial memory task within an immersive virtual reality environment. MTL theta activity was modulated by successful memory retrieval or spatial positions within the environment, depending on dynamically changing behavioral goals. Altogether, these results demonstrate how human MTL oscillations can represent both memory and space in a temporally flexible manner during freely moving navigation.
Collapse
Affiliation(s)
- Sabrina L L Maoz
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Medical Scientist Training Program, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Psychiatry and Biobehavioral Sciences, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, 90024, USA
| | - Matthias Stangl
- Department of Psychiatry and Biobehavioral Sciences, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, 90024, USA
| | - Uros Topalovic
- Department of Psychiatry and Biobehavioral Sciences, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, 90024, USA
| | - Daniel Batista
- Department of Psychiatry and Biobehavioral Sciences, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, 90024, USA
| | - Sonja Hiller
- Department of Psychiatry and Biobehavioral Sciences, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, 90024, USA
| | - Zahra M Aghajan
- Department of Psychiatry and Biobehavioral Sciences, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, 90024, USA
| | - Barbara Knowlton
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - John Stern
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Jean-Philippe Langevin
- Neurosurgery Service, Department of Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, 90073, USA
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Itzhak Fried
- Department of Psychiatry and Biobehavioral Sciences, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, 90024, USA
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Faculty of Medicine, Tel-Aviv University, Tel-Aviv, 69978, Israel
| | - Dawn Eliashiv
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Nanthia Suthana
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Department of Psychiatry and Biobehavioral Sciences, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, 90024, USA.
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
7
|
Cefis M, Chaney R, Wirtz J, Méloux A, Quirié A, Leger C, Prigent-Tessier A, Garnier P. Molecular mechanisms underlying physical exercise-induced brain BDNF overproduction. Front Mol Neurosci 2023; 16:1275924. [PMID: 37868812 PMCID: PMC10585026 DOI: 10.3389/fnmol.2023.1275924] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 09/18/2023] [Indexed: 10/24/2023] Open
Abstract
Accumulating evidence supports that physical exercise (EX) is the most effective non-pharmacological strategy to improve brain health. EX prevents cognitive decline associated with age and decreases the risk of developing neurodegenerative diseases and psychiatric disorders. These positive effects of EX can be attributed to an increase in neurogenesis and neuroplastic processes, leading to learning and memory improvement. At the molecular level, there is a solid consensus to involve the neurotrophin brain-derived neurotrophic factor (BDNF) as the crucial molecule for positive EX effects on the brain. However, even though EX incontestably leads to beneficial processes through BDNF expression, cellular sources and molecular mechanisms underlying EX-induced cerebral BDNF overproduction are still being elucidated. In this context, the present review offers a summary of the different molecular mechanisms involved in brain's response to EX, with a specific focus on BDNF. It aims to provide a cohesive overview of the three main mechanisms leading to EX-induced brain BDNF production: the neuronal-dependent overexpression, the elevation of cerebral blood flow (hemodynamic hypothesis), and the exerkine signaling emanating from peripheral tissues (humoral response). By shedding light on these intricate pathways, this review seeks to contribute to the ongoing elucidation of the relationship between EX and cerebral BDNF expression, offering valuable insights into the potential therapeutic implications for brain health enhancement.
Collapse
Affiliation(s)
- Marina Cefis
- Département des Sciences de l’Activité Physique, Faculté des Sciences, Université du Québec à Montréal, Montreal, QC, Canada
- INSERM UMR1093-CAPS, Université de Bourgogne, UFR des Sciences de Santé, Dijon, France
| | - Remi Chaney
- INSERM UMR1093-CAPS, Université de Bourgogne, UFR des Sciences de Santé, Dijon, France
| | - Julien Wirtz
- INSERM UMR1093-CAPS, Université de Bourgogne, UFR des Sciences de Santé, Dijon, France
| | - Alexandre Méloux
- INSERM UMR1093-CAPS, Université de Bourgogne, UFR des Sciences de Santé, Dijon, France
| | - Aurore Quirié
- INSERM UMR1093-CAPS, Université de Bourgogne, UFR des Sciences de Santé, Dijon, France
| | - Clémence Leger
- INSERM UMR1093-CAPS, Université de Bourgogne, UFR des Sciences de Santé, Dijon, France
| | - Anne Prigent-Tessier
- INSERM UMR1093-CAPS, Université de Bourgogne, UFR des Sciences de Santé, Dijon, France
| | - Philippe Garnier
- INSERM UMR1093-CAPS, Université de Bourgogne, UFR des Sciences de Santé, Dijon, France
- Département Génie Biologique, Institut Universitaire de Technologie, Dijon, France
| |
Collapse
|
8
|
Seger SE, Kriegel JLS, Lega BC, Ekstrom AD. Memory-related processing is the primary driver of human hippocampal theta oscillations. Neuron 2023; 111:3119-3130.e4. [PMID: 37467749 PMCID: PMC10685603 DOI: 10.1016/j.neuron.2023.06.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 05/01/2023] [Accepted: 06/21/2023] [Indexed: 07/21/2023]
Abstract
Decades of work in rodents suggest that movement is a powerful driver of hippocampal low-frequency "theta" oscillations. Puzzlingly, such movement-related theta increases in primates are less sustained and of lower frequency, leading to questions about their functional relevance. Verbal memory encoding and retrieval lead to robust increases in low-frequency oscillations in humans, and one possibility is that memory might be a stronger driver of hippocampal theta oscillations in humans than navigation. Here, neurosurgical patients navigated routes and then immediately mentally simulated the same routes while undergoing intracranial recordings. We found that mentally simulating the same route that was just navigated elicited oscillations that were of greater power, higher frequency, and longer duration than those involving navigation. Our findings suggest that memory is a more potent driver of human hippocampal theta oscillations than navigation, supporting models of internally generated theta oscillations in the human hippocampus.
Collapse
Affiliation(s)
- Sarah E Seger
- Neuroscience Interdisciplinary Program, University of Arizona, 1503 E. University Blvd., Tucson, AZ 85719, USA
| | - Jennifer L S Kriegel
- Department of Neurosurgery, University of Texas Southwestern Medical School, Dallas, TX, USA
| | - Brad C Lega
- Department of Neurosurgery, University of Texas Southwestern Medical School, Dallas, TX, USA
| | - Arne D Ekstrom
- Neuroscience Interdisciplinary Program, University of Arizona, 1503 E. University Blvd., Tucson, AZ 85719, USA; Psychology Department, University of Arizona, 1503 E. University Blvd., Tucson, AZ 85719, USA; Evelyn McKnight Brain Institute, University of Arizona, 1503 E. University Blvd., Tucson, AZ 85719, USA.
| |
Collapse
|
9
|
Etter G, Carmichael JE, Williams S. Linking temporal coordination of hippocampal activity to memory function. Front Cell Neurosci 2023; 17:1233849. [PMID: 37720546 PMCID: PMC10501408 DOI: 10.3389/fncel.2023.1233849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/01/2023] [Indexed: 09/19/2023] Open
Abstract
Oscillations in neural activity are widespread throughout the brain and can be observed at the population level through the local field potential. These rhythmic patterns are associated with cycles of excitability and are thought to coordinate networks of neurons, in turn facilitating effective communication both within local circuits and across brain regions. In the hippocampus, theta rhythms (4-12 Hz) could contribute to several key physiological mechanisms including long-range synchrony, plasticity, and at the behavioral scale, support memory encoding and retrieval. While neurons in the hippocampus appear to be temporally coordinated by theta oscillations, they also tend to fire in sequences that are developmentally preconfigured. Although loss of theta rhythmicity impairs memory, these sequences of spatiotemporal representations persist in conditions of altered hippocampal oscillations. The focus of this review is to disentangle the relative contribution of hippocampal oscillations from single-neuron activity in learning and memory. We first review cellular, anatomical, and physiological mechanisms underlying the generation and maintenance of hippocampal rhythms and how they contribute to memory function. We propose candidate hypotheses for how septohippocampal oscillations could support memory function while not contributing directly to hippocampal sequences. In particular, we explore how theta rhythms could coordinate the integration of upstream signals in the hippocampus to form future decisions, the relevance of such integration to downstream regions, as well as setting the stage for behavioral timescale synaptic plasticity. Finally, we leverage stimulation-based treatment in Alzheimer's disease conditions as an opportunity to assess the sufficiency of hippocampal oscillations for memory function.
Collapse
Affiliation(s)
| | | | - Sylvain Williams
- Department of Psychiatry, Douglas Mental Health Research Institute, McGill University, Montreal, QC, Canada
| |
Collapse
|
10
|
Speers LJ, Sissons DJ, Cleland L, Bilkey DK. Hippocampal phase precession is preserved under ketamine, but the range of precession across a theta cycle is reduced. J Psychopharmacol 2023; 37:809-821. [PMID: 37515458 PMCID: PMC10399102 DOI: 10.1177/02698811231187339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
BACKGROUND Hippocampal phase precession, which depends on the precise spike timing of place cells relative to local theta oscillations, has been proposed to underlie sequential memory. N-methyl-D-asparate (NMDA) receptor antagonists such as ketamine disrupt memory and also reproduce several schizophrenia-like symptoms, including spatial memory impairments and disorganized cognition. It is possible that these impairments result from disruptions to phase precession. AIMS/METHODS We used an ABA design to test whether an acute, subanesthetic dose (7.5 mg/kg) of ketamine disrupted phase precession in CA1 of male rats as they navigated around a rectangular track for a food reward. RESULTS/OUTCOMES Ketamine did not affect the ability of CA1 place cells to precess despite changes to place cell firing rates, local field potential properties and locomotor speed. However, ketamine reduced the range of phase precession that occurred across a theta cycle. CONCLUSION Phase precession is largely robust to acute NMDA receptor antagonism by ketamine, but the reduced range of precession could have important implications for learning and memory.
