1
|
Mönnich D, Nagl M, Forster L, Rosier N, Igel P, Pockes S. Discovery of a Tritiated Radioligand with High Affinity and Selectivity for the Histamine H 3 Receptor. ACS Med Chem Lett 2023; 14:1589-1595. [PMID: 37974943 PMCID: PMC10641923 DOI: 10.1021/acsmedchemlett.3c00413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 10/13/2023] [Indexed: 11/19/2023] Open
Abstract
Radioligands used previously for histamine H3 receptor (H3R) are accompanied by a number of disadvantages. In this study, we report the synthesis of the new H3R radioligand [3H]UR-MN259 ([3H]11) with high (radio)chemical purity and stability. The radioligand exhibits sub-nanomolar affinity for the target receptor (pKi (H3R) = 9.56) and displays an outstanding selectivity profile within the histamine receptor family (>100,000-fold selective). [3H]UR-MN259 is ideally suitable for the characterization of H3R ligands in competition binding and shows one-site binding to the H3R in saturation binding experiments. The radiotracer shows fast association to the receptor (τassoc = 6.11 min), as well as full dissociation from the receptor (τdissoc = 14.48 min) in kinetic binding studies. The distinguished profile of [3H]UR-MN259 makes it a highly promising pharmacological tool to further investigate the role of the H3R in the CNS.
Collapse
Affiliation(s)
- Denise Mönnich
- Institute
of Pharmacy, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Martin Nagl
- Institute
of Pharmacy, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Lisa Forster
- Institute
of Pharmacy, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Niklas Rosier
- Institute
of Pharmacy, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Patrick Igel
- Institute
of Pharmacy, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Steffen Pockes
- Institute
of Pharmacy, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
- Department
of Medicinal Chemistry, Institute for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, Minnesota 55414, United States
| |
Collapse
|
2
|
Emmi A, Campagnolo M, Stocco E, Carecchio M, Macchi V, Antonini A, De Caro R, Porzionato A. Neurotransmitter and receptor systems in the subthalamic nucleus. Brain Struct Funct 2023; 228:1595-1617. [PMID: 37479801 PMCID: PMC10471682 DOI: 10.1007/s00429-023-02678-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 07/02/2023] [Indexed: 07/23/2023]
Abstract
The Subthalamic Nucleus (STh) is a lens-shaped subcortical structure located ventrally to the thalamus, that despite being embryologically derived from the diencephalon, is functionally implicated in the basal ganglia circuits. Because of this strict structural and functional relationship with the circuits of the basal ganglia, the STh is a current target for deep brain stimulation, a neurosurgical procedure employed to alleviate symptoms in movement disorders, such as Parkinson's disease and dystonia. However, despite the great relevance of this structure for both basal ganglia physiology and pathology, the neurochemical and molecular anatomy of the STh remains largely unknown. Few studies have specifically addressed the detection of neurotransmitter systems and their receptors within the structure, and even fewer have investigated their topographical distribution. Here, we have reviewed the scientific literature on neurotransmitters relevant in the STh function of rodents, non-human primates and humans including glutamate, GABA, dopamine, serotonin, noradrenaline with particular focus on their subcellular, cellular and topographical distribution. Inter-species differences were highlighted to provide a framework for further research priorities, particularly in humans.
Collapse
Affiliation(s)
- Aron Emmi
- Institute of Human Anatomy, Department of Neuroscience, University of Padova, Padua, Italy
- Parkinson and Movement Disorders Unit, Centre for Rare Neurological Diseases, Department of Neuroscience, University of Padova, Padua, Italy
- Center for Neurodegenerative Disease Research (CESNE), University of Padova, Padua, Italy
| | - Marta Campagnolo
- Parkinson and Movement Disorders Unit, Centre for Rare Neurological Diseases, Department of Neuroscience, University of Padova, Padua, Italy
- Center for Neurodegenerative Disease Research (CESNE), University of Padova, Padua, Italy
| | - Elena Stocco
- Institute of Human Anatomy, Department of Neuroscience, University of Padova, Padua, Italy
| | - Miryam Carecchio
- Parkinson and Movement Disorders Unit, Centre for Rare Neurological Diseases, Department of Neuroscience, University of Padova, Padua, Italy
- Center for Neurodegenerative Disease Research (CESNE), University of Padova, Padua, Italy
| | - Veronica Macchi
- Institute of Human Anatomy, Department of Neuroscience, University of Padova, Padua, Italy
- Center for Neurodegenerative Disease Research (CESNE), University of Padova, Padua, Italy
| | - Angelo Antonini
- Parkinson and Movement Disorders Unit, Centre for Rare Neurological Diseases, Department of Neuroscience, University of Padova, Padua, Italy
- Center for Neurodegenerative Disease Research (CESNE), University of Padova, Padua, Italy
| | - Raffaele De Caro
- Institute of Human Anatomy, Department of Neuroscience, University of Padova, Padua, Italy.
- Center for Neurodegenerative Disease Research (CESNE), University of Padova, Padua, Italy.
| | - Andrea Porzionato
- Institute of Human Anatomy, Department of Neuroscience, University of Padova, Padua, Italy
- Center for Neurodegenerative Disease Research (CESNE), University of Padova, Padua, Italy
| |
Collapse
|
3
|
Sharma A, Muresanu DF, Patnaik R, Menon PK, Tian ZR, Sahib S, Castellani RJ, Nozari A, Lafuente JV, Buzoianu AD, Skaper SD, Bryukhovetskiy I, Manzhulo I, Wiklund L, Sharma HS. Histamine H3 and H4 receptors modulate Parkinson's disease induced brain pathology. Neuroprotective effects of nanowired BF-2649 and clobenpropit with anti-histamine-antibody therapy. PROGRESS IN BRAIN RESEARCH 2021; 266:1-73. [PMID: 34689857 DOI: 10.1016/bs.pbr.2021.06.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Military personnel deployed in combat operations are highly prone to develop Parkinson's disease (PD) in later lives. PD largely involves dopaminergic pathways with hallmarks of increased alpha synuclein (ASNC), and phosphorylated tau (p-tau) in the cerebrospinal fluid (CSF) precipitating brain pathology. However, increased histaminergic nerve fibers in substantia nigra pars Compacta (SNpc), striatum (STr) and caudate putamen (CP) associated with upregulation of Histamine H3 receptors and downregulation of H4 receptors in human cases of PD is observed in postmortem cases. These findings indicate that modulation of histamine H3 and H4 receptors and/or histaminergic transmission may induce neuroprotection in PD induced brain pathology. In this review effects of a potent histaminergic H3 receptor inverse agonist BF-2549 or clobenpropit (CLBPT) partial histamine H4 agonist with H3 receptor antagonist, in association with monoclonal anti-histamine antibodies (AHmAb) in PD brain pathology is discussed based on our own observations. Our investigation shows that chronic administration of conventional or TiO2 nanowired BF 2649 (1mg/kg, i.p.) or CLBPT (1mg/kg, i.p.) once daily for 1 week together with nanowired delivery of HAmAb (25μL) significantly thwarted ASNC and p-tau levels in the SNpC and STr and reduced PD induced brain pathology. These observations are the first to show the involvement of histamine receptors in PD and opens new avenues for the development of novel drug strategies in clinical strategies for PD, not reported earlier.
Collapse
Affiliation(s)
- Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| | - Dafin F Muresanu
- Department of Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania; "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Ranjana Patnaik
- Department of Biomaterials, School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, India
| | - Preeti K Menon
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Z Ryan Tian
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Seaab Sahib
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Rudy J Castellani
- Department of Pathology, University of Maryland, Baltimore, MD, United States
| | - Ala Nozari
- Anesthesiology & Intensive Care, Massachusetts General Hospital, Boston, MA, United States
| | - José Vicente Lafuente
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Stephen D Skaper
- Anesthesiology & Intensive Care, Department of Pharmacology, University of Padua, Padova, Italy
| | - Igor Bryukhovetskiy
- Department of Fundamental Medicine, School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia; Laboratory of Pharmacology, National Scientific Center of Marine Biology, Far East Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Igor Manzhulo
- Laboratory of Pharmacology, National Scientific Center of Marine Biology, Far East Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
4
|
Rosier N, Grätz L, Schihada H, Möller J, Işbilir A, Humphrys LJ, Nagl M, Seibel U, Lohse MJ, Pockes S. A Versatile Sub-Nanomolar Fluorescent Ligand Enables NanoBRET Binding Studies and Single-Molecule Microscopy at the Histamine H 3 Receptor. J Med Chem 2021; 64:11695-11708. [PMID: 34309390 DOI: 10.1021/acs.jmedchem.1c01089] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The histamine H3 receptor (H3R) is considered an attractive drug target for various neurological diseases. We here report the synthesis of UR-NR266, a novel fluorescent H3R ligand. Broad pharmacological characterization revealed UR-NR266 as a sub-nanomolar compound at the H3R with an exceptional selectivity profile within the histamine receptor family. The presented neutral antagonist showed fast association to its target and complete dissociation in kinetic binding studies. Detailed characterization of standard H3R ligands in NanoBRET competition binding using UR-NR266 highlights its value as a versatile pharmacological tool to analyze future H3R ligands. The low nonspecific binding observed in all experiments could also be verified in TIRF and confocal microscopy. This fluorescent probe allows the highly specific analysis of native H3R in various assays ranging from optical high throughput technologies to biophysical analyses and single-molecule studies in its natural environment. An off-target screening at 14 receptors revealed UR-NR266 as a selective compound.
