1
|
Wei H, Zhao D, Zhi Y, Wu Q, Ma J, Xu J, Liu T, Zhang J, Wang P, Hu Y, He X, Guo F, Jiang M, Zhang D, Nie W, Yang R, Zhao T, Dong Z, Liu K. RTN4IP1 Contributes to ESCC via Regulation of Amino Acid Transporters. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2406220. [PMID: 39757767 PMCID: PMC11848606 DOI: 10.1002/advs.202406220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 10/19/2024] [Indexed: 01/07/2025]
Abstract
Esophageal squamous cell carcinoma (ESCC) accounts for about 90% of esophageal cancer cases. The lack of effective therapeutic targets makes it difficult to improve the overall survival of patients with ESCC. Reticulon 4 Interacting Protein 1 (RTN4IP1) is a novel mitochondrial oxidoreductase. Here, a notable upregulation of RTN4IP1 is demonstrated, which is associated with poor survival in patients with ESCC. RTN4IP1 depletion impairs cell proliferation and induces apoptosis of ESCC cells. Furthermore, c-Myc regulates RTN4IP1 expression via iron regulatory protein 2 (IRP2) at the post-transcriptional level. Mechanistically, RTN4IP1 mRNA harbors functional iron-responsive elements (IREs) in the 3' UTR, which can be targeted by IRP2, resulting in increased mRNA stability. Finally, RTN4IP1 depletion abrogates amino acid uptake and induces amino acid starvation via downregulation of the amino acid transporters SLC1A5, SLC3A2, and SLC7A5, indicating a possible pathway through which RTN4IP1 contributes to ESCC carcinogenesis and progression. In vivo studies using cell-derived xenograft and patient-derived xenograft mouse models as well as a 4-nitroquinoline 1-oxide-induced ESCC model in esophageal-specific Rtn4ip1 knockout mice demonstrate the essential role of RTN4IP1 in ESCC development. Thus, RTN4IP1 emerges as a key cancer-promoting protein in ESCC, suggesting therapeutic RTN4IP1 suppression as a promising strategy for ESCC treatment.
Collapse
Affiliation(s)
- Huifang Wei
- Department of PathophysiologySchool of Basic Medical SciencesZhengzhou University, China‐US (Henan) Hormel Cancer InstituteZhengzhou450000China
| | - Dengyun Zhao
- Department of PathophysiologySchool of Basic Medical Sciences, Zhengzhou UniversityChina‐US (Henan) Hormel Cancer InstituteChest Hospital of Zhengzhou UniversityZhengzhou450000China
| | - Yafei Zhi
- Department of PathophysiologySchool of Basic Medical SciencesZhengzhou University, China‐US (Henan) Hormel Cancer InstituteZhengzhou450000China
| | - Qiong Wu
- Department of PathophysiologySchool of Basic Medical SciencesZhengzhou University, China‐US (Henan) Hormel Cancer InstituteZhengzhou450000China
| | - Jing Ma
- Department of PathophysiologySchool of Basic Medical SciencesZhengzhou UniversityZhengzhou450000China
| | - Jialuo Xu
- Department of PathophysiologySchool of Basic Medical SciencesZhengzhou UniversityZhengzhou450000China
| | - Tingting Liu
- Department of PathophysiologySchool of Basic Medical SciencesZhengzhou University, China‐US (Henan) Hormel Cancer InstituteZhengzhou450000China
| | - Jing Zhang
- Department of PathophysiologySchool of Basic Medical SciencesZhengzhou University, China‐US (Henan) Hormel Cancer InstituteZhengzhou450000China
| | - Penglei Wang
- Department of PathophysiologySchool of Basic Medical SciencesZhengzhou University, China‐US (Henan) Hormel Cancer InstituteZhengzhou450000China
| | - Yamei Hu
- Department of PathophysiologySchool of Basic Medical SciencesZhengzhou University, China‐US (Henan) Hormel Cancer InstituteZhengzhou450000China
| | - Xinyu He
- Department of PathophysiologySchool of Basic Medical SciencesZhengzhou University, China‐US (Henan) Hormel Cancer InstituteZhengzhou450000China
| | - Fangqin Guo
- Department of PathophysiologySchool of Basic Medical SciencesZhengzhou University, China‐US (Henan) Hormel Cancer InstituteZhengzhou450000China
| | - Ming Jiang
- China‐US (Henan) Hormel Cancer InstituteZhengzhou450000China
| | - Dandan Zhang
- China‐US (Henan) Hormel Cancer InstituteZhengzhou450000China
| | - Wenna Nie
- China‐US (Henan) Hormel Cancer InstituteZhengzhou450000China
| | - Ran Yang
- China‐US (Henan) Hormel Cancer InstituteZhengzhou450000China
| | - Tongjin Zhao
- Department of PathophysiologySchool of Basic Medical SciencesTianjian Laboratory of Advanced Biomedical SciencesZhengzhou UniversityZhengzhou450000China
- State Key Laboratory of Genetic EngineeringShanghai Key Laboratory of Metabolic Remodeling and HealthInstitute of Metabolism and Integrative BiologyZhongshan HospitalShanghai Qi Zhi InstituteFudan UniversityShanghai200438China
| | - Zigang Dong
- Department of PathophysiologySchool of Basic Medical SciencesThe Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, State Key Laboratory of EsophagealCancer Prevention and TreatmentProvincial Cooperative Innovation Center for Cancer ChemopreventionChina‐US (Henan) Hormel Cancer Institute, Tianjian Laboratory of Advanced Biomedical SciencesZhengzhou UniversityZhengzhou450000China
| | - Kangdong Liu
- Department of PathophysiologySchool of Basic Medical SciencesThe Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, State Key Laboratory of EsophagealCancer Prevention and TreatmentProvincial Cooperative Innovation Center for Cancer ChemopreventionChina‐US (Henan) Hormel Cancer Institute, Tianjian Laboratory of Advanced Biomedical SciencesZhengzhou UniversityZhengzhou450000China
| |
Collapse
|
2
|
Yang TH, Kang EYC, Lin PH, Yu BBC, Wang JHH, Chen V, Wang NK. Mitochondria in Retinal Ganglion Cells: Unraveling the Metabolic Nexus and Oxidative Stress. Int J Mol Sci 2024; 25:8626. [PMID: 39201313 PMCID: PMC11354650 DOI: 10.3390/ijms25168626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/29/2024] [Accepted: 07/29/2024] [Indexed: 09/02/2024] Open
Abstract
This review explored the role of mitochondria in retinal ganglion cells (RGCs), which are essential for visual processing. Mitochondrial dysfunction is a key factor in the pathogenesis of various vision-related disorders, including glaucoma, hereditary optic neuropathy, and age-related macular degeneration. This review highlighted the critical role of mitochondria in RGCs, which provide metabolic support, regulate cellular health, and respond to cellular stress while also producing reactive oxygen species (ROS) that can damage cellular components. Maintaining mitochondrial function is essential for meeting RGCs' high metabolic demands and ensuring redox homeostasis, which is crucial for their proper function and visual health. Oxidative stress, exacerbated by factors like elevated intraocular pressure and environmental factors, contributes to diseases such as glaucoma and age-related vision loss by triggering cellular damage pathways. Strategies targeting mitochondrial function or bolstering antioxidant defenses include mitochondrial-based therapies, gene therapies, and mitochondrial transplantation. These advances can offer potential strategies for addressing mitochondrial dysfunction in the retina, with implications that extend beyond ocular diseases.
Collapse
Affiliation(s)
- Tsai-Hsuan Yang
- Department of Education, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan 33305, Taiwan;
- College of Medicine, National Yang Ming Chiao Tung University, Taipei 11217, Taiwan
| | - Eugene Yu-Chuan Kang
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan 33305, Taiwan;
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Ophthalmology, Edward S. Harkness Eye Institute, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA; (P.-H.L.); (J.H.-H.W.); (V.C.)
| | - Pei-Hsuan Lin
- Department of Ophthalmology, Edward S. Harkness Eye Institute, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA; (P.-H.L.); (J.H.-H.W.); (V.C.)
- National Taiwan University Hospital, Yunlin 640203, Taiwan
| | - Benjamin Ben-Chi Yu
- Fu Foundation School of Engineering & Applied Science, Columbia University, New York, NY 10027, USA;
| | - Jason Hung-Hsuan Wang
- Department of Ophthalmology, Edward S. Harkness Eye Institute, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA; (P.-H.L.); (J.H.-H.W.); (V.C.)
- Columbian College of Arts and Sciences, George Washington University, Washington, DC 20052, USA
| | - Vincent Chen
- Department of Ophthalmology, Edward S. Harkness Eye Institute, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA; (P.-H.L.); (J.H.-H.W.); (V.C.)
- Faculty of Health Sciences, Queen’s University, Kingston, ON K7L 3N9, Canada
| | - Nan-Kai Wang
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan 33305, Taiwan;
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Ophthalmology, Edward S. Harkness Eye Institute, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA
| |
Collapse
|
3
|
Yu M, Feng Y, Yan J, Zhang X, Tian Z, Wang T, Wang J, Shen W. Transcriptomic regulatory analysis of skeletal muscle development in landrace pigs. Gene 2024; 915:148407. [PMID: 38531491 DOI: 10.1016/j.gene.2024.148407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/28/2023] [Accepted: 03/21/2024] [Indexed: 03/28/2024]
Abstract
The development of pig skeletal muscle is a complex dynamic regulation process, which mainly includes the formation of primary and secondary muscle fibers, the remodeling of muscle fibers, and the maturation of skeletal muscle; However, the regulatory mechanism of the entire developmental process remains unclear. This study analyzed the whole-transcriptome data of skeletal muscles at 27 developmental nodes (E33-D180) in Landrace pigs, and their key regulatory factors in the development process were identified using the bioinformatics method. Firstly, we constructed a transcriptome expression map of skeletal muscle development from embryo to adulthood in Landrace pig. Subsequently, due to drastic change in gene expression, the perinatal periods including E105, D0 and D9, were focused, and the genes related to the process of muscle fiber remodeling and volume expansion were revealed. Then, though conjoint analysis with miRNA and lncRNA transcripts, a ceRNA network were identified, which consist of 11 key regulatory genes (such as CHAC1, RTN4IP1 and SESN1), 7 miRNAs and 43 lncRNAs, and they potentially play an important role in the process of muscle fiber differentiation, muscle fiber remodeling and volume expansion, intramuscular fat deposition, and other skeletal muscle developmental events. In summary, we reveal candidate genes and underlying molecular regulatory networks associated with perinatal skeletal muscle fiber type remodeling and expansion. These data provide new insights into the molecular regulation of mammalian skeletal muscle development and diversity.
Collapse
Affiliation(s)
- Mubin Yu
- Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Yanqin Feng
- Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Jiamao Yan
- Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Xiaoyuan Zhang
- Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Zhe Tian
- Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Tao Wang
- Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Junjie Wang
- Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China.
| | - Wei Shen
- Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
4
|
Gupta PR, O'Connell K, Sullivan JM, Huckfeldt RM. RTN4IP1-associated non-syndromic optic neuropathy and rod-cone dystrophy. Ophthalmic Genet 2024; 45:289-293. [PMID: 38224077 DOI: 10.1080/13816810.2024.2303683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 12/23/2023] [Accepted: 01/05/2024] [Indexed: 01/16/2024]
Abstract
BACKGROUND Biallelic variants in RTN4IP1 are a well-established cause of syndromic and nonsyndromic early-onset autosomal recessive optic neuropathy. They have more recently been reported to cause a concomitant but later-onset rod-cone dystrophy with or without syndromic features. METHODS A comprehensive evaluation was performed that included assessment of visual and retinal function, clinical examination, and retinal imaging. Childhood ophthalmic records as well as the results of genetic testing were evaluated. RESULTS A 24-year-old female described longstanding reduced visual acuity with more recent subjective impairment of dark adaptation. Visual acuity was subnormal in both eyes. Goldmann kinetic perimetry demonstrated scotomas in a pattern consistent with the presence of both optic neuropathy and rod-cone dystrophy with fundus exam as well as retinal imaging showing corroborating findings. Full-field electroretinography further confirmed the presence of a rod-cone dystrophy. Genetic testing demonstrated biallelic variants in RTN4IP1, one of which was novel, in association with the ocular findings. CONCLUSIONS RTN4IP1-associated early-onset bilateral optic neuropathy with rod-cone dystrophy is a recently described clinical entity with limited reports available to-date. The present case provides additional support for this dual phenotype and identifies a novel causative variant.
Collapse
Affiliation(s)
- Priya R Gupta
- Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts, USA
| | - Kaitlin O'Connell
- Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts, USA
| | - Jack M Sullivan
- Ira G. Ross Eye Institute (Department of Ophthalmology), Jacobs School of Medicine and Biomedical Sciences, University of Buffalo, Buffalo, New York, USA
- Department of Ophthalmology, VA Western NY Healthcare System, Buffalo, New York, USA
| | - Rachel M Huckfeldt
- Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
5
|
Pommerenke C, Nagel S, Haake J, Koelz AL, Christgen M, Steenpass L, Eberth S. Molecular Characterization and Subtyping of Breast Cancer Cell Lines Provide Novel Insights into Cancer Relevant Genes. Cells 2024; 13:301. [PMID: 38391914 PMCID: PMC10886524 DOI: 10.3390/cells13040301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/26/2024] [Accepted: 02/02/2024] [Indexed: 02/24/2024] Open
Abstract
Continuous cell lines are important and commonly used in vitro models in breast cancer (BC) research. Selection of the appropriate model cell line is crucial and requires consideration of their molecular characteristics. To characterize BC cell line models in depth, we profiled a panel of 29 authenticated and publicly available BC cell lines by mRNA-sequencing, mutation analysis, and immunoblotting. Gene expression profiles separated BC cell lines in two major clusters that represent basal-like (mainly triple-negative BC) and luminal BC subtypes, respectively. HER2-positive cell lines were located within the luminal cluster. Mutation calling highlighted the frequent aberration of TP53 and BRCA2 in BC cell lines, which, therefore, share relevant characteristics with primary BC. Furthermore, we showed that the data can be used to find novel, potential oncogenic fusion transcripts, e.g., FGFR2::CRYBG1 and RTN4IP1::CRYBG1 in cell line MFM-223, and to elucidate the regulatory circuit of IRX genes and KLF15 as novel candidate tumor suppressor genes in BC. Our data indicated that KLF15 was activated by IRX1 and inhibited by IRX3. Moreover, KLF15 inhibited IRX1 in cell line HCC-1599. Each BC cell line carries unique molecular features. Therefore, the molecular characteristics of BC cell lines described here might serve as a valuable resource to improve the selection of appropriate models for BC research.
Collapse
Affiliation(s)
- Claudia Pommerenke
- Department of Bioinformatics, IT and Databases, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, 38124 Braunschweig, Germany;
| | - Stefan Nagel
- Department of Human and Animal Cell Lines, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, 38124 Braunschweig, Germany; (S.N.)
| | - Josephine Haake
- Department of Human and Animal Cell Lines, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, 38124 Braunschweig, Germany; (S.N.)
| | - Anne Leena Koelz
- Department of Human and Animal Cell Lines, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, 38124 Braunschweig, Germany; (S.N.)
| | - Matthias Christgen
- Institute of Pathology, Hannover Medical School, 30625 Hannover, Germany
| | - Laura Steenpass
- Department of Human and Animal Cell Lines, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, 38124 Braunschweig, Germany; (S.N.)