Collapse
Affiliation(s)
| | - Daena J Sissons
- Psychology Department, Otago University Dunedin, New Zealand
- Psychology Department, University of Canterbury, Christchurch, New Zealand
| | - Lana Cleland
- Psychology Department, Otago University Dunedin, New Zealand
- Department Psychological Medicine, Otago University, Christchurch, New Zealand
- Department Population Health, Otago University, Christchurch, New Zealand
| | - David K Bilkey
- Psychology Department, Otago University Dunedin, New Zealand
| |
Collapse
|
11
|
Wang C, Lee H, Rao G, Doreswamy Y, Savelli F, Knierim JJ. Superficial-layer versus deep-layer lateral entorhinal cortex: Coding of allocentric space, egocentric space, speed, boundaries, and corners. Hippocampus 2023; 33:448-464. [PMID: 36965194 PMCID: PMC11717144 DOI: 10.1002/hipo.23528] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 02/06/2023] [Accepted: 03/08/2023] [Indexed: 03/27/2023]
Abstract
Entorhinal cortex is the major gateway between the neocortex and the hippocampus and thus plays an essential role in subserving episodic memory and spatial navigation. It can be divided into the medial entorhinal cortex (MEC) and the lateral entorhinal cortex (LEC), which are commonly theorized to be critical for spatial (context) and non-spatial (content) inputs, respectively. Consistent with this theory, LEC neurons are found to carry little information about allocentric self-location, even in cue-rich environments, but they exhibit egocentric spatial information about external items in the environment. The superficial and deep layers of LEC are believed to mediate the input to and output from the hippocampus, respectively. As earlier studies mainly examined the spatial firing properties of superficial-layer LEC neurons, here we characterized the deep-layer LEC neurons and made direct comparisons with their superficial counterparts in single unit recordings from behaving rats. Because deep-layer LEC cells received inputs from hippocampal regions, which have strong selectivity for self-location, we hypothesized that deep-layer LEC neurons would be more informative about allocentric position than superficial-layer LEC neurons. We found that deep-layer LEC cells showed only slightly more allocentric spatial information and higher spatial consistency than superficial-layer LEC cells. Egocentric coding properties were comparable between these two subregions. In addition, LEC neurons demonstrated preferential firing at lower speeds, as well as at the boundary or corners of the environment. These results suggest that allocentric spatial outputs from the hippocampus are transformed in deep-layer LEC into the egocentric coding dimensions of LEC, rather than maintaining the allocentric spatial tuning of the CA1 place fields.
Collapse
Affiliation(s)
- Cheng Wang
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
- Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, Maryland, USA
| | - Heekyung Lee
- Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, Maryland, USA
| | - Geeta Rao
- Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, Maryland, USA
| | - Yoganarasimha Doreswamy
- Department of Neurobiology and Anatomy, University of Texas Medical School at Houston, Houston, Texas, USA
| | - Francesco Savelli
- Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, Maryland, USA
| | - James J Knierim
- Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, Maryland, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, Maryland, USA
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
12
|
Chamberland S, Nebet ER, Valero M, Hanani M, Egger R, Larsen SB, Eyring KW, Buzsáki G, Tsien RW. Brief synaptic inhibition persistently interrupts firing of fast-spiking interneurons. Neuron 2023; 111:1264-1281.e5. [PMID: 36787751 PMCID: PMC10121938 DOI: 10.1016/j.neuron.2023.01.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 06/06/2022] [Accepted: 01/18/2023] [Indexed: 02/16/2023]
Abstract
Neurons perform input-output operations that integrate synaptic inputs with intrinsic electrical properties; these operations are generally constrained by the brevity of synaptic events. Here, we report that sustained firing of CA1 hippocampal fast-spiking parvalbumin-expressing interneurons (PV-INs) can be persistently interrupted for several hundred milliseconds following brief GABAAR-mediated inhibition in vitro and in vivo. A single presynaptic neuron could interrupt PV-IN firing, occasionally with a single action potential (AP), and reliably with AP bursts. Experiments and computational modeling reveal that the persistent interruption of firing maintains neurons in a depolarized, quiescent state through a cell-autonomous mechanism. Interrupted PV-INs are strikingly responsive to Schaffer collateral inputs. The persistent interruption of firing provides a disinhibitory circuit mechanism favoring spike generation in CA1 pyramidal cells. Overall, our results demonstrate that neuronal silencing can far outlast brief synaptic inhibition owing to the well-tuned interplay between neurotransmitter release and postsynaptic membrane dynamics, a phenomenon impacting microcircuit function.
Collapse
Affiliation(s)
- Simon Chamberland
- NYU Neuroscience Institute and Department of Neuroscience and Physiology, NYU Langone Medical Center, New York, NY 10016, USA.
| | - Erica R Nebet
- NYU Neuroscience Institute and Department of Neuroscience and Physiology, NYU Langone Medical Center, New York, NY 10016, USA
| | - Manuel Valero
- NYU Neuroscience Institute and Department of Neuroscience and Physiology, NYU Langone Medical Center, New York, NY 10016, USA
| | - Monica Hanani
- NYU Neuroscience Institute and Department of Neuroscience and Physiology, NYU Langone Medical Center, New York, NY 10016, USA
| | - Robert Egger
- NYU Neuroscience Institute and Department of Otolaryngology, NYU Langone Medical Center, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10003, USA
| | - Samantha B Larsen
- NYU Neuroscience Institute and Department of Neuroscience and Physiology, NYU Langone Medical Center, New York, NY 10016, USA
| | - Katherine W Eyring
- NYU Neuroscience Institute and Department of Neuroscience and Physiology, NYU Langone Medical Center, New York, NY 10016, USA
| | - György Buzsáki
- NYU Neuroscience Institute and Department of Neuroscience and Physiology, NYU Langone Medical Center, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10003, USA; Department of Neurology, Langone Medical Center, New York University, New York, NY, USA
| | - Richard W Tsien
- NYU Neuroscience Institute and Department of Neuroscience and Physiology, NYU Langone Medical Center, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10003, USA.
| |
Collapse
|
13
|
Abstract
Pericytes, attached to the surface of capillaries, play an important role in regulating local blood flow. Using optogenetic tools and genetically encoded reporters in conjunction with confocal and multiphoton imaging techniques, the 3D structure, anatomical organization, and physiology of pericytes have recently been the subject of detailed examination. This work has revealed novel functions of pericytes and morphological features such as tunneling nanotubes in brain and tunneling microtubes in heart. Here, we discuss the state of our current understanding of the roles of pericytes in blood flow control in brain and heart, where functions may differ due to the distinct spatiotemporal metabolic requirements of these tissues. We also outline the novel concept of electro-metabolic signaling, a universal mechanistic framework that links tissue metabolic state with blood flow regulation by pericytes and vascular smooth muscle cells, with capillary KATP and Kir2.1 channels as primary sensors. Finally, we present major unresolved questions and outline how they can be addressed.
Collapse
Affiliation(s)
- Thomas A Longden
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, USA; ,
- Laboratory of Neurovascular Interactions, Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Guiling Zhao
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, USA; ,
- Laboratory of Molecular Cardiology, Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Ashwini Hariharan
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, USA; ,
- Laboratory of Neurovascular Interactions, Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - W Jonathan Lederer
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, USA; ,
- Laboratory of Molecular Cardiology, Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
14
|
Zemla R, Moore JJ, Hopkins MD, Basu J. Task-selective place cells show behaviorally driven dynamics during learning and stability during memory recall. Cell Rep 2022; 41:111700. [PMID: 36417882 PMCID: PMC9787705 DOI: 10.1016/j.celrep.2022.111700] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 07/28/2022] [Accepted: 10/31/2022] [Indexed: 11/23/2022] Open
Abstract
Decades of work propose that hippocampal activity supports internal representation of learned experiences and contexts, allowing individuals to form long-term memories and quickly adapt behavior to changing environments. However, recent studies insinuate hippocampal representations can drift over time, raising the question: how could the hippocampus hold stable memories when activity of its neuronal maps fluctuates? We hypothesized that task-dependent hippocampal maps set by learning rules and structured attention stabilize as a function of behavioral performance. To test this, we imaged hippocampal CA1 pyramidal neurons during learning and memory recall phases of a new task where mice use odor cues to navigate between two reward zones. Across learning, both orthogonal and overlapping task-dependent place maps form rapidly, discriminating trial context with strong correlation to behavioral performance. Once formed, task-selective place maps show increased long-term stability during memory recall phases. We conclude that memory demand and attention stabilize hippocampal activity to maintain contextually rich spatial representations.
Collapse
Affiliation(s)
- Roland Zemla
- Neuroscience Institute, New York University Langone Health, New York, NY 10016, USA; Medical Scientist Training Program, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Jason J Moore
- Neuroscience Institute, New York University Langone Health, New York, NY 10016, USA; Center for Computational Neuroscience, Flatiron Institute, Simons Foundation, New York, NY 10010, USA
| | - Maya D Hopkins
- Neuroscience Institute, New York University Langone Health, New York, NY 10016, USA
| | - Jayeeta Basu
- Neuroscience Institute, New York University Langone Health, New York, NY 10016, USA; Medical Scientist Training Program, New York University Grossman School of Medicine, New York, NY 10016, USA; Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY 10016, USA; Department of Psychiatry, New York University Grossman School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
15
|
Green L, Tingley D, Rinzel J, Buzsáki G. Action-driven remapping of hippocampal neuronal populations in jumping rats. Proc Natl Acad Sci U S A 2022; 119:e2122141119. [PMID: 35737843 PMCID: PMC9245695 DOI: 10.1073/pnas.2122141119] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 05/03/2022] [Indexed: 12/24/2022] Open
Abstract
The current dominant view of the hippocampus is that it is a navigation "device" guided by environmental inputs. Yet, a critical aspect of navigation is a sequence of planned, coordinated actions. We examined the role of action in the neuronal organization of the hippocampus by training rats to jump a gap on a linear track. Recording local field potentials and ensembles of single units in the hippocampus, we found that jumping produced a stereotypic behavior associated with consistent electrophysiological patterns, including phase reset of theta oscillations, predictable global firing-rate changes, and population vector shifts of hippocampal neurons. A subset of neurons ("jump cells") were systematically affected by the gap but only in one direction of travel. Novel place fields emerged and others were either boosted or attenuated by jumping, yet the theta spike phase versus animal position relationship remained unaltered. Thus, jumping involves an action plan for the animal to traverse the same route as without jumping, which is faithfully tracked by hippocampal neuronal activity.
Collapse
Affiliation(s)
- Laura Green
- Neuroscience Institute, Langone Medical Center, New York University, New York, NY 10016
- Center for Neural Science, New York University, New York, NY 10003
| | - David Tingley
- Neuroscience Institute, Langone Medical Center, New York University, New York, NY 10016
| | - John Rinzel
- Center for Neural Science, New York University, New York, NY 10003
- Courant Institute for Mathematical Sciences, New York University, New York, NY 10012
| | - György Buzsáki
- Neuroscience Institute, Langone Medical Center, New York University, New York, NY 10016
- Center for Neural Science, New York University, New York, NY 10003
- Department of Neurology, Langone Medical Center, New York University, New York, NY 10016
| |
Collapse
|
16
|
Schuette PJ, Ikebara JM, Maesta-Pereira S, Torossian A, Sethi E, Kihara AH, Kao JC, Reis FMCV, Adhikari A. GABAergic CA1 neurons are more stable following context changes than glutamatergic cells. Sci Rep 2022; 12:10310. [PMID: 35725588 PMCID: PMC9209472 DOI: 10.1038/s41598-022-13799-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 05/27/2022] [Indexed: 12/31/2022] Open
Abstract
The CA1 region of the hippocampus contains both glutamatergic pyramidal cells and GABAergic interneurons. Numerous reports have characterized glutamatergic CAMK2A cell activity, showing how these cells respond to environmental changes such as local cue rotation and context re-sizing. Additionally, the long-term stability of spatial encoding and turnover of these cells across days is also well-characterized. In contrast, these classic hippocampal experiments have never been conducted with CA1 GABAergic cells. Here, we use chronic calcium imaging of male and female mice to compare the neural activity of VGAT and CAMK2A cells during exploration of unaltered environments and also during exposure to contexts before and after rotating and changing the length of the context across multiple recording days. Intriguingly, compared to CAMK2A cells, VGAT cells showed decreased remapping induced by environmental changes, such as context rotations and contextual length resizing. However, GABAergic neurons were also less likely than glutamatergic neurons to remain active and exhibit consistent place coding across recording days. Interestingly, despite showing significant spatial remapping across days, GABAergic cells had stable speed encoding between days. Thus, compared to glutamatergic cells, spatial encoding of GABAergic cells is more stable during within-session environmental perturbations, but is less stable across days. These insights may be crucial in accurately modeling the features and constraints of hippocampal dynamics in spatial coding.
