1
|
Arostegui MC. Cranial endothermy in mobulid rays: Evolutionary and ecological implications of a thermogenic brain. J Anim Ecol 2025; 94:11-19. [PMID: 39434239 DOI: 10.1111/1365-2656.14200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 09/27/2024] [Indexed: 10/23/2024]
Abstract
The large, metabolically expensive brains of manta and devil rays (Mobula spp.) may act as a thermogenic organ representing a unique mechanistic basis for cranial endothermy among fishes that improves central nervous system function in cold waters. Whereas early hominids in hot terrestrial environments may have experienced a thermal constraint to evolving larger brain size, cetaceans and mobulids in cold marine waters may have experienced a thermal driver for enlargement of a thermogenic brain. The potential for brain enlargement to yield the dual outcomes of cranial endothermy and enhanced cognition in mobulids suggests one may be an evolutionary by-product of selection for the mechanisms underlying the other, and highlights the need to account for non-cognitive functions when translating brain size into cognitive capacity. Computational scientific imaging offers promising avenues for addressing the pressing mechanistic and phylogenetic questions needed to assess the theory that cranial endothermy in mobulids is the result of temperature-driven selection for a brain with augmented thermogenic potential.
Collapse
Affiliation(s)
- M C Arostegui
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
| |
Collapse
|
2
|
Bagheri M, Habibzadeh S, Moeini M. Transient Changes in Cerebral Tissue Oxygen, Glucose, and Temperature by Microstrokes: A Computational Study. Microcirculation 2024; 31:e12872. [PMID: 38944839 DOI: 10.1111/micc.12872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/09/2024] [Accepted: 06/08/2024] [Indexed: 07/02/2024]
Abstract
OBJECTIVE This study focuses on evaluating the disruptions in key physiological parameters during microstroke events to assess their severity. METHODS A mathematical model was developed to simulate the changes in cerebral tissue pO2, glucose concentration, and temperature due to blood flow interruptions. The model considers variations in baseline cerebral blood flow (CBF), capillary density, and blood oxygen/glucose levels, as well as ambient temperature changes. RESULTS Simulations indicate that complete blood flow obstruction still allows for limited glucose availability, supporting nonoxidative metabolism and potentially exacerbating lactate buildup and acidosis. Partial obstructions decrease tissue pO2, with minimal impact on glucose level, which can remain almost unchanged or even slightly increase. Reduced CBF, capillary density, or blood oxygen due to aging or disease enhances hypoxia risk at lower obstruction levels, with capillary density having a significant effect on stroke severity by influencing both pO2 and glucose levels. Conditions could lead to co-occurrence of hypoxia/hypoglycemia or hypoxia/hyperglycemia, each worsening outcomes. Temperature effects were minimal in deep brain regions but varied near the skull by 0.2-0.8°C depending on ambient temperature. CONCLUSIONS The model provides insights into the conditions driving severe stroke outcomes based on estimated levels of hypoxia, hypoglycemia, hyperglycemia, and temperature changes.
Collapse
Affiliation(s)
- Marzieh Bagheri
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Sajjad Habibzadeh
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Mohammad Moeini
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| |
Collapse
|
3
|
Rogala J, Dreszer J, Sińczuk M, Miciuk Ł, Piątkowska-Janko E, Bogorodzki P, Wolak T, Wróbel A, Konarzewski M. Local variation in brain temperature explains gender-specificity of working memory performance. Front Hum Neurosci 2024; 18:1398034. [PMID: 39132677 PMCID: PMC11310161 DOI: 10.3389/fnhum.2024.1398034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 07/05/2024] [Indexed: 08/13/2024] Open
Abstract
Introduction Exploring gender differences in cognitive abilities offers vital insights into human brain functioning. Methods Our study utilized advanced techniques like magnetic resonance thermometry, standard working memory n-back tasks, and functional MRI to investigate if gender-based variations in brain temperature correlate with distinct neuronal responses and working memory capabilities. Results We observed a significant decrease in average brain temperature in males during working memory tasks, a phenomenon not seen in females. Although changes in female brain temperature were significantly lower than in males, we found an inverse relationship between the absolute temperature change (ATC) and cognitive performance, alongside a correlation with blood oxygen level dependent (BOLD) signal change induced by neural activity. This suggests that in females, ATC is a crucial determinant for the link between cognitive performance and BOLD responses, a linkage not evident in males. However, we also observed additional female specific BOLD responses aligned with comparable task performance to that of males. Discussion Our results suggest that females compensate for their brain's heightened temperature sensitivity by activating additional neuronal networks to support working memory. This study not only underscores the complexity of gender differences in cognitive processing but also opens new avenues for understanding how temperature fluctuations influence brain functionality.
Collapse
Affiliation(s)
- Jacek Rogala
- Centre for Research on Culture, Language, and Mind, University of Warsaw, Warsaw, Poland
- The Centre for Systemic Risk Analysis, University of Warsaw, Warsaw, Poland
| | - Joanna Dreszer
- Faculty of Philosophy and Social Sciences, Institute of Psychology, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - Marcin Sińczuk
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
| | - Łukasz Miciuk
- Faculty of Philosophy and Social Sciences, Institute of Psychology, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - Ewa Piątkowska-Janko
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
| | - Piotr Bogorodzki
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
| | - Tomasz Wolak
- Bioimaging Research Center, World Hearing Center, Institute of Physiology and Pathology of Hearing, Kajetany, Poland
| | - Andrzej Wróbel
- Nencki Institute of Experimental Biology, Warsaw, Poland
- Faculty of Philosophy, University of Warsaw, Warsaw, Poland
| | | |
Collapse
|
4
|
Sharma AK, Khandelwal R, Wolfrum C. Futile cycles: Emerging utility from apparent futility. Cell Metab 2024; 36:1184-1203. [PMID: 38565147 DOI: 10.1016/j.cmet.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/15/2024] [Accepted: 03/11/2024] [Indexed: 04/04/2024]
Abstract
Futile cycles are biological phenomena where two opposing biochemical reactions run simultaneously, resulting in a net energy loss without appreciable productivity. Such a state was presumed to be a biological aberration and thus deemed an energy-wasting "futile" cycle. However, multiple pieces of evidence suggest that biological utilities emerge from futile cycles. A few established functions of futile cycles are to control metabolic sensitivity, modulate energy homeostasis, and drive adaptive thermogenesis. Yet, the physiological regulation, implication, and pathological relevance of most futile cycles remain poorly studied. In this review, we highlight the abundance and versatility of futile cycles and propose a classification scheme. We further discuss the energetic implications of various futile cycles and their impact on basal metabolic rate, their bona fide and tentative pathophysiological implications, and putative drug interactions.
Collapse
Affiliation(s)
- Anand Kumar Sharma
- Laboratory of Translational Nutrition Biology, Institute of Food, Nutrition and Health, ETH Zurich, Schwerzenbach, Switzerland.
| | - Radhika Khandelwal
- Laboratory of Translational Nutrition Biology, Institute of Food, Nutrition and Health, ETH Zurich, Schwerzenbach, Switzerland
| | - Christian Wolfrum
- Laboratory of Translational Nutrition Biology, Institute of Food, Nutrition and Health, ETH Zurich, Schwerzenbach, Switzerland.
| |
Collapse
|
5
|
White AR. The firestorm within: A narrative review of extreme heat and wildfire smoke effects on brain health. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171239. [PMID: 38417511 DOI: 10.1016/j.scitotenv.2024.171239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/01/2024]
Abstract
Climate change is generating increased heatwaves and wildfires across much of the world. With these escalating environmental changes comes greater impacts on human health leading to increased numbers of people suffering from heat- and wildfire smoke-associated respiratory and cardiovascular impairment. One area of health impact of climate change that has received far less attention is the effects of extreme heat and wildfire smoke exposure on human brain health. As elevated temperatures, and wildfire-associated smoke, are increasingly experienced simultaneously over summer periods, understanding this combined impact is critical to management of human health especially in the elderly, and people with dementia, and other neurological disorders. Both extreme heat and wildfire smoke air pollution (especially particulate matter, PM) induce neuroinflammatory and cerebrovascular effects, oxidative stress, and cognitive impairment, however the combined effect of these impacts are not well understood. In this narrative review, a comprehensive examination of extreme heat and wildfire smoke impact on human brain health is presented, with a focus on how these factors contribute to cognitive impairment, and dementia, one of the leading health issues today. Also discussed is the potential impact of combined heat and wildfire smoke on brain health, and where future efforts should be applied to help advance knowledge in this rapidly growing and critical field of health research.
Collapse
Affiliation(s)
- Anthony R White
- Mental Health and Neuroscience Program, QIMR Berghofer Medical Research Institute, Herston, Queensland 4006, Australia; A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70211 Kuopio, Finland; School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia; School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, QLD, Australia.
| |
Collapse
|
6
|
Vöröslakos M, Yaghmazadeh O, Alon L, Sodickson DK, Buzsáki G. Brain-implanted conductors amplify radiofrequency fields in rodents: Advantages and risks. Bioelectromagnetics 2024; 45:139-155. [PMID: 37876116 PMCID: PMC10947979 DOI: 10.1002/bem.22489] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 07/26/2023] [Accepted: 09/30/2023] [Indexed: 10/26/2023]
Abstract
Over the past few decades, daily exposure to radiofrequency (RF) fields has been increasing due to the rapid development of wireless and medical imaging technologies. Under extreme circumstances, exposure to very strong RF energy can lead to heating of body tissue, even resulting in tissue injury. The presence of implanted devices, moreover, can amplify RF effects on surrounding tissue. Therefore, it is important to understand the interactions of RF fields with tissue in the presence of implants, in order to establish appropriate wireless safety protocols, and also to extend the benefits of medical imaging to increasing numbers of people with implanted medical devices. This study explored the neurological effects of RF exposure in rodents implanted with neuronal recording electrodes. We exposed freely moving and anesthetized rats and mice to 950 MHz RF energy while monitoring their brain activity, temperature, and behavior. We found that RF exposure could induce fast onset firing of single neurons without heat injury. In addition, brain implants enhanced the effect of RF stimulation resulting in reversible behavioral changes. Using an optical temperature measurement system, we found greater than tenfold increase in brain temperature in the vicinity of the implant. On the one hand, our results underline the importance of careful safety assessment for brain-implanted devices, but on the other hand, we also show that metal implants may be used for neurostimulation if brain temperature can be kept within safe limits.
Collapse
Affiliation(s)
- Mihály Vöröslakos
- Neuroscience Institute, Langone Medical Center, New York University, New York, NY 10016, USA
| | - Omid Yaghmazadeh
- Neuroscience Institute, Langone Medical Center, New York University, New York, NY 10016, USA
| | - Leeor Alon
- Department of Radiology, Grossman School of Medicine, New York University, New York, NY 10016, USA
| | - Daniel K. Sodickson
- Neuroscience Institute, Langone Medical Center, New York University, New York, NY 10016, USA; Department of Radiology, Grossman School of Medicine, New York University, New York, NY 10016, USA
| | - György Buzsáki
- Neuroscience Institute, Langone Medical Center, New York University, New York, NY 10016, USA; Department of Neurology, Grossman School of Medicine, New York University, New York, NY 10016, USA
| |
Collapse
|
7
|
Wu Y, Li F, Wu Y, Wang H, Gu L, Zhang J, Qi Y, Meng L, Kong N, Chai Y, Hu Q, Xing Z, Ren W, Li F, Zhu X. Lanthanide luminescence nanothermometer with working wavelength beyond 1500 nm for cerebrovascular temperature imaging in vivo. Nat Commun 2024; 15:2341. [PMID: 38491065 PMCID: PMC10943110 DOI: 10.1038/s41467-024-46727-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 03/08/2024] [Indexed: 03/18/2024] Open
Abstract
Nanothermometers enable the detection of temperature changes at the microscopic scale, which is crucial for elucidating biological mechanisms and guiding treatment strategies. However, temperature monitoring of micron-scale structures in vivo using luminescent nanothermometers remains challenging, primarily due to the severe scattering effect of biological tissue that compromises the imaging resolution. Herein, a lanthanide luminescence nanothermometer with a working wavelength beyond 1500 nm is developed to achieve high-resolution temperature imaging in vivo. The energy transfer between lanthanide ions (Er3+ and Yb3+) and H2O molecules, called the environment quenching assisted downshifting process, is utilized to establish temperature-sensitive emissions at 1550 and 980 nm. Using an optimized thin active shell doped with Yb3+ ions, the nanothermometer's thermal sensitivity and the 1550 nm emission intensity are enhanced by modulating the environment quenching assisted downshifting process. Consequently, minimally invasive temperature imaging of the cerebrovascular system in mice with an imaging resolution of nearly 200 μm is achieved using the nanothermometer. This work points to a method for high-resolution temperature imaging of micron-level structures in vivo, potentially giving insights into research in temperature sensing, disease diagnosis, and treatment development.