- Zoological Institute, Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | - Sonja Eberth
- Department of Human and Animal Cell Lines, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, 38124 Braunschweig, Germany; (S.N.)
| |
Collapse
|
6
|
Park I, Kim KE, Kim J, Kim AK, Bae S, Jung M, Choi J, Mishra PK, Kim TM, Kwak C, Kang MG, Yoo CM, Mun JY, Liu KH, Lee KS, Kim JS, Suh JM, Rhee HW. Mitochondrial matrix RTN4IP1/OPA10 is an oxidoreductase for coenzyme Q synthesis. Nat Chem Biol 2024; 20:221-233. [PMID: 37884807 PMCID: PMC10830421 DOI: 10.1038/s41589-023-01452-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 09/17/2023] [Indexed: 10/28/2023]
Abstract
Targeting proximity-labeling enzymes to specific cellular locations is a viable strategy for profiling subcellular proteomes. Here, we generated transgenic mice (MAX-Tg) expressing a mitochondrial matrix-targeted ascorbate peroxidase. Comparative analysis of matrix proteomes from the muscle tissues showed differential enrichment of mitochondrial proteins. We found that reticulon 4-interacting protein 1 (RTN4IP1), also known as optic atrophy-10, is enriched in the mitochondrial matrix of muscle tissues and is an NADPH oxidoreductase. Interactome analysis and in vitro enzymatic assays revealed an essential role for RTN4IP1 in coenzyme Q (CoQ) biosynthesis by regulating the O-methylation activity of COQ3. Rtn4ip1-knockout myoblasts had markedly decreased CoQ9 levels and impaired cellular respiration. Furthermore, muscle-specific knockdown of dRtn4ip1 in flies resulted in impaired muscle function, which was reversed by dietary supplementation with soluble CoQ. Collectively, these results demonstrate that RTN4IP1 is a mitochondrial NAD(P)H oxidoreductase essential for supporting mitochondrial respiration activity in the muscle tissue.
Collapse
Affiliation(s)
- Isaac Park
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
| | - Kwang-Eun Kim
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
- Graduate School of Medical Science and Engineering, KAIST, Daejeon, Republic of Korea
| | - Jeesoo Kim
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
- Center for RNA Research, Institute for Basic Science, Seoul, Republic of Korea
| | - Ae-Kyeong Kim
- Metabolism and Neurophysiology Research Group, KRIBB, Daejeon, Republic of Korea
| | - Subin Bae
- BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, Korea
| | - Minkyo Jung
- Neural Circuit Research Group, Korea Brain Research Institute, Daegu, Republic of Korea
| | - Jinhyuk Choi
- Graduate School of Medical Science and Engineering, KAIST, Daejeon, Republic of Korea
| | | | - Taek-Min Kim
- Graduate School of Medical Science and Engineering, KAIST, Daejeon, Republic of Korea
| | - Chulhwan Kwak
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
| | - Myeong-Gyun Kang
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
| | - Chang-Mo Yoo
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
| | - Ji Young Mun
- Neural Circuit Research Group, Korea Brain Research Institute, Daegu, Republic of Korea
| | - Kwang-Hyeon Liu
- BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, Korea
| | - Kyu-Sun Lee
- Metabolism and Neurophysiology Research Group, KRIBB, Daejeon, Republic of Korea.
- School of Pharmacy, Sungkyunkwan University, Suwon, Korea.
| | - Jong-Seo Kim
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea.
- Center for RNA Research, Institute for Basic Science, Seoul, Republic of Korea.
| | - Jae Myoung Suh
- Graduate School of Medical Science and Engineering, KAIST, Daejeon, Republic of Korea.
| | - Hyun-Woo Rhee
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea.
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
7
|
Jurkute N, Arno G, Webster AR, Yu-Wai-Man P. Whole Genome Sequencing Identifies a Partial Deletion of RTN4IP1 in a Patient With Isolated Optic Atrophy. J Neuroophthalmol 2023; 43:e142-e145. [PMID: 35439212 DOI: 10.1097/wno.0000000000001589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Neringa Jurkute
- Genetics Department, Moorfields Eye Hospital NHS Foundation Trust (NJ, GA, ARW, PY-W-M), London, United Kingdom; Institute of Ophthalmology (NJ, GA, ARW, PY-W-M), University College London, London, United Kingdom; North Thames Genomic Laboratory Hub, Great Ormond Street Hospital for Children (GA), London, United Kingdom; Cambridge Eye Unit, Addenbrooke's Hospital (PY-W-M), Cambridge University Hospitals, Cambridge, United Kingdom; and John van Geest Centre for Brain Repair and MRC Mitochondrial Biology Unit (PY-W-M), Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | | | | | | |
Collapse
|
8
|
Aldosary M, Alsagob M, AlQudairy H, González-Álvarez AC, Arold ST, Dababo MA, Alharbi OA, Almass R, AlBakheet A, AlSarar D, Qari A, Al-Ansari MM, Oláhová M, Al-Shahrani SA, AlSayed M, Colak D, Taylor RW, AlOwain M, Kaya N. A Novel Homozygous Founder Variant of RTN4IP1 in Two Consanguineous Saudi Families. Cells 2022; 11:3154. [PMID: 36231115 PMCID: PMC9563936 DOI: 10.3390/cells11193154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/26/2022] [Accepted: 10/01/2022] [Indexed: 11/25/2022] Open
Abstract
The genetic architecture of mitochondrial disease continues to expand and currently exceeds more than 350 disease-causing genes. Bi-allelic variants in RTN4IP1, also known as Optic Atrophy-10 (OPA10), lead to early-onset recessive optic neuropathy, atrophy, and encephalopathy in the afflicted patients. The gene is known to encode a mitochondrial ubiquinol oxidoreductase that interacts with reticulon 4 and is thought to be a mitochondrial antioxidant NADPH oxidoreductase. Here, we describe two unrelated consanguineous families from the northern region of Saudi Arabia harboring a missense variant (RTN4IP1:NM_032730.5; c.475G
Collapse
Affiliation(s)
- Mazhor Aldosary
- Translational Genomics Department, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Centre (KFSHRC), P.O. Box 3354, Riyadh 11211, Saudi Arabia
| | - Maysoon Alsagob
- Translational Genomics Department, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Centre (KFSHRC), P.O. Box 3354, Riyadh 11211, Saudi Arabia
- Center of Excellence for Biomedicine, Joint Centers for Excellence Program, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Hanan AlQudairy
- Translational Genomics Department, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Centre (KFSHRC), P.O. Box 3354, Riyadh 11211, Saudi Arabia
| | - Ana C. González-Álvarez
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Computational Biology Research Center, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Stefan T. Arold
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Computational Biology Research Center, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
- Centre de Biologie Structurale (CBS), INSERM, CNRS, Université de Montpellier, F-34090 Montpellier, France
| | - Mohammad Anas Dababo
- Department of Pathology and Laboratory Medicine, King Faisal Specialist Hospital and Research Centre (KFSHRC), P.O. Box 3354, Riyadh 11211, Saudi Arabia
| | - Omar A. Alharbi
- Radiology Department, King Faisal Specialist Hospital and Research Centre (KFSHRC), P.O. Box 3354, Riyadh 11211, Saudi Arabia
| | - Rawan Almass
- Department of Medical Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Centre (KFSHRC), P.O. Box 3354, Riyadh 11211, Saudi Arabia
| | - AlBandary AlBakheet
- Translational Genomics Department, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Centre (KFSHRC), P.O. Box 3354, Riyadh 11211, Saudi Arabia
| | - Dalia AlSarar
- Translational Genomics Department, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Centre (KFSHRC), P.O. Box 3354, Riyadh 11211, Saudi Arabia
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Alya Qari
- Department of Medical Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Centre (KFSHRC), P.O. Box 3354, Riyadh 11211, Saudi Arabia
| | - Mysoon M. Al-Ansari
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
- Department of Molecular Oncology, King Faisal Specialist Hospital and Research Centre (KFSHRC), P.O. Box 3354, Riyadh 11211, Saudi Arabia
| | - Monika Oláhová
- Welcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Saif A. Al-Shahrani
- Department of Medical Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Centre (KFSHRC), P.O. Box 3354, Riyadh 11211, Saudi Arabia
| | - Moeenaldeen AlSayed
- Department of Medical Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Centre (KFSHRC), P.O. Box 3354, Riyadh 11211, Saudi Arabia
- College of Medicine, Alfaisal University, P.O. Box 50927, Riyadh 11533, Saudi Arabia
| | - Dilek Colak
- Department of Molecular Oncology, King Faisal Specialist Hospital and Research Centre (KFSHRC), P.O. Box 3354, Riyadh 11211, Saudi Arabia
| | - Robert W. Taylor
- Welcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- NHS Highly Specialized Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE1 4LP, UK
| | - Mohammed AlOwain
- Department of Medical Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Centre (KFSHRC), P.O. Box 3354, Riyadh 11211, Saudi Arabia
| | - Namik Kaya
- Translational Genomics Department, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Centre (KFSHRC), P.O. Box 3354, Riyadh 11211, Saudi Arabia
| |
Collapse
|
9
|
Giannos P, Prokopidis K, Raleigh SM, Kelaiditi E, Hill M. Altered mitochondrial microenvironment at the spotlight of musculoskeletal aging and Alzheimer's disease. Sci Rep 2022; 12:11290. [PMID: 35788655 PMCID: PMC9253146 DOI: 10.1038/s41598-022-15578-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 06/27/2022] [Indexed: 11/23/2022] Open
Abstract
Emerging evidence has linked Alzheimer's disease (AD) onset with musculoskeletal aging via a muscle-brain crosstalk mediated by dysregulation of the mitochondrial microenvironment. This study investigated gene expression profiles from skeletal muscle tissues of older healthy adults to identify potential gene biomarkers whose dysregulated expression and protein interactome were involved in AD. Screening of the literature resulted in 12 relevant microarray datasets (GSE25941, GSE28392, GSE28422, GSE47881, GSE47969, GSE59880) in musculoskeletal aging and (GSE4757, GSE5281, GSE16759, GSE28146, GSE48350, GSE84422) in AD. Retrieved differentially expressed genes (DEGs) were used to construct two unique protein-protein interaction networks and clustering gene modules were identified. Overlapping module DEGs in the musculoskeletal aging and AD networks were ranked based on 11 topological algorithms and the five highest-ranked ones were considered as hub genes. The analysis revealed that the dysregulated expression of the mitochondrial microenvironment genes, NDUFAB1, UQCRC1, UQCRFS1, NDUFS3, and MRPL15, overlapped between both musculoskeletal aging and AD networks. Thus, these genes may have a potential role as markers of AD occurrence in musculoskeletal aging. Human studies are warranted to evaluate the functional role and prognostic value of these genes in aging populations with sarcopenia and AD.
Collapse
Affiliation(s)
- Panagiotis Giannos
- Society of Meta-research and Biomedical Innovation, London, UK. .,Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, South Kensington, London, SW7 2AZ, UK.
| | - Konstantinos Prokopidis
- Society of Meta-research and Biomedical Innovation, London, UK.,Department of Musculoskeletal Biology, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Stuart M Raleigh
- Cardiovascular and Lifestyle Medicine Research Group, Centre for Sport, Exercise and Life Sciences, Coventry University, Coventry, UK
| | - Eirini Kelaiditi
- Faculty of Sport, Allied Health and Performance Science, St Mary's University Twickenham, Twickenham, UK
| | - Mathew Hill
- Centre for Sport, Exercise and Life Sciences, School of Life Sciences, Coventry University, Coventry, UK
| |
Collapse
|
10
|
Zhou J, Chen F, Yan A, Jiang J, Xia X. Hyperglycemia induces retinal ganglion cell endoplasmic reticulum stress to the involvement of glaucoma in diabetic mice. Transpl Immunol 2022; 73:101636. [PMID: 35659921 DOI: 10.1016/j.trim.2022.101636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 11/30/2022]
Abstract
Glaucoma is a neurodegenerative disease leading to visual loss. Since glaucoma is associated with chronic renal diseases (RDs) their rate is higher in patients with RDs, and end-stage RDs (ESRDs) than in the general population and kidney transplant recipients. OBJECTIVE To explore the molecular mechanism of diabetic internal environment in regulating the endoplasmic reticulum stress of the retinal ganglion cells (RGCs). METHODS Thirty-six SPF grade type 2 diabetes models were divided into 3 groups: Diabetes mellitus (DM), DM + glaucoma and 4-phenylbutyric acid-DM (4-PBA-DM) + glaucoma group. C57BL6 mice of the same week age were taken as the negative control (NC) group. The morphology of RGCs and their axon in the 4 groups were labeled by fluorescent reactive dye Dil. The apoptosis situation of RGCs was determined by terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) assay. The protein expression values of RTN4IP1, Protein kinase R-like endoplasmic reticulum kinase (PERK), eukaryotic initiation factor 2A (eIF2a) and X-box-binding Protein 1 (XBP1) were determined by western blot. The relative mRNA levels of cyclophosphamide, doxorubicin, vincristine and prednisone (CHOP), Caspase12 and Bax were determined by quantitative real-time polymerase chain reaction (qRT-PCR). RESULTS Glaucoma promotes the apoptosis of RGCs. The protein expression values of RTN4IP1, PERK and XBP1 in DM mouse models with glaucoma were much higher compared to only DM mouse models. Further injection of endoplasmic reticulum stress inhibitor 4-PBA decreased the expression values. The relative mRNA levels of CHOP, Cysteine aspartic acid specific protease12 (Caspase12) and BCL2-associated X protein (Bax) in DM + glaucoma were significantly higher compared to those in DM group. Further injection of endoplasmic reticulum stress inhibitor 4-PBA decreased the mRNA levels. CONCLUSION Endoplasmic reticulum stress (ERS) is the underlying cause of glaucoma, which could promote the apoptosis of RGCs in diabetic mice.
Collapse
Affiliation(s)
- Jinzi Zhou
- Department of Ophthalmology, The First People's Hospital of Guiyang, Guiyang, Guizhou 550002, PR China.
| | - Fenghua Chen
- Department of Ophthalmology, The First People's Hospital of Guiyang, Guiyang, Guizhou 550002, PR China
| | - Aimin Yan
- Department of Ophthalmology, The First People's Hospital of Guiyang, Guiyang, Guizhou 550002, PR China
| | - Jian Jiang
- Department of Ophthalmology, Xiangya Hospital Central South University, Changsha, Hunan 410008, PR China
| | - Xiaobo Xia
- Department of Ophthalmology, Xiangya Hospital Central South University, Changsha, Hunan 410008, PR China
| |
Collapse
|
11
|
Comprehensive Comparison of Novel Bovine Leukemia Virus (BLV) Integration Sites between B-Cell Lymphoma Lines BLSC-KU1 and BLSC-KU17 Using the Viral DNA Capture High-Throughput Sequencing Method. Viruses 2022; 14:v14050995. [PMID: 35632737 PMCID: PMC9143949 DOI: 10.3390/v14050995] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/28/2022] [Accepted: 05/06/2022] [Indexed: 02/01/2023] Open
Abstract
Bovine leukemia virus (BLV) infects cattle and integrates into host DNA, causing enzootic bovine leukosis (EBL), an aggressive B-cell lymphoma. Here, we developed a novel proviral DNA-capture sequencing (proviral DNA-capture-seq) method investigating BLV proviral integration in two B-cell lymphoma lines, BLSC-KU1 and BLSC-KU17, derived from BLV-infected cattle with EBL. We designed BLV-specific biotinylated probes to capture the provirus genome and enrich libraries for next-generation sequencing. Validation showed high specificity and efficient enrichment of target sequence reads as well as identification of three BLV proviral integration sites on BLV persistently infected FLK-BLV cells as a positive control. We successfully detected a single BLV proviral integration site on chromosome 19 of BLSC-KU1 and chromosome 9 of BLSC-KU17, which were confirmed by standard PCR and Sanger sequencing. Further, a defective provirus in BLSC-KU1 and complete BLV proviral sequence in BLSC-KU17 were confirmed using long PCR and sequencing. This is the first study to provide comprehensive information on BLV proviral structure and viral integration in BLSC-KU1 and BLSC-KU17. Moreover, the proposed method can facilitate understanding of the detailed mechanisms underlying BLV-induced leukemogenesis and may be used as an innovative tool to screen BLV-infected cattle at risk at an earlier stage than those that have already developed lymphoma.
