1
|
Popova EY, Kawasawa YI, Leung M, Barnstable CJ. Temporal changes in mouse hippocampus transcriptome after pilocarpine-induced seizures. Front Neurosci 2024; 18:1384805. [PMID: 39040630 PMCID: PMC11260795 DOI: 10.3389/fnins.2024.1384805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 06/07/2024] [Indexed: 07/24/2024] Open
Abstract
Introduction Status epilepticus (SE) is a seizure lasting more than 5 min that can have lethal consequences or lead to various neurological disorders, including epilepsy. Using a pilocarpine-induced SE model in mice we investigated temporal changes in the hippocampal transcriptome. Methods We performed mRNA-seq and microRNA-seq analyses at various times after drug treatment. Results At 1 h after the start of seizures, hippocampal cells upregulated transcription of immediate early genes and genes involved in the IGF-1, ERK/MAPK and RNA-PolII/transcription pathways. At 8 h, we observed changes in the expression of genes associated with oxidative stress, overall transcription downregulation, particularly for genes related to mitochondrial structure and function, initiation of a stress response through regulation of ribosome and translation/EIF2 signaling, and upregulation of an inflammatory response. During the middle of the latent period, 36 h, we identified upregulation of membrane components, cholesterol synthesis enzymes, channels, and extracellular matrix (ECM), as well as an increased inflammatory response. At the end of the latent period, 120 h, most changes in expression were in genes involved in ion transport, membrane channels, and synapses. Notably, we also elucidated the involvement of novel pathways, such as cholesterol biosynthesis pathways, iron/BMP/ferroptosis pathways, and circadian rhythms signaling in SE and epileptogenesis. Discussion These temporal changes in metabolic reactions indicate an immediate response to injury followed by recovery and regeneration. CREB was identified as the main upstream regulator. Overall, our data provide new insights into molecular functions and cellular processes involved at different stages of seizures and offer potential avenues for effective therapeutic strategies.
Collapse
Affiliation(s)
- Evgenya Y. Popova
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine, Hershey, PA, United States
- Penn State Hershey Eye Center, Hershey, PA, United States
| | - Yuka Imamura Kawasawa
- Department of Pharmacology, Penn State University College of Medicine, Hershey, PA, United States
- Center for Cancer Genomics and Precision Oncology, Wake Forest Baptist Comprehensive Cancer Center, Winston Salem, NC, United States
| | - Ming Leung
- Center for Cancer Genomics and Precision Oncology, Wake Forest Baptist Comprehensive Cancer Center, Winston Salem, NC, United States
| | - Colin J. Barnstable
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine, Hershey, PA, United States
- Penn State Hershey Eye Center, Hershey, PA, United States
| |
Collapse
|
2
|
Soon HR, Gaunt JR, Bansal VA, Lenherr C, Sze SK, Ch’ng TH. Seizure enhances SUMOylation and zinc-finger transcriptional repression in neuronal nuclei. iScience 2023; 26:107707. [PMID: 37694138 PMCID: PMC10483055 DOI: 10.1016/j.isci.2023.107707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/29/2023] [Accepted: 08/21/2023] [Indexed: 09/12/2023] Open
Abstract
A single episode of pilocarpine-induced status epilepticus can trigger the development of spontaneous recurrent seizures in a rodent model for epilepsy. The initial seizure-induced events in neuronal nuclei that lead to long-term changes in gene expression and cellular responses likely contribute toward epileptogenesis. Using a transgenic mouse model to specifically isolate excitatory neuronal nuclei, we profiled the seizure-induced nuclear proteome via tandem mass tag mass spectrometry and observed robust enrichment of nuclear proteins associated with the SUMOylation pathway. In parallel with nuclear proteome, we characterized nuclear gene expression by RNA sequencing which provided insights into seizure-driven transcriptional regulation and dynamics. Strikingly, we saw widespread downregulation of zinc-finger transcription factors, specifically proteins that harbor Krüppel-associated box (KRAB) domains. Our results provide a detailed snapshot of nuclear events induced by seizure activity and demonstrate a robust method for cell-type-specific nuclear profiling that can be applied to other cell types and models.
Collapse
Affiliation(s)
- Hui Rong Soon
- School of Biological Science, Nanyang Technological University, Singapore 636551, Singapore
| | - Jessica Ruth Gaunt
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| | - Vibhavari Aysha Bansal
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| | - Clara Lenherr
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
- Centre for Discovery Brain Science, The University of Edinburgh, Edinburgh, UK
| | - Siu Kwan Sze
- Faculty of Applied Health Sciences, Brock University, St. Catherines, ON, Canada
| | - Toh Hean Ch’ng
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
- School of Biological Science, Nanyang Technological University, Singapore 636551, Singapore
| |
Collapse
|
3
|
Shen XY, Shi SH, Li H, Wang CC, Zhang Y, Yu H, Li YB, Liu B. The role of Gadd45b in neurologic and neuropsychiatric disorders: An overview. Front Mol Neurosci 2022; 15:1021207. [PMID: 36311022 PMCID: PMC9606402 DOI: 10.3389/fnmol.2022.1021207] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/21/2022] [Indexed: 11/26/2022] Open
Abstract
Growth arrest and DNA damage-inducible beta (Gadd45b) is directly intertwined with stress-induced DNA repair, cell cycle arrest, survival, and apoptosis. Previous research on Gadd45b has focused chiefly on non-neuronal cells. Gadd45b is extensively expressed in the nervous system and plays a critical role in epigenetic DNA demethylation, neuroplasticity, and neuroprotection, according to accumulating evidence. This article provided an overview of the preclinical and clinical effects of Gadd45b, as well as its hypothesized mechanisms of action, focusing on major psychosis, depression, autism, stroke, seizure, dementia, Parkinson’s disease, and autoimmune diseases of the nervous system.