Collapse
Affiliation(s)
- Yukai Wu
- School of Physical Science and Technology & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, P.R. China
| | - Fang Li
- School of Physical Science and Technology & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, P.R. China
| | - Yanan Wu
- School of Information Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, P.R. China
| | - Hao Wang
- School of Physical Science and Technology & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, P.R. China
| | - Liangtao Gu
- School of Information Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, P.R. China
| | - Jieying Zhang
- School of Physical Science and Technology & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, P.R. China
| | - Yukun Qi
- School of Information Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, P.R. China
| | - Lingkai Meng
- School of Physical Science and Technology & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, P.R. China
| | - Na Kong
- School of Physical Science and Technology & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, P.R. China
| | - Yingjie Chai
- Department of Chemistry & State Key Laboratory of Molecular Engineering of Polymers & Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, 2005 Songhu Road, Shanghai, P.R. China
| | - Qian Hu
- School of Physical Science and Technology & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, P.R. China
| | - Zhenyu Xing
- School of Physical Science and Technology & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, P.R. China
| | - Wuwei Ren
- School of Information Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, P.R. China.
| | - Fuyou Li
- Department of Chemistry & State Key Laboratory of Molecular Engineering of Polymers & Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, 2005 Songhu Road, Shanghai, P.R. China.
- Institute of Translational Medicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, P.R. China.
| | - Xingjun Zhu
- School of Physical Science and Technology & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, P.R. China.
| |
Collapse
|
8
|
Tan XR, Stephenson MC, Alhadad SB, Loh KWZ, Soong TW, Lee JKW, Low ICC. Elevated brain temperature under severe heat exposure impairs cortical motor activity and executive function. JOURNAL OF SPORT AND HEALTH SCIENCE 2024; 13:233-244. [PMID: 37678507 PMCID: PMC10980903 DOI: 10.1016/j.jshs.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/27/2023] [Accepted: 07/20/2023] [Indexed: 09/09/2023]
Abstract
BACKGROUND Excessive heat exposure can lead to hyperthermia in humans, which impairs physical performance and disrupts cognitive function. While heat is a known physiological stressor, it is unclear how severe heat stress affects brain physiology and function. METHODS Eleven healthy participants were subjected to heat stress from prolonged exercise or warm water immersion until their rectal temperatures (Tre) attained 39.5°C, inducing exertional or passive hyperthermia, respectively. In a separate trial, blended ice was ingested before and during exercise as a cooling strategy. Data were compared to a control condition with seated rest (normothermic). Brain temperature (Tbr), cerebral perfusion, and task-based brain activity were assessed using magnetic resonance imaging techniques. RESULTS Tbr in motor cortex was found to be tightly regulated at rest (37.3°C ± 0.4°C (mean ± SD)) despite fluctuations in Tre. With the development of hyperthermia, Tbr increases and dovetails with the rising Tre. Bilateral motor cortical activity was suppressed during high-intensity plantarflexion tasks, implying a reduced central motor drive in hyperthermic participants (Tre = 38.5°C ± 0.1°C). Global gray matter perfusion and regional perfusion in sensorimotor cortex were reduced with passive hyperthermia. Executive function was poorer under a passive hyperthermic state, and this could relate to compromised visual processing as indicated by the reduced activation of left lateral-occipital cortex. Conversely, ingestion of blended ice before and during exercise alleviated the rise in both Tre and Tbr and mitigated heat-related neural perturbations. CONCLUSION Severe heat exposure elevates Tbr, disrupts motor cortical activity and executive function, and this can lead to impairment of physical and cognitive performance.
Collapse
Affiliation(s)
- Xiang Ren Tan
- Health and Social Sciences, Singapore Institute of Technology, Singapore 138683, Singapore; Human Potential Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Mary C Stephenson
- Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117549, Singapore
| | - Sharifah Badriyah Alhadad
- Human Potential Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
| | - Kelvin W Z Loh
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
| | - Tuck Wah Soong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
| | - Jason K W Lee
- Human Potential Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore; Heat Resilience and Performance Centre, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117510, Singapore; N.1 Institute for Health, National University of Singapore, Singapore 117456, Singapore; Campus for Research Excellence and Technological Enterprise (CREATE), Singapore 138602, Singapore.
| | - Ivan C C Low
- Human Potential Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore.
| |
Collapse
|
9
|
Lopez-Rodriguez AB, Murray CL, Kealy J, Towns C, Roche A, Nazmi A, Doran M, Lowry JP, Cunningham C. Hyperthermia elevates brain temperature and improves behavioural signs in animal models of autism spectrum disorder. Mol Autism 2023; 14:43. [PMID: 37968722 PMCID: PMC10652497 DOI: 10.1186/s13229-023-00569-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 09/25/2023] [Indexed: 11/17/2023] Open
Abstract
BACKGROUND Autism spectrum disorders (ASD) are predominantly neurodevelopmental and largely genetically determined. However, there are human data supporting the idea that fever can improve symptoms in some individuals, but those data are limited and there are almost no data to support this from animal models. We aimed to test the hypothesis that elevated body temperature would improve function in two animal models of ASD. METHODS We used a 4 h whole-body hyperthermia (WBH) protocol and, separately, systemic inflammation induced by bacterial endotoxin (LPS) at 250 µg/kg, to dissociate temperature and inflammatory elements of fever in two ASD animal models: C58/J and Shank3B- mice. We used one- or two-way ANOVA and t-tests with normally distributed data and Kruskal-Wallis or Mann-Whitney with nonparametric data. Post hoc comparisons were made with a level of significance set at p < 0.05. For correlation analyses, data were adjusted by a linear regression model. RESULTS Only LPS induced inflammatory signatures in the brain while only WBH produced fever-range hyperthermia. WBH reduced repetitive behaviours and improved social interaction in C58/J mice and significantly reduced compulsive grooming in Shank3B- mice. LPS significantly suppressed most activities over 5-48 h. LIMITATIONS We show behavioural, cellular and molecular changes, but provide no specific mechanistic explanation for the observed behavioural improvements. CONCLUSIONS The data are the first, to our knowledge, to demonstrate that elevated body temperature can improve behavioural signs in 2 distinct ASD models. Given the developmental nature of ASD, evidence that symptoms may be improved by environmental perturbations indicates possibilities for improving function in these individuals. Since experimental hyperthermia in patients would carry significant risks, it is now essential to pursue molecular mechanisms through which hyperthermia might bring about the observed benefits.
Collapse
Affiliation(s)
- Ana Belen Lopez-Rodriguez
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute and Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Republic of Ireland
| | - Carol L Murray
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute and Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Republic of Ireland
| | - John Kealy
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute and Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Republic of Ireland
| | - Clodagh Towns
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute and Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Republic of Ireland
| | - Andrew Roche
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute and Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Republic of Ireland
| | - Arshed Nazmi
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute and Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Republic of Ireland
| | - Michelle Doran
- Department of Chemistry, Maynooth University, Maynooth, Co. Kildare, Republic of Ireland
| | - John P Lowry
- Department of Chemistry, Maynooth University, Maynooth, Co. Kildare, Republic of Ireland
| | - Colm Cunningham
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute and Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Republic of Ireland.
| |
Collapse
|
10
|
Sui K, Meneghetti M, Li G, Ioannou A, Abdollahian P, Kalli K, Nielsen K, Berg RW, Markos C. In vivo brain temperature mapping using polymer optical fiber Bragg grating sensors. OPTICS LETTERS 2023; 48:4225-4228. [PMID: 37581998 DOI: 10.1364/ol.498031] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 07/21/2023] [Indexed: 08/17/2023]
Abstract
Variation of the brain temperature is strongly affected by blood flow, oxygen supply, and neural cell metabolism. Localized monitoring of the brain temperature is one of the most effective ways to correlate brain functions and diseases such as stroke, epilepsy, and mood disorders. While polymer optical fibers (POFs) are considered ideal candidates for temperature sensing in the brain, they have never been used so far in vivo. Here, we developed for the first, to the best of our knowledge, time an implantable probe based on a microstructured polymer optical fiber Bragg grating (FBG) sensor for intracranial brain temperature mapping. The temperature at different depths of the brain (starting from the cerebral cortex) and the correlation between the brain and body core temperature of a rat were recorded with a sensitivity of 33 pm/°C and accuracy <0.2°C. Our in vivo experimental results suggest that the proposed device can achieve real-time and high-resolution local temperature measurement in the brain, as well as being integrated with existing neural interfaces.
Collapse
|
11
|
Sung D, Rejimon A, Allen JW, Fedorov AG, Fleischer CC. Predicting brain temperature in humans using bioheat models: Progress and outlook. J Cereb Blood Flow Metab 2023; 43:833-842. [PMID: 36883416 PMCID: PMC10196749 DOI: 10.1177/0271678x231162173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 03/09/2023]
Abstract
Brain temperature, regulated by the balance between blood circulation and metabolic heat generation, is an important parameter related to neural activity, cerebral hemodynamics, and neuroinflammation. A key challenge for integrating brain temperature into clinical practice is the lack of reliable and non-invasive brain thermometry. The recognized importance of brain temperature and thermoregulation in both health and disease, combined with limited availability of experimental methods, has motivated the development of computational thermal models using bioheat equations to predict brain temperature. In this mini-review, we describe progress and the current state-of-the-art in brain thermal modeling in humans and discuss potential avenues for clinical applications.
Collapse
Affiliation(s)
- Dongsuk Sung
- Department of Biomedical
Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA,
USA
- Department of Radiology and Imaging
Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Abinand Rejimon
- Department of Biomedical
Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA,
USA
- Department of Radiology and Imaging
Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Jason W Allen
- Department of Biomedical
Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA,
USA
- Department of Radiology and Imaging
Sciences, Emory University School of Medicine, Atlanta, GA, USA
- Department of Neurology, Emory
University School of Medicine, Atlanta, GA, USA
| | - Andrei G Fedorov
- Woodruff School of Mechanical
Engineering, Georgia Institute of Technology, Atlanta, GA, USA
- Petit Institute for Bioengineering
and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Candace C Fleischer
- Department of Biomedical
Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA,
USA
- Department of Radiology and Imaging
Sciences, Emory University School of Medicine, Atlanta, GA, USA
- Petit Institute for Bioengineering
and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
12
|
Cameron-Burr KT, Bola RA, Kiyatkin EA. Dantrolene sodium fails to reverse robust brain hyperthermia induced by MDMA and methamphetamine in rats. Psychopharmacology (Berl) 2023; 240:785-795. [PMID: 36700960 DOI: 10.1007/s00213-023-06321-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 01/19/2023] [Indexed: 01/27/2023]
Abstract
RATIONALE Hyperthermia induced by psychomotor stimulants may cause leakage of the blood-brain barrier, vasogenic edema, and lethality in extreme cases. Current treatments such as whole-body cooling are only symptomatic and a clear need to develop pharmacological interventions exists. Dantrolene sodium, a peripheral muscle relaxant used in the treatment of malignant hyperthermia, has been proposed as potentially effective to treat MDMA-hyperthermia in emergency rooms. However, debate around its efficacy for this indication persists. OBJECTIVES To investigate dantrolene as a treatment for illicit hyperthermia induced by psychomotor stimulant drugs, we examined how Ryanodex®, a concentrated formulation of dantrolene sodium produced by Eagle Pharmaceuticals, influences 3,4-methylenedioxymethamphetamine (MDMA)- and methamphetamine (METH)-induced hyperthermia in awake freely moving rats. We injected rats with moderate doses of MDMA (9 mg/kg) and METH (9 mg/kg) and administered Ryanodex® intravenously (6 mg/kg) after the development of robust hyperthermia (>2.5 °C) mimicking clinical acute intoxication. We conducted simultaneous temperature recordings in the brain, temporal muscle, and skin to determine the basic mechanisms underlying temperature responses. To assess the efficacy of dantrolene in attenuating severe hyperthermia, we administered MDMA to rats maintained in a warm ambient environment (29 °C), conditions which produce robust brain and body hyperthermia (>40 °C) and lethality. RESULTS Dantrolene failed to attenuate MDMA- and METH-induced hyperthermia, though locomotor activity was significantly reduced. All animals maintained at warm ambient temperatures that received dantrolene during severe drug-induced hyperthermia died within or soon after the recording session. CONCLUSIONS Our results suggest that dantrolene sodium formulations are not mechanistically suited to treat MDMA- and METH-induced hyperthermia.
Collapse
Affiliation(s)
- Keaton T Cameron-Burr
- Behavioral Neuroscience Branch, National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health, DHHS, 251 Bayview Blvd, Baltimore, MD, 21224, USA
| | - R Aaron Bola
- Behavioral Neuroscience Branch, National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health, DHHS, 251 Bayview Blvd, Baltimore, MD, 21224, USA
| | - Eugene A Kiyatkin
- Behavioral Neuroscience Branch, National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health, DHHS, 251 Bayview Blvd, Baltimore, MD, 21224, USA.
| |
Collapse
|
13
|
Sung D, Risk BB, Wang KJ, Allen JW, Fleischer CC. Resting-State Brain Temperature: Dynamic Fluctuations in Brain Temperature and the Brain-Body Temperature Gradient. J Magn Reson Imaging 2023; 57:1222-1228. [PMID: 35904094 PMCID: PMC9884314 DOI: 10.1002/jmri.28376] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND While fluctuations in healthy brain temperature have been investigated over time periods of weeks to months, dynamics over shorter time periods are less clear. PURPOSE To identify physiological fluctuations in brain temperature in healthy volunteers over time scales of approximately 1 hour. STUDY TYPE Prospective. SUBJECTS A total of 30 healthy volunteers (15 female; 26 ± 4 years old). SEQUENCE AND FIELD STRENGTH 3 T; T1-weighted magnetization-prepared rapid gradient-echo (MPRAGE) and semi-localized by adiabatic selective refocusing (sLASER) single-voxel spectroscopy. ASSESSMENTS Brain temperature was calculated from the chemical shift difference between N-acetylaspartate and water. To evaluate within-scan repeatability of brain temperature and the brain-body temperature difference, 128 spectral transients were divided into two sets of 64-spectra. Between-scan repeatability was evaluated using two time periods, ~1-1.5 hours apart. STATISTICAL TESTS A hierarchical linear mixed model was used to calculate within-scan and between-scan correlations (Rw and Rb , respectively). Significance was determined at P ≤ .05. Values are reported as the mean ± standard deviation. RESULTS A significant difference in brain temperature was observed between scans (-0.4 °C) but body temperature was stable (P = .59). Brain temperature (37.9 ± 0.7 °C) was higher than body temperature (36.5 ± 0.5 °C) for all but one subject. Within-scan correlation was high for brain temperature (Rw = 0.95) and brain-body temperature differences (Rw = 0.96). Between scans, variability was high for both brain temperature (Rb = 0.30) and brain-body temperature differences (Rb = 0.41). DATA CONCLUSION Significant changes in brain temperature over time scales of ~1 hour were observed. High short-term repeatability suggests temperature changes appear to be due to physiology rather than measurement error. EVIDENCE LEVEL 2 TECHNICAL EFFICACY: Stage 1.
