1
|
Ortiz-Leal I, Torres MV, López-Beceiro A, Fidalgo L, Shin T, Sanchez-Quinteiro P. First Immunohistochemical Demonstration of the Expression of a Type-2 Vomeronasal Receptor, V2R2, in Wild Canids. Int J Mol Sci 2024; 25:7291. [PMID: 39000398 PMCID: PMC11241633 DOI: 10.3390/ijms25137291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/20/2024] [Accepted: 06/29/2024] [Indexed: 07/16/2024] Open
Abstract
The mammalian vomeronasal system enables the perception of chemical signals crucial for social communication via the receptor families V1R and V2R. These receptors are linked with the G-protein subunits, Gαi2 and Gαo, respectively. Exploring the evolutionary pathways of V1Rs and V2Rs across mammalian species remains a significant challenge, particularly when comparing genomic data with emerging immunohistochemical evidence. Recent studies have revealed the expression of Gαo in the vomeronasal neuroepithelium of wild canids, including wolves and foxes, contradicting predictions based on current genomic annotations. Our study provides detailed immunohistochemical evidence, mapping the expression of V2R receptors in the vomeronasal sensory epithelium, focusing particularly on wild canids, specifically wolves and foxes. An additional objective involves contrasting these findings with those from domestic species like dogs to highlight the evolutionary impacts of domestication on sensory systems. The employment of a specific antibody raised against the mouse V2R2, a member of the C-family of vomeronasal receptors, V2Rs, has confirmed the presence of V2R2-immunoreactivity (V2R2-ir) in the fox and wolf, but it has revealed the lack of expression in the dog. This may reflect the impact of domestication on the regression of the VNS in this species, in contrast to their wild counterparts, and it underscores the effects of artificial selection on sensory functions. Thus, these findings suggest a more refined chemical detection capability in wild species.
Collapse
Affiliation(s)
- Irene Ortiz-Leal
- Department of Anatomy, Animal Production and Clinical Veterinary Sciences, Faculty of Veterinary, University of Santiago de Compostela, Av. Carballo Calero s/n, 27002 Lugo, Spain
| | - Mateo V Torres
- Department of Anatomy, Animal Production and Clinical Veterinary Sciences, Faculty of Veterinary, University of Santiago de Compostela, Av. Carballo Calero s/n, 27002 Lugo, Spain
| | - Ana López-Beceiro
- Department of Anatomy, Animal Production and Clinical Veterinary Sciences, Faculty of Veterinary, University of Santiago de Compostela, Av. Carballo Calero s/n, 27002 Lugo, Spain
| | - Luis Fidalgo
- Department of Anatomy, Animal Production and Clinical Veterinary Sciences, Faculty of Veterinary, University of Santiago de Compostela, Av. Carballo Calero s/n, 27002 Lugo, Spain
| | - Taekyun Shin
- College of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju 63243, Republic of Korea
| | - Pablo Sanchez-Quinteiro
- Department of Anatomy, Animal Production and Clinical Veterinary Sciences, Faculty of Veterinary, University of Santiago de Compostela, Av. Carballo Calero s/n, 27002 Lugo, Spain
| |
Collapse
|
2
|
Wang Q, Titlow WB, McClintock DA, Stromberg AJ, McClintock TS. Activity-Dependent Gene Expression in the Mammalian Olfactory Epithelium. Chem Senses 2018; 42:611-624. [PMID: 28525560 DOI: 10.1093/chemse/bjx028] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Activity-dependent processes are important to olfactory sensory neurons (OSNs) in several ways, such as cell survival and the specificity of axonal convergence. The identification of activity-dependent mRNAs has contributed to our understanding of OSN axon convergence, but has revealed surprisingly little about other processes. Published studies of activity-dependent mRNAs in olfactory mucosae overlap poorly, but by combining these agreements with meta-analysis of existing data we identify 443 mRNAs that respond to methods that alter OSN activity. Three hundred and fifty of them are expressed in mature OSNs, consistent with the expectation that activity-dependent responses are cell autonomous and driven by odor stimulation. Many of these mRNAs encode proteins that function at presynaptic terminals or support electrical activity, consistent with hypotheses linking activity dependence to synaptic plasticity and energy conservation. The lack of agreement between studies is due largely to underpowered experiments. In addition, methods used to alter OSN activity are susceptible to indirect or off-target effects. These effects deserve greater attention, not only to rigorously identify OSN mRNAs that respond to altered OSN activity, but also because these effects are of significant interest in their own right. For example, the mRNAs of some sustentacular cell enzymes believed to function in odorant clearance (Cyp2a4 and Cyp2g1) are sensitive to unilateral naris occlusion used to reduce odorant stimulation of the ipsilateral olfactory epithelium. Also problematic are odorant receptor mRNAs, which show little agreement across studies and are susceptible to differences in frequency of expression that masquerade as activity-dependent changes in mRNA abundance.
Collapse
Affiliation(s)
- Qiang Wang
- Department of Physiology, University of Kentucky, 800 Rose St., Lexington, KY 40536-0298, USA
| | - William B Titlow
- Department of Physiology, University of Kentucky, 800 Rose St., Lexington, KY 40536-0298, USA
| | - Declan A McClintock
- Department of Physiology, University of Kentucky, 800 Rose St., Lexington, KY 40536-0298, USA
| | - Arnold J Stromberg
- Department of Statistics, University of Kentucky, 725 Rose St., Lexington, KY 40536-0082, USA
| | - Timothy S McClintock
- Department of Physiology, University of Kentucky, 800 Rose St., Lexington, KY 40536-0298, USA
| |
Collapse
|
3
|
Wolf S, Gelis L, Dörrich S, Hatt H, Kraft P. Evidence for a shape-based recognition of odorants in vivo in the human nose from an analysis of the molecular mechanism of lily-of-the-valley odorants detection in the Lilial and Bourgeonal family using the C/Si/Ge/Sn switch strategy. PLoS One 2017; 12:e0182147. [PMID: 28763484 PMCID: PMC5538716 DOI: 10.1371/journal.pone.0182147] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 07/13/2017] [Indexed: 01/20/2023] Open
Abstract
We performed an analysis of possible mechanisms of ligand recognition in the human nose. The analysis is based on in vivo odor threshold determination and in vitro Ca2+ imaging assays with a C/Si/Ge/Sn switch strategy applied to the compounds Lilial and Bourgeonal, to differentiate between different molecular mechanisms of odorant detection. Our results suggest that odorant detection under threshold conditions is mainly based on the molecular shape, i.e. the van der Waals surface, and electrostatics of the odorants. Furthermore, we show that a single olfactory receptor type is responsible for odor detection of Bourgeonal at the threshold level in humans in vivo. Carrying out a QM analysis of vibrational energies contained in the odorants, there is no evidence for a vibration-based recognition.
Collapse
Affiliation(s)
- Steffen Wolf
- Department of Biophysics, CAS-MPG Partner Institute for Computational Biology, Key Laboratory of Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, P.R. China
- Department of Biophysics, Ruhr-University Bochum, Bochum, Germany
| | - Lian Gelis
- Department of Cellphysiology, Ruhr-University Bochum, Bochum, Germany
| | - Steffen Dörrich
- Institute of Inorganic Chemistry, University of Würzburg, Würzburg, Germany
| | - Hanns Hatt
- Department of Cellphysiology, Ruhr-University Bochum, Bochum, Germany
| | - Philip Kraft
- Fragrance Research, Givaudan Schweiz AG, Dübendorf, Switzerland
| |
Collapse
|
4
|
Boudjarane MA, Grandgeorge M, Marianowski R, Misery L, Lemonnier É. Perception of odors and tastes in autism spectrum disorders: A systematic review of assessments. Autism Res 2017; 10:1045-1057. [PMID: 28371114 DOI: 10.1002/aur.1760] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 01/09/2017] [Accepted: 01/13/2017] [Indexed: 11/11/2022]
Abstract
Olfaction and gustation are major sensory functions implied in processing environmental stimuli. Some evidences suggest that loss of olfactory function is an early biomarker for neurodegenerative disorders and atypical processing of odor and taste stimuli is present in several neurodevelopmental disorders, notably in Autism Spectrum Disorders (ASD). In this paper, we conducted a systematic review investigating the assessments of olfaction and gustation with psychophysics methods in individuals with ASD. Pubmed, PMC and Sciencedirect were scrutinized for relevant literature published from 1970 to 2015. In this review, fourteen papers met our inclusion criteria. They were analyzed critically in order to evaluate the occurrence of olfactory and gustatory dysfunction in ASD, as well as to report the methods used to assess olfaction and gustation in such conditions. Regarding to these two senses, the overall number of studies is low. Most of studies show significant difference regarding to odor or taste identification but not for detection threshold. Overall, odor rating through pleasantness, intensity and familiarity do not differ significantly between control and individuals with ASD. The current evidences can suggest the presence of olfactory and gustatory dysfunction in ASD. Therefore, our analysis show a heterogeneity of findings. This is due to several methodological limitations such as the tools used or population studied. Understanding these disorders could help to shed light on other atypical behavior in this population such as feeding or social behavior. Autism Res 2017, 0: 000-000. © 2017 International Society for Autism Research, Wiley Periodicals, Inc. Autism Res 2017, 10: 1045-1057. © 2017 International Society for Autism Research, Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Mohamed A Boudjarane
- Laboratory of Neurosciences of Brest (EA4685), University of Western Brittany, Brest, France
| | - Marine Grandgeorge
- Laboratory of Neurosciences of Brest (EA4685), University of Western Brittany, Brest, France.,UMR-CNRS 6552, Animal and Human Ethology University of Rennes 1-CNRS, Rennes Cedex, France
| | - Rémi Marianowski
- Laboratory of Neurosciences of Brest (EA4685), University of Western Brittany, Brest, France.,Department of ENT, University Hospital of Brest, Brest Cedex, France
| | - Laurent Misery
- Laboratory of Neurosciences of Brest (EA4685), University of Western Brittany, Brest, France.,Department of Dermatology, University Hospital of Brest, Brest Cedex, France
| | - Éric Lemonnier
- Laboratory of Neurosciences of Brest (EA4685), University of Western Brittany, Brest, France.,University Hospital of Limoges, Expert Center of Autism Limousin, Limoges Cedex, France (É.L.)