Collapse
Affiliation(s)
- Niklas Rosier
- Institute of Pharmacy, University of Regensburg, Universitätsstraße 31, Regensburg 93053, Germany
| | - Lukas Grätz
- Institute of Pharmacy, University of Regensburg, Universitätsstraße 31, Regensburg 93053, Germany
| | - Hannes Schihada
- Section of Receptor Biology & Signaling, Dept. of Physiology & Pharmacology, Karolinska Institutet, Solnavägen 1, Stockholm 171 77, Sweden
| | - Jan Möller
- Max Delbrück Center for Molecular Medicine, Robert-Rössle-Straße 10, Berlin 13125, Germany.,Institute of Pharmacology and Toxicology and Rudolf Virchow Center, University of Würzburg, Josef-Schneider-Straße 2, Würzburg 97070, Germany
| | - Ali Işbilir
- Max Delbrück Center for Molecular Medicine, Robert-Rössle-Straße 10, Berlin 13125, Germany.,Institute of Pharmacology and Toxicology and Rudolf Virchow Center, University of Würzburg, Josef-Schneider-Straße 2, Würzburg 97070, Germany
| | - Laura J Humphrys
- Institute of Pharmacy, University of Regensburg, Universitätsstraße 31, Regensburg 93053, Germany
| | - Martin Nagl
- Institute of Pharmacy, University of Regensburg, Universitätsstraße 31, Regensburg 93053, Germany
| | - Ulla Seibel
- Institute of Pharmacy, University of Regensburg, Universitätsstraße 31, Regensburg 93053, Germany
| | - Martin J Lohse
- Max Delbrück Center for Molecular Medicine, Robert-Rössle-Straße 10, Berlin 13125, Germany.,Institute of Pharmacology and Toxicology and Rudolf Virchow Center, University of Würzburg, Josef-Schneider-Straße 2, Würzburg 97070, Germany.,ISAR Bioscience Institute, Semmelweisstraße 5, Planegg 82152, Germany
| | - Steffen Pockes
- Institute of Pharmacy, University of Regensburg, Universitätsstraße 31, Regensburg 93053, Germany.,Department of Neurology, University of Minnesota, 2101 6th Street SE, Minneapolis, Minnesota 55455, United States.,Department of Medicinal Chemistry, Institute for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, Minnesota 55414, United States
| |
Collapse
|
5
|
Casadó-Anguera V, Cortés A, Casadó V, Moreno E. Targeting the receptor-based interactome of the dopamine D1 receptor: looking for heteromer-selective drugs. Expert Opin Drug Discov 2019; 14:1297-1312. [DOI: 10.1080/17460441.2019.1664469] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Verònica Casadó-Anguera
- Laboratory of Molecular Neurobiology, Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, (IBUB), Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Antoni Cortés
- Laboratory of Molecular Neurobiology, Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, (IBUB), Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Vicent Casadó
- Laboratory of Molecular Neurobiology, Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, (IBUB), Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Estefanía Moreno
- Laboratory of Molecular Neurobiology, Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, (IBUB), Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| |
Collapse
|
6
|
Molecular Imaging in Huntington's Disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2018; 142:289-333. [PMID: 30409256 DOI: 10.1016/bs.irn.2018.08.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Huntington's disease (HD) is a rare monogenic neurodegenerative disorder caused by a trinucleotide CAG repeat expansion in the huntingtin gene resulting in the formation of intranuclear inclusions of mutated huntingtin. The accumulation of mutated huntingtin leads to loss of GABAergic medium spiny neurons (MSNs); subsequently resulting in the development of chorea, cognitive dysfunction and psychiatric symptoms. Premanifest HD gene expansion carriers, provide a unique cohort to examine very early molecular changes, occurring before the development of overt symptoms, to elucidate disease pathophysiology and identify reliable biomarkers of HD progression. Positron emission tomography (PET) is a non-invasive molecular imaging technique allowing the evaluation of specific molecular targets in vivo. Selective PET radioligands provide invaluable tools to investigate the role of the dopaminergic system, brain metabolism, microglial activation, phosphodiesterase 10A, and cannabinoid, GABA, adenosine and opioid receptors in HD. PET has been employed to monitor disease progression aiming to identify a reliable biomarker to predict phenoconversion from premanifest to manifest HD.
Collapse
|
7
|
Wang HB, Loh DH, Whittaker DS, Cutler T, Howland D, Colwell CS. Time-Restricted Feeding Improves Circadian Dysfunction as well as Motor Symptoms in the Q175 Mouse Model of Huntington's Disease. eNeuro 2018; 5:ENEURO.0431-17.2017. [PMID: 29302618 PMCID: PMC5752678 DOI: 10.1523/eneuro.0431-17.2017] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 12/12/2017] [Indexed: 11/23/2022] Open
Abstract
Huntington's disease (HD) patients suffer from a progressive neurodegeneration that results in cognitive, psychiatric, cardiovascular, and motor dysfunction. Disturbances in sleep/wake cycles are common among HD patients with reports of delayed sleep onset, frequent bedtime awakenings, and fatigue during the day. The heterozygous Q175 mouse model of HD has been shown to phenocopy many HD core symptoms including circadian dysfunctions. Because circadian dysfunction manifests early in the disease in both patients and mouse models, we sought to determine if early intervention that improve circadian rhythmicity can benefit HD and delay disease progression. We determined the effects of time-restricted feeding (TRF) on the Q175 mouse model. At six months of age, the animals were divided into two groups: ad libitum (ad lib) and TRF. The TRF-treated Q175 mice were exposed to a 6-h feeding/18-h fasting regimen that was designed to be aligned with the middle of the time when mice are normally active. After three months of treatment (when mice reached the early disease stage), the TRF-treated Q175 mice showed improvements in their locomotor activity rhythm and sleep awakening time. Furthermore, we found improved heart rate variability (HRV), suggesting that their autonomic nervous system dysfunction was improved. Importantly, treated Q175 mice exhibited improved motor performance compared to untreated Q175 controls, and the motor improvements were correlated with improved circadian output. Finally, we found that the expression of several HD-relevant markers was restored to WT levels in the striatum of the treated mice using NanoString gene expression assays.
Collapse
Affiliation(s)
- Huei-Bin Wang
- Department of Psychiatry and Biobehavioral Sciences, University of California - Los Angeles, Los Angeles, CA 90024-1759
| | - Dawn H. Loh
- Department of Psychiatry and Biobehavioral Sciences, University of California - Los Angeles, Los Angeles, CA 90024-1759
| | - Daniel S. Whittaker
- Department of Psychiatry and Biobehavioral Sciences, University of California - Los Angeles, Los Angeles, CA 90024-1759
| | - Tamara Cutler
- Department of Psychiatry and Biobehavioral Sciences, University of California - Los Angeles, Los Angeles, CA 90024-1759
| | | | - Christopher S. Colwell
- Department of Psychiatry and Biobehavioral Sciences, University of California - Los Angeles, Los Angeles, CA 90024-1759
| |
Collapse
|
8
|
Wilson H, De Micco R, Niccolini F, Politis M. Molecular Imaging Markers to Track Huntington's Disease Pathology. Front Neurol 2017; 8:11. [PMID: 28194132 PMCID: PMC5278260 DOI: 10.3389/fneur.2017.00011] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 01/09/2017] [Indexed: 11/13/2022] Open
Abstract
Huntington's disease (HD) is a progressive, monogenic dominant neurodegenerative disorder caused by repeat expansion mutation in the huntingtin gene. The accumulation of mutant huntingtin protein, forming intranuclear inclusions, subsequently leads to degeneration of medium spiny neurons in the striatum and cortical areas. Genetic testing can identify HD gene carriers before individuals develop overt cognitive, psychiatric, and chorea symptoms. Thus, HD gene carriers can be studied in premanifest stages to understand and track the evolution of HD pathology. While advances have been made, the precise pathophysiological mechanisms underlying HD are unclear. Magnetic resonance imaging (MRI) and positron emission tomography (PET) have been employed to understand HD pathology in presymptomatic and symptomatic disease stages. PET imaging uses radioactive tracers to detect specific changes, at a molecular level, which could be used as markers of HD progression and to monitor response to therapeutic treatments for HD gene expansion carriers (HDGECs). This review focuses on available PET techniques, employed in cross-sectional and longitudinal human studies, as biomarkers for HD, and highlights future potential PET targets. PET studies have assessed changes in postsynaptic dopaminergic receptors, brain metabolism, microglial activation, and recently phosphodiesterase 10A (PDE10A) as markers to track HD progression. Alterations in PDE10A expression are the earliest biochemical change identified in HD gene carriers up to 43 years before predicted symptomatic onset. Thus, PDE10A expression could be a promising marker to track HD progression from early premanifest disease stages. Other PET targets which have been less well investigated as biomarkers include cannabinoid, adenosine, and GABA receptors. Future longitudinal studies are required to fully validate these PET biomarkers for use to track disease progression from far-onset premanifest to manifest HD stages. PET imaging is a crucial neuroimaging tool, with the potential to detect early changes and validate sensitivity of biomarkers for tracking HD pathology. Moreover, continued development of novel PET tracers provides exciting opportunities to investigate new molecular targets, such as histamine and serotonin receptors, to further understand the mechanisms underlying HD pathology.
Collapse
Affiliation(s)
- Heather Wilson
- Neurodegeneration Imaging Group, Department of Basic and Clinical Neuroscience, King's College London , London , UK
| | - Rosa De Micco
- Neurodegeneration Imaging Group, Department of Basic and Clinical Neuroscience, King's College London , London , UK
| | - Flavia Niccolini
- Neurodegeneration Imaging Group, Department of Basic and Clinical Neuroscience, King's College London , London , UK
| | - Marios Politis
- Neurodegeneration Imaging Group, Department of Basic and Clinical Neuroscience, King's College London , London , UK
| |
Collapse
|
9
|
Histaminergic Receptors Modulate Spinal Cord Injury-Induced Neuronal Nitric Oxide Synthase Upregulation and Cord Pathology: New Roles of Nanowired Drug Delivery for Neuroprotection. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2017; 137:65-98. [DOI: 10.1016/bs.irn.2017.09.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
10
|
Frick L, Rapanelli M, Abbasi E, Ohtsu H, Pittenger C. Histamine regulation of microglia: Gene-environment interaction in the regulation of central nervous system inflammation. Brain Behav Immun 2016; 57:326-337. [PMID: 27381299 PMCID: PMC5012904 DOI: 10.1016/j.bbi.2016.07.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 06/08/2016] [Accepted: 07/02/2016] [Indexed: 01/24/2023] Open
Abstract
Microglia mediate neuroinflammation and regulate brain development and homeostasis. Microglial abnormalities are implicated in a range of neuropsychiatric pathology, including Tourette syndrome (TS) and autism. Histamine (HA) is both a neurotransmitter and an immune modulator. HA deficiency has been implicated as a rare cause of TS and may contribute to other neuropsychiatric conditions. In vitro studies suggest that HA can regulate microglia, but this has never been explored in vivo. We used immunohistochemistry to examine the effects of HA deficiency in histidine decarboxylase (Hdc) knockout mice and of HA receptor stimulation in wild-type animals. We find HA to regulate microglia in vivo, via the H4 receptor. Chronic HA deficiency in Hdc knockout mice reduces ramifications of microglia in the striatum and (at trend level) in the hypothalamus, but not elsewhere in the brain. Depletion of histaminergic neurons in the hypothalamus has a similar effect. Microglia expressing IGF-1 are particularly reduced, However, the microglial response to challenge with lipopolysacchariade (LPS) is potentiated in Hdc knockout mice. Genetic abnormalities in histaminergic signaling may produce a vulnerability to inflammatory challenge, setting the state for pathogenically dysregulated neuroimmune responses.
