1
|
Parmar P, Spahic H, Lechner C, St Pierre M, Carlin K, Nugent M, Chavez-Valdez R. Neonatal hypoxia-ischemia alters the events governing the hippocampal critical period of postnatal synaptic plasticity leading to deficits in working memory in mice. Neurobiol Dis 2024; 202:106722. [PMID: 39486775 PMCID: PMC11646096 DOI: 10.1016/j.nbd.2024.106722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 10/04/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024] Open
Abstract
Postnatal critical periods of synaptic plasticity (CPsp) are characterized by profound neural network refinement, which is shaped by synaptic activity and sculpted by maturation of the GABAergic network. Even after therapeutic hypothermia (TH), neonatal hypoxia-ischemia (HI) impairs two triggers for the initiation of the CPsp in the hippocampus: i) PSA-NCAM developmental decline and ii) parvalbumin (PV) + interneuron (IN) maturation. Thus, we investigated whether neonatal HI despite TH disturbs other events governing the onset, consolidation and closure of the postnatal CPsp in the hippocampus. We induced cerebral HI in P10 C57BL6 mice with right carotid ligation and 45 m of hypoxia (FiO2 = 0.08), followed by normothermia (36 °C, NT) or TH (31 °C) for 4 h with anesthesia-exposed shams as controls. ELISA, immunoblotting and immunohistochemistry were performed at 24 h (P11), 5 days (P15), 8 days (P18) and 30 days (P40) after HI injury. We specifically assessed: i) BDNF levels and TrkB activation, controlling the CPsp, ii) Otx2 and NPTX2 immunoreactivity (IR), engaging CPsp onset and iii) NogoR1, Lynx1 IR, PNN formation and myelination (MBP) mediating CPsp closure. Pups aged to P40 also received a battery of tests assessing working memory. Here, we documented deficits in hippocampal BDNF levels and TrkB activation at P18 in response to neonatal HI even with TH. Neonatal HI impaired in the CA1 the developmental increase in PV, Otx2, and NPTX2 between P11 and P18, the colocalization of Otx2 and PV at P18 and P40, the accumulation of NPTX2 in PV+ dendrites at P18 and P40, and the expression of NogoR at P40. Furthermore, neonatal HI decreased BDNF and impaired PNN development and myelination (MBP) at P40. Most of these abnormalities were insensitive to TH and correlated with memory deficits. Neonatal HI appears to disrupt many of the molecular and structural events initiating and consolidating the postnatal hippocampal CPsp, perhaps due to the early and delayed deficits in TrkB activation leading to memory deficits.
Collapse
Affiliation(s)
- Pritika Parmar
- Department of Neuroscience, The Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Harisa Spahic
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Charles Lechner
- Department of Neuroscience, The Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Mark St Pierre
- Department of Neuroscience, The Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD, USA
| | | | - Michael Nugent
- Department of Neuroscience, The Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Raul Chavez-Valdez
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD, USA; Neuroscience Intensive Care Nursery Program, Johns Hopkins University- School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
2
|
Licheri V, Brigman JL. Altering Cell-Cell Interaction in Prenatal Alcohol Exposure Models: Insight on Cell-Adhesion Molecules During Brain Development. Front Mol Neurosci 2022; 14:753537. [PMID: 34975396 PMCID: PMC8715949 DOI: 10.3389/fnmol.2021.753537] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 11/11/2021] [Indexed: 11/17/2022] Open
Abstract
Alcohol exposure during pregnancy disrupts the development of the brain and produces long lasting behavioral and cognitive impairments collectively known as Fetal Alcohol Spectrum Disorders (FASDs). FASDs are characterized by alterations in learning, working memory, social behavior and executive function. A large body of literature using preclinical prenatal alcohol exposure models reports alcohol-induced changes in architecture and activity in specific brain regions affecting cognition. While multiple putative mechanisms of alcohol’s long-lasting effects on morphology and behavior have been investigated, an area that has received less attention is the effect of alcohol on cell adhesion molecules (CAMs). The embryo/fetal development represents a crucial period for Central Nervous System (CNS) development during which the cell-cell interaction plays an important role. CAMs play a critical role in neuronal migration and differentiation, synaptic organization and function which may be disrupted by alcohol. In this review, we summarize the physiological structure and role of CAMs involved in brain development, review the current literature on prenatal alcohol exposure effects on CAM function in different experimental models and pinpoint areas needed for future study to better understand how CAMs may mediate the morphological, sensory and behavioral outcomes in FASDs.
Collapse
Affiliation(s)
- Valentina Licheri
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, United States
| | - Jonathan L Brigman
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, United States.,New Mexico Alcohol Research Center, UNM Health Sciences Center, Albuquerque, NM, United States
| |
Collapse
|
3
|
Chavez-Valdez R, Lechner C, Emerson P, Northington FJ, Martin LJ. Accumulation of PSA-NCAM marks nascent neurodegeneration in the dorsal hippocampus after neonatal hypoxic-ischemic brain injury in mice. J Cereb Blood Flow Metab 2021; 41:1039-1057. [PMID: 32703109 PMCID: PMC8054724 DOI: 10.1177/0271678x20942707] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Neonatal hypoxia-ischemia (nHI) disrupts hippocampal GABAergic development leading to memory deficits in mice. Polysialic-acid neural-cell adhesion molecule (PSA-NCAM) developmentally declines to trigger GABAergic maturation. We hypothesized that nHI changes PSA-NCAM abundance and cellular distribution, impairing GABAergic development, and marking nascent neurodegeneration. Cell degeneration, atrophy, and PSA-NCAM immunoreactivity (IR) were measured in CA1 of nHI-injured C57BL6 mice related to: (i) cellular subtype markers; (ii) GAD65/67 and synatophysin (SYP), pre-synaptic markers; (iii) phospho-Ser396Tau, cytoskeletal marker; and (iv) GAP43, axonalregeneration marker. PSA-NCAM IR was minimal in CA1 of shams at P11. After nHI, PSA-NCAM IR was increased in injured pyramidal cells (PCs), minimal in parvalbumin (PV)+INs, and absent in glia. PSA-NCAM IR correlated with injury severity and became prominent in perikaryal cytoplasm at P18. GAD65/67 and SYP IRs only weakly related to PSA-NCAM after nHI. Injured phospho-Ser396Tau+ PCs and PV+INs variably co-expressed PSA-NCAM at P40. While PCs with cytoplasmic marginalized PSA-NCAM had increased perisomatic GAP43, those with perikaryal cytoplasmic PSA-NCAM had minimal GAP43. PSA-NCAM increased in serum of nHI-injured mice. Increased PSA-NCAM is likely a generic acute response to nHI brain injury. PSA-NCAM aberrant cellular localization may aggravate neuronal degeneration. The significance of PSA-NCAM as a biomarker of recovery from nHI and nascent neurodegeneration needs further study.
Collapse
Affiliation(s)
- Raul Chavez-Valdez
- Division of Neonatology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Charles Lechner
- Division of Neonatology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Paul Emerson
- Department of Neuroscience, Johns Hopkins University, Baltimore, MD, USA
| | - Frances J Northington
- Division of Neonatology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lee J Martin
- Department of Neuroscience, Johns Hopkins University, Baltimore, MD, USA.,Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
4
|
Almeida L, Andreu-Fernández V, Navarro-Tapia E, Aras-López R, Serra-Delgado M, Martínez L, García-Algar O, Gómez-Roig MD. Murine Models for the Study of Fetal Alcohol Spectrum Disorders: An Overview. Front Pediatr 2020; 8:359. [PMID: 32760684 PMCID: PMC7373736 DOI: 10.3389/fped.2020.00359] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 05/29/2020] [Indexed: 12/15/2022] Open
Abstract
Prenatal alcohol exposure is associated to different physical, behavioral, cognitive, and neurological impairments collectively known as fetal alcohol spectrum disorder. The underlying mechanisms of ethanol toxicity are not completely understood. Experimental studies during human pregnancy to identify new diagnostic biomarkers are difficult to carry out beyond genetic or epigenetic analyses in biological matrices. Therefore, animal models are a useful tool to study the teratogenic effects of alcohol on the central nervous system and analyze the benefits of promising therapies. Animal models of alcohol spectrum disorder allow the analysis of key variables such as amount, timing and frequency of ethanol consumption to describe the harmful effects of prenatal alcohol exposure. In this review, we aim to synthetize neurodevelopmental disabilities in rodent fetal alcohol spectrum disorder phenotypes, considering facial dysmorphology and fetal growth restriction. We examine the different neurodevelopmental stages based on the most consistently implicated epigenetic mechanisms, cell types and molecular pathways, and assess the advantages and disadvantages of murine models in the study of fetal alcohol spectrum disorder, the different routes of alcohol administration, and alcohol consumption patterns applied to rodents. Finally, we analyze a wide range of phenotypic features to identify fetal alcohol spectrum disorder phenotypes in murine models, exploring facial dysmorphology, neurodevelopmental deficits, and growth restriction, as well as the methodologies used to evaluate behavioral and anatomical alterations produced by prenatal alcohol exposure in rodents.
Collapse
Affiliation(s)
- Laura Almeida
- Maternal and Child Health and Development Network II (SAMID II), Instituto de Salud Carlos III (ISCIII), Barcelona, Spain
- Fundació Sant Joan de Déu, Barcelona, Spain
- BCNatal Barcelona Center for Maternal Fetal and Neonatal Medicine, Hospital Sant Joan de Déu and Hospital Clínic, Barcelona, Spain
| | - Vicente Andreu-Fernández
- Maternal and Child Health and Development Network II (SAMID II), Instituto de Salud Carlos III (ISCIII), Barcelona, Spain
- Nutrition and Health Deparment, Valencian International University (VIU), Valencia, Spain
- Grup de Recerca Infancia i Entorn (GRIE), Institut D'investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Elisabet Navarro-Tapia
- Maternal and Child Health and Development Network II (SAMID II), Instituto de Salud Carlos III (ISCIII), Barcelona, Spain
- BCNatal Barcelona Center for Maternal Fetal and Neonatal Medicine, Hospital Sant Joan de Déu and Hospital Clínic, Barcelona, Spain
- Grup de Recerca Infancia i Entorn (GRIE), Institut D'investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Rosa Aras-López
- Maternal and Child Health and Development Network II (SAMID II), Instituto de Salud Carlos III (ISCIII), Barcelona, Spain
- Congenital Malformations Lab, Institute of Medicine and Molecular Genetic (INGEMM), Institute for Health Research of La Paz Universitary Hospital (IdiPAZ), Madrid, Spain
| | - Mariona Serra-Delgado
- BCNatal Barcelona Center for Maternal Fetal and Neonatal Medicine, Hospital Sant Joan de Déu and Hospital Clínic, Barcelona, Spain
| | - Leopoldo Martínez
- Maternal and Child Health and Development Network II (SAMID II), Instituto de Salud Carlos III (ISCIII), Barcelona, Spain
- Congenital Malformations Lab, Institute of Medicine and Molecular Genetic (INGEMM), Institute for Health Research of La Paz Universitary Hospital (IdiPAZ), Madrid, Spain
- Department of Pediatric Surgery, Hospital Universitario La Paz, Madrid, Spain
| | - Oscar García-Algar
- Maternal and Child Health and Development Network II (SAMID II), Instituto de Salud Carlos III (ISCIII), Barcelona, Spain
- Grup de Recerca Infancia i Entorn (GRIE), Institut D'investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Department of Neonatology, Hospital Clínic-Maternitat, ICGON, IDIBAPS, BCNatal, Barcelona, Spain
| | - María Dolores Gómez-Roig
- Maternal and Child Health and Development Network II (SAMID II), Instituto de Salud Carlos III (ISCIII), Barcelona, Spain
- Fundació Sant Joan de Déu, Barcelona, Spain
- BCNatal Barcelona Center for Maternal Fetal and Neonatal Medicine, Hospital Sant Joan de Déu and Hospital Clínic, Barcelona, Spain
| |
Collapse
|
5
|
Turbpaiboon C, Siripan W, Nimnoi P, Sreekanth GP, Wiriyarat W, Tassaneetrithep B, Chompoopong S. Neural cell adhesion molecule (NCAM) and polysialic acid–NCAM expression in developing ICR mice. ASIAN BIOMED 2019. [DOI: 10.1515/abm-2019-0018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Background
Coexpression of polysialic acid (PSA)–neuronal cell adhesion molecule (NCAM) with immature neuronal markers is used to indicate the developmental state of neurons generated in the subgranular zone (SGZ) of adult hippocampus. PSA–NCAM is highly expressed throughout the embryonic and juvenile mammalian brain, but heavily downregulated in adult brain.