Collapse
|
12
|
Slater PG, Domínguez-Romero ME, Villarreal M, Eisner V, Larraín J. Mitochondrial function in spinal cord injury and regeneration. Cell Mol Life Sci 2022; 79:239. [PMID: 35416520 PMCID: PMC11072423 DOI: 10.1007/s00018-022-04261-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 12/21/2022]
Abstract
Many people around the world suffer from some form of paralysis caused by spinal cord injury (SCI), which has an impact on quality and life expectancy. The spinal cord is part of the central nervous system (CNS), which in mammals is unable to regenerate, and to date, there is a lack of full functional recovery therapies for SCI. These injuries start with a rapid and mechanical insult, followed by a secondary phase leading progressively to greater damage. This secondary phase can be potentially modifiable through targeted therapies. The growing literature, derived from mammalian and regenerative model studies, supports a leading role for mitochondria in every cellular response after SCI: mitochondrial dysfunction is the common event of different triggers leading to cell death, cellular metabolism regulates the immune response, mitochondrial number and localization correlate with axon regenerative capacity, while mitochondrial abundance and substrate utilization regulate neural stem progenitor cells self-renewal and differentiation. Herein, we present a comprehensive review of the cellular responses during the secondary phase of SCI, the mitochondrial contribution to each of them, as well as evidence of mitochondrial involvement in spinal cord regeneration, suggesting that a more in-depth study of mitochondrial function and regulation is needed to identify potential targets for SCI therapeutic intervention.
Collapse
Affiliation(s)
- Paula G Slater
- Center for Aging and Regeneration, Departamento de Biología Celular Y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, 8331150, Santiago, Chile.
| | - Miguel E Domínguez-Romero
- Center for Aging and Regeneration, Departamento de Biología Celular Y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, 8331150, Santiago, Chile
| | - Maximiliano Villarreal
- Center for Aging and Regeneration, Departamento de Biología Celular Y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, 8331150, Santiago, Chile
| | - Verónica Eisner
- Center for Aging and Regeneration, Departamento de Biología Celular Y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, 8331150, Santiago, Chile
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, 8331150, Santiago, Chile
| | - Juan Larraín
- Center for Aging and Regeneration, Departamento de Biología Celular Y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, 8331150, Santiago, Chile
| |
Collapse
|
13
|
Strachan EL, Mac White-Begg D, Crean J, Reynolds AL, Kennedy BN, O’Sullivan NC. The Role of Mitochondria in Optic Atrophy With Autosomal Inheritance. Front Neurosci 2021; 15:784987. [PMID: 34867178 PMCID: PMC8634724 DOI: 10.3389/fnins.2021.784987] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 10/22/2021] [Indexed: 11/13/2022] Open
Abstract
Optic atrophy (OA) with autosomal inheritance is a form of optic neuropathy characterized by the progressive and irreversible loss of vision. In some cases, this is accompanied by additional, typically neurological, extra-ocular symptoms. Underlying the loss of vision is the specific degeneration of the retinal ganglion cells (RGCs) which form the optic nerve. Whilst autosomal OA is genetically heterogenous, all currently identified causative genes appear to be associated with mitochondrial organization and function. However, it is unclear why RGCs are particularly vulnerable to mitochondrial aberration. Despite the relatively high prevalence of this disorder, there are currently no approved treatments. Combined with the lack of knowledge concerning the mechanisms through which aberrant mitochondrial function leads to RGC death, there remains a clear need for further research to identify the underlying mechanisms and develop treatments for this condition. This review summarizes the genes known to be causative of autosomal OA and the mitochondrial dysfunction caused by pathogenic mutations. Furthermore, we discuss the suitability of available in vivo models for autosomal OA with regards to both treatment development and furthering the understanding of autosomal OA pathology.
Collapse
Affiliation(s)
- Elin L. Strachan
- UCD Conway Institute, University College Dublin, Dublin, Ireland
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Delphi Mac White-Begg
- UCD Conway Institute, University College Dublin, Dublin, Ireland
- UCD School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - John Crean
- UCD Conway Institute, University College Dublin, Dublin, Ireland
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
- UCD Diabetes Complications Research Centre, Conway Institute of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Alison L. Reynolds
- UCD Conway Institute, University College Dublin, Dublin, Ireland
- UCD School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Breandán N. Kennedy
- UCD Conway Institute, University College Dublin, Dublin, Ireland
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Niamh C. O’Sullivan
- UCD Conway Institute, University College Dublin, Dublin, Ireland
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
14
|
Sun S, Erchova I, Sengpiel F, Votruba M. Opa1 Deficiency Leads to Diminished Mitochondrial Bioenergetics With Compensatory Increased Mitochondrial Motility. Invest Ophthalmol Vis Sci 2021; 61:42. [PMID: 32561926 PMCID: PMC7415319 DOI: 10.1167/iovs.61.6.42] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Purpose Retinal ganglion cells (RGCs) are susceptible to mitochondrial deficits and also the major cell type affected in patients with mutations in the OPA1 gene in autosomal dominant optic atrophy (ADOA). Here, we characterized mitochondria in RGCs in vitro from a heterozygous B6; C3-Opa1Q285STOP (Opa1+/−) mouse model to investigate mitochondrial changes underlying the pathology in ADOA. Methods Mouse RGCs were purified from wild-type and Opa1+/− mouse retina by two-step immunopanning. The mitochondria in neurites of RGCs were labeled with MitoTracker Red for structure and motility measurement by time-lapse imaging. Mitochondrial bioenergetics were determined by the real-time measurement of oxygen consumption rate using a Seahorse XFe 96 Extracellular Flux Analyzer. Results We observed a significant decrease in mitochondrial length in Opa1+/− RGCs with a remarkably higher proportion and density of motile mitochondria along the neurites. We also observed an increased transport velocity with a higher number of contacts between mitochondria in Opa1+/− RGC neurites. The oxygen consumption assays showed a severe impairment in basal respiration, Adenosine triphosphate-linked (ATP-linked) oxygen consumption, as well as reserve respiratory capacity, in RGCs from Opa1+/− mouse retina. Conclusions Opa1 deficiency leads to significant fragmentation of mitochondrial morphology, activation of mitochondrial motility and impaired respiratory function in RGCs from the B6; C3-Opa1Q285STOP mouse model. This highlights the significant alterations in the intricate interplay between mitochondrial morphology, motility, and energy production in RGCs with Opa1 deficiency long before the onset of clinical symptoms of the pathology.
Collapse
|
15
|
Kreymerman A, Buickians DN, Nahmou MM, Tran T, Galvao J, Wang Y, Sun N, Bazik L, Huynh SK, Cho IJ, Boczek T, Chang KC, Kunzevitzky NJ, Goldberg JL. MTP18 is a Novel Regulator of Mitochondrial Fission in CNS Neuron Development, Axonal Growth, and Injury Responses. Sci Rep 2019; 9:10669. [PMID: 31337818 PMCID: PMC6650498 DOI: 10.1038/s41598-019-46956-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 07/05/2019] [Indexed: 12/17/2022] Open
Abstract
The process of mitochondrial fission-fusion has been implicated in diverse neuronal roles including neuronal survival, axon degeneration, and axon regeneration. However, whether increased fission or fusion is beneficial for neuronal health and/or axonal growth is not entirely clear, and is likely situational and cell type-dependent. In searching for mitochondrial fission-fusion regulating proteins for improving axonal growth within the visual system, we uncover that mitochondrial fission process 1,18 kDa (MTP18/MTFP1), a pro-fission protein within the CNS, is critical to maintaining mitochondrial size and volume under normal and injury conditions, in retinal ganglion cells (RGCs). We demonstrate that MTP18’s expression is regulated by transcription factors involved in axonal growth, Kruppel-like factor (KLF) transcription factors-7 and -9, and that knockdown of MTP18 promotes axon growth. This investigation exposes MTP18’s previously unexplored role in regulating mitochondrial fission, implicates MTP18 as a downstream component of axon regenerative signaling, and ultimately lays the groundwork for investigations on the therapeutic efficacy of MTP18 expression suppression during CNS axon degenerative events.
Collapse
Affiliation(s)
- Alexander Kreymerman
- Byers Eye Institute and Spencer Center for Vision Research, Stanford University, Palo Alto, CA, 94303, USA. .,University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
| | - David N Buickians
- Byers Eye Institute and Spencer Center for Vision Research, Stanford University, Palo Alto, CA, 94303, USA
| | - Michael M Nahmou
- Byers Eye Institute and Spencer Center for Vision Research, Stanford University, Palo Alto, CA, 94303, USA
| | - Tammy Tran
- University of California, San Diego, CA, 92093, USA
| | - Joana Galvao
- Byers Eye Institute and Spencer Center for Vision Research, Stanford University, Palo Alto, CA, 94303, USA
| | - Yan Wang
- University of California, San Diego, CA, 92093, USA
| | - Nicholas Sun
- University of California, San Diego, CA, 92093, USA
| | - Leah Bazik
- University of California, San Diego, CA, 92093, USA
| | - Star K Huynh
- Byers Eye Institute and Spencer Center for Vision Research, Stanford University, Palo Alto, CA, 94303, USA
| | - In-Jae Cho
- Byers Eye Institute and Spencer Center for Vision Research, Stanford University, Palo Alto, CA, 94303, USA
| | - Tomasz Boczek
- Byers Eye Institute and Spencer Center for Vision Research, Stanford University, Palo Alto, CA, 94303, USA
| | - Kun-Che Chang
- Byers Eye Institute and Spencer Center for Vision Research, Stanford University, Palo Alto, CA, 94303, USA
| | - Noelia J Kunzevitzky
- Byers Eye Institute and Spencer Center for Vision Research, Stanford University, Palo Alto, CA, 94303, USA
| | - Jeffrey L Goldberg
- Byers Eye Institute and Spencer Center for Vision Research, Stanford University, Palo Alto, CA, 94303, USA
| |
Collapse
|
16
|
Cheung CT, Nguyen TV, Le Cam A, Patinote A, Journot L, Reynes C, Bobe J. What makes a bad egg? Egg transcriptome reveals dysregulation of translational machinery and novel fertility genes important for fertilization. BMC Genomics 2019; 20:584. [PMID: 31307377 PMCID: PMC6631549 DOI: 10.1186/s12864-019-5930-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 06/24/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Egg quality can be defined as the egg ability to be fertilized and subsequently develop into a normal embryo. Previous research has shed light on factors that can influence egg quality. Large gaps however remain including a comprehensive view of what makes a bad egg. Initial development of the embryo relies on maternally-inherited molecules, such as transcripts, deposited in the egg during its formation. Bad egg quality is therefore susceptible to be associated with alteration or dysregulation of maternally-inherited transcripts. We performed transcriptome analysis on a large number (N = 136) of zebrafish egg clutches, each clutch being split to monitor developmental success and perform transcriptome analysis in parallel. We aimed at drawing a molecular portrait of the egg in order to characterize the relation between egg transcriptome and developmental success and to subsequently identify new candidate genes involved in fertility. RESULTS We identified 66 transcript that were differentially abundant in eggs of contrasted phenotype (low or high developmental success). Statistical modeling using partial least squares regression and genetics algorithm demonstrated that gene signatures from transcriptomic data can be used to predict developmental success. The identity and function of differentially expressed genes indicate a major dysregulation of genes of the translational machinery in poor quality eggs. Two genes, otulina and slc29a1a, predominantly expressed in the ovary and dysregulated in poor quality eggs were further investigated using CRISPR/Cas9 mediated genome editing. Mutants of each gene revealed remarkable subfertility whereby the majority of their eggs were unfertilizable. The Wnt pathway appeared to be dysregulated in the otulina mutant-derived eggs. CONCLUSIONS Here we show that egg transcriptome contains molecular signatures, which can be used to predict developmental success. Our results also indicate that poor egg quality in zebrafish is associated with a dysregulation of (i) the translational machinery genes and (ii) novel fertility genes, otulina and slc29a1a, playing an important role for fertilization. Together, our observations highlight the diversity of the possible causes of egg quality defects and reveal mechanisms of maternal origin behind the lack of fertilization and early embryonic failures that can occur under normal reproduction conditions.
Collapse
Affiliation(s)
- Caroline T Cheung
- INRA, Laboratoire de Physiologie et Génomique des poissons, Campus de Beaulieu, F-35042, Rennes cedex, France
| | - Thao-Vi Nguyen
- INRA, Laboratoire de Physiologie et Génomique des poissons, Campus de Beaulieu, F-35042, Rennes cedex, France
| | - Aurélie Le Cam
- INRA, Laboratoire de Physiologie et Génomique des poissons, Campus de Beaulieu, F-35042, Rennes cedex, France
| | - Amélie Patinote
- INRA, Laboratoire de Physiologie et Génomique des poissons, Campus de Beaulieu, F-35042, Rennes cedex, France
| | - Laurent Journot
- Institut de Génomique Fonctionnelle, IGF, Université de Montpellier, CNRS, INSERM, Montpellier, France.,Montpellier GenomiX, BioCampus Montpellier, MGX, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Christelle Reynes
- Institut de Génomique Fonctionnelle, IGF, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Julien Bobe
- INRA, Laboratoire de Physiologie et Génomique des poissons, Campus de Beaulieu, F-35042, Rennes cedex, France.
| |
Collapse
|
17
|
Zou XH, Guo XX, Su HZ, Wang C, Dong EL, Wang N, Chen WJ, Zhang QJ. Whole Exome Sequencing Identifies Two Novel Mutations in the Reticulon 4-Interacting Protein 1 Gene in a Chinese Family with Autosomal Recessive Optic Neuropathies. J Mol Neurosci 2019; 68:640-646. [PMID: 31077085 DOI: 10.1007/s12031-019-01319-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 04/16/2019] [Indexed: 10/26/2022]
Abstract
Autosomal recessive optic neuropathies (IONs) are extremely rare disorders affecting retinal ganglion cells and the nervous system. RTN4IP1 has recently been identified as the third known gene associated with the autosomal recessive ION optic atrophy 10 (OPA10). Patients with RTN4IP1 mutations show early-onset optic neuropathy that can be followed by additional neurological symptoms such as seizures, ataxia, mental retardation, or even severe encephalopathy. Here, we report two siblings from a Chinese family who presented with early-onset optic neuropathy, epilepsy, and mild intellectual disability. Using whole exome sequencing combined with Sanger sequencing, we identified novel compound heterozygous RTN4IP1 mutations (c.646G > A, p.G216R and c.1162C > T, p.R388X) which both co-segregated with the disease phenotype and were predicted to be disease-causing by prediction software. An in vitro functional study in urine cells obtained from one of the patients revealed low expression of the RTN4IP1 protein. Our results identify novel compound heterozygous mutations in RTN4IP1 which are associated with OPA10, highlighting the frequency of RTN4IP1 mutations in human autosomal recessive IONs. To our knowledge, this is the first report of RTN4IP1 carriers from China.