| |
Collapse
|
5
|
Abdus-Saboor I, Al Nufal MJ, Agha MV, Ruinart de Brimont M, Fleischmann A, Shykind BM. An Expression Refinement Process Ensures Singular Odorant Receptor Gene Choice. Curr Biol 2016; 26:1083-90. [PMID: 27040780 DOI: 10.1016/j.cub.2016.02.039] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 12/25/2015] [Accepted: 02/12/2016] [Indexed: 12/11/2022]
Abstract
Odorant receptor (OR) gene choice in mammals is a paradigmatic example of monogenic and monoallelic transcriptional selection, in which each olfactory sensory neuron (OSN) chooses to express one OR allele from over 1,000 encoded in the genome [1-3]. This process, critical for generation of the circuit from nose to brain [4-6], is thought to occur in two steps: a slow initial phase that randomly activates a single OR allele, followed by a rapid feedback that halts subsequent expression [7-14]. Inherent in this model is a finite failure rate wherein multiple OR alleles may be activated prior to feedback suppression [15, 16]. Confronted with more than one receptor, the neuron would need to activate a refinement mechanism to eliminate multigenic OR expression and resolve unique neuronal identity [16], critical to the generation of the circuit from nose to olfactory bulb. Here we used a genetic approach in mice to reveal a new facet of OR regulation that corrects adventitious activation of multiple OR alleles, restoring monogenic OR expression and unique neuronal identity. Using the tetM71tg model system, in which the M71 OR is expressed in >95% of mature OSNs and potently suppresses the expression of the endogenous OR repertoire [10], we provide clear evidence of a post-selection refinement (PSR) process that winnows down the number of ORs. We further demonstrate that PSR efficiency is linked to OR expression level, suggesting an underlying competitive process and shedding light on OR gene switching and the fundamental mechanism of singular OR choice.
Collapse
Affiliation(s)
- Ishmail Abdus-Saboor
- Weill Cornell Medical College in Qatar, Qatar Foundation - Education City, Doha 24144, Qatar
| | - Mohammed J Al Nufal
- Weill Cornell Medical College in Qatar, Qatar Foundation - Education City, Doha 24144, Qatar
| | - Maha V Agha
- Weill Cornell Medical College in Qatar, Qatar Foundation - Education City, Doha 24144, Qatar
| | - Marion Ruinart de Brimont
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS UMR 7241, and INSERM U1050, Paris 75005, France
| | - Alexander Fleischmann
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS UMR 7241, and INSERM U1050, Paris 75005, France
| | - Benjamin M Shykind
- Weill Cornell Medical College in Qatar, Qatar Foundation - Education City, Doha 24144, Qatar.
| |
Collapse
|
6
|
Scholz P, Kalbe B, Jansen F, Altmueller J, Becker C, Mohrhardt J, Schreiner B, Gisselmann G, Hatt H, Osterloh S. Transcriptome Analysis of Murine Olfactory Sensory Neurons during Development Using Single Cell RNA-Seq. Chem Senses 2016; 41:313-23. [PMID: 26839357 DOI: 10.1093/chemse/bjw003] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Mammalian odor reception is achieved by highly specialized olfactory sensory neurons (OSNs) located in the nasal cavity. Despite their importance for the daily survival of most mammals, the gene expression and regulatory profiles of these single neurons are poorly understood. Here, we report the isolation of individual GFP-labeled OSNs from Olfr73-GFP mice at different developmental stages followed by Next Generation Sequencing, thereby analyzing the detailed transcriptome for the first time. We characterized the repertoire of olfactory receptors (ORs) and found that in addition to the highly and predominant detectable Olfr73, 20 additional ORs were stably detectable at lower transcript levels in adult mice. Additionally, OSNs collected from mice of earlier developmental stages did not show any stable OR patterns. However, more than one predominant OR per OSN was detectable.
Collapse
Affiliation(s)
- Paul Scholz
- Department of Cell Physiology, Ruhr-University Bochum, 44801 Bochum, NRW, Germany
| | - Benjamin Kalbe
- Department of Cell Physiology, Ruhr-University Bochum, 44801 Bochum, NRW, Germany
| | - Fabian Jansen
- Department of Cell Physiology, Ruhr-University Bochum, 44801 Bochum, NRW, Germany
| | - Janine Altmueller
- Cologne Center for Genomics (CCG), University of Cologne, 50931 Cologne, NRW, Germany and Institute of Human Genetics, University Hospital Cologne, 50931 Cologne, NRW, Germany
| | - Christian Becker
- Cologne Center for Genomics (CCG), University of Cologne, 50931 Cologne, NRW, Germany and
| | - Julia Mohrhardt
- Department of Cell Physiology, Ruhr-University Bochum, 44801 Bochum, NRW, Germany
| | - Benjamin Schreiner
- Department of Cell Physiology, Ruhr-University Bochum, 44801 Bochum, NRW, Germany
| | - Guenter Gisselmann
- Department of Cell Physiology, Ruhr-University Bochum, 44801 Bochum, NRW, Germany
| | - Hanns Hatt
- Department of Cell Physiology, Ruhr-University Bochum, 44801 Bochum, NRW, Germany
| | - Sabrina Osterloh
- Department of Cell Physiology, Ruhr-University Bochum, 44801 Bochum, NRW, Germany,
| |
Collapse
|
7
|
Persuy MA, Sanz G, Tromelin A, Thomas-Danguin T, Gibrat JF, Pajot-Augy E. Mammalian olfactory receptors: molecular mechanisms of odorant detection, 3D-modeling, and structure-activity relationships. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 130:1-36. [PMID: 25623335 DOI: 10.1016/bs.pmbts.2014.11.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This chapter describes the main characteristics of olfactory receptor (OR) genes of vertebrates, including generation of this large multigenic family and pseudogenization. OR genes are compared in relation to evolution and among species. OR gene structure and selection of a given gene for expression in an olfactory sensory neuron (OSN) are tackled. The specificities of OR proteins, their expression, and their function are presented. The expression of OR proteins in locations other than the nasal cavity is regulated by different mechanisms, and ORs display various additional functions. A conventional olfactory signal transduction cascade is observed in OSNs, but individual ORs can also mediate different signaling pathways, through the involvement of other molecular partners and depending on the odorant ligand encountered. ORs are engaged in constitutive dimers. Ligand binding induces conformational changes in the ORs that regulate their level of activity depending on odorant dose. When present, odorant binding proteins induce an allosteric modulation of OR activity. Since no 3D structure of an OR has been yet resolved, modeling has to be performed using the closest G-protein-coupled receptor 3D structures available, to facilitate virtual ligand screening using the models. The study of odorant binding modes and affinities may infer best-bet OR ligands, to be subsequently checked experimentally. The relationship between spatial and steric features of odorants and their activity in terms of perceived odor quality are also fields of research that development of computing tools may enhance.
Collapse
Affiliation(s)
- Marie-Annick Persuy
- INRA UR 1197 NeuroBiologie de l'Olfaction, Domaine de Vilvert, Jouy-en-Josas, France
| | - Guenhaël Sanz
- INRA UR 1197 NeuroBiologie de l'Olfaction, Domaine de Vilvert, Jouy-en-Josas, France
| | - Anne Tromelin
- INRA UMR 1129 Flaveur, Vision et Comportement du Consommateur, Dijon, France
| | | | - Jean-François Gibrat
- INRA UR1077 Mathématique Informatique et Génome, Domaine de Vilvert, Jouy-en-Josas, France
| | - Edith Pajot-Augy
- INRA UR 1197 NeuroBiologie de l'Olfaction, Domaine de Vilvert, Jouy-en-Josas, France.
| |
Collapse
|
8
|
Rolen SH, Salcedo E, Restrepo D, Finger TE. Differential localization of NT-3 and TrpM5 in glomeruli of the olfactory bulb of mice. J Comp Neurol 2014; 522:1929-40. [PMID: 24288162 DOI: 10.1002/cne.23512] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 10/25/2013] [Accepted: 11/26/2013] [Indexed: 12/13/2022]
Abstract
Olfactory sensory neurons that express transient receptor potential channel M5 (TrpM5) or neurotrophin-3 (NT-3) project to defined clusters of glomeruli situated ventrally in the main olfactory bulb. Using genetically labeled mice, we investigated whether expression of NT-3-driven βgal and TrpM5-driven GFP marked overlapping sets of glomeruli and whether expression of these markers was coordinated. Our results indicate that these markers largely characterize independent sets of olfactory sensory neuron axons and glomeruli. Further, in glomeruli in which both TrpM5-GFP and NT-3-βgal labeled axons occur, they are expressed independently. The nature of staining for these two markers also differs within glomeruli. Within each labeled TrpM5-positive glomerulus, the level of TrpM5-GFP expression was similar throughout the glomerular neuropil. In contrast, NT-3-driven βgal expression levels are heterogeneous even within heavily labeled glomeruli. In addition, a population of very small TrpM5-GFP positive glomeruli is apparent while no similar populations of NT-3-βgal glomeruli are evident. Taken together, these data suggest that TrpM5 and NT-3 characterize two largely independent receptor populations both conveying odorant information to the ventral olfactory bulb.
Collapse
Affiliation(s)
- S H Rolen
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, 80045
| | | | | | | |
Collapse
|
9
|
Yu Y, Boyer NP, Zhang C. Three structurally similar odorants trigger distinct signaling pathways in a mouse olfactory neuron. Neuroscience 2014; 275:194-210. [PMID: 24929067 DOI: 10.1016/j.neuroscience.2014.05.063] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 04/08/2014] [Accepted: 05/22/2014] [Indexed: 12/20/2022]
Abstract
In the mammalian olfactory system, one olfactory sensory neuron (OSN) expresses a single olfactory receptor gene. By calcium imaging of individual OSNs in intact mouse olfactory turbinates, we observed that a subset of OSNs (Ho-OSNs) located in the most ventral olfactory receptor zone can mediate distinct signaling pathways when activated by structurally similar ligands. Calcium imaging showed that Ho-OSNs were highly sensitive to 2-heptanone, heptaldehyde and cis-4-heptenal. 2-heptanone-evoked intracellular calcium elevation was mediated by cAMP signaling while heptaldehyde triggered the diacylglycerol pathway. An increase of intracellular calcium evoked by cis-4-heptenal was due to a combination of activation mediated by the adenylate cyclase pathway and suppression generated by phospholipase C signaling. Pharmacological studies demonstrated that novel mechanisms were involved in the phospholipase C-mediated intracellular calcium changes. Binary-mixture studies and cross-adaptation data indicate that three odorants acted on the same olfactory receptor. The feature that an olfactory receptor mediates multiple signaling pathways was specific for Ho-OSNs and not established in another population of OSNs characterized. Our study suggests that distinct signaling pathways triggered by ligand-induced conformational changes of an olfactory receptor constitute a complex information process mechanism in olfactory transduction. This study has important implications beyond olfaction in that it provides insights of plasticity and complexity of G-protein-coupled receptor activation and signal transduction.