Collapse
Affiliation(s)
- Xiao-yue Shen
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shu-han Shi
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Heng Li
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Cong-cong Wang
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Yao Zhang
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Hui Yu
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Yan-bin Li
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
- Yan-bin Li,
| | - Bin Liu
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
- *Correspondence: Bin Liu,
| |
Collapse
|
4
|
Sultan FA, Sawaya BE. Gadd45 in Neuronal Development, Function, and Injury. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1360:117-148. [PMID: 35505167 DOI: 10.1007/978-3-030-94804-7_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The growth arrest and DNA damage-inducible (Gadd) 45 proteins have been associated with numerous cellular mechanisms including cell cycle control, DNA damage sensation and repair, genotoxic stress, neoplasia, and molecular epigenetics. The genes were originally identified in in vitro screens of irradiation- and interleukin-induced transcription and have since been implicated in a host of normal and aberrant central nervous system processes. These include early and postnatal development, injury, cancer, memory, aging, and neurodegenerative and psychiatric disease states. The proteins act through a variety of molecular signaling cascades including the MAPK cascade, cell cycle control mechanisms, histone regulation, and epigenetic DNA demethylation. In this review, we provide a comprehensive discussion of the literature implicating each of the three members of the Gadd45 family in these processes.
Collapse
Affiliation(s)
- Faraz A Sultan
- Department of Psychiatry, Rush University, Chicago, IL, USA.
| | - Bassel E Sawaya
- Molecular Studies of Neurodegenerative Diseases Lab, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA.,FELS Cancer Institute for Personalized Medicine Institute, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA.,Departments of Neurology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA.,Cancer and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA.,Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| |
Collapse
|
5
|
Burke EA, Sturgeon M, Zastrow DB, Fernandez L, Prybol C, Marwaha S, Frothingham EP, Ward PA, Eng CM, Fresard L, Montgomery SB, Enns GM, Fisher PG, Wolfe LA, Harding B, Carrington B, Bishop K, Sood R, Huang Y, Elkahloun A, Toro C, Bassuk AG, Wheeler MT, Markello TC, Gahl WA, Malicdan MCV. Compound heterozygous KCTD7 variants in progressive myoclonus epilepsy. J Neurogenet 2021; 35:74-83. [PMID: 33970744 DOI: 10.1080/01677063.2021.1892095] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
KCTD7 is a member of the potassium channel tetramerization domain-containing protein family and has been associated with progressive myoclonic epilepsy (PME), characterized by myoclonus, epilepsy, and neurological deterioration. Here we report four affected individuals from two unrelated families in which we identified KCTD7 compound heterozygous single nucleotide variants through exome sequencing. RNAseq was used to detect a non-annotated splicing junction created by a synonymous variant in the second family. Whole-cell patch-clamp analysis of neuroblastoma cells overexpressing the patients' variant alleles demonstrated aberrant potassium regulation. While all four patients experienced many of the common clinical features of PME, they also showed variable phenotypes not previously reported, including dysautonomia, brain pathology findings including a significantly reduced thalamus, and the lack of myoclonic seizures. To gain further insight into the pathogenesis of the disorder, zinc finger nucleases were used to generate kctd7 knockout zebrafish. Kctd7 homozygous mutants showed global dysregulation of gene expression and increased transcription of c-fos, which has previously been correlated with seizure activity in animal models. Together these findings expand the known phenotypic spectrum of KCTD7-associated PME, report a new animal model for future studies, and contribute valuable insights into the disease.
Collapse
Affiliation(s)
- Elizabeth A Burke
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, NIH and National Human Genome Research Institute, NIH, Bethesda, MD, USA
| | - Morgan Sturgeon
- Department of Pediatrics, University of Iowa, Iowa City, IA, USA
| | - Diane B Zastrow
- Center for Undiagnosed Diseases, Stanford University School of Medicine, Stanford, CA, USA
| | - Liliana Fernandez
- Center for Undiagnosed Diseases, Stanford University School of Medicine, Stanford, CA, USA
| | - Cameron Prybol
- Center for Undiagnosed Diseases, Stanford University School of Medicine, Stanford, CA, USA
| | - Shruti Marwaha
- Center for Undiagnosed Diseases, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Patricia A Ward
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Christine M Eng
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Laure Fresard
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Stephen B Montgomery
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.,Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Gregory M Enns
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Paul G Fisher
- Center for Undiagnosed Diseases, Stanford University School of Medicine, Stanford, CA, USA.,Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA.,Department of Neurology, Stanford University School of Medicine, Stanford, CA, USA
| | - Lynne A Wolfe
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, NIH and National Human Genome Research Institute, NIH, Bethesda, MD, USA
| | - Brian Harding
- Departments of Pathology and Lab Medicine (Neuropathology), Children's Hospital of Philadelphia and the Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Blake Carrington
- Zebrafish Core, Translational and Functional Genomics Branch, National Human Genome Research Institute, NIH, Bethesda, MD, USA
| | - Kevin Bishop
- Zebrafish Core, Translational and Functional Genomics Branch, National Human Genome Research Institute, NIH, Bethesda, MD, USA
| | - Raman Sood
- Zebrafish Core, Translational and Functional Genomics Branch, National Human Genome Research Institute, NIH, Bethesda, MD, USA
| | - Yan Huang
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, NIH and National Human Genome Research Institute, NIH, Bethesda, MD, USA
| | - Abdel Elkahloun
- Microarray Core, Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, NIH, Bethesda, MD, USA
| | - Camilo Toro
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, NIH and National Human Genome Research Institute, NIH, Bethesda, MD, USA
| | | | - Matthew T Wheeler
- Center for Undiagnosed Diseases, Stanford University School of Medicine, Stanford, CA, USA
| | - Thomas C Markello
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, NIH and National Human Genome Research Institute, NIH, Bethesda, MD, USA
| | - William A Gahl
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, NIH and National Human Genome Research Institute, NIH, Bethesda, MD, USA.,Medical Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, MD, USA
| | - May Christine V Malicdan
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, NIH and National Human Genome Research Institute, NIH, Bethesda, MD, USA
| |
Collapse
|
6
|
Blazejczyk M, Macias M, Korostynski M, Firkowska M, Piechota M, Skalecka A, Tempes A, Koscielny A, Urbanska M, Przewlocki R, Jaworski J. Kainic Acid Induces mTORC1-Dependent Expression of Elmo1 in Hippocampal Neurons. Mol Neurobiol 2017; 54:2562-2578. [PMID: 26993296 PMCID: PMC5390005 DOI: 10.1007/s12035-016-9821-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 02/29/2016] [Indexed: 12/24/2022]
Abstract
Epileptogenesis is a process triggered by initial environmental or genetic factors that result in epilepsy and may continue during disease progression. Important parts of this process include changes in transcriptome and the pathological rewiring of neuronal circuits that involves changes in neuronal morphology. Mammalian/mechanistic target of rapamycin (mTOR) is upregulated by proconvulsive drugs, e.g., kainic acid, and is needed for progression of epileptogenesis, but molecular aspects of its contribution are not fully understood. Since mTOR can modulate transcription, we tested if rapamycin, an mTOR complex 1 inhibitor, affects kainic acid-evoked transcriptome changes. Using microarray technology, we showed that rapamycin inhibits the kainic acid-induced expression of multiple functionally heterogeneous genes. We further focused on engulfment and cell motility 1 (Elmo1), which is a modulator of actin dynamics and therefore could contribute to pathological rewiring of neuronal circuits during epileptogenesis. We showed that prolonged overexpression of Elmo1 in cultured hippocampal neurons increased axonal growth, decreased dendritic spine density, and affected their shape. In conclusion, data presented herein show that increased mTORC1 activity in response to kainic acid has no global effect on gene expression. Instead, our findings suggest that mTORC1 inhibition may affect development of epilepsy, by modulating expression of specific subset of genes, including Elmo1, and point to a potential role for Elmo1 in morphological changes that accompany epileptogenesis.