Collapse
Affiliation(s)
- Xiao-Huan Zou
- Fujian Key Laboratory of Molecular Neurology, Fuzhou, China
| | - Xin-Xin Guo
- Fujian Key Laboratory of Molecular Neurology, Fuzhou, China
| | - Hui-Zhen Su
- Fujian Key Laboratory of Molecular Neurology, Fuzhou, China
| | - Chong Wang
- Fujian Key Laboratory of Molecular Neurology, Fuzhou, China
| | - En-Lin Dong
- Fujian Key Laboratory of Molecular Neurology, Fuzhou, China
| | - Ning Wang
- Fujian Key Laboratory of Molecular Neurology, Fuzhou, China.,Department of Neurology and Institute of Neurology, Fujian Medical University, 20 Chazhong Road, Fuzhou, 350005, China
| | - Wan-Jin Chen
- Fujian Key Laboratory of Molecular Neurology, Fuzhou, China. .,Department of Neurology and Institute of Neurology, Fujian Medical University, 20 Chazhong Road, Fuzhou, 350005, China.
| | - Qi-Jie Zhang
- Fujian Key Laboratory of Molecular Neurology, Fuzhou, China. .,Department of Neurology and Institute of Neurology, Fujian Medical University, 20 Chazhong Road, Fuzhou, 350005, China.
| |
Collapse
|
18
|
Shan W, Li J, Xu W, Li H, Zuo Z. Critical role of UQCRC1 in embryo survival, brain ischemic tolerance and normal cognition in mice. Cell Mol Life Sci 2019; 76:1381-1396. [PMID: 30666338 PMCID: PMC6421091 DOI: 10.1007/s00018-019-03007-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 12/21/2018] [Accepted: 01/08/2019] [Indexed: 12/17/2022]
Abstract
Ubiquinol cytochrome c reductase core protein I (UQCRC1) is a component of the complex III in the respiratory chain. Its biological functions are unknown. Here, we showed that knockout of UQCRC1 led to embryonic lethality. Disrupting one UQCRC1 allele in mice (heterozygous mice) of both sexes did not affect their growth but reduced UQCRC1 mRNA and protein in the brain. These mice had decreased complex III formation, complex III activity and ATP content in the brain at baseline. They developed worsened neurological outcome after brain ischemia/hypoxia or focal brain ischemia compared with wild-type mice. The ischemic cerebral cortex of the heterozygous mice had decreased mitochondrial membrane potential and ATP content as well as increased free radicals. Also, the heterozygous mice performed poorly in the Barnes maze and novel object recognition tests. Finally, UQCRC1 was expressed abundantly in neurons and astrocytes. These results suggest a critical role of UQCRC1 in embryo survival. UQCRC1 may also be important by forming the complex III to maintain normal brain ischemic tolerance, learning and memory.
Collapse
Affiliation(s)
- Weiran Shan
- Department of Anesthesiology, University of Virginia Health System, 1 Hospital Drive, PO Box 800710, Charlottesville, VA, 22908-0710, USA
| | - Jun Li
- Department of Anesthesiology, University of Virginia Health System, 1 Hospital Drive, PO Box 800710, Charlottesville, VA, 22908-0710, USA
| | - Wenhao Xu
- Genetically Engineered Murine Model Core, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Hong Li
- Department of Anesthesiology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Zhiyi Zuo
- Department of Anesthesiology, University of Virginia Health System, 1 Hospital Drive, PO Box 800710, Charlottesville, VA, 22908-0710, USA.
- Department of Neuroscience and Neurological Surgery, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
19
|
Charif M, Nasca A, Thompson K, Gerber S, Makowski C, Mazaheri N, Bris C, Goudenège D, Legati A, Maroofian R, Shariati G, Lamantea E, Hopton S, Ardissone A, Moroni I, Giannotta M, Siegel C, Strom TM, Prokisch H, Vignal-Clermont C, Derrien S, Zanlonghi X, Kaplan J, Hamel CP, Leruez S, Procaccio V, Bonneau D, Reynier P, White FE, Hardy SA, Barbosa IA, Simpson MA, Vara R, Perdomo Trujillo Y, Galehdari H, Deshpande C, Haack TB, Rozet JM, Taylor RW, Ghezzi D, Amati-Bonneau P, Lenaers G. Neurologic Phenotypes Associated With Mutations in RTN4IP1 (OPA10) in Children and Young Adults. JAMA Neurol 2018; 75:105-113. [PMID: 29181510 PMCID: PMC5833489 DOI: 10.1001/jamaneurol.2017.2065] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 06/08/2017] [Indexed: 01/10/2023]
Abstract
Importance Neurologic disorders with isolated symptoms or complex syndromes are relatively frequent among mitochondrial inherited diseases. Recessive RTN4IP1 gene mutations have been shown to cause isolated and syndromic optic neuropathies. Objective To define the spectrum of clinical phenotypes associated with mutations in RTN4IP1 encoding a mitochondrial quinone oxidoreductase. Design, Setting, and Participants This study involved 12 individuals from 11 families with severe central nervous system diseases and optic atrophy. Targeted and whole-exome sequencing were performed-at Hospital Angers (France), Institute of Neurology Milan (Italy), Imagine Institute Paris (France), Helmoltz Zentrum of Munich (Germany), and Beijing Genomics Institute (China)-to clarify the molecular diagnosis of patients. Each patient's neurologic, ophthalmologic, magnetic resonance imaging, and biochemical features were investigated. This study was conducted from May 1, 2014, to June 30, 2016. Main Outcomes and Measures Recessive mutations in RTN4IP1 were identified. Clinical presentations ranged from isolated optic atrophy to severe encephalopathies. Results Of the 12 individuals in the study, 6 (50%) were male and 6 (50%) were female. They ranged in age from 5 months to 32 years. Of the 11 families, 6 (5 of whom were consanguineous) had a member or members who presented isolated optic atrophy with the already reported p.Arg103His or the novel p.Ile362Phe, p.Met43Ile, and p.Tyr51Cys amino acid changes. The 5 other families had a member or members who presented severe neurologic syndromes with a common core of symptoms, including optic atrophy, seizure, intellectual disability, growth retardation, and elevated lactate levels. Additional clinical features of those affected were deafness, abnormalities on magnetic resonance images of the brain, stridor, and abnormal electroencephalographic patterns, all of which eventually led to death before age 3 years. In these patients, novel and very rare homozygous and compound heterozygous mutations were identified that led to the absence of the protein and complex I disassembly as well as mild mitochondrial network fragmentation. Conclusions and Relevance A broad clinical spectrum of neurologic features, ranging from isolated optic atrophy to severe early-onset encephalopathies, is associated with RTN4IP1 biallelic mutations and should prompt RTN4IP1 screening in both syndromic neurologic presentations and nonsyndromic recessive optic neuropathies.
Collapse
Affiliation(s)
- Majida Charif
- MitoLab Team, Unités Mixtes de Recherche Centre National de la Recherche Scientifique 6015–INSERM U1083, Institut MitoVasc, Angers University and Hospital, Angers, France
| | - Alessia Nasca
- Unit of Molecular Neurogenetics, Istituto di Ricovero e Cura a Carattere Scientifico, Foundation of the Carlo Besta Neurological Institute, Milan, Italy
| | - Kyle Thompson
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle Upon Tyne, England
| | - Sylvie Gerber
- Laboratory of Genetics in Ophthalmology, INSERM UMR1163, Institute of Genetic Diseases, Imagine, Paris, France
| | - Christine Makowski
- Department of Paediatrics, Technische Universität München, Munich, Germany
| | - Neda Mazaheri
- Department of Genetics, Shahid Chamran University of Ahvaz, Ahvaz, Iran
- Narges Medical Genetics and Prenatal Diagnosis Laboratory, Kianpars, Ahvaz, Iran
| | - Céline Bris
- MitoLab Team, Unités Mixtes de Recherche Centre National de la Recherche Scientifique 6015–INSERM U1083, Institut MitoVasc, Angers University and Hospital, Angers, France
| | - David Goudenège
- MitoLab Team, Unités Mixtes de Recherche Centre National de la Recherche Scientifique 6015–INSERM U1083, Institut MitoVasc, Angers University and Hospital, Angers, France
| | - Andrea Legati
- Unit of Molecular Neurogenetics, Istituto di Ricovero e Cura a Carattere Scientifico, Foundation of the Carlo Besta Neurological Institute, Milan, Italy
| | - Reza Maroofian
- University of Exeter Medical School, Research, Innovation, Learning and Development, Wellcome Wolfson Centre, Royal Devon and Exeter National Health Service Foundation Trust, Exeter, England
| | - Gholamreza Shariati
- Department of Medical Genetic, Faculty of Medicine, Ahvaz Jundishapur, University of Medical Sciences, Ahvaz, Iran
| | - Eleonora Lamantea
- Unit of Molecular Neurogenetics, Istituto di Ricovero e Cura a Carattere Scientifico, Foundation of the Carlo Besta Neurological Institute, Milan, Italy
| | - Sila Hopton
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle Upon Tyne, England
| | - Anna Ardissone
- Child Neurology Unit, Istituto di Ricovero e Cura a Carattere Scientifico, Foundation of the Carlo Besta Neurological Institute, Milan, Italy
| | - Isabella Moroni
- Child Neurology Unit, Istituto di Ricovero e Cura a Carattere Scientifico, Foundation of the Carlo Besta Neurological Institute, Milan, Italy
| | - Melania Giannotta
- Child Neurology Unit, Istituto di Ricovero e Cura a Carattere Scientifico, Institute of Neurological Sciences, Bologna, Italy
| | - Corinna Siegel
- Institute of Human Genetics, Technische Universität München, Munich, Germany
| | - Tim M. Strom
- Institute of Human Genetics, Technische Universität München, Munich, Germany
- Institute of Human Genetics, Helmholtz Zentrum München, Munich, Germany
| | - Holger Prokisch
- Institute of Human Genetics, Technische Universität München, Munich, Germany
- Institute of Human Genetics, Helmholtz Zentrum München, Munich, Germany
| | - Catherine Vignal-Clermont
- Département de Neurochirurgie, Service Explorations Neuro-Ophtalmologiques, Fondation Rothschild, Paris, France
| | - Sabine Derrien
- Département de Neurochirurgie, Service Explorations Neuro-Ophtalmologiques, Fondation Rothschild, Paris, France
| | | | - Josseline Kaplan
- Laboratory of Genetics in Ophthalmology, INSERM UMR1163, Institute of Genetic Diseases, Imagine, Paris, France
| | - Christian P. Hamel
- INSERM U1051, Institut des Neurosciences de Montpellier, Montpellier, France
| | - Stephanie Leruez
- MitoLab Team, Unités Mixtes de Recherche Centre National de la Recherche Scientifique 6015–INSERM U1083, Institut MitoVasc, Angers University and Hospital, Angers, France
| | - Vincent Procaccio
- MitoLab Team, Unités Mixtes de Recherche Centre National de la Recherche Scientifique 6015–INSERM U1083, Institut MitoVasc, Angers University and Hospital, Angers, France
| | - Dominique Bonneau
- MitoLab Team, Unités Mixtes de Recherche Centre National de la Recherche Scientifique 6015–INSERM U1083, Institut MitoVasc, Angers University and Hospital, Angers, France
| | - Pascal Reynier
- MitoLab Team, Unités Mixtes de Recherche Centre National de la Recherche Scientifique 6015–INSERM U1083, Institut MitoVasc, Angers University and Hospital, Angers, France
| | - Frances E. White
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle Upon Tyne, England
| | - Steven A. Hardy
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle Upon Tyne, England
| | - Inês A. Barbosa
- Division of Genetics and Molecular Medicine, King’s College London School of Medicine, London, England
| | - Michael A. Simpson
- Division of Genetics and Molecular Medicine, King’s College London School of Medicine, London, England
| | - Roshni Vara
- Department of Paediatric Inherited Metabolic Diseases, Evelina Children's Hospital, London, England
| | - Yaumara Perdomo Trujillo
- Centre de Référence Pour Les Affections Rares en Génétique Ophtalmologique, CHU de Strasbourg, Strasbourg, France
| | - Hamind Galehdari
- Narges Medical Genetics and Prenatal Diagnosis Laboratory, Kianpars, Ahvaz, Iran
| | - Charu Deshpande
- Clinical Genetics Unit, Guy’s and St Thomas’ National Health Service Foundation Trust, London, England
| | - Tobias B. Haack
- Institute of Human Genetics, Technische Universität München, Munich, Germany
- Institute of Human Genetics, Helmholtz Zentrum München, Munich, Germany
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Jean-Michel Rozet
- Laboratory of Genetics in Ophthalmology, INSERM UMR1163, Institute of Genetic Diseases, Imagine, Paris, France
| | - Robert W. Taylor
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle Upon Tyne, England
| | - Daniele Ghezzi
- Unit of Molecular Neurogenetics, Istituto di Ricovero e Cura a Carattere Scientifico, Foundation of the Carlo Besta Neurological Institute, Milan, Italy
| | - Patrizia Amati-Bonneau
- MitoLab Team, Unités Mixtes de Recherche Centre National de la Recherche Scientifique 6015–INSERM U1083, Institut MitoVasc, Angers University and Hospital, Angers, France
| | - Guy Lenaers
- MitoLab Team, Unités Mixtes de Recherche Centre National de la Recherche Scientifique 6015–INSERM U1083, Institut MitoVasc, Angers University and Hospital, Angers, France
| |
Collapse
|
20
|
Ding Y, Gao BB, Zhou L, Ye XH, Li H, Lai L, Huang JY. Clinical implications of plasma Nogo-A levels in patients with coronary heart disease. Arch Med Sci 2017; 13:771-777. [PMID: 28721144 PMCID: PMC5510510 DOI: 10.5114/aoms.2016.58713] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 12/28/2015] [Indexed: 11/28/2022] Open
Abstract
INTRODUCTION Nogo-A is an important neurite growth-regulatory protein in the adult and developing nervous system. Recently, increasing evidence has shown that Nogo-A plays important roles in cardiac development and may act as a potential indicator for heart failure. In addition, increased oxidative stress has been found in individuals with cardiovascular diseases. However, not much is known regarding the expression levels of Nogo-A and reactive oxygen species (ROS) in patients with coronary heart disease (CHD). Therefore, we sought to investigate the relationship between Nogo-A, ROS levels and CHD. MATERIAL AND METHODS The plasma Nogo-A and ROS concentrations of 122 acute coronary syndrome (ACS), 101 unstable angina pectoris (UAP), and 21 acute myocardial infarction (AMI) patients and 56 healthy controls were measured by enzyme-linked immunosorbent assay (ELISA). We further generated a receiver operating characteristic (ROC) curve to assess the diagnostic accuracy of Nogo-A and ROS in CHD. RESULTS The Nogo-A and ROS levels were significantly higher in patients with CHD than those in healthy controls. In addition, multivariate logistic regression analysis revealed that the level of Nogo-A (odds ratio (OR) = 1.624, 95% confidence interval: 1.125-2.293, p = 0.009) is a risk factor for prediction of CHD. Nogo-A has diagnostic value, with an optimal threshold of 5.466 ng/ml for maximized diagnostic performance (59% sensitivity and 78.6% specificity, area under curve, p < 0.05). However, ROS concentration is not a risk factor for prediction of CHD (OR = 0.999, 95% confidence interval: 0.997-1.001, p = 0.320). CONCLUSIONS Increased plasma Nogo-A level may be associated with CHD.