Collapse
Affiliation(s)
- Peter J Schuette
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Juliane M Ikebara
- Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, São Bernardo do Campo, SP, 09606-070, Brazil
| | - Sandra Maesta-Pereira
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Anita Torossian
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Ekayana Sethi
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Alexandre H Kihara
- Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, São Bernardo do Campo, SP, 09606-070, Brazil
| | - Jonathan C Kao
- Department of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Fernando M C V Reis
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Avishek Adhikari
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
17
|
Kennedy JP, Zhou Y, Qin Y, Lovett SD, Sheremet A, Burke SN, Maurer AP. A Direct Comparison of Theta Power and Frequency to Speed and Acceleration. J Neurosci 2022; 42:4326-4341. [PMID: 35477905 PMCID: PMC9145239 DOI: 10.1523/jneurosci.0987-21.2022] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 04/09/2022] [Accepted: 04/14/2022] [Indexed: 11/21/2022] Open
Abstract
Decades of hippocampal neurophysiology research have linked the hippocampal theta rhythm to voluntary movement. A consistent observation has been a robust correlation between the amplitude (or power) and frequency of hippocampal theta and running speed. Recently, however, it has been suggested that acceleration, not running speed, is the dominating influence on theta frequency. There is an inherent interdependence among these two variables, as acceleration is the rate of change in velocity. Therefore, we investigated theta frequency and amplitude of the local-field potential recorded from the stratum pyramidale, stratum radiatum, and stratum lacunosum moleculare of the CA1 subregion, considering both speed and acceleration in tandem as animals traversed a circular task or performed continuous alternation. In male and female rats volitionally controlling their own running characteristics, we found that running speed carries nearly all of the variability in theta frequency and power, with a minute contribution from acceleration. These results contradicted a recent publication using a speed-clamping task, where acceleration and movement are compelled through the use of a bottomless car (Kropff et al., 2021a). Therefore, we reanalyzed the speed-clamping data replicating a transient increase in theta frequency during acceleration. Compared with track running rats, the speed-clamped animals exhibited lower velocities and acceleration values but still showed a stronger influence of speed on theta frequency relative to acceleration. As navigation is the integration of many sensory inputs that are not necessarily linearly related, we offer caution in making absolute claims regarding hippocampal physiology from correlates garnered from a single behavioral repertoire.SIGNIFICANCE STATEMENT A long-standing, replicable observation has been the increase of hippocampal theta power and frequency with increasing running speed. Recently, however, an experimental approach that clamps the running speed of an animal has suggested that acceleration is the dominant influence. Therefore, we analyzed data from freely behaving rats as well as data from the speed-clamping experiment. In unrestrained behavior, speed remains the dominant behavioral correlate to theta amplitude and frequency. Positive acceleration in the speed-clamp experiment induced a transient increase in theta frequency and power. However, speed retained the dominant influence over theta frequency, changing with velocity in both acceleration and deceleration conditions.
Collapse
Affiliation(s)
- Jack P Kennedy
- Department of Neuroscience, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, Florida 32610
| | - Yuchen Zhou
- Engineering School of Sustainable Infrastructure & Environment (ESSIE), University of Florida, Gainesville, Florida 32611
| | - Y Qin
- Engineering School of Sustainable Infrastructure & Environment (ESSIE), University of Florida, Gainesville, Florida 32611
| | - Sarah D Lovett
- Department of Neuroscience, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, Florida 32610
| | - A Sheremet
- Department of Neuroscience, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, Florida 32610
- Engineering School of Sustainable Infrastructure & Environment (ESSIE), University of Florida, Gainesville, Florida 32611
| | - S N Burke
- Department of Neuroscience, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, Florida 32610
| | - A P Maurer
- Department of Neuroscience, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, Florida 32610
- Engineering School of Sustainable Infrastructure & Environment (ESSIE), University of Florida, Gainesville, Florida 32611
- Department of Biomedical Engineering, University of Florida, Gainesville, Florida 32611
| |
Collapse
|
18
|
Reconstruction of the Hippocampus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1359:261-283. [DOI: 10.1007/978-3-030-89439-9_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
AbstractThe hippocampus is a widely studied brain region thought to play an important role in higher cognitive functions such as learning, memory, and navigation. The amount of data on this region increases every day and delineates a complex and fragmented picture, but an integrated understanding of hippocampal function remains elusive. Computational methods can help to move the research forward, and reconstructing a full-scale model of the hippocampus is a challenging yet feasible task that the research community should undertake.In this chapter, we present strategies for reconstructing a large-scale model of the hippocampus. Based on a previously published approach to reconstruct and simulate brain tissue, which is also explained in Chap. 10, we discuss the characteristics of the hippocampus in the light of its special anatomical and physiological features, data availability, and existing large-scale hippocampus models. A large-scale model of the hippocampus is a compound model of several building blocks: ion channels, morphologies, single cell models, connections, synapses. We discuss each of those building blocks separately and discuss how to merge them back and simulate the resulting network model.
Collapse
|
19
|
Lehr AB, Stöber TM. Differential involvement of CA2 in internally vs. externally driven hippocampal sequences. Proc Natl Acad Sci U S A 2021; 118:e2110671118. [PMID: 34518233 PMCID: PMC8463789 DOI: 10.1073/pnas.2110671118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2021] [Indexed: 11/18/2022] Open
Affiliation(s)
- Andrew B Lehr
- Department of Computational Neuroscience, University of Göttingen, 37073 Göttingen, Germany;
- Bernstein Center for Computational Neuroscience, University of Göttingen, 37073 Göttingen, Germany
| | - Tristan M Stöber
- Frankfurt Institute for Advanced Studies, 60438 Frankfurt am Main, Germany;
- Centre for Integrative Neuroplasticity, University of Oslo, 0315 Oslo, Norway
- Department of Informatics, University of Oslo, 0315 Oslo, Norway
| |
Collapse
|
20
|
Kong MS, Kim EJ, Park S, Zweifel LS, Huh Y, Cho J, Kim JJ. 'Fearful-place' coding in the amygdala-hippocampal network. eLife 2021; 10:e72040. [PMID: 34533133 PMCID: PMC8500711 DOI: 10.7554/elife.72040] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/17/2021] [Indexed: 12/03/2022] Open
Abstract
Animals seeking survival needs must be able to assess different locations of threats in their habitat. However, the neural integration of spatial and risk information essential for guiding goal-directed behavior remains poorly understood. Thus, we investigated simultaneous activities of fear-responsive basal amygdala (BA) and place-responsive dorsal hippocampus (dHPC) neurons as rats left the safe nest to search for food in an exposed space and encountered a simulated 'predator.' In this realistic situation, BA cells increased their firing rates and dHPC place cells decreased their spatial stability near the threat. Importantly, only those dHPC cells synchronized with the predator-responsive BA cells remapped significantly as a function of escalating risk location. Moreover, optogenetic stimulation of BA neurons was sufficient to cause spatial avoidance behavior and disrupt place fields. These results suggest a dynamic interaction of BA's fear signalling cells and dHPC's spatial coding cells as animals traverse safe-danger areas of their environment.
Collapse
Affiliation(s)
- Mi-Seon Kong
- Department of Psychology, University of WashingtonSeattleUnited States
- Department of Psychiatry and Behavioral Sciences, University of WashingtonSeattleUnited States
| | - Eun Joo Kim
- Department of Psychology, University of WashingtonSeattleUnited States
| | - Sanggeon Park
- Department of Brain and Cognitive Sciences, Scranton College, Ewha Womans UniversitySeoulRepublic of Korea
- Institute for Bio-Medical Convergence, International St. Mary’s Hospital, Catholic Kwandong UniversityIncheonRepublic of Korea
| | - Larry S Zweifel
- Department of Psychiatry and Behavioral Sciences, University of WashingtonSeattleUnited States
- Department of Pharmacology, University of WashingtonSeattleUnited States
| | - Yeowool Huh
- Institute for Bio-Medical Convergence, International St. Mary’s Hospital, Catholic Kwandong UniversityIncheonRepublic of Korea
- Department of Medical Science, College of Medicine, Catholic Kwandong UniversityGangneungRepublic of Korea
| | - Jeiwon Cho
- Department of Brain and Cognitive Sciences, Scranton College, Ewha Womans UniversitySeoulRepublic of Korea
| | - Jeansok J Kim
- Department of Psychology, University of WashingtonSeattleUnited States
| |
Collapse
|
21
|
van der Veldt S, Etter G, Mosser CA, Manseau F, Williams S. Conjunctive spatial and self-motion codes are topographically organized in the GABAergic cells of the lateral septum. PLoS Biol 2021; 19:e3001383. [PMID: 34460812 PMCID: PMC8432898 DOI: 10.1371/journal.pbio.3001383] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 09/10/2021] [Accepted: 08/02/2021] [Indexed: 12/22/2022] Open
Abstract
The hippocampal spatial code’s relevance for downstream neuronal populations—particularly its major subcortical output the lateral septum (LS)—is still poorly understood. Here, using calcium imaging combined with unbiased analytical methods, we functionally characterized and compared the spatial tuning of LS GABAergic cells to those of dorsal CA3 and CA1 cells. We identified a significant number of LS cells that are modulated by place, speed, acceleration, and direction, as well as conjunctions of these properties, directly comparable to hippocampal CA1 and CA3 spatially modulated cells. Interestingly, Bayesian decoding of position based on LS spatial cells reflected the animal’s location as accurately as decoding using the activity of hippocampal pyramidal cells. A portion of LS cells showed stable spatial codes over the course of multiple days, potentially reflecting long-term episodic memory. The distributions of cells exhibiting these properties formed gradients along the anterior–posterior and dorsal–ventral axes of the LS, directly reflecting the topographical organization of hippocampal inputs to the LS. Finally, we show using transsynaptic tracing that LS neurons receiving CA3 and CA1 excitatory input send projections to the hypothalamus and medial septum, regions that are not targeted directly by principal cells of the dorsal hippocampus. Together, our findings demonstrate that the LS accurately and robustly represents spatial, directional as well as self-motion information and is uniquely positioned to relay this information from the hippocampus to its downstream regions, thus occupying a key position within a distributed spatial memory network. Calcium imaging of neurons in freely behaving mice reveals how the lateral septum, the main output of the hippocampal place cells, effectively represents information about not only location, but also head direction and self-movement, and may be pivotal in sending this information to downstream brain regions.