Collapse
Affiliation(s)
- Y Yu
- Department of Biological and Chemical Sciences, Illinois Institute of Technology, 3101 S. Dearborn Street, Chicago, IL 60616, USA
| | - N P Boyer
- Department of Ophthalmology, Medical University of South Carolina, Charleston, SC 29425, USA; Department of Neurosciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | - C Zhang
- Department of Biological and Chemical Sciences, Illinois Institute of Technology, 3101 S. Dearborn Street, Chicago, IL 60616, USA.
| |
Collapse
|
10
|
Spaethling JM, Piel D, Dueck H, Buckley PT, Morris JF, Fisher SA, Lee J, Sul JY, Kim J, Bartfai T, Beck SG, Eberwine JH. Serotonergic neuron regulation informed by in vivo single-cell transcriptomics. FASEB J 2013; 28:771-80. [PMID: 24192459 DOI: 10.1096/fj.13-240267] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Despite the recognized importance of the dorsal raphe (DR) serotonergic (5-HT) nuclei in the pathophysiology of depression and anxiety, the molecular components/putative drug targets expressed by these neurons are poorly characterized. Utilizing the promoter of an ETS domain transcription factor that is a stable marker of 5-HT neurons (Pet-1) to drive 5-HT neuronal expression of YFP, we identified 5-HT neurons in live acute slices. We isolated RNA from single 5-HT neurons in the ventromedial and lateral wings of the DR and performed single-cell RNA-Seq analysis identifying >500 G-protein coupled receptors (GPCRs) including receptors for classical transmitters, lipid signals, and peptides as well as dozens of orphan-GPCRs. Using these data to inform our selection of receptors to assess, we found that oxytocin and lysophosphatidic acid 1 receptors are translated and active in costimulating, with the α1-adrenergic receptor, the firing of DR 5-HT neurons, while the effects of histamine are inhibitory and exerted at H3 histamine receptors. The inhibitory histamine response provides evidence for tonic in vivo histamine inhibition of 5-HT neurons. This study illustrates that unbiased single-cell transcriptomics coupled with functional analyses provides novel insights into how neurons and neuronal systems are regulated.
Collapse
Affiliation(s)
- Jennifer M Spaethling
- 2University of Pennsylvania, 37 John Morgan Bldg., 3620 Hamilton Walk, Philadelphia, PA 19104, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Ma M. Odor and pheromone sensing via chemoreceptors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 739:93-106. [PMID: 22399397 DOI: 10.1007/978-1-4614-1704-0_6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Evolutionally, chemosensation is an ancient but yet enigmatic sense. All organisms ranging from the simplest unicellular form to the most advanced multicellular creature possess the capability to detect chemicals in the surroundings. Conversely, all living things emit some forms of smells, either as communicating signals or as by-products of metabolism. Many species (from worms, insects to mammals) rely on the olfactory systems which express a large number of chemoreceptors to locate food and mates and to avoid danger. Most chemoreceptors expressed in olfactory organs are G-protein coupled receptors (GPCRs) and can be classified into two major categories: odorant receptors (ORs) and pheromone receptors, which principally detect general odors and pheromones, respectively. In vertebrates, these two types of receptors are often expressed in two distinct apparatuses: The main olfactory epithelium (MOE) and the vomeronasal organ (VNO), respectively. Each olfactory sensory neuron (OSN) in the MOE typically expresses one type of OR from a large repertoire. General odors activate ORs and their host OSNs (ranging from narrowly- to broadly-tuned) in a combinatorial manner and the information is sent to the brain via the main olfactory system leading to perception of smells. In contrast, pheromones stimulate relatively narrowly-tuned receptors and their host VNO neurons and the information is sent to the brain via the accessory olfactory system leading to behavioral and endocrinological changes. Recent studies indicate that the functional separation between these two systems is blurred in some cases and there are more subsystems serving chemosensory roles. This chapter focuses on the molecular and cellular mechanisms underlying odor and pheromone sensing in rodents, the best characterized vertebrate models.
Collapse
Affiliation(s)
- Minghong Ma
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
12
|
Abstract
Odor discrimination requires differential expression of odor detectors. In fact, olfactory input to the brain is organized in units (glomeruli) innervated only by olfactory sensory neurons that express the same odorant receptor (OR). Therefore, discriminatory capacity is maximized if each sensory neuron expresses only one allele of a single OR gene, a postulate sometimes canonized as the "one neuron-one receptor rule." OR gene choice appears to result from a hierarchy of processes: differential availability of the alleles of each OR gene, zonal exclusion (or selection), OR gene switching during the initiation of OR gene transcription, and OR-dependent feedback to solidify the choice of one OR gene. The mechanisms underlying these processes are poorly understood, though a few elements are known or suspected. For example, the mechanism of activation of OR gene transcription appears to work in part through a few homeobox transcription factors (Emx2, and perhaps Lhx2) and the Ebf family of transcription factors. Further insights will probably come from several directions, but a promising hypothesis is that epigenetic mechanisms contribute to all levels of the hierarchical control of OR gene expression, especially the repressive events that seem to be necessary to achieve the singularity of OR gene choice.
Collapse
Affiliation(s)
- Timothy S McClintock
- Department of Physiology, University of Kentucky, 800 Rose St., Lexington, KY 40536-0298, USA.
| |
Collapse
|
13
|
Gong Q, Chen H, Farbman AI. Olfactory sensory axon growth and branching is influenced by sonic hedgehog. Dev Dyn 2009; 238:1768-76. [PMID: 19517566 PMCID: PMC2776656 DOI: 10.1002/dvdy.22005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Olfactory sensory neuron (OSN) axons extend from the olfactory epithelium to the olfactory bulb without branching until they reach their target region, the glomerulus. In this report, we present evidence to support the involvement of sonic hedgehog in promoting rat olfactory sensory axons to branch and to enter into the glomerulus. Sonic hedgehog (Shh) protein is detected in the glomeruli of the olfactory bulb, whereas its transcript is expressed in the mitral and tufted cells, suggesting that Shh in the glomeruli is produced by mitral and tufted cells. In primary OSN cultures, Shh-N peptide promotes olfactory axon branching. When Shh function is neutralized in vivo by its antibody, growth of newly generated OSN axons into the glomeruli is vastly reduced.
Collapse
Affiliation(s)
- Qizhi Gong
- Department of Cell Biology and Human Anatomy, School of Medicine, University of California, Davis, California 95616, USA.
| | | | | |
Collapse
|
14
|
Gliem S, Schild D, Manzini I. Highly specific responses to amine odorants of individual olfactory receptor neurons in situ. Eur J Neurosci 2009; 29:2315-26. [PMID: 19490026 DOI: 10.1111/j.1460-9568.2009.06778.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The main olfactory system of larval Xenopus laevis is made up of at least two subsystems consisting of subsets of olfactory receptor neurons (ORNs) with different transduction mechanisms. One ORN subset lacks the canonical cAMP transduction pathway and responds to amino acid odorants. The second subset has the cAMP transduction pathway but as yet suitable odorants are unknown. Here we report the identification of amines as proper olfactory stimuli for larval X. laevis using functional Ca(2+) imaging and slice preparations of the olfactory system. The response profiles of individual ORNs to a number of amines were extremely complex and mostly highly specific. The great majority of amine-sensitive ORNs responded also to forskolin, an activator of the olfactory cAMP transduction pathway. Most amine-induced responses could be attenuated by the cyclic nucleotide-gated channel inhibitor LY83583. This confirms that most amine-responsive olfactory receptors (ORs) are coupled to the cAMP-dependent transduction pathway. Furthermore, we show that trace amine-associated receptors (TAARs), which have been shown to act as specific ORs for amines in mammals, are expressed in the olfactory organ of X. laevis. The TAARs expressed in Xenopus cannot, however, explain the complex responses of individual ORNs to amines because there are too few of them. This indicates that, in addition to TAARs, there must be other receptor families involved in the detection of amines.
Collapse
Affiliation(s)
- S Gliem
- Department of Neurophysiology and Cellular Biophysics, University of Göttingen, Humboldtallee 23, Göttingen, Germany
| | | | | |
Collapse
|
15
|
Fuss SH, Ray A. Mechanisms of odorant receptor gene choice in Drosophila and vertebrates. Mol Cell Neurosci 2009; 41:101-12. [PMID: 19303443 DOI: 10.1016/j.mcn.2009.02.014] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Accepted: 02/27/2009] [Indexed: 01/13/2023] Open
Abstract
Odorant receptors are encoded by extremely large and divergent families of genes. Each receptor is expressed in a small proportion of neurons in the olfactory organs, and each neuron in turn expresses just one odorant receptor gene. This fundamental property of the peripheral olfactory system is widely conserved across evolution, and observed in vertebrates, like mice, and invertebrates, like Drosophila, despite their olfactory receptor gene families being evolutionarily unrelated. Here we review the progress that has been made in these two systems to understand the intriguing and elusive question: how does a single neuron choose to express just one of many possible odorant receptors and exclude expression of all others?
Collapse
Affiliation(s)
- Stefan H Fuss
- Department of Molecular Biology and Genetics, Bogazici University, 34342 Istanbul, Turkey
| | | |
Collapse
|
16
|
Cockerham RE, Puche AC, Munger SD. Heterogeneous sensory innervation and extensive intrabulbar connections of olfactory necklace glomeruli. PLoS One 2009; 4:e4657. [PMID: 19247478 PMCID: PMC2645502 DOI: 10.1371/journal.pone.0004657] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2008] [Accepted: 01/21/2009] [Indexed: 11/24/2022] Open
Abstract
The mammalian nose employs several olfactory subsystems to recognize and transduce diverse chemosensory stimuli. These subsystems differ in their anatomical position within the nasal cavity, their targets in the olfactory forebrain, and the transduction mechanisms they employ. Here we report that they can also differ in the strategies they use for stimulus coding. Necklace glomeruli are the sole main olfactory bulb (MOB) targets of an olfactory sensory neuron (OSN) subpopulation distinguished by its expression of the receptor guanylyl cyclase GC-D and the phosphodiesterase PDE2, and by its chemosensitivity to the natriuretic peptides uroguanylin and guanylin and the gas CO2. In stark contrast to the homogeneous sensory innervation of canonical MOB glomeruli from OSNs expressing the same odorant receptor (OR), we find that each necklace glomerulus of the mouse receives heterogeneous innervation from at least two distinct sensory neuron populations: one expressing GC-D and PDE2, the other expressing olfactory marker protein. In the main olfactory system it is thought that odor identity is encoded by a combinatorial strategy and represented in the MOB by a pattern of glomerular activation. This combinatorial coding scheme requires functionally homogeneous sensory inputs to individual glomeruli by OSNs expressing the same OR and displaying uniform stimulus selectivity; thus, activity in each glomerulus reflects the stimulation of a single OSN type. The heterogeneous sensory innervation of individual necklace glomeruli by multiple, functionally distinct, OSN subtypes precludes a similar combinatorial coding strategy in this olfactory subsystem.