Collapse
Affiliation(s)
- Yu Ding
- Hangzhou First People's Hospital, Nanjing Medical University, Hangzhou, China
| | - Bei-Bei Gao
- Hangzhou First People's Hospital, Nanjing Medical University, Hangzhou, China
| | - Liang Zhou
- Hangzhou First People's Hospital, Nanjing Medical University, Hangzhou, China
| | - Xian-Hua Ye
- Hangzhou First People's Hospital, Nanjing Medical University, Hangzhou, China
| | - Hong Li
- Hangzhou First People's Hospital, Nanjing Medical University, Hangzhou, China
| | - Lei Lai
- Hangzhou First People's Hospital, Nanjing Medical University, Hangzhou, China
| | - Jin-Yu Huang
- Hangzhou First People's Hospital, Nanjing Medical University, Hangzhou, China
| |
Collapse
|
21
|
Knowlton WM, Hubert T, Wu Z, Chisholm AD, Jin Y. A Select Subset of Electron Transport Chain Genes Associated with Optic Atrophy Link Mitochondria to Axon Regeneration in Caenorhabditis elegans. Front Neurosci 2017; 11:263. [PMID: 28539870 PMCID: PMC5423972 DOI: 10.3389/fnins.2017.00263] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 04/24/2017] [Indexed: 12/13/2022] Open
Abstract
The role of mitochondria within injured neurons is an area of active interest since these organelles are vital for the production of cellular energy in the form of ATP. Using mechanosensory neurons of the nematode Caenorhabditis elegans to test regeneration after neuronal injury in vivo, we surveyed genes related to mitochondrial function for effects on axon regrowth after laser axotomy. Genes involved in mitochondrial transport, calcium uptake, mitophagy, or fission and fusion were largely dispensable for axon regrowth, with the exception of eat-3/Opa1. Surprisingly, many genes encoding components of the electron transport chain were dispensable for regrowth, except for the iron-sulfur proteins gas-1, nduf-2.2, nduf-7, and isp-1, and the putative oxidoreductase rad-8. In these mutants, axonal development was essentially normal and axons responded normally to injury by forming regenerative growth cones, but were impaired in subsequent axon extension. Overexpression of nduf-2.2 or isp-1 was sufficient to enhance regrowth, suggesting that mitochondrial function is rate-limiting in axon regeneration. Moreover, loss of function in isp-1 reduced the enhanced regeneration caused by either a gain-of-function mutation in the calcium channel EGL-19 or overexpression of the MAP kinase DLK-1. While the cellular function of RAD-8 remains unclear, our genetic analyses place rad-8 in the same pathway as other electron transport genes in axon regeneration. Unexpectedly, rad-8 regrowth defects were suppressed by altered function in the ubiquinone biosynthesis gene clk-1. Furthermore, we found that inhibition of the mitochondrial unfolded protein response via deletion of atfs-1 suppressed the defective regrowth in nduf-2.2 mutants. Together, our data indicate that while axon regeneration is not significantly affected by general dysfunction of cellular respiration, it is sensitive to the proper functioning of a select subset of electron transport chain genes, or to the cellular adaptations used by neurons under conditions of injury.
Collapse
Affiliation(s)
- Wendy M Knowlton
- Section of Neurobiology, Division of Biological Sciences, University of CaliforniaSan Diego, CA, USA
| | - Thomas Hubert
- Section of Neurobiology, Division of Biological Sciences, University of CaliforniaSan Diego, CA, USA
| | - Zilu Wu
- Howard Hughes Medical Institute, University of CaliforniaSan Diego, CA, USA
| | - Andrew D Chisholm
- Section of Neurobiology, Division of Biological Sciences, University of CaliforniaSan Diego, CA, USA
| | - Yishi Jin
- Section of Neurobiology, Division of Biological Sciences, University of CaliforniaSan Diego, CA, USA.,Howard Hughes Medical Institute, University of CaliforniaSan Diego, CA, USA.,Department of Cellular and Molecular Medicine, School of Medicine, University of CaliforniaSan Diego, CA, USA
| |
Collapse
|
22
|
Angebault C, Guichet PO, Talmat-Amar Y, Charif M, Gerber S, Fares-Taie L, Gueguen N, Halloy F, Moore D, Amati-Bonneau P, Manes G, Hebrard M, Bocquet B, Quiles M, Piro-Mégy C, Teigell M, Delettre C, Rossel M, Meunier I, Preising M, Lorenz B, Carelli V, Chinnery PF, Yu-Wai-Man P, Kaplan J, Roubertie A, Barakat A, Bonneau D, Reynier P, Rozet JM, Bomont P, Hamel CP, Lenaers G. Recessive Mutations in RTN4IP1 Cause Isolated and Syndromic Optic Neuropathies. Am J Hum Genet 2015; 97:754-60. [PMID: 26593267 DOI: 10.1016/j.ajhg.2015.09.012] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 09/25/2015] [Indexed: 12/28/2022] Open
Abstract
Autosomal-recessive optic neuropathies are rare blinding conditions related to retinal ganglion cell (RGC) and optic-nerve degeneration, for which only mutations in TMEM126A and ACO2 are known. In four families with early-onset recessive optic neuropathy, we identified mutations in RTN4IP1, which encodes a mitochondrial ubiquinol oxydo-reductase. RTN4IP1 is a partner of RTN4 (also known as NOGO), and its ortholog Rad8 in C. elegans is involved in UV light response. Analysis of fibroblasts from affected individuals with a RTN4IP1 mutation showed loss of the altered protein, a deficit of mitochondrial respiratory complex I and IV activities, and increased susceptibility to UV light. Silencing of RTN4IP1 altered the number and morphogenesis of mouse RGC dendrites in vitro and the eye size, neuro-retinal development, and swimming behavior in zebrafish in vivo. Altogether, these data point to a pathophysiological mechanism responsible for RGC early degeneration and optic neuropathy and linking RTN4IP1 functions to mitochondrial physiology, response to UV light, and dendrite growth during eye maturation.
Collapse
Affiliation(s)
- Claire Angebault
- INSERM U1051, Institut des Neurosciences de Montpellier, Université de Montpellier, 34090 Montpellier, France
| | - Pierre-Olivier Guichet
- INSERM U1051, Institut des Neurosciences de Montpellier, Université de Montpellier, 34090 Montpellier, France
| | - Yasmina Talmat-Amar
- INSERM U1051, Institut des Neurosciences de Montpellier, Université de Montpellier, 34090 Montpellier, France
| | - Majida Charif
- INSERM U1051, Institut des Neurosciences de Montpellier, Université de Montpellier, 34090 Montpellier, France; INSERM U1083, CNRS 6214, Département de Biochimie et Génétique, Université LUNAM and Centre Hospitalier Universitaire, 49933 Angers, France
| | - Sylvie Gerber
- INSERM U1163, Hôpital Necker Enfants-Malades, 75015 Paris, France
| | - Lucas Fares-Taie
- INSERM U1163, Hôpital Necker Enfants-Malades, 75015 Paris, France
| | - Naig Gueguen
- INSERM U1083, CNRS 6214, Département de Biochimie et Génétique, Université LUNAM and Centre Hospitalier Universitaire, 49933 Angers, France
| | - François Halloy
- INSERM U1051, Institut des Neurosciences de Montpellier, Université de Montpellier, 34090 Montpellier, France
| | - David Moore
- Institute of Genetic Medicine, Centre for Life, Newcastle University and Wellcome Trust Centre for Mitochondrial Research, NE1 3BZ Newcastle upon Tyne, UK
| | - Patrizia Amati-Bonneau
- INSERM U1083, CNRS 6214, Département de Biochimie et Génétique, Université LUNAM and Centre Hospitalier Universitaire, 49933 Angers, France
| | - Gael Manes
- INSERM U1051, Institut des Neurosciences de Montpellier, Université de Montpellier, 34090 Montpellier, France
| | - Maxime Hebrard
- INSERM U1051, Institut des Neurosciences de Montpellier, Université de Montpellier, 34090 Montpellier, France
| | - Béatrice Bocquet
- Centre de Référence pour les Maladies Sensorielles Génétiques, Hôpital Gui de Chauliac, CHRU Montpellier, 34090 Montpellier, France
| | - Mélanie Quiles
- INSERM U1051, Institut des Neurosciences de Montpellier, Université de Montpellier, 34090 Montpellier, France
| | - Camille Piro-Mégy
- INSERM U1051, Institut des Neurosciences de Montpellier, Université de Montpellier, 34090 Montpellier, France
| | - Marisa Teigell
- INSERM U1051, Institut des Neurosciences de Montpellier, Université de Montpellier, 34090 Montpellier, France
| | - Cécile Delettre
- INSERM U1051, Institut des Neurosciences de Montpellier, Université de Montpellier, 34090 Montpellier, France
| | - Mireille Rossel
- INSERM U710, Laboratoire MMDN EPHE, 34090 Montpellier, France
| | - Isabelle Meunier
- INSERM U1051, Institut des Neurosciences de Montpellier, Université de Montpellier, 34090 Montpellier, France; Centre de Référence pour les Maladies Sensorielles Génétiques, Hôpital Gui de Chauliac, CHRU Montpellier, 34090 Montpellier, France
| | - Markus Preising
- Department of Ophthalmology, Justus-Liebig University, 35392 Giessen, Germany
| | - Birgit Lorenz
- Department of Ophthalmology, Justus-Liebig University, 35392 Giessen, Germany
| | - Valerio Carelli
- IRCCS, Institute of Neurological Sciences of Bologna, Bellaria Hospital, 40139 Bologna, Italy; Department of Biomedical and NeuroMotor Sciences, University of Bologna, 40139 Bologna, Italy
| | - Patrick F Chinnery
- Institute of Genetic Medicine, Centre for Life, Newcastle University and Wellcome Trust Centre for Mitochondrial Research, NE1 3BZ Newcastle upon Tyne, UK
| | - Patrick Yu-Wai-Man
- Institute of Genetic Medicine, Centre for Life, Newcastle University and Wellcome Trust Centre for Mitochondrial Research, NE1 3BZ Newcastle upon Tyne, UK; Newcastle Eye Centre, Royal Victoria Infirmary, NE1 4LP Newcastle upon Tyne, UK
| | - Josseline Kaplan
- INSERM U1163, Hôpital Necker Enfants-Malades, 75015 Paris, France
| | - Agathe Roubertie
- INSERM U1051, Institut des Neurosciences de Montpellier, Université de Montpellier, 34090 Montpellier, France; Centre de Référence pour les Maladies Sensorielles Génétiques, Hôpital Gui de Chauliac, CHRU Montpellier, 34090 Montpellier, France
| | - Abdelhamid Barakat
- Laboratoire de Génétique Moléculaire Humaine, Département de Recherche Scientifique, Institut Pasteur du Maroc, 20360 Casablanca, Morocco
| | - Dominique Bonneau
- INSERM U1083, CNRS 6214, Département de Biochimie et Génétique, Université LUNAM and Centre Hospitalier Universitaire, 49933 Angers, France
| | - Pascal Reynier
- INSERM U1083, CNRS 6214, Département de Biochimie et Génétique, Université LUNAM and Centre Hospitalier Universitaire, 49933 Angers, France
| | | | - Pascale Bomont
- INSERM U1051, Institut des Neurosciences de Montpellier, Université de Montpellier, 34090 Montpellier, France
| | - Christian P Hamel
- INSERM U1051, Institut des Neurosciences de Montpellier, Université de Montpellier, 34090 Montpellier, France; Centre de Référence pour les Maladies Sensorielles Génétiques, Hôpital Gui de Chauliac, CHRU Montpellier, 34090 Montpellier, France
| | - Guy Lenaers
- INSERM U1051, Institut des Neurosciences de Montpellier, Université de Montpellier, 34090 Montpellier, France; INSERM U1083, CNRS 6214, Département de Biochimie et Génétique, Université LUNAM and Centre Hospitalier Universitaire, 49933 Angers, France.
| |
Collapse
|
23
|
Saunders NR, Noor NM, Dziegielewska KM, Wheaton BJ, Liddelow SA, Steer DL, Ek CJ, Habgood MD, Wakefield MJ, Lindsay H, Truettner J, Miller RD, Smith AI, Dietrich WD. Age-dependent transcriptome and proteome following transection of neonatal spinal cord of Monodelphis domestica (South American grey short-tailed opossum). PLoS One 2014; 9:e99080. [PMID: 24914927 PMCID: PMC4051688 DOI: 10.1371/journal.pone.0099080] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 05/09/2014] [Indexed: 01/08/2023] Open
Abstract
This study describes a combined transcriptome and proteome analysis of Monodelphis domestica response to spinal cord injury at two different postnatal ages. Previously we showed that complete transection at postnatal day 7 (P7) is followed by profuse axon growth across the lesion with near-normal locomotion and swimming when adult. In contrast, at P28 there is no axon growth across the lesion, the animals exhibit weight-bearing locomotion, but cannot use hind limbs when swimming. Here we examined changes in gene and protein expression in the segment of spinal cord rostral to the lesion at 24 h after transection at P7 and at P28. Following injury at P7 only forty genes changed (all increased expression); most were immune/inflammatory genes. Following injury at P28 many more genes changed their expression and the magnitude of change for some genes was strikingly greater. Again many were associated with the immune/inflammation response. In functional groups known to be inhibitory to regeneration in adult cords the expression changes were generally muted, in some cases opposite to that required to account for neurite inhibition. For example myelin basic protein expression was reduced following injury at P28 both at the gene and protein levels. Only four genes from families with extracellular matrix functions thought to influence neurite outgrowth in adult injured cords showed substantial changes in expression following injury at P28: Olfactomedin 4 (Olfm4, 480 fold compared to controls), matrix metallopeptidase (Mmp1, 104 fold), papilin (Papln, 152 fold) and integrin α4 (Itga4, 57 fold). These data provide a resource for investigation of a priori hypotheses in future studies of mechanisms of spinal cord regeneration in immature animals compared to lack of regeneration at more mature stages.