Collapse
Affiliation(s)
| | - Guillaume Etter
- McGill University & Douglas Mental Health University Institute, Montreal, Canada
| | - Coralie-Anne Mosser
- McGill University & Douglas Mental Health University Institute, Montreal, Canada
| | - Frédéric Manseau
- McGill University & Douglas Mental Health University Institute, Montreal, Canada
| | - Sylvain Williams
- McGill University & Douglas Mental Health University Institute, Montreal, Canada
- * E-mail:
| |
Collapse
|
22
|
Divergence in Population Coding for Space between Dorsal and Ventral CA1. eNeuro 2021; 8:ENEURO.0211-21.2021. [PMID: 34433573 PMCID: PMC8425966 DOI: 10.1523/eneuro.0211-21.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 08/16/2021] [Accepted: 08/18/2021] [Indexed: 11/25/2022] Open
Abstract
Molecular, anatomic, and behavioral studies show that the hippocampus is structurally and functionally heterogeneous, with dorsal hippocampus implicated in mnemonic processes and spatial navigation and ventral hippocampus involved in affective processes. By performing electrophysiological recordings of large neuronal populations in dorsal and ventral CA1 in head-fixed mice navigating a virtual environment, we found that this diversity resulted in different strategies for population coding of space. Populations of neurons in dorsal CA1 showed more complex patterns of activity, which resulted in a higher dimensionality of neural representations that translated to more information being encoded, as compared ensembles in vCA1. Furthermore, a pairwise maximum entropy model was better at predicting the structure of these global patterns of activity in ventral CA1 as compared with dorsal CA1. Taken together, the different coding strategies we uncovered likely emerge from anatomic and physiological differences along the longitudinal axis of hippocampus and that may, in turn, underpin the divergent ethological roles of dorsal and ventral CA1.
Collapse
|
23
|
O’Mara S. Biopsychosocial Functions of Human Walking and Adherence to Behaviourally Demanding Belief Systems: A Narrative Review. Front Psychol 2021; 12:654122. [PMID: 34421710 PMCID: PMC8371042 DOI: 10.3389/fpsyg.2021.654122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 07/02/2021] [Indexed: 01/05/2023] Open
Abstract
Human walking is a socially embedded and shaped biological adaptation: it frees our hands, makes our minds mobile, and is deeply health promoting. Yet, today, physical inactivity is an unsolved, major public health problem. However, globally, tens of millions of people annually undertake ancient, significant and enduring traditions of physiologically and psychologically arduous walks (pilgrimages) of days-to-weeks extent. Pilgrim walking is a significant human activity requiring weighty commitments of time, action and belief, as well as community support. Paradoxically, human walking is most studied on treadmills, not 'in the wild', while mechanistically vital, treadmill studies of walking cannot, in principle, address why humans walk extraordinary distances together to demonstrate their adherence to a behaviourally demanding belief system. Pilgrim walkers provide a rich 'living laboratory' bridging humanistic inquiries, to progressive theoretical and empirical investigations of human walking arising from a behaviourally demanding belief system. Pilgrims vary demographically and undertake arduous journeys on precisely mapped routes of tracked, titrated doses and durations on terrain of varying difficulty, allowing investigations from molecular to cultural levels of analysis. Using the reciprocal perspectives of 'inside→out' (where processes within brain and body initiate, support and entrain movement) and 'outside→in' (where processes in the world beyond brain and body drive activity within brain and body), we examine how pilgrim walking might shape personal, social and transcendental processes, revealing potential mechanisms supporting the body and brain in motion, to how pilgrim walking might offer policy solutions for physical inactivity.
Collapse
Affiliation(s)
- Shane O’Mara
- School of Psychology and Institute of Neuroscience, Trinity College Dublin, University of Dublin, Dublin, Ireland
| |
Collapse
|
24
|
Abstract
There are currently a number of theories of rodent hippocampal function. They fall into two major groups that differ in the role they impute to space in hippocampal information processing. On one hand, the cognitive map theory sees space as crucial and central, with other types of nonspatial information embedded in a primary spatial framework. On the other hand, most other theories see the function of the hippocampal formation as broader, treating all types of information as equivalent and concentrating on the processes carried out irrespective of the specific material being represented, stored, and manipulated. One crucial difference, therefore, is the extent to which theories see hippocampal pyramidal cells as representing nonspatial information independently of a spatial framework. Studies have reported the existence of single hippocampal unit responses to nonspatial stimuli, both to simple sensory inputs as well as to more complex stimuli such as objects, conspecifics, rewards, and time, and these findings been interpreted as evidence in favor of a broader hippocampal function. Alternatively, these nonspatial responses might actually be feature-in-place signals where the spatial nature of the response has been masked by the fact that the objects or features were only presented in one location or one spatial context. In this article, we argue that when tested in multiple locations, the hippocampal response to nonspatial stimuli is almost invariably dependent on the animal's location. Looked at collectively, the data provide strong support for the cognitive map theory.
Collapse
Affiliation(s)
- John O'Keefe
- Sainsbury Wellcome Centre and Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Julija Krupic
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
25
|
Carvalho MM, Tanke N, Kropff E, Witter MP, Moser MB, Moser EI. A Brainstem Locomotor Circuit Drives the Activity of Speed Cells in the Medial Entorhinal Cortex. Cell Rep 2021; 32:108123. [PMID: 32905779 PMCID: PMC7487772 DOI: 10.1016/j.celrep.2020.108123] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/26/2020] [Accepted: 08/18/2020] [Indexed: 12/12/2022] Open
Abstract
Locomotion activates an array of sensory inputs that may help build the self-position map of the medial entorhinal cortex (MEC). In this map, speed-coding neurons are thought to dynamically update representations of the animal’s position. A possible origin for the entorhinal speed signal is the mesencephalic locomotor region (MLR), which is critically involved in the activation of locomotor programs. Here, we describe, in rats, a circuit connecting the pedunculopontine tegmental nucleus (PPN) of the MLR to the MEC via the horizontal limb of the diagonal band of Broca (HDB). At each level of this pathway, locomotion speed is linearly encoded in neuronal firing rates. Optogenetic activation of PPN cells drives locomotion and modulates activity of speed-modulated neurons in HDB and MEC. Our results provide evidence for a pathway by which brainstem speed signals can reach cortical structures implicated in navigation and higher-order dynamic representations of space. A speed-coding multisynaptic circuit connects PPN to MEC via HDB Each level of the PPN-HDB-MEC pathway contains cells with linear speed coding Optogenetic stimulation of PPN elicits activity in HDB and MEC speed cells In MEC, locomotor inputs from PPN mainly target speed-modulated interneurons
Collapse
Affiliation(s)
- Miguel M Carvalho
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Olav Kyrres Gate 9, 7491 Trondheim, Norway
| | - Nouk Tanke
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Olav Kyrres Gate 9, 7491 Trondheim, Norway
| | - Emilio Kropff
- Leloir Institute, IIBBA - CONICET, Av. Patricias Argentinas 435, Buenos Aires CP C1405BWE, Argentina
| | - Menno P Witter
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Olav Kyrres Gate 9, 7491 Trondheim, Norway
| | - May-Britt Moser
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Olav Kyrres Gate 9, 7491 Trondheim, Norway
| | - Edvard I Moser
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Olav Kyrres Gate 9, 7491 Trondheim, Norway.
| |
Collapse
|
26
|
Ledergerber D, Battistin C, Blackstad JS, Gardner RJ, Witter MP, Moser MB, Roudi Y, Moser EI. Task-dependent mixed selectivity in the subiculum. Cell Rep 2021; 35:109175. [PMID: 34038726 PMCID: PMC8170370 DOI: 10.1016/j.celrep.2021.109175] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 01/25/2021] [Accepted: 05/04/2021] [Indexed: 12/17/2022] Open
Abstract
CA1 and subiculum (SUB) connect the hippocampus to numerous output regions. Cells in both areas have place-specific firing fields, although they are more dispersed in SUB. Weak responses to head direction and running speed have been reported in both regions. However, how such information is encoded in CA1 and SUB and the resulting impact on downstream targets are poorly understood. Here, we estimate the tuning of simultaneously recorded CA1 and SUB cells to position, head direction, and speed. Individual neurons respond conjunctively to these covariates in both regions, but the degree of mixed representation is stronger in SUB, and more so during goal-directed spatial navigation than free foraging. Each navigational variable could be decoded with higher precision, from a similar number of neurons, in SUB than CA1. The findings point to a possible contribution of mixed-selective coding in SUB to efficient transmission of hippocampal representations to widespread brain regions. CA1 and subiculum neurons respond conjunctively to position, head direction, and speed The degree of conjunctive coding (“mixed selectivity”) is stronger in the subiculum Mixed selectivity is stronger during goal-directed navigation than in free foraging Decoding of each navigational covariate is more accurate with mixed selectivity
Collapse
Affiliation(s)
- Debora Ledergerber
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Olav Kyrre s gate 9, MTFS, 7489 Trondheim, Norway.
| | - Claudia Battistin
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Olav Kyrre s gate 9, MTFS, 7489 Trondheim, Norway
| | - Jan Sigurd Blackstad
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Olav Kyrre s gate 9, MTFS, 7489 Trondheim, Norway
| | - Richard J Gardner
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Olav Kyrre s gate 9, MTFS, 7489 Trondheim, Norway
| | - Menno P Witter
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Olav Kyrre s gate 9, MTFS, 7489 Trondheim, Norway
| | - May-Britt Moser
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Olav Kyrre s gate 9, MTFS, 7489 Trondheim, Norway
| | - Yasser Roudi
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Olav Kyrre s gate 9, MTFS, 7489 Trondheim, Norway.
| | - Edvard I Moser
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Olav Kyrre s gate 9, MTFS, 7489 Trondheim, Norway.