Collapse
Affiliation(s)
- Magdalena Blazejczyk
- International Institute of Molecular and Cell Biology, 4 Ks. Trojdena St., 02-109, Warsaw, Poland.
| | - Matylda Macias
- International Institute of Molecular and Cell Biology, 4 Ks. Trojdena St., 02-109, Warsaw, Poland
| | - Michal Korostynski
- Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna St, 31-343, Krakow, Poland
| | - Marcelina Firkowska
- International Institute of Molecular and Cell Biology, 4 Ks. Trojdena St., 02-109, Warsaw, Poland
| | - Marcin Piechota
- Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna St, 31-343, Krakow, Poland
| | - Agnieszka Skalecka
- International Institute of Molecular and Cell Biology, 4 Ks. Trojdena St., 02-109, Warsaw, Poland
| | - Aleksandra Tempes
- International Institute of Molecular and Cell Biology, 4 Ks. Trojdena St., 02-109, Warsaw, Poland
| | - Alicja Koscielny
- International Institute of Molecular and Cell Biology, 4 Ks. Trojdena St., 02-109, Warsaw, Poland
| | - Malgorzata Urbanska
- International Institute of Molecular and Cell Biology, 4 Ks. Trojdena St., 02-109, Warsaw, Poland
| | - Ryszard Przewlocki
- Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna St, 31-343, Krakow, Poland
| | - Jacek Jaworski
- International Institute of Molecular and Cell Biology, 4 Ks. Trojdena St., 02-109, Warsaw, Poland.
| |
Collapse
|
7
|
Miller-Delaney SFC, Bryan K, Das S, McKiernan RC, Bray IM, Reynolds JP, Gwinn R, Stallings RL, Henshall DC. Differential DNA methylation profiles of coding and non-coding genes define hippocampal sclerosis in human temporal lobe epilepsy. ACTA ACUST UNITED AC 2014; 138:616-31. [PMID: 25552301 DOI: 10.1093/brain/awu373] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Temporal lobe epilepsy is associated with large-scale, wide-ranging changes in gene expression in the hippocampus. Epigenetic changes to DNA are attractive mechanisms to explain the sustained hyperexcitability of chronic epilepsy. Here, through methylation analysis of all annotated C-phosphate-G islands and promoter regions in the human genome, we report a pilot study of the methylation profiles of temporal lobe epilepsy with or without hippocampal sclerosis. Furthermore, by comparative analysis of expression and promoter methylation, we identify methylation sensitive non-coding RNA in human temporal lobe epilepsy. A total of 146 protein-coding genes exhibited altered DNA methylation in temporal lobe epilepsy hippocampus (n = 9) when compared to control (n = 5), with 81.5% of the promoters of these genes displaying hypermethylation. Unique methylation profiles were evident in temporal lobe epilepsy with or without hippocampal sclerosis, in addition to a common methylation profile regardless of pathology grade. Gene ontology terms associated with development, neuron remodelling and neuron maturation were over-represented in the methylation profile of Watson Grade 1 samples (mild hippocampal sclerosis). In addition to genes associated with neuronal, neurotransmitter/synaptic transmission and cell death functions, differential hypermethylation of genes associated with transcriptional regulation was evident in temporal lobe epilepsy, but overall few genes previously associated with epilepsy were among the differentially methylated. Finally, a panel of 13, methylation-sensitive microRNA were identified in temporal lobe epilepsy including MIR27A, miR-193a-5p (MIR193A) and miR-876-3p (MIR876), and the differential methylation of long non-coding RNA documented for the first time. The present study therefore reports select, genome-wide DNA methylation changes in human temporal lobe epilepsy that may contribute to the molecular architecture of the epileptic brain.
Collapse
Affiliation(s)
- Suzanne F C Miller-Delaney
- 1 Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland
| | - Kenneth Bryan
- 2 Department of Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland
| | - Sudipto Das
- 2 Department of Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland
| | - Ross C McKiernan
- 1 Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland
| | - Isabella M Bray
- 2 Department of Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland
| | - James P Reynolds
- 1 Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland
| | - Ryder Gwinn
- 3 Centre for Neuromodulation and Functional Restoration, Swedish Neuroscience Institute, 550 17th Ave. Suite 540, Seattle, WA 98122, USA
| | - Raymond L Stallings
- 2 Department of Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland 4 National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin 12, Ireland
| | - David C Henshall
- 1 Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland
| |
Collapse
|
8
|
Williams-Karnesky RL, Sandau US, Lusardi TA, Lytle NK, Farrell JM, Pritchard EM, Kaplan DL, Boison D. Epigenetic changes induced by adenosine augmentation therapy prevent epileptogenesis. J Clin Invest 2013; 123:3552-63. [PMID: 23863710 DOI: 10.1172/jci65636] [Citation(s) in RCA: 202] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 05/23/2013] [Indexed: 12/20/2022] Open
Abstract
Epigenetic modifications, including changes in DNA methylation, lead to altered gene expression and thus may underlie epileptogenesis via induction of permanent changes in neuronal excitability. Therapies that could inhibit or reverse these changes may be highly effective in halting disease progression. Here we identify an epigenetic function of the brain's endogenous anticonvulsant adenosine, showing that this compound induces hypomethylation of DNA via biochemical interference with the transmethylation pathway. We show that inhibition of DNA methylation inhibited epileptogenesis in multiple seizure models. Using a rat model of temporal lobe epilepsy, we identified an increase in hippocampal DNA methylation, which correlates with increased DNA methyltransferase activity, disruption of adenosine homeostasis, and spontaneous recurrent seizures. Finally, we used bioengineered silk implants to deliver a defined dose of adenosine over 10 days to the brains of epileptic rats. This transient therapeutic intervention reversed the DNA hypermethylation seen in the epileptic brain, inhibited sprouting of mossy fibers in the hippocampus, and prevented the progression of epilepsy for at least 3 months. These data demonstrate that pathological changes in DNA methylation homeostasis may underlie epileptogenesis and reversal of these epigenetic changes with adenosine augmentation therapy may halt disease progression.