Collapse
Affiliation(s)
- Norman R. Saunders
- Department of Pharmacology & Therapeutics, The University of Melbourne, Victoria, Australia
- * E-mail:
| | - Natassya M. Noor
- Department of Pharmacology & Therapeutics, The University of Melbourne, Victoria, Australia
| | | | - Benjamin J. Wheaton
- Department of Pharmacology & Therapeutics, The University of Melbourne, Victoria, Australia
| | - Shane A. Liddelow
- Department of Pharmacology & Therapeutics, The University of Melbourne, Victoria, Australia
- Department of Neurobiology, Stanford University, Stanford, California, United States of America
| | - David L. Steer
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - C. Joakim Ek
- Department of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Mark D. Habgood
- Department of Pharmacology & Therapeutics, The University of Melbourne, Victoria, Australia
| | - Matthew J. Wakefield
- Walter & Eliza Hall Institute of Medical Research, Victoria, Australia
- Department of Genetics, The University of Melbourne, Victoria, Australia
| | - Helen Lindsay
- Walter & Eliza Hall Institute of Medical Research, Victoria, Australia
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Jessie Truettner
- The Miami Project to Cure Paralysis, University of Miami, Miller School of Medicine, Miami, Florida, United States of America
| | - Robert D. Miller
- Center for Evolutionary & Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - A. Ian Smith
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - W. Dalton Dietrich
- The Miami Project to Cure Paralysis, University of Miami, Miller School of Medicine, Miami, Florida, United States of America
| |
Collapse
|
24
|
Rahbari R, Kitano M, Zhang L, Bommareddi S, Kebebew E. RTN4IP1 is down-regulated in thyroid cancer and has tumor-suppressive function. J Clin Endocrinol Metab 2013; 98:E446-54. [PMID: 23393170 PMCID: PMC3590468 DOI: 10.1210/jc.2012-3180] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
CONTEXT Previously we identified RTN4IP1 to be differentially expressed in thyroid cancer by sex and the gene is located on chromosome 6q21, a chromosomal region frequently deleted or with loss of heterozygosity in a variety of human malignancies including thyroid cancer. OBJECTIVE Because the expression and function of this gene is unknown, we sought to characterize its expression in normal, hyperplastic, and benign and malignant thyroid tissue samples and to evaluate its function in cancer cells. DESIGN RTN4IP1 expression was analyzed in normal and hyperplastic thyroid tissue and benign and malignant thyroid tissue samples. In 3 thyroid cancer cell lines (TPC1 from a papillary thyroid cancer, FTC133 from a follicular thyroid cancer, XTC1 from a Hürthle cell carcinoma), small interfering RNA knockdown of RTN4IP1 was used to determine its role in regulating the hallmarks of malignant cell phenotype (cellular proliferation, migration, apoptosis, invasion, tumor spheroid formation, anchorage independent growth). RESULTS We found RTN4IP1 mRNA expression was significantly down-regulated in follicular and papillary thyroid cancer as compared with normal, hyperplastic, and benign thyroid neoplasms (P < .05). Moreover, RTN4IP1 mRNA expression was significantly lower in larger papillary thyroid cancers (P < .05). Small interfering RNA knockdown of RTN4IP1 expression increased cellular proliferation (2- to 4-fold) in all 3 of the cell lines tested and increased cellular invasion (1.5- to 3-fold) and migration (2- to 7.5-fold), colony formation (3- to 6-fold), and tumor spheroid formation (P < .05) in 2 of the 3 cell lines tested (FTC-133 and XTC1). CONCLUSIONS This is the first study to characterize the expression and function of RTN4IP1 in cancer. Our results demonstrate RTN4IP1 is down-regulated in thyroid cancer and is associated with larger papillary thyroid cancer and that it regulates malignant cell phenotype. These findings, taken together, suggest that RTN4IP1 has a tumor-suppressive function and may regulate thyroid cancer progression.
Collapse
Affiliation(s)
- Reza Rahbari
- Endocrine Oncology Branch, Clinical Research Center, 10 Center Drive, MSC 1201, National Cancer Institute, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
25
|
Steketee MB, Moysidis SN, Weinstein JE, Kreymerman A, Silva JP, Iqbal S, Goldberg JL. Mitochondrial dynamics regulate growth cone motility, guidance, and neurite growth rate in perinatal retinal ganglion cells in vitro. Invest Ophthalmol Vis Sci 2012; 53:7402-11. [PMID: 23049086 DOI: 10.1167/iovs.12-10298] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Retinal ganglion cell (RGC) death and failed axonal regeneration after trauma or disease, including glaucomatous and mitochondrial optic neuropathies, are linked increasingly to dysfunctional mitochondrial dynamics. However, how mitochondrial dynamics influence axon growth largely is unstudied. We examined intrinsic mitochondrial organization in embryonic and postnatal RGCs and the roles that mitochondrial dynamics have in regulating neurite growth and guidance. METHODS RGCs were isolated from embryonic day 20 (E20) or postnatal days 5 to 7 (P5-7) Sprague-Dawley rats by anti-Thy1 immunopanning. After JC-1 loading, mitochondria were analyzed in acutely purified RGCs by flow cytometry and in RGC neurites by fluorescence microscopy. Intrinsic axon growth was modulated by overexpressing Krüppel-like family (KLF) transcription factors, or mitochondrial dynamics were altered by inhibiting dynamin related protein-1 (DRP-1) pharmacologically or by overexpressing mitofusin-2 (Mfn-2). Mitochondrial organization, neurite growth, and growth cone motility and guidance were analyzed. RESULTS Mitochondrial dynamics and function are regulated developmentally in acutely purified RGCs and in nascent RGC neurites. Mitochondrial dynamics are modulated differentially by KLFs that promote or suppress growth. Acutely inhibiting mitochondrial fission reversibly suppressed axon growth and lamellar extension. Inhibiting DRP-1 or overexpressing Mfn-2 altered growth cone responses to chondroitin sulfate proteoglycan, netrin-1, and fibronectin. CONCLUSIONS These results support the hypothesis that mitochondria locally modulate signaling in the distal neurite and growth cone to affect the direction and the rate of neurite growth.
Collapse
|
26
|
Perry DJ, Yin Y, Telarico T, Baker HV, Dozmorov I, Perl A, Morel L. Murine lupus susceptibility locus Sle1c2 mediates CD4+ T cell activation and maps to estrogen-related receptor γ. THE JOURNAL OF IMMUNOLOGY 2012; 189:793-803. [PMID: 22711888 DOI: 10.4049/jimmunol.1200411] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Sle1c is a sublocus of the NZM2410-derived Sle1 major lupus susceptibility locus. We have shown previously that Sle1c contributes to lupus pathogenesis by conferring increased CD4(+) T cell activation and increased susceptibility to chronic graft-versus-host disease (cGVHD), which mapped to the centromeric portion of the locus. In this study, we have refined the centromeric sublocus to a 675-kb interval, termed Sle1c2. Mice from recombinant congenic strains expressing Sle1c2 exhibited increased CD4(+) T cell intrinsic activation and cGVHD susceptibility, similar to mice with the parental Sle1c. In addition, B6.Sle1c2 mice displayed a robust expansion of IFN-γ-expressing T cells. NZB complementation studies showed that Sle1c2 expression exacerbated B cell activation, autoantibody production, and renal pathology, verifying that Sle1c2 contributes to lupus pathogenesis. The Sle1c2 interval contains two genes, only one of which, Esrrg, is expressed in T cells. B6.Sle1c2 CD4(+) T cells expressed less Esrrg than B6 CD4(+) T cells, and Esrrg expression was correlated negatively with CD4(+) T cell activation. Esrrg encodes an orphan nuclear receptor that regulates oxidative metabolism and mitochondrial functions. In accordance with reduced Esrrg expression, B6.Sle1c2 CD4(+) T cells present reduced mitochondrial mass and altered mitochondrial functions as well as altered metabolic pathway utilization when compared with B6 CD4(+) T cells. Taken together, we propose Esrrg as a novel lupus susceptibility gene regulating CD4(+) T cell function through their mitochondrial metabolism.
Collapse
Affiliation(s)
- Daniel J Perry
- Department of Pathology, University of Florida, Gainesville, FL, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Mougeot JLC, Li Z, Price AE, Wright FA, Brooks BR. Microarray analysis of peripheral blood lymphocytes from ALS patients and the SAFE detection of the KEGG ALS pathway. BMC Med Genomics 2011; 4:74. [PMID: 22027401 PMCID: PMC3219589 DOI: 10.1186/1755-8794-4-74] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Accepted: 10/25/2011] [Indexed: 11/25/2022] Open
Abstract
Background Sporadic amyotrophic lateral sclerosis (sALS) is a motor neuron disease with poorly understood etiology. Results of gene expression profiling studies of whole blood from ALS patients have not been validated and are difficult to relate to ALS pathogenesis because gene expression profiles depend on the relative abundance of the different cell types present in whole blood. We conducted microarray analyses using Agilent Human Whole Genome 4 × 44k Arrays on a more homogeneous cell population, namely purified peripheral blood lymphocytes (PBLs), from ALS patients and healthy controls to identify molecular signatures possibly relevant to ALS pathogenesis. Methods Differentially expressed genes were determined by LIMMA (Linear Models for MicroArray) and SAM (Significance Analysis of Microarrays) analyses. The SAFE (Significance Analysis of Function and Expression) procedure was used to identify molecular pathway perturbations. Proteasome inhibition assays were conducted on cultured peripheral blood mononuclear cells (PBMCs) from ALS patients to confirm alteration of the Ubiquitin/Proteasome System (UPS). Results For the first time, using SAFE in a global gene ontology analysis (gene set size 5-100), we show significant perturbation of the KEGG (Kyoto Encyclopedia of Genes and Genomes) ALS pathway of motor neuron degeneration in PBLs from ALS patients. This was the only KEGG disease pathway significantly upregulated among 25, and contributing genes, including SOD1, represented 54% of the encoded proteins or protein complexes of the KEGG ALS pathway. Further SAFE analysis, including gene set sizes >100, showed that only neurodegenerative diseases (4 out of 34 disease pathways) including ALS were significantly upregulated. Changes in UBR2 expression correlated inversely with time since onset of disease and directly with ALSFRS-R, implying that UBR2 was increased early in the course of ALS. Cultured PBMCs from ALS patients accumulated more ubiquitinated proteins than PBMCs from healthy controls in a serum-dependent manner confirming changes in this pathway. Conclusions Our study indicates that PBLs from sALS patients are strong responders to systemic signals or local signals acquired by cell trafficking, representing changes in gene expression similar to those present in brain and spinal cord of sALS patients. PBLs may provide a useful means to study ALS pathogenesis.
Collapse
Affiliation(s)
- Jean-Luc C Mougeot
- Department of Neurology, ALS Biomarker Laboratory-James G Cannon Research Center, Carolinas Medical Center, Charlotte, NC 28203-6110, USA.
| | | | | | | | | |
Collapse
|
28
|
Fujii M, Yasuda K, Hartman PS, Ayusawa D, Ishii N. A mutation in a mitochondrial dehydrogenase/reductase gene causes an increased sensitivity to oxidative stress and mitochondrial defects in the nematode Caenorhabditis elegans. Genes Cells 2011; 16:1022-34. [DOI: 10.1111/j.1365-2443.2011.01547.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
29
|
Sarkey JP, Chu M, McShane M, Bovo E, Ait Mou Y, Zima AV, de Tombe PP, Kartje GL, Martin JL. Nogo-A knockdown inhibits hypoxia/reoxygenation-induced activation of mitochondrial-dependent apoptosis in cardiomyocytes. J Mol Cell Cardiol 2011; 50:1044-55. [PMID: 21420413 DOI: 10.1016/j.yjmcc.2011.03.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Revised: 03/11/2011] [Accepted: 03/11/2011] [Indexed: 01/15/2023]
Abstract
Programmed cell death of cardiomyocytes following myocardial ischemia increases biomechanical stress on the remaining myocardium, leading to myocardial dysfunction that may result in congestive heart failure or sudden death. Nogo-A is well characterized as a potent inhibitor of axonal regeneration and plasticity in the central nervous system, however, the role of Nogo-A in non-nervous tissues is essentially unknown. In this study, Nogo-A expression was shown to be significantly increased in cardiac tissue from patients with dilated cardiomyopathy and from patients who have experienced an ischemic event. Nogo-A expression was clearly associated with cardiomyocytes in culture and was localized predominantly in the endoplasmic reticulum. In agreement with the findings from human tissue, Nogo-A expression was significantly increased in cultured neonatal rat cardiomyocytes subjected to hypoxia/reoxygenation. Knockdown of Nogo-A in cardiomyocytes markedly attenuated hypoxia/reoxygenation-induced apoptosis, as indicated by the significant reduction of DNA fragmentation, phosphatidylserine translocation, and caspase-3 cleavage, by a mechanism involving the preservation of mitochondrial membrane potential, the inhibition of ROS accumulation, and the improvement of intracellular calcium regulation. Together, these data demonstrate that knockdown of Nogo-A may serve as a novel therapeutic strategy to prevent the loss of cardiomyocytes following ischemic/hypoxic injury.
Collapse
Affiliation(s)
- J P Sarkey
- Department of Cell and Molecular Physiology, Loyola University Medical Center, Maywood, IL, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Gil V, Bichler Z, Lee JK, Seira O, Llorens F, Bribian A, Morales R, Claverol-Tinture E, Soriano E, Sumoy L, Zheng B, Del Río JA. Developmental expression of the oligodendrocyte myelin glycoprotein in the mouse telencephalon. ACTA ACUST UNITED AC 2009; 20:1769-79. [PMID: 19892785 DOI: 10.1093/cercor/bhp246] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The oligodendrocyte myelin glycoprotein is a glycosylphosphatidylinositol-anchored protein expressed by neurons and oligodendrocytes in the central nervous system. Attempts have been made to identify the functions of the myelin-associated inhibitory proteins (MAIPs) after axonal lesion or in neurodegeneration. However, the developmental roles of some of these proteins and their receptors remain elusive. Recent studies indicate that NgR1 and the recently discovered receptor PirB restrict cortical synaptic plasticity. However, the putative factors that trigger these effects are unknown. Because Nogo-A is mostly associated with the endoplasmic reticulum and myelin associated glycoprotein appears late during development, the putative participation of OMgp should be considered. Here, we examine the pattern of development of OMgp immunoreactive elements during mouse telencephalic development. OMgp immunoreactivity in the developing cortex follows the establishment of the thalamo-cortical barrel field. At the cellular level, we located OMgp neuronal membranes in dendrites and axons as well as in brain synaptosome fractions and axon varicosities. Lastly, the analysis of the barrel field in OMgp-deficient mice revealed that although thalamo-cortical connections were formed, their targeting in layer IV was altered, and numerous axons ectopically invaded layers II-III. Our data support the idea that early expressed MAIPs play an active role during development and point to OMgp participating in thalamo-cortical connections.
Collapse
Affiliation(s)
- Vanessa Gil
- Molecular and Cellular Neurobiotechnology laboratory, Institute for Bioengineering of Catalonia (IBEC), Barcelona E-08028, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Persson B, Hedlund J, Jörnvall H. Medium- and short-chain dehydrogenase/reductase gene and protein families : the MDR superfamily. Cell Mol Life Sci 2009; 65:3879-94. [PMID: 19011751 PMCID: PMC2792335 DOI: 10.1007/s00018-008-8587-z] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The MDR superfamily with ~350-residue subunits contains the classical liver alcohol dehydrogenase (ADH), quinone reductase, leukotriene B4 dehydrogenase and many more forms. ADH is a dimeric zinc metalloprotein and occurs as five different classes in humans, resulting from gene duplications during vertebrate evolution, the first one traced to ~500 MYA (million years ago) from an ancestral formaldehyde dehydrogenase line. Like many duplications at that time, it correlates with enzymogenesis of new activities, contributing to conditions for emergence of vertebrate land life from osseous fish. The speed of changes correlates with function, as do differential evolutionary patterns in separate segments. Subsequent recognitions now define at least 40 human MDR members in the Uniprot database (corresponding to 25 genes when excluding close homologues), and in all species at least 10888 entries. Overall, variability is large, but like for many dehydrogenases, subdivided into constant and variable forms, corresponding to household and emerging enzyme activities, respectively. This review covers basic facts and describes eight large MDR families and nine smaller families. Combined, they have specific substrates in metabolic pathways, some with wide substrate specificity, and several with little known functions.