Collapse
Affiliation(s)
- Luciana Frick
- Department of Psychiatry, Yale University, New Haven, CT
| | | | - Eeman Abbasi
- Department of Psychiatry, Yale University, New Haven, CT
| | - Hiroshi Ohtsu
- Tohoku University, Graduate School of Engineering, Sendai, Janpan
| | - Christopher Pittenger
- Department of Psychiatry, Yale University, New Haven, CT, United States; Department of Psychology, Yale University, New Haven, CT, United States; Child Study Center, Yale University, New Haven, CT, United States; Interdepartmental Neuroscience Program, Yale University, New Haven, CT, United States.
| |
Collapse
|
11
|
Ligand autoradiographical quantification of histamine H 3 receptor in human dementia with Lewy bodies. Pharmacol Res 2016; 113:245-256. [PMID: 27592250 PMCID: PMC5113906 DOI: 10.1016/j.phrs.2016.08.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 08/24/2016] [Accepted: 08/31/2016] [Indexed: 01/21/2023]
Abstract
Dementia with Lewy bodies (DLB) is a serious age-dependent human neurodegenerative disease, with multiple debilitating symptoms, including dementia, psychosis and significant motor deficits, but with little or no effective treatments. This comparative ligand autoradiographical study has quantified histamine H3 receptors (H3R) in a series of major cortical and basal ganglia structures in human DLB and Alzheimer’s (AD) post-mortem cases using the highly selective radioligand, [3H] GSK189254. In the main, the levels of H3 receptor were largely preserved in DLB cases when compared with aged-matched controls. However, we provide new evidence showing variable levels in the globus pallidus, and, moreover, raised levels of Pallidum H3 correlated with positive psychotic symptoms, in particular delusions and visual hallucinations, but not symptoms associated with depression. Furthermore, no correlation was detected for H3 receptor levels to MMSE or IUPRS symptom severity. This study suggests that H3R antagonists have scope for treating the psychotic symptomologies in DLB and other human brain disorders.
Collapse
|
12
|
Toulorge D, Schapira AHV, Hajj R. Molecular changes in the postmortem parkinsonian brain. J Neurochem 2016; 139 Suppl 1:27-58. [PMID: 27381749 DOI: 10.1111/jnc.13696] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Revised: 05/14/2016] [Accepted: 05/27/2016] [Indexed: 12/16/2022]
Abstract
Parkinson disease (PD) is the second most common neurodegenerative disease after Alzheimer disease. Although PD has a relatively narrow clinical phenotype, it has become clear that its etiological basis is broad. Post-mortem brain analysis, despite its limitations, has provided invaluable insights into relevant pathogenic pathways including mitochondrial dysfunction, oxidative stress and protein homeostasis dysregulation. Identification of the genetic causes of PD followed the discovery of these abnormalities, and reinforced the importance of the biochemical defects identified post-mortem. Recent genetic studies have highlighted the mitochondrial and lysosomal areas of cell function as particularly significant in mediating the neurodegeneration of PD. Thus the careful analysis of post-mortem PD brain biochemistry remains a crucial component of research, and one that offers considerable opportunity to pursue etiological factors either by 'reverse biochemistry' i.e. from defective pathway to mutant gene, or by the complex interplay between pathways e.g. mitochondrial turnover by lysosomes. In this review we have documented the spectrum of biochemical defects identified in PD post-mortem brain and explored their relevance to metabolic pathways involved in neurodegeneration. We have highlighted the complex interactions between these pathways and the gene mutations causing or increasing risk for PD. These pathways are becoming a focus for the development of disease modifying therapies for PD. Parkinson's is accompanied by multiple changes in the brain that are responsible for the progression of the disease. We describe here the molecular alterations occurring in postmortem brains and classify them as: Neurotransmitters and neurotrophic factors; Lewy bodies and Parkinson's-linked genes; Transition metals, calcium and calcium-binding proteins; Inflammation; Mitochondrial abnormalities and oxidative stress; Abnormal protein removal and degradation; Apoptosis and transduction pathways. This article is part of a special issue on Parkinson disease.
Collapse
Affiliation(s)
| | | | - Rodolphe Hajj
- Department of Discovery, Pharnext, Issy-Les-Moulineaux, France.
| |
Collapse
|
13
|
Bolam JP, Ellender TJ. Histamine and the striatum. Neuropharmacology 2016; 106:74-84. [PMID: 26275849 PMCID: PMC4917894 DOI: 10.1016/j.neuropharm.2015.08.013] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 07/30/2015] [Accepted: 08/06/2015] [Indexed: 12/25/2022]
Abstract
The neuromodulator histamine is released throughout the brain during periods of wakefulness. Combined with an abundant expression of histamine receptors, this suggests potential widespread histaminergic control of neural circuit activity. However, the effect of histamine on many of these circuits is unknown. In this review we will discuss recent evidence for histaminergic modulation of the basal ganglia circuitry, and specifically its main input nucleus; the striatum. Furthermore, we will discuss recent findings of histaminergic dysfunction in several basal ganglia disorders, including in Parkinson's disease and most prominently, in Tourette's syndrome, which has led to a resurgence of interest in this neuromodulator. Combined, these recent observations not only suggest a central role for histamine in modulating basal ganglia activity and behaviour, but also as a possible target in treating basal ganglia disorders. This article is part of the Special Issue entitled 'Histamine Receptors'.
Collapse
Affiliation(s)
- J Paul Bolam
- Department of Pharmacology, MRC Brain Network Dynamics Unit, Mansfield Road, OX1 3TH Oxford, United Kingdom
| | - Tommas J Ellender
- Department of Pharmacology, MRC Brain Network Dynamics Unit, Mansfield Road, OX1 3TH Oxford, United Kingdom.
| |
Collapse
|
14
|
Jiménez-Jiménez FJ, Alonso-Navarro H, García-Martín E, Agúndez JA. Thr105Ile (rs11558538) polymorphism in the histamine N-methyltransferase (HNMT) gene and risk for Parkinson disease: A PRISMA-compliant systematic review and meta-analysis. Medicine (Baltimore) 2016; 95:e4147. [PMID: 27399132 PMCID: PMC5058861 DOI: 10.1097/md.0000000000004147] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 04/14/2016] [Accepted: 06/13/2016] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND/AIMS Several neuropathological, biochemical, and pharmacological data suggested a possible role of histamine in the etiopathogenesis of Parkinson disease (PD). The single nucleotide polymorphism (SNP) rs11558538 in the histamine N-methyltransferase (HNMT) gene has been associated with the risk of developing PD by several studies but not by some others. We carried out a systematic review that included all the studies published on PD risk related to the rs11558538 SNP, and we conducted a meta-analysis following Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. METHODS We used several databases to perform the systematic review, the software Meta-DiSc 1.1.1 to perform the meta-analysis of the eligible studies, and the Q-statistic to test heterogeneity between studies. RESULTS The meta-analysis included 4 eligible case-control association studies for the HNMT rs11558538 SNP and the risk for PD (2108 patients, 2158 controls). The frequency of the minor allele positivity showed a statistically significant association with a decreased risk for PD, both in the total series and in Caucasians. Although homozygosity for the minor allele did not reach statistical significance, the test for trend indicates the occurrence of a gene-dose effect. Global diagnostic odds ratios (95% confidence intervals) for rs11558538T were 0.61 (0.46-0.81) for the total group, and 0.63 (0.45-0.88) for Caucasian patients. CONCLUSION The present meta-analysis confirms published evidence suggesting that the HNMT rs11558538 minor allele is related to a reduced risk of developing PD.
Collapse
Affiliation(s)
- Félix Javier Jiménez-Jiménez
- Section of Neurology, Hospital Universitario del Sureste, Arganda del Rey
- Department of Medicine-Neurology, Hospital “Príncipe de Asturias,” Universidad de Alcalá, Alcalá de Henares, Madrid
| | | | | | - José A.G. Agúndez
- Department of Pharmacology, University of Extremadura, Cáceres, Spain
| |
Collapse
|
15
|
Galvan L, André VM, Wang EA, Cepeda C, Levine MS. Functional Differences Between Direct and Indirect Striatal Output Pathways in Huntington's Disease. J Huntingtons Dis 2016; 1:17-25. [PMID: 25063187 DOI: 10.3233/jhd-2012-120009] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
There is morphological evidence for differential alterations in striatal medium-sized spiny neurons (MSNs) giving rise to the direct and indirect output pathways in Huntington's disease (HD). MSNs of the indirect pathway appear to be particularly vulnerable and markers for these neurons are lost early in postmortem brains and in genetic mouse models. In contrast, MSNs of the direct pathway appear to be relatively spared in the early stages. Because of the great morphological and electrophysiological similarities between MSNs of these pathways, until recently it was difficult to tease apart their functional alterations in HD models. The recent use of the enhanced green fluorescent protein gene as a reporter to identify dopamine D1 (direct pathway) and D2 (indirect pathway) receptor-expressing MSNs has made it possible to examine synaptic function in each pathway. The outcomes of such studies demonstrate significant time-dependent changes in the balance of excitatory and inhibitory inputs to both direct and indirect pathway MSNs in HD and emphasize early increases in both excitatory and inhibitory inputs to direct pathway MSNs. There also is a strong influence of alterations in dopamine modulation that possibly cause some of the changes in excitatory and inhibitory synaptic transmission in the HD models. These changes will markedly alter the output structures, the GPi and the SNr. In the future, the use of combined optogenetics with identified neurons in each pathway will help unravel the next set of questions about how the output nuclei are affected in HD.
Collapse
Affiliation(s)
- Laurie Galvan
- Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior and the Brain Research Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Véronique M André
- Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior and the Brain Research Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Elizabeth A Wang
- Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior and the Brain Research Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Carlos Cepeda
- Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior and the Brain Research Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Michael S Levine
- Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior and the Brain Research Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
16
|
Kononoff Vanhanen J, Nuutinen S, Tuominen M, Panula P. Histamine H3 Receptor Regulates Sensorimotor Gating and Dopaminergic Signaling in the Striatum. J Pharmacol Exp Ther 2016; 357:264-72. [PMID: 26945087 DOI: 10.1124/jpet.115.230771] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 03/03/2016] [Indexed: 03/08/2025] Open
Abstract
The brain histamine system has been implicated in regulation of sensorimotor gating deficits and in Gilles de la Tourette syndrome. Histamine also regulates alcohol reward and consumption via H3 receptor (H3R), possibly through an interaction with the brain dopaminergic system. Here, we identified the histaminergic mechanism of sensorimotor gating and the role of histamine H3R in the regulation of dopaminergic signaling. We found that H3R knockout mice displayed impaired prepulse inhibition (PPI), indicating deficiency in sensorimotor gating. Histamine H1 receptor knockout and histidine decarboxylase knockout mice had similar PPI as their controls. Dopaminergic drugs increased PPI of H3R knockout mice to the same level as in control mice, suggesting that changes in dopamine receptors might underlie deficient PPI response when H3R is lacking. Striatal dopamine D1 receptor mRNA level was lower, and D1 and D2 receptor-mediated activation of extracellular signal-regulated kinase 1/2 was absent in the striatum of H3R knockout mice, suggesting that H3R is essential for the dopamine receptor-mediated signaling. In conclusion, these findings demonstrate that H3R is an important regulator of sensorimotor gating, and the lack of H3R significantly modifies striatal dopaminergic signaling. These data support the usefulness of H3R ligands in neuropsychiatric disorders with preattentional deficits and disturbances in dopaminergic signaling.