Objective
To visualize the expression profiles of NCAM/PSA–NCAM in the dentate SGZ of the hippocampus in developing ICR mice.
Methods
Cellular distribution, expression, and developmental changes of NCAM/PSA–NCAM were studied in ICR mice at embryonic age 17 days (E17); and similarly at postnatal ages P3, P5, and P7. The SGZ was studied using NCAM and PSA–NCAM immunoreactive staining with or without hematoxylin counterstaining. Western blotting was used to confirm protein expression levels.
Results
NCAM expression was localized to the surface of neurons and glia and was higher in postnatal mice than it was in embryonic mice. PSA–NCAM was found in cytoplasm and membrane of neural cells, more densely staining in the dentate SGZ at P7, but no staining found at E17. Western blotting of brain tissues also showed expression of both PSA–NCAM and NCAM increased significantly at P5 and P7 compared with expression at P3.
Conclusions
Progressive increase in NCAM expression occurs in the SGZ during embryogenic and postnatal development. PSA–NCAM was not expressed in embryonic ICR mice, but was increased after birth and highly localized in the SGZ at P7. This NCAM expression pattern in the developing brain indicating structural plasticity and neurogenesis may be useful for study of brain repair.
Collapse
Affiliation(s)
- Chairat Turbpaiboon
- Department of Anatomy, Faculty of Medicine, Siriraj Hospital, Mahidol University , Bangkok 10700 , Bangkok , Thailand
| | - Wongsakorn Siripan
- Department of Anatomy, Faculty of Medicine, Siriraj Hospital, Mahidol University , Bangkok 10700 , Bangkok , Thailand
| | - Pornkanok Nimnoi
- Department of Anatomy, Faculty of Medicine, Siriraj Hospital, Mahidol University , Bangkok 10700 , Bangkok , Thailand
| | - Gopinathan Pillai Sreekanth
- Department of Research and Development, Faculty of Medicine, Siriraj Hospital, Mahidol University , Bangkok 10700 , Bangkok , Thailand
| | - Witthawat Wiriyarat
- Department of Pre-clinical and Applied Animal Science, Faculty of Veterinary Science, Mahidol University , Bangkok 10700 , Bangkok , Thailand
| | - Boonrat Tassaneetrithep
- Department of Research and Development, Faculty of Medicine, Siriraj Hospital, Mahidol University , Bangkok 10700 , Bangkok , Thailand
| | - Supin Chompoopong
- Department of Anatomy, Faculty of Medicine, Siriraj Hospital, Mahidol University , Bangkok 10700 , Bangkok , Thailand
| |
Collapse
|
6
|
Szabo R, Skropeta D. Advancement of Sialyltransferase Inhibitors: Therapeutic Challenges and Opportunities. Med Res Rev 2016; 37:219-270. [DOI: 10.1002/med.21407] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 07/14/2016] [Accepted: 08/03/2016] [Indexed: 01/06/2023]
Affiliation(s)
- Rémi Szabo
- School of Chemistry; University of Wollongong; Wollongong NSW 2522 Australia
| | - Danielle Skropeta
- School of Chemistry; University of Wollongong; Wollongong NSW 2522 Australia
- Centre for Medical & Molecular Bioscience; University of Wollongong; Wollongong NSW 2522 Australia
| |
Collapse
|
7
|
Gupta KK, Gupta VK, Shirasaka T. An Update on Fetal Alcohol Syndrome-Pathogenesis, Risks, and Treatment. Alcohol Clin Exp Res 2016; 40:1594-602. [PMID: 27375266 DOI: 10.1111/acer.13135] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Accepted: 05/23/2016] [Indexed: 11/27/2022]
Abstract
Alcohol is a well-established teratogen that can cause variable physical and behavioral effects on the fetus. The most severe condition in this spectrum of diseases is known as fetal alcohol syndrome (FAS). The differences in maternal and fetal enzymes, in terms of abundance and efficiency, in addition to reduced elimination, allow for alcohol to have a prolonged effect on the fetus. This can act as a teratogen through numerous methods including reactive oxygen species (generated as by products of CYP2E1), decreased endogenous antioxidant levels, mitochondrial damage, lipid peroxidation, disrupted neuronal cell-cell adhesion, placental vasoconstriction, and inhibition of cofactors required for fetal growth and development. More recently, alcohol has also been shown to have epigenetic effects. Increased fetal exposure to alcohol and sustained alcohol intake during any trimester of pregnancy is associated with an increased risk of FAS. Other risk factors include genetic influences, maternal characteristics, for example, lower socioeconomic statuses and smoking, and paternal chronic alcohol use. The treatment options for FAS have recently started to be explored although none are currently approved clinically. These include prenatal antioxidant administration food supplements, folic acid, choline, neuroactive peptides, and neurotrophic growth factors. Tackling the wider impacts of FAS, such as comorbidities, and the family system have been shown to improve the quality of life of FAS patients. This review aimed to focus on the pathogenesis, especially mechanisms of alcohol teratogenicity, and risks of developing FAS. Recent developments in potential management strategies, including prenatal interventions, are discussed.
Collapse
Affiliation(s)
| | - Vinay K Gupta
- School of Medicine, University of Birmingham, Birmingham, UK
| | - Tomohiro Shirasaka
- Department of Neuropsychiatry, School of Medicine, Sapporo Medical University, Sapporo, Japan
| |
Collapse
|
8
|
Effects of pre-natal alcohol exposure on hippocampal synaptic plasticity: Sex, age and methodological considerations. Neurosci Biobehav Rev 2016; 64:12-34. [PMID: 26906760 DOI: 10.1016/j.neubiorev.2016.02.014] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 01/14/2016] [Accepted: 02/18/2016] [Indexed: 12/28/2022]
Abstract
The consumption of alcohol during gestation is detrimental to the developing central nervous system (CNS). The severity of structural and functional brain alterations associated with alcohol intake depends on many factors including the timing and duration of alcohol consumption. The hippocampal formation, a brain region implicated in learning and memory, is highly susceptible to the effects of developmental alcohol exposure. Some of the observed effects of alcohol on learning and memory may be due to changes at the synaptic level, as this teratogen has been repeatedly shown to interfere with hippocampal synaptic plasticity. At the molecular level alcohol interferes with receptor proteins and can disrupt hormones that are important for neuronal signaling and synaptic plasticity. In this review we examine the consequences of prenatal and early postnatal alcohol exposure on hippocampal synaptic plasticity and highlight the numerous factors that can modulate the effects of alcohol. We also discuss some potential mechanisms responsible for these changes as well as emerging therapeutic avenues that are beginning to be explored.
Collapse
|
9
|
Fetal Alcohol Spectrum Disorder: Potential Role of Endocannabinoids Signaling. Brain Sci 2015; 5:456-93. [PMID: 26529026 PMCID: PMC4701023 DOI: 10.3390/brainsci5040456] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 10/19/2015] [Accepted: 10/19/2015] [Indexed: 12/15/2022] Open
Abstract
One of the unique features of prenatal alcohol exposure in humans is impaired cognitive and behavioral function resulting from damage to the central nervous system (CNS), which leads to a spectrum of impairments referred to as fetal alcohol spectrum disorder (FASD). Human FASD phenotypes can be reproduced in the rodent CNS following prenatal ethanol exposure. Several mechanisms are expected to contribute to the detrimental effects of prenatal alcohol exposure on the developing fetus, particularly in the developing CNS. These mechanisms may act simultaneously or consecutively and differ among a variety of cell types at specific developmental stages in particular brain regions. Studies have identified numerous potential mechanisms through which alcohol can act on the fetus. Among these mechanisms are increased oxidative stress, mitochondrial damage, interference with the activity of growth factors, glia cells, cell adhesion molecules, gene expression during CNS development and impaired function of signaling molecules involved in neuronal communication and circuit formation. These alcohol-induced deficits result in long-lasting abnormalities in neuronal plasticity and learning and memory and can explain many of the neurobehavioral abnormalities found in FASD. In this review, the author discusses the mechanisms that are associated with FASD and provides a current status on the endocannabinoid system in the development of FASD.
Collapse
|
10
|
Colley KJ, Kitajima K, Sato C. Polysialic acid: biosynthesis, novel functions and applications. Crit Rev Biochem Mol Biol 2014; 49:498-532. [PMID: 25373518 DOI: 10.3109/10409238.2014.976606] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
As an anti-adhesive, a reservoir for key biological molecules, and a modulator of signaling, polysialic acid (polySia) is critical for nervous system development and maintenance, promotes cancer metastasis, tissue regeneration and repair, and is implicated in psychiatric diseases. In this review, we focus on the biosynthesis and functions of mammalian polySia, and the use of polySia in therapeutic applications. PolySia modifies a small subset of mammalian glycoproteins, with the neural cell adhesion molecule, NCAM, serving as its major carrier. Studies show that mammalian polysialyltransferases employ a unique recognition mechanism to limit the addition of polySia to a select group of proteins. PolySia has long been considered an anti-adhesive molecule, and its impact on cell adhesion and signaling attributed directly to this property. However, recent studies have shown that polySia specifically binds neurotrophins, growth factors, and neurotransmitters and that this binding depends on chain length. This work highlights the importance of considering polySia quality and quantity, and not simply its presence or absence, as its various roles are explored. The capsular polySia of neuroinvasive bacteria allows these organisms to evade the host immune response. While this "stealth" characteristic has made meningitis vaccine development difficult, it has also made polySia a worthy replacement for polyetheylene glycol in the generation of therapeutic proteins with low immunogenicity and improved circulating half-lives. Bacterial polysialyltransferases are more promiscuous than the protein-specific mammalian enzymes, and new studies suggest that these enzymes have tremendous therapeutic potential, especially for strategies aimed at neural regeneration and tissue repair.
Collapse
Affiliation(s)
- Karen J Colley
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago , Chicago, IL , USA and
| | | | | |
Collapse
|
11
|
Shi Y, Li J, Chen C, Gong M, Chen Y, Liu Y, Chen J, Li T, Song W. 5-Mehtyltetrahydrofolate rescues alcohol-induced neural crest cell migration abnormalities. Mol Brain 2014; 7:67. [PMID: 25223405 PMCID: PMC4172781 DOI: 10.1186/s13041-014-0067-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 08/29/2014] [Indexed: 11/16/2022] Open
Abstract
Background Alcohol is detrimental to early development. Fetal alcohol spectrum disorders (FASD) due to maternal alcohol abuse results in a series of developmental abnormalities including cranial facial dysmorphology, ocular anomalies, congenital heart defects, microcephaly and intellectual disabilities. Previous studies have been shown that ethanol exposure causes neural crest (NC) apoptosis and perturbation of neural crest migration. However, the underlying mechanism remains elusive. In this report we investigated the fetal effect of alcohol on the process of neural crest development in the Xenopus leavis. Results Pre-gastrulation exposure of 2-4% alcohol induces apoptosis in Xenopus embryo whereas 1% alcohol specifically impairs neural crest migration without observing discernible apoptosis. Additionally, 1% alcohol treatment considerably increased the phenotype of small head (43.4% ± 4.4%, total embryo n = 234), and 1.5% and 2.0% dramatically augment the deformation to 81.2% ± 6.5% (n = 205) and 91.6% ± 3.0% (n = 235), respectively (P < 0.05). Significant accumulation of Homocysteine was caused by alcohol treatment in embryos and 5-mehtyltetrahydrofolate restores neural crest migration and alleviates homocysteine accumulation, resulting in inhibition of the alcohol-induced neurocristopathies. Conclusions Our study demonstrates that prenatal alcohol exposure causes neural crest cell migration abnormality and 5-mehtyltetrahydrofolate could be beneficial for treating FASD.