Collapse
Affiliation(s)
- B Persson
- IFM Bioinformatics, Linköping University, Sweden.
| | | | | |
Collapse
|
32
|
Fergani A, Dupuis L, Jokic N, Larmet Y, de Tapia M, Rene F, Loeffler JP, Gonzalez de Aguilar JL. Reticulons as markers of neurological diseases: focus on amyotrophic lateral sclerosis. NEURODEGENER DIS 2006; 2:185-94. [PMID: 16909024 DOI: 10.1159/000089624] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Reticulons (RTNs) are a family of proteins that are primarily associated with the endoplasmic reticulum. In mammals, four genes have been identified and referred as to rtn1, 2, 3 and the neurite outgrowth inhibitor rtn4/nogo. These genes generate multiple isoforms that contain a common C-terminal reticulon homology domain of 150-200 amino-acid residues. The N-terminal regions of RTNs are highly variable, and result from alternative splicing or differential promoter usage. Although widely distributed, the functions of RTNs are still poorly understood. Much interest has been focused on rtn4/nogo because of its activity as a potent inhibitor of axonal growth and repair. In the present study, we update recent knowledge on mammalian RTNs paying special attention to the involvement of these proteins as markers of neurological diseases. We also present recent data concerning RTN expression in amyotrophic lateral sclerosis, a fatal degenerative disorder characterized by loss of upper and lower motor neurons, and muscle atrophy. The rearrangement of RTN expression is regulated not only in suffering skeletal muscle but also preceding the onset of symptoms, and may relate to the disease process.
Collapse
Affiliation(s)
- Anissa Fergani
- Laboratoire de Signalisations Moléculaires et Neurodégénérescence, INSERM U-692, Université Louis Pasteur, Strasbourg, France
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Gil V, Nicolas O, Mingorance A, Ureña JM, Tang BL, Hirata T, Sáez-Valero J, Ferrer I, Soriano E, del Río JA. Nogo-A expression in the human hippocampus in normal aging and in Alzheimer disease. J Neuropathol Exp Neurol 2006; 65:433-44. [PMID: 16772867 DOI: 10.1097/01.jnen.0000222894.59293.98] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Myelin-associated proteins are involved in the formation and stabilization of myelin sheaths. In addition, they prevent axon regeneration and plasticity in the adult brain. Recent evidence suggests that the expression of certain myelin-associated proteins (e.g. Nogo-A) can be regulated by synaptic activity or by over-expression after neural lesions in brain syndromes such as temporal lobe epilepsy. However, no studies on Alzheimer disease (AD) have been reported in which cell loss and significant synaptic reorganization occurs. In the present study, we analyze in detail the expression of Nogo-A in the hippocampal formation in normal human aging and in AD. Our results indicate that Nogo-A is expressed by oligodendrocytes and neurons in the aged hippocampal formation. In addition, both granule cells and mossy fiber connections are also labeled in the old-aged hippocampi. Interestingly, Nogo-A is over-expressed by hippocampal neurons in AD and is associated with beta-amyloid deposits in senile plaques. Taken together, our results reinforce the hypothesis that Reticulon proteins such as Nogo-A participate in the neuronal responses stemming from hippocampal formation during senescence, and particularly in AD. These findings also indicate that Reticulon proteins could be considered as new putative drug targets in therapies of neurodegenerative disorders.
Collapse
Affiliation(s)
- Vanessa Gil
- Development and Regeneration of the CNS, IRB-PCB, Barcelona Science Park, University of Barcelona, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Fontoura P, Steinman L. Nogo in multiple sclerosis: Growing roles of a growth inhibitor. J Neurol Sci 2006; 245:201-10. [PMID: 16682057 DOI: 10.1016/j.jns.2005.07.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2005] [Revised: 06/28/2005] [Accepted: 07/12/2005] [Indexed: 10/24/2022]
Abstract
In recent years, knowledge about the physiological functions of the Nogo-A protein has grown considerably, and this molecule has evolved from being one of the most important axonal regrowth inhibitors present in central nervous system (CNS) myelin, to several other potentially important roles in different areas such as nervous system development, epilepsy, vascular physiology, muscle pathology and CNS tumors. Therapeutically, targeting the Nogo-A protein by means of the immune response has been tried in an attempt to block neurite growth inhibition and promote regeneration in spinal cord injury models; the immune response to Nogo-A, however, has not been extensively studied. We propose to review recent evidence that Nogo-A may also play an important role in autoimmune demyelinating diseases such as experimental autoimmune encephalomyelitis and multiple sclerosis, including that Nogo-66 derived epitopes are encephalitogenic antigens in susceptible mouse strains, and that the immune response to Nogo-66 antigens includes both strong T cell and B cell activation, with epitope spreading of the antibody response to other myelin molecules. In CNS immunotherapy, careful targeting of neural self-antigens is a prerequisite in order to avoid unexpected deleterious effects, and increasing knowledge about the immune response to Nogo-A may provide a safe basis for the development of relevant therapeutic alternatives for several neurological conditions.
Collapse
Affiliation(s)
- Paulo Fontoura
- Department of Immunology, Faculty of Medical Sciences, New University of Lisbon, 1169-056 Lisbon, Portugal.
| | | |
Collapse
|
35
|
Teng FYH, Tang BL. Why do Nogo/Nogo-66 receptor gene knockouts result in inferior regeneration compared to treatment with neutralizing agents? J Neurochem 2005; 94:865-74. [PMID: 16092935 DOI: 10.1111/j.1471-4159.2005.03238.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
IN-1, the monoclonal antibody against the exon 3-encoded N-terminal domain of Nogo-A, and the Nogo-66 receptor (NgR) antagonist NEP1-40 have both shown efficacy in promoting regeneration in animal spinal cord injury models, the latter even when administered subcutaneously 1 week after injury. These results are supportive of the hypothesis that the Nogo-NgR axis is a major path for inhibition of spinal cord axonal regeneration and uphold the promises of these neutralizing agents in clinical applications. However, mice with targeted disruption of Nogo and NgR have, surprisingly, only modest regenerative capacity (if any) compared with treatment with IN-1 or NEP1-40. Disruption of the Nogo gene by various groups yielded results ranging from significant regenerative improvement in young mice to no improvement. Likewise, knockout of NgR produced some improvement in raphespinal and rubrospinal axonal regeneration, but not that of corticospinal neurons. Other than invoking possible differences in genetic background, we suggest here some possible and testable explanations for the above phenomena. These possibilities include effects of IN-1 and NEP1-40 on the CNS beyond neutralization of Nogo and NgR functions, and the latter's possible role in the CNS beyond that of neuronal growth inhibition.
Collapse
Affiliation(s)
- Felicia Yu Hsuan Teng
- Department of Biochemistry and Programme in Neurobiology and Aging, National University of Singapore, Singapore
| | | |
Collapse
|
36
|
Wakana Y, Koyama S, Nakajima KI, Hatsuzawa K, Nagahama M, Tani K, Hauri HP, Melançon P, Tagaya M. Reticulon 3 is involved in membrane trafficking between the endoplasmic reticulum and Golgi. Biochem Biophys Res Commun 2005; 334:1198-205. [PMID: 16054885 DOI: 10.1016/j.bbrc.2005.07.012] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2005] [Accepted: 07/07/2005] [Indexed: 11/28/2022]
Abstract
Reticulons (RTNs) constitute a family of endoplasmic reticulum (ER)-associated proteins with a reticular distribution. Despite the implication of their neuronal isoforms in axonal regeneration, the function of their widely expressed isoforms is largely unknown. In this study, we examined the role of the ubiquitously expressed RTN3 in membrane trafficking. Ectopically expressed RTN3 exhibited heterogeneous patterns; filamentous, reticular, and granular distributions. The ER morphology changed accordingly. In cells where RTN3 displayed a filamentous/reticular distribution, protein transport between the ER and Golgi was blocked, and Golgi proteins were dispersed. In contrast, ERGIC-53, a marker for the ER-Golgi intermediate compartment, accumulated at the perinuclear region, and remained there even after cells were treated with agents that induce redistribution of Golgi proteins to the ER, indicating an inhibition of Golgi-to-ER transport of ERGIC-53. These results suggest that RTN3 plays a role in membrane trafficking in the early secretory pathway.
Collapse
Affiliation(s)
- Yuichi Wakana
- School of Life Science, Tokyo University of Pharmacy and Life Science, Hachioji, Tokyo 192-0392, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Hu WH, Pendergast JS, Mo XM, Brambilla R, Bracchi-Ricard V, Li F, Walters WM, Blits B, He L, Schaal SM, Bethea JR. NIBP, a novel NIK and IKK(beta)-binding protein that enhances NF-(kappa)B activation. J Biol Chem 2005; 280:29233-41. [PMID: 15951441 PMCID: PMC3707486 DOI: 10.1074/jbc.m501670200] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The transcription factor NF-kappaB plays an important role in both physiological and pathological events in the central nervous system. Nevertheless, the mechanisms of NF-kappaB-mediated regulation of gene expression, and the signaling molecules participating in the NF-kappaB pathway in the central nervous system are, to date, poorly understood. To identify such molecules, we conducted a yeast two-hybrid screen of a human brain cDNA library using NIK as bait. As a result, we identified a novel NIK and IKK(beta) binding protein designated NIBP that is mainly expressed in brain, muscle, heart, and kidney. Interestingly, low levels of expression were detected in immune tissues such as spleen, thymus, and peripheral blood leukocytes, where NF-kappaB is known to modulate immune function. We demonstrated by immunohistochemistry that NIBP expression in the brain is localized to neurons. NIBP physically interacts with NIK, IKK(beta), but not IKK(alpha) or IKK(gamma). NIBP overexpression potentiates tumor necrosis factor-alpha-induced NF-kappaB activation through increased phosphorylation of the IKK complex and its downstream I(kappa)B(alpha) and p65 substrates. Finally, knockdown of NIBP expression by small interfering RNA reduces tumor necrosis factor-alpha-induced NF-kappaB activation, prevents nerve growth factor-induced neuronal differentiation, and decreases Bcl-xL gene expression in PC12 cells. Our data demonstrate that NIBP, by interacting with NIK and IKK(beta), is a new enhancer of the cytokine-induced NF-(kappa)B signaling pathway. Because of its neuronal expression, we propose that NIBP may be a potential target for modulating the NF-(kappa)B signaling cascade in neuronal pathologies dependent upon abnormal activation of this pathway.
Collapse
Affiliation(s)
- Wen-Hui Hu
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, Miller School of Medicine, University of Miami, Miami, Florida 33136
- The Department of Physiology, Medical College of Virginia, Virginia Commonwealth University, Richmond, Virginia 23298
| | - Julie S. Pendergast
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, Miller School of Medicine, University of Miami, Miami, Florida 33136
- The Neuroscience Program, Miller School of Medicine, University of Miami, Miami, Florida 33136
| | - Xian-Ming Mo
- The Laboratory of Hematology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Roberta Brambilla
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, Miller School of Medicine, University of Miami, Miami, Florida 33136
| | - Valerie Bracchi-Ricard
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, Miller School of Medicine, University of Miami, Miami, Florida 33136
| | - Fang Li
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, Miller School of Medicine, University of Miami, Miami, Florida 33136
| | - Winston M. Walters
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, Miller School of Medicine, University of Miami, Miami, Florida 33136
| | - Bas Blits
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, Miller School of Medicine, University of Miami, Miami, Florida 33136
| | - Li He
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, Miller School of Medicine, University of Miami, Miami, Florida 33136
| | - Sandra M. Schaal
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, Miller School of Medicine, University of Miami, Miami, Florida 33136
- The Neuroscience Program, Miller School of Medicine, University of Miami, Miami, Florida 33136
| | - John R. Bethea
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, Miller School of Medicine, University of Miami, Miami, Florida 33136
- The Neuroscience Program, Miller School of Medicine, University of Miami, Miami, Florida 33136
| |
Collapse
|
38
|
Di Scala F, Dupuis L, Gaiddon C, De Tapia M, Jokic N, Gonzalez De Aguilar JL, Raul JS, Ludes B, Loeffler JP. Tissue specificity and regulation of the N-terminal diversity of reticulon 3. Biochem J 2005; 385:125-34. [PMID: 15350194 PMCID: PMC1134680 DOI: 10.1042/bj20040458] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Over the last few years, the widely distributed family of reticulons (RTNs) is receiving renewed interest because of the implication of RTN4/Nogo in neurite regeneration. Four genes were identified in mammals and are referred to as RTN1, 2, 3 and the neurite outgrowth inhibitor RTN4/Nogo. In the present paper, we describe the existence of five new isoforms of RTN3 that differ in their N-termini, and analysed their tissue distribution and expression in neurons. We redefined the structure of human and murine rtn3 genes, and identified two supplementary exons that may generate up to seven putative isoforms arising by alternative splicing or differential promoter usage. We confirmed the presence of five of these isoforms at the mRNA and protein levels, and showed their preferential expression in the central nervous system. We analysed rtn3 expression in the cerebellum further, and observed increased levels of several of the RTN3 isoforms during cerebellum development and during in vitro maturation of cerebellar granule cells. This pattern of expression paralleled that shown by RTN4/Nogo isoforms. Specifically, RTN3A1 expression was down-regulated upon cell death of cerebellar granule neurons triggered by potassium deprivation. Altogether, our results demonstrate that the rtn3 gene generates multiple isoforms varying in their N-termini, and that their expression is tightly regulated in neurons. These findings suggest that RTN3 isoforms may contribute, by as yet unknown mechanisms, to neuronal survival and plasticity.
Collapse
Affiliation(s)
- Franck Di Scala
- *Laboratoire de Signalisations Moléculaires et Neurodégénérescence, EA 3433, Université Louis Pasteur, Faculté de Médecine, 11 rue Humann, 67085 Strasbourg Cedex, France
| | - Luc Dupuis
- *Laboratoire de Signalisations Moléculaires et Neurodégénérescence, EA 3433, Université Louis Pasteur, Faculté de Médecine, 11 rue Humann, 67085 Strasbourg Cedex, France
| | - Christian Gaiddon
- *Laboratoire de Signalisations Moléculaires et Neurodégénérescence, EA 3433, Université Louis Pasteur, Faculté de Médecine, 11 rue Humann, 67085 Strasbourg Cedex, France
| | - Marc De Tapia
- *Laboratoire de Signalisations Moléculaires et Neurodégénérescence, EA 3433, Université Louis Pasteur, Faculté de Médecine, 11 rue Humann, 67085 Strasbourg Cedex, France
| | - Natasa Jokic
- *Laboratoire de Signalisations Moléculaires et Neurodégénérescence, EA 3433, Université Louis Pasteur, Faculté de Médecine, 11 rue Humann, 67085 Strasbourg Cedex, France
| | - Jose-Luis Gonzalez De Aguilar
- *Laboratoire de Signalisations Moléculaires et Neurodégénérescence, EA 3433, Université Louis Pasteur, Faculté de Médecine, 11 rue Humann, 67085 Strasbourg Cedex, France
| | | | - Bertrand Ludes
- †Institut de Médecine Légale, 11 rue Humann, 67085 Strasbourg Cedex, France
| | - Jean-Philippe Loeffler
- *Laboratoire de Signalisations Moléculaires et Neurodégénérescence, EA 3433, Université Louis Pasteur, Faculté de Médecine, 11 rue Humann, 67085 Strasbourg Cedex, France
- To whom correspondence should be addressed (email )
| |
Collapse
|
39
|
O'Neill P, Whalley K, Ferretti P. Nogo and Nogo-66 receptor in human and chick: implications for development and regeneration. Dev Dyn 2005; 231:109-21. [PMID: 15305291 DOI: 10.1002/dvdy.20116] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Antibodies to the myelin protein Nogo increase axonal regrowth after central nervous system injury. We have investigated whether Nogo expression contributes to loss of regenerative potential during development by using chick embryos, which regenerate their spinal cord until embryonic day (E) 13, when myelination begins. We show that Nogo-A and the Nogo receptor (NgR) are developmentally regulated both in chick and human embryos, are first detected at developmental stages when the chick spinal cord regenerates, and are not down-regulated after injury at permissive stages for regeneration. Therefore, expression of Nogo-A and NgR in pre-E13 chick spinal cords is not sufficient to inhibit regeneration. Nogo-A expression in the chick early embryo is primarily observed in axons, whereas NgR is mainly located on neuronal cell bodies, both in spinal cord and eye, and in striated muscle including the heart. With the onset of myelination, there is down-regulation of Nogo-A expression in neurons. Therefore, loss of regenerative potential might be linked to changes in its cellular localization. The possibility that only Nogo expressed in mature oligodendrocytes can exercise inhibitory effects would reconcile the lack of inhibition we observe in developing chick spinal cords before the onset of myelination with evidence from other laboratories on the inhibitory effects of Nogo in mature central nervous system. The distinctive and complementary patterns of Nogo-A and NgR expression and their conservation throughout evolution support the view that Nogo signaling represents a key pathway in nervous system and striated muscle development. Its putative role in target innervation and establishment of neural circuitry is discussed.