Collapse
Affiliation(s)
- Jenni Kononoff Vanhanen
- Department of Anatomy, Faculty of Medicine and Neuroscience Center, University of Helsinki, Helsinki, Finland
| | - Saara Nuutinen
- Department of Anatomy, Faculty of Medicine and Neuroscience Center, University of Helsinki, Helsinki, Finland
| | - Mervi Tuominen
- Department of Anatomy, Faculty of Medicine and Neuroscience Center, University of Helsinki, Helsinki, Finland
| | - Pertti Panula
- Department of Anatomy, Faculty of Medicine and Neuroscience Center, University of Helsinki, Helsinki, Finland
| |
Collapse
|
17
|
[(11)C]TASP457, a novel PET ligand for histamine H3 receptors in human brain. Eur J Nucl Med Mol Imaging 2016; 43:1653-63. [PMID: 26902370 DOI: 10.1007/s00259-016-3332-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 02/07/2016] [Indexed: 10/22/2022]
Abstract
PURPOSE The histamine H3 receptors are presynaptic neuroreceptors that inhibit the release of histamine and other neurotransmitters. The receptors are considered a drug target for sleep disorders and neuropsychiatric disorders with cognitive decline. We developed a novel PET ligand for the H3 receptors, [(11)C]TASP0410457 ([(11)C]TASP457), with high affinity, selectivity and favorable kinetic properties in the monkey, and evaluated its kinetics and radiation safety profile for quantifying the H3 receptors in human brain. METHODS Ten healthy men were scanned for 120 min with a PET scanner for brain quantification and three healthy men were scanned for radiation dosimetry after injection of 386 ± 6.2 MBq and 190 ± 7.5 MBq of [(11)C]TASP457, respectively. For brain quantification, arterial blood sampling and metabolite analysis were performed using high-performance liquid chromatography. Distribution volumes (V T) in brain regions were determined by compartment and graphical analyses using the Logan plot and Ichise multilinear analysis (MA1). For dosimetry, radiation absorbed doses were estimated using the Medical Internal Radiation Dose scheme. RESULTS [(11)C]TASP457 PET showed high uptake (standardized uptake values in the range of about 3 - 6) in the brain and fast washout in cortical regions and slow washout in the pallidum. The two-tissue compartment model and graphical analyses estimated V T with excellent identification using 60-min scan data (about 16 mL/cm(3) in the pallidum, 9 - 14 in the basal ganglia, 6 - 9 in cortical regions, and 5 in the pons), which represents the known distribution of histamine H3 receptors. For parametric imaging, MA1 is recommended because of minimal underestimation with small intersubject variability. The organs with the highest radiation doses were the pancreas, kidneys, and liver. The effective dose delivered by [(11)C]TASP457 was 6.9 μSv/MBq. CONCLUSION [(11)C]TASP457 is a useful novel PET ligand for the investigation of the density of histamine H3 receptors in human brain.
Collapse
|
18
|
Altered histamine neurotransmission in HPRT-deficient mice. Neurosci Lett 2015; 609:74-80. [DOI: 10.1016/j.neulet.2015.10.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 10/01/2015] [Accepted: 10/03/2015] [Indexed: 01/03/2023]
|
19
|
Shan L, Bao AM, Swaab DF. The human histaminergic system in neuropsychiatric disorders. Trends Neurosci 2015; 38:167-77. [PMID: 25575625 DOI: 10.1016/j.tins.2014.12.008] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 12/06/2014] [Accepted: 12/08/2014] [Indexed: 11/16/2022]
Abstract
Histaminergic neurons are exclusively located in the hypothalamic tuberomamillary nucleus, from where they project to many brain areas. The histaminergic system is involved in basic physiological functions, such as the sleep-wake cycle, energy and endocrine homeostasis, sensory and motor functions, cognition, and attention, which are all severely affected in neuropsychiatric disorders. Here, we present recent postmortem findings on the alterations in this system in neuropsychiatric disorders, including Parkinson's disease (PD), Alzheimer's disease (AD), Huntington's disease (HD), depression, and narcolepsy. In addition, we highlight the need to validate animal models for these diseases and also for Tourette's syndrome (TS) in relation to alterations in the histaminergic system. Moreover, we discuss the potential for, and concerns over, the use of novel histamine 3 receptor (H3R) antagonists/inverse agonists as treatment for such disorders.
Collapse
Affiliation(s)
- Ling Shan
- Department of Neurobiology, Zhejiang University School of Medicine, Hangzhou 310058, China; Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam 1105 BA, The Netherlands; Department of Psychiatry and Biobehavioral Sciences, University of California at Los Angeles, Los Angeles, CA 90095, USA; Neurobiology Research, Veterans Administration Greater Los Angeles Health Care System, 16111 Plummer Street, North Hills, CA 91343, USA
| | - Ai-Min Bao
- Department of Neurobiology, Zhejiang University School of Medicine, Hangzhou 310058, China.
| | - Dick F Swaab
- Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam 1105 BA, The Netherlands
| |
Collapse
|
20
|
Modulation of behavior by the histaminergic system: Lessons from HDC-, H3R- and H4R-deficient mice. Neurosci Biobehav Rev 2014; 47:101-21. [DOI: 10.1016/j.neubiorev.2014.07.020] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Revised: 07/02/2014] [Accepted: 07/26/2014] [Indexed: 12/18/2022]
|
21
|
Uguen M, Perrin D, Belliard S, Ligneau X, Beardsley PM, Lecomte JM, Schwartz JC. Preclinical evaluation of the abuse potential of Pitolisant, a histamine H₃ receptor inverse agonist/antagonist compared with Modafinil. Br J Pharmacol 2014; 169:632-44. [PMID: 23472741 DOI: 10.1111/bph.12149] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 12/15/2012] [Accepted: 01/01/2013] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND AND PURPOSE Pitolisant, a histamine H₃ receptor inverse agonist/antagonist is currently under Phase III clinical trials for treatment of excessive daytime sleepiness namely in narcoleptic patients. Its drug abuse potential was investigated using in vivo models in rodents and monkeys and compared with those of Modafinil, a psychostimulant currently used in the same indications. EXPERIMENTAL APPROACH Effects of Pitolisant on dopamine release in the nucleus accumbens, on spontaneous and cocaine-induced locomotion, locomotor sensitization were monitored. It was also tested in three standard drug abuse tests i.e. conditioned place preference in rats, self-administration in monkeys and cocaine discrimination in mice as well as in a physical dependence model. KEY RESULTS Pitolisant did not elicit any significant changes in dopaminergic indices in rat nucleus accumbens whereas Modafinil increased dopamine release. In rodents, Pitolisant was without any effect on locomotion and reduced the cocaine-induced hyperlocomotion. In addition, no locomotor sensitization and no conditioned hyperlocomotion were evidenced with this compound in rats whereas significant effects were elicited by Modafinil. Finally, Pitolisant was devoid of any significant effects in the three standard drug abuse tests (including self-administration in monkeys) and in the physical dependence model. CONCLUSIONS AND IMPLICATIONS No potential drug abuse liability for Pitolisant was evidenced in various in vivo rodent and primate models, whereas the same does not seem so clear in the case of Modafinil.
Collapse
Affiliation(s)
- M Uguen
- Bioprojet-Biotech, Saint Grégoire Cedex, France
| | | | | | | | | | | | | |
Collapse
|
22
|
Ellenbroek BA, Ghiabi B. The other side of the histamine H3 receptor. Trends Neurosci 2014; 37:191-9. [DOI: 10.1016/j.tins.2014.02.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 02/06/2014] [Accepted: 02/07/2014] [Indexed: 10/25/2022]
|
23
|
Karagiannidis I, Dehning S, Sandor P, Tarnok Z, Rizzo R, Wolanczyk T, Madruga-Garrido M, Hebebrand J, Nöthen MM, Lehmkuhl G, Farkas L, Nagy P, Szymanska U, Anastasiou Z, Stathias V, Androutsos C, Tsironi V, Koumoula A, Barta C, Zill P, Mir P, Müller N, Barr C, Paschou P. Support of the histaminergic hypothesis in Tourette syndrome: association of the histamine decarboxylase gene in a large sample of families. J Med Genet 2013; 50:760-4. [PMID: 23825391 DOI: 10.1136/jmedgenet-2013-101637] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND Gilles de la Tourette Syndrome is a neurodevelopmental disorder that is caused by the interaction of environment with a complex genetic background. The genetic etiology of the disorder remains, so far, elusive, although multiple promising leads have been recently reported. The recent implication of the histamine decarboxylase (HDC) gene, the key enzyme in histamine production, raises the intriguing hypothesis of a possible role of histaminergic dysfunction leading to TS onset. METHODS Following up on the finding of a nonsense mutation in a single family with TS, we investigated variation across the HDC gene for association with TS. As a result of a collaborative international effort, we studied a large sample of 520 nuclear families originating from seven European populations (Greek, Hungarian, Italian, Polish, German, Albanian, Spanish) as well as a sample collected in Canada. RESULTS AND CONCLUSIONS Interrogating 12 tagging SNPs (tSNP) across the HDC region, we find strong over-transmission of alleles at two SNPs (rs854150 and rs1894236) in the complete sample, as well as a statistically significant associated haplotypes. Analysis of individual populations also reveals signals of association in the Canadian, German and Italian samples. Our results provide strong support for the histaminergic hypothesis in TS etiology and point to a possible role of histamine pathways in neuronal development.