Collapse
Affiliation(s)
- Dongsuk Sung
- Department of Radiology and Imaging Sciences, Emory University School of Medicine
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University
| | - Benjamin B. Risk
- Department of Biostatistics and Bioinformatics, Emory University
| | - Kelly J. Wang
- Department of Radiology and Imaging Sciences, Emory University School of Medicine
- Department of Neuroscience, Georgia Institute of Technology
| | - Jason W. Allen
- Department of Radiology and Imaging Sciences, Emory University School of Medicine
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University
| | - Candace C. Fleischer
- Department of Radiology and Imaging Sciences, Emory University School of Medicine
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University
| |
Collapse
|
14
|
Zou Y, Heyn C, Grigorian A, Tam F, Andreazza AC, Graham SJ, Maclntosh BJ, Goldstein BI. Measuring Brain Temperature in Youth Bipolar Disorder Using a Novel Magnetic Resonance Imaging Approach: A Proof-of-concept Study. Curr Neuropharmacol 2023; 21:1355-1366. [PMID: 36946483 PMCID: PMC10324328 DOI: 10.2174/1570159x21666230322090754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND There is evidence of alterations in mitochondrial energy metabolism and cerebral blood flow (CBF) in adults and youth with bipolar disorder (BD). Brain thermoregulation is based on the balance of heat-producing metabolism and heat-dissipating mechanisms, including CBF. OBJECTIVE To examine brain temperature, and its relation to CBF, in relation to BD and mood symptom severity in youth. METHODS This study included 25 youth participants (age 17.4 ± 1.7 years; 13 BD, 12 control group (CG)). Magnetic resonance spectroscopy data were acquired to obtain brain temperature in the left anterior cingulate cortex (ACC) and the left precuneus. Regional estimates of CBF were provided by arterial spin labeling imaging. Analyses used general linear regression models, covarying for age, sex, and psychiatric medications. RESULTS Brain temperature was significantly higher in BD compared to CG in the precuneus. A higher ratio of brain temperature to CBF was significantly associated with greater depression symptom severity in both the ACC and precuneus within BD. Analyses examining the relationship of brain temperature or CBF with depression severity score did not reveal any significant finding in the ACC or the precuneus. CONCLUSION The current study provides preliminary evidence of increased brain temperature in youth with BD, in whom reduced thermoregulatory capacity is putatively associated with depression symptom severity. Evaluation of brain temperature and CBF in conjunction may provide valuable insight beyond what can be gleaned by either metric alone. Larger prospective studies are warranted to further evaluate brain temperature and its association with CBF concerning BD.
Collapse
Affiliation(s)
- Yi Zou
- Department of Pharmacology, University of Toronto, Toronto, ON, Canada
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Chinthaka Heyn
- Department of Medical Imaging, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Canada
| | - Anahit Grigorian
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Fred Tam
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Canada
| | - Ana Cristina Andreazza
- Department of Pharmacology, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, M5T 1R8, ON, Canada
| | - Simon J. Graham
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Bradley J. Maclntosh
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Heart and Stroke Foundation, Canadian Partnership for Stroke Recovery, Sunnybrook Research Institute, Toronto, ON, Canada
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Benjamin I. Goldstein
- Department of Pharmacology, University of Toronto, Toronto, ON, Canada
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, M5T 1R8, ON, Canada
| |
Collapse
|
15
|
Sung D, Risk BB, Kottke PA, Allen JW, Nahab F, Fedorov AG, Fleischer CC. Comparisons of healthy human brain temperature predicted from biophysical modeling and measured with whole brain MR thermometry. Sci Rep 2022; 12:19285. [PMID: 36369468 PMCID: PMC9652378 DOI: 10.1038/s41598-022-22599-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 10/17/2022] [Indexed: 11/13/2022] Open
Abstract
Brain temperature is an understudied parameter relevant to brain injury and ischemia. To advance our understanding of thermal dynamics in the human brain, combined with the challenges of routine experimental measurements, a biophysical modeling framework was developed to facilitate individualized brain temperature predictions. Model-predicted brain temperatures using our fully conserved model were compared with whole brain chemical shift thermometry acquired in 30 healthy human subjects (15 male and 15 female, age range 18-36 years old). Magnetic resonance (MR) thermometry, as well as structural imaging, angiography, and venography, were acquired prospectively on a Siemens Prisma whole body 3 T MR scanner. Bland-Altman plots demonstrate agreement between model-predicted and MR-measured brain temperatures at the voxel-level. Regional variations were similar between predicted and measured temperatures (< 0.55 °C for all 10 cortical and 12 subcortical regions of interest), and subcortical white matter temperatures were higher than cortical regions. We anticipate the advancement of brain temperature as a marker of health and injury will be facilitated by a well-validated computational model which can enable predictions when experiments are not feasible.
Collapse
Affiliation(s)
- Dongsuk Sung
- grid.213917.f0000 0001 2097 4943Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA USA
| | - Benjamin B. Risk
- grid.189967.80000 0001 0941 6502Department of Biostatistics and Bioinformatics, Emory University, Atlanta, GA USA
| | - Peter A. Kottke
- grid.213917.f0000 0001 2097 4943Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA USA
| | - Jason W. Allen
- grid.213917.f0000 0001 2097 4943Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA USA ,grid.189967.80000 0001 0941 6502Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA USA ,grid.189967.80000 0001 0941 6502Department of Neurology, Emory University School of Medicine, Atlanta, GA USA
| | - Fadi Nahab
- grid.189967.80000 0001 0941 6502Department of Neurology, Emory University School of Medicine, Atlanta, GA USA
| | - Andrei G. Fedorov
- grid.213917.f0000 0001 2097 4943Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA USA ,grid.213917.f0000 0001 2097 4943Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA USA
| | - Candace C. Fleischer
- grid.213917.f0000 0001 2097 4943Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA USA ,grid.189967.80000 0001 0941 6502Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA USA ,grid.213917.f0000 0001 2097 4943Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA USA ,grid.189967.80000 0001 0941 6502Wesley Woods Health Center, Emory University School of Medicine, 1841 Clifton Road, Atlanta, GA 30329 USA
| |
Collapse
|
16
|
Wang L, Chaudhari K, Winters A, Sun Y, Liu R, Yang SH. Characterizing region-specific glucose metabolic profile of the rodent brain using Seahorse XFe96 analyzer. J Cereb Blood Flow Metab 2022; 42:1259-1271. [PMID: 35078350 PMCID: PMC9207488 DOI: 10.1177/0271678x221077341] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The brain is highly complex with diverse structural characteristics in accordance with specific functions. Accordingly, differences in regional function, cellular compositions, and active metabolic pathways may link to differences in glucose metabolism at different brain regions. In the current study, we optimized an acute biopsy punching method and characterized region-specific glucose metabolism of rat and mouse brain by a Seahorse XFe96 analyzer. We demonstrated that 0.5 mm diameter tissue punches from 180-µm thick brain sections allow metabolic measurements of anatomically defined brain structures using Seahorse XFe96 analyzer. Our result indicated that the cerebellum displays a more quiescent phenotype of glucose metabolism than cerebral cortex, basal ganglia, and hippocampus. In addition, the cerebellum has higher AMPK activation than other brain regions evidenced by the expression of pAMPK, upstream pLKB1, and downstream pACC. Furthermore, rodent brain has relatively low mitochondrial oxidative phosphorylation efficiency with up to 30% of respiration linked to proton leak. In summary, our study discovered region-specific glucose metabolic profile and relative high proton leak coupled respiration in the brain. Our study warrants future research on spatial mapping of the brain glucose metabolism in physiological and pathological conditions and exploring the mechanisms and significance of mitochondrial uncoupling in the brain.
Collapse
Affiliation(s)
- Linshu Wang
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Kiran Chaudhari
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Ali Winters
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Yuanhong Sun
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Ran Liu
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Shao-Hua Yang
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas, USA
| |
Collapse
|
17
|
Petersen PC, Vöröslakos M, Buzsáki G. Brain temperature affects quantitative features of hippocampal sharp wave ripples. J Neurophysiol 2022; 127:1417-1425. [PMID: 35389772 PMCID: PMC9109799 DOI: 10.1152/jn.00047.2022] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/23/2022] [Accepted: 04/04/2022] [Indexed: 11/22/2022] Open
Abstract
Biochemical mechanisms are temperature dependent. Brain temperature shows wide variations across brain states, and such changes may explain quantitative changes in network oscillations. Here, we report on the relationship between various hippocampal sharp wave ripple features to brain temperature. Ripple frequency, occurrence rate, and duration correlated with temperature dynamics. By focal manipulation of the brain temperature in the hippocampal CA1 region, we show that ripple frequency can be increased and decreased by local heating and cooling, respectively. Changes of other parameters, such as the rate of sharp wave-ripple complex (SPW-R) and ripple duration were not consistently affected. Our findings suggest that brain temperature in the CA1 region plays a leading role in affecting ripple frequency, whereas other parameters of SPW-Rs may be determined by mechanisms upstream from the CA1 region. These findings illustrate that physiological variations of brain temperature exert important effects on hippocampal circuit operations.NEW & NOTEWORTHY During physiological conditions, brain temperature fluctuates approximately 3°C between sleep and active waking. Here, we show that features of hippocampal ripples, including the rate of occurrence, peak frequency, and duration are correlated with brain temperature variations. Focal bidirectional manipulation of temperature in the hippocampal CA1 region in awake rodents show that ripple frequency can be altered in the direction expected from the correlational observations, implying that temperature plays a significant role.
Collapse
Affiliation(s)
- Peter C Petersen
- Neuroscience Institute, School of Medicine, New York University, New York City, New York
| | - Mihály Vöröslakos
- Neuroscience Institute, School of Medicine, New York University, New York City, New York
| | - György Buzsáki
- Neuroscience Institute, School of Medicine, New York University, New York City, New York
- Department of Neurology, School of Medicine, New York University, New York City, New York
| |
Collapse
|
18
|
Zannou AL, Khadka N, FallahRad M, Truong DQ, Kopell BH, Bikson M. Tissue Temperature Increases by a 10 kHz Spinal Cord Stimulation System: Phantom and Bioheat Model. Neuromodulation 2021; 24:1327-1335. [PMID: 31225695 PMCID: PMC6925358 DOI: 10.1111/ner.12980] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 05/10/2019] [Accepted: 05/11/2019] [Indexed: 12/30/2022]
Abstract
OBJECTIVE A recently introduced Spinal Cord Stimulation (SCS) system operates at 10 kHz, faster than conventional SCS systems, resulting in significantly more power delivered to tissues. Using a SCS heat phantom and bioheat multi-physics model, we characterized tissue temperature increases by this 10 kHz system. We also evaluated its Implanted Pulse Generator (IPG) output compliance and the role of impedance in temperature increases. MATERIALS AND METHODS The 10 kHz SCS system output was characterized under resistive loads (1-10 KΩ). Separately, fiber optic temperature probes quantified temperature increases (ΔTs) around the SCS lead in specially developed heat phantoms. The role of stimulation Level (1-7; ideal pulse peak-to-peak of 1-7mA) was considered, specifically in the context of stimulation current Root Mean Square (RMS). Data from the heat phantom were verified with the SCS heat-transfer models. A custom high-bandwidth stimulator provided 10 kHz pulses and sinusoidal stimulation for control experiments. RESULTS The 10 kHz SCS system delivers 10 kHz biphasic pulses (30-20-30 μs). Voltage compliance was 15.6V. Even below voltage compliance, IPG bandwidth attenuated pulse waveform, limiting applied RMS. Temperature increased supralinearly with stimulation Level in a manner predicted by applied RMS. ΔT increases with Level and impedance until stimulator compliance was reached. Therefore, IPG bandwidth and compliance dampen peak heating. Nonetheless, temperature increases predicted by bioheat multi-physic models (ΔT = 0.64°C and 1.42°C respectively at Level 4 and 7 at the cervical segment; ΔT = 0.68°C and 1.72°C respectively at Level 4 and 7 at the thoracic spinal cord)-within ranges previously reported to effect neurophysiology. CONCLUSIONS Heating of spinal tissues by this 10 kHz SCS system theoretically increases quickly with stimulation level and load impedance, while dampened by IPG pulse bandwidth and voltage compliance limitations. If validated in vivo as a mechanism of kHz SCS, bioheat models informed by IPG limitations allow prediction and optimization of temperature changes.