Collapse
Affiliation(s)
- Paul O'Neill
- Developmental Biology Unit, Institute of Child Health, UCL, London United Kingdom
| | | | | |
Collapse
|
40
|
Hu WH, Mo XM, Walters WM, Brambilla R, Bethea JR. TNAP, a novel repressor of NF-kappaB-inducing kinase, suppresses NF-kappaB activation. J Biol Chem 2004; 279:35975-83. [PMID: 15208311 DOI: 10.1074/jbc.m405699200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
NF-kappaB-inducing kinase (NIK) has been implicated as an essential component of NF-kappaB activation. However, the regulatory mechanism of NIK signaling remains elusive. We have identified a novel NIK interacting protein, TNAP (for TRAFs and NIK-associated protein). In mammalian cells, TNAP physically interacts with NIK, TRAF2, and TRAF3 but not IKK1 or IKK2. TNAP specifically inhibits NF-kappaB activation induced by tumor necrosis factor (TNF)-alpha, TNF receptor 1, TRADD, RIP, TRAF2, and NIK but does not affect IKK1- and IKK2-mediated NF-kappaB activation. Knockdown of TNAP by lentiviral-mediated small interference RNA potentiates TNF-alpha-induced NF-kappaB activation. TNAP suppresses NIK kinase activity and subsequently reduces p100 processing, p65 phosphorylation, and IkappaBalpha degradation. These data suggest that TNAP is a repressor of NIK activity and regulates both the classical and alternative NF-kappaB signaling pathways.
Collapse
Affiliation(s)
- Wen-Hui Hu
- Miami Project to Cure Paralysis, University of Miami School of Medicine, Miami, Florida 33136, USA
| | | | | | | | | |
Collapse
|
41
|
Mingorance A, Fontana X, Solé M, Burgaya F, Ureña JM, Teng FYH, Tang BL, Hunt D, Anderson PN, Bethea JR, Schwab ME, Soriano E, del Río JA. Regulation of Nogo and Nogo receptor during the development of the entorhino-hippocampal pathway and after adult hippocampal lesions. Mol Cell Neurosci 2004; 26:34-49. [PMID: 15121177 DOI: 10.1016/j.mcn.2004.01.001] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2003] [Revised: 12/11/2003] [Accepted: 01/06/2004] [Indexed: 12/16/2022] Open
Abstract
Axonal regeneration in the adult CNS is limited by the presence of several inhibitory proteins associated with myelin. Nogo-A, a myelin-associated inhibitor, is responsible for axonal outgrowth inhibition in vivo and in vitro. Here we study the onset and maturation of Nogo-A and Nogo receptor in the entorhino-hippocampal formation of developing and adult mice. We also provide evidence that Nogo-A does not inhibit embryonic hippocampal neurons, in contrast to other cell types such as cerebellar granule cells. Our results also show that Nogo and Nogo receptor mRNA are expressed in the adult by both principal and local-circuit hippocampal neurons, and that after lesion, Nogo-A is also transiently expressed by a subset of reactive astrocytes. Furthermore, we analyzed their regulation after kainic acid (KA) treatment and in response to the transection of the entorhino-hippocampal connection. We found that Nogo-A and Nogo receptor are differentially regulated after kainic acid or perforant pathway lesions. Lastly, we show that the regenerative potential of lesioned entorhino-hippocampal organotypic slice co-cultures is increased after blockage of Nogo-A with two IN-1 blocking antibodies. In conclusion, our results show that Nogo and its receptor might play key roles during development of hippocampal connections and that they are implicated in neuronal plasticity in the adult.
Collapse
Affiliation(s)
- Ana Mingorance
- Development and Regeneration of the CNS, Barcelona Science Park-IRBB, University of Barcelona, E-08028 Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Schulze TG, Buervenich S, Badner JA, Steele CJM, Detera-Wadleigh SD, Dick D, Foroud T, Cox NJ, MacKinnon DF, Potash JB, Berrettini WH, Byerley W, Coryell W, DePaulo JR, Gershon ES, Kelsoe JR, McInnis MG, Murphy DL, Reich T, Scheftner W, Nurnberger JI, McMahon FJ. Loci on chromosomes 6q and 6p interact to increase susceptibility to bipolar affective disorder in the national institute of mental health genetics initiative pedigrees. Biol Psychiatry 2004; 56:18-23. [PMID: 15219468 DOI: 10.1016/j.biopsych.2004.04.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2003] [Revised: 04/13/2004] [Accepted: 04/16/2004] [Indexed: 11/23/2022]
Abstract
BACKGROUND We have reported genetic linkage between bipolar disorder and markers on chromosome 6q16.3-22.1 in the National Institute of Mental Health Genetics Initiative wave 3 pedigrees. Here we test for: 1) robustness of the linkage to differing analysis methods, genotyping error, and gender-specific maps; 2) parent-of-origin effects; and 3) interaction with markers within the schizophrenia linkage region on chromosome 6p. METHODS Members of 245 families ascertained through a sibling pair affected with bipolar I or schizoaffective-bipolar disorder were genotyped with 18 markers spanning chromosome 6. Nonparametric linkage analysis was performed. RESULTS Linkage to 6q is robust to analysis method, gender-specific map differences, and genotyping error. The locus confers a 1.4-fold increased risk. Affected siblings share the maternal more often than the paternal chromosome (p =.006), which could reflect a maternal parent-of-origin effect. There is a positive correlation between family-specific linkage scores on 6q and those on 6p22.2 (r =.26; p <.0001). Linkage analysis for each locus conditioned on evidence of linkage to the other increases the evidence for linkage at both loci (p <.0005). Logarithm of the odds (LOD) scores increased from 2.26 to 5.42 on 6q and from.35 to 2.26 on 6p22.2. CONCLUSIONS These results support linkage of bipolar disorder to 6q, uncover a maternal parent-of-origin effect, and demonstrate an interaction of this locus with one on chromosome 6p22.2, previously linked only to schizophrenia.
Collapse
Affiliation(s)
- Thomas G Schulze
- Genetic Basis of Mood and Anxiety Disorders, Mood and Anxiety Program, Bethesda, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Sandvig A, Berry M, Barrett LB, Butt A, Logan A. Myelin-, reactive glia-, and scar-derived CNS axon growth inhibitors: expression, receptor signaling, and correlation with axon regeneration. Glia 2004; 46:225-51. [PMID: 15048847 DOI: 10.1002/glia.10315] [Citation(s) in RCA: 285] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Axon regeneration is arrested in the injured central nervous system (CNS) by axon growth-inhibitory ligands expressed in oligodendrocytes/myelin, NG2-glia, and reactive astrocytes in the lesion and degenerating tracts, and by fibroblasts in scar tissue. Growth cone receptors (Rc) bind inhibitory ligands, activating a Rho-family GTPase intracellular signaling pathway that disrupts the actin cytoskeleton inducing growth cone collapse/repulsion. The known inhibitory ligands include the chondroitin sulfate proteoglycans (CSPG) Neurocan, Brevican, Phosphacan, Tenascin, and NG2, as either membrane-bound or secreted molecules; Ephrins expressed on astrocyte/fibroblast membranes; the myelin/oligodendrocyte-derived growth inhibitors Nogo, MAG, and OMgp; and membrane-bound semaphorins (Sema) produced by meningeal fibroblasts invading the scar. No definitive CSPG Rc have been identified, although intracellular signaling through the Rho family of G-proteins is probably common to all the inhibitory ligands. Ephrins bind to signalling Ephs. The ligand-binding Rc for all the myelin inhibitors is NgR and requires p75(NTR) for transmembrane signaling. The neuropilin (NP)/plexin (Plex) Rc complex binds Sema. Strategies for promoting axon growth after CNS injury are thwarted by the plethora of inhibitory ligands and the ligand promiscuity of some of their Rc. There is also paradoxical reciprocal expression of many of the inhibitory ligands/Rc in normal and damaged neurons, and NgR expression is restricted to a limited number of neuronal populations. All these factors, together with an incomplete understanding of the normal functions of many of these molecules in the intact CNS, presently confound interpretive acumen in regenerative studies.
Collapse
Affiliation(s)
- Axel Sandvig
- Laboratory of Regenerative Neurobiology, Institute for Experimental Medical Research, Ullevål University Hospital, Oslo, Norway.
| | | | | | | | | |
Collapse
|
44
|
Abstract
The molecule Nogo has captured the imagination of many as a possible key player, and therefore therapeutic target, in the pathological settings of central nervous system (CNS) injury and degenerative pathology. Found in both glial cells and neurons, the endogenous, physiological role of Nogo is as yet unknown. Recently reported targeted disruption of the Nogo gene did not result in any obvious neuro-anatomical or neurological phenotype. Compared with wild-type mice, Nogo-deficient mice also did not exhibit a truly convincing enhancement in their ability to regenerate CNS neurons upon injury. Does the molecule have any important physiological function at all? Other recent discoveries of new interacting partners of Nogo at the mitochondria and the CNS paranode suggest intriguing links to the modulation of apoptosis and developmental organization or signalling at the axoglial junction.
Collapse
Affiliation(s)
- Felicia Y H Teng
- Department of Biochemistry and Neurobiology Program, National University of Singapore, Singapore
| | | | | |
Collapse
|
45
|
Nie DY, Zhou ZH, Ang BT, Teng FYH, Xu G, Xiang T, Wang CY, Zeng L, Takeda Y, Xu TL, Ng YK, Faivre-Sarrailh C, Popko B, Ling EA, Schachner M, Watanabe K, Pallen CJ, Tang BL, Xiao ZC. Nogo-A at CNS paranodes is a ligand of Caspr: possible regulation of K(+) channel localization. EMBO J 2003; 22:5666-78. [PMID: 14592966 PMCID: PMC275427 DOI: 10.1093/emboj/cdg570] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
We report Nogo-A as an oligodendroglial component congregating and interacting with the Caspr-F3 complex at paranodes. However, its receptor Nogo-66 receptor (NgR) does not segregate to specific axonal domains. CHO cells cotransfected with Caspr and F3, but not with F3 alone, bound specifically to substrates coated with Nogo-66 peptide and GST-Nogo-66. Binding persisted even after phosphatidylinositol- specific phospholipase C (PI-PLC) removal of GPI-linked F3 from the cell surface, suggesting a direct interaction between Nogo-66 and Caspr. Both Nogo-A and Caspr co-immunoprecipitated with Kv1.1 and Kv1.2, and the developmental expression pattern of both paralleled compared with Kv1.1, implicating a transient interaction between Nogo-A-Caspr and K(+) channels at early stages of myelination. In pathological models that display paranodal junctional defects (EAE rats, and Shiverer and CGT(-/-) mice), distances between the paired labeling of K(+) channels were shortened significantly and their localization shifted toward paranodes, while paranodal Nogo-A congregation was markedly reduced. Our results demonstrate that Nogo-A interacts in trans with axonal Caspr at CNS paranodes, an interaction that may have a role in modulating axon-glial junction architecture and possibly K(+)-channel localization during development.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Axons/metabolism
- CHO Cells
- Cell Adhesion Molecules, Neuronal/metabolism
- Central Nervous System/metabolism
- Contactins
- Cricetinae
- GPI-Linked Proteins
- Immunohistochemistry
- Kv1.1 Potassium Channel
- Ligands
- Mice
- Mice, Knockout
- Mice, Neurologic Mutants
- Microscopy, Immunoelectron
- Models, Neurological
- Molecular Sequence Data
- Myelin Proteins/genetics
- Myelin Proteins/metabolism
- Nerve Fibers, Myelinated/metabolism
- Nogo Proteins
- Nogo Receptor 1
- Oligodendroglia/metabolism
- Potassium Channels/metabolism
- Potassium Channels, Voltage-Gated
- Rats
- Rats, Wistar
- Receptors, Cell Surface/metabolism
- Receptors, Peptide/metabolism
- Transfection
Collapse
Affiliation(s)
- Du-Yu Nie
- Department of Clinical Research, Singapore General Hospital, Singapore
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
Reticulons (RTNs) are a relatively new eukaryotic gene family with unknown functions but broad expression and peculiar topological features. RTNs are widely distributed in plants, yeast and animals and are characterized by a approximately 200-amino-acid C-terminal domain, including two long hydrophobic sequences. Nogo/RTN4 can inhibit neurite growth from the cell surface via specific receptors, whereas more general, 'ancestral', RTN functions might relate to those of the endoplasmic reticulum - for example, intracellular trafficking, cell division and apoptosis. Here, we review the taxonomic distribution and tissue expression of RTNs, summarize recent discoveries about RTN localization and membrane topology, and discuss the possible functions of RTNs.
Collapse
Affiliation(s)
- Thomas Oertle
- Brain Research Institute, University of Zurich and Dept of Biology, ETH Zurich, Winterthurerstrasse 190, Switzerland
| | | |
Collapse
|
47
|
Magnusson C, Libelius R, Tågerud S. Nogo (Reticulon 4) expression in innervated and denervated mouse skeletal muscle. Mol Cell Neurosci 2003; 22:298-307. [PMID: 12691732 DOI: 10.1016/s1044-7431(02)00036-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The nogo gene encodes at least three different proteins, which share a high C-terminal homology with other members of the Reticulon family. Nogo (Reticulon 4) expression has been studied in innervated and denervated mouse hind-limb and hemidiaphragm muscles. A common Nogo A, B, and C probe hybridized to three transcripts, in accordance with human and rat data. Denervation caused decreased Nogo C and increased Nogo A mRNA expression, while Nogo B was not substantially altered. Western blots and immunohistochemistry confirmed the presence of Nogo A-like and Nogo B-like immunoreactivity in muscle. Nogo A-like immunoreactivity increased after denervation and was also present in intramuscular nerves in both innervated and denervated muscle. Nogo B-like immunoreactivity was observed in connective tissue surrounding muscle fibres and nerves. The different Nogo transcripts are produced by both alternative splicing (A and B) and alternative promoter usage (C); both mechanisms seem to be under neural control in skeletal muscle.
Collapse
Affiliation(s)
- Caroline Magnusson
- Department of Chemistry and Biomedical Sciences, University of Kalmar, Sweden.
| | | | | |
Collapse
|