1
|
Rabie M, El-Tanbouly DM, Kandil EA, Sayed HM. Oxytocin Anti-Apoptotic Potential Mediates Neuroprotection Against 3-Nitropropionic Acid-Induced Huntington's Disease-Like Pathophysiology in Rats: Involvement of Calpain-2/p25 Cdk5/MEF-2 Signaling Pathway. Neurochem Res 2025; 50:148. [PMID: 40252127 DOI: 10.1007/s11064-025-04397-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 04/04/2025] [Accepted: 04/07/2025] [Indexed: 04/21/2025]
Abstract
The increasing interest in the pro-apoptotic function of calpain-2 in the course of Huntington's disease (HD) is attributed to the involvement of its substrate, cyclin-dependent kinase 5 (Cdk5), in neuronal death during neurodegeneration. Oxytocin has been demonstrated to suppress apoptosis in many neurodegenerative disorders. This research aimed to investigate the effect of oxytocin on several calpain 2-induced apoptogenic factors in 3-nitropropionic acid (3-NP) animal model of HD in rats. For 14 days, rats received 3-NP (10 mg/kg, i.p.), and oxytocin (160 µg/kg, i.p.) 1 h before 3-NP administration. Oxytocin reversed the detrimental effects of 3-NP on the striatum, which was evidenced by improvement of motor behavior, as well as histological picture and neurochemical balance. Oxytocin markedly reduced striatal calpain-2 and p25 Cdk5 protein expressions and increased the endogenous calpain inhibitor, calpastatin expression along with the pro-survival factor, myocyte-enhancer factor 2 (MEF-2) contents. Moreover, it suppressed striatal content of the pro-apoptotic biomarkers (BCl-2-associated X protein (Bax), tumor suppressor protein (p53), and caspase-3) and elevated striatal anti-apoptotic B-cell lymphoma/leukemia 2 (BCl-2) content. It repressed the release of mitochondrial cytochrome c and apoptosis-inducing factor (AIF) to hinder caspase-dependent and caspase-independent apoptotic neuronal death. Oxytocin could be a promising candidate for HD management by hampering both mitochondrial and non-mitochondrial apoptosis through inhibition of calpain-2/p25 Cdk5/MEF-2 pathway.
Collapse
Affiliation(s)
- Marwa Rabie
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, 11562, Cairo, Egypt.
| | - Dalia M El-Tanbouly
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, 11562, Cairo, Egypt
| | - Esraa A Kandil
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, 11562, Cairo, Egypt
| | - Helmy M Sayed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, 11562, Cairo, Egypt
| |
Collapse
|
2
|
Pluta AJ, Studniarek C, Murphy S, Norbury CJ. Cyclin-dependent kinases: Masters of the eukaryotic universe. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 15:e1816. [PMID: 37718413 PMCID: PMC10909489 DOI: 10.1002/wrna.1816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/21/2023] [Accepted: 08/03/2023] [Indexed: 09/19/2023]
Abstract
A family of structurally related cyclin-dependent protein kinases (CDKs) drives many aspects of eukaryotic cell function. Much of the literature in this area has considered individual members of this family to act primarily either as regulators of the cell cycle, the context in which CDKs were first discovered, or as regulators of transcription. Until recently, CDK7 was the only clear example of a CDK that functions in both processes. However, new data points to several "cell-cycle" CDKs having important roles in transcription and some "transcriptional" CDKs having cell cycle-related targets. For example, novel functions in transcription have been demonstrated for the archetypal cell cycle regulator CDK1. The increasing evidence of the overlap between these two CDK types suggests that they might play a critical role in coordinating the two processes. Here we review the canonical functions of cell-cycle and transcriptional CDKs, and provide an update on how these kinases collaborate to perform important cellular functions. We also provide a brief overview of how dysregulation of CDKs contributes to carcinogenesis, and possible treatment avenues. This article is categorized under: RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes RNA Processing > 3' End Processing RNA Processing > Splicing Regulation/Alternative Splicing.