| |
Collapse
|
27
|
Kropff E, Carmichael JE, Moser EI, Moser MB. Frequency of theta rhythm is controlled by acceleration, but not speed, in running rats. Neuron 2021; 109:1029-1039.e8. [PMID: 33567253 PMCID: PMC7980093 DOI: 10.1016/j.neuron.2021.01.017] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/03/2020] [Accepted: 01/15/2021] [Indexed: 12/16/2022]
Abstract
The theta rhythm organizes neural activity across hippocampus and entorhinal cortex. A role for theta oscillations in spatial navigation is supported by half a century of research reporting that theta frequency encodes running speed linearly so that displacement can be estimated through theta frequency integration. We show that this relationship is an artifact caused by the fact that the speed of freely moving animals could not be systematically disentangled from acceleration. Using an experimental procedure that clamps running speed at pre-set values, we find that the theta frequency of local field potentials and spike activity is linearly related to positive acceleration, but not negative acceleration or speed. The modulation by positive-only acceleration makes rhythmic activity at theta frequency unfit as a code to compute displacement or any other kinematic variable. Temporally precise variations in theta frequency may instead serve as a mechanism for speeding up entorhinal-hippocampal computations during accelerated movement. Entorhinal-hippocampal theta frequency is not modulated by speed Theta frequency is linearly related to positive, but not negative, acceleration Rhythmic spiking modulation by acceleration is expressed across functional cell types Slow decay of theta frequency after acceleration creates spurious speed correlation
Collapse
Affiliation(s)
- Emilio Kropff
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway; Leloir Institute-IIBBA-CONICET, Buenos Aires 1405BWE, Argentina.
| | - James E Carmichael
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
| | - Edvard I Moser
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway.
| | - May-Britt Moser
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
| |
Collapse
|
28
|
Heterogeneity of Age-Related Neural Hyperactivity along the CA3 Transverse Axis. J Neurosci 2021; 41:663-673. [PMID: 33257325 DOI: 10.1523/jneurosci.2405-20.2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/12/2020] [Accepted: 11/19/2020] [Indexed: 02/08/2023] Open
Abstract
Age-related memory deficits are correlated with neural hyperactivity in the CA3 region of the hippocampus. Abnormal CA3 hyperactivity in aged rats has been proposed to contribute to an imbalance between pattern separation and pattern completion, resulting in overly rigid representations. Recent evidence of functional heterogeneity along the CA3 transverse axis suggests that proximal CA3 supports pattern separation while distal CA3 supports pattern completion. It is not known whether age-related CA3 hyperactivity is uniformly represented along the CA3 transverse axis. We examined the firing rates of CA3 neurons from young and aged, male, Long-Evans rats along the CA3 transverse axis. Consistent with prior studies, young CA3 cells showed an increasing gradient in mean firing rate from proximal to distal CA3. However, aged CA3 cells showed an opposite, decreasing trend, in that CA3 cells in aged rats were hyperactive in proximal CA3, but possibly hypoactive in distal CA3, compared with young (Y) rats. We suggest that, in combination with altered inputs from the entorhinal cortex and dentate gyrus (DG), the proximal CA3 region of aged rats may switch from its normal function that reflects the pattern separation output of the DG and instead performs a computation that reflects an abnormal bias toward pattern completion. In parallel, distal CA3 of aged rats may create weaker attractor basins that promote abnormal, bistable representations under certain conditions.SIGNIFICANCE STATEMENT Prior work suggested that age-related CA3 hyperactivity enhances pattern completion, resulting in rigid representations. Implicit in prior studies is the notion that hyperactivity is present throughout a functionally homogeneous CA3 network. However, more recent work has demonstrated functional heterogeneity along the CA3 transverse axis, in that proximal CA3 is involved in pattern separation and distal CA3 is involved in pattern completion. Here, we show that age-related hyperactivity is present only in proximal CA3, with potential hypoactivity in distal CA3. This result provides new insight in the role of CA3 in age-related memory impairments, suggesting that the rigid representations in aging result primarily from dysfunction of computational circuits involving the dentate gyrus (DG) and proximal CA3.
Collapse
|
29
|
Young CK, Ruan M, McNaughton N. Speed modulation of hippocampal theta frequency and amplitude predicts water maze learning. Hippocampus 2020; 31:201-212. [PMID: 33171002 DOI: 10.1002/hipo.23281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 10/12/2020] [Accepted: 10/29/2020] [Indexed: 02/06/2023]
Abstract
Theta oscillations in the hippocampus have many behavioral correlates, with the magnitude and vigor of ongoing movement being the most salient. Many consider correlates of locomotion with hippocampal theta to be a confound in delineating theta contributions to cognitive processes. Theory and empirical experiments suggest theta-movement relationships are important if spatial navigation is to support higher cognitive processes. In the current study, we tested if variations in speed modulation of hippocampal theta can predict spatial learning rates in the water maze. Using multi-step regression, we find that the magnitude and robustness of hippocampal theta frequency versus speed scaling can predict water maze learning rates. Using a generalized linear model, we also demonstrate that speed and water maze learning are the best predictors of hippocampal theta frequency and amplitude. Our findings suggest movement-speed correlations with hippocampal theta frequency may be actively used in spatial learning.
Collapse
Affiliation(s)
- Calvin K Young
- Department of Psychology and Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| | - Ming Ruan
- Department of Psychology and Brain Health Research Centre, University of Otago, Dunedin, New Zealand.,Zhuhai Municipal Women's and Children's Hospital, Zhuhai, China
| | - Neil McNaughton
- Department of Psychology and Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| |
Collapse
|
30
|
Gardner JC, Dvoretskiy SV, Yang Y, Venkataraman S, Lange DA, Li S, Boppart AL, Kim N, Rendeiro C, Boppart MD, Rhodes JS. Electrically stimulated hind limb muscle contractions increase adult hippocampal astrogliogenesis but not neurogenesis or behavioral performance in male C57BL/6J mice. Sci Rep 2020; 10:19319. [PMID: 33168868 PMCID: PMC7652861 DOI: 10.1038/s41598-020-76356-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 10/19/2020] [Indexed: 12/11/2022] Open
Abstract
Regular exercise is crucial for maintaining cognitive health throughout life. Recent evidence suggests muscle contractions during exercise release factors into the blood which cross into the brain and stimulate adult hippocampal neurogenesis. However, no study has tested whether muscle contractions alone are sufficient to increase adult hippocampal neurogenesis and improve behavioral performance. Adult male, C57BL/6J mice were anesthetized and exposed to bilateral hind limb muscle contractions (both concentric and eccentric) via electrical stimulation (e-stim) of the sciatic nerve twice a week for 8 weeks. Each session lasted approximately 20 min and consisted of a total of 40 muscle contractions. The control group was treated similarly except without e-stim (sham). Acute neuronal activation of the dentate gyrus (DG) using cFos immunohistochemistry was measured as a negative control to confirm that the muscle contractions did not activate the hippocampus, and in agreement, no DG activation was observed. Relative to sham, e-stim training increased DG volume by approximately 10% and astrogliogenesis by 75%, but no difference in neurogenesis was detected and no improvement in behavioral performance was observed. E-stim also increased astrogliogenesis in CA1/CA2 hippocampal subfields but not in the cortex. Results demonstrate that muscle contractions alone, in absence of DG activation, are sufficient to increase adult hippocampal astrogliogenesis, but not neurogenesis or behavioral performance in mice.
Collapse
Affiliation(s)
- Jennie C Gardner
- Department of Psychology, University of Illinois at Urbana-Champaign, Champaign, USA.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N. Mathews Ave., Urbana, IL, 61801, USA
| | - Svyatoslav V Dvoretskiy
- Department of Kinesiology and Community Health, University of Illinois at Urbana Champaign, Champaign, USA.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N. Mathews Ave., Urbana, IL, 61801, USA
| | - Yanyu Yang
- Department of Psychology, University of Illinois at Urbana-Champaign, Champaign, USA.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N. Mathews Ave., Urbana, IL, 61801, USA
| | - Sanjana Venkataraman
- Department of Psychology, University of Illinois at Urbana-Champaign, Champaign, USA.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N. Mathews Ave., Urbana, IL, 61801, USA
| | - Dominica A Lange
- Department of Psychology, University of Illinois at Urbana-Champaign, Champaign, USA.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N. Mathews Ave., Urbana, IL, 61801, USA
| | - Shiping Li
- Department of Psychology, University of Illinois at Urbana-Champaign, Champaign, USA.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N. Mathews Ave., Urbana, IL, 61801, USA
| | - Alexandria L Boppart
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N. Mathews Ave., Urbana, IL, 61801, USA
| | - Noah Kim
- Department of Kinesiology and Community Health, University of Illinois at Urbana Champaign, Champaign, USA.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N. Mathews Ave., Urbana, IL, 61801, USA
| | - Catarina Rendeiro
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N. Mathews Ave., Urbana, IL, 61801, USA.,School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | - Marni D Boppart
- Department of Kinesiology and Community Health, University of Illinois at Urbana Champaign, Champaign, USA.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N. Mathews Ave., Urbana, IL, 61801, USA
| | - Justin S Rhodes
- Department of Psychology, University of Illinois at Urbana-Champaign, Champaign, USA. .,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N. Mathews Ave., Urbana, IL, 61801, USA.
| |
Collapse
|
31
|
Altered Hippocampal Place Cell Representation and Theta Rhythmicity following Moderate Prenatal Alcohol Exposure. Curr Biol 2020; 30:3556-3569.e5. [PMID: 32707066 DOI: 10.1016/j.cub.2020.06.077] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 05/26/2020] [Accepted: 06/23/2020] [Indexed: 12/17/2022]
Abstract
Prenatal alcohol exposure (PAE) leads to profound deficits in spatial memory and synaptic and cellular alterations to the hippocampus that last into adulthood. Neurons in the hippocampus called place cells discharge as an animal enters specific places in an environment, establish distinct ensemble codes for familiar and novel places, and are modulated by local theta rhythms. Spatial memory is thought to critically depend on the integrity of hippocampal place cell firing. Therefore, we tested the hypothesis that hippocampal place cell firing is impaired after PAE by performing in vivo recordings from the hippocampi (CA1 and CA3) of moderate PAE and control adult rats. Our results show that hippocampal CA3 neurons from PAE rats have reduced spatial tuning. Second, CA1 and CA3 neurons from PAE rats are less likely to orthogonalize their firing between directions of travel on a linear track and between changes in contextual stimuli in an open arena compared to control neurons. Lastly, reductions in the number of hippocampal place cells exhibiting significant theta rhythmicity and phase precession were observed, which may suggest changes to hippocampal microcircuit function. Together, the reduced spatial tuning and sensitivity to contextual changes provide a neural systems-level mechanism to explain spatial memory impairment after moderate PAE.
Collapse
|
32
|
Furtunato AMB, Lobão-Soares B, Tort ABL, Belchior H. Specific Increase of Hippocampal Delta Oscillations Across Consecutive Treadmill Runs. Front Behav Neurosci 2020; 14:101. [PMID: 32676013 PMCID: PMC7333663 DOI: 10.3389/fnbeh.2020.00101] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 05/22/2020] [Indexed: 12/20/2022] Open
Abstract
Running speed affects theta (6-10 Hz) oscillations, the most prominent rhythm in the rat hippocampus. Many reports have found a strong positive correlation between locomotion speed and the amplitude and frequency of theta oscillations. However, less is known about how other rhythms such as delta (0.5-4 Hz) and gamma (25-100 Hz) are affected, and how consecutive runs impact oscillatory activity in hippocampal networks. Here, we investigated whether the successive execution of short-term runs modulates local field potentials (LFPs) in the rat hippocampus. To do this, we trained Long-Evans rats to perform voluntary 15-s runs at 30 cm/s on a treadmill placed on the central stem of an eight-shape maze, in which they subsequently performed a spatial alternation task. We bilaterally recorded CA1 LFPs while rats executed at least 35 runs on the treadmill-maze apparatus. Within running periods, we observed progressive increases in delta band power along with decreases in the power of the theta and gamma bands across runs. Concurrently, the inter-hemispheric phase coherence in the delta band significantly increased, while in the theta and gamma bands exhibited no changes. Delta power and inter-hemispheric coherence correlated better with the trial number than with the actual running speed. We observed no significant differences in running speed, head direction, nor in spatial occupancy across runs. Our results thus show that consecutive treadmill runs at the same speed positively modulates the power and coherence of delta oscillations in the rat hippocampus.