Collapse
Affiliation(s)
- Renee E. Cockerham
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Adam C. Puche
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Steven D. Munger
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
17
|
Borgmann-Winter KE, Rawson NE, Wang HY, Wang H, Macdonald ML, Ozdener MH, Yee KK, Gomez G, Xu J, Bryant B, Adamek G, Mirza N, Pribitkin E, Hahn CG. Human olfactory epithelial cells generated in vitro express diverse neuronal characteristics. Neuroscience 2008; 158:642-53. [PMID: 18996445 DOI: 10.1016/j.neuroscience.2008.09.059] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2007] [Revised: 09/22/2008] [Accepted: 09/28/2008] [Indexed: 10/21/2022]
Abstract
The olfactory epithelium constitutes the sole source of regenerating neural cells that can be obtained from a living human. As such, primary cultures derived from human olfactory epithelial biopsies can be utilized to study neurobiological characteristics of individuals under different conditions and disease states. Here, using such human cultures, we report in vitro generation of cells that exhibit a complex neuronal phenotype, encompassing receptors and signaling pathways pertinent to both olfaction and other aspects of CNS function. Using in situ hybridization, we demonstrate for the first time the native expression of olfactory receptors in cultured cells derived from human olfactory epithelial tissue. We further establish the presence and function of olfactory transduction molecules in these cells using immunocytochemistry, calcium imaging and molecular methods. Western blot analysis revealed the expression of neurotransmitter receptors for dopamine (D2R), 5-HT (5HT2C) and NMDA subtypes 1 and 2A/2B. Stimulation with dopamine or 5-HT enhanced receptor G protein activation in a subtype specific manner, based on 35S-guanosine triphosphate incorporation assay. Functional characteristics of the cultured cells are demonstrated through enhanced tyrosine phosphorylation of NMDAR 2A/2B and recruitment of signaling partners in response to NMDA stimulation. The array of neuronal characteristics observed here establishes that proliferating cells derived from the human olfactory epithelium differentiate in vitro to express functional and molecular attributes of mature olfactory neurons. These cultured neural cells exhibit neurotransmitter pathways important in a number of neuropsychiatric disorders. Their ready availability from living humans thus provides a new tool to link functional and molecular features of neural cells with clinical characteristics of individual living patients.
Collapse
Affiliation(s)
- K E Borgmann-Winter
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Mazzoni EO, Celik A, Wernet MF, Vasiliauskas D, Johnston RJ, Cook TA, Pichaud F, Desplan C. Iroquois complex genes induce co-expression of rhodopsins in Drosophila. PLoS Biol 2008; 6:e97. [PMID: 18433293 PMCID: PMC2323304 DOI: 10.1371/journal.pbio.0060097] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2007] [Accepted: 03/06/2008] [Indexed: 01/21/2023] Open
Abstract
The Drosophila eye is a mosaic that results from the stochastic distribution of two ommatidial subtypes. Pale and yellow ommatidia can be distinguished by the expression of distinct rhodopsins and other pigments in their inner photoreceptors (R7 and R8), which are implicated in color vision. The pale subtype contains ultraviolet (UV)-absorbing Rh3 in R7 and blue-absorbing Rh5 in R8. The yellow subtype contains UV-absorbing Rh4 in R7 and green-absorbing Rh6 in R8. The exclusive expression of one rhodopsin per photoreceptor is a widespread phenomenon, although exceptions exist. The mechanisms leading to the exclusive expression or to co-expression of sensory receptors are currently not known. We describe a new class of ommatidia that co-express rh3 and rh4 in R7, but maintain normal exclusion between rh5 and rh6 in R8. These ommatidia, which are localized in the dorsal eye, result from the expansion of rh3 into the yellow-R7 subtype. Genes from the Iroquois Complex (Iro-C) are necessary and sufficient to induce co-expression in yR7. Iro-C genes allow photoreceptors to break the “one receptor–one neuron” rule, leading to a novel subtype of broad-spectrum UV- and green-sensitive ommatidia. Most sensory systems follow the rule “one receptor molecule per receptor cell.” For example, photoreceptors in the fly eye and cones in the human eye each express only one light-sensitive rhodopsin. Rhodopsins are G-coupled protein receptors, a class of ancient signaling molecules that mediate not just vision but also the sense of smell, the inflammatory response, and other physiological processes. However, the mechanisms that regulate mutual exclusion of receptor genes in the visual and olfactory systems are poorly understood. Each ommatidium in the fly eye consists of eight photoreceptors (R1–R8); six of which mediate broad-spectrum motion vision (R1–R6) and two that mediate color vision (R7 and R8). We identified a new class of photoreceptors in the fly retina that violates the one rhodopsin–one receptor rule. This subset of ommatidia, located in the dorsal third of the eye, co-expresses two ultraviolet-sensitive rhodospins (rh3 and rh4) in R7, while maintaining discrimination between green and blue opsins in R8. We took advantage of the genetic tools offered by the fruit fly to show that this co-expression depends on the Iroquois Complex (Iro-C) genes that are both necessary and sufficient to allow the two ultraviolet-sensitive rhosopsins to be expressed in the same R7 cell. These results shed new light on the mechanisms regulating co-expression of rhodopsins in the eye, and may well have implications for regulating co-expression in olfactory receptors and other G-protein coupled systems. Iro-C genes control the co-expression of sensory receptors.
Collapse
Affiliation(s)
- Esteban O Mazzoni
- Center for Developmental Genetics, Department of Biology, New York University, New York, New York, United States of America
| | - Arzu Celik
- Center for Developmental Genetics, Department of Biology, New York University, New York, New York, United States of America
| | - Mathias F Wernet
- Center for Developmental Genetics, Department of Biology, New York University, New York, New York, United States of America
| | - Daniel Vasiliauskas
- Center for Developmental Genetics, Department of Biology, New York University, New York, New York, United States of America
| | - Robert J Johnston
- Center for Developmental Genetics, Department of Biology, New York University, New York, New York, United States of America
| | - Tiffany A Cook
- Center for Developmental Genetics, Department of Biology, New York University, New York, New York, United States of America
| | - Franck Pichaud
- Center for Developmental Genetics, Department of Biology, New York University, New York, New York, United States of America
| | - Claude Desplan
- Center for Developmental Genetics, Department of Biology, New York University, New York, New York, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
19
|
Rojas-Líbano D, Kay LM. Olfactory system gamma oscillations: the physiological dissection of a cognitive neural system. Cogn Neurodyn 2008; 2:179-94. [PMID: 19003484 DOI: 10.1007/s11571-008-9053-1] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2008] [Revised: 05/20/2008] [Accepted: 05/20/2008] [Indexed: 11/27/2022] Open
Abstract
Oscillatory phenomena have been a focus of dynamical systems research since the time of the classical studies on the pendulum by Galileo. Fast cortical oscillations also have a long and storied history in neurophysiology, and olfactory oscillations have led the way with a depth of explanation not present in the literature of most other cortical systems. From the earliest studies of odor-evoked oscillations by Adrian, many reports have focused on mechanisms and functional associations of these oscillations, in particular for the so-called gamma oscillations. As a result, much information is now available regarding the biophysical mechanisms that underlie the oscillations in the mammalian olfactory system. Recent studies have expanded on these and addressed functionality directly in mammals and in the analogous insect system. Sub-bands within the rodent gamma oscillatory band associated with specific behavioral and cognitive states have also been identified. All this makes oscillatory neuronal networks a unique interdisciplinary platform from which to study neurocognitive and dynamical phenomena in intact, freely behaving animals. We present here a summary of what has been learned about the functional role and mechanisms of gamma oscillations in the olfactory system as a guide for similar studies in other cortical systems.
Collapse
Affiliation(s)
- Daniel Rojas-Líbano
- Committee on Neurobiology, Institute for Mind & Biology, The University of Chicago, Chicago, IL, 60637, USA
| | | |
Collapse
|
20
|
Activity plays a role in eliminating olfactory sensory neurons expressing multiple odorant receptors in the mouse septal organ. Mol Cell Neurosci 2008; 38:484-8. [PMID: 18538580 DOI: 10.1016/j.mcn.2008.04.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2008] [Revised: 04/04/2008] [Accepted: 04/09/2008] [Indexed: 01/13/2023] Open
Abstract
A fundamental belief in the field of olfaction is that each olfactory sensory neuron (OSN) expresses only one odorant receptor (OR) type. Here we report that coexpression of multiple receptors in single neurons does occur at a low frequency. This was tested by double in situ hybridization in the septal organ in which greater than 90% of the sensory neurons express one of nine identified ORs. Notably, the coexpression frequency is nearly ten times higher in newborn than in young adult mice, suggesting a reduction of the sensory neurons with multiple ORs during postnatal development. In addition, such reduction is prevented by four-week sensory deprivation or impaired apoptosis. Furthermore, the high coexpression frequency is restored following four-week naris closure performed in young adult mice. The results indicate that activity induced by sensory inputs plays a role in ensuring the one cell-one receptor rule in a subset of olfactory sensory neurons.
Collapse
|
21
|
Rodriguez I. Odorant and pheromone receptor gene regulation in vertebrates. Curr Opin Genet Dev 2007; 17:465-70. [PMID: 17709237 DOI: 10.1016/j.gde.2007.07.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2007] [Accepted: 07/09/2007] [Indexed: 11/22/2022]
Abstract
The largest mammalian gene family codes for odorant receptors and is exclusively devoted to the perception of the outside world. Its expression is very peculiar, since olfactory sensory neurons are only allowed to express a single of its numerous members, from a single parental allele. How this is achieved is unknown, but recent work points to multiple regulatory mechanisms, possibly shared by pheromone receptor genes, acting at (a) a general level, via the expression of the chemoreceptor itself and (b) a more restricted level, defined by activator elements.