Collapse
|
9
|
Sultan FA, Sweatt JD. The Role of the Gadd45 Family in the Nervous System: A Focus on Neurodevelopment, Neuronal Injury, and Cognitive Neuroepigenetics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 793:81-119. [DOI: 10.1007/978-1-4614-8289-5_6] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
10
|
Abnormal levels of Gadd45alpha in developing neocortex impair neurite outgrowth. PLoS One 2012; 7:e44207. [PMID: 22970179 PMCID: PMC3435417 DOI: 10.1371/journal.pone.0044207] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 07/30/2012] [Indexed: 12/13/2022] Open
Abstract
To better understand the short and long-term effects of stress on the developing cerebral cortex, it is necessary to understand how early stress response genes protect or permanently alter cells. One family of highly conserved, stress response genes is the growth arrest and DNA damage-45 (Gadd45) genes. The expression of these genes is induced by a host of genotoxic, drug, and environmental stressors. Here we examined the impact of altering the expression of Gadd45alpha (Gadd45a), a member of the Gadd45 protein family that is expressed throughout the developing cortices of mice and humans. To manipulate levels of Gadd45a protein in developing mouse cortex, we electroporated cDNA plasmids encoding either Gadd45a or Gadd45a shRNA to either overexpress or knockdown Gadd45a levels in the developing cortices of mice, respectively. The effects of these manipulations were assessed by examining the fates and morphologies of the labeled neurons. Gadd45a overexpression both in vitro and in vivo significantly impaired the morphology of neurons, decreasing neurite complexity, inducing soma hypertrophy and increasing cell death. Knockdown of Gadd45a partially inhibited neuronal migration and reduced neurite complexity, an effect that was reversed in the presence of an shRNA-resistant Gadd45a. Finally, we found that shRNA against MEKK4, a direct target of Gadd45a, also stunted neurite outgrowth. Our findings suggest that the expression of Gadd45a in normal, developing brain is tightly regulated and that treatments or environmental stimuli that alter its expression could produce significant changes in neuronal circuitry development.
Collapse
|
11
|
Early differential cell death and survival mechanisms initiate and contribute to the development of OPIDN: a study of molecular, cellular, and anatomical parameters. Toxicol Appl Pharmacol 2011; 256:348-59. [PMID: 21840330 DOI: 10.1016/j.taap.2011.07.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Revised: 07/28/2011] [Accepted: 07/28/2011] [Indexed: 01/30/2023]
Abstract
Organophosphorus-ester induced delayed neurotoxicity (OPIDN) is a neurodegenerative disorder characterized by ataxia progressing to paralysis with a concomitant central and peripheral, distal axonapathy. Diisopropylphosphorofluoridate (DFP) produces OPIDN in the chicken that results in mild ataxia in 7-14 days and severe paralysis as the disease progresses with a single dose. White leghorn layer hens were treated with DFP (1.7 mg/kg, sc) after prophylactic treatment with atropine (1mg/kg, sc) in normal saline and eserine (1mg/kg, sc) in dimethyl sulfoxide. Control groups were treated with vehicle propylene glycol (0.1 ml/kg, sc), atropine in normal saline and eserine in dimethyl sulfoxide. The hens were euthanized at different time points such as 1, 2, 5, 10 and 20 days, and the tissues from cerebrum, midbrain, cerebellum, brainstem and spinal cord were quickly dissected and frozen for mRNA (northern) studies. Northern blots were probed with BCL2, GADD45, beta actin, and 28S RNA to investigate their expression pattern. Another set of hens was treated for a series of time points and perfused with phosphate buffered saline and fixative for histological studies. Various staining protocols such as Hematoxylin and Eosin (H&E); Sevier-Munger; Cresyl echt Violet for Nissl substance; and Gallocynin stain for Nissl granules were used to assess various patterns of cell death and degenerative changes. Complex cell death mechanisms may be involved in the neuronal and axonal degeneration. These data indicate altered and differential mRNA expressions of BCL2 (anti apoptotic gene) and GADD45 (DNA damage inducible gene) in various tissues. Increased cell death and other degenerative changes noted in the susceptible regions (spinal cord and cerebellum) than the resistant region (cerebrum), may indicate complex molecular pathways via altered BCL2 and GADD45 gene expression, causing the homeostatic imbalance between cell survival and cell death mechanisms. Semi quantitative analysis revealed that the order of severity of damage declines from the spino-cerebellar, ventral, and dorsal tract respectively, suggesting neuroanatomical specificity. Thus, early activation of cell death and cell survival processes may play significant role in the clinical progression and syndromic clinical feature presentation of OPIDN.