Collapse
|
12
|
Alfonso-Loeches S, Ureña-Peralta JR, Morillo-Bargues MJ, Oliver-De La Cruz J, Guerri C. Role of mitochondria ROS generation in ethanol-induced NLRP3 inflammasome activation and cell death in astroglial cells. Front Cell Neurosci 2014; 8:216. [PMID: 25136295 PMCID: PMC4118026 DOI: 10.3389/fncel.2014.00216] [Citation(s) in RCA: 214] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 07/17/2014] [Indexed: 12/30/2022] Open
Abstract
Toll-like receptors (TLRs) and NOD-like receptors (NLRs) are innate immunity sensors that provide an early/effective response to pathogenic or injury conditions. We have reported that ethanol-induced TLR4 activation triggers signaling inflammatory responses in glial cells, causing neuroinflammation and brain damage. However, it is uncertain if ethanol is able to activate NLRs/inflammasome in astroglial cells, which is the mechanism of activation, and whether there is crosstalk between both immune sensors in glial cells. Here we show that chronic ethanol treatment increases the co-localization of caspase-1 with GFAP+ cells, and up-regulates IL-1β and IL-18 in the frontal medial cortex in WT, but not in TLR4 knockout mice. We further show that cultured cortical astrocytes expressed several inflammasomes (NLRP3, AIM2, NLRP1, and IPAF), although NLRP3 mRNA is the predominant form. Ethanol, as ATP and LPS treatments, up-regulates NLRP3 expression, and causes caspase-1 cleavage and the release of IL-1β and IL-18 in astrocytes supernatant. Ethanol-induced NLRP3/caspase-1 activation is mediated by mitochondrial (m) reactive oxygen species (ROS) generation because when using a specific mitochondria ROS scavenger, the mito-TEMPO (500 μM) or NLRP3 blocking peptide (4 μg/ml) or a specific caspase-1 inhibitor, Z-YVAD-FMK (10 μM), abrogates mROS release and reduces the up-regulation of IL-1β and IL-18 induced by ethanol or LPS or ATP. Confocal microscopy studies further confirm that ethanol, ATP or LPS promotes NLRP3/caspase-1 complex recruitment within the mitochondria to promote cell death by caspase-1-mediated pyroptosis, which accounts for ≈73% of total cell death (≈22%) and the remaining (≈25%) die by caspase-3-dependent apoptosis. Suppression of the TLR4 function abrogates most ethanol effects on NLRP3 activation and reduces cell death. These findings suggest that NLRP3 participates, in ethanol-induced neuroinflammation and highlight the NLRP3/TLR4 crosstalk in ethanol-induced brain injury.
Collapse
Affiliation(s)
- Silvia Alfonso-Loeches
- Molecular and Cellular Pathology of Alcohol Laboratory, Prince Felipe Research Center Valencia, Spain
| | - Juan R Ureña-Peralta
- Molecular and Cellular Pathology of Alcohol Laboratory, Prince Felipe Research Center Valencia, Spain
| | | | - Jorge Oliver-De La Cruz
- Molecular and Cellular Pathology of Alcohol Laboratory, Prince Felipe Research Center Valencia, Spain
| | - Consuelo Guerri
- Molecular and Cellular Pathology of Alcohol Laboratory, Prince Felipe Research Center Valencia, Spain
| |
Collapse
|
13
|
Guest J, Grant R, Mori TA, Croft KD. Changes in oxidative damage, inflammation and [NAD(H)] with age in cerebrospinal fluid. PLoS One 2014; 9:e85335. [PMID: 24454842 PMCID: PMC3891813 DOI: 10.1371/journal.pone.0085335] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 12/04/2013] [Indexed: 12/27/2022] Open
Abstract
An extensive body of evidence indicates that oxidative stress and inflammation play a central role in the degenerative changes of systemic tissues in aging. However a comparatively limited amount of data is available to verify whether these processes also contribute to normal aging within the brain. High levels of oxidative damage results in key cellular changes including a reduction in available nicotinamide adenine dinucleotide (NAD+), an essential molecule required for a number of vital cellular processes including DNA repair, immune signaling and epigenetic processing. In this study we quantified changes in [NAD(H)] and markers of inflammation and oxidative damage (F2-isoprostanes, 8-OHdG, total antioxidant capacity) in the cerebrospinal fluid (CSF) of healthy humans across a wide age range (24–91 years). CSF was collected from consenting patients who required a spinal tap for the administration of anesthetic. CSF of participants aged >45 years was found to contain increased levels of lipid peroxidation (F2-isoprostanes) (p = 0.04) and inflammation (IL-6) (p = 0.00) and decreased levels of both total antioxidant capacity (p = 0.00) and NAD(H) (p = 0.05), compared to their younger counterparts. A positive association was also observed between plasma [NAD(H)] and CSF NAD(H) levels (p = 0.03). Further analysis of the data identified a relationship between alcohol intake and CSF [NAD(H)] and markers of inflammation. The CSF of participants who consumed >1 standard drink of alcohol per day contained lower levels of NAD(H) compared to those who consumed no alcohol (p<0.05). An increase in CSF IL-6 was observed in participants who reported drinking >0–1 (p<0.05) and >1 (p<0.05) standard alcoholic drinks per day compared to those who did not drink alcohol. Taken together these data suggest a progressive age associated increase in oxidative damage, inflammation and reduced [NAD(H)] in the brain which may be exacerbated by alcohol intake.
Collapse
Affiliation(s)
- Jade Guest
- Australasian Research Institute, Sydney Adventist Hospital, Sydney, New South Wales, Australia
- Department of Pharmacology, School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Ross Grant
- Department of Pharmacology, School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
- Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
- * E-mail:
| | - Trevor A. Mori
- School of Medicine and Pharmacology, Royal Perth Hospital Unit, University of Western Australia, Perth, Western Australia, Australia
| | - Kevin D. Croft
- School of Medicine and Pharmacology, Royal Perth Hospital Unit, University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
14
|
Wang M, Fu H, Xiao Y, Ai B, Wei Q, Wang S, Liu T, Ye L, Hu Q. Effects of low-level organic selenium on lead-induced alterations in neural cell adhesion molecules. Brain Res 2013; 1530:76-81. [PMID: 23892105 DOI: 10.1016/j.brainres.2013.07.028] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2013] [Revised: 07/12/2013] [Accepted: 07/17/2013] [Indexed: 01/18/2023]
Abstract
Low-level lead (Pb) exposure has been reported to impair the formation and consolidation of learning and memory by inhibiting the expression of neural cell adhesion molecules (NCAMs) and altering the temporal profile of its polysialylation state. In this study, we investigated whether administration of low-level organic selenium (selenomethionine, Se) at different time points could affect Pb-induced changes of NCAMs in female Wistar rats. Here we reported that the exposure of Se (60μg/kg body weight/day) at different time points significantly alleviated Pb-induced reductions in the mRNA and protein levels of NCAMs, and increases in the mRNA levels of two polysialyltransferases (St8sia II, Stx; St8sia IV, Pst) as well as the sialyltransferase activity (p<0.05). The concentrations of Pb in blood and hippocampi of Wistar rats treated with the combination of Se and Pb were significantly lower than those treated with Pb alone (p<0.05). Our results suggest that low-level organic Se can not only prevent but also reverse Pb-induced alterations in the expression and polysialylated state of NCAMs as well as the concentration of Pb in rat blood and hippocampus.
Collapse
Affiliation(s)
- Mao Wang
- Department of Preventive Medicine, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Luo J, Qiu Z, Chen J, Zhang L, Liu W, Tan Y, Shu W. Maternal and early life arsenite exposure impairs neurodevelopment and increases the expression of PSA-NCAM in hippocampus of rat offspring. Toxicology 2013; 311:99-106. [PMID: 23811142 DOI: 10.1016/j.tox.2013.06.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 06/18/2013] [Accepted: 06/18/2013] [Indexed: 11/19/2022]
Abstract
Although epidemiological investigations indicate that chronic arsenic exposure can induce developmental neurotoxicity in children, the molecular mechanisms are still poorly understood. Neural cell adhesion molecules (NCAMs) play critical roles during the development of nervous system. Polysialylation of NCAM (PSA-NCAM) is a critical functional feature of NCAM-mediated cell interactions and functions. The present study aimed at investigating the effects of maternal and early life arsenite exposure on NCAM and PSA-NCAM in rat offspring. To this end, mother rats were divided into three groups and exposed to 0, 2.72 and 13.6mg/L sodium arsenite, respectively, during gestation and lactation. After weaning, rat offspring drank the same solution as their mothers. Neural reflex parameters, arsenic level of hippocampus, ultra-structural changes of hippocampus, the expression of NCAM, PSA-NCAM and two polysialyltransferases (STX and PST) in rat offspring were assessed. Arsenite exposure significantly prolonged the time of completing reflex response of surface righting, negative geotaxis and cliff avoidance of rat offspring in 13.6mg/L As-exposed group. Neurons and capillaries presented pathological changes and the expression of NCAM, PSA-NCAM, STX and PST were up-regulated in hippocampus of rat offspring exposed to arsenite. These results indicated that maternal arsenite exposure increases the expression of PSA-NCAM, NCAM and polysialyltransferases in hippocampus of rat offspring on postnatal day (PND) 21 and PND120, which might contribute to the impaired neurodevelopment following arsenite exposure.
Collapse
Affiliation(s)
- Jiaohua Luo
- Department of Environmental Hygiene, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, PR China
| | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
Maternal alcohol use during pregnancy is prevalent, with as many as 12% of pregnant women consuming alcohol. Alcohol intake may vary from an occasional drink, to weekly binge drinking, to chronic alcohol use throughout pregnancy. Whereas there are certain known consequences from fetal alcohol exposure, such as fetal alcohol syndrome, other effects are less well defined. Craniofacial dysmorphologies, abnormalities of organ systems, behavioral and intellectual deficits, and fetal death have all been attributed to maternal alcohol consumption. This review article considers the theoretical mechanisms of how alcohol affects the fetus, including the variable susceptibility to fetal alcohol exposure and the implications of ethanol dose and timing of exposure. Criteria for diagnosis of fetal alcohol syndrome are discussed, as well as new methods for early detection of maternal alcohol use and fetal alcohol exposure, such as the use of fatty acid ethyl esters. Finally, current and novel treatment strategies, both in utero and post utero, are reviewed.
Collapse
|
17
|
Abstract
Currently in the UK, there is no absolute guidance about alcohol consumption in pregnancy. The guidance for drinking during pregnancy is one or two units of alcohol one or two times weekly, but conservative advice is to abstain as a cautionary measure. Despite the lack of consensus about the safe levels of alcohol consumption in pregnancy, there is increasing evidence of the impact of alcohol on the developing central nervous system. This article explores the evidence regarding alcohol consumption and its effects on the developing fetal central nervous system.
Collapse
|
18
|
Increased levels of monoamine-derived potential neurotoxins in fetal rat brain exposed to ethanol. Neurochem Res 2012. [PMID: 23184185 DOI: 10.1007/s11064-012-0926-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Pregnant SD rats were exposed to ethanol (25 % (v/v) ethanol at 1.0, 2.0 or 4.0 g/kg body weight from GD8 to GD20) to assess whether ethanol-derived acetaldehyde could interact with endogenous monoamine to generate tetrahydroisoquinoline or tetrahydro-beta-carboline in the fetuses. The fetal brain concentration of acetaldehyde increased remarkably after ethanol administration (2.6 times, 5.3 times and 7.8 times as compared to saline control in 1.0, 2.0 and 4.0 g/kg ethanol-treated groups, respectively) detected by HPLC with 2,4-dinitrophenylhydrazine derivatization. Compared to control, ethanol exposure induced the formation of 1-methyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline (salsolinol, Sal), N-methyl-salsolinol (NMSal) and 1-methyl-6-hydroxy-1,2,3,4-tetrahydro-beta-carboline (6-OH-MTHBC) in fetal rat brains. Determined by HPLC with electrochemical detector, the levels of dopamine and 5-hydroxytryptamine in whole fetal brain were not remarkably altered by ethanol treatment, while the levels of homovanillic acid and 5-hydroxyindole acetic acid in high dose (4.0 g/kg) of ethanol-treated rats were significantly decreased compared to that in the control animals. 4.0 g/kg ethanol administration inhibited the activity of mitochondrial monoamine oxidase (51.3 % as compared to control) and reduced the activity of respiratory chain complex I (61.2 % as compared to control). These results suggested that ethanol-induced alteration of monoamine metabolism and the accumulation of dopamine-derived catechol isoquinolines and 5-hydroxytryptamine-derived tetrahydro-beta-carbolines may play roles in the developmental dysfuction of monoaminergic neuronal systems.