Collapse
Affiliation(s)
- Alan M. B. Furtunato
- Brain Institute, Federal University of Rio Grande do Norte, Natal, Brazil
- Psychobiology Graduate Program, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Bruno Lobão-Soares
- Psychobiology Graduate Program, Federal University of Rio Grande do Norte, Natal, Brazil
- Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Natal, Brazil
| | | | - Hindiael Belchior
- Brain Institute, Federal University of Rio Grande do Norte, Natal, Brazil
- Psychobiology Graduate Program, Federal University of Rio Grande do Norte, Natal, Brazil
- Faculty of Health Sciences of Trairí, Federal University of Rio Grande do Norte, Natal, Brazil
- Center for Memory & Brain, Boston University, Boston, MA, United States
| |
Collapse
|
33
|
Petersen PC, Buzsáki G. Cooling of Medial Septum Reveals Theta Phase Lag Coordination of Hippocampal Cell Assemblies. Neuron 2020; 107:731-744.e3. [PMID: 32526196 DOI: 10.1016/j.neuron.2020.05.023] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/26/2020] [Accepted: 05/16/2020] [Indexed: 12/31/2022]
Abstract
Hippocampal theta oscillations coordinate neuronal firing to support memory and spatial navigation. The medial septum (MS) is critical in theta generation by two possible mechanisms: either a unitary "pacemaker" timing signal is imposed on the hippocampal system, or it may assist in organizing target subcircuits within the phase space of theta oscillations. We used temperature manipulation of the MS to test these models. Cooling of the MS reduced both theta frequency and power and was associated with an enhanced incidence of errors in a spatial navigation task, but it did not affect spatial correlates of neurons. MS cooling decreased theta frequency oscillations of place cells and reduced distance-time compression but preserved distance-phase compression of place field sequences within the theta cycle. Thus, the septum is critical for sustaining precise theta phase coordination of cell assemblies in the hippocampal system, a mechanism needed for spatial memory.
Collapse
Affiliation(s)
| | - György Buzsáki
- Neuroscience Institute, NYU Langone, New York University, New York, NY 10016, USA; Department of Neurology, NYU Langone, New York University, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10003, USA.
| |
Collapse
|
34
|
Abstract
Contemporary brain research seeks to understand how cognition is reducible to neural activity. Crucially, much of this effort is guided by a scientific paradigm that views neural activity as essentially driven by external stimuli. In contrast, recent perspectives argue that this paradigm is by itself inadequate and that understanding patterns of activity intrinsic to the brain is needed to explain cognition. Yet, despite this critique, the stimulus-driven paradigm still dominates-possibly because a convincing alternative has not been clear. Here, we review a series of findings suggesting such an alternative. These findings indicate that neural activity in the hippocampus occurs in one of three brain states that have radically different anatomical, physiological, representational, and behavioral correlates, together implying different functional roles in cognition. This three-state framework also indicates that neural representations in the hippocampus follow a surprising pattern of organization at the timescale of ∼1 s or longer. Lastly, beyond the hippocampus, recent breakthroughs indicate three parallel states in the cortex, suggesting shared principles and brain-wide organization of intrinsic neural activity.
Collapse
Affiliation(s)
- Kenneth Kay
- Howard Hughes Medical Institute, Kavli Institute for Fundamental Neuroscience, Department of Physiology, University of California San Francisco, San Francisco, California
| | - Loren M Frank
- Howard Hughes Medical Institute, Kavli Institute for Fundamental Neuroscience, Department of Physiology, University of California San Francisco, San Francisco, California
| |
Collapse
|
35
|
Sun C, Yang W, Martin J, Tonegawa S. Hippocampal neurons represent events as transferable units of experience. Nat Neurosci 2020; 23:651-663. [PMID: 32251386 PMCID: PMC11210833 DOI: 10.1038/s41593-020-0614-x] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 02/20/2020] [Indexed: 12/26/2022]
Abstract
The brain codes continuous spatial, temporal and sensory changes in daily experience. Recent studies suggest that the brain also tracks experience as segmented subdivisions (events), but the neural basis for encoding events remains unclear. Here, we designed a maze for mice, composed of four materially indistinguishable lap events, and identify hippocampal CA1 neurons whose activity are modulated not only by spatial location but also lap number. These 'event-specific rate remapping' (ESR) cells remain lap-specific even when the maze length is unpredictably altered within trials, which suggests that ESR cells treat lap events as fundamental units. The activity pattern of ESR cells is reused to represent lap events when the maze geometry is altered from square to circle, which suggests that it helps transfer knowledge between experiences. ESR activity is separately manipulable from spatial activity, and may therefore constitute an independent hippocampal code: an 'event code' dedicated to organizing experience by events as discrete and transferable units.
Collapse
Affiliation(s)
- Chen Sun
- RIKEN-MIT Laboratory for Neural Circuit Genetics at the Picower Institute for Learning and Memory, Department of Biology and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Wannan Yang
- Center for Neural Science, New York University, New York, NY, USA
| | - Jared Martin
- RIKEN-MIT Laboratory for Neural Circuit Genetics at the Picower Institute for Learning and Memory, Department of Biology and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Susumu Tonegawa
- RIKEN-MIT Laboratory for Neural Circuit Genetics at the Picower Institute for Learning and Memory, Department of Biology and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Howard Hughes Medical Institute at Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
36
|
Gonzalez WG, Zhang H, Harutyunyan A, Lois C. Persistence of neuronal representations through time and damage in the hippocampus. Science 2020; 365:821-825. [PMID: 31439798 DOI: 10.1126/science.aav9199] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 08/01/2019] [Indexed: 12/24/2022]
Abstract
How do neurons encode long-term memories? Bilateral imaging of neuronal activity in the mouse hippocampus reveals that, from one day to the next, ~40% of neurons change their responsiveness to cues, but thereafter only 1% of cells change per day. Despite these changes, neuronal responses are resilient to a lack of exposure to a previously completed task or to hippocampus lesions. Unlike individual neurons, the responses of which change after a few days, groups of neurons with inter- and intrahemispheric synchronous activity show stable responses for several weeks. The likelihood that a neuron maintains its responsiveness across days is proportional to the number of neurons with which its activity is synchronous. Information stored in individual neurons is relatively labile, but it can be reliably stored in networks of synchronously active neurons.
Collapse
Affiliation(s)
- Walter G Gonzalez
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Hanwen Zhang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Anna Harutyunyan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Carlos Lois
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
37
|
Sun Q, Li X, Li A, Zhang J, Ding Z, Gong H, Luo Q. Ventral Hippocampal-Prefrontal Interaction Affects Social Behavior via Parvalbumin Positive Neurons in the Medial Prefrontal Cortex. iScience 2020; 23:100894. [PMID: 32092698 PMCID: PMC7038035 DOI: 10.1016/j.isci.2020.100894] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 09/23/2019] [Accepted: 02/04/2020] [Indexed: 11/24/2022] Open
Abstract
Ventral hippocampus (vHIP) and medial prefrontal cortex (mPFC) are both critical regions for social behaviors. However, how their interactions affect social behavior is not well understood. By viral tracing, optogenetics, chemogenetics, and fiber photometry, we demonstrated that inhibition of vHIP or direct projections from vHIP to mPFC impaired social memory expression. Via rabies retrograde tracing, we found that all three major GABAergic neurons in mPFC received direct inputs from vHIP. Activation of parvalbumin positive (PV+) neurons in mPFC but not somatostatin positive (SST+) neurons can rescue the social memory impairment caused by vHIP inhibition. Furthermore, fiber photometry results demonstrated that social behaviors preferentially recruited PV+ neurons and inhibition of hippocampal neurons disrupted the activity of PV+ neurons during social interactions. These results revealed a new mechanism of how vHIP and mPFC regulate social behavior in complementarity with the existing neural circuitry mechanism. Inhibition of vHIP or direct vHIP-mPFC pathway disrupts social memory expression Social behaviors preferentially recruit PV+ neurons in mPFC Activation of PV+ neurons in mPFC rescue the vHIP-related impairment of social memory Inhibition of VIP+ neurons in mPFC rescue the vHIP-related impairment of social memory
Collapse
Affiliation(s)
- Qingtao Sun
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Xiangning Li
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; HUST-Suzhou Institute for Brainsmatics, JITRI Institute for Brainsmatics, Suzhou 215125, China
| | - Anan Li
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; HUST-Suzhou Institute for Brainsmatics, JITRI Institute for Brainsmatics, Suzhou 215125, China
| | - Jianping Zhang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Zhangheng Ding
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Hui Gong
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; HUST-Suzhou Institute for Brainsmatics, JITRI Institute for Brainsmatics, Suzhou 215125, China
| | - Qingming Luo
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; HUST-Suzhou Institute for Brainsmatics, JITRI Institute for Brainsmatics, Suzhou 215125, China.
| |
Collapse
|
38
|
Iwase M, Kitanishi T, Mizuseki K. Cell type, sub-region, and layer-specific speed representation in the hippocampal-entorhinal circuit. Sci Rep 2020; 10:1407. [PMID: 31996750 PMCID: PMC6989659 DOI: 10.1038/s41598-020-58194-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 01/13/2020] [Indexed: 12/15/2022] Open
Abstract
It has been hypothesised that speed information, encoded by ‘speed cells’, is important for updating spatial representation in the hippocampus and entorhinal cortex to reflect ongoing self-movement during locomotion. However, systematic characterisation of speed representation is still lacking. In this study, we compared the speed representation of distinct cell types across sub-regions/layers in the dorsal hippocampus and medial entorhinal cortex of rats during exploration. Our results indicate that the preferred theta phases of individual neurons are correlated with positive/negative speed modulation and a temporal shift of speed representation in a sub-region/layer and cell type-dependent manner. Most speed cells located in entorhinal cortex layer 2 represented speed prospectively, whereas those in the CA1 and entorhinal cortex layers 3 and 5 represented speed retrospectively. In entorhinal cortex layer 2, putative CA1-projecting pyramidal cells, but not putative dentate gyrus/CA3-projecting stellate cells, represented speed prospectively. Among the hippocampal interneurons, approximately one-third of putative dendrite-targeting (somatostatin-expressing) interneurons, but only a negligible fraction of putative soma-targeting (parvalbumin-expressing) interneurons, showed negative speed modulation. Putative parvalbumin-expressing CA1 interneurons and somatostatin-expressing CA3 interneurons represented speed more retrospectively than parvalbumin-expressing CA3 interneurons. These findings indicate that speed representation in the hippocampal-entorhinal circuit is cell-type, pathway, and theta-phase dependent.