Collapse
|
12
|
Bozzi Y, Dunleavy M, Henshall DC. Cell signaling underlying epileptic behavior. Front Behav Neurosci 2011; 5:45. [PMID: 21852968 PMCID: PMC3151612 DOI: 10.3389/fnbeh.2011.00045] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Accepted: 07/13/2011] [Indexed: 12/12/2022] Open
Abstract
Epilepsy is a complex disease, characterized by the repeated occurrence of bursts of electrical activity (seizures) in specific brain areas. The behavioral outcome of seizure events strongly depends on the brain regions that are affected by overactivity. Here we review the intracellular signaling pathways involved in the generation of seizures in epileptogenic areas. Pathways activated by modulatory neurotransmitters (dopamine, norepinephrine, and serotonin), involving the activation of extracellular-regulated kinases and the induction of immediate early genes (IEGs) will be first discussed in relation to the occurrence of acute seizure events. Activation of IEGs has been proposed to lead to long-term molecular and behavioral responses induced by acute seizures. We also review deleterious consequences of seizure activity, focusing on the contribution of apoptosis-associated signaling pathways to the progression of the disease. A deep understanding of signaling pathways involved in both acute- and long-term responses to seizures continues to be crucial to unravel the origins of epileptic behaviors and ultimately identify novel therapeutic targets for the cure of epilepsy.
Collapse
Affiliation(s)
- Yuri Bozzi
- Laboratory of Molecular Neuropathology, Centre for Integrative Biology, University of Trento Trento, Italy
| | | | | |
Collapse
|
13
|
Epigenetic gene regulation in the adult mammalian brain: multiple roles in memory formation. Neurobiol Learn Mem 2011; 96:68-78. [PMID: 21419233 DOI: 10.1016/j.nlm.2011.03.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Revised: 02/25/2011] [Accepted: 03/04/2011] [Indexed: 12/24/2022]
Abstract
Brain-derived neurotrophic factor (bdnf) is one of numerous gene products necessary for long-term memory formation and dysregulation of bdnf has been implicated in the pathogenesis of cognitive and mental disorders. Recent work indicates that epigenetic-regulatory mechanisms including the markings of histone proteins and associated DNA remain labile throughout the life-span and represent an attractive molecular process contributing to gene regulation in the brain. In this review, important information will be discussed on epigenetics as a set of newly identified dynamic transcriptional mechanisms serving to regulate gene expression changes in the adult brain with particular emphasis on bdnf transcriptional readout in learning and memory formation. This review will also highlight evidence for the role of epigenetics in aberrant bdnf gene regulation in the pathogenesis of cognitive dysfunction associated with seizure disorders, Rett syndrome, Schizophrenia, and Alzheimer's disease. Such research offers novel concepts for understanding epigenetic transcriptional mechanisms subserving adult cognition and mental health, and furthermore promises novel avenues for therapeutic approach in the clinic.
Collapse
|
14
|
Lin CR, Yang CH, Huang CE, Wu CH, Chen YS, Sheen-Chen SM, Huang HW, Chen KH. GADD45A protects against cell death in dorsal root ganglion neurons following peripheral nerve injury. J Neurosci Res 2011; 89:689-99. [PMID: 21337369 DOI: 10.1002/jnr.22589] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Revised: 10/28/2010] [Accepted: 12/03/2010] [Indexed: 11/06/2022]
Abstract
A significant loss of neurons in the dorsal root ganglia (DRG) has been reported in animal models of peripheral nerve injury. Neonatal sensory neurons are more susceptible than adult neurons to axotomy- or nerve growth factor (NGF) withdrawal-induced cell death. To develop therapies for preventing irreversible sensory cell loss, it is essential to understand the molecular mechanisms responsible for DRG cell death and survival. Here we describe how the expression of the growth arrest- and DNA damage-inducible gene 45α (GADD45A) is correlated with neuronal survival after axotomy in vivo and after NGF withdrawal in vitro. GADD45A expression is low at birth and does not change significantly after spinal nerve ligation (SNL). In contrast, GADD45A is robustly up-regulated in the adult rat DRG 24 hr after SNL, and this up-regulation persists as long as the injured fibers are prevented from regenerating. In vitro delivery of GADD45A protects neonatal rat DRG neurons from NGF withdrawal-induced cytochrome c release and cell death. In addition, in vivo knockdown of GADD45A expression in adult injured DRG by small hairpin RNA increased cell death. Our results indicate that GADD45A protects neuronal cells from SNL-induced cell death.
Collapse
Affiliation(s)
- Chung-Ren Lin
- Department of Anesthesiology, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Chuang YC, Lin JW, Chen SD, Lin TK, Liou CW, Lu CH, Chang WN. Preservation of mitochondrial integrity and energy metabolism during experimental status epilepticus leads to neuronal apoptotic cell death in the hippocampus of the rat. Seizure 2009; 18:420-8. [PMID: 19375359 DOI: 10.1016/j.seizure.2009.03.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2008] [Revised: 02/19/2009] [Accepted: 03/20/2009] [Indexed: 12/19/2022] Open
Abstract
Status epilepticus results in mitochondrial damage or dysfunction and preferential neuronal cell loss in the hippocampus. Since a critical determinant of the eventual cell death fate resides in intracellular ATP concentration, we investigated whether mitochondrial integrity and level of energy metabolism are related with apoptotic cell death in specific hippocampal neuronal populations. A kainic acid (KA)-induced experimental temporal lobe status epilepticus model was used. Qualitative and quantitative analysis of DNA fragmentation, TUNEL immunohistochemistry, double immunofluorescence staining for activated caspase-3, electron microscopy or measurement of ATP level in the bilateral hippocampus was carried out 1, 3 or 7 days after microinjection unilaterally of a low dose of KA (0.5 nmol) into the CA3 hippocampal subfield. Characteristic biochemical (DNA fragmentation), histochemical (TUNEL or activated caspase-3 staining) or ultrastructural (electron microscopy) features of apoptotic cell death were presented bilaterally in the hippocampus 7 days after the elicitation of sustained hippocampal seizure activity by microinjection of KA into the unilateral CA3 subfield. At the same time, CA3 or CA1 subfield on either side manifested a maintained ATP level; alongside relatively intact mitochondria, rough endoplasmic reticulum, Golgi apparatus or cytoplasmic membrane in hippocampal neurons that exhibited ultrastructural features of apoptotic cell death. Our results demonstrated that preserved mitochondrial ultrastructural integrity and maintained energy metabolism during experimental temporal lobe status epilepticus is associated specifically with apoptotic, not necrotic, cell death in hippocampal CA3 or CA1 neurons.