Collapse
|
19
|
Hane M, Sumida M, Kitajima K, Sato C. Structural and functional impairments of polysialic acid (polySia)-neural cell adhesion molecule (NCAM) synthesized by a mutated polysialyltransferase of a schizophrenic patient. PURE APPL CHEM 2012. [DOI: 10.1351/pac-con-11-12-10] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Polysialic acid (polySia) is a homopolymer of sialic acid with a degree of polymerization (DP) of 8–400. When present on neural cell adhesion molecule (NCAM), polySia has anti-adhesive effects on cell–cell interactions owing to its bulky polyanionic nature, and is involved in the regulation of neurogenesis and neuronal functions. Recently, we demonstrated that polySia functions not only as an anti-cell adhesion molecule, but also as a reservoir scaffold for brain-derived neurotrophic factor (BDNF) and fibroblast growth factor 2 (FGF2), which are biologically active molecules in neurogenesis. To understand the significance of polySia structure in the reservoir function, we focused on polySia-NCAM biosynthesized by mutated polysialyltransferase (ST8SiaII or STX) that was reported in a schizophrenia patient. The polySia-NCAM biosynthesized by mutant ST8SiaII/STX contained less polySia with shorter chain length and exhibited impaired reservoir function for BDNF and FGF2 as compared with that synthesized by wild-type (wt) ST8SiaII/STX. Our findings suggest that the quantity and quality of polySia on NCAM are important for normal neuronal functioning.
Collapse
Affiliation(s)
- Masaya Hane
- 1Bioscience and Biotechnology Center, and the Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Mizuki Sumida
- 1Bioscience and Biotechnology Center, and the Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Ken Kitajima
- 1Bioscience and Biotechnology Center, and the Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Chihiro Sato
- 1Bioscience and Biotechnology Center, and the Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| |
Collapse
|
20
|
Alcohol induces Golgi fragmentation in differentiated PC12 cells by deregulating Rab1-dependent ER-to-Golgi transport. Histochem Cell Biol 2012; 138:489-501. [PMID: 22614950 DOI: 10.1007/s00418-012-0970-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2012] [Indexed: 10/28/2022]
Abstract
In the present study, we analyze the effects of ethanol on the Golgi structure and membrane transport in differentiated PC12 cells, which are used as a model of neurons. Chronic exposure to moderate doses of ethanol induces Golgi fragmentation, a common characteristic of many neurodegenerative diseases. Alcohol impaired the lateral linking of stacks without causing microtubule damage. Extensive immunocytochemical and western blot analyses of representative Golgi proteins showed that few, but important, proteins are significantly affected. Thus, alcohol exposure induced a significant ER-to-Golgi transport delay, the retention of the GTPase Rab1 in the Golgi membranes and the accumulation of tethering factor p115 in the cytosol. These modifications would explain the observed fragmentation. The amount of p115 and the stacking protein GRASP65 increased in alcohol-treated cells, which might be a mechanism to reverse Golgi damage. Importantly, the overexpression of GTP-tagged Rab1 but not of a dominant-negative Rab1 mutant, restored the Golgi morphology, suggesting that this protein is the main target of alcohol. Taken together, our results support the view that alcohol and neurodegenerative diseases such as Parkinson have similar effects on intracellular trafficking and provide new clues on the neuropathology of alcoholism.
Collapse
|
21
|
Binkhorst M, Wortmann SB, Funke S, Kozicz T, Wevers RA, Morava E. Glycosylation defects underlying fetal alcohol spectrum disorder: a novel pathogenetic model. "When the wine goes in, strange things come out" - S.T. Coleridge, The Piccolomini. J Inherit Metab Dis 2012; 35:399-405. [PMID: 22134542 PMCID: PMC3319878 DOI: 10.1007/s10545-011-9425-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 11/07/2011] [Accepted: 11/14/2011] [Indexed: 10/26/2022]
Abstract
Fetal alcohol spectrum disorder (FASD) is an umbrella term used to describe the craniofacial dysmorphic features, malformations, and disturbances in growth, neurodevelopment and behavior occurring in individuals prenatally exposed to alcohol. Fetal alcohol syndrome (FAS) represents the severe end of this spectrum. Many pathophysiological mechanisms have hitherto been proposed to account for the disrupted growth and morphogenesis seen in FAS. These include impaired cholesterol-modification of the Sonic hedgehog morphogen, retinoic acid deficiency, lipoperoxidative damage due to alcohol-induced reactive oxygen species combined with reduced antioxidant defences, and malfunctioning cell adhesion molecules. In this report, we propose a completely novel concept regarding the pathogenesis of FAS. Based on our observation that transferrin isoelectric focusing (TIEF) - the most widely used screening tool for congenital disorders of glycosylation (CDG) - was transiently abnormal in a newborn with FAS and a confirmed maternal history of gestational alcohol abuse, we came to believe that FAS exemplifies a congenital disorder of glycosylation secondary to alcohol-inflicted disruption of (N-linked) protein glycosylation. Various pieces of evidence were found in the literature to substantiate this hypothesis. This observation implies, among others, that one might need to consider the possibility of maternal alcohol consumption in newborns with transient glycosylation abnormalities. We also present an integrated pathophysiological model of FAS, which incorporates all existing theories mentioned above as well as our novel concept. This model highlights the pivotal role of disrupted isoprenoid metabolism in the origination of FAS.
Collapse
Affiliation(s)
- M. Binkhorst
- Department of Pediatrics, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
- Department of Pediatrics, Hieronymus Bosch Hospital, ‘s-Hertogenbosch, The Netherlands
| | - S. B. Wortmann
- Institute for Genetic and Metabolic Disease (IGMD), Department of Pediatrics, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
- Department of Pediatrics, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - S. Funke
- Department of Neonatology, Obstetrics and Gynecology, University of Pecs, Pecs, Hungary
| | - T. Kozicz
- Department of Cellular Animal Physiology at the Donders Centre of Neuroscience, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - R. A. Wevers
- Institute for Genetic and Metabolic Disease (IGMD), Department of Pediatrics, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
- Laboratory of Genetic Endocrine and Metabolic Diseases at the Department of Laboratory Medicine, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - E. Morava
- Institute for Genetic and Metabolic Disease (IGMD), Department of Pediatrics, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
- Department of Pediatrics, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| |
Collapse
|
22
|
Feasibility of Medaka (Oryzias latipes) as an Animal Model to Study Fetal Alcohol Spectrum Disorder. ADVANCES IN MOLECULAR TOXICOLOGY VOLUME 6 2012. [DOI: 10.1016/b978-0-444-59389-4.00003-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
23
|
Ono S, Hane M, Kitajima K, Sato C. Novel regulation of fibroblast growth factor 2 (FGF2)-mediated cell growth by polysialic acid. J Biol Chem 2011; 287:3710-22. [PMID: 22158871 DOI: 10.1074/jbc.m111.276618] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Polysialic acid (polySia) is a unique polysaccharide that modifies neural cell adhesion molecule (NCAM) spatiotemporally. Recently, we demonstrated that polySia functions as a reservoir for several neurotrophic factors and neurotransmitters. Here, we showed the direct interaction between polySia and fibroblast growth factor-2 (FGF2) by native-PAGE, gel filtration, and surface plasmon resonance. The minimum chain length of polySia required for the interaction with FGF2 was 17. Compared with heparan sulfate, a well known glycosaminoglycan capable of forming a complex with FGF2, polySia formed a larger complex with distinct properties in facilitating oligomerization of FGF2, as well as in binding to FGF receptors. In polySia-NCAM-expressing NIH-3T3 cells, which were established by transfecting cells with either of the plasmids for the expression of the polysialyltransferases ST8SiaII/STX and ST8SiaIV/PST that can polysialylate NCAM, FGF2-stimulated cell growth, but not cell survival, was inhibited. Taken together, these results suggest that polySia-NCAM might be involved in the regulation of FGF2-FGF receptor signaling through the direct binding of FGF2 in a manner distinct from heparan sulfate.
Collapse
Affiliation(s)
- Sayaka Ono
- Bioscience and Biotechnology Center and the Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | | | | | | |
Collapse
|
24
|
Vangipuram SD, Lyman WD. Ethanol affects differentiation-related pathways and suppresses Wnt signaling protein expression in human neural stem cells. Alcohol Clin Exp Res 2011; 36:788-97. [PMID: 22150777 DOI: 10.1111/j.1530-0277.2011.01682.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
BACKGROUND Prenatal exposure of the fetus to ethanol (EtOH) can be teratogenic. We previously showed that EtOH alters the cell fate of human neural stem cells (NSC). As Wnt signaling plays an important role in fetal brain development, we hypothesized that EtOH suppresses Wnt signaling protein expression in differentiating NSC and thereby contributes to fetal alcohol spectrum disorder. METHODS NSC isolated from fetal human brains were cultured in mitogenic media to induce neurospheres, which were dissociated into single-cell suspensions and used for all experiments. Equal numbers of NSC were cultured on lysine/laminin-coated plates for 96 hours in differentiating media containing 0, 20, or 100 mM EtOH. Total mRNA was isolated from samples containing 0 or 100 mM EtOH and changes in expression of 263 genes associated with neurogenesis and NSC differentiation were determined by Oligo GEArray technology. The biological impact of gene changes was estimated using a systems biology approach with pathway express software and KEGG database. Based on the pathways identified, expression of Wnt proteins (Wnt3a and Wnt5a), Wnt-receptor complex proteins (p-LRP6, LRP6, DVL2, and DVL3), Wnt antagonist Naked-2 (NKD-2), and downstream Wnt proteins (β-catenin, Tyr-p-GSK3β, Ser-p-GSK3β) were analyzed by Western blot. RESULTS Of the 263 genes examined, the expressions of 22 genes in differentiating NSC were either upwardly or downwardly affected by EtOH. These genes are associated with 5 pathways/cellular processes: axon guidance; hedgehog signaling; TGF-β signaling; cell adhesion molecules; and Wnt signaling. When compared to controls, EtOH, at both 20 and 100 mM concentrations, suppressed the expression of Wnt3a and Wnt5a, receptor complex proteins p-LRP6, LRP6 and DVL2, and cytoplasmic proteins Ser-p-GSK3β and β-catenin. Expression of NKD-2 and DVL3 remained unchanged and the expression of active Tyr-p-GSK3β increased significantly. CONCLUSIONS EtOH can significantly alter neural differentiation pathway-related gene expression and suppress Wnt signaling proteins in differentiating human NSC.