Collapse
Affiliation(s)
- Adantchede L Zannou
- Department of Biomedical Engineering, The City College of New York, New York, NY 10031
| | - Niranjan Khadka
- Department of Biomedical Engineering, The City College of New York, New York, NY 10031
| | - Mohamad FallahRad
- Department of Biomedical Engineering, The City College of New York, New York, NY 10031
| | - Dennis Q. Truong
- Department of Biomedical Engineering, The City College of New York, New York, NY 10031
| | - Brian H. Kopell
- Department of Neurosurgery, Neurology, Psychiatry and Neuroscience, The Icahn School of Medicine, Mount Sinai, New York, NY
| | - Marom Bikson
- Department of Biomedical Engineering, The City College of New York, New York, NY 10031
| |
Collapse
|
19
|
Shevelev O, Petrova M, Smolensky A, Osmonov B, Toimatov S, Kharybina T, Karbainov S, Ovchinnikov L, Vesnin S, Tarakanov A, Goryanin I. Using medical microwave radiometry for brain temperature measurements. Drug Discov Today 2021; 27:881-889. [PMID: 34767961 DOI: 10.1016/j.drudis.2021.11.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 09/29/2021] [Accepted: 11/02/2021] [Indexed: 11/30/2022]
Abstract
Brain temperature (BT) is a crucial physiological parameter used to monitor cerebral status. Physical activities and traumatic brain injuries (TBI) can affect BT; therefore, non-invasive BT monitoring is an important way to gain insight into TBI, stroke, and wellbeing. The effects of BT on physical performance have been studied at length. When humans are under extreme conditions, most of the energy consumed is used to maintain the BT. In addition, measuring the BT is useful for early brain diagnostics. Passive microwave radiometry (MWR) measures the intrinsic radiation of tissues in the 1-4 GHz range. It was shown that non-invasive passive MWR technology can successfully measure BT and identify even small TBIs. Here, we review the potential applications of MWR for assessing BT.
Collapse
Affiliation(s)
- Oleg Shevelev
- People' Friendship University of Russia, Moscow, Russia; Federal Research and Clinical Centre for Resuscitation and Rehabilitation, Moscow, Russia
| | - Marina Petrova
- People' Friendship University of Russia, Moscow, Russia; Federal Research and Clinical Centre for Resuscitation and Rehabilitation, Moscow, Russia
| | - Andrey Smolensky
- Russian State University of Physical Culture, Sports, Youth and Tourism, Moscow, Russia
| | - Batyr Osmonov
- Educational - Scientifc Medical Center of Kyrgyz Medical Sate University, Bishkek, Kyrgyz Republic
| | | | - Tatyana Kharybina
- Library for Natural Sciences of the Russian Academy of Sciences, Moscow, Russia
| | | | | | - Sergey Vesnin
- Medical Microwave Radiometry Ltd, Edinburgh, UK; RTM Diagnostic LLC, Moscow, Russia; Bauman Moscow State Technical University, Moscow, Russia
| | | | - Igor Goryanin
- School of Informatics, University of Edinburgh, Edinburgh, UK; Institute Theoretical and Experimental Biophysics, Pushchino, Russia; Okinawa Institute Science and Technology, Okinawa, Japan.
| |
Collapse
|
20
|
The interplay of neurovasculature and adult hippocampal neurogenesis. Neurosci Lett 2021; 760:136071. [PMID: 34147540 DOI: 10.1016/j.neulet.2021.136071] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 05/06/2021] [Accepted: 06/15/2021] [Indexed: 01/14/2023]
Abstract
The subgranular zone of the dentate gyrus provides a local microenvironment (niche) for neural stem cells. In the adult brain, it has been established that the vascular compartment of such niches has a significant role in regulating adult hippocampal neurogenesis. More recently, evidence showed that neurovascular coupling, the relationship between blood flow and neuronal activity, also regulates hippocampal neurogenesis. Here, we review the most recent articles on addressing the intricate relationship between neurovasculature and adult hippocampal neurogenesis and a novel pathway where functional hyperemia enhances hippocampal neurogenesis. In the end, we have further reviewed recent research showing that impaired neurovascular coupling may cause declined neurogenesis and contribute to brain damage in neurodegenerative diseases.
Collapse
|
21
|
Hong SH, Hong JH, Lahey MT, Zhu L, Stephenson JM, Marrelli SP. A low-cost mouse cage warming system provides improved intra-ischemic and post-ischemic body temperature control - Application for reducing variability in experimental stroke studies. J Neurosci Methods 2021; 360:109228. [PMID: 34052289 DOI: 10.1016/j.jneumeth.2021.109228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 05/17/2021] [Accepted: 05/21/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND Brain temperature is a strong determinant of ischemic stroke injury. For this reason, tight management of brain or body temperature (Tcore) in experimental rodent stroke models is recommended to improve the rigor and reproducibility of outcomes. However, methods for managing Tcore during and after stroke vary widely in approach and effectiveness. NEW METHOD We developed a low-cost warm ambient air cage (WAAC) system to provide improved temperature control during the intra-ischemic and post-ischemic recovery periods. The system is incorporated into standard holding cages for maintaining Tcore during the intra-ischemic period as well as for several hours into the recovery period. RESULTS AND COMPARISON WITH EXISTING METHODS We compared the WAAC system with a commonly used heat support method, consisting of a cage on a heating pad. Both heat support systems were evaluated for the middle cerebral artery occlusion (MCAo) stroke model in mice. The WAAC system provided improved temperature control (more normothermic Tcore and less Tcore variation) during the intra- ischemic period (60 min) and post-ischemic period (3 h). Mean infarct volume was not statistically different by heat support system, however, standard deviation was 54 % lower in the WAAC system group. CONCLUSIONS Mice and other small rodents are highly vulnerable to heat loss during and after the MCAo procedure. The WAAC system provides more precise and controlled Tcore maintenance compared with frequently used induction heating methods in mice undergoing the MCAo stroke model. The improved temperature control should enhance experimental rigor and reduce the number of experimental animals needed.
Collapse
Affiliation(s)
- Sung-Ha Hong
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center, Houston, TX, USA
| | - Jeong-Ho Hong
- Department of Neurology, Brain Research Institute, Keimyung University School of Medicine, Dongsan Medical Center, Daegu, South Korea
| | - Matthew T Lahey
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center, Houston, TX, USA
| | - Liang Zhu
- Department of Medicine, McGovern Medical School, the University of Texas Health Science Center, Houston, TX, USA
| | - Jessica M Stephenson
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center, Houston, TX, USA
| | - Sean P Marrelli
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center, Houston, TX, USA.
| |
Collapse
|
22
|
Massen JJM, Hartlieb M, Martin JS, Leitgeb EB, Hockl J, Kocourek M, Olkowicz S, Zhang Y, Osadnik C, Verkleij JW, Bugnyar T, Němec P, Gallup AC. Brain size and neuron numbers drive differences in yawn duration across mammals and birds. Commun Biol 2021; 4:503. [PMID: 33958700 PMCID: PMC8102614 DOI: 10.1038/s42003-021-02019-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 03/24/2021] [Indexed: 02/02/2023] Open
Abstract
Recent studies indicate that yawning evolved as a brain cooling mechanism. Given that larger brains have greater thermolytic needs and brain temperature is determined in part by heat production from neuronal activity, it was hypothesized that animals with larger brains and more neurons would yawn longer to produce comparable cooling effects. To test this, we performed the largest study on yawning ever conducted, analyzing 1291 yawns from 101 species (55 mammals; 46 birds). Phylogenetically controlled analyses revealed robust positive correlations between yawn duration and (1) brain mass, (2) total neuron number, and (3) cortical/pallial neuron number in both mammals and birds, which cannot be attributed solely to allometric scaling rules. These relationships were similar across clades, though mammals exhibited considerably longer yawns than birds of comparable brain and body mass. These findings provide further evidence suggesting that yawning is a thermoregulatory adaptation that has been conserved across amniote evolution.
Collapse
Affiliation(s)
- Jorg J M Massen
- Animal Behaviour and Cognition, Department of Biology, Utrecht University, Utrecht, The Netherlands.
| | - Margarita Hartlieb
- Department of Behavioral & Cognitive Biology, University of Vienna, Vienna, Austria
| | - Jordan S Martin
- Human Ecology Group, Institute of Evolutionary Medicine, University of Zurich, Zurich, Switzerland
| | - Elisabeth B Leitgeb
- Department of Behavioral & Cognitive Biology, University of Vienna, Vienna, Austria
| | - Jasmin Hockl
- Department of Behavioral & Cognitive Biology, University of Vienna, Vienna, Austria
| | - Martin Kocourek
- Department of Zoology, Charles University, Prague, Czech Republic
| | - Seweryn Olkowicz
- Department of Zoology, Charles University, Prague, Czech Republic
| | - Yicheng Zhang
- Department of Zoology, Charles University, Prague, Czech Republic
| | - Christin Osadnik
- Department of General Zoology, University of Duisburg-Essen, Essen, Germany
| | - Jorrit W Verkleij
- Animal Behaviour and Cognition, Department of Biology, Utrecht University, Utrecht, The Netherlands
| | - Thomas Bugnyar
- Department of Behavioral & Cognitive Biology, University of Vienna, Vienna, Austria
| | - Pavel Němec
- Department of Zoology, Charles University, Prague, Czech Republic
| | - Andrew C Gallup
- Psychology Program, Department of Social and Behavioral Sciences, SUNY Polytechnic Institute, Utica, NY, USA.
| |
Collapse
|
23
|
Harshaw C, Lanzkowsky J, Tran AQD, Bradley AR, Jaime M. Oxytocin and 'social hyperthermia': Interaction with β 3-adrenergic receptor-mediated thermogenesis and significance for the expression of social behavior in male and female mice. Horm Behav 2021; 131:104981. [PMID: 33878523 DOI: 10.1016/j.yhbeh.2021.104981] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 04/02/2021] [Accepted: 04/03/2021] [Indexed: 02/07/2023]
Abstract
Oxytocin (OT) is a critical regulator of multiple facets of energy homeostasis, including brown adipose tissue (BAT) thermogenesis. Nevertheless, it is unclear what, if any, consequence the thermoregulatory and metabolic effects of OT have for the display of social behavior in adult rodents. Here, we examine the contribution of the OT receptor (OTR) and β3 adrenergic receptor (β3AR) to the increase in body temperature that typically accompanies social interaction (i.e., social hyperthermia; SH) and whether SH relates to the expression of social behavior in adult mice. Specifically, we examined how OTR antagonism via peripheral injection of L-368,899 (10 mg/kg) affects the expression of social behavior in C57BL/6J mice, in the presence of active/agonized versus antagonized β3AR, the receptor known to mediate stress-induced BAT thermogenesis. After drug treatment and a 30 min delay, mice were provided a 10 min social interaction test with an unfamiliar, same-sex conspecific. We hypothesized that OTR and β3AR/BAT interact to influence behavior during social interaction, with at least some effects of OT on social behavior dependent upon OT's thermal effects via β3AR/BAT. We found that OTR-mediated temperature elevation is largely responsible for SH during social interaction in mice-albeit not substantially via β3AR-dependent BAT thermogenesis. Further, our results reveal a complex relationship between OTR, β3AR, social hyperthermia and the display of specific social behaviors, with SH most closely associated with anxiety and/or vigilance-related behaviors-that is, behaviors that antagonize or interfere with the initiation of close, non-agonistic social behavior.
Collapse
Affiliation(s)
- Christopher Harshaw
- Department of Psychology, University of New Orleans, New Orleans, LA, United States of America.
| | - Jessica Lanzkowsky
- Department of Psychology, University of New Orleans, New Orleans, LA, United States of America
| | | | - Alana Rose Bradley
- Department of Psychology, University of New Orleans, New Orleans, LA, United States of America
| | - Mark Jaime
- Division of Science, Indiana University-Purdue University, Columbus, Columbus, IN, United States of America
| |
Collapse
|
24
|
Neudorfer C, Chow CT, Boutet A, Loh A, Germann J, Elias GJ, Hutchison WD, Lozano AM. Kilohertz-frequency stimulation of the nervous system: A review of underlying mechanisms. Brain Stimul 2021; 14:513-530. [PMID: 33757930 DOI: 10.1016/j.brs.2021.03.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 03/08/2021] [Accepted: 03/11/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Electrical stimulation in the kilohertz-frequency range has gained interest in the field of neuroscience. The mechanisms underlying stimulation in this frequency range, however, are poorly characterized to date. OBJECTIVE/HYPOTHESIS To summarize the manifold biological effects elicited by kilohertz-frequency stimulation in the context of the currently existing literature and provide a mechanistic framework for the neural responses observed in this frequency range. METHODS A comprehensive search of the peer-reviewed literature was conducted across electronic databases. Relevant computational, clinical, and mechanistic studies were selected for review. RESULTS The effects of kilohertz-frequency stimulation on neural tissue are diverse and yield effects that are distinct from conventional stimulation. Broadly, these can be divided into 1) subthreshold, 2) suprathreshold, 3) synaptic and 4) thermal effects. While facilitation is the dominating mechanism at the subthreshold level, desynchronization, spike-rate adaptation, conduction block, and non-monotonic activation can be observed during suprathreshold kilohertz-frequency stimulation. At the synaptic level, kilohertz-frequency stimulation has been associated with the transient depletion of the available neurotransmitter pool - also known as synaptic fatigue. Finally, thermal effects associated with extrinsic (environmental) and intrinsic (associated with kilohertz-frequency stimulation) temperature changes have been suggested to alter the neural response to stimulation paradigms. CONCLUSION The diverse spectrum of neural responses to stimulation in the kilohertz-frequency range is distinct from that associated with conventional stimulation. This offers the potential for new therapeutic avenues across stimulation modalities. However, stimulation in the kilohertz-frequency range is associated with distinct challenges and caveats that need to be considered in experimental paradigms.