Collapse
Affiliation(s)
- Yao-Chung Chuang
- Department of Neurology, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Chang Gung University College of Medicine, Kaohsiung, Taiwan.
| | | | | | | | | | | | | |
Collapse
|
16
|
Chuang YC, Chen SD, Lin TK, Liou CW, Chang WN, Chan SHH, Chang AYW. Upregulation of nitric oxide synthase II contributes to apoptotic cell death in the hippocampal CA3 subfield via a cytochrome c/caspase-3 signaling cascade following induction of experimental temporal lobe status epilepticus in the rat. Neuropharmacology 2007; 52:1263-73. [PMID: 17336342 DOI: 10.1016/j.neuropharm.2007.01.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2006] [Revised: 01/10/2007] [Accepted: 01/15/2007] [Indexed: 11/24/2022]
Abstract
Status epilepticus results in preferential neuronal cell loss in the hippocampus. We evaluated the hypothesis that the repertoire of intracellular events in the vulnerable hippocampal CA3 subfield after induction of experimental temporal lobe status epilepticus entails upregulation of nitric oxide synthase II (NOS II), followed by the release of mitochondrial cytochrome c that triggers the cytosolic caspase-3 cascade, leading to apoptotic cell death. In Sprague-Dawley rats, significant and temporally correlated upregulation of NOS II (3-24h), but not NOS I or II expression, enhanced cytosolic translocation of cytochrome c (days 1 and 3), augmented activated caspase-3 in cytosol (days 1, 3 and 7) and DNA fragmentation (days 1, 3 and 7) was detected bilaterally in the hippocampal CA3 subfield after elicitation of sustained seizure activity by microinjection of kainic acid into the unilateral CA3 subfield. Application bilaterally into the hippocampal CA3 subfield of a selective NOS II inhibitor, S-methylisothiourea, significantly blunted these apoptotic events; a selective NOS I inhibitor, N(omega)-propyl-l-arginine or a potent NOS III inhibitor, N(5)-(1-iminoethyl)-l-ornithine was ineffective. We conclude that upregulation of NOS II contributes to apoptotic cell death in the hippocampal CA3 subfield via a cytochrome c/caspase-3 signaling cascade following the induction of experimental temporal lobe status epilepticus.
Collapse
Affiliation(s)
- Y C Chuang
- Department of Neurology, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan, ROC
| | | | | | | | | | | | | |
Collapse
|
17
|
Fatemi SH, Pearce DA, Brooks AI, Sidwell RW. Prenatal viral infection in mouse causes differential expression of genes in brains of mouse progeny: a potential animal model for schizophrenia and autism. Synapse 2005; 57:91-9. [PMID: 15906383 DOI: 10.1002/syn.20162] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Schizophrenia and autism are neurodevelopmental disorders with genetic and environmental etiologies. Prenatal viral infection has been associated with both disorders. We investigated the effects of prenatal viral infection on gene regulation in offspring of Balb-c mice using microarray technology. The results showed significant upregulation of 21 genes and downregulation of 18 genes in the affected neonatal brain homogenates spanning gene families affecting cell structure and function, namely, cytosolic chaperone system, HSC70, Bicaudal D, aquaporin 4, carbonic anhydrase 3, glycine receptor, norepinephrine transporter, and myelin basic protein. We also verified the results using QPCR measurements of selected mRNA species. These results show for the first time that prenatal human influenza viral infection on day 9 of pregnancy leads to alterations in a subset of genes in brains of exposed offspring, potentially leading to permanent changes in brain structure and function.
Collapse
Affiliation(s)
- S H Fatemi
- University of Minnesota, Department of Psychiatry, Division of Neuroscience Research, Minneapolis, Minnesota 55455, USA.
| | | | | | | |
Collapse
|
18
|
Abstract
The tumor suppressor and transcription factor p53 is a key modulator of cellular stress responses, and activation of p53 can trigger apoptosis in many cell types including neurons. Apoptosis is a form of programmed cell death that occurs in neurons during development of the nervous system and may also be responsible for neuronal deaths that occur in neurological disorders such as stroke, and Alzheimer's and Parkinson's diseases. p53 production is rapidly increased in neurons in response to a range of insults including DNA damage, oxidative stress, metabolic compromise, and cellular calcium overload. Target genes induced by p53 in neurons include those encoding the pro-apoptotic proteins Bax and the BH3-only proteins PUMA and Noxa. In addition to such transcriptional control of the cell death machinery, p53 may more directly trigger apoptosis by acting at the level of mitochondria, a process that can occur in synapses (synaptic apoptosis). Preclinical data suggest that agents that inhibit p53 may be effective therapeutics for several neurodegenerative conditions.
Collapse
Affiliation(s)
- Carsten Culmsee
- Department Pharmazie, Pharmazeutische Biologie-Biotechnologie, Ludwig-Maximilians-Universität, München, Germany.
| | | |
Collapse
|
19
|
Befort K, Karchewski L, Lanoue C, Woolf CJ. Selective up-regulation of the growth arrest DNA damage-inducible gene Gadd45 alpha in sensory and motor neurons after peripheral nerve injury. Eur J Neurosci 2003; 18:911-22. [PMID: 12925017 DOI: 10.1046/j.1460-9568.2003.02827.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The growth arrest and DNA damage-inducible gene 45 alpha (Gadd45a) was one of 240 genes found previously by high density oligonucleotide microarray analysis to be regulated in the rat L4 and L5 dorsal root ganglia 3 days after transection of the sciatic nerve (>four-fold up-regulation). The Gadd45a mRNA expression profile investigated by northern blot, RNase protection assay and in situ hybridization in the rat shows negligible constitutive mRNA levels in embryonic, neonatal or adult intact dorsal root ganglia. Within 24 h of a sciatic nerve injury, a very large induction is found that persists for as long as regeneration of injured fibres is prevented by peripheral nerve ligation. When axons are allowed to regrow following sciatic nerve crush injury, Gadd45a expression is terminated at later time points, when levels of other markers of injury return towards normal. Colocalization with activating transcription factor 3-LI and c-jun mRNA implies that all peripherally injured primary sensory and motor neurons express Gadd45a mRNA. Injury to the central axons of dorsal root ganglion neurons produces only a minimal induction of Gadd45a while peripheral inflammation is without effect. Gadd45a is a specific marker of the presence of peripheral axonal injury in adult primary sensory and motor neurons.