Collapse
Affiliation(s)
- Sharada D Vangipuram
- Children's Research Center of Michigan, The Carman and Ann Adams Department of Pediatrics, Wayne State University School of Medicine, Detroit, USA.
| | | |
Collapse
|
25
|
Alfonso-Loeches S, Guerri C. Molecular and behavioral aspects of the actions of alcohol on the adult and developing brain. Crit Rev Clin Lab Sci 2011; 48:19-47. [PMID: 21657944 DOI: 10.3109/10408363.2011.580567] [Citation(s) in RCA: 164] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The brain is one of the major target organs of alcohol actions. Alcohol abuse can lead to alterations in brain structure and functions and, in some cases, to neurodegeneration. Cognitive deficits and alcohol dependence are highly damaging consequences of alcohol abuse. Clinical and experimental studies have demonstrated that the developing brain is particularly vulnerable to alcohol, and that drinking during gestation can lead to a range of physical, learning and behavioral defects (fetal alcohol spectrum disorders), with the most dramatic presentation corresponding to fetal alcohol syndrome. Recent findings also indicate that adolescence is a stage of brain maturation and that heavy drinking at this stage can have a negative impact on brain structure and functions causing important short- and long-term cognitive and behavioral consequences. The effects of alcohol on the brain are not uniform; some brain areas or cell populations are more vulnerable than others. The prefrontal cortex, the hippocampus, the cerebellum, the white matter and glial cells are particularly susceptible to the effects of ethanol. The molecular actions of alcohol on the brain are complex and involve numerous mechanisms and signaling pathways. Some of the mechanisms involved are common for the adult brain and for the developing brain, while others depend on the developmental stage. During brain ontogeny, alcohol causes irreversible alterations to the brain structure. It also impairs several molecular, neurochemical and cellular events taking place during normal brain development, including alterations in both gene expression regulation and the molecules involved in cell-cell interactions, interference with the mitogenic and growth factor response, enhancement of free radical formation and derangements of glial cell functions. However, in both adult and adolescent brains, alcohol damages specific brain areas through mechanisms involving excitotoxicity, free radical formation and neuroinflammatory damage resulting from activation of the innate immune system mediated by TLR4 receptors. Alcohol also acts on specific membrane proteins, such as neurotransmitter receptors (e.g. NMDA, GABA-A), ion channels (e.g. L-type Ca²⁺ channels, GIRKs), and signaling pathways (e.g. PKA and PKC signaling). These effects might underlie the wide variety of behavioral effects induced by ethanol drinking. The neuroadaptive changes affecting neurotransmission systems which are more sensitive to the acute effects of alcohol occur after long-term alcohol consumption. Alcohol-induced maladaptations in the dopaminergic mesolimbic system, abnormal plastic changes in the reward-related brain areas and genetic and epigenetic factors may all contribute to alcohol reinforcement and alcohol addiction. This manuscript reviews the mechanisms by which ethanol impacts the adult and the developing brain, and causes both neural impairments and cognitive and behavioral dysfunctions. The identification and the understanding of the cellular and molecular mechanisms involved in ethanol toxicity might contribute to the development of treatments and/or therapeutic agents that could reduce or eliminate the deleterious effects of alcohol on the brain.
Collapse
|
26
|
Coll TA, Tito LP, Sobarzo CMA, Cebral E. Embryo developmental disruption during organogenesis produced by CF-1 murine periconceptional alcohol consumption. ACTA ACUST UNITED AC 2011; 92:560-74. [PMID: 21922637 DOI: 10.1002/bdrb.20329] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2011] [Accepted: 07/11/2011] [Indexed: 01/09/2023]
Abstract
The aim was to study the control females (CF)-1 mouse embryo differentiation, growth, morphology on embryonic E- and N-cadherin expression at midgestation after periconceptional moderate alcohol ingestion. Adult female mice were exposed to 10% ethanol in drinking water for 17 days previous to and up to day 10 of gestation (ethanol-exposed females, EF) and were compared with nonexposed CF. EF presented reduced quantities of E10 to E10.5 embryos, greater percentage of embryos at stages less than E7.5, reduced implantation site numbers/female, and increased resorptions compared with CF. EF-embryo growth was significantly affected as evidenced by reduced cephalic and body sizes of E10 and E10.5 embryos (scanning electron microscopy) and decreased protein content of E10.5 embryos vs. CF embryos. A significantly higher percentage of EF-E10-10.5 embryos presented abnormal neural tube (NT) closure vs. the percentage of CF. E10 embryos from EF presented elevated tissue disorganization, pyknosis and nuclear condensation in somites, mesenchymal and neuroepithelial tissue. Immunohistochemical E- and N-cadherin distribution patterns were similar in organic structures of E10 embryos between groups. However, western blot revealed that E- and N-cadherin expression levels were significantly increased in EF-derived embryos vs. controls. Perigestational ethanol consumption by CF-1 mice induced significant damage in the organogenic embryogenesis by producing delayed differentiation, growth deficiencies, and increasing the frequency of NT defects. Ethanol exposure may disrupt cell-cell adhesion leading to upregulation of E- and N-cadherin expression suggesting that deregulation of cell adhesion molecules could be involved in the disruption of embryo development at organogenesis in CF-1 mouse.
Collapse
Affiliation(s)
- Tamara A Coll
- Laboratorio de Reproducción y Fisiopatología Materno-Embrionaria, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-CONICET), Departamento de Biodiversidad y Biología Experimental (DBBE), Universidad de Buenos Aires (UBA), Argentina
| | | | | | | |
Collapse
|
27
|
Ke Z, Liu Y, Wang X, Fan Z, Chen G, Xu M, Bower KA, Frank JA, Ou X, Shi X, Luo J. Cyanidin-3-glucoside ameliorates ethanol neurotoxicity in the developing brain. J Neurosci Res 2011; 89:1676-84. [PMID: 21671257 DOI: 10.1002/jnr.22689] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Revised: 04/12/2011] [Accepted: 04/12/2011] [Indexed: 12/31/2022]
Abstract
Ethanol exposure induces neurodegeneration in the developing central nervous system (CNS). Fetal alcohol spectrum disorders (FASD) are caused by ethanol exposure during pregnancy and are the most common nonhereditary cause of mental retardation. It is important to identify agents that provide neuroprotection against ethanol neurotoxicity. Multiple mechanisms have been proposed for ethanol-induced neurodegeneration, and oxidative stress is one of the most important mechanisms. Recent evidence indicates that glycogen synthase kinase 3β (GSK3β) is a potential mediator of ethanol-mediated neuronal death. Cyanidin-3-glucoside (C3G), a member of the anthocyanin family, is a potent natural antioxidant. Our previous study suggested that C3G inhibited GSK3β activity in neurons. Using a third trimester equivalent mouse model of ethanol exposure, we tested the hypothesis that C3G can ameliorate ethanol-induced neuronal death in the developing brain. Intraperitoneal injection of C3G reduced ethanol-meditated caspase-3 activation, neurodegeneration, and microglial activation in the cerebral cortex of 7-day-old mice. C3G blocked ethanol-mediated GSK3β activation by inducing phosphorylation at serine 9 while reducing the phosphorylation at tyrosine 216. C3G also inhibited ethanol-stimulated expression of malondialdehyde (MDA) and p47phox, indicating that C3G alleviated ethanol-induced oxidative stress. These results provide important insight into the therapeutic potential of C3G.
Collapse
Affiliation(s)
- Zunji Ke
- Department of Internal Medicine, University of Kentucky College of Medicine, Lexington, Kentucky 40536, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Ke Z, Wang X, Liu Y, Fan Z, Chen G, Xu M, Bower KA, Frank JA, Li M, Fang S, Shi X, Luo J. Ethanol induces endoplasmic reticulum stress in the developing brain. Alcohol Clin Exp Res 2011; 35:1574-83. [PMID: 21599712 DOI: 10.1111/j.1530-0277.2011.01503.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Ethanol exposure during brain development causes profound damages to the central nervous system (CNS). The underlying cellular/molecular mechanisms remain unclear. The endoplasmic reticulum (ER) is involved in posttranslational protein processing and transport. The accumulation of unfolded or misfolded proteins in the ER lumen triggers ER stress, which is characterized by translational attenuation, synthesis of ER chaperone proteins, and activation of transcription factors. Sustained ER stress ultimately leads to cell death. ER stress is implicated in various neurodegenerative processes. METHODS Using a third trimester equivalent mouse model of ethanol exposure, we tested the hypothesis that ethanol induces ER stress in the developing brain. Seven-day-old C57BL/6 mice were acutely exposed to ethanol by subcutaneous injection and the expression of ER stress-inducible proteins (ERSIPs) and signaling pathways associated with ER stress were examined. RESULTS Ethanol exposure significantly increased the expression of ERSIPs and activated signaling pathways associated with ER stress; these include ATF6, CHOP/GADD153, GRP78, and mesencephalic astrocyte-derived neurotrophic factor as well as the phosphorylation of IRE1α, eIF2α, PERK, and PKR. The ethanol-induced increase in ERSIPs occurred within 4 hours of ethanol injection, and levels of some ERSIPs remained elevated after 24 hours of ethanol exposure. Ethanol-induced increase in phosphorylated eIF2α, caspase-12, and CHOP was distributed in neurons of specific areas of the cerebral cortex, hippocampus, and thalamus. CONCLUSIONS Our finding indicates that ethanol induces ER stress in immature neurons, providing novel insight into ethanol's detrimental effect on the developing CNS.
Collapse
Affiliation(s)
- Zunji Ke
- Department of Internal Medicine, University of Kentucky College of Medicine, Lexington, Kentucky 40536, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
Eukaryotic cells comprise a set of organelles, surrounded by membranes with a unique composition, which is maintained by a complex synthesis and transport system. Cells also synthesize the proteins destined for secretion. Together, these processes are known as the secretory pathway or exocytosis. In addition, many molecules can be internalized by cells through a process called endocytosis. Chronic and acute alcohol (ethanol) exposure alters the secretion of different essential products, such as hormones, neurotransmitters and others in a variety of cells, including central nervous system cells. This effect could be due to a range of mechanisms, including alcohol-induced alterations in the different steps involved in intracellular transport, such as glycosylation and vesicular transport along cytoskeleton elements. Moreover, alcohol consumption during pregnancy disrupts developmental processes in the central nervous system. No single mechanism has proved sufficient to account for these effects, and multiple factors are likely involved. One such mechanism indicates that ethanol also perturbs protein trafficking. The purpose of this review is to summarize our understanding of how ethanol exposure alters the trafficking of proteins in different cell systems, especially in central nervous system cells (neurons and astrocytes) in adult and developing brains.
Collapse
|
30
|
Sepulveda B, Carcea I, Zhao B, Salton SR, Benson DL. L1 cell adhesion molecule promotes resistance to alcohol-induced silencing of growth cone responses to guidance cues. Neuroscience 2011; 180:30-40. [PMID: 21335065 PMCID: PMC3070798 DOI: 10.1016/j.neuroscience.2011.02.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Revised: 01/20/2011] [Accepted: 02/08/2011] [Indexed: 01/05/2023]
Abstract
Alcohol exposure in utero is a common cause of mental retardation, but the targets and mechanisms of action are poorly understood. Several lines of data point toward alterations in cortical connectivity, suggesting that axon guidance may be vulnerable to alcohol exposure. To test this, we asked whether ethanol directly affects cortical axonal growth cone responses to guidance cues. We find that even low concentrations of ethanol (12.5 mM; 57.2 mg/dl) commonly observed in social drinking prevent growth cone responses to three mechanistically independent guidance cues, Semaphorin3A, Lysophosphatidic Acid, and Netrin-1. However, this effect is highly dependent on substrate; axonal growth cones extending on an L1 cell adhesion molecule (L1CAM) substrate retain responsiveness to cues following exposure to ethanol, while those growing on poly-L-lysine or N-cadherin do not. The effects of ethanol on axon extension are, by contrast, quite modest. Quantitative assessments of the effects of ethanol on the surface distribution of L1CAM in growth cones suggest that L1CAM homophilic interactions may be particularly relevant for retaining growth cone responsiveness following ethanol exposure. Together, our findings indicate that ethanol can directly and generally alter growth cone responses to guidance cues, that a substrate of L1CAM effectively antagonizes this effect, and that cortical axonal growth cone vulnerability to ethanol may be predicted in part based on the environment through which they are extending.