Collapse
Affiliation(s)
| | | | - Shona Murphy
- Sir William Dunn School of PathologyUniversity of OxfordOxfordUK
| | - Chris J. Norbury
- Sir William Dunn School of PathologyUniversity of OxfordOxfordUK
| |
Collapse
|
3
|
A review on cyclin-dependent kinase 5: An emerging drug target for neurodegenerative diseases. Int J Biol Macromol 2023; 230:123259. [PMID: 36641018 DOI: 10.1016/j.ijbiomac.2023.123259] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/05/2023] [Accepted: 01/10/2023] [Indexed: 01/13/2023]
Abstract
Cyclin-dependent kinase 5 (CDK5) is the serine/threonine-directed kinase mainly found in the brain and plays a significant role in developing the central nervous system. Recent evidence suggests that CDK5 is activated by specific cyclins regulating its expression and activity. P35 and p39 activate CDK5, and their proteolytic degradation produces p25 and p29, which are stable products involved in the hyperphosphorylation of tau protein, a significant hallmark of various neurological diseases. Numerous high-affinity inhibitors of CDK5 have been designed, and some are marketed drugs. Roscovitine, like other drugs, is being used to minimize neurological symptoms. Here, we performed an extensive literature analysis to highlight the role of CDK5 in neurons, synaptic plasticity, DNA damage repair, cell cycle, etc. We have investigated the structural features of CDK5, and their binding mode with the designed inhibitors is discussed in detail to develop attractive strategies in the therapeutic targeting of CDK5 for neurodegenerative diseases. This review provides deeper mechanistic insights into the therapeutic potential of CDK5 inhibitors and their implications in the clinical management of neurodegenerative diseases.
Collapse
|
4
|
Thiel JT, Daigeler A, Kolbenschlag J, Rachunek K, Hoffmann S. The Role of CDK Pathway Dysregulation and Its Therapeutic Potential in Soft Tissue Sarcoma. Cancers (Basel) 2022; 14:3380. [PMID: 35884441 PMCID: PMC9323700 DOI: 10.3390/cancers14143380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/07/2022] [Accepted: 07/09/2022] [Indexed: 02/04/2023] Open
Abstract
Soft tissue sarcomas (STSs) are tumors that are challenging to treat due to their pathologic and molecular heterogeneity and their tumor biology that is not yet fully understood. Recent research indicates that dysregulation of cyclin-dependent kinase (CDK) signaling pathways can be a strong driver of sarcogenesis. CDKs are enzyme forms that play a crucial role in cell-cycle control and transcription. They belong to the protein kinases group and to the serine/threonine kinases subgroup. Recently identified CDK/cyclin complexes and established CDK/cyclin complexes that regulate the cell cycle are involved in the regulation of gene expression through phosphorylation of critical components of transcription and pre-mRNA processing mechanisms. The current and continually growing body of data shows that CDKs play a decisive role in tumor development and are involved in the proliferation and growth of sarcoma cells. Since the abnormal expression or activation of large numbers of CDKs is considered to be characteristic of cancer development and progression, dysregulation of the CDK signaling pathways occurs in many subtypes of STSs. This review discusses how reversal and regulation can be achieved with new therapeutics and summarizes the current evidence from studies regarding CDK modulation for STS treatment.
Collapse
Affiliation(s)
- Johannes Tobias Thiel
- Department of Hand, Plastic, Reconstructive and Burn Surgery, BG Unfallklinik Tuebingen, University of Tuebingen, 72076 Tuebingen, Germany; (A.D.); (J.K.); (K.R.); (S.H.)