Collapse
Affiliation(s)
- Ivan Rodriguez
- Department of Zoology and Animal Biology, and NCCR Frontiers in Genetics, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
22
|
Abstract
Most animal species rely on odorant compounds to locate food, predators, or toxins. The sense of smell is also involved in animal communication, and revealing the underlying mechanisms will therefore facilitate a deeper understanding of animal behaviour. Since the 1940s different theories have speculated on the fundamental basis of olfaction. It was assumed that odorant molecules were recognized by selective protein receptors in the nose, triggering a nervous signal processed by the brain. The discovery of these receptors in the early 1990s allowed great progress in understanding the physiological and biochemical principles of olfaction. An overview of the different mechanisms involved in the coding of odour character as well as odour intensity is presented here, focusing on the biochemical basis of odorant recognition. Despite the enormous progress achieved in recent years, details of odorant-receptor interaction at the molecular level and the mechanisms of olfactory receptor activation are poorly understood. The likely role of metal ions in odorant recognition is discussed, and also the perireceptor events involved in odorant transport and biotransformation, with a view to providing a comprehensive overview of mammalian olfaction to guide future computational structural models and the design of functional experiments. Recent studies have analysed the olfactory genome of several species, providing information about the evolution of olfaction. The role of the olfactory system in animal communication is also described.
Collapse
Affiliation(s)
- Manuel Zarzo
- Department of Applied Statistics, Technical University of Valencia, Camino de Vera s/n, 46022 Valencia, Spain.
| |
Collapse
|
23
|
Abstract
The olfactory system meets niche- and species-specific demands by an accelerated evolution of its odorant receptor repertoires. In this review, we describe evolutionary processes that have shaped olfactory and vomeronasal receptor gene families in vertebrate genomes. We emphasize three important periods in the evolution of the olfactory system evident by comparative genomics: the adaptation to land in amphibian ancestors, the decline of olfaction in primates, and the delineation of putative pheromone receptors concurrent with rodent speciation. The rapid evolution of odorant receptor genes, the sheer size of the repertoire, as well as their wide distribution in the genome, presents a developmental challenge: how are these ever-changing odorant receptor repertoires coordinated within the olfactory system? A central organizing principle in olfaction is the specialization of sensory neurons resulting from each sensory neuron expressing only ~one odorant receptor allele. In this review, we also discuss this mutually exclusive expression of odorant receptor genes. We have considered several models to account for co-regulation of odorant receptor repertoires, as well as discussed a new hypothesis that invokes important epigenetic properties of the system.
Collapse
Affiliation(s)
- Marijo B Kambere
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, CT, USA
| | - Robert P Lane
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, CT, USA
| |
Collapse
|
24
|
Abstract
We present a model for olfactory coding based on spatial representation of glomerular responses. In this model distinct odorants activate specific subsets of glomeruli, dependent on the odorant's chemical identity and concentration. The glomerular response specificities are understood statistically, based on experimentally measured distributions of activation thresholds. A simple version of the model, in which glomerular responses are binary (the all-or-nothing model), allows us to account quantitatively for the following results of human/rodent olfactory psychophysics: 1) just noticeable differences in the perceived concentration of a single odor (Weber ratios) are as low as dC/C approximately 0.04; 2) the number of simultaneously perceived odors can be as high as 12; and 3) extensive lesions of the olfactory bulb do not lead to significant changes in detection or discrimination thresholds. We conclude that a combinatorial code based on a binary glomerular response is sufficient to account for several important features of the discrimination capacity of the mammalian olfactory system.
Collapse
Affiliation(s)
- Alexei Koulakov
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.
| | | | | |
Collapse
|
25
|
Roppolo D, Vollery S, Kan CD, Lüscher C, Broillet MC, Rodriguez I. Gene cluster lock after pheromone receptor gene choice. EMBO J 2007; 26:3423-30. [PMID: 17611603 PMCID: PMC1933412 DOI: 10.1038/sj.emboj.7601782] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2007] [Accepted: 06/04/2007] [Indexed: 11/09/2022] Open
Abstract
In mammals, perception of pheromones is based on the expression in each vomeronasal sensory neuron of a limited set of receptor genes, chosen among a large repertoire. Here, we report an extremely tight control of the monogenic and monoallelic transcription of the V1rb2 receptor gene. Combining genetic and electrophysiological approaches, we show that the transcription of a non-functional V1r allele leads to the coexpression of another, functional V1r gene. The choice of this coexpressed gene surprisingly includes genes located on the cluster homologous to the one from which the mutant allele is transcribed. However, V1r genes located in cis relative to the transcribed mutant allele are excluded from the coexpression choice. Our observations strongly suggest a monogenic regulatory mechanism acting (a) at a general level, via the expression of the V1r receptor itself, and (b) at a more local level, defined by the V1r gene cluster.
Collapse
Affiliation(s)
- Daniele Roppolo
- Department of Zoology and Animal Biology, and NCCR Frontiers in Genetics, University of Geneva, Geneva, Switzerland
| | - Sarah Vollery
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland
| | - Chen-Da Kan
- Department of Zoology and Animal Biology, and NCCR Frontiers in Genetics, University of Geneva, Geneva, Switzerland
| | - Christian Lüscher
- Department of Basic Neurosciences and Clinic of Neurology, University of Geneva, Geneva, Switzerland
| | | | - Ivan Rodriguez
- Department of Zoology and Animal Biology, and NCCR Frontiers in Genetics, University of Geneva, Geneva, Switzerland
- Department of Zoology and Animal Biology, University of Geneva, 30 quai Ernest Ansermet, 1211 Geneva, Switzerland. Tel.: +41 22 379 31 01; Fax: +41 22 379 67 95; E-mail:
| |
Collapse
|
26
|
Abstract
Systematic mapping studies involving 365 odorant chemicals have shown that glomerular responses in the rat olfactory bulb are organized spatially in patterns that are related to the chemistry of the odorant stimuli. This organization involves the spatial clustering of principal responses to numerous odorants that share key aspects of chemistry such as functional groups, hydrocarbon structural elements, and/or overall molecular properties related to water solubility. In several of the clusters, responses shift progressively in position according to odorant carbon chain length. These response domains appear to be constructed from orderly projections of sensory neurons in the olfactory epithelium and may also involve chromatography across the nasal mucosa. The spatial clustering of glomerular responses may serve to "tune" the principal responses of bulbar projection neurons by way of inhibitory interneuronal networks, allowing the projection neurons to respond to a narrower range of stimuli than their associated sensory neurons. When glomerular activity patterns are viewed relative to the overall level of glomerular activation, the patterns accurately predict the perception of odor quality, thereby supporting the notion that spatial patterns of activity are the key factors underlying that aspect of the olfactory code. A critical analysis suggests that alternative coding mechanisms for odor quality, such as those based on temporal patterns of responses, enjoy little experimental support.
Collapse
Affiliation(s)
- Brett A Johnson
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697-4550, USA.
| | | |
Collapse
|
27
|
Rolen SH, Caprio J. Processing of bile salt odor information by single olfactory bulb neurons in the channel catfish. J Neurophysiol 2007; 97:4058-68. [PMID: 17442768 DOI: 10.1152/jn.00247.2007] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A chemotopic map of biologically relevant odorants (that include amino acids, bile salts, and nucleotides) exists in the olfactory bulb (OB) of channel catfish, Ictalurus punctatus. Neurons processing bile salt odorant information lie medially within this OB map; however, information as to how single neurons process bile salt odorant information is lacking. In the present report, recordings were obtained from 51 OB neurons from 30 channel catfish to determine the excitatory molecular receptive range (EMRR) of bile salt responsive neurons. All recordings were performed in vivo within the medial portions of the OB using extracellular electrophysiological techniques. Excitatory thresholds to bile salts typically ranged between 0.1 and 10 muM. The bile salt specificity of OB neurons were divided into three groups: neurons excited by taurine-conjugated bile salts only (group T), neurons excited by nonconjugated bile salts only (group N), and neurons excited by at least one member of each of the three classes of bile salts tested (group G). In addition to the conjugating group at C24 of the side-chain, OB neurons discriminated bile salts by the molecular features present at three other carbon positions (C3, C7, and C12) along the steroid backbone. These data suggest that OB neurons are selectively excited by combinations of molecular features found on the side-chain and along the steroid nucleus of bile salt molecules.
Collapse
Affiliation(s)
- S H Rolen
- Dept. of Biological Sciences, Louisiana State University, Life Sciences Bldg. Rm. 107, Baton Rouge, LA 70803, USA.
| | | |
Collapse
|
28
|
Baker TC, Quero C, Ochieng' SA, Vickers NJ. Inheritance of olfactory preferences II. Olfactory receptor neuron responses from Heliothis subflexa x Heliothis virescens hybrid male moths. BRAIN, BEHAVIOR AND EVOLUTION 2006; 68:75-89. [PMID: 16707861 DOI: 10.1159/000093375] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2005] [Accepted: 09/01/2005] [Indexed: 11/19/2022]
Abstract
Single-cell electrophysiological recordings were obtained from olfactory receptor neurons (ORNs) in sensilla trichodea on male antennae of hybrids formed mainly by crossing female Heliothis subflexa with male Heliothis virescens ('SV hybrids'). We recorded from the A-, B-, and C-type sensilla trichodea, with the latter two types housing ORNs exhibiting response profiles to different pheromone components that we had previously found to be characteristic for each species. For both the B- and the C-type SV hybrid sensilla, most of the ORNs exhibited a spike amplitude and ORN co-compartmentalization within sensilla that more strongly resembled the ORNs of parental H. subflexa rather than those of H. virescens. The overall mean dose-response profiles of the ORNs in hybrid C- and B-type sensilla were intermediate between those of the H. virescens and H. subflexa parental type ORNs. However, not all hybrid ORNs were intermediate in their tuning spectra, but rather ranged from those that closely resembled H. subflexa or H. virescens parental types to those that were intermediate, even on the same antenna. The most noteworthy shift in ORN responsiveness in hybrid males was an overall increase in sensitivity to Z9-14:Ald exhibited by Z9-16:Ald-responsive ORNs. Heightened cross-responsiveness to Z9-14:Ald by hybrid ORNs correlates well with observed behavioral cross-responsiveness of hybrids in which Z9-14:Ald could substitute for Z9-16:Ald in the pheromone blend, a behavior not observed in parental types. The hybrid ORN shifts involving greater sensitivity to Z9- 14:Ald also correlate well with studies of hybrid male antennal lobe interneurons that exhibited a shift toward greater cross-responsiveness to Z9-14:Ald and Z9- 16:Ald. We propose that the differences between parental H. virescens, H. subflexa, and SV hybrid male pheromone ORN responsiveness to Z9-16:Ald and Z9-14:Ald are most logically explained by an increased or decreased co-expression of two different odorant receptors for each of these compounds on the same ORN.