Collapse
Affiliation(s)
- Bryan Sepulveda
- Fishberg Department of Neuroscience, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029
| | - Ioana Carcea
- Fishberg Department of Neuroscience, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029
| | - Becky Zhao
- Fishberg Department of Neuroscience, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029
| | - Stephen R.J. Salton
- Fishberg Department of Neuroscience, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029
- Brookdale Department of Geriatrics and Palliative Medicine, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029
| | - Deanna L. Benson
- Fishberg Department of Neuroscience, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029
| |
Collapse
|
31
|
Kumada T, Komuro Y, Li Y, Hu T, Wang Z, Littner Y, Komuro H. Inhibition of cerebellar granule cell turning by alcohol. Neuroscience 2010; 170:1328-44. [PMID: 20691765 PMCID: PMC2949482 DOI: 10.1016/j.neuroscience.2010.07.059] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2010] [Revised: 06/30/2010] [Accepted: 07/29/2010] [Indexed: 01/24/2023]
Abstract
Ectopic neurons are often found in the brains of fetal alcohol spectrum disorders (FASD) and fetal alcohol syndrome (FAS) patients, suggesting that alcohol exposure impairs neuronal cell migration. Although it has been reported that alcohol decreases the speed of neuronal cell migration, little is known about whether alcohol also affects the turning of neurons. Here we show that ethanol exposure inhibits the turning of cerebellar granule cells in vivo and in vitro. First, in vivo studies using P10 mice demonstrated that a single intraperitoneal injection of ethanol not only reduces the number of turning granule cells but also alters the mode of turning at the EGL-ML border of the cerebellum. Second, in vitro analysis using microexplant cultures of P0-P3 mouse cerebella revealed that ethanol directly reduces the frequency of spontaneous granule cell turning in a dose-dependent manner. Third, the action of ethanol on the frequency of granule cell turning was significantly ameliorated by stimulating Ca(2+) and cGMP signaling or by inhibiting cAMP signaling. Taken together, these results indicate that ethanol affects the frequency and mode of cerebellar granule cell turning through alteration of the Ca(2+) and cyclic nucleotide signaling pathways, suggesting that the abnormal allocation of neurons found in the brains of FASD and FSA patients results, at least in part, from impaired turning of immature neurons by alcohol.
Collapse
Affiliation(s)
- T Kumada
- Department of Neurosciences, Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
Alcohol consumption during pregnancy is a significant public health problem and may result in a wide range of adverse outcomes for the child. The developing central nervous system (CNS) is particularly susceptible to ethanol toxicity. Children with fetal alcohol spectrum disorders (FASD) have a variety of cognitive, behavioral, and neurological impairments. FASD currently represents the leading cause of mental retardation in North America ahead of Down syndrome and cerebral palsy. Ethanol exposure during development causes multiple abnormalities in the brain such as permanent loss of neurons, ectopic neurons, and alterations in synaptogenesis and myelinogenesis. These alcohol-induced structural alterations in the developing brain underlie many of the behavioral deficits observed in FASD. The cellular and molecular mechanisms of ethanol neurotoxicity, however, remain unclear. Ethanol elicits cellular stresses, including oxidative stress and endoplasmic reticulum stress. Glycogen synthase kinase 3beta (GSK3beta), a multifunctional serine/threonine kinase, responds to various cellular stresses. GSK3beta is particularly abundant in the developing CNS, and regulates diverse developmental events in the immature brain, such as neurogenesis and neuronal differentiation, migration, and survival. Available evidence indicates that the activity of GSK3beta in the CNS is affected by ethanol. GSK3beta inhibition provides protection against ethanol neurotoxicity, whereas high GSK3beta activity/expression sensitizes neuronal cells to ethanol-induced damages. It appears that GSK3beta is a converging signaling point that mediates some of ethanol's neurotoxic effects.
Collapse
|
33
|
Ethanol inhibition of aspartyl-asparaginyl-beta-hydroxylase in fetal alcohol spectrum disorder: potential link to the impairments in central nervous system neuronal migration. Alcohol 2009; 43:225-40. [PMID: 19393862 DOI: 10.1016/j.alcohol.2008.09.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2008] [Revised: 08/20/2008] [Accepted: 09/17/2008] [Indexed: 12/30/2022]
Abstract
Fetal alcohol spectrum disorder (FASD) is caused by prenatal exposure to alcohol and associated with hypoplasia and impaired neuronal migration in the cerebellum. Neuronal survival and motility are stimulated by insulin and insulin-like growth factor (IGF), whose signaling pathways are major targets of ethanol neurotoxicity. To better understand the mechanisms of ethanol-impaired neuronal migration during development, we examined the effects of chronic gestational exposure to ethanol on aspartyl (asparaginyl)-beta-hydroxylase (AAH) expression, because AAH is regulated by insulin/IGF and mediates neuronal motility. Pregnant Long-Evans rats were pair-fed isocaloric liquid diets containing 0, 8, 18, 26, or 37% ethanol by caloric content from gestation day 6 through delivery. Cerebella harvested from postnatal day 1 pups were used to examine AAH expression in tissue, and neuronal motility in Boyden chamber assays. We also used cerebellar neuron cultures to examine the effects of ethanol on insulin/IGF-stimulated AAH expression, and assess the role of GSK-3beta-mediated phosphorylation on AAH protein levels. Chronic gestational exposure to ethanol caused dose-dependent impairments in neuronal migration and corresponding reductions in AAH protein expression in developing cerebella. In addition, prenatal ethanol exposure inhibited insulin and IGF-I-stimulated directional motility in isolated cerebellar granule neurons. Ethanol-treated neuronal cultures (50mMx96h) also had reduced levels of AAH protein. Mechanistically, we showed that AAH protein could be phosphorylated on Ser residues by GSK-3beta, and that chemical inhibition of GSK-3beta and/or global Caspases increases AAH protein in both control- and ethanol-exposed cells. Ethanol-impaired neuronal migration in FASD is associated with reduced AAH expression. Because ethanol increases the activities of both GSK-3beta and Caspases, the inhibitory effect of ethanol on neuronal migration could be mediated by increased GSK-3beta phosphorylation and Caspase degradation of AAH protein.
Collapse
|
34
|
Guerri C, Bazinet A, Riley EP. Foetal Alcohol Spectrum Disorders and alterations in brain and behaviour. Alcohol Alcohol 2009; 44:108-14. [PMID: 19147799 DOI: 10.1093/alcalc/agn105] [Citation(s) in RCA: 227] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The term 'Foetal Alcohol Spectrum Disorders (FASD)' refers to the range of disabilities that may result from prenatal alcohol exposure. This article reviews the effects of ethanol on the developing brain and its long-term structural and neurobehavioural consequences. Brain imaging, neurobehavioural and experimental studies demonstrate the devastating consequences of prenatal alcohol exposure on the developing central nervous system (CNS), identifying specific brain regions affected, the range of severity of effects and mechanisms involved. In particular, neuroimaging studies have demonstrated overall and regional volumetric and surface area reductions, abnormalities in the shape of particular brain regions, and reduced and increased densities for white and grey matter, respectively. Neurobehaviourally, FASD consists of a continuum of long-lasting deficits affecting multiple aspects of cognition and behaviour. Experimental studies have also provided evidence of the vulnerability of the CNS to the teratogenic effects of ethanol and have provided new insight on the influence of risk factors in the type and severity of observed brain abnormalities. Finally, the potential molecular mechanisms that underlie the neuroteratological effects of alcohol are discussed, with particular emphasis on the role of glial cells in long-term neurodevelopmental liabilities.
Collapse
Affiliation(s)
- Consuelo Guerri
- Department of Cell Pathology, Centro de Investigacion Principe Felipe, Valencia, Spain.
| | | | | |
Collapse
|
35
|
Chekhonin VP, Shepeleva II, Gurina OI. Disturbances in the expression Of neuronal cell adhesion proteins NCAM. Clinical aspects. NEUROCHEM J+ 2008. [DOI: 10.1134/s1819712408040028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
36
|
Denmark DL, Buck KJ. Molecular analyses and identification of promising candidate genes for loci on mouse chromosome 1 affecting alcohol physical dependence and associated withdrawal. GENES BRAIN AND BEHAVIOR 2008; 7:599-608. [PMID: 18363851 DOI: 10.1111/j.1601-183x.2008.00396.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We recently mapped quantitative trait loci (QTLs) with large effects on predisposition to physical dependence and associated withdrawal severity following chronic and acute alcohol exposure (Alcdp1/Alcw1) to a 1.1-Mb interval of mouse chromosome 1 syntenic with human chromosome 1q23.2-23.3. Here, we provide a detailed analysis of the genes within this interval and show that it contains 40 coding genes, 17 of which show validated genotype-dependent transcript expression and/or non-synonymous coding sequence variation that may underlie the influence of Alcdp1/Alcw1 on ethanol dependence and associated withdrawal. These high priority candidates are involved in diverse cellular functions including intracellular trafficking, oxidative homeostasis, mitochondrial respiration, and extracellular matrix dynamics, and indicate both established and novel aspects of the neurobiological response to ethanol. This work represents a substantial advancement toward identification of the gene(s) that underlies the phenotypic effects of Alcdp1/Alcw1. Additionally, a multitude of QTLs for a variety of complex traits, including diverse behavioral responses to ethanol, have been mapped in the vicinity of Alcdp1/Alcw1, and as many as four QTLs on human chromosome 1q have been implicated in human mapping studies for alcoholism and associated endophenotypes. Thus, our results will be primary to further efforts to identify genes involved in a wide variety of behavioral responses to alcohol and may directly facilitate progress in human alcoholism genetics.
Collapse
Affiliation(s)
- D L Denmark
- Department of Behavioral Neuroscience, Neuroscience Graduate Program, and Portland Alcohol Research Center, Veterans Affairs Medical Center and Oregon Health and Science University, Portland, OR, USA.
| | | |
Collapse
|
37
|
Wang H, Zhou H, Chervenak R, Moscatello KM, Brunson LE, Chervenak DC, Wolcott RM. Ethanol exhibits specificity in its effects on differentiation of hematopoietic progenitors. Cell Immunol 2008; 255:1-7. [PMID: 18834972 DOI: 10.1016/j.cellimm.2008.08.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2008] [Revised: 08/20/2008] [Accepted: 08/22/2008] [Indexed: 01/28/2023]
Abstract
Ethanol is a known teratogen but the mechanisms by which this simple compound affects fetal development remain unresolved. The goal of the current study was to determine the mechanism by which ethanol affects lymphoid differentiation using an in vitro model of ethanol exposure. Primitive hematopoietic oligoclonal-neonatal-progenitor cells (ONP), with the phenotype Lin(-)HSA(lo)CD43(lo)Sca-1(-)c-Kit(+) that are present in neonatal but not adult bone marrow were sorted from the bone marrow of 2-week-old C57BL/6J mice and cultured under conditions that favor either B cell or myeloid cell differentiation with or without addition of ethanol. The overall growth of the ONP cells was not significantly affected by inclusion of up to 100mM ethanol in the culture medium. However, the differentiation of the progenitor cells along the B-cell pathway was significantly impaired by ethanol in a dose-dependent manner. Exposure of ONP cells to 100mM ethanol resulted in greater than 95% inhibition of B cell differentiation. Conversely, ethanol concentrations up to and including 100mM had no significant effect on differentiation along the myeloid pathway. The effect of ethanol on transcription factor expression was consistent with the effects on differentiation. ONP cells grown in 100mM ethanol failed to upregulate Pax5 and EBF, transcriptional regulators that are necessary for B cell development. However, ethanol had no significant effect on the upregulation of PU.1, a transcription factor that, when expressed in high concentration, favors myeloid cell development. Taken together, these results suggest that ethanol has specificity in its effects on differentiation of hematopoietic progenitors.
Collapse
Affiliation(s)
- Hao Wang
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center in Shreveport, P.O. Box 33932, Shreveport, LA 71130-3932, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Hoffman EJ, Mintz CD, Wang S, McNickle DG, Salton SRJ, Benson DL. Effects of ethanol on axon outgrowth and branching in developing rat cortical neurons. Neuroscience 2008; 157:556-65. [PMID: 18926887 DOI: 10.1016/j.neuroscience.2008.08.071] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2008] [Revised: 08/29/2008] [Accepted: 08/29/2008] [Indexed: 11/26/2022]
Abstract
Humans exposed prenatally to ethanol can exhibit brain abnormalities and cognitive impairment similar to those seen in patients expressing mutant forms of the L1 cell adhesion molecule (L1CAM). The resemblance suggests that L1CAM may be a target for ethanol, and consistent with this idea, ethanol can inhibit L1CAM adhesion in cell lines and L1CAM-mediated outgrowth and signaling in cerebellar granule neurons. However, it is not known whether ethanol inhibits L1CAM function in other neuron types known to require L1CAM for appropriate development. Here we asked whether ethanol alters L1CAM function in neurons of the rat cerebral cortex. We find that ethanol does not alter axonal polarization, L1CAM-dependent axon outgrowth or branching, or L1CAM recycling in axonal growth cones. Thus, ethanol inhibition of L1CAM is highly dependent on neuronal context.