Collapse
Affiliation(s)
- Katia Befort
- Neural Plasticity Research Group, Department of Anaesthesia and Critical Care, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA.
| | | | | | | |
Collapse
|
20
|
Wada H, Hashimoto K, Wada Y, Kobayashi M, Izumi A, Sugiyama A, Kohro T, Hamakubo T, Kodama T. Extensive oligonucleotide microarray transcriptome analysis of the rat cerebral artery and arachnoid tissue. J Atheroscler Thromb 2003; 9:224-32. [PMID: 12409632 DOI: 10.5551/jat.9.224] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Cerebral vessels have certain distinct anatomical and developmental characteristics which are well known, but their characteristic genetic expression profile remains as yet only poorly understood. We investigated gene expression in the rat cerebral artery in comparison with the rat descending aorta, two locations which have obviously different anatomical and developmental characteristics. Since the contamination of cerebral small arteries by arachnoid tissue is to a certain extent inevitable, we also performed a gene expression analysis of arachnoid tissue as a background. In an effort to obtain the necessary quality and quantity of total RNA, a novel freeze-fracture apparatus minimizing the time required for the entire procedure from tissue separation to RNA preparation was used. With the material obtained, a group of genes highly expressed in each tissue was detected by oligonucleotide microarray analysis. In the circle of Willis, peptide-19 (PEP-19), connexin-37 (CXN-37), growth arrest-and DNA damage-inducible gene (GADD45), and the putative G protein coupled receptor RA1c, Notch-1, and jagged-1 were predominantly expressed. In arachnoid tissue, bone morphologic protein (BMP)-7, BMP-6, beta defensin-1, neuroendocrine protein 7B2, thiol-specific antioxidant protein, IL-18, beta-chain clathrin-associated protein complex AP-1, and angiopoietin-2 were highly expressed. In the aorta, most of the abundantly expressed genes related to lipid metabolism. By means of oligonucleotide microarray analysis, the distinct gene expression profiles in the circle of Willis arachnoid tissue, and aorta were made evident. From these findings it is reasonable to conclude that a functional interaction exists between the circle of Willis and arachnoid tissue.
Collapse
Affiliation(s)
- Hiromi Wada
- Department of Molecular Biology and Medicine, Research Center for Advanced Science and Technology, University of Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Araki T, Simon RP, Taki W, Lan JQ, Henshall DC. Characterization of neuronal death induced by focally evoked limbic seizures in the C57BL/6 mouse. J Neurosci Res 2002; 69:614-21. [PMID: 12210827 DOI: 10.1002/jnr.10356] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Research into the molecular mechanisms of epileptic brain injury is hampered by the resistance of key mouse strains to seizure-induced neuronal death evoked by systemically administered excitotoxins such as kainic acid. Because C57BL/6 mice are extensively employed as the genetic background for transgenic/knockout modeling in cell death research but are seizure resistant, we sought to develop a seizure model in this strain characterized by injury to the hippocampal CA subfields. Adult male C57BL/6 mice underwent focally evoked seizures induced by intraamygdala microinjection of kainic acid. Kainic acid (KA) effectively elicited ipsilateral CA3 pyramidal neuronal death within a narrow dose range of 0.1-0.3 microg, with mortality < 10%. With employment of the most consistent (0.3 microg) dose, seizures were terminated 15, 30, 60, or 90 min after KA by diazepam. Damage was largely restricted to the ipsilateral CA3 subfield of the hippocampus, but injury was also consistent within CA1, suggesting that this mouse model better reflects the hippocampal neuropathology of human temporal lobe epilepsy than does the rat, in which CA1 is typically spared. Confirming this CA1 injury as seizure specific and not a consequence of ischemia, we used laser-Doppler flowmetry to determine that cerebral perfusion did not significantly change (97% to 118%) over control. Degenerating cells were > 95% neuronal as determined by neuron-specific nuclear protein (NeuN) counterstaining of terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeled (TUNEL) brain sections. Furthermore, TUNEL-positive cells often exhibited the morphological features of apoptosis, and small numbers were positive for cleaved caspase-3. These data establish a mouse model of focally evoked seizures in the C57BL/6 strain associated with a restricted pattern of apoptotic neurodegeneration within the hippocampal subfields that may be applied to research into the molecular basis of neuronal death after seizures.
Collapse
Affiliation(s)
- Tomohiro Araki
- Robert S. Dow Neurobiology Laboratories, Legacy Research, Portland, Oregon 97232, USA
| | | | | | | | | |
Collapse
|
22
|
Meldrum BS. Concept of activity-induced cell death in epilepsy: historical and contemporary perspectives. PROGRESS IN BRAIN RESEARCH 2002; 135:3-11. [PMID: 12143350 DOI: 10.1016/s0079-6123(02)35003-9] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Selective neuronal loss following status epilepticus was first described just under 100 years ago. The acute pathology following status epilepticus was shown to be 'ischemic cell change' and was assumed to arise through hypoxia/ischemia. Less than 30 years ago it was proposed, from experiments in primates, that the selective neuronal loss in hippocampus and cortex resulted from the abnormal electrical discharges. Selectively vulnerable neurons show swollen, calcium-loaded mitochondria in the soma and focally in dendrites. Burst firing with a massive Ca2+ entry needs to be sustained for 30-120 min to produce necrotic cell death. Lesser stress may produce apoptosis or immediate early gene expression with enhanced expression of many enzymes and receptor subunits. Changes in enzyme, transporter, ion-channel or receptor function or in network properties may lead to altered vulnerability to the effects of seizures. This type of modification and the cumulative effect of oxidative damage to proteins and lipids may explain the long-term consequences of repetitive brief seizures.