Collapse
Affiliation(s)
- T C Baker
- Department of Entomology, Chemical Ecology Lab, Penn State University, University Park, PA 16802, USA.
| | | | | | | |
Collapse
|
29
|
Couto A, Alenius M, Dickson BJ. Molecular, anatomical, and functional organization of the Drosophila olfactory system. Curr Biol 2006; 15:1535-47. [PMID: 16139208 DOI: 10.1016/j.cub.2005.07.034] [Citation(s) in RCA: 706] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2005] [Revised: 07/07/2005] [Accepted: 07/08/2005] [Indexed: 11/25/2022]
Abstract
BACKGROUND Olfactory receptor neurons (ORNs) convey chemical information into the brain, producing internal representations of odors detected in the periphery. A comprehensive understanding of the molecular and neural mechanisms of odor detection and processing requires complete maps of odorant receptor (Or) expression and ORN connectivity, preferably at single-cell resolution. RESULTS We have constructed near-complete maps of Or expression and ORN targeting in the Drosophila olfactory system. These maps confirm the general validity of the "one neuron--one receptor" and "one glomerulus--one receptor" principles and reveal several additional features of olfactory organization. ORNs in distinct sensilla types project to distinct regions of the antennal lobe, but neighbor relations are not preserved. ORNs grouped in the same sensilla do not express similar receptors, but similar receptors tend to map to closely appositioned glomeruli in the antennal lobe. This organization may serve to ensure that odor representations are dispersed in the periphery but clustered centrally. Integrated with electrophysiological data, these maps also predict glomerular representations of specific odorants. Representations of aliphatic and aromatic compounds are spatially segregated, with those of aliphatic compounds arranged topographically according to carbon chain length. CONCLUSIONS These Or expression and ORN connectivity maps provide further insight into the molecular, anatomical, and functional organization of the Drosophila olfactory system. Our maps also provide an essential resource for investigating how internal odor representations are generated and how they are further processed and transmitted to higher brain centers.
Collapse
Affiliation(s)
- Africa Couto
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Dr. Bohr-Gasse 3-5 A-1030 Vienna, Austria
| | | | | |
Collapse
|
30
|
Abstract
Insect odor and taste receptors are highly sensitive detectors of food, mates, and oviposition sites. Following the identification of the first insect odor and taste receptors in Drosophila melanogaster, these receptors were identified in a number of other insects, including the malaria vector mosquito Anopheles gambiae; the silk moth, Bombyx mori; and the tobacco budworm, Heliothis virescens. The chemical specificities of many of the D. melanogaster receptors, as well as a few of the A. gambiae and B. mori receptors, have now been determined either by analysis of deletion mutants or by ectopic expression in in vivo or heterologous expression systems. Here we discuss recent advances in our understanding of the molecular and cellular basis of odor and taste coding in insects.
Collapse
Affiliation(s)
- Elissa A Hallem
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520, USA.
| | | | | |
Collapse
|
31
|
Abstract
The act of sniffing increases the air velocity and changes the duration of airflow in the nose. It is not yet clear how these changes interact with the intrinsic timing within the olfactory bulb, but this is a matter of current research activity. An action of sniffing in generating a high velocity that alters the sorption of odorants onto the lining of the nasal cavity is expected from the established work on odorant properties and sorption in the frog nose. Recent work indicates that the receptor properties in the olfactory epithelium and olfactory bulb are correlated with the receptor gene expression zones. The responses in both the epithelium and the olfactory bulb are predictable to a considerable extent by the hydrophobicity of odorants. Furthermore, receptor expression in both rodent and salamander nose interacts with the shapes of the nasal cavity to place the receptor sensitivity to odorants in optimal places according to the aerodynamic properties of the nose.
Collapse
Affiliation(s)
- John W Scott
- Department of Cell Biology, Emory University, 405N Whitehead Biomedical Research Center, 615 Michael Street, Atlanta, GA 30322, USA.
| |
Collapse
|
32
|
Ishii T, Omura M, Mombaerts P. Protocols for two- and three-color fluorescent RNA in situ hybridization of the main and accessory olfactory epithelia in mouse. ACTA ACUST UNITED AC 2005; 33:657-69. [PMID: 16217621 DOI: 10.1007/s11068-005-3334-y] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2005] [Revised: 02/16/2005] [Accepted: 02/28/2005] [Indexed: 10/25/2022]
Abstract
The main and accessory olfactory epithelia of the mouse are composed of many cell populations. Each sensory neuron is thought to express one allele of one of the approximately 1000 odorant or approximately 300 vomeronasal receptor genes. Sensory neurons die and are replaced by new neurons that differentiate from precursor cells throughout the lifetime of the individual. Neuronal replacement is asynchronous, resulting in the co-existence of cells at various stages of differentiation. Receptor gene diversity and ongoing neuronal differentiation produce complex mosaics of gene expression within these epithelia. Accurate description of gene expression patterns will facilitate the understanding of mechanisms of gene choice and differentiation. Here we report a detailed protocol for two- and three-color fluorescent RNA in situ hybridization (ISH) and its combination with immunohistochemistry, or detection of bromodeoxyuridine (BrdU)-incorporated DNA after labeling. The protocol is applied to cryosections of the main and accessory olfactory epithelia in mouse.
Collapse
|
33
|
Gaudin A, Gascuel J. 3D atlas describing the ontogenic evolution of the primary olfactory projections in the olfactory bulb of Xenopus laevis. J Comp Neurol 2005; 489:403-24. [PMID: 16025461 DOI: 10.1002/cne.20655] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The adult Xenopus presents the unique capability to smell odors both in water and air thanks to two different olfactory pathways. Nevertheless, the tadpole can initially perceive only water-borne odorants, as the olfactory receptor neurons (ORN) that will detect air-borne odorants develop later. Such a phenomenon requires major reorganization processes. Here we focused on the precise description of the neuroanatomical modifications occurring in the olfactory bulb (OB) of the tadpole throughout metamorphosis. Using both carbocyanine dyes and lectin staining, we investigated the evolution of ORN projection patterns into the OB from Stages 47 to 66, thus covering the period of time when all the modifications take place. Although our results confirm previous works (Reiss and Burd [1997] Semin Cell Dev Biol 8:171-179), we showed for the first time that the main olfactory bulb (MOB) is subdivided into seven zones at Stage 47 plus the accessory olfactory bulb (AOB). These seven zones receive fibers dedicated to aquatic olfaction ("aquatic fibers") and are conserved until Stage 66. At Stage 48 the first fibers dedicated to the aerial olfaction constitute a new dorsomedial zone that grows steadily, pushing the seven original zones ventrolaterally. Only the part of the OB receiving aquatic fibers is fragmented, reminiscent of the organization described in fish. This raises the question of whether such an organization in zones constitutes a plesiomorphy or is linked to aquatic olfaction. We generated a 3D atlas at several stages which are representative of the reorganization process. This will be a useful tool for future studies of development and function.
Collapse
Affiliation(s)
- Arnaud Gaudin
- Centre des Sciences du Goût (Unité Mixte de Recherche 5170 Centre National de la Recherche Scientifique-Université de Bourgogne-Institut National de la Recherche Agronomique), F-21000 Dijon, France
| | | |
Collapse
|
34
|
Norlin EM, Vedin V, Bohm S, Berghard A. Odorant-dependent, spatially restricted induction of c-fos in the olfactory epithelium of the mouse. J Neurochem 2005; 93:1594-602. [PMID: 15935076 DOI: 10.1111/j.1471-4159.2005.03159.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Volatile odorous chemicals are detected by around a thousand different G protein-coupled odorant receptors in the mouse. We demonstrated that exposure of the behaving mouse to odorant for a few minutes led to induction of the immediate early gene c-fos for several hours in a fraction of the olfactory sensory neurones in the nasal cavity. Associated with this odorant-specific induction event was activation of extracellular-regulated kinase (ERK)1/2 that preceded increased c-fos expression. The distribution of odorant-activated neurones mimicked the scattered and spatially limited distribution of neurones expressing a single odorant receptor gene. A small change in odorant chemical structure caused a zonal shift in the spatial distribution of activated neurones, suggesting that the gene expression change resulted from specific receptor interaction. Repeated exposure to odorant or use of different concentrations did not change the pattern of c-fos induction. These results indicate that odorant-induced c-fos expression can be used to visualize odorant representations in the olfactory epithelium that reflect late cellular events regulated by adequate odorant receptor stimulation.
Collapse
|
35
|
Mazzoni EO, Desplan C, Celik A. 'One receptor' rules in sensory neurons. Dev Neurosci 2005; 26:388-95. [PMID: 15855768 DOI: 10.1159/000082281] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2004] [Accepted: 06/14/2004] [Indexed: 11/19/2022] Open
Abstract
With the recent explosion in the characterization of different sensory systems, a general rule is emerging: only one type of sensory receptor molecule is expressed per receptor neuron. The visual system is no exception and, in most cases, photoreceptors express only one visual pigment per cell. However, the mechanisms underlying the exclusion of sensory receptors are poorly understood. As expression of a given receptor in a given cell is often stochastic, a decision must first be made to express one of the many receptors of the same family (i.e. one particular rhodopsin) and this expression must correlate with the silencing of the other receptors. Furthermore, the projection center for the receptors in the brain must be informed of the decision in order to process this information. Although cells can choose from up to hundreds of sensory receptors (e.g. in the olfactory system), they make almost no mistakes. Evidence has recently emerged that the exclusion mechanism involves the sensory receptor molecules themselves. Here, we describe the findings from various systems in mammals and Drosophila, and review evidence that in the simple visual system of the fly, rhodopsin molecules play an important role in sensory receptor exclusion.