Collapse
Affiliation(s)
- E J Hoffman
- Department of Psychiatry, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029, USA
| | | | | | | | | | | |
Collapse
|
39
|
Carter JJ, Tong M, Silbermann E, Lahousse SA, Ding FF, Longato L, Roper N, Wands JR, de la Monte SM. Ethanol impaired neuronal migration is associated with reduced aspartyl-asparaginyl-beta-hydroxylase expression. Acta Neuropathol 2008; 116:303-15. [PMID: 18478238 PMCID: PMC10010160 DOI: 10.1007/s00401-008-0377-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2007] [Revised: 03/24/2008] [Accepted: 04/05/2008] [Indexed: 01/30/2023]
Abstract
Cerebellar hypoplasia in fetal alcohol spectrum disorders (FASD) is associated with inhibition of insulin and insulin-like growth factor (IGF) signaling in the brain. Aspartyl (asparaginyl)-beta-hydroxylase (AAH) is a mediator of neuronal motility, and stimulated by insulin and IGF activation of PI3 kinase-Akt, or inhibition of GSK-3beta. Since ethanol inhibits PI3 Kinase-Akt and increases GSK-3beta activity in brain, we examined the effects of ethanol and GSK-3beta on AAH expression and directional motility in neuronal cells. Control and ethanol-exposed (100 mM x 48 h) human PNET2 cerebellar neuronal cells were stimulated with IGF-1 and used to measure AAH expression and directional motility. Molecular and biochemical approaches were used to characterize GSK-3beta regulation of AAH and neuronal motility. Ethanol reduced IGF-1 stimulated AAH protein expression and directional motility without inhibiting AAH's mRNA. Further analysis revealed that: (1) AAH protein could be phosphorylated by GSK-3beta; (2) high levels of GSK-3beta activity decreased AAH protein; (3) inhibition of GSK-3beta and/or global Caspases increased AAH protein; (4) AAH protein was relatively more phosphorylated in ethanol-treated compared with control cells; and (5) chemical inhibition of GSK-3beta and/or global Caspases partially rescued ethanol-impaired AAH protein expression and motility. Ethanol-impaired neuronal migration is associated with reduced IGF-I stimulated AAH protein expression. This effect may be mediated by increased GSK-3beta phosphorylation and Caspase degradation of AAH. Therapeutic strategies to rectify CNS developmental abnormalities in FASD should target factors underlying the ethanol-associated increases in GSK-3beta and Caspase activation, e.g. IGF resistance and increased oxidative stress.
Collapse
Affiliation(s)
- Jade J Carter
- Department of Medicine, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Hu Q, Fu H, Ren T, Wang S, Zhou W, Song H, Han Y, Dong S. Maternal low-level lead exposure reduces the expression of PSA-NCAM and the activity of sialyltransferase in the hippocampi of neonatal rat pups. Neurotoxicology 2008; 29:675-81. [PMID: 18499259 DOI: 10.1016/j.neuro.2008.04.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2007] [Revised: 03/28/2008] [Accepted: 04/03/2008] [Indexed: 11/18/2022]
Abstract
Highly polysialylated neural cell adhesion molecule (PSA-NCAM) is transiently expressed specifically in newly generated cells, and is important for cell migration and neurite outgrowth. Developmental lead (Pb) exposure has been considered to affect the expression of PSA-NCAM, which contributes to the neurotoxicity of Pb exposure. However, the effect of maternal low-level Pb exposure on the expression of PSA-NCAM in neonatal rat pups has not been reported. In the present study, female Wistar rats were exposed to vehicle or different dosages of lead chloride (0.5-4mM PbCl2) 2 weeks before and during pregnancy. This exposure protocol resulted in neonatal rat pups blood Pb levels up to 12.12+/-0.38 microg/dl, and hippocampal Pb levels up to 9.22+/-0.81 microg/g at postnatal day 1 (PND 1). Immunohistochemistry analysis and Western blot analysis revealed that the expressions of PSA-NCAM and NCAM in the hippocampi of neonatal rat pups at PND 1 were significantly reduced by the maternal low-level Pb exposures. Furthermore, the mRNA levels of NCAM and polysialyltransferases (STX and PST), measured by the fluorescent real-time quantitative RT-PCR, dosage-dependently and significantly decreased by 13.26-37.62%, 25.17-59.67%, and 10.78-47.81%, respectively. In addition, the sialyltransferase activity in neonatal rat pups was significantly reduced by 6.23-32.50% in the presence of the low-level Pb exposure, too. Taken together, these results suggest that maternal low-level Pb exposure reduces the expression of PSA-NCAM, NCAM, and the activity of sialyltransferase in the hippocampi of neonatal rat pups, which might contribute to the learning and memory impairments in the developmental pups following maternal low-level Pb exposure.
Collapse
Affiliation(s)
- Qiansheng Hu
- Department of Preventive Medicine, School of Public Health, Sun Yat-Sen University, Guangzhou, China.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Vaglenova J, Pandiella N, Wijayawardhane N, Vaithianathan T, Birru S, Breese C, Suppiramaniam V, Randal C. Aniracetam reversed learning and memory deficits following prenatal ethanol exposure by modulating functions of synaptic AMPA receptors. Neuropsychopharmacology 2008; 33:1071-83. [PMID: 17609677 DOI: 10.1038/sj.npp.1301496] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Specific pharmacological treatments are currently not available to address problems resulting from fetal ethanol exposure, described as Fetal Alcohol Syndrome or Fetal Alcohol Spectrum Disorders (FASD). The present study evaluated the therapeutic effects of aniracetam against cognitive deficits in a well-characterized and sensitive FASD Sprague-Dawley rat model. Ethanol, administered orally at a moderate dose (4 g/kg/24 h; 38% v/v) during the entire course of pregnancy, caused severe cognitive deficits in offspring. Furthermore, both progeny genders were affected by a spectrum of behavioral abnormalities, such as a delay in the development of the righting reflex, poor novelty seeking behavior, and high anxiety levels in female rats. Cognitive disabilities, monitored in adult rats by a two-way active avoidance task, correlated well with a significant reduction of AMPA (alpha-amino-3 hydro-5 methyl-isoxazole propionic acid) receptor-mediated miniature excitatory postsynaptic responses (mEPSCs) in the hippocampus. Administration of aniracetam for 10 days (post-natal days (PND) 18-27), at a dose of 50 mg/kg reversed cognitive deficits in both rat genders, indicated by a significant increase in the number of avoidances and the number of 'good learners'. After the termination of the nootropic treatment, a significant increase in both amplitude and frequency of AMPA receptor-mediated mEPSCs in hippocampal CA-1 pyramidal cells was observed. Significant anxiolytic effects on PND 40 also preceded acquisition improvements in the avoidance task. This study provides evidence for the therapeutic potential of aniracetam in reversing cognitive deficits associated with FASD through positive post-natal modulation of AMPA receptors.
Collapse
Affiliation(s)
- Julia Vaglenova
- Department of Pharmacal Sciences, Harrison School of Pharmacy, Auburn University, Auburn, AL 36849, USA.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Baydas G, Koz ST, Tuzcu M, Nedzvetsky VS. Melatonin prevents gestational hyperhomocysteinemia-associated alterations in neurobehavioral developments in rats. J Pineal Res 2008; 44:181-8. [PMID: 18289170 DOI: 10.1111/j.1600-079x.2007.00506.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Chronic hyperhomocysteinemia is a risk factor in cardiovascular diseases and neurodegeneration. Among the putative mechanisms of homocysteine-induced neurotoxicity, an increased production of reactive oxygen species has been suggested. However, elevated homocysteine levels might disturb neurogenesis during brain development and lead to persistent congenital malformations in the fetus. In this study, we examined whether administration of melatonin inhibits maternal hyperhomocysteinemia-induced cognitive deficits in offspring. Hyperhomocysteinemia was induced in female rats by administration of methionine during pregnancy at a dose of 1 g/kg body weight dissolved in drinking water. Some animals received methionine plus 10 mg/kg/day melatonin subcutaneously throughout pregnancy. The levels of glial fibrillary acidic protein, S100B protein, and neural cell adhesion molecules were determined in the brain tissue from the pups. Learning and memory performances of the young-adult offspring were tested using the Morris water maze test. There were significant reductions in the expression of glial fibrillary acidic protein and S100 B protein in the brains of pups from hyperhomocysteinemic rat dams. Furthermore, maternal hyperhomocysteinemia altered the expression pattern of neural cell adhesion molecules in the fetal brain. In addition, maternal hyperhomocysteinemia significantly reduced learning abilities in offspring. Treatment with melatonin during pregnancy improved learning deficits and prevented the reduction of glial and neuronal markers induced by hyperhomocysteinemia. In conclusion, administration of melatonin throughout pregnancy reduces the effects of hyperhomocysteinemia on the development of fetal brain; therefore, it might be beneficial in preventing persistent congenital malformations.
Collapse
Affiliation(s)
- Giyasettin Baydas
- Department of Physiology, Faculty of Medicine, Firat University, Elazig, Turkey.
| | | | | | | |
Collapse
|
43
|
Vangipuram SD, Grever WE, Parker GC, Lyman WD. Ethanol increases fetal human neurosphere size and alters adhesion molecule gene expression. Alcohol Clin Exp Res 2007; 32:339-47. [PMID: 18162078 DOI: 10.1111/j.1530-0277.2007.00568.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND Ethanol (ETOH) consumption by pregnant women can result in Fetal Alcohol Spectrum Disorder (FASD). To date, the cellular targets and mechanisms responsible for FASD are not fully characterized. Our aim was to determine if ETOH can affect fetal human brain-derived neural progenitor cells (NPC). METHODS Neural progenitor cells were isolated by positive selection from normal second trimester fetal human brains (n = 4) and cultured, for up to 72 hours, in mitogenic media containing 0, 1, 10, or 100 mM ETOH. From 48 to 72 hours in culture, neurospheres generated in these conditions were filmed using time-lapse video microscopy. At the end of 72 hours, neurosphere diameter and roundness were measured using videographic software. Mitotic phase analysis of cell-cycle activity and apoptotic cell count were also performed at this time, by flow cytometry using propidium iodide (PI) staining. Real-time PCR was used to estimate expression of genes associated with cell adhesion pathways. RESULTS Neurosphere diameter correlated positively (r = 0.87) with increasing ETOH concentrations. There was no significant difference in cell-cycle activity and no significant increase in apoptosis with increasing ETOH concentrations. Time-lapse video microscopy showed that ETOH (100 mM) reduced the time for neurosphere coalescence. Real-time PCR analysis showed that ETOH significantly altered the expression of genes involved in cell adhesion. There was an increase in the expression of alpha and beta Laminins 1, beta Integrins 3 and 5, Secreted phosphoprotein1 and Sarcoglycan epsilon. No change in the expression of beta Actin was observed while the expression of beta Integrin 2 was significantly suppressed. CONCLUSIONS ETOH had no effect on NPC apoptosis but, resulted in more rapid coalescence and increased volume of neurospheres. Additionally, the expression of genes associated with cell adhesion was significantly altered. ETOH induced changes in NPC surface adhesion interactions may underlie aspects of neurodevelopmental abnormalities in FASD.