Collapse
Affiliation(s)
- Motosada Iwase
- Department of Physiology, Osaka City University Graduate School of Medicine, Osaka, 545-8585, Japan
| | - Takuma Kitanishi
- Department of Physiology, Osaka City University Graduate School of Medicine, Osaka, 545-8585, Japan.,PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama, 332-0012, Japan
| | - Kenji Mizuseki
- Department of Physiology, Osaka City University Graduate School of Medicine, Osaka, 545-8585, Japan. .,Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ, 07102, USA.
| |
Collapse
|
39
|
Position-theta-phase model of hippocampal place cell activity applied to quantification of running speed modulation of firing rate. Proc Natl Acad Sci U S A 2019; 116:27035-27042. [PMID: 31843934 PMCID: PMC6936353 DOI: 10.1073/pnas.1912792116] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Spiking activity of place cells in the hippocampus encodes the animal's position as it moves through an environment. Within a cell's place field, both the firing rate and the phase of spiking in the local theta oscillation contain spatial information. We propose a position-theta-phase (PTP) model that captures the simultaneous expression of the firing-rate code and theta-phase code in place cell spiking. This model parametrically characterizes place fields to compare across cells, time, and conditions; generates realistic place cell simulation data; and conceptualizes a framework for principled hypothesis testing to identify additional features of place cell activity. We use the PTP model to assess the effect of running speed in place cell data recorded from rats running on linear tracks. For the majority of place fields, we do not find evidence for speed modulation of the firing rate. For a small subset of place fields, we find firing rates significantly increase or decrease with speed. We use the PTP model to compare candidate mechanisms of speed modulation in significantly modulated fields and determine that speed acts as a gain control on the magnitude of firing rate. Our model provides a tool that connects rigorous analysis with a computational framework for understanding place cell activity.
Collapse
|
40
|
Góis ZHTD, Tort ABL. Characterizing Speed Cells in the Rat Hippocampus. Cell Rep 2019; 25:1872-1884.e4. [PMID: 30428354 DOI: 10.1016/j.celrep.2018.10.054] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 08/15/2018] [Accepted: 10/12/2018] [Indexed: 12/20/2022] Open
Abstract
Spatial navigation relies on visual landmarks as well as on self-motion information. In familiar environments, both place and grid cells maintain their firing fields in darkness, suggesting that they continuously receive information about locomotion speed required for path integration. Consistently, "speed cells" have been previously identified in the hippocampal formation and characterized in detail in the medial entorhinal cortex. Here we investigated speed-correlated firing in the hippocampus. We show that CA1 has speed cells that are stable across contexts, position in space, and time. Moreover, their speed-correlated firing occurs within theta cycles, independently of theta frequency. Interestingly, a physiological classification of cell types reveals that all CA1 speed cells are inhibitory. In fact, while speed modulates pyramidal cell activity, only the firing rate of interneurons can accurately predict locomotion speed on a sub-second timescale. These findings shed light on network models of navigation.
Collapse
Affiliation(s)
- Zé Henrique T D Góis
- Brain Institute, Federal University of Rio Grande do Norte, Natal, RN 59056-450, Brazil
| | - Adriano B L Tort
- Brain Institute, Federal University of Rio Grande do Norte, Natal, RN 59056-450, Brazil.
| |
Collapse
|
41
|
Sheeran WM, Ahmed OJ. The neural circuitry supporting successful spatial navigation despite variable movement speeds. Neurosci Biobehav Rev 2019; 108:821-833. [PMID: 31760048 DOI: 10.1016/j.neubiorev.2019.11.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 09/30/2019] [Accepted: 11/18/2019] [Indexed: 12/18/2022]
Abstract
Ants who have successfully navigated the long distance between their foraging spot and their nest dozens of times will drastically overshoot their destination if the size of their legs is doubled by the addition of stilts. This observation reflects a navigational strategy called path integration, a strategy also utilized by mammals. Path integration necessitates that animals keep track of their movement speed and use it to precisely and instantly modify where they think they are and where they want to go. Here we review the neural circuitry that has evolved to integrate speed and space. We start with the rate and temporal codes for speed in the hippocampus and work backwards towards the motor and sensory systems. We highlight the need for experiments designed to differentiate the respective contributions of motor efference copy versus sensory inputs. In particular, we discuss the importance of high-resolution tracking of the latency of speed-encoding as a precise way to disentangle the sensory versus motor computations that enable successful spatial navigation at very different speeds.
Collapse
Affiliation(s)
- William M Sheeran
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Molecular, Cellular & Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Omar J Ahmed
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA; Kresge Hearing Research Institute, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Integrative Research in Critical Care, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
42
|
Zhang Y, Castro DC, Han Y, Wu Y, Guo H, Weng Z, Xue Y, Ausra J, Wang X, Li R, Wu G, Vázquez-Guardado A, Xie Y, Xie Z, Ostojich D, Peng D, Sun R, Wang B, Yu Y, Leshock JP, Qu S, Su CJ, Shen W, Hang T, Banks A, Huang Y, Radulovic J, Gutruf P, Bruchas MR, Rogers JA. Battery-free, lightweight, injectable microsystem for in vivo wireless pharmacology and optogenetics. Proc Natl Acad Sci U S A 2019; 116:21427-21437. [PMID: 31601737 PMCID: PMC6815115 DOI: 10.1073/pnas.1909850116] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Pharmacology and optogenetics are widely used in neuroscience research to study the central and peripheral nervous systems. While both approaches allow for sophisticated studies of neural circuitry, continued advances are, in part, hampered by technology limitations associated with requirements for physical tethers that connect external equipment to rigid probes inserted into delicate regions of the brain. The results can lead to tissue damage and alterations in behavioral tasks and natural movements, with additional difficulties in use for studies that involve social interactions and/or motions in complex 3-dimensional environments. These disadvantages are particularly pronounced in research that demands combined optogenetic and pharmacological functions in a single experiment. Here, we present a lightweight, wireless, battery-free injectable microsystem that combines soft microfluidic and microscale inorganic light-emitting diode probes for programmable pharmacology and optogenetics, designed to offer the features of drug refillability and adjustable flow rates, together with programmable control over the temporal profiles. The technology has potential for large-scale manufacturing and broad distribution to the neuroscience community, with capabilities in targeting specific neuronal populations in freely moving animals. In addition, the same platform can easily be adapted for a wide range of other types of passive or active electronic functions, including electrical stimulation.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Biomedical, Biological, and Chemical Engineering, University of Missouri, Columbia, MO 65211
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208
| | - Daniel C Castro
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98195
| | - Yuan Han
- Department of Psychiatry and Behavioral Sciences, Northwestern University, Chicago, IL 60611
- Department of Anesthesiology, Eye & ENT Hospital, Fudan University, 200031 Shanghai, China
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, 221004 Xuzhou, China
| | - Yixin Wu
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208
| | - Hexia Guo
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208
| | - Zhengyan Weng
- Department of Biomedical, Biological, and Chemical Engineering, University of Missouri, Columbia, MO 65211
| | - Yeguang Xue
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL 60208
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208
| | - Jokubas Ausra
- Biomedical Engineering, College of Engineering, The University of Arizona, Tucson, AZ 85721
| | - Xueju Wang
- Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, MO 65211
| | - Rui Li
- State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, 116024 Dalian, China
- International Research Center for Computational Mechanics, Dalian University of Technology, 116024 Dalian, China
| | - Guangfu Wu
- Department of Biomedical, Biological, and Chemical Engineering, University of Missouri, Columbia, MO 65211
| | | | - Yiwen Xie
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208
| | - Zhaoqian Xie
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL 60208
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208
- State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, 116024 Dalian, China
| | - Diana Ostojich
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208
| | - Dongsheng Peng
- College of Optoelectronic Engineering, Shenzhen University, 518060 Shenzhen, China
| | - Rujie Sun
- Bristol Composites Institute, University of Bristol, BS8 1TR Bristol, United Kingdom
| | - Binbin Wang
- Department of Civil and Environmental Engineering, University of Missouri, Columbia, MO 65211
| | | | - John P Leshock
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208
| | - Subing Qu
- Department of Materials Science and Engineering, Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Chun-Ju Su
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208
| | - Wen Shen
- Department of Mechanical and Aerospace Engineering, University of Texas at Arlington, Arlington, TX 76019
| | - Tao Hang
- School of Materials Science and Engineering, Shanghai Jiao Tong University, 200240 Shanghai, China
| | - Anthony Banks
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208
| | - Yonggang Huang
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL 60208
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL 60208
| | - Jelena Radulovic
- Department of Psychiatry and Behavioral Sciences, Northwestern University, Chicago, IL 60611
| | - Philipp Gutruf
- Biomedical Engineering, College of Engineering, The University of Arizona, Tucson, AZ 85721;
| | - Michael R Bruchas
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98195;
- Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA 98195
- Department of Pharmacology, University of Washington, Seattle, WA 98195
| | - John A Rogers
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208;
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL 60208
- Simpson Querrey Institute, Northwestern University, Chicago, IL 60611
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208
- Department of Chemistry, Northwestern University, Evanston, IL 60208
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| |
Collapse
|
43
|
Methodological Considerations on the Use of Different Spectral Decomposition Algorithms to Study Hippocampal Rhythms. eNeuro 2019; 6:ENEURO.0142-19.2019. [PMID: 31324673 PMCID: PMC6709234 DOI: 10.1523/eneuro.0142-19.2019] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 07/09/2019] [Accepted: 07/12/2019] [Indexed: 11/21/2022] Open
Abstract
Local field potential (LFP) oscillations are primarily shaped by the superposition of postsynaptic currents. Hippocampal LFP oscillations in the 25- to 50-Hz range (“slow γ”) are proposed to support memory retrieval independent of other frequencies. However, θ harmonics extend up to 48 Hz, necessitating a study to determine whether these oscillations are fundamentally the same. We compared the spectral analysis methods of wavelet, ensemble empirical-mode decomposition (EEMD), and Fourier transform. EEMD, as previously applied, failed to account for the θ harmonics. Depending on analytical parameters selected, wavelet may convolve over high-order θ harmonics due to the variable time-frequency atoms, creating the appearance of a broad 25- to 50-Hz rhythm. As an illustration of this issue, wavelet and EEMD depicted slow γ in a synthetic dataset that only contained θ and its harmonics. Oscillatory transience cannot explain the difference in approaches as Fourier decomposition identifies ripples triggered to epochs of high-power, 120- to 250-Hz events. When Fourier is applied to high power, 25- to 50-Hz events, only θ harmonics are resolved. This analysis challenges the identification of the slow γ rhythm as a unique fundamental hippocampal oscillation. While there may be instances in which slow γ is present in the rat hippocampus, the analysis presented here shows that unless care is exerted in the application of EEMD and wavelet techniques, the results may be misleading, in this case misrepresenting θ harmonics. Moreover, it is necessary to reconsider the characteristics that define a fundamental hippocampal oscillation as well as theories based on multiple independent γ bands.