Collapse
Affiliation(s)
- Esteban O Mazzoni
- Center for Developmental Genetics, Department of Biology, New York University, 1009 Silver Center, 100 Washington Square East, New York, NY 10003, USA
| | | | | |
Collapse
|
36
|
Abstract
The septal organ in the mammalian nose is a distinct chemosensory organ sitting in the air path. To gain insights into its organization and function, we analyzed the chemoreceptors expressed in this area. By combining cDNA cloning, Affymetrix (Santa Clara, CA) genechips covering all the mouse olfactory receptor genes, and in situ hybridization, we achieved a relatively complete expression profile of the olfactory receptor genes in the septal organ. The majority of the septal neurons express only a few receptor genes in varying patterns, with the top one in approximately 50% of the cells and the top eight together in approximately 93% of the cells. We demonstrated that a single neuron expresses only one receptor by a thorough combination of all the major septal receptor genes in double-labeling studies. These septal receptor genes do not form a single subfamily. Instead, these genes are distributed on a few major branches of the phylogenetic tree covering all the mouse olfactory receptors. Most of these genes are also concentrated in certain areas within the most ventral zone of the main olfactory epithelium, although their expression patterns do not match those in the septal organ. In contrary to the previous view of random distribution, our results indicate that certain olfactory receptors form "hot spots" in the nose.
Collapse
Affiliation(s)
- Huikai Tian
- Department of Neuroscience, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | |
Collapse
|
37
|
Johnson BA, Farahbod H, Leon M. Interactions between odorant functional group and hydrocarbon structure influence activity in glomerular response modules in the rat olfactory bulb. J Comp Neurol 2005; 483:205-16. [PMID: 15678471 PMCID: PMC2222893 DOI: 10.1002/cne.20409] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
To investigate the effect of odorant hydrocarbon structure on spatial representations in the olfactory bulb systematically, we exposed rats to odorant chemicals possessing one of four different oxygen-containing functional groups on one of five different hydrocarbon backbones. We also used several hydrocarbon odorants lacking other functional groups. Hydrocarbon structural categories included straight-chained, branched, double-bonded, alicyclic, and aromatic features. Activity throughout the entire glomerular layer was measured as uptake of [(14)C]2-deoxyglucose and was mapped into anatomically standardized data matrices for statistical comparisons across different animals. Patterns evoked by straight-chained aliphatic odorants confirmed an association of activity in particular glomerular response modules with particular functional groups. However, the amount of activity in these same modules also was affected significantly by differences in hydrocarbon structure. Thus, the molecular features recognized by receptors projecting to these response modules appear to involve both functional group and hydrocarbon structural elements. In addition, particular benzyl and cyclohexyl odorants evoked activity in dorsal modules previously associated with the ketone functional group, which represents an exception to the rule of one feature per response module that had emerged from our previous studies. These dorsal modules also responded to nitrogen-containing aromatic compounds involving pyridine and pyrazine rings. The unexpected overlap in modular responses to ketones and odorants seemingly unrelated to ketones may reflect some covert shared molecular feature, the existence of odorant sensory neurons with multiple specificities, or a mosaic of sensory neuron projections to these particular modules.
Collapse
Affiliation(s)
- Brett A Johnson
- Department of Neurobiology and Behavior, University of California at Irvine, Irvine, CA 92697-4550, USA.
| | | | | |
Collapse
|
38
|
Goldman AL, Van der Goes van Naters W, Lessing D, Warr CG, Carlson JR. Coexpression of Two Functional Odor Receptors in One Neuron. Neuron 2005; 45:661-6. [PMID: 15748842 DOI: 10.1016/j.neuron.2005.01.025] [Citation(s) in RCA: 186] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2004] [Revised: 01/10/2005] [Accepted: 01/20/2005] [Indexed: 10/25/2022]
Abstract
One of the most fundamental tenets in the field of olfaction is that each olfactory receptor neuron (ORN) expresses a single odorant receptor. However, the one receptor-one neuron principle is difficult to establish rigorously. Here we construct a receptor-to-neuron map for an entire olfactory organ in Drosophila and find that two receptor genes are coexpressed in one class of ORN. Both receptors are functional in an in vivo expression system, they are only 16% identical in amino acid sequence, and the genes that encode them are unlinked. Most importantly, their coexpression has been conserved for >45 million years. Expression of multiple odor receptors in a cell provides an additional degree of freedom for odor coding.
Collapse
Affiliation(s)
- Aaron L Goldman
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | | | | | | | | |
Collapse
|
39
|
Schild D, Manzini I. Cascades of response vectors of olfactory receptor neurons in Xenopus laevis tadpoles. Eur J Neurosci 2004; 20:2111-23. [PMID: 15450090 DOI: 10.1111/j.1460-9568.2004.03672.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Olfactory receptor neurons (ORNs) of Xenopus laevis tadpoles respond to water-born stimuli such as amino acids. Their sensitivity spectra with respect to amino acids have recently been shown to become more selective over ontogenetic stages [Manzini & Schild (2004) J. Gen. Physiol., 123, 99-107]. In this paper, we undertake a theoretical analysis of this data set and determine the correlational relationships among odorant responses represented as binary response vectors. We first show that, on the one hand, the number of 204 ORN classes (out of 283 recorded ORNs) cannot be explained by a random expression pattern of olfactory receptors (ORs). On the other hand, this number does not appear to be reconcilable with the idea that individual ORNs express one type of OR each. The covariance matrix of stimulus responses shows that the responses to some stimuli are correlated to those of others. Furthermore, the response vectors show positive as well as negative correlations among each other. While the positive correlations can partly be explained by the differing response frequencies to the odorants used, the negative ones cannot. Finally, we analyse the similarity among responses using the Hamming distance as a distance measure, the result being that most response vectors differ from others by small Hamming distances. Such vectors are shown to form pattern cascades, possibly reflecting a decreasing number of ORs being expressed over ontogenetic stages.
Collapse
Affiliation(s)
- Detlev Schild
- Physiologisches Institut, Universität Göttingen, Humboldtallee 23, 37073 Göttingen, Germany.
| | | |
Collapse
|
40
|
Delay R, Restrepo D. Odorant responses of dual polarity are mediated by cAMP in mouse olfactory sensory neurons. J Neurophysiol 2004; 92:1312-9. [PMID: 15331642 DOI: 10.1152/jn.00140.2004] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Some olfactory sensory neurons (OSNs) respond to odors with hyperpolarization. Although transduction for excitatory responses is mediated by opening of a cyclic nucleotide-gated (CNG) channel, there is controversy on the mechanism underlying inhibitory responses. We find that mouse OSNs respond to odorants by either depolarizing or hyperpolarizing responses in loose-patch measurements. In the perforated-patch configuration, OSNs not only responded with a current consistent with CNG channel-mediated excitation but also displayed enhancement of outward currents, consistent with inhibitory responses. Increasing cAMP levels pharmacologically elicited excitatory or inhibitory responses in different OSNs. In addition, OSNs from mice defective for the CNGA2 subunit of the CNG channel displayed neither excitatory nor inhibitory responses. Thus CNG channels mediate inhibitory olfactory responses.
Collapse
Affiliation(s)
- Rona Delay
- 104 Marsh Life Science, Biology Dept., University of Vermont, Burlington, VT 05405, USA.
| | | |
Collapse
|
41
|
Dukes JP, Deaville R, Bruford MW, Youngson AF, Jordan WC. Odorant receptor gene expression changes during the parr-smolt transformation in Atlantic salmon. Mol Ecol 2004; 13:2851-7. [PMID: 15315695 DOI: 10.1111/j.1365-294x.2004.02252.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The ability of salmon to home accurately to their natal stream to spawn has long intrigued biologists and has important consequences for the maintenance of population structure in these species. It is known that olfaction is crucial to homing, and that the transition from the freshwater to the marine environment (the parr-smolt transformation; PST) is a period of increased olfactory sensitivity and learning, resulting in a permanent memory of natal site odours that is retained, at least in part, in peripheral sensory neurones. These odours are then used as cues by sexually maturing fish on their homeward migration. We used quantitative polymerase chain reaction techniques to demonstrate transient increases in expression of odorant receptor transcripts (of up to fifty-fold over pre-PST levels) coincident with PST. Both olfactory (SORB) and vomeronasal receptors (SVRA and SVRC) are involved, which suggests that the fish learn both environmental odours and semiochemicals (pheromones). Receptor expression varies between families and changes over time indicating both genetic differences in odour stimuli and multiple periods of olfactory sensitivity. We suggest that changes in OR gene expression may have a role in homing behaviour and thus the maintenance of population structure in Atlantic salmon.
Collapse
Affiliation(s)
- J P Dukes
- Institute of Zoology, Zoological Society of London, Regent's Park, NW1 4RY, UK
| | | | | | | | | |
Collapse
|
42
|
Mombaerts P. Odorant receptor gene choice in olfactory sensory neurons: the one receptor-one neuron hypothesis revisited. Curr Opin Neurobiol 2004; 14:31-6. [PMID: 15018935 DOI: 10.1016/j.conb.2004.01.014] [Citation(s) in RCA: 183] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Designed for general chemical recognition, the mammalian olfactory system shares many similarities with the immune system. Among these is the popular notion that a single olfactory sensory neuron expresses a single odorant receptor gene, while all other approximately 1000 genes of this type remain silent. Here, I examine the evidence supporting the one receptor-one neuron hypothesis. I conclude that, contrary to widespread belief, it is far from being proven. I propose an hypothesis of a developmental phase of oligogenic expression that is followed by positive and negative selection resulting usually in cells with one expressed receptor. Curiously, selective processes are well established and widely accepted for lymphocytes, but these concepts are essentially ignored for olfactory sensory neurons, despite the analogies that are frequently made between these two systems. More attention must be paid to odorant receptor gene choice and expression during development and neuronal differentiation.