Collapse
Affiliation(s)
- Brian S Meldrum
- GKT Department of Biomedical Sciences, Kings College, London, UK.
| |
Collapse
|
23
|
Henshall DC, Bonislawski DP, Skradski SL, Araki T, Lan JQ, Schindler CK, Meller R, Simon RP. Formation of the Apaf-1/cytochrome c complex precedes activation of caspase-9 during seizure-induced neuronal death. Cell Death Differ 2001; 8:1169-81. [PMID: 11753565 DOI: 10.1038/sj.cdd.4400921] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2001] [Revised: 04/26/2001] [Accepted: 05/24/2001] [Indexed: 12/26/2022] Open
Abstract
In this study we examine the in vivo formation of the Apaf-1/cytochrome c complex and activation of caspase-9 following limbic seizures in the rat. Seizures were elicited by unilateral intraamygdala microinjection of kainic acid to induce death of CA3 neurons within the hippocampus of the rat. Apaf-1 was found to interact with cytochrome c within the injured hippocampus 0-24 h following seizures by co-immunoprecipitation analysis and immunohistochemistry demonstrated Apaf-1/cytochrome c co-localization. Cleavage of caspase-9 was detected approximately 4 h following seizure cessation within ipsilateral hippocampus and was accompanied by increased cleavage of the substrate Leu-Glu-His-Asp-p-nitroanilide (LEHDpNA) and subsequent strong caspase-9 immunoreactivity within neurons exhibiting DNA fragmentation. Finally, intracerebral infusion of z-LEHD-fluoromethyl ketone increased numbers of surviving CA3 neurons. These data suggest seizures induce formation of the Apaf-1/cytochrome c complex prior to caspase-9 activation and caspase-9 may be a potential therapeutic target in the treatment of brain injury associated with seizures.
Collapse
Affiliation(s)
- D C Henshall
- Robert S. Dow Neurobiology Laboratories, Legacy Research, Portland, OR 97232, USA.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Henshall DC, Bonislawski DP, Skradski SL, Lan JQ, Meller R, Simon RP. Cleavage of bid may amplify caspase-8-induced neuronal death following focally evoked limbic seizures. Neurobiol Dis 2001; 8:568-80. [PMID: 11493022 DOI: 10.1006/nbdi.2001.0415] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The mechanism by which seizures induce neuronal death is not completely understood. Caspase-8 is a key initiator of apoptosis via extrinsic, death receptor-mediated pathways; we therefore investigated its role in mediating seizure-induced neuronal death evoked by unilateral kainic acid injection into the amygdala of the rat, terminated after 40 min by diazepam. We demonstrate that cleaved (p18) caspase-8 was detectable immediately following seizure termination coincident with an increase in cleavage of the substrate Ile-Glu-Thr-Asp (IETD)-p-nitroanilide and the appearance of cleaved (p15) Bid. Expression of Fas and FADD, components of death receptor signaling, was increased following seizures. In vivo intracerebroventricular z-IETD-fluoromethyl ketone administration significantly reduced seizure-induced activities of caspases 8, 9, and 3 as well as reducing Bid and caspase-9 cleavage, cytochrome c release, DNA fragmentation, and neuronal death. These data suggest that intervention in caspase-8 and/or death receptor signaling may confer protection on the brain from the injurious effects of seizures.
Collapse
Affiliation(s)
- D C Henshall
- Robert S. Dow Neurobiology Laboratories, Legacy Research, Portland, Oregon 97232, USA.
| | | | | | | | | | | |
Collapse
|
25
|
Henshall DC, Skradski SL, Bonislawski DP, Lan JQ, Simon RP. Caspase-2 activation is redundant during seizure-induced neuronal death. J Neurochem 2001; 77:886-95. [PMID: 11331417 DOI: 10.1046/j.1471-4159.2001.00291.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Seizure-induced neuronal death may be under the control of the caspase family of cell death proteases. We examined the role of caspase-2 in a model of focally evoked limbic seizures with continuous EEG recording. Seizures were elicited by microinjection of kainic acid into the amygdala of the rat and terminated after 40 min by diazepam. Caspase-2 was constitutively present in brain, mostly within neurons, and was detected in both cytoplasm and nucleus. Cleaved caspase-2 (12 kDa) was detected immediately following seizure termination within injured ipsilateral hippocampus, contiguous with increased Val-Asp-Val-Ala-Asp (VDVADase) activity, a putative measure of activated caspase-2. Expression of receptor interacting protein (RIP)-associated Ich-1-homologous protein with death domain (RAIDD) was increased following seizures, whereas expression of RIP and tumor necrosis factor receptor associated protein with death domain (TRADD), other components thought to be linked to the caspase-2 activation and signaling mechanism, were unchanged. Intracerebroventricular administration of z-VDVAD-fluoromethyl ketone blocked seizure-induced caspase-2 activity but did not alter caspase-8 activity and failed to affect DNA fragmentation or neuronal death. These data support activation of caspase-2 following seizures but suggest that parallel caspase pathways may circumvent deficits in caspase-2 function to complete the cell death process.
Collapse
Affiliation(s)
- D C Henshall
- Robert S. Dow Neurobiology Laboratories, Legacy Research, Portland, Oregon 97232, USA.
| | | | | | | | | |
Collapse
|
26
|
|
27
|
Henshall DC, Sinclair J, Simon RP. Spatio-temporal profile of DNA fragmentation and its relationship to patterns of epileptiform activity following focally evoked limbic seizures. Brain Res 2000; 858:290-302. [PMID: 10708680 DOI: 10.1016/s0006-8993(99)02452-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The specific electrographic activity responsible for seizure-induced DNA damage remains little explored. We therefore examined the regional and temporal appearance of DNA fragmentation and cell death and its relationship to specific electrographic seizure patterns in a rat model of focally evoked limbic epilepsy. Animals received intra-amygdaloid injection of kainic acid (KA) to induce seizures for 45 min during continuous electroencephalographic (EEG) monitoring, after which diazepam (30 mg/kg) was administered. DNA polymerase I-mediated biotin-dATP nick translation (PANT) and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) were used to detect single- and double-stranded DNA breaks, respectively. Injection of 0.01 microg KA induced seizures characterized by ictal fast activity but without consequent brain injury. By contrast, 0.1 microg KA induced an additional pattern of seizure activity characterized by bursts of high frequency polyspike paroxysmal discharges. In these animals, there was a significant reduction in numbers of pyramidal neurons within the ipsilateral and contralateral CA3 subfield of the hippocampus, detectable as little as 4 h following seizures. PANT- and TUNEL-positive cells appeared in similar numbers 16 h following seizure cessation within the CA3, declining after 72-96 h. Varying the duration of polyspike paroxysmal discharges determined that as little as 30 s elicited maximal injury. These data suggest single- and double-stranded DNA breaks are generated during the cell death process and are consequent on a specific component of seizure activity electrographically determined.
Collapse
Affiliation(s)
- D C Henshall
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA.
| | | | | |
Collapse
|