Collapse
Affiliation(s)
- Clemens Neudorfer
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University of Toronto, Canada
| | - Clement T Chow
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University of Toronto, Canada
| | - Alexandre Boutet
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University of Toronto, Canada
| | - Aaron Loh
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University of Toronto, Canada
| | - Jürgen Germann
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University of Toronto, Canada
| | - Gavin Jb Elias
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University of Toronto, Canada
| | - William D Hutchison
- Krembil Research Institute, University of Toronto, Ontario, Canada; Department of Physiology, Toronto Western Hospital and University of Toronto, Ontario, Canada
| | - Andres M Lozano
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University of Toronto, Canada; Krembil Research Institute, University of Toronto, Ontario, Canada.
| |
Collapse
|
25
|
Relationships between oxygen changes in the brain and periphery following physiological activation and the actions of heroin and cocaine. Sci Rep 2021; 11:6355. [PMID: 33737657 PMCID: PMC7973713 DOI: 10.1038/s41598-021-85798-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/05/2021] [Indexed: 11/09/2022] Open
Abstract
Using two-sensor electrochemical recordings in freely moving rats, we examined the relationship between physiological and drug-induced oxygen fluctuations in the brain and periphery. Animals chronically implanted with oxygen sensors in the nucleus accumbens (NAc) and subcutaneous (SC) space were subjected to several mildly arousing stimuli (sound, tail-pinch and social interaction) and intravenous injections of cocaine and heroin. Arousing stimuli induced rapid increases in NAc oxygen levels followed by and correlated with oxygen decreases in the SC space. Therefore, cerebral vasodilation that increases cerebral blood flow and oxygen entry into brain tissue results from both direct neuronal activation and peripheral vasoconstriction, which redistributes arterial blood from periphery to the brain. The latter factor could also explain a similar pattern of oxygen responses found in the substantia nigra reticulata, suggesting hyperoxia as a global phenomenon with minor structural differences during early time intervals following the stimulus onset. While arousing stimuli and cocaine induced similar oxygen responses in the brain and SC space, heroin induced a biphasic down-up brain oxygen fluctuation associated with a monophasic oxygen decrease in the SC space. Oxygen decreases occurred more rapidly and stronger in the SC space, reflecting a drop in blood oxygen levels due to respiratory depression.
Collapse
|
26
|
Sela Y, Hoekstra MM, Franken P. Sub-minute prediction of brain temperature based on sleep-wake state in the mouse. eLife 2021; 10:62073. [PMID: 33683202 PMCID: PMC7939547 DOI: 10.7554/elife.62073] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 02/17/2021] [Indexed: 12/11/2022] Open
Abstract
Although brain temperature has neurobiological and clinical importance, it remains unclear which factors contribute to its daily dynamics and to what extent. Using a statistical approach, we previously demonstrated that hourly brain temperature values co-varied strongly with time spent awake (Hoekstra et al., 2019). Here we develop and make available a mathematical tool to simulate and predict cortical temperature in mice based on a 4-s sleep-wake sequence. Our model estimated cortical temperature with remarkable precision and accounted for 91% of the variance based on three factors: sleep-wake sequence, time-of-day ('circadian'), and a novel 'prior wake prevalence' factor, contributing with 74%, 9%, and 43%, respectively (including shared variance). We applied these optimized parameters to an independent cohort of mice and predicted cortical temperature with similar accuracy. This model confirms the profound influence of sleep-wake state on brain temperature, and can be harnessed to differentiate between thermoregulatory and sleep-wake-driven effects in experiments affecting both.
Collapse
Affiliation(s)
- Yaniv Sela
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Marieke Mb Hoekstra
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Paul Franken
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
27
|
Sleep deprivation aggravates brain injury after experimental subarachnoid hemorrhage via TLR4-MyD88 pathway. Aging (Albany NY) 2021; 13:3101-3111. [PMID: 33479186 PMCID: PMC7880348 DOI: 10.18632/aging.202503] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 12/03/2020] [Indexed: 12/15/2022]
Abstract
Subarachnoid hemorrhage (SAH) is a life-threatening cerebrovascular disease, and most of the SAH patients experience sleep deprivation during their hospital stay. It is well-known that sleep deprivation is one of the key components of developing several neurological disorders, but its effect on brain damage after SAH has not been determined. Therefore, this study was designed to evaluate the effect of sleep deprivation using an experimental SAH model in rats. Induction of sleep deprivation for 24 h aggravated the SAH-induced brain damage, as evidenced by brain edema, neuronal apoptosis and activation of caspase-3. Sleep deprivation also worsened the neurological impairment and cognitive deficits after SAH. The results of immunostaining and western blot showed that sleep deprivation increased the activation of microglial cells. In addition, sleep deprivation differently regulated the expression of anti-inflammatory and pro-inflammatory cytokines. The results of immunofluorescence staining and western blot showed that sleep deprivation markedly increased the activation of Toll-like receptor 4 (TLR4) and myeloid differentiation primary response protein 88 (MyD88). Mechanically, treatment with the TLR4 inhibitor TAK-242 or the MyD88 inhibitor ST2825 significantly attenuated the brain damage and neuroinflammation induced by sleep deprivation after SAH. In conclusion, our results indicate that sleep deprivation aggravates brain damage and neurological dysfunction following experimental SAH in rats. These effects were mediated by the activation of the TLR4-MyD88 cascades and regulation of neuroinflammation.
Collapse
|
28
|
Gotoh M, Nagasaka K, Nakata M, Takashima I, Yamamoto S. Brain Temperature Alters Contributions of Excitatory and Inhibitory Inputs to Evoked Field Potentials in the Rat Frontal Cortex. Front Cell Neurosci 2020; 14:593027. [PMID: 33364923 PMCID: PMC7750431 DOI: 10.3389/fncel.2020.593027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 10/15/2020] [Indexed: 01/06/2023] Open
Abstract
Changes in brain temperature have been reported to affect various brain functions. However, little is known about the effects of temperature on the neural activity at the network level, where multiple inputs are integrated. In this study, we recorded cortical evoked potentials while altering the local brain temperature in anesthetized rats. We delivered electrical stimulations to the midbrain dopamine area and measured the evoked potentials in the frontal cortex, the temperature of which was locally altered using a thermal control device. We focused on the maximum negative peaks, which was presumed to result mainly from polysynaptic responses, to examine the effect of local temperature on network activity. We showed that focal cortical cooling increased the amplitude of evoked potentials (negative correlation, >17°C); further cooling decreased their amplitude. This relationship would be graphically represented as an inverted-U-shaped curve. The pharmacological blockade of GABAergic inhibitory inputs eliminated the negative correlation (>17°C) and even showed a positive correlation when the concentration of GABAA receptor antagonist was sufficiently high. Blocking the glutamatergic excitatory inputs decreased the amplitude but did not cause such inversion. Our results suggest that the negative correlation between the amplitude of evoked potentials and the near-physiological local temperature is caused by the alteration of the balance of contribution between excitatory and inhibitory inputs to the evoked potentials, possibly due to higher temperature sensitivity of inhibitory inputs.
Collapse
Affiliation(s)
- Mizuho Gotoh
- Integrative Neuroscience Research Group, Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan.,Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | - Kazuaki Nagasaka
- Integrative Neuroscience Research Group, Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan.,Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan.,Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - Mariko Nakata
- Integrative Neuroscience Research Group, Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Ichiro Takashima
- Integrative Neuroscience Research Group, Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan.,Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | - Shinya Yamamoto
- Integrative Neuroscience Research Group, Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| |
Collapse
|
29
|
Ozdas MS, Shah AS, Johnson PM, Patel N, Marks M, Yasar TB, Stalder U, Bigler L, von der Behrens W, Sirsi SR, Yanik MF. Non-invasive molecularly-specific millimeter-resolution manipulation of brain circuits by ultrasound-mediated aggregation and uncaging of drug carriers. Nat Commun 2020; 11:4929. [PMID: 33004789 PMCID: PMC7529901 DOI: 10.1038/s41467-020-18059-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 07/31/2020] [Indexed: 12/13/2022] Open
Abstract
Non-invasive, molecularly-specific, focal modulation of brain circuits with low off-target effects can lead to breakthroughs in treatments of brain disorders. We systemically inject engineered ultrasound-controllable drug carriers and subsequently apply a novel two-component Aggregation and Uncaging Focused Ultrasound Sequence (AU-FUS) at the desired targets inside the brain. The first sequence aggregates drug carriers with millimeter-precision by orders of magnitude. The second sequence uncages the carrier's cargo locally to achieve high target specificity without compromising the blood-brain barrier (BBB). Upon release from the carriers, drugs locally cross the intact BBB. We show circuit-specific manipulation of sensory signaling in motor cortex in rats by locally concentrating and releasing a GABAA receptor agonist from ultrasound-controlled carriers. Our approach uses orders of magnitude (1300x) less drug than is otherwise required by systemic injection and requires very low ultrasound pressures (20-fold below FDA safety limits for diagnostic imaging). We show that the BBB remains intact using passive cavitation detection (PCD), MRI-contrast agents and, importantly, also by sensitive fluorescent dye extravasation and immunohistochemistry.
Collapse
Affiliation(s)
- Mehmet S Ozdas
- Institute of Neuroinformatics, D-ITET, ETH Zurich and UZH, Zurich, Switzerland.,Neuroscience Center, Zurich, Switzerland
| | - Aagam S Shah
- Institute of Neuroinformatics, D-ITET, ETH Zurich and UZH, Zurich, Switzerland. .,Neuroscience Center, Zurich, Switzerland.
| | - Paul M Johnson
- Institute of Neuroinformatics, D-ITET, ETH Zurich and UZH, Zurich, Switzerland.,Neuroscience Center, Zurich, Switzerland
| | - Nisheet Patel
- Institute of Neuroinformatics, D-ITET, ETH Zurich and UZH, Zurich, Switzerland
| | - Markus Marks
- Institute of Neuroinformatics, D-ITET, ETH Zurich and UZH, Zurich, Switzerland.,Neuroscience Center, Zurich, Switzerland
| | - Tansel Baran Yasar
- Institute of Neuroinformatics, D-ITET, ETH Zurich and UZH, Zurich, Switzerland.,Neuroscience Center, Zurich, Switzerland
| | - Urs Stalder
- Department of Chemistry, UZH, Zurich, Switzerland
| | | | - Wolfger von der Behrens
- Institute of Neuroinformatics, D-ITET, ETH Zurich and UZH, Zurich, Switzerland.,Neuroscience Center, Zurich, Switzerland
| | - Shashank R Sirsi
- Institute of Neuroinformatics, D-ITET, ETH Zurich and UZH, Zurich, Switzerland.,Department of Bioengineering, UT at Dallas, Richardson, USA
| | - Mehmet Fatih Yanik
- Institute of Neuroinformatics, D-ITET, ETH Zurich and UZH, Zurich, Switzerland. .,Neuroscience Center, Zurich, Switzerland.
| |
Collapse
|
30
|
Cortex senses environmental temperature earlier than the hypothalamus in awake rats. J Therm Biol 2020; 91:102652. [DOI: 10.1016/j.jtherbio.2020.102652] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/14/2020] [Accepted: 06/16/2020] [Indexed: 11/24/2022]
|
31
|
DePaoli D, Lemoine É, Ember K, Parent M, Prud’homme M, Cantin L, Petrecca K, Leblond F, Côté DC. Rise of Raman spectroscopy in neurosurgery: a review. JOURNAL OF BIOMEDICAL OPTICS 2020; 25:1-36. [PMID: 32358930 PMCID: PMC7195442 DOI: 10.1117/1.jbo.25.5.050901] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 04/10/2020] [Indexed: 05/21/2023]
Abstract
SIGNIFICANCE Although the clinical potential for Raman spectroscopy (RS) has been anticipated for decades, it has only recently been used in neurosurgery. Still, few devices have succeeded in making their way into the operating room. With recent technological advancements, however, vibrational sensing is poised to be a revolutionary tool for neurosurgeons. AIM We give a summary of neurosurgical workflows and key translational milestones of RS in clinical use and provide the optics and data science background required to implement such devices. APPROACH We performed an extensive review of the literature, with a specific emphasis on research that aims to build Raman systems suited for a neurosurgical setting. RESULTS The main translatable interest in Raman sensing rests in its capacity to yield label-free molecular information from tissue intraoperatively. Systems that have proven usable in the clinical setting are ergonomic, have a short integration time, and can acquire high-quality signal even in suboptimal conditions. Moreover, because of the complex microenvironment of brain tissue, data analysis is now recognized as a critical step in achieving high performance Raman-based sensing. CONCLUSIONS The next generation of Raman-based devices are making their way into operating rooms and their clinical translation requires close collaboration between physicians, engineers, and data scientists.