Collapse
Affiliation(s)
- Iordanis Karagiannidis
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupoli, Greece
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Gbahou F, Rouleau A, Arrang JM. The histamine autoreceptor is a short isoform of the H₃ receptor. Br J Pharmacol 2012; 166:1860-71. [PMID: 22356432 DOI: 10.1111/j.1476-5381.2012.01913.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
BACKGROUND AND PURPOSE The histamine H(3) receptor was identified as the autoreceptor of brain histaminergic neurons. After its cloning, functional H(3) receptor isoforms generated by a deletion in the third intracellular loop were found in the brain. Here, we determined if this autoreceptor was the long or the short isoform. EXPERIMENTAL APPROACH We hypothesized that the deletion would affect H(3) receptor stereoselectivity. The effects of the enantiomers of two chiral ligands, N(α)-methyl-α-chloromethylhistamine (N(α) Me-αClMeHA) and sopromidine, were investigated on cAMP formation at the H(3(445)) and H(3(413)) receptor isoforms, common to all species. They were further compared with their effects at autoreceptors. They were also compared on [(35)S]GTPγ[S] binding to membranes of rat cerebral cortex, striatum and hypothalamus, the richest area in autoreceptors. KEY RESULTS The stereoselectivity of N(α) Me-αClMeHA enantiomers as agonists was similar at the H(3(413)) receptor isoform and autoreceptors, but lower at the long isoform. While (S) sopromidine did not discriminate between the isoforms, (R) sopromidine was an antagonist at the H(3(413)) receptor isoform and autoreceptors, but a full agonist at the long isoform. In rat brain, stereoselectivity of N(α) Me-αClMeHA was higher in the hypothalamus than in cerebral cortex or striatum, whereas the opposite pattern was found for sopromidine. CONCLUSIONS AND IMPLICATIONS The pharmacological profiles of H(3) receptor isoforms differed markedly, showing that the function of autoreceptors was fulfilled by a short isoform, such as the H(3(413)) receptor. Development of drugs selectively targeting autoreceptors might enhance their therapeutic efficacy and/or decrease incidence of side effects.
Collapse
Affiliation(s)
- F Gbahou
- Laboratoire de Neurobiologie et Pharmacologie Moléculaire, Centre de Psychiatrie et Neurosciences (CPN, U 894), INSERM, Paris, France
| | | | | |
Collapse
|
25
|
Shan L, Bossers K, Luchetti S, Balesar R, Lethbridge N, Chazot PL, Bao AM, Swaab DF. Alterations in the histaminergic system in the substantia nigra and striatum of Parkinson's patients: a postmortem study. Neurobiol Aging 2011; 33:1488.e1-13. [PMID: 22118942 DOI: 10.1016/j.neurobiolaging.2011.10.016] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Revised: 10/07/2011] [Accepted: 10/21/2011] [Indexed: 11/29/2022]
Abstract
Earlier studies showed neuronal histamine production in the hypothalamic tuberomamillary nucleus to be unchanged in Parkinson's disease (PD), whereas the histamine levels and innervation in the substantia nigra (SN) increased. In the present study we used quantitative polymerase chain reaction (qPCR) to assess the changes in the histaminergic system in the SN, caudate nucleus (CN), and putamen (PU) in 7 PD patients and 7 controls. The messenger RNA (mRNA) expression of the histamine receptor-3 (H(3)R), which was localized immunocytochemically in the large pigmented neurons, was significantly decreased in the SN in PD, while histamine receptor-4 (H(4)R)-mRNA expression showed a significant increase in caudate nucleus and PU. In addition, significantly increased mRNA levels of histamine methyltransferase (HMT), a key enzyme involved in histamine metabolism, were found in the SN and in the PU in PD. Moreover, in the SN, the histamine methyltransferase-mRNA showed a strong negative correlation with PD disease duration. Our observations imply the presence of local changes in the histaminergic system that may contribute to PD pathology, and may thus provide a rationale for possible novel therapeutic strategies.
Collapse
Affiliation(s)
- Ling Shan
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Iravani MM, Jenner P. Mechanisms underlying the onset and expression of levodopa-induced dyskinesia and their pharmacological manipulation. J Neural Transm (Vienna) 2011; 118:1661-90. [DOI: 10.1007/s00702-011-0698-2] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Accepted: 08/06/2011] [Indexed: 12/18/2022]
|
27
|
Kalmar Z, Kovacs N, Perlaki G, Nagy F, Aschermann Z, Kerekes Z, Kaszas B, Balas I, Orsi G, Komoly S, Schwarcz A, Janszky J. Reorganization of Motor System in Parkinson’s Disease. Eur Neurol 2011; 66:220-6. [DOI: 10.1159/000330658] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Accepted: 06/22/2011] [Indexed: 11/19/2022]
|
28
|
Abstract
The histaminergic system fulfills a major role in the maintenance of waking. Histaminergic neurons are located exclusively in the posterior hypothalamus from where they project to most areas of the central nervous system. The histamine H(3) receptors are autoreceptors damping histamine synthesis, the firing frequency of histamine neurons, and the release of histamine from axonal varicosities. It is noteworthy that this action also extends to heteroreceptors on the axons of most other neurotransmitter systems, allowing a powerful control over multiple homeostatic functions. The particular properties and locations of histamine H(3) receptors provide quite favorable attributes to make this a most promising target for pharmacological interventions of sleep and waking disorders associated with narcolepsy, Parkinson's disease, and other neuropsychiatric indications.
Collapse
Affiliation(s)
- Jian-Sheng Lin
- Institut National de la Santé et de la Recherche Médicale, Integrative Physiology of Brain Arousal Systems, Claude Bernard University, Lyon, France
| | | | | |
Collapse
|
29
|
van Wamelen DJ, Shan L, Aziz NA, Anink JJ, Bao AM, Roos RAC, Swaab DF. Functional increase of brain histaminergic signaling in Huntington's disease. Brain Pathol 2010; 21:419-27. [PMID: 21106039 DOI: 10.1111/j.1750-3639.2010.00465.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
To evaluate whether central histaminergic signaling in Huntington's disease (HD) patients is affected, we assessed mRNA levels of histidine decarboxylase (HDC), volume of and neuron number in the hypothalamic tuberomamillary nucleus (TMN) (HD n = 8, controls n = 8). In addition, we assessed histamine N-methyltransferase (HMT) and histamine receptor (H(1) R, H(2) R and H(3) R) mRNA levels in the inferior frontal gyrus (IFG) (n = 9 and 9) and caudate nucleus (CN) (n = 6 and 6) by real-time polymerase chain reaction. In HD patients, TMN volume and neuronal number was unaltered (P = 0.72, P = 0.25). The levels of HDC mRNA (P = 0.046), IFG HMT (P < 0.001), H(1) R (P < 0.001) and H(3) R mRNA levels (P = 0.011) were increased, while CN H(2) R and H(3) R mRNA levels were decreased (P = 0.041, P = 0.009). In HD patients, we observed a positive correlation between IFG H(3) R mRNA levels and CAG repeat length (P = 0.024) and negative correlations between age at onset of disease and IFG HMT (P = 0.015) and H(1) R (P = 0.021) mRNA levels. These findings indicate a functional increase in brain histaminergic signaling in HD, and provide a rationale for the use of histamine receptor antagonists.
Collapse
Affiliation(s)
- Daniel J van Wamelen
- Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Science, Amsterdam ZO.
| | | | | | | | | | | | | |
Collapse
|
30
|
Thioperamide, an H₃ receptor antagonist prevents [³H]glucose uptake in brain of adult rats lesioned as neonates with 5,7-dihydroxytryptamine. Neurotox Res 2010; 20:93-6. [PMID: 20838953 DOI: 10.1007/s12640-010-9216-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Accepted: 08/11/2010] [Indexed: 10/19/2022]
Abstract
As a first attempt at exploring an association between histaminergic and serotoninergic neuronal phenotypes in glucose regulation, the influence of the histamine H₃ receptor antagonist thioperamide on glucose uptake by brain was determined in rats in which the serotoninergic innervations of brain was largely destroyed perinatally. Male Wistar rats were initially treated on the 3rd day after birth with the serotoninergic neurotoxin 5,7-dihydroxytryptamine (5,7-DHT) (75 μg icv) or saline vehicle (10 μl icv). At 8 weeks lesioned and control rats were terminated in order to validate the effectiveness of 5,7-DHT: reduction in 5-HT and 5-HIAA by 83-91% and 69-83% in striatum, frontal cortex, and hippocampus (HPLC/ED method). Other groups of rats were pretreated with thioperamide (5.0 mg/kg ip) or saline vehicle 60 min prior to 6-[³H]-D-glucose (500 μCi/kg ip). Fifteen-min later rats were decapitated and brains were excised and dissected to remove frontal cortex, striatum, hippocampus, thalamus/hypothalamus, pons, and cerebellum. Liquid scintillation spectroscopy was used to determine that [³H]glucose uptake, which was enhanced in 5,7-DHT lesioned rats in cortex (by 88%), hippocampus, thalamus/hypothalamus, pons and cerebellum (each by 47-56%), and in striatum (by 35%). In contrast, thioperamide prevented the enhancement in [³H]glucose uptake in all brain regions of 5,7-DHT neonatally lesioned rats; and [³H]glucose levels were significantly different in all brain regions (except thalamus/hypothalamus) in thioperamide-versus saline-treated rats. These findings indicate a functional association between histaminergic and serotoninergic systems in brain in relation to glucose regulation.
Collapse
|
31
|
Jośko J, Drab J, Jochem J, Nowak P, Szkilnik R, Korossy-Mruk E, Boroń D, Kostrzewa RM, Brus H, Brus R. Ontogenetic Serotoninergic Lesioning Alters Histaminergic Activity in Rats in Adulthood. Neurotox Res 2010; 20:103-8. [DOI: 10.1007/s12640-010-9217-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Accepted: 08/11/2010] [Indexed: 10/19/2022]
|
32
|
Dowie MJ, Scotter EL, Molinari E, Glass M. The therapeutic potential of G-protein coupled receptors in Huntington's disease. Pharmacol Ther 2010; 128:305-23. [PMID: 20708032 DOI: 10.1016/j.pharmthera.2010.07.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Accepted: 07/14/2010] [Indexed: 01/29/2023]
Abstract
Huntington's disease is a late-onset autosomal dominant inherited neurodegenerative disease characterised by increased symptom severity over time and ultimately premature death. An expanded CAG repeat sequence in the huntingtin gene leads to a polyglutamine expansion in the expressed protein, resulting in complex dysfunctions including cellular excitotoxicity and transcriptional dysregulation. Symptoms include cognitive deficits, psychiatric changes and a movement disorder often referred to as Huntington's chorea, which involves characteristic involuntary dance-like writhing movements. Neuropathologically Huntington's disease is characterised by neuronal dysfunction and death in the striatum and cortex with an overall decrease in cerebral volume (Ho et al., 2001). Neuronal dysfunction begins prior to symptom presentation, and cells of particular vulnerability include the striatal medium spiny neurons. Huntington's is a devastating disease for patients and their families and there is currently no cure, or even an effective therapy for disease symptoms. G-protein coupled receptors are the most abundant receptor type in the central nervous system and are linked to complex downstream pathways, manipulation of which may have therapeutic application in many neurological diseases. This review will highlight the potential of G-protein coupled receptor drug targets as emerging therapies for Huntington's disease.