| | | | | | | | | |
Collapse
|
5
|
Li S, Lei Z, Yang X, Zhao M, Hou Y, Wang D, Tang S, Li J, Yu J. Propofol Protects Myocardium From Ischemia/Reperfusion Injury by Inhibiting Ferroptosis Through the AKT/p53 Signaling Pathway. Front Pharmacol 2022; 13:841410. [PMID: 35370724 PMCID: PMC8966655 DOI: 10.3389/fphar.2022.841410] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/21/2022] [Indexed: 12/19/2022] Open
Abstract
The molecular mechanism underlying the protective role of propofol against myocardial ischemia/reperfusion (I/R) injury remains poorly understood. Previous studies have shown that ferroptosis is an imperative pathological process in myocardial I/R injury. We hypothesized that propofol prevents myocardial I/R injury by inhibiting ferroptosis via the AKT/p53 signaling pathway. The ferroptosis-inducing agent erastin (E) and AKT inhibitor MK2206 (MK) were used to investigate the role of propofol in myocardial I/R injury. H9C2 cells treated without any reagents, erastin for 24 h, propofol for 1 h before adding erastin were assigned as the control (C), E, and E + P group, respectively. Cell viability, reactive oxygen species (ROS), and the expression of antioxidant enzymes, including ferritin heavy chain 1 (FTH1), cysteine/glutamate transporter (XCT), and glutathione peroxidase 4 (GPX4) in H9C2 cells. Rat hearts from the I/R + P or I/R groups were treated with or without propofol for 20 min before stopping perfusion for 30 min and reperfusion for 60 min. Rat hearts from the I/R + P + MK or I/R + MK groups were treated with or without propofol for 20 min, with a 10-min treatment of MK2206 before stopping perfusion. Myocardial histopathology, mitochondrial structure, iron levels, and antioxidant enzymes expression were assessed. Our results demonstrated that erastin increased H9C2 cell mortality and reduced the expression of antioxidant enzymes. I/R, which reduced the expression of antioxidant enzymes and increased iron or p53 (p < 0.05), boosted myocardium pathological and mitochondrion damage. Propofol inhibited these changes; however, the effects of propofol on I/R injury were antagonized by MK (p < 0.05). In addition, AKT siRNA inhibited the propofol-induced expression of antioxidant enzymes (p < 0.05). Our findings confirm that propofol protects myocardium from I/R injury by inhibiting ferroptosis via the AKT/p53 signal pathway.
Collapse
Affiliation(s)
- Shengqiang Li
- Department of Anesthesiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zhen Lei
- Department of Anesthesiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiaomei Yang
- Department of Anesthesiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Meng Zhao
- Department of Anesthesiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yonghao Hou
- Department of Anesthesiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Di Wang
- Department of Anesthesiology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shuhai Tang
- Department of Anesthesiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jingxin Li
- Department of Physiology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- *Correspondence: Jingxin Li, ; Jingui Yu,
| | - Jingui Yu
- Department of Anesthesiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- *Correspondence: Jingxin Li, ; Jingui Yu,
| |
Collapse
|
6
|
Nie J, Zhang Y, Ning L, Yan Z, Duan L, Xi H, Niu Q, Zhang Q. Phosphorylation of p53 by Cdk5 contributes to benzo[a]pyrene-induced neuronal apoptosis. ENVIRONMENTAL TOXICOLOGY 2022; 37:17-27. [PMID: 34529316 DOI: 10.1002/tox.23374] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 08/18/2021] [Accepted: 09/06/2021] [Indexed: 06/13/2023]
Abstract
Benzo[a]pyrene (B[a]P) is a ubiquitous carcinogenic pollutant in the environment, however, the potential neurotoxic effects of B[a]P has not been elucidated clearly. In the present study, we explored the potential involvement of p53 phosphorylation by Cdk5 in B[a]P-induced neuronal apoptosis at both in vitro and in vivo settings. For in vitro studies, primary cortical neurons isolated from the brains of Sprague Dawley (SD) rat pup were exposed to 0, 10, 20, and 40 μM of B[a]P for 12, 24, or 48 h. For in vivo studies, SD rats were injected intraperitoneally with 0, 1.0, 2.5, and 6.25 mg/kg of B[a]P every other day for 1, 2, or 3 months. Our results demonstrated that exposure to B[a]P caused a dose- and a time-dependent increase in neuronal apoptotic ratio in both in vitro and in vivo studies. There was also a dose- and a time-dependent upregulation of p35, p25, Cdk5, and phosphorylated p53 at Ser15 after B[a]P exposure. In order to explore whether B[a]P-induced increased neuronal apoptosis was through Cdk5/p53 pathway, roscovitine, a specific Cdk5 inhibitor, was applied to pretreat neurons prior to B[a]P exposure. The results showed that pretreatment of neurons with roscovitine partially rescued cells from B[a]P-induced apoptosis, and alleviated B[a]P-induced upregulation of phosphorylated p53 at Ser15. Our results suggest that Cdk5/p53 signaling pathway may be involved in B[a]P-induced neuronal apoptosis, which will provide information to further elucidate the molecular mechanisms of B[a]P-induced neurotoxicity.
Collapse
Affiliation