Collapse
|
44
|
Drieu C, Zugaro M. Hippocampal Sequences During Exploration: Mechanisms and Functions. Front Cell Neurosci 2019; 13:232. [PMID: 31263399 PMCID: PMC6584963 DOI: 10.3389/fncel.2019.00232] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 05/08/2019] [Indexed: 12/13/2022] Open
Abstract
Although the hippocampus plays a critical role in spatial and episodic memories, the mechanisms underlying memory formation, stabilization, and recall for adaptive behavior remain relatively unknown. During exploration, within single cycles of the ongoing theta rhythm that dominates hippocampal local field potentials, place cells form precisely ordered sequences of activity. These neural sequences result from the integration of both external inputs conveying sensory-motor information, and intrinsic network dynamics possibly related to memory processes. Their endogenous replay during subsequent sleep is critical for memory consolidation. The present review discusses possible mechanisms and functions of hippocampal theta sequences during exploration. We present several lines of evidence suggesting that these neural sequences play a key role in information processing and support the formation of initial memory traces, and discuss potential functional distinctions between neural sequences emerging during theta vs. awake sharp-wave ripples.
Collapse
Affiliation(s)
- Céline Drieu
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR 7241, INSERM U 1050, PSL Research University, Paris, France
| | - Michaël Zugaro
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR 7241, INSERM U 1050, PSL Research University, Paris, France
| |
Collapse
|
45
|
Francavilla R, Villette V, Martel O, Topolnik L. Calcium Dynamics in Dendrites of Hippocampal CA1 Interneurons in Awake Mice. Front Cell Neurosci 2019; 13:98. [PMID: 30930750 PMCID: PMC6428725 DOI: 10.3389/fncel.2019.00098] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 02/27/2019] [Indexed: 11/19/2022] Open
Abstract
Hippocampal inhibitory interneurons exhibit a large diversity of dendritic Ca2+ mechanisms that are involved in the induction of Hebbian and anti-Hebbian synaptic plasticity. High resolution imaging techniques allowed examining somatic Ca2+ signals and, accordingly, the recruitment of hippocampal interneurons in awake behaving animals. However, little is still known about dendritic Ca2+ activity in interneurons during different behavioral states. Here, we used two-photon Ca2+ imaging in mouse hippocampal CA1 interneurons to reveal Ca2+ signal patterns in interneuron dendrites during animal locomotion and immobility. Despite overall variability in dendritic Ca2+ transients (CaTs) across different cells and dendritic branches, we report consistent behavior state-dependent organization of Ca2+ signaling in interneurons. As such, spreading regenerative CaTs dominated in dendrites during locomotion, whereas both spreading and localized Ca2+ signals were seen during immobility. Thus, these data indicate that while animal locomotion is associated with widespread Ca2+ elevations in interneuron dendrites that may reflect regenerative activity, local CaTs that may be related to synaptic activity become apparent during animal quiet state.
Collapse
Affiliation(s)
- Ruggiero Francavilla
- Department of Biochemistry, Microbiology and Bio-informatics, Faculty of Science and Engineering, Neuroscience Axis, CHU de Québec Research Center (CHUL), Laval University, Québec, PQ, Canada
| | - Vincent Villette
- Department of Biochemistry, Microbiology and Bio-informatics, Faculty of Science and Engineering, Neuroscience Axis, CHU de Québec Research Center (CHUL), Laval University, Québec, PQ, Canada
| | - Olivier Martel
- Department of Biochemistry, Microbiology and Bio-informatics, Faculty of Science and Engineering, Neuroscience Axis, CHU de Québec Research Center (CHUL), Laval University, Québec, PQ, Canada
| | - Lisa Topolnik
- Department of Biochemistry, Microbiology and Bio-informatics, Faculty of Science and Engineering, Neuroscience Axis, CHU de Québec Research Center (CHUL), Laval University, Québec, PQ, Canada
| |
Collapse
|
46
|
PEDARD MARTIN, CEFIS MARINA, ENNEQUIN GAËL, QUIRIÉ AURORE, GARNIER PHILIPPE, PRIGENT-TESSIER ANNE, PERNET NICOLAS, MARIE CHRISTINE. Brain-derived Neurotrophic Factor Pathway after Downhill and Uphill Training in Rats. Med Sci Sports Exerc 2019; 51:27-34. [DOI: 10.1249/mss.0000000000001771] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
47
|
Buzsáki G, Tingley D. Space and Time: The Hippocampus as a Sequence Generator. Trends Cogn Sci 2018; 22:853-869. [PMID: 30266146 PMCID: PMC6166479 DOI: 10.1016/j.tics.2018.07.006] [Citation(s) in RCA: 225] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 07/09/2018] [Accepted: 07/10/2018] [Indexed: 01/27/2023]
Abstract
Neural computations are often compared to instrument-measured distance or duration, and such relationships are interpreted by a human observer. However, neural circuits do not depend on human-made instruments but perform computations relative to an internally defined rate-of-change. While neuronal correlations with external measures, such as distance or duration, can be observed in spike rates or other measures of neuronal activity, what matters for the brain is how such activity patterns are utilized by downstream neural observers. We suggest that hippocampal operations can be described by the sequential activity of neuronal assemblies and their internally defined rate of change without resorting to the concept of space or time.
Collapse
Affiliation(s)
- György Buzsáki
- Neuroscience Institute, 435 East 30th Street, Langone Medical Center, New York University, New York, NY 10016, USA; Department of Neurology, Langone Medical Center, New York University, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10003, USA.
| | - David Tingley
- Neuroscience Institute, 435 East 30th Street, Langone Medical Center, New York University, New York, NY 10016, USA
| |
Collapse
|
48
|
Saleem AB, Diamanti EM, Fournier J, Harris KD, Carandini M. Coherent encoding of subjective spatial position in visual cortex and hippocampus. Nature 2018; 562:124-127. [PMID: 30202092 PMCID: PMC6309439 DOI: 10.1038/s41586-018-0516-1] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 07/24/2018] [Indexed: 01/30/2023]
Abstract
A major role of vision is to guide navigation, and navigation is strongly driven by vision1-4. Indeed, the brain's visual and navigational systems are known to interact5,6, and signals related to position in the environment have been suggested to appear as early as in the visual cortex6,7. Here, to establish the nature of these signals, we recorded in the primary visual cortex (V1) and hippocampal area CA1 while mice traversed a corridor in virtual reality. The corridor contained identical visual landmarks in two positions, so that a purely visual neuron would respond similarly at those positions. Most V1 neurons, however, responded solely or more strongly to the landmarks in one position rather than the other. This modulation of visual responses by spatial location was not explained by factors such as running speed. To assess whether the modulation is related to navigational signals and to the animal's subjective estimate of position, we trained the mice to lick for a water reward upon reaching a reward zone in the corridor. Neuronal populations in both CA1 and V1 encoded the animal's position along the corridor, and the errors in their representations were correlated. Moreover, both representations reflected the animal's subjective estimate of position, inferred from the animal's licks, better than its actual position. When animals licked in a given location-whether correctly or incorrectly-neural populations in both V1 and CA1 placed the animal in the reward zone. We conclude that visual responses in V1 are controlled by navigational signals, which are coherent with those encoded in hippocampus and reflect the animal's subjective position. The presence of such navigational signals as early as a primary sensory area suggests that they permeate sensory processing in the cortex.
Collapse
Affiliation(s)
- Aman B Saleem
- UCL Institute of Ophthalmology, University College London, London, UK. .,Department of Experimental Psychology, University College London, London, UK.
| | - E Mika Diamanti
- UCL Institute of Ophthalmology, University College London, London, UK.,CoMPLEX, Department of Computer Science, University College London, London, UK
| | - Julien Fournier
- UCL Institute of Ophthalmology, University College London, London, UK
| | - Kenneth D Harris
- UCL Institute of Neurology, University College London, London, UK
| | - Matteo Carandini
- UCL Institute of Ophthalmology, University College London, London, UK
| |
Collapse
|
49
|
Gravielle MC. Regulation of GABAA receptors by prolonged exposure to endogenous and exogenous ligands. Neurochem Int 2018; 118:96-104. [DOI: 10.1016/j.neuint.2018.05.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 05/22/2018] [Accepted: 05/30/2018] [Indexed: 02/08/2023]
|
50
|
Liang M, Starrett MJ, Ekstrom AD. Dissociation of frontal-midline delta-theta and posterior alpha oscillations: A mobile EEG study. Psychophysiology 2018; 55:e13090. [PMID: 29682758 DOI: 10.1111/psyp.13090] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 01/18/2018] [Accepted: 03/20/2018] [Indexed: 01/03/2023]
Abstract
Numerous reports have demonstrated low-frequency oscillations during navigation using invasive recordings in the hippocampus of both rats and human patients. Given evidence, in some cases, of low-frequency synchronization between midline cortex and hippocampus, it is also possible that low-frequency movement-related oscillations manifest in healthy human neocortex. However, this possibility remains largely unexplored, in part due to the difficulties of coupling free ambulation and effective scalp EEG recordings. In the current study, participants freely ambulated on an omnidirectional treadmill and explored an immersive virtual reality city rendered on a head-mounted display while undergoing simultaneous wireless scalp EEG recordings. We found that frontal-midline (FM) delta-theta (2-7.21 Hz) oscillations increased during movement compared to standing still periods, consistent with a role in navigation. In contrast, posterior alpha (8.32-12.76 Hz) oscillations were suppressed in the presence of visual input, independent of movement. Our findings suggest that FM delta-theta and posterior alpha oscillations arise at independent frequencies, under complementary behavioral conditions, and, at least for FM delta-theta oscillations, at independent recordings sites. Together, our findings support a double dissociation between movement-related FM delta-theta and resting-related posterior alpha oscillations. Our study thus provides novel evidence that FM delta-theta oscillations arise, in part, from real-world ambulation, and are functionally independent from posterior alpha oscillations.
Collapse
Affiliation(s)
- Mingli Liang
- Center for Neuroscience, University of California, Davis.,Department of Psychology, University of California, Davis
| | - Michael J Starrett
- Center for Neuroscience, University of California, Davis.,Department of Psychology, University of California, Davis
| | - Arne D Ekstrom
- Center for Neuroscience, University of California, Davis.,Department of Psychology, University of California, Davis.,Neuroscience Graduate Group, University of California, Davis
| |
Collapse
|