Collapse
Affiliation(s)
- Damon DePaoli
- Université Laval, CERVO Brain Research Center, Québec, Canada
- Université Laval, Centre d’optique, Photonique et Lasers, Québec, Canada
| | - Émile Lemoine
- Polytechnique Montréal, Department of Engineering Physics, Montréal, Canada
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montréal, Canada
| | - Katherine Ember
- Polytechnique Montréal, Department of Engineering Physics, Montréal, Canada
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montréal, Canada
| | - Martin Parent
- Université Laval, CERVO Brain Research Center, Québec, Canada
| | - Michel Prud’homme
- Hôpital de l’Enfant-Jésus, Department of Neurosurgery, Québec, Canada
| | - Léo Cantin
- Hôpital de l’Enfant-Jésus, Department of Neurosurgery, Québec, Canada
| | - Kevin Petrecca
- McGill University, Montreal Neurological Institute-Hospital, Department of Neurology and Neurosurgery, Montreal, Canada
| | - Frédéric Leblond
- Polytechnique Montréal, Department of Engineering Physics, Montréal, Canada
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montréal, Canada
| | - Daniel C. Côté
- Université Laval, CERVO Brain Research Center, Québec, Canada
- Université Laval, Centre d’optique, Photonique et Lasers, Québec, Canada
| |
Collapse
|
32
|
Vishwakarma LC, Sharma B, Singh V, Jaryal AK, Mallick HN. Acute sleep deprivation elevates brain and body temperature in rats. J Sleep Res 2020; 30:e13030. [PMID: 32297401 DOI: 10.1111/jsr.13030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 02/24/2020] [Accepted: 02/24/2020] [Indexed: 11/28/2022]
Abstract
Available sleep deprivation studies lack data on simultaneous changes in hypothalamic, cortical and body temperature during sleep deprivation and recovery. Ten adult male Wistar rats chronically implanted with electroencephalogram, electro-oculogram and electromyogram electrodes for recording sleep were used in this study. Hypothalamic and cortical temperatures were measured by pre-implanted thermocouples. A radio transmitter (TA10TAF-40, DSI USA) was implanted intraperitoneally to measure body temperature. All the temperatures were measured simultaneously at 15-s intervals during baseline conditions, sleep deprivation and recovery sleep. Sleep deprivation was carried out for 24 hr by the gentle handling method; however, sleep and temperature were only recorded during the first 12 hr of deprivation. During sleep deprivation the body, hypothalamic and cortical temperatures increased significantly as compared to baseline. During recovery sleep, body and cortical temperature recovered earlier than the hypothalamic temperature. Hypothalamic temperature remained higher than the baseline values throughout 12 hr of recovery sleep. In the recovery sleep, cortical temperature decreased immediately and reached near baseline by 4 hr. We observed a quicker return of cortical temperature towards control temperature during recovery sleep compared with hypothalamic and body temperature. The results of the present study show that acute sleep deprivation results in a rise in both cortical and hypothalamic temperature, along with body temperature. A rise in cortical temperature may be a contributing factor for cognitive dysfunction resulting from sleep deprivation.
Collapse
Affiliation(s)
- Lal Chandra Vishwakarma
- Baldev Singh Laboratory for Sleep Research, Department of Physiology, All India Institute of Medical Sciences, New Delhi, India
| | - Binney Sharma
- Department of Physiology, All India Institute of Medical Sciences, New Delhi, India
| | - Vishwajeet Singh
- Department of Biostatistics, All India Institute of Medical Sciences, New Delhi, India
| | - Ashok Kumar Jaryal
- Department of Physiology, All India Institute of Medical Sciences, New Delhi, India
| | - Hruda Nanda Mallick
- Baldev Singh Laboratory for Sleep Research, Department of Physiology, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
33
|
Imaging the effect of the circadian light-dark cycle on the glymphatic system in awake rats. Proc Natl Acad Sci U S A 2019; 117:668-676. [PMID: 31848247 PMCID: PMC6955326 DOI: 10.1073/pnas.1914017117] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Homeostasis and the daily rhythms in brain function and temperature are coupled to the circadian light–dark cycle. MRI was used to study the redistribution of intraventricular contrast agent in awake rats during the night when they are active and during the day when at rest. Redistribution is lowest during the day and highest at night and parallels the gradients and regional variations in brain temperatures reported in the literature. The brain areas of low parenchymal redistribution are associated with high temperatures and have a high density of blood vessels that may be an essential part of the organization of the glymphatic system regulating brain temperature, blood gases, nutrients, metabolites, and waste products over the light–dark cycle. The glymphatic system functions in the removal of potentially harmful metabolites and proteins from the brain. Dynamic, contrast-enhanced MRI was used in fully awake rats to follow the redistribution of intraventricular contrast agent entrained to the light–dark cycle and its hypothetical relationship to the sleep–waking cycle, blood flow, and brain temperature in specific brain areas. Brain areas involved in circadian timing and sleep–wake rhythms showed the lowest redistribution of contrast agent during the light phase or time of inactivity and sleep in rats. Global brain redistribution of contrast agent was heterogeneous. The redistribution was highest along the dorsal cerebrum and lowest in the midbrain/pons and along the ventral surface of the brain. This heterogeneous redistribution of contrast agent paralleled the gradients and regional variations in brain temperatures reported in the literature for awake animals. Three-dimensional quantitative ultrashort time-to-echo contrast-enhanced imaging was used to reconstruct small, medium, and large arteries and veins in the rat brain and revealed areas of lowest redistribution overlapped with this macrovasculature. This study raises new questions and theoretical considerations of the impact of the light–dark cycle, brain temperature, and blood flow on the function of the glymphatic system.
Collapse
|
34
|
Kiyatkin EA. Brain temperature and its role in physiology and pathophysiology: Lessons from 20 years of thermorecording. Temperature (Austin) 2019; 6:271-333. [PMID: 31934603 PMCID: PMC6949027 DOI: 10.1080/23328940.2019.1691896] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 10/29/2019] [Accepted: 10/30/2019] [Indexed: 12/11/2022] Open
Abstract
It is well known that temperature affects the dynamics of all physicochemical processes governing neural activity. It is also known that the brain has high levels of metabolic activity, and all energy used for brain metabolism is finally transformed into heat. However, the issue of brain temperature as a factor reflecting neural activity and affecting various neural functions remains in the shadow and is usually ignored by most physiologists and neuroscientists. Data presented in this review demonstrate that brain temperature is not stable, showing relatively large fluctuations (2-4°C) within the normal physiological and behavioral continuum. I consider the mechanisms underlying these fluctuations and discuss brain thermorecording as an important tool to assess basic changes in neural activity associated with different natural (sexual, drinking, eating) and drug-induced motivated behaviors. I also consider how naturally occurring changes in brain temperature affect neural activity, various homeostatic parameters, and the structural integrity of brain cells as well as the results of neurochemical evaluations conducted in awake animals. While physiological hyperthermia appears to be adaptive, enhancing the efficiency of neural functions, under specific environmental conditions and following exposure to certain psychoactive drugs, brain temperature could exceed its upper limits, resulting in multiple brain abnormalities and life-threatening health complications.
Collapse
Affiliation(s)
- Eugene A Kiyatkin
- Behavioral Neuroscience Branch, National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| |
Collapse
|
35
|
Gentilal N, Salvador R, Miranda PC. Temperature control in TTFields therapy of GBM: impact on the duty cycle and tissue temperature. Phys Med Biol 2019; 64:225008. [PMID: 31671414 DOI: 10.1088/1361-6560/ab5323] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
In TTFields therapy, Optune® is used to deliver the electric field to the tumor via 4 transducer arrays. This device monitors the temperature of the transducers and reduces the current whenever a transducer reaches 41 °C. Our aim is to quantify Optune's duty cycle and to predict the steady-state temperature distribution in the head during GBM treatment. We used a realistic head model and the finite element method to solve Pennes equation and to simulate how Optune operates considering that current reduces to zero when the thermal limit is reached. The thermal impact was evaluated considering the maximum temperature reached by each tissue and using the CEM 43 °C metric. We observed that Optune switches the current on and off intermittently. In our model, one transducer reached the temperature limit quicker than the others and consequently it was the one that controlled current injection. This led to different duty cycles for the anterior-posterior and left-right array pairs. The thermal analysis indicated that the highest temperature in the model, 41.7 °C, was reached on the scalp under a transducer. However, TTFields may lead to significant changes only at the brain level such as BBB permeability increase, cerebral blood flow variation and changes in the concentration of some neurotransmitters. The duty cycle may be increased, e.g. by controlling the current at the transducer level. These predictions should be validated by comparison with experimental data and reconciled with the lack of evidence of thermal impact in clinical trials.
Collapse
Affiliation(s)
- Nichal Gentilal
- Institute of Biophysics and Biomedical Engineering, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal. Author to whom correspondence should be addressed
| | | | | |
Collapse
|
36
|
Kiyatkin EA, Sharma HS. Leakage of the blood-brain barrier followed by vasogenic edema as the ultimate cause of death induced by acute methamphetamine overdose. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2019; 146:189-207. [PMID: 31349927 DOI: 10.1016/bs.irn.2019.06.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Methamphetamine (METH) is a potent CNS stimulant that is widely used as a recreational drug. Due to its ability to increase bodily heat production and diminish heat loss due to peripheral vasoconstriction, METH is able to increase brain and body temperature. The hyperthermic effects of METH are potentiated when the drug is used under conditions of psycho-physiological activation and in warm ambient temperatures. In this short review, we present and discuss our data on the effects of METH on brain temperature and a number of neural parameters that characterize permeability of the blood-brain barrier (albumin immunoreactivity), glial activity (GFAP immunoreactivity), brain tissue water content, and structural abnormalities of brain cells. We demonstrate that the extent of these neural alterations strongly depends on METH-induced brain temperature elevation and they all dramatically increase following exposure to METH in warm (29°C) vs. standard (23°C) ambient temperatures. Based on these data we consider possible pathophysiological mechanisms underlying acute METH toxicity, suggesting the critical role of drug-induced brain hyperthermia, temperature-dependent leakage of the blood-brain barrier (BBB), and the development of vasogenic edema that could finally result in decompensation of vital functions and death.
Collapse
Affiliation(s)
- Eugene A Kiyatkin
- Behavioral Neuroscience Branch, National Institute on Drug Abuse-Intramural Research Program, National Institutes of Health, DHHS, Baltimore, MD, United States.
| | - Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| |
Collapse
|
37
|
Csernai M, Borbély S, Kocsis K, Burka D, Fekete Z, Balogh V, Káli S, Emri Z, Barthó P. Dynamics of sleep oscillations is coupled to brain temperature on multiple scales. J Physiol 2019; 597:4069-4086. [PMID: 31197831 DOI: 10.1113/jp277664] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 06/11/2019] [Indexed: 01/23/2023] Open
Abstract
KEY POINTS Sleep spindle frequency positively, duration negatively correlates with brain temperature. Local heating of the thalamus produces similar effects in the heated area. Thalamic network model corroborates temperature dependence of sleep spindle frequency. Brain temperature shows spontaneous microfluctuations during both anesthesia and natural sleep. Larger fluctuations are associated with epochs of REM sleep. Smaller fluctuations correspond to the alteration of spindling and delta epochs of infra-slow oscillation. ABSTRACT Every form of neural activity depends on temperature, yet its relationship to brain rhythms is poorly understood. In this work we examined how sleep spindles are influenced by changing brain temperatures and how brain temperature is influenced by sleep oscillations. We employed a novel thermoelectrode designed for measuring temperature while recording neural activity. We found that spindle frequency is positively correlated and duration negatively correlated with brain temperature. Local heating of the thalamus replicated the temperature dependence of spindle parameters in the heated area only, suggesting biophysical rather than global modulatory mechanisms, a finding also supported by a thalamic network model. Finally, we show that switches between oscillatory states also influence brain temperature on a shorter and smaller scale. Epochs of paradoxical sleep as well as the infra-slow oscillation were associated with brain temperature fluctuations below 0.2°C. Our results highlight that brain temperature is massively intertwined with sleep oscillations on various time scales.