Collapse
Affiliation(s)
- Sharada D Vangipuram
- Children's Research Center of Michigan, The Carman and Ann Adams Department of Pediatrics, Wayne State University School of Medicine and Children's Hospital of Michigan, Detroit, MI 48201, USA.
| | | | | | | |
Collapse
|
44
|
Matzel LD, Babiarz J, Townsend DA, Grossman HC, Grumet M. Neuronal cell adhesion molecule deletion induces a cognitive and behavioral phenotype reflective of impulsivity. GENES BRAIN AND BEHAVIOR 2007; 7:470-80. [PMID: 18081712 DOI: 10.1111/j.1601-183x.2007.00382.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Cell adhesion molecules, such as neuronal cell adhesion molecule (Nr-CAM), mediate cell-cell interactions in both the developing and mature nervous system. Neuronal cell adhesion molecule is believed to play a critical role in cell adhesion and migration, axonal growth, guidance, target recognition and synapse formation. Here, wild-type, heterozygous and Nr-CAM null mice were assessed on a battery of five learning tasks (Lashley maze, odor discrimination, passive avoidance, spatial water maze and fear conditioning) previously developed to characterize the general learning abilities of laboratory mice. Additionally, all animals were tested on 10 measures of sensory/motor function, emotionality and stress reactivity. We report that the Nr-CAM deletion had no impact on four of the learning tasks (fear conditioning, spatial water maze, Lashley maze and odor discrimination). However, Nr-CAM null mice exhibited impaired performance on a task that required animals to suppress movement (passive avoidance). Although Nr-CAM mutants expressed normal levels of general activity and body weights, they did exhibit an increased propensity to enter stressful areas of novel environments (the center of an open field and the lighted side of a dark/light box), exhibited higher sensitivity to pain (hot plate) and were more sensitive to the aversive effects of foot shock (shock-induced freezing). This behavioral phenotype suggests that Nr-CAM does not play a central role in the regulation of general cognitive abilities but may have a critical function in regulating impulsivity and possibly an animal's susceptibility to drug abuse and addiction.
Collapse
Affiliation(s)
- L D Matzel
- Department of Psychology, Program in Behavioural Neuroscience, Rutgers University, Piscataway, NJ 08854, USA.
| | | | | | | | | |
Collapse
|
45
|
Chu J, Tong M, de la Monte SM. Chronic ethanol exposure causes mitochondrial dysfunction and oxidative stress in immature central nervous system neurons. Acta Neuropathol 2007; 113:659-73. [PMID: 17431646 DOI: 10.1007/s00401-007-0199-4] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2006] [Revised: 01/15/2007] [Accepted: 01/15/2007] [Indexed: 10/23/2022]
Abstract
Cerebellar hypoplasia in experimental fetal alcohol syndrome (FAS) is associated with impaired insulin-stimulated survival signaling. In vitro studies demonstrated that ethanol inhibition of neuronal survival is mediated by apoptosis and mitochondrial dysfunction. Since insulin and insulin-like growth factors (IGFs) regulate energy metabolism, and ethanol can exert its toxic effects by causing oxidative damage to DNA and proteins, we further characterized the effects of chronic gestational exposure to ethanol on mitochondrial gene expression, and the degree to which ethanol inhibition of mitochondrial function is mediated by impaired insulin/IGF responsiveness. Pregnant Long-Evans rats were fed isocaloric liquid diets containing 0, 2, 4.5, 6.5, or 9.25% v/v ethanol from gestation day 6 through delivery. Cerebella harvested on postnatal day 1 were examined for indices of oxidative stress, and mRNA levels of mitochondrial, pro-oxidant, and pro-apoptosis gene expression. Rat primary cerebellar neuron cultures were used to characterize the effects of ethanol (50 mM for 96 h) on insulin and IGF stimulated mitochondrial function and ATP production. Ethanol-exposed cerebella had significantly reduced mRNA levels of mitochondrial genes encoding Complexes II-A, IV, and V, increased expression of p53 and NADPH oxidase (NOX) 1 and 3, and increased immunoreactivity for 4-hydroxy-2,3-nonenal (HNE) and 8-OHdG in cerebellar granule cells. The activations of p53 and NOX genes were highest in cerebella from pups exposed to the 6.5 or 9.25% ethanol containing diet, whereas the impairments in mitochondrial Complex IV and V expression were similar at low and high levels of ethanol exposure. In vitro experiments confirmed that ethanol treatment reduces neuronal expression of mitochondrial genes encoding Complexes IV and V, impairs mitochondrial function and ATP production, and increases HNE and 8-OHdG immunoreactivity, but they also showed that these effects were not insulin- or IGF-dependent. Together, the results suggest that mitochondrial dysfunction, oxidative stress, and DNA damage in FAS may be largely due to the toxic effects of ethanol rather than specific impairments in insulin or IGF signaling.
Collapse
Affiliation(s)
- Jennifer Chu
- Department of Pathology, Rhode Island Hospital, Pierre Galletti Research Building, Brown Medical School, Providence, RI 02903, USA
| | | | | |
Collapse
|
46
|
Paul LK, Brown WS, Adolphs R, Tyszka JM, Richards LJ, Mukherjee P, Sherr EH. Agenesis of the corpus callosum: genetic, developmental and functional aspects of connectivity. Nat Rev Neurosci 2007; 8:287-99. [PMID: 17375041 DOI: 10.1038/nrn2107] [Citation(s) in RCA: 561] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Agenesis of the corpus callosum (AgCC), a failure to develop the large bundle of fibres that connect the cerebral hemispheres, occurs in 1:4000 individuals. Genetics, animal models and detailed structural neuroimaging are now providing insights into the developmental and molecular bases of AgCC. Studies using neuropsychological, electroencephalogram and functional MRI approaches are examining the resulting impairments in emotional and social functioning, and have begun to explore the functional neuroanatomy underlying impaired higher-order cognition. The study of AgCC could provide insight into the integrated cerebral functioning of healthy brains, and may offer a model for understanding certain psychiatric illnesses, such as schizophrenia and autism.
Collapse
Affiliation(s)
- Lynn K Paul
- California Institute of Technology, MC 228-77 Pasadena, California 91125, USA.
| | | | | | | | | | | | | |
Collapse
|
47
|
Baydas G, Koz ST, Tuzcu M, Nedzvetsky VS, Etem E. Effects of maternal hyperhomocysteinemia induced by high methionine diet on the learning and memory performance in offspring. Int J Dev Neurosci 2007; 25:133-9. [PMID: 17416478 DOI: 10.1016/j.ijdevneu.2007.03.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2006] [Revised: 02/06/2007] [Accepted: 03/02/2007] [Indexed: 11/17/2022] Open
Abstract
In this study, we suggest that chronic maternal hyperhomocysteinemia results in learning deficits in the offspring due to delayed brain maturation and altered expression pattern of neural cell adhesion molecule. Although the deleterious effects of hyperhomocysteinemia were extensively investigated in the adults, there is no clear evidence suggesting its action on the developing fetal rat brain and cognitive functions of the offspring. Therefore, in the present work we aimed to investigate effects of maternal hyperhomocysteinemia on the fetal brain development and on the behavior of the offspring. A group of pregnant rats received daily methionine (1 g/kg body weight) dissolved in drinking water to induce maternal hyperhomocysteinemia, starting in the beginning of gestational day 0. The levels of glial fibrillary acidic protein, S100B protein, and neural cell adhesion molecule were determined in the tissue samples from the pups. Learning and memory performances of the young-adult offsprings were tested using Morris water maze test. There were significant reductions in the expressions of glial fibrillary acidic protein and S100B protein in the brains of maternally hyperhomocysteinemic pups on postnatal day 1, suggesting that hyperhomocysteinemia delays brain maturation. In conclusion, maternal hyperhomocysteinemia changes the expression pattern of neural cell adhesion molecule and therefore leads to an impairment in the learning performance of the offspring.
Collapse
Affiliation(s)
- Giyasettin Baydas
- Department of Physiology, Faculty of Medicine, Firat University, 23119 Elazig, Turkey.
| | | | | | | | | |
Collapse
|
48
|
Lindsley TA, Miller MW, Littner Y, Bearer CF. Signaling pathways regulating cell motility: a role in ethanol teratogenicity? Alcohol Clin Exp Res 2006; 30:1445-50. [PMID: 16899049 PMCID: PMC4199580 DOI: 10.1111/j.1530-0277.2006.00173.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This article summarizes the proceedings of a symposium presented at the 2005 annual meeting of the Research Society on Alcoholism in Santa Barbara, California. The organizer and chair was Tara A. Lindsley. The presentations were (1) Ethanol and Neuron Migration in the CNS, by Michael W. Miller; (2) Ethanol and L1-mediated Neurite Outgrowth, by Yoav Littner and Cynthia F. Bearer; and (3) Ethanol and Axon Guidance, by Tara A. Lindsley.
Collapse
Affiliation(s)
- Tara A Lindsley
- Center for Neuropharmacology & Neuroscience, MC-136, Albany Medical College, 47 New Scotland Ave., Albany NY 12208, USA.
| | | | | | | |
Collapse
|
49
|
Braza-Boïls A, Tomás M, Marín MP, Megías L, Sancho-Tello M, Fornas E, Renau-Piqueras J. GLYCOSYLATION IS ALTERED BY ETHANOL IN RAT HIPPOCAMPAL CULTURED NEURONS. Alcohol Alcohol 2006; 41:494-504. [PMID: 16751217 DOI: 10.1093/alcalc/agl044] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
AIMS Glycoproteins, such as adhesion molecules and growth factors, participate in the regulation of nervous system development. Ethanol affects the synthesis, intracellular transport, distribution, and secretion of N-glycoproteins in different cell types, including astrocytes and hepatocytes, suggesting alterations in the glycosylation process. We analysed the effect of exposure to low doses of ethanol (30 mm, 7 days) on glycosylation in cultured hippocampal neurons. METHODS Neurons were incubated for short (5 min) and long (90 min) periods with the radioactively labelled carbohydrate precursors 2-deoxy-glucose, N-acetyl-D-mannosamine and mannose. The uptake and metabolism of these precursors, as well as the radioactivity distribution in protein gels, were analysed. The levels of the glucose transporters GLUT1 and GLUT3 were also determined. RESULTS Ethanol exposure reduces the synthesis of proteins, DNA and RNA and decreased the uptake of mannose, but not of 2-deoxy-glucose and N-acetyl-D-mannosamine, and it increased the protein levels of both glucose transporters. Moreover, it altered the carbohydrate moiety of several proteins. Finally, alcohol treatment results in an increment of cell surface glycoconjugates containing terminal non-reduced mannose. CONCLUSIONS Alcohol-induced alterations in glycosylation of proteins in neurons could be a key mechanism involved in the teratogenic effects of alcohol exposure on brain development.
Collapse
Affiliation(s)
- Aitana Braza-Boïls
- Section of Cell Biology and Pathology, Center for Investigation, Hospital La Fe, Valencia, Spain
| | | | | | | | | | | | | |
Collapse
|
50
|
Miller MW, Mooney SM, Middleton FA. Transforming growth factor beta1 and ethanol affect transcription and translation of genes and proteins for cell adhesion molecules in B104 neuroblastoma cells. J Neurochem 2006; 97:1182-90. [PMID: 16686695 DOI: 10.1111/j.1471-4159.2006.03858.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Transforming growth factor (TGF) beta1 and ethanol retard the migration of young, post-mitotic neurons to the developing cerebral cortex. The coordination of this migration depends upon cell adhesion proteins (CAPs). We examined the effects of TGFbeta1 and ethanol on genes related to both TGF and CAPs. Rat B104 neuroblastoma cells were treated with TGFbeta1 (0 or 10 ng/mL) and ethanol (0 or 400 mg/dL) for 6-48 h. Total RNA was purified from each sample and analyzed using the Rat U34A GeneChip (Affymetrix). Candidate genes were those up- or down-regulated by either TGFbeta1 or ethanol. Twenty transcripts of CAPs were identified as being expressed by B104 cells and as being affected by treatment with TGFbeta1 or ethanol. The expression was verified for five representative genes (neural cell adhesion molecule, L1, and integrins alpha1, alpha7, and beta1) using assays with real-time reverse transcriptase-polymerase chain reactions. Each of these genes showed time-dependent changes. The changes were reflected in increases in protein expression that appeared within 24 or 48 h. Thus, the effects of TGFbeta1 and ethanol on CAPs parallel changes described in vivo and likely underlie changes associated with ethanol-induced alterations in neuronal migration.
Collapse
Affiliation(s)
- Michael W Miller
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, New York 13210, USA
| | | | | |
Collapse
|