Collapse
Affiliation(s)
- Megan J Dowie
- Centre for Brain Research, University of Auckland, Private Bag 92019 Auckland, New Zealand
| | | | | | | |
Collapse
|
33
|
Involvement of the brain histaminergic system in addiction and addiction-related behaviors: a comprehensive review with emphasis on the potential therapeutic use of histaminergic compounds in drug dependence. Prog Neurobiol 2010; 92:421-41. [PMID: 20638439 DOI: 10.1016/j.pneurobio.2010.07.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Revised: 07/01/2010] [Accepted: 07/10/2010] [Indexed: 01/13/2023]
Abstract
Neurons that produce histamine are exclusively located in the tuberomamillary nucleus of the posterior hypothalamus and send widespread projections to almost all brain areas. Neuronal histamine is involved in many physiological and behavioral functions such as arousal, feeding behavior and learning. Although conflicting data have been published, several studies have also demonstrated a role of histamine in the psychomotor and rewarding effects of addictive drugs. Pharmacological and brain lesion experiments initially led to the proposition that the histaminergic system exerts an inhibitory influence on drug reward processes, opposed to that of the dopaminergic system. The purpose of this review is to summarize the relevant literature on this topic and to discuss whether the inhibitory function of histamine on drug reward is supported by current evidence from published results. Research conducted during the past decade demonstrated that the ability of many antihistaminic drugs to potentiate addiction-related behaviors essentially results from non-specific effects and does not constitute a valid argument in support of an inhibitory function of histamine on reward processes. The reviewed findings also indicate that histamine can either stimulate or inhibit the dopamine mesolimbic system through distinct neuronal mechanisms involving different histamine receptors. Finally, the hypothesis that the histaminergic system plays an inhibitory role on drug reward appears to be essentially supported by place conditioning studies that focused on morphine reward. The present review suggests that the development of drugs capable of activating the histaminergic system may offer promising therapeutic tools for the treatment of opioid dependence.
Collapse
|
34
|
Nuutinen S, Panula P. Histamine in neurotransmission and brain diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 709:95-107. [PMID: 21618891 DOI: 10.1007/978-1-4419-8056-4_10] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Apart from its central role in the mediation of allergic reactions, gastric acid secretion and inflammation in the periphery, histamine serves an important function as a neurotransitter in the central nervous system. The histaminergic neurons originate from the tuberomamillary nucleus of the posterior hypothalamus and send projections to most parts of the brain. The central histamine system is involved in many brain functions such as arousal, control of pituitary hormone secretion, suppression ofeating and cognitive functions. The effects of neuronal histamine are mediated via G-protein-coupled H1-H4 receptors. The prominent role of histamine as a wake-promoting substance has drawn interest to treat sleep-wake disorders, especially narcolepsy, via modulation of H3 receptor function. Post mortem studies have revealed alterations in histaminergic system in neurological and psychiatric diseases. Brain histamine levels are decreased in Alzheimer's disease patients whereas abnormally high histamine concentrations are found in the brains of Parkinson's disease and schizophrenic patients. Low histamine levels are associated with convulsions and seizures. The release of histamine is altered in response to different types of brain injury: e.g. increased release of histamine in an ischemic brain trauma might have a role in the recovery from neuronal damage. Neuronal histamine is also involved in the pain perception. Drugs that increase brain and spinal histamine concentrations have antinociceptive properties. Histaminergic drugs, most importantly histamine H3 receptors ligands, have shown efficacy in many animal models of the above-mentioned disorders. Ongoing clinical trials will reveal the efficacy and safety of these drugs in the treatment of human patients.
Collapse
Affiliation(s)
- Saara Nuutinen
- Institute of Biomedicine, University of Helsinki, Helsinki, Finland
| | | |
Collapse
|
35
|
Brabant C, Alleva L, Grisar T, Quertemont E, Lakaye B, Ohtsu H, Lin JS, Jatlow P, Picciotto MR, Tirelli E. Effects of the H3 receptor inverse agonist thioperamide on cocaine-induced locomotion in mice: role of the histaminergic system and potential pharmacokinetic interactions. Psychopharmacology (Berl) 2009; 202:673-87. [PMID: 18843481 DOI: 10.1007/s00213-008-1345-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2007] [Accepted: 09/17/2008] [Indexed: 01/03/2023]
Abstract
RATIONALE Previous studies have shown that intraperitoneal injections of thioperamide, an imidazole-based H3 receptor inverse agonist that enhances histamine release in the brain, potentiate cocaine-induced hyperlocomotion. The present study examined the involvement of the histaminergic system in these effects of thioperamide in mice. MATERIALS AND METHODS We investigated whether immepip, a selective H3 agonist, could reverse the potentiating effects of thioperamide. Moreover, the non-imidazole H3 inverse agonist A-331440 was tested on the locomotor effects of cocaine. Using high-performance liquid chromatography with ultraviolet detection, cocaine plasma concentrations were measured to study potential drug-drug interactions between thioperamide and cocaine. Finally, thioperamide was tested on the locomotor effects of cocaine in histamine-deficient knockout mice in order to determine the contribution of histamine to the modulating effects of thioperamide. RESULTS Thioperamide potentiated cocaine-induced hyperlocomotion in normal mice, and to a higher extent, in histamine-deficient knockout mice. A-331440 only slightly affected the locomotor effects of cocaine. Immepip did not alter cocaine-induced hyperactivity but significantly reduced the potentiating actions of thioperamide on cocaine's effects. Finally, plasma cocaine concentrations were more elevated in mice treated with thioperamide than in mice that received cocaine alone. CONCLUSIONS The present results indicate that histamine released by thioperamide through the blockade of H3 autoreceptors is not involved in the ability of this compound to potentiate cocaine induced-hyperactivity. Our data suggest that thioperamide, at least at 10 mg/kg, increases cocaine-induced locomotion through the combination of pharmacokinetic effects and the blockade of H3 receptors located on non-histaminergic neurons.
Collapse
Affiliation(s)
- Christian Brabant
- Centre de Neurosciences Cognitives et Comportementales (CNCC), Université de Liège, Boulevard du Rectorat 5/B-32, 4000 Liège, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Nowak P, Noras Ł, Jochem J, Szkilnik R, Brus H, Körőssy E, Drab J, Kostrzewa RM, Brus R. Histaminergic Activity in a Rodent Model of Parkinson’s Disease. Neurotox Res 2009; 15:246-51. [DOI: 10.1007/s12640-009-9025-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2008] [Revised: 09/11/2008] [Accepted: 09/11/2008] [Indexed: 11/30/2022]
|
37
|
Abstract
Histamine is a transmitter in the nervous system and a signaling molecule in the gut, the skin, and the immune system. Histaminergic neurons in mammalian brain are located exclusively in the tuberomamillary nucleus of the posterior hypothalamus and send their axons all over the central nervous system. Active solely during waking, they maintain wakefulness and attention. Three of the four known histamine receptors and binding to glutamate NMDA receptors serve multiple functions in the brain, particularly control of excitability and plasticity. H1 and H2 receptor-mediated actions are mostly excitatory; H3 receptors act as inhibitory auto- and heteroreceptors. Mutual interactions with other transmitter systems form a network that links basic homeostatic and higher brain functions, including sleep-wake regulation, circadian and feeding rhythms, immunity, learning, and memory in health and disease.
Collapse
Affiliation(s)
- Helmut L Haas
- Institute of Neurophysiology, Heinrich-Heine-University, Duesseldorf, Germany.
| | | | | |
Collapse
|
38
|
Aziz NA, Swaab DF, Pijl H, Roos RAC. Hypothalamic dysfunction and neuroendocrine and metabolic alterations in Huntington's disease: clinical consequences and therapeutic implications. Rev Neurosci 2007; 18:223-51. [PMID: 18019608 DOI: 10.1515/revneuro.2007.18.3-4.223] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Huntington's disease (HD) is a hereditary neurodegenerative disorder characterized by cognitive, psychiatric, behavioural and motor disturbances. Although the course of HD is also frequently complicated by unintended weight loss, sleep disturbances and autonomic nervous system dysfunction, the aetiology of these signs and symptoms remains largely unknown. In recent years, many novel findings from both animal and human studies have emerged that indicate considerable hypothalamic, endocrine and metabolic alterations in HD. However, a comprehensive overview of these findings is lacking and their precise clinical significance is far from clear. Therefore, in this review we attempt to put these recent developments in the field into perspective by integrating them with previous findings in a comprehensible manner, and by discussing their clinical relevance, with a special focus on body weight, sleep and autonomic functions in HD, which will also allow for the identification of future lines of research in this area.
Collapse
Affiliation(s)
- N A Aziz
- Department of Neurology, Leiden University Medical Centre, Leiden, The Netherlands.
| | | | | | | |
Collapse
|
39
|
Mezzomo K, Cumming P, Minuzzi L. Comparison of the binding distribution of agonist and antagonist ligands for histamine H3 receptors in pig brain by quantitative autoradiography. Eur J Pharmacol 2007; 564:75-9. [PMID: 17350614 DOI: 10.1016/j.ejphar.2007.01.087] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2006] [Revised: 01/22/2007] [Accepted: 01/25/2007] [Indexed: 11/22/2022]
Abstract
The relationship between the abundances of agonist and antagonist-binding sites for monoamine receptors is poorly established. Therefore, we used quantitative autoradiography to investigate the distribution and concentration of binding sites for histamine H(3) receptor ligands in cryostat sections of pig brain. As in other species, binding of the histamine H(3) receptor agonist [(3)H]N(alpha)-methylhistamine was highly heterogeneous in the pig brain, with highest B(max) in the substantia nigra, followed by the nucleus accumbens and caudate, intermediate binding in frontal cortex, diencephalon, and mesencephalon, and absent specific binding in cerebellum: the affinity of [(3)H]N(alpha)-methylhistamine was close to 1 nM in all regions of pig brain. Thus, the saturation binding parameters for this H(3) receptor agonist in pig brain were similar to the earlier reports in rat, guinea pig, and human. The distribution of histamine H(3) receptors labeled with the receptor antagonist [(125)I]iodophenpropit in adjacent cryostat sections from the same group of pigs was very similar to that of [(3)H]N(alpha)-methylhistamine. However, the B(max) of the receptor antagonist was 40% higher in the basal ganglia than was the B(max) of the receptor agonist. The K(d) for the receptor antagonist ligand was close to 0.9 nM in all regions. These results suggest that histamine H(3) receptor agonist-binding sites, i.e. those linked to intracellular G-protein, comprise a subset of the total receptor antagonist-binding sites in the basal ganglia, as has been reported for dopamine D(2) receptors.
Collapse
Affiliation(s)
- Kelin Mezzomo
- Fundacao Faculdade Federal de Ciencias Medicas de Porto Alegre, Brazil
| | | | | |
Collapse
|
40
|
Gálvez-Jiménez N. Parkinson's Disease. Neurobiol Dis 2007. [DOI: 10.1016/b978-012088592-3/50007-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023] Open
|
41
|
Abstract
With the availability of an increased number of experimental tools, for example potent and brain-penetrating H1-, H2-, and H3-receptor ligands and mutant mice lacking the histamine synthesis enzyme or the histamine receptors, the functional roles of histaminergic neurons in the brain have been considerably clarified during the recent years, particularly their major role in the control of arousal, cognition, and energy balance. Various approaches tend to establish the implication of histaminergic neurons in schizophrenia. A strong hyperactivity of histamine neurons is induced in rodent brain by administration of methamphetamine or NMDA-receptor antagonists. Histamine neuron activity is modulated by typical and atypical neuroleptics. H3-receptor antagonists/inverse agonists display antipsychotic-like properties in animal models of the disease. Because of the limited predictability value of most animal models and the paucity of drugs affecting histaminergic transmission that were tried so far in human, the evidence remains therefore largely indirect, but supports a role of histamine neurons in schizophrenia.
Collapse
Affiliation(s)
- Jean-Michel Arrang
- INSERM, U573, Unité de Neurobiologie et Pharmacologie Moléculaire, Centre Paul Broca, 2 ter rue d'Alésia, 75014 Paris, France
| |
Collapse
|
42
|
Jin CY, Panula P. The laminar histamine receptor system in human prefrontal cortex suggests multiple levels of histaminergic regulation. Neuroscience 2005; 132:137-49. [PMID: 15780473 DOI: 10.1016/j.neuroscience.2004.12.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2004] [Indexed: 11/18/2022]
Abstract
Human prefrontal cortex is essential for high brain functions and its activity is modulated by multiple neurotransmitters, including histamine. However, the histamine receptors in this brain area have not been systematically studied so far. In situ hybridization and receptor binding autoradiography were employed to map and quantify the mRNA expression and receptor binding of three of the four histamine receptors (H(1), H(2), H(3)). mRNA expression and receptor binding of these three histamine receptors displayed characteristic laminar distribution patterns. Both H(1) and H(3) receptor mRNAs were mainly expressed in the deeper layers (H(1) in laminae V and VI; H(3) in lamina V), where most of the corticothalamic projections originate, whereas H(2) receptor mRNA was primarily expressed in the superficial layer II. Receptor ligand binding of these three histamine receptors displayed relatively even distribution patterns throughout the gray matter. However, higher densities of H(1) and H(3) receptor radioligand binding sites were seen in the middle layers III and IV that receive abundant thalamic inputs and where some of the apical dendrites of the deep-layer pyramidal neurons terminate, whereas higher density of H(2) receptor radioligand binding sites was seen in the superficial layers I-III. The results, together with data on histaminergic regulation of thalamic oscillations suggest that histamine regulates both cortico-cortical and thalamo-cortical circuits. As histamine receptors are also abundant in thalamus, histamine may be involved also in human diseases of the thalamocortical system.
Collapse
MESH Headings
- Adult
- Aged
- Binding, Competitive/physiology
- Dendrites/metabolism
- Female
- Histamine/metabolism
- Humans
- In Situ Hybridization
- Ligands
- Male
- Middle Aged
- Neural Pathways/metabolism
- Neurons/metabolism
- Prefrontal Cortex/anatomy & histology
- Prefrontal Cortex/metabolism
- Pyramidal Cells/metabolism
- RNA, Messenger/metabolism
- Radioligand Assay
- Receptors, Histamine/genetics
- Receptors, Histamine/metabolism
- Receptors, Histamine H1/genetics
- Receptors, Histamine H1/metabolism
- Receptors, Histamine H2/genetics
- Receptors, Histamine H2/metabolism
- Receptors, Histamine H3/genetics
- Receptors, Histamine H3/metabolism
- Synaptic Transmission/physiology
- Thalamus/metabolism
Collapse
Affiliation(s)
- C Y Jin
- Department of Biology, Abo Akademi University, BioCity, Tykistokatu 6A, FIN-20520 Turku, Finland
| | | |
Collapse
|
43
|
Müller T, Benz S, Börnke C, Przuntek H. Differential response in choice reaction time following apomorphine based on prior dopaminergic treatment. Acta Neurol Scand 2004; 109:348-54. [PMID: 15080862 DOI: 10.1046/j.1600-0404.2003.00231.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Choice reaction time (CRT) paradigms demonstrated deficits in the preparation and execution of movements in patients with Parkinson's Disease (PD). Predominantly these trials did not consider an influence of acute and long-term dopaminergic substitution. Objective was to determine the acute effect of apomorphine on the response to a repeatedly performed CRT task. We repeatedly executed the CRT paradigm before and after subcutaneous apomorphine injection in previously treated, untreated and long-term dopamine substituted PD patients, who took placebo. No significant change of CRT and movement time (MT) appeared in PD patients with chronic dopaminergic drug intake after apomorphine injection. CRT and MT both significantly worsened in untreated PD patients. Placebo application induced no significant alteration. Binding of apomorphine to presynaptic autoreceptors with subsequent sedation or inhibition of locomotor activity hypothetically explain our results in before untreated PD patients. Previous long-term dopaminergic substitution may cause a certain tolerance to this phenomenon.
Collapse
Affiliation(s)
- T Müller
- Department of Neurology, St Josef Hospital, Ruhr University Bochum, Bochum, Germany.
| | | | | | | |
Collapse
|
44
|
Munzar P, Tanda G, Justinova Z, Goldberg SR. Histamine h3 receptor antagonists potentiate methamphetamine self-administration and methamphetamine-induced accumbal dopamine release. Neuropsychopharmacology 2004; 29:705-17. [PMID: 14735131 DOI: 10.1038/sj.npp.1300380] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Methamphetamine administration increases brain levels of histamine and neuronal histamine attenuates several of methamphetamine's behavioral effects. The role of different subtypes of histamine receptors in this negative feedback, however, remains unclear. There is some evidence on possible involvement of histamine H3 receptors in these actions of methamphetamine. The aim of the present study was to evaluate the effects of two histamine H3 receptor antagonists, clobenpropit and thioperamide, on rewarding and neurochemical effects of methamphetamine utilizing three in vivo methodologies, drug self-administration, drug discrimination, and microdialysis in Sprague-Dawley rats. In rats self-administering methamphetamine intravenously under a fixed-ratio schedule, presession treatment with thioperamide (1.0-3.0 mg/kg, subcutaneous, s.c.) or clobenpropit (1.0-3.0 mg/kg, s.c.) potentiated the reinforcing effects of methamphetamine, as indicated by a dose-dependent increase in responding for a low 0.03 mg/kg dose of methamphetamine, that by itself failed to maintain responding above saline substitution levels, and a decrease in responding for a higher 0.06 mg/kg training dose of methamphetamine. In contrast, neither thioperamide nor clobenpropit treatment increased responding during saline substitution. In other rats trained to discriminate intraperitoneal (i.p.) injection of 1.0 mg/kg methamphetamine from i.p. injection of saline, both thioperamide and clobenpropit (0.3-3.0 mg/kg, s.c.) dose dependently increased methamphetamine-appropriate responding when administered with a low 0.3 mg/kg i.p. dose of methamphetamine, which by itself produced predominantly saline-appropriate responding. However, thioperamide and clobenpropit produced only saline-appropriate responding when administered with saline vehicle. Finally, thioperamide and clobenpropit potentiated methamphetamine-induced elevations in extracellular dopamine levels in the shell of the nucleus accumbens, but did not increase brain dopamine levels when given alone. These findings point to histamine H3 receptors as a new and important receptor system modulating the reinforcing, subjective, and neurochemical actions of methamphetamine.
Collapse
Affiliation(s)
- Patrik Munzar
- Preclinical Pharmacology Section, Behavioral Neuroscience Research Branch, Intramural Research Program, NIDA, NIH, Department of Health and Human Services, Baltimore, MD 21224, USA
| | | | | | | |
Collapse
|
45
|
Lozeva V, Tuomisto L, Tarhanen J, Butterworth RF. Increased concentrations of histamine and its metabolite, tele-methylhistamine and down-regulation of histamine H3 receptor sites in autopsied brain tissue from cirrhotic patients who died in hepatic coma. J Hepatol 2003; 39:522-7. [PMID: 12971961 DOI: 10.1016/s0168-8278(03)00353-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
BACKGROUND/AIMS Hepatic encephalopathy (HE) is a serious neuropsychiatric complication of chronic liver disease. To determine whether changes in the central histaminergic system are a feature of human HE, we studied histamine, tele-methylhistamine, and presynaptic autoregulatory H(3) receptors in cerebral cortex and caudate-putamen obtained at autopsy from six cirrhotic patients and six appropriately matched controls. METHODS Histamine was assayed by HPLC; tele-methylhistamine by GC-MS. H(3) receptors were studied by in vitro receptor binding using [3H]R-alpha-methylhistamine as ligand. RESULTS In HE patients, there was a significant fourfold increase of histamine in caudate-putamen and a significant increase in all cortical regions studied. tele-Methyhistamine was also increased and the densities of histamine H(3) receptor sites were significantly decreased in patient material. CONCLUSIONS These findings are consistent with activation of the histaminergic system in HE. Given that histamine participates in the regulation of arousal and circadian rhythmicity, they indicate that induction of central histamine mechanisms may contribute to the development of neuropsychiatric symptoms, such as sleep disturbances and altered circadian rhythms in chronic HE and suggest that pharmacological manipulation of the histaminergic system could be beneficial in the treatment of HE in chronic liver failure.
Collapse
Affiliation(s)
- Violina Lozeva
- Neuroscience Research Unit, Centre Hospitalier de l'Université de Montréal, Hôpital Saint-Luc, 1058 St.-Denis St., Montreal, Quebec, Canada H2X 3J4
| | | | | | | |
Collapse
|
46
|
Pillot C, Heron A, Cochois V, Tardivel-Lacombe J, Ligneau X, Schwartz JC, Arrang JM. A detailed mapping of the histamine H(3) receptor and its gene transcripts in rat brain. Neuroscience 2002; 114:173-93. [PMID: 12207964 DOI: 10.1016/s0306-4522(02)00135-5] [Citation(s) in RCA: 267] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The detailed distribution of histamine H(3) receptor mRNAs in rat brain was analyzed by in situ hybridization using a 33P-labelled riboprobe and was combined for the first time with the detailed autoradiographic distribution of the receptor determined in the same animals with [(125)I]iodoproxyfan, a selective radioligand. The signals generated on adjacent brain sections by each probe were quantified and/or rated and were compared in order to identify neuronal populations expressing the receptor. In addition, the cellular localization of the transcripts within various brain structures was analyzed in sections dipped in a photographic emulsion. In the cerebral cortex, the strong mRNA expression in intermediate and deep layers indicates the presence of H(3) receptors on several types of neurons. The binding is dense except in layer V, suggesting that H(3) receptors are located on granule cells and apical dendrites of pyramidal cells. In addition to their localization on monoaminergic afferents, the dense binding in layer IV and strong mRNA expression in thalamic nuclei suggest the presence of heteroreceptors on thalamocortical projections. In the hippocampus, the strong mRNA expression but low binding in pyramidal layers of the CA1 and ventral CA3 fields suggest that H(3) receptors are abundant on efferent projections of pyramidal cells. In the dentate gyrus, some binding sites in the molecular layer may correspond to H(3) receptors synthesized in granule cells and coexpressed with H(1) and H(2) receptors in their dendrites. In the basal ganglia, H(3) receptors are highly expressed in the striatal complex and olfactory tubercles but not in islands of Calleja. Some of the striatal binding sites may correspond to presynaptic receptors present on afferents. The mRNAs in cortical layer V may encode for heteroreceptors on corticostriatal neurons. The presence of mRNAs in the substantia nigra pars compacta suggests that H(3) receptors are located upon nigrostriatal afferents. However, the absence of any signal in the ventral tegmental area indicates that some but not all dopaminergic neurons express H(3) receptors. In addition, the homogeneous mRNA expression within the caudate putamen and nucleus accumbens suggests that many striatal H(3) receptors are present on medium-sized, spiny projection neurons of both the direct and indirect movement pathways. In agreement, a dense binding, but low mRNA expression, is observed in external and internal pallidum and in substantia nigra pars reticulata. In the amygdala, the dense binding and mRNA expression indicate the presence of receptors on both afferents and projections. In the thalamus, the binding in some association nuclei may correspond to receptors present on neurons emanating from the deep cortical layers that strongly express the mRNAs, as well as receptors on the visual systems. However, the low binding and high mRNA expression in most nuclei indicate that many receptors are present upon thalamic projections. In the hypothalamus, the mRNA expression parallels the density of binding sites and is the highest in the tuberomammillary nucleus. Further investigation is needed to know if the dense binding and mRNA expression observed in other nuclei such as the paraventricular, ventromedial and medial tuberal nuclei correspond to pre- and/or postsynaptic receptors. mRNAs are also observed in several areas projecting to the tuberomammillary nucleus, such as the ventrolateral preoptic nucleus. In the lower brainstem, the high mRNA expression and very low binding in the locus coeruleus and raphe nuclei indicate that presynaptic rather than somatodendritic receptors regulate noradrenaline and serotonin release, respectively. A similar pattern in vestibular nuclei suggests that receptors located on projections account for the anti-vertigo properties of H(3) receptor antagonists. In the cerebellum, binding is hardly detectable but a strong mRNA expression is found in most, if not all, Purkinje cells as well as in several central cerebellar nuclei, suggesting the presence of H(3) receptors on efferent projections. The present study reports the first detailed quantification and/or rating of H(3) receptor mRNAs in the brain. The comparison, performed in the same animals, with the distribution of the H(3) receptor protein provides evidence for the presence of H(3) receptors on many neuronal perikarya, dendrites and projections. Although some localizations, mainly as auto- or heteroreceptors, are consistent with previous functional studies, the physiological role, if any, of most of these presynaptic or postsynaptic receptors remains to be established.
Collapse
Affiliation(s)
- C Pillot
- Laboratoire de Physiologie, Faculté des Sciences Pharmaceutiques et Biologiques, 4 avenue de l'Observatoire, 75006 Paris, France
| | | | | | | | | | | | | |
Collapse
|
47
|
Ciproxifan, a histamine H3-receptor antagonist/inverse agonist, potentiates neurochemical and behavioral effects of haloperidol in the rat. J Neurosci 2002. [PMID: 12177222 DOI: 10.1523/jneurosci.22-16-07272.2002] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
By using double in situ hybridization performed with proenkephalin and H3-receptor riboprobes on the same sections from rat brain, we show that histamine H3 receptors are expressed within striatopallidal neurons of the indirect movement pathway. The majority ( approximately 70%) of striatal enkephalin neurons express H3-receptor mRNAs. This important degree of coexpression of proenkephalin and H3-receptor mRNAs prompted us to explore the effect of H3-receptor ligands on the regulation of enkephalin mRNA expression in the striatum. Acute administration of ciproxifan, a H3-receptor antagonist/inverse agonist, did not modify the expression of the neuropeptide by itself but strongly increased the upregulation of its expression induced by haloperidol. This potentiation (1) was suppressed by the administration of (R)-alpha-methylhistamine, a H3-receptor agonist, (2) occurred both in the caudate-putamen and nucleus accumbens, and (3) was also observed with a similar pattern on c-fos and neurotensin mRNA expression. Similarly, whereas it was devoid of any motor effect when used alone, ciproxifan strongly potentiated haloperidol-induced locomotor hypoactivity and catalepsy, two behaviors in which striatal neurons are involved. The strong H3-receptor mRNA expression in enkephalin neurons suggests that the synergistic neurochemical and motor effects of ciproxifan and haloperidol result from direct H3/D2-receptor interactions, leading to an enhanced activation of striatopallidal neurons of the indirect movement pathway. The potentiation of the effects of haloperidol by ciproxifan strengthens the potential interest of H3-receptor antagonists/inverse agonists to improve the symptomatic treatment of schizophrenia.
Collapse
|
48
|
Hussain N, Flumerfelt BA, Rajakumar N. Muscarinic, adenosine A(2) and histamine H(3) receptor modulation of haloperidol-induced c-fos expression in the striatum and nucleus accumbens. Neuroscience 2002; 112:427-38. [PMID: 12044460 DOI: 10.1016/s0306-4522(02)00069-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
It is generally believed that haloperidol exerts its motor side effects and therapeutic effects mainly by antagonizing dopamine D(2) receptors in the striatum and the nucleus accumbens, respectively. Several neurotransmitters/modulators, including glutamate, acetylcholine, adenosine and histamine, affect dopaminergic activity in these centers. We have recently shown that N-methyl-D-aspartate receptor-mediated modulation of haloperidol-induced c-fos expression differs in functionally specific regions of the striatum and the nucleus accumbens. In the present study, the entire striatum and the nucleus accumbens were comprehensively examined for the pattern of modulation of haloperidol-induced c-fos expression by adenosine A(2), histamine H(3) and muscarinic receptor antagonists. Blockade of muscarinic and H(3) receptors resulted in a profound suppression of haloperidol-induced c-fos expression in the dorsolateral part of the striatum. In addition, the H(3) receptor antagonist suppressed the effects of haloperidol in the ventrolateral aspect of the striatum and the rostral parts of the medial striatum. Muscarinic receptor antagonists suppressed haloperidol-induced c-fos expression throughout the shell and in the mid-level of the core of the nucleus accumbens while A(2) and H(3) receptor antagonists did not.We found that the muscarinic and H(3) receptor antagonists suppress the induction of c-fos by haloperidol in the dorsolateral aspect of the striatum, an area implicated in the development of extrapyramidal motor symptoms following chronic haloperidol treatment. By contrast, haloperidol-induced c-fos expression in the nucleus accumbens, an area implicated in the therapeutic effects of haloperidol, was suppressed by the muscarinic receptor antagonist, but not by the H(3) receptor antagonist. Therefore we conclude that H(3) receptor modulation may provide a useful therapeutic target in future efforts to minimize neuroleptic-induced motor side effects.
Collapse
Affiliation(s)
- N Hussain
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, Canada
| | | | | |
Collapse
|
49
|
Abstract
Non-motor symptoms may considerably reduce parkinsonian quality of life, particularly in advanced stages of the disease. Autonomic features, such as seborrhoea, hyperhidrosis, orthostatic hypotension, excessive salivation, bladder dysfunction and GI disturbances, and neuropsychiatric symptoms, such as depression, sleep disorders, psychosis and dementia, appear in the course of Parkinson's disease. Pharmacotherapy of these non-motor symptoms complicates long-term antiparkinsonian combination drug therapy due to possible drug interactions, side effects and changes in metabolism. Moreover, antiparkinsonian compounds themselves contribute to the onset of these non-motor symptoms to a considerable extent. This complicates differentiation between the disease process itself and drug-related effects, thus influencing therapeutic options, which are often limited because of comorbidity and polypharmacy. Therefore, standardised recommendations are questionable, since drug tolerability and response differ between patients. Nevertheless, this review tries to provide a survey of possible therapeutic options for the treatment of the symptoms of Parkinson's disease other the dopamine-sensitive motor features.
Collapse
Affiliation(s)
- Thomas Müller
- Department of Neurology, St. Josef Hospital, Ruhr University Bochum, Gudrunstrasse 56, 44791 Bochum, Germany.
| |
Collapse
|
50
|
Kikuchi A, Takeda A, Kimpara T, Nakagawa M, Kawashima R, Sugiura M, Kinomura S, Fukuda H, Chida K, Okita N, Takase S, Itoyama Y. Hypoperfusion in the supplementary motor area, dorsolateral prefrontal cortex and insular cortex in Parkinson's disease. J Neurol Sci 2001; 193:29-36. [PMID: 11718747 DOI: 10.1016/s0022-510x(01)00641-4] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The changes of regional cerebral blood flow (rCBF) in Parkinson's disease (PD) were investigated. Because of individual differences in brain volume and the extent of brain atrophy, previous functional imaging studies involved potential methodological difficulties. In this study, using the statistical parametric mapping technique, 99mTechnetium-labeled hexamethylpropyleneamineoxime brain single-photon emission computed tomography images from 18 patients with PD were transformed into standard brain-based stereotaxic coordinate spaces and then compared with such images for 11 control subjects matched for age and extent of brain atrophy. A rCBF decrement in the supplementary motor area (SMA) and such decrement in the dorsolateral prefrontal cortex (DLPFC) were observed in the summarized PD images as compared with controls (p<0.005). In a subgroup in the Hoehn-Yahr III/IV stage (11 cases), the rCBF decrement was demonstrated not only in the SMA, but also in the DLPFC and insular cortex (p<0.001). There was a correlation between the degree of the rCBF decrement in the DLPFC or the insular cortex and the score of the unified Parkinson's disease rating scale (p<0.05), while the rCBF decrement in the SMA showed no relationship with the severity of disease. The function of the SMA is closely associated with the nigro-striatal pathway and its impairment can explain the basic akinetic symptoms in PD, which are responsive to L-DOPA treatment. On the other hand, the DLPFC and insular cortex may play key roles in specific symptoms of impairment at advanced stages, such as impaired working memory, postural instability and autonomic dysfunction. We hypothesize that the impairment of the DLPFC and insular function is correlated with the progression of the disease and is related to DOPA-refractory symptoms, which are major problems in the care of patients with advanced PD.
Collapse
Affiliation(s)
- A Kikuchi
- Department of Neurology, Tohoku University School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Miyagi, 980-8574, Sendai, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|