Collapse
Affiliation(s)
- Márton Csernai
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Sándor Borbély
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary.,Department of Physiology and Neurobiology, Eötvös Loránd University, Budapest, Hungary
| | - Kinga Kocsis
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary.,Roska Tamás Doctoral School of Sciences and Technology, Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary.,Neuronal Network and Behavior Research Group, RCNS, Hungarian Academy of Sciences, Budapest, Hungary
| | - Dávid Burka
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary.,Corvinus University of Budapest, Budapest, Hungary
| | - Zoltán Fekete
- Research Group for Implantable Microsystems, Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary.,Institute of Technical Physics and Material Science, Centre for Energy Research, Hungarian Academy of Sciences, Budapest, Hungary
| | - Veronika Balogh
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Szabolcs Káli
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | | | - Péter Barthó
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| |
Collapse
|
38
|
Raastad M. The Slow Depolarization Following Individual Spikes in Thin, Unmyelinated Axons in Mammalian Cortex. Front Cell Neurosci 2019; 13:203. [PMID: 31156391 PMCID: PMC6532452 DOI: 10.3389/fncel.2019.00203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 04/23/2019] [Indexed: 11/13/2022] Open
Abstract
An important goal in neuroscience is to understand how neuronal excitability is controlled. Therefore, Gardner-Medwin's 1972 discovery, that cerebellar parallel fibers were more excitable up to 100 ms after individual action potentials, could have had great impact. If this long-lasting effect were due to intrinsic membrane mechanisms causing a depolarizing after-potential (DAP) this was an important finding. However, that hypothesis met resistance because the use of K+ sensitive electrodes showed that synchronous activation, as commonly used in excitability tests, increased extracellular K+ concentration sufficiently to explain much of the hyperexcitability. It is still controversial because intra-axonal recordings, which could have settled the debate, have not been made from parallel fibers or other axons of similar calibers. If it had not been for the fact that such thin axons are, by far, the most common axon type in cortical areas and control almost all glutamate release, it would be tempting to ignore them until an appropriate intra-axonal recording technique is invented. I will go through the literature that, taken together, supports the hypothesis that a DAP is an intrinsic membrane mechanism in cerebellar parallel fibers and hippocampal Schaffer collaterals. It is most likely due to a well-controlled process that stops the fast repolarization at a membrane potential positive to resting membrane potential, leaving the membrane more excitable for ~100 ms during a slow, passive discharge of the membrane capacitance. The DAP helps reduce failures but can also cause uncontrolled bursting if it is not properly controlled. The voltage at which the fast repolarization stops, and the DAP starts, is close the activation range of both Na+ and Ca2+ voltage activated channels and is therefore essential for neuronal function.
Collapse
Affiliation(s)
- Morten Raastad
- Department of Physiology, School of Medicine, Emory University, Atlanta, GA, United States
| |
Collapse
|
39
|
Ramirez V, Ryan CP, Eldakar OT, Gallup AC. Manipulating neck temperature alters contagious yawning in humans. Physiol Behav 2019; 207:86-89. [PMID: 31022409 DOI: 10.1016/j.physbeh.2019.04.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/18/2019] [Accepted: 04/18/2019] [Indexed: 01/15/2023]
Abstract
The existence of yawning across a diverse array of species has led many researchers to postulate its neurological significance. One hypothesis, which has garnered recent support, posits that yawns function to cool the brain by flushing hyperthermic blood away from the skull while simultaneously introducing a cooler arterial supply. The current study tested this hypothesis by examining how manipulations aimed at modifying carotid artery temperature, which in turn directly alters cranial temperature, influences contagious yawning in humans. Participants held either a warm (46 °C), cold (4 °C) or room temperature (22 °C) pack firmly to their neck, just over their carotid arteries, for a period of five minutes prior to watching a contagious yawning stimulus. Thermographic imaging verified that these manipulations produced predicted changes in temperature at the superomedial orbital area, a region previously used as a noninvasive measure of brain temperature (i.e., the brain temperature tunnel). As predicted by past research, both the urge to yawn and overall yawn frequency significantly diminished in the cooling condition (p < .05). Less than half (48.5%) of the participants in the cooling condition reported the urge to yawn, while this urge was expressed by the vast majority of participants in the warming condition (84.8%). Moreover, there was a threefold difference in the mean number of yawns per participant between the cooling and warming conditions (0.364 compared to 1.121). These findings are consistent with previous research indicating that yawns function as a compensatory brain cooling mechanism.
Collapse
Affiliation(s)
- Valentina Ramirez
- Department of Biological Sciences, Nova Southeastern University, United States
| | - Colleen P Ryan
- Department of Medicine and Surgery, University of Rome Tor Vergata, Italy
| | - Omar Tonsi Eldakar
- Department of Biological Sciences, Nova Southeastern University, United States; Psychology Program, SUNY Polytechnic Institute, United States
| | - Andrew C Gallup
- Department of Biological Sciences, Nova Southeastern University, United States; Psychology Program, SUNY Polytechnic Institute, United States.
| |
Collapse
|
40
|
Inducing therapeutic hypothermia via selective brain cooling: a finite element modeling analysis. Med Biol Eng Comput 2019; 57:1313-1322. [PMID: 30756230 DOI: 10.1007/s11517-019-01962-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 02/04/2019] [Indexed: 02/06/2023]
Abstract
Therapeutic hypothermia is a treatment method to reduce brain injuries after stroke, especially for cerebral ischemia. This study investigates in the temperature distribution of the head within selective brain cooling (SBC). Anatomically accurate geometries based on CT images of head and neck regions are used to develop the 3D geometry and physical model for the finite element modeling. Two cooling methods, the direct head surface cooling strategy and the combination cooling strategy of both head and neck, are evaluated to analyze the inducing hypothermia. The results show that for direct head surface cooling, the scalp and skull temperatures decrease significantly as the blood perfusion rate is constrained, but it is hard to affect the brain core temperature. To achieve a lower cerebral temperature, combination cooling strategy of both head and neck is an effective method in improving deep brain cooling. In normal condition, the cerebral temperature is reduced by about 0.12 °C in 60 min of hypothermia, while the temperature drop is approximately 0.98 °C in ischemic condition. Graphical abstract In this study, the 3D geometry of the head and carotid artery model based on the computed tomography (CT) were derived separately and the corresponding investigations were conducted to validate the reliability of the model. Direct head surface cooling strategy and the combination cooling strategy of both the head and neck were numerically researched.
Collapse
|
41
|
Suzuki T, Oishi N, Fukuyama H. Simultaneous infrared thermal imaging and laser speckle imaging of brain temperature and cerebral blood flow in rats. JOURNAL OF BIOMEDICAL OPTICS 2018; 24:1-11. [PMID: 30468045 PMCID: PMC6975233 DOI: 10.1117/1.jbo.24.3.031014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 11/05/2018] [Indexed: 06/09/2023]
Abstract
Infrared thermal imaging of brain temperature changes is useful for evaluating cortical activity and disease states, such as stroke. However, the changes depend on a balance between changes in heat generation from metabolism and in heat convection related to blood flow. To discriminate between these effects and gain a clearer understanding of neurovascular metabolic coupling, brain temperature imaging must be improved to measure temperature and blood flow simultaneously. We develop an imaging technique that shows a two-dimensional (2-D) distribution of absolute brain temperature and relative cerebral blood flow changes in anesthetized rats by combining infrared thermal imaging with laser speckle imaging. The changes in brain metabolism and cerebral blood flow are achieved using two different anesthetics (isoflurane and α-chloralose) to evaluate our system. Isoflurane increased cerebral blood flow but decreased metabolism, whereas α-chloralose decreased both parameters. This technique enables simultaneous visualization of brain surface changes in temperature and cerebral blood flow in the same regions. This imaging system will permit further study of neurovascular metabolic coupling in normal and diseased brains.
Collapse
Affiliation(s)
- Takashi Suzuki
- Kyoto University, Research and Educational Unit of Leaders for Integrated Medical System, Center for the Promotion of Interdisciplinary Education and Research, Kyoto, Japan
| | - Naoya Oishi
- Kyoto University, Research and Educational Unit of Leaders for Integrated Medical System, Center for the Promotion of Interdisciplinary Education and Research, Kyoto, Japan
| | - Hidenao Fukuyama
- Kyoto University, Research and Educational Unit of Leaders for Integrated Medical System, Center for the Promotion of Interdisciplinary Education and Research, Kyoto, Japan
- Beijing Institute of Technology, Human Brain Research Laboratory, Intelligent Robotics Institute, Beijing, China
| |
Collapse
|
42
|
Zannou AL, Khadka N, Truong DQ, Zhang T, Esteller R, Hershey B, Bikson M. Temperature increases by kilohertz frequency spinal cord stimulation. Brain Stimul 2018; 12:62-72. [PMID: 30482674 DOI: 10.1016/j.brs.2018.10.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 10/09/2018] [Accepted: 10/10/2018] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION Kilohertz frequency spinal cord stimulation (kHz-SCS) deposits significantly more power in tissue compared to SCS at conventional frequencies, reflecting increased duty cycle (pulse compression). We hypothesize kHz-SCS increases local tissue temperature by joule heat, which may influence the clinical outcomes. METHODS To establish the role of tissue heating in KHZ-SCS, a decisive first step is to characterize the range of temperature changes expected during conventional and KHZ-SCS protocols. Fiber optic probes quantified temperature increases around an experimental SCS lead in a bath phantom. These data were used to verify a SCS lead heat-transfer model based on joule heat. Temperature increases were then predicted in a seven-compartment (soft tissue, vertebral bone, fat, intervertebral disc, meninges, spinal cord with nerve roots) geometric human spinal cord model under varied parameterization. RESULTS The experimentally constrained bio-heat model shows SCS waveform power (waveform RMS) determines tissue heating at the spinal cord and surrounding tissues. For example, we predict temperature increased at dorsal spinal cord of 0.18-1.72 °C during 3.5 mA peak 10 KHz stimulation with a 40-10-40 μs biphasic pulse pattern, 0.09-0.22 °C during 3.5 mA 1 KHz 100-100-100 μs stimulation, and less than 0.05 °C during 3.5 mA 50 Hz 200-100-200 μs stimulation. Notably, peak heating of the spinal cord and other tissues increases superlinearly with stimulation power and so are especially sensitive to incremental changes in SCS pulse amplitude or frequency (with associated pulse compression). Further supporting distinct SCS intervention strategies based on heating; the spatial profile of temperature changes is more uniform compared to electric fields, which suggests less sensitivity to lead position. CONCLUSIONS Tissue heating may impact short and long-term outcomes of KHZ-SCS, and even as an adjunct mechanism, suggests distinct strategies for lead position and programming optimization.
Collapse
Affiliation(s)
- Adantchede L Zannou
- Department of Biomedical Engineering, The City College of New York, New York, NY, 10031, USA
| | - Niranjan Khadka
- Department of Biomedical Engineering, The City College of New York, New York, NY, 10031, USA
| | - Dennis Q Truong
- Department of Biomedical Engineering, The City College of New York, New York, NY, 10031, USA
| | - Tianhe Zhang
- Boston Scientific Inc., Neuromodulation Research and Advanced Concepts, Valencia, CA, USA
| | - Rosana Esteller
- Boston Scientific Inc., Neuromodulation Research and Advanced Concepts, Valencia, CA, USA
| | - Brad Hershey
- Boston Scientific Inc., Neuromodulation Research and Advanced Concepts, Valencia, CA, USA
| | - Marom Bikson
- Department of Biomedical Engineering, The City College of New York, New York, NY, 10031, USA.
| |
Collapse
|
43
|
Gorter JA, van Vliet EA, Dedeurwaerdere S, Buchanan GF, Friedman D, Borges K, Grabenstatter H, Lukasiuk K, Scharfman HE, Nehlig A. A companion to the preclinical common data elements for physiologic data in rodent epilepsy models. A report of the TASK3 Physiology Working Group of the ILAE/AES Joint Translational Task Force. Epilepsia Open 2018; 3:69-89. [PMID: 30411072 PMCID: PMC6210044 DOI: 10.1002/epi4.12261] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2018] [Indexed: 11/06/2022] Open
Abstract
The International League Against Epilepsy/American Epilepsy Society (ILAE/AES) Joint Translational Task Force created the TASK3 working groups to create common data elements (CDEs) for various aspects of preclinical epilepsy research studies, which could help improve standardization of experimental designs. This article concerns the parameters that can be measured to assess the physiologic condition of the animals that are used to study rodent models of epilepsy. Here we discuss CDEs for physiologic parameters measured in adult rats and mice such as general health status, temperature, cardiac and respiratory function, and blood constituents. We provide detailed CDE tables and case report forms (CRFs), and with this companion manuscript we discuss the monitoring of different aspects of physiology of the animals. The CDEs, CRFs, and companion paper are available to all researchers, and their use will benefit the harmonization and comparability of translational preclinical epilepsy research. The ultimate hope is to facilitate the development of biomarkers and new treatments for epilepsy.