Collapse
Affiliation(s)
- Peter Mombaerts
- The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA.
| |
Collapse
|
43
|
Affiliation(s)
- Peter Mombaerts
- The Rockefeller University, 1230 York Avenue, New York, New York 10021, USA.
| |
Collapse
|
44
|
Hoppe R, Frank H, Breer H, Strotmann J. The clustered olfactory receptor gene family 262: genomic organization, promotor elements, and interacting transcription factors. Genome Res 2004; 13:2674-85. [PMID: 14656972 PMCID: PMC403809 DOI: 10.1101/gr.1372203] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
For six mouse olfactory receptor genes from family 262 which are expressed in clustered populations of olfactory sensory neurons, the genomic as well as cDNA structures were deciphered. All genes contained several exons which in some cases were alternatively spliced. Immediately upstream of the transcription start sites, sequence motif blocks were identified that are highly conserved among olfactory receptor (OR) genes which are expressed in clustered neuronal populations. By means of electrophoretic mobility shift assays, it was demonstrated that segments of the motif block region interact with proteins extracted from nuclear fractions of the olfactory epithelium. Yeast one-hybrid screenings of an olfactory cDNA library led to the identification of a set of transcription factors that specifically bind to particular elements of the motif block region. The identified factors can be categorized into two types: One group is known to be involved in transcriptional initiation, and the second group represents factors involved in pattern formations. The identified components may contribute to govern the precise topographic expression pattern of olfactory receptor genes.
Collapse
Affiliation(s)
- Reiner Hoppe
- Institute of Physiology, University of Hohenheim, 70593 Stuttgart, Germany
| | | | | | | |
Collapse
|
45
|
Araneda RC, Peterlin Z, Zhang X, Chesler A, Firestein S. A pharmacological profile of the aldehyde receptor repertoire in rat olfactory epithelium. J Physiol 2004; 555:743-56. [PMID: 14724183 PMCID: PMC1664868 DOI: 10.1113/jphysiol.2003.058040] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Several lines of evidence suggest that odorants are recognized through a combinatorial process in the olfactory system; a single odorant is recognized by multiple receptors and multiple odorants are recognized by the same receptor. However few details of how this might actually function for any particular odour set or receptor family are available. Approaching the problem from the ligands rather than the receptors, we used the response to a common odorant, octanal, as the basis for defining multiple receptor profiles. Octanal and other aldehydes induce large EOG responses in the rodent olfactory epithelium, suggesting that these compounds activate a large number of odour receptors (ORs). Here, we have determined and compared the pharmacological profile of different octanal receptors using Ca(2+) imaging in isolated olfactory sensory neurones (OSNs). It is believed that each OSN expresses only one receptor, thus the response profile of each cell corresponds to the pharmacological profile of one particular receptor. We stimulated the cells with a panel of nine odorants, which included octanal, octanoic acid, octanol and cinnamaldehyde among others (all at 30microM). Cluster analysis revealed several distinct pharmacological profiles for cells that were all sensitive to octanal. Some receptors had a broad molecular range, while others were activated only by octanal. Comparison of the profiles with that of the one identified octanal receptor, OR-I7, indicated several differences. While OR-I7 is activated by low concentrations of octanal and blocked by citral, other receptors were less sensitive to octanal and not blocked by citral. A lower estimate for the maximal number of octanal receptors is between 33 and 55. This large number of receptors for octanal suggests that, although the peripheral olfactory system is endowed with high sensitivity, discrimination among different compounds probably requires further central processing.
Collapse
Affiliation(s)
- Ricardo C Araneda
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA.
| | | | | | | | | |
Collapse
|
46
|
Abstract
Olfactory receptors lead lives of exclusivity and privilege, the monarchs of fiefdoms organized solely to carry out their instructions. Each olfactory sensory neuron expresses one allele of one of approximately 1000 olfactory receptor genes. It is thought that olfactory receptor diversity is critical for the ability of animals to detect many thousands of odorants, but supporting functional evidence has been difficult to obtain because olfactory receptors expressed in heterologous cells are typically retained in the endoplasmic reticulum. The membrane trafficking entitlements enjoyed by olfactory receptors appear to be available only in mature olfactory sensory neurons. Evidence is accumulating that cell-type-specific accessory proteins regulate first the exit of olfactory receptors from the endoplasmic reticulum, and then the trafficking of olfactory receptors from post-Golgi compartments to the plasma membrane of the olfactory cilia where the receptors gain access to odorants. Critical olfactory receptor accessory proteins are known only in the nematode Caenorhabditis elegans, where the absence of a novel protein called ODR-4 or a clathrin adaptor, UNC-101, interferes with proper trafficking. Similar functional specificity also occurs in a parallel chemosensory system, the mammalian vomeronasal organ. Trafficking of the V2R type of vomeronasal receptors is mediated by a vomeronasal-specific family of major histocompatibility complex proteins. Removal of olfactory receptors from the plasma membrane may be regulated in a more conventional fashion because odor stimulation has been linked to receptor phosphorylation, to the function of G-protein coupled receptor kinase 3, and to an increase in vesicles retrieved from the plasma membrane.
Collapse
|
47
|
Volz A, Ehlers A, Younger R, Forbes S, Trowsdale J, Schnorr D, Beck S, Ziegler A. Complex transcription and splicing of odorant receptor genes. J Biol Chem 2003; 278:19691-701. [PMID: 12637542 DOI: 10.1074/jbc.m212424200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human major histocompatibility (human leucocyte antigen (HLA)) complex-linked odorant receptor (OR) genes are among the best characterized OR genes in the human genome. In addition to their functions as odorant receptors in olfactory epithelium, they have been suggested to play a role in the fertilization process. Here, we report the first in-depth analysis of their expression and regulation within testicular tissue. Sixteen HLA-linked OR and three non-HLA-linked OR were analyzed. One OR gene (hs6M1-16, in positive transcriptional orientation) exhibited six different transcriptional start sites combined with extensive alternative splicing within the 5'-untranslated region, the coding exon, and the 3'-untranslated region. Long distance splicing, exon sharing, and premature polyadenylation were features of another three OR loci (hs6M1-18, -21, and -27, all upstream of hs6M1-16, but in negative transcriptional orientation). Determination of the transcriptional start sites of these OR genes identified a region of 81 bp with potential bi-directional transcriptional activity. The results demonstrate that HLA-linked OR genes are subject to unusually complex transcriptional regulatory mechanisms.
Collapse
Affiliation(s)
- Armin Volz
- Institut für Immungenetik, Universitätsklinikum Charité, Humboldt-Universität zu Berlin, Spandauer Damm 130, Germany
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Dobritsa AA, van der Goes van Naters W, Warr CG, Steinbrecht RA, Carlson JR. Integrating the molecular and cellular basis of odor coding in the Drosophila antenna. Neuron 2003; 37:827-41. [PMID: 12628173 DOI: 10.1016/s0896-6273(03)00094-1] [Citation(s) in RCA: 398] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
We investigate how the molecular and cellular maps of the Drosophila olfactory system are integrated. A correspondence is established between individual odor receptors, neurons, and odors. We describe the expression of the Or22a and Or22b receptor genes, show localization to dendritic membranes, and find sexual dimorphism. Or22a maps to the ab3A neuron, which responds to ethyl butyrate. Analysis of a deletion mutant lacking Or22a, along with transgenic rescue experiments, confirms the mapping and demonstrates that an Or gene is required for olfactory function in vivo. Ectopic expression of Or47a in a mutant cell identifies the neuron from which it derives and its odor ligands. Ectopic expression in a wild-type cell shows that two receptors can function in a single cell. The ab3A neuron does not depend on normal odor receptor gene expression to navigate to its target in the CNS.
Collapse
Affiliation(s)
- Anna A Dobritsa
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | | | | | | | | |
Collapse
|
49
|
Cometto-Muñiz JE, Cain WS, Abraham MH. Dose-addition of individual odorants in the odor detection of binary mixtures. Behav Brain Res 2003; 138:95-105. [PMID: 12493633 DOI: 10.1016/s0166-4328(02)00234-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In a series of experiments, we have explored the rules of olfactory detection agonism between the odorants butyl acetate and toluene. First, we obtained the concentration-detection function for the odor of the individual compounds. Second, we selected the concentrations of the two substances producing three levels of detectability (low, medium, and high) and, for each level, tested the comparative detectability of the two single chemicals and three mixtures of varying proportions. In each case, the mixtures were prepared in such a way that, if a rule of complete dose addition were to hold, all five stimuli (two single, three mixtures) should be equally detected. The outcome revealed complete dose addition at relatively low detectability levels but fell short of dose addition at medium and high levels. A recent analogous study on trigeminal chemosensory detection via nasal pungency and eye irritation of these same stimuli have shown a similar trend but showed a less dramatic loss of dose additivity with increased detectability. These results on detection of mixtures suggest a more selective window of chemical tuning (i.e. less dose addition) in olfaction than in trigeminal chemoreception.
Collapse
Affiliation(s)
- J Enrique Cometto-Muñiz
- Department of Surgery (Otolaryngology), University of California, San Diego, 9500 Gilman Dr, La Jolla, CA 92093-0957, USA.
| | | | | |
Collapse
|
50
|
Abstract
Gap junctions represent an important mode of intercellular communication. Connexin 45 (Cx45) is a member of the connexin family that forms gap junctions between adjacent cells. In this study, we demonstrate the expression of Cx45 in the olfactory epithelium and olfactory bulb in adult mice. Reverse transcription polymerase chain reaction amplification of total RNA from mouse turbinates and olfactory bulb yielded cDNA fragments partially encoding for Cx45. In situ hybridization using Cx45 cRNA probes revealed that hybridization products were more abundant in the olfactory epithelial layer than in the lamina propria underneath the epithelium. In the olfactory epithelial layer, hybridization signals were relatively intense in a band spreading from the basal cell layer to 4/5 of the distance from the basal cell layer to the apical process. The distribution of cells positive for Cx45 mRNA is largely overlapping with that of cells expressing olfactory marker protein mRNA, indicating that a substantial number of mature olfactory neurons express Cx45 mRNA. In the olfactory bulb, cells with large nuclei in the mitral cell layer, presumably mitral cells, express Cx45 mRNA. Immunoblotting with an antibody recognizing Cx45 revealed a band at approximately 46 kDa in homogenates of mouse turbinates and olfactory bulb. Immunohistochemical studies showed fine immunoreactive puncta in the olfactory epithelium. Immunoreactivity was observed surrounding cell bodies and the proximal processes of mitral cells in the olfactory bulb. The data suggest that Cx45 is a neuronal connexin that is expressed in mature neurons in adult mice. Our study implicates a functional role for Cx45 in the olfactory system deserving future study.
Collapse
Affiliation(s)
- Chunbo Zhang
- Department of Cellular and Structural Biology, Neuroscience Program and the Rocky Mountain Taste and Smell Center, University of Colorado Health Sciences Center, 4200 E. Ninth Avenue, Denver, CO 80262, USA.
| | | |
Collapse
|