Collapse
Affiliation(s)
- Jan A Gorter
- Swammerdam Institute for Life Sciences Center for Neuroscience University of Amsterdam Amsterdam The Netherlands
| | - Erwin A van Vliet
- Swammerdam Institute for Life Sciences Center for Neuroscience University of Amsterdam Amsterdam The Netherlands.,Amsterdam UMC University of Amsterdam Department of (Neuro)pathology Amsterdam Neuroscience Amsterdam The Netherlands
| | | | - Gordon F Buchanan
- Department of Neurology University of Iowa Carver College of Medicine Iowa City IA U.S.A
| | - Daniel Friedman
- Department of Neurology NYU Langone Medical Center New York NY U.S.A
| | - Karin Borges
- School of Biomedical Sciences The University of Queensland Brisbane Queensland Australia
| | - Heidi Grabenstatter
- Department of Psychology and Neuroscience Center of Neuroscience University of Colorado Boulder U.S.A
| | - Katarzyna Lukasiuk
- Nencki Institute of Experimental Biology Polish Academy of Sciences Warsaw Poland
| | - Helen E Scharfman
- The Nathan Kline Institute for Psychiatric Research and New York University Langone Medical Center Orangeburg NY U.S.A
| | - Astrid Nehlig
- INSERM U 1129 Pediatric Neurology Necker-Enfants Malades Hospital University of Paris Descartes Paris France
| |
Collapse
|
44
|
Zaretsky DV, Romanovsky AA, Zaretskaia MV, Molkov YI. Tissue oxidative metabolism can increase the difference between local temperature and arterial blood temperature by up to 1.3 oC: Implications for brain, brown adipose tissue, and muscle physiology. Temperature (Austin) 2018; 5:22-35. [PMID: 29687042 DOI: 10.1080/23328940.2018.1437311] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 02/02/2018] [Accepted: 02/02/2018] [Indexed: 10/18/2022] Open
Abstract
Tissue temperature increases, when oxidative metabolism is boosted. The source of nutrients and oxygen for this metabolism is the blood. The blood also cools down the tissue, and this is the only cooling mechanism, when direct dissipation of heat from the tissue to the environment is insignificant, e.g., in the brain. While this concept is relatively simple, it has not been described quantitatively. The purpose of the present work was to answer two questions: 1) to what extent can oxidative metabolism make the organ tissue warmer than the body core, and, 2) how quickly are changes in the local metabolism reflected in the temperature of the tissue? Our theoretical analysis demonstrates that, at equilibrium, given that heat exchange with the organ is provided by the blood, the temperature difference between the organ tissue and the arterial blood is proportional to the arteriovenous difference in oxygen content, does not depend on the blood flow, and cannot exceed 1.3oC. Unlike the equilibrium temperature difference, the rate of change of the local temperature, with respect to time, does depend on the blood flow. In organs with high perfusion rates, such as the brain and muscles, temperature changes occur on a time scale of a few minutes. In organs with low perfusion rates, such changes may have characteristic time constants of tens or hundreds of minutes. Our analysis explains, why arterial blood temperature is the main determinant of the temperature of tissues with limited heat exchange, such as the brain.
Collapse
Affiliation(s)
- Dmitry V Zaretsky
- Discovery and Translational Medicine Division, Intarcia Therapeutics, Research Triangle, NC 27709
| | - Andrej A Romanovsky
- Systemic Inflammation Laboratory (FeverLab), Trauma Research, St. Joseph's Hospital and Medical Center, Phoenix, AZ 85013
| | - Maria V Zaretskaia
- Department of Emergency Medicine, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Yaroslav I Molkov
- Department of Mathematics and Statistics and Neuroscience Institute, Georgia State University, GA 30303
| |
Collapse
|
45
|
TRPV4 is functionally expressed in oligodendrocyte precursor cells and increases their proliferation. Pflugers Arch 2018; 470:705-716. [PMID: 29569183 DOI: 10.1007/s00424-018-2130-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 02/17/2018] [Accepted: 02/20/2018] [Indexed: 10/17/2022]
Abstract
Oligodendrocytes, which differentiate from oligodendrocyte precursor cells (OPCs), ensheath axons with myelin, play an essential role in rapid conduction of action potentials and metabolically support neurons. Elucidation of the mechanisms underlying the proliferation, migration, differentiation, and survival of OPCs is considered indispensable for determining the causes of central nervous system diseases. However, the relationship between these functions of OPCs and their intracellular Ca2+ signaling has not been fully elucidated. Here, we investigated the function of transient receptor potential vanilloid 4 (TRPV4), a Ca2+-permeable channel that responds to hypo-osmolarity, mild temperature, mechanical stimulation, and endogenous arachidonic acid metabolites, in OPCs. Trpv4 mRNA was detected in OPCs in vivo and in primary cultured rat OPCs. In Ca2+ imaging experiments, treatment with the selective TRPV4 agonist GSK1016790A induced sustained elevation of the intracellular Ca2+ concentration in OPCs in a concentration-dependent manner, which was almost completely suppressed by co-treatment with the selective TRPV4 antagonist HC067047. Stimulation of TRPV4 by GSK1016790A augmented OPC proliferation, which was abolished by co-treatment with HC067047, the intracellular Ca2+ chelator BAPTA-AM, and the protein kinase C inhibitor bisindolylmaleimide II. By contrast, GSK1016790A did not significantly affect the migration or differentiation of OPCs. Taken together, these results suggest that TRPV4 is functionally expressed in OPCs and increases the proliferation of these cells without affecting their ability to differentiate into oligodendrocytes.
Collapse
|
46
|
Posporelis S, Coughlin JM, Marsman A, Pradhan S, Tanaka T, Wang H, Varvaris M, Ward R, Higgs C, Edwards JA, Ford CN, Kim PK, Lloyd AM, Edden RAE, Schretlen DJ, Cascella NG, Barker PB, Sawa A. Decoupling of Brain Temperature and Glutamate in Recent Onset of Schizophrenia: A 7T Proton Magnetic Resonance Spectroscopy Study. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2018; 3:248-254. [PMID: 29486866 PMCID: PMC5836506 DOI: 10.1016/j.bpsc.2017.04.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 03/23/2017] [Accepted: 04/10/2017] [Indexed: 01/09/2023]
Abstract
BACKGROUND Converging evidence suggests that cerebral metabolic and cellular homeostasis is altered in patients with recent onset of schizophrenia. As a possible marker of metabolic changes that might link to altered neurotransmission, we used proton magnetic resonance spectroscopy to estimate brain temperature, and we evaluated its relationship to a relevant metabolite, glutamate, within this study population. METHODS Using proton magnetic resonance spectroscopy at 7T, 20 patients with recent onset (≤24 months after first psychotic symptoms) of schizophrenia and 20 healthy control subjects were studied. We measured levels of N-acetylaspartate and glutamate and estimated brain temperature in a noninvasive manner. RESULTS Healthy control subjects showed a significant negative correlation between glutamate and brain temperature in the anterior cingulate cortex. In contrast, the physiological correlation between glutamate and brain temperature was lost in patients with recent onset of schizophrenia. CONCLUSIONS This study supports the hypothesized disrupted relationship between brain metabolism and neurotransmission in patients with recent onset of schizophrenia. The findings include mechanistic implications that are to be followed up in both preclinical and clinical studies.
Collapse
Affiliation(s)
- Sotirios Posporelis
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins Medical Institutions, Baltimore, Maryland; South London and Maudsley National Health Service Foundation Trust, London, United Kingdom
| | - Jennifer M Coughlin
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins Medical Institutions, Baltimore, Maryland; Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Anouk Marsman
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Subechhya Pradhan
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Teppei Tanaka
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Hongxing Wang
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Mark Varvaris
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Rebecca Ward
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Cecilia Higgs
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Jamie A Edwards
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Candice N Ford
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Pearl K Kim
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Ashley M Lloyd
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Richard A E Edden
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - David J Schretlen
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Nicola G Cascella
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Peter B Barker
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Akira Sawa
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins Medical Institutions, Baltimore, Maryland.
| |
Collapse
|
47
|
Cellular populations and thermosensing mechanisms of the hypothalamic thermoregulatory center. Pflugers Arch 2018; 470:809-822. [DOI: 10.1007/s00424-017-2101-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 12/17/2017] [Accepted: 12/19/2017] [Indexed: 10/18/2022]
|
48
|
Kiyatkin EA. Brain temperature: from physiology and pharmacology to neuropathology. HANDBOOK OF CLINICAL NEUROLOGY 2018; 157:483-504. [DOI: 10.1016/b978-0-444-64074-1.00030-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
49
|
Kunstetter AC, Barbosa NHS, Moraes MM, Pinto VA, Soares DD, Pires W, Wanner SP. Pre-exercise exposure to the treadmill setup changes the cardiovascular and thermoregulatory responses induced by subsequent treadmill running in rats. Temperature (Austin) 2017; 5:109-122. [PMID: 30377632 DOI: 10.1080/23328940.2017.1388343] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 09/28/2017] [Accepted: 09/29/2017] [Indexed: 10/18/2022] Open
Abstract
Different methodological approaches have been used to conduct experiments with rats subjected to treadmill running. Some experimenters have exposed rats to the treadmill setup before initiating exercise to minimize the influences of handling and being placed in an anxiety-inducing environment on the physiological responses to subsequent running. Other experimenters have subjected rats to exercise immediately after placing them on the treadmill. Thus, the present study aimed to evaluate the effects of pre-exercise exposure to the treadmill on physical performance and cardiovascular and thermoregulatory responses during subsequent exercise. Male Wistar rats were subjected to fatiguing incremental-speed exercise at 24°C immediately after being placed on the treadmill or after being exposed to the treadmill for 70 min following removal from their home cages. Core body temperature (TCORE), tail-skin temperature (TSKIN), heart rate (HR) and mean arterial pressure (MAP) were recorded throughout the experiments. Rats exposed to the treadmill started exercise with higher TCORE, lower HR and MAP, and unaltered TSKIN. This exposure did not influence performance, but it markedly affected the exercise-induced increases in the four physiological parameters evaluated; for example, the TSKIN increased earlier and at a higher TCORE. Moreover, previous treadmill exposure notably allowed expected exercise-induced changes in cardiovascular parameters to be observed. Collectively, these data indicate that pre-exercise exposure to the treadmill induces important effects on physiological responses during subsequent treadmill running. The present data are particularly relevant for researchers planning experiments involving physical exercise and the recording of physiological parameters in rats.
Collapse
Affiliation(s)
- Ana C Kunstetter
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte (MG), Brazil
| | - Nicolas H S Barbosa
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte (MG), Brazil
| | - Michele M Moraes
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte (MG), Brazil
| | - Valéria A Pinto
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte (MG), Brazil
| | - Danusa D Soares
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte (MG), Brazil
| | - Washington Pires
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte (MG), Brazil.,Department of Physical Education, Institute of Life Sciences, Universidade Federal de Juiz de Fora, Governador Valadares (MG), Brazil
| | - Samuel P Wanner
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte (MG), Brazil
| |
Collapse
|
50
|
McLaughlin JP, Paris JJ, Mintzopoulos D, Hymel KA, Kim JK, Cirino TJ, Gillis TE, Eans SO, Vitaliano GD, Medina JM, Krapf RC, Stacy HM, Kaufman MJ. Conditional Human Immunodeficiency Virus Transactivator of Transcription Protein Expression Induces Depression-like Effects and Oxidative Stress. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2017; 2:599-609. [PMID: 29057370 PMCID: PMC5648358 DOI: 10.1016/j.bpsc.2017.04.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUND The prevalence of major depression in those with HIV/AIDS is substantially higher than in the general population. Mechanisms underlying this comorbidity are poorly understood. HIV-transactivator of transcription (Tat) protein, produced and excreted by HIV, could be involved. We determined whether conditional Tat protein expression in mice is sufficient to induce depression-like behaviors and oxidative stress. Further, as oxidative stress is associated with depression, we determined whether decreasing or increasing oxidative stress by administering methylsulfonylmethane (MSM) or diethylmaleate (DEM), respectively, altered depression-like behavior. METHODS GT-tg bigenic mice received intraperitoneal saline or doxycycline (Dox, 25-100 mg/kg/day) to induce Tat expression. G-tg mice, which do not express Tat protein, also received Dox. Depression-like behavior was assessed with the tail suspension test (TST) and the two-bottle saccharin/water consumption task. Reactive oxygen/nitrogen species (ROS/RNS) were assessed ex vivo. Medial frontal cortex (MFC) oxidative stress and temperature were measured in vivo with 9.4-Tesla proton magnetic resonance spectroscopy (MRS). RESULTS Tat expression increased TST immobility time in an exposure-dependent manner and reduced saccharin consumption. MSM decreased immobility time while DEM increased it in saline-treated GT-tg mice. Tat and MSM behavioral effects persisted for 28 days. Tat and DEM increased while MSM decreased ROS/RNS levels. Tat expression increased MFC glutathione levels and temperature. CONCLUSIONS Tat expression induced rapid and enduring depression-like behaviors and oxidative stress. Increasing/decreasing oxidative stress increased/decreased, respectively, depression-like behavior. Thus, Tat produced by HIV may contribute to the high depression prevalence among those with HIV. Further, mitigation of oxidative stress could reduce depression severity.
Collapse
Affiliation(s)
- Jay P. McLaughlin
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL 32610
| | - Jason J. Paris
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL 32610
- Virginia Commonwealth University, Department of Pharmacology & Toxicology, Richmond, VA 23298
| | - Dionyssios Mintzopoulos
- McLean Imaging Center, Department of Psychiatry, McLean Hospital/Harvard Medical School, Belmont, MA 02478
| | - Kristen A. Hymel
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL 32610
| | - Jae K. Kim
- McLean Imaging Center, Department of Psychiatry, McLean Hospital/Harvard Medical School, Belmont, MA 02478
| | - Thomas J. Cirino
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL 32610
| | - Timothy E. Gillis
- McLean Imaging Center, Department of Psychiatry, McLean Hospital/Harvard Medical School, Belmont, MA 02478
| | - Shainnel O. Eans
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL 32610
| | - Gordana D. Vitaliano
- McLean Imaging Center, Department of Psychiatry, McLean Hospital/Harvard Medical School, Belmont, MA 02478
| | - Jessica M. Medina
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL 32610
| | - Richard C. Krapf
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL 32610
| | - Heather M. Stacy
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL 32610
| | - Marc J. Kaufman
- McLean Imaging Center, Department of Psychiatry, McLean Hospital/Harvard Medical School, Belmont, MA 02478
| |
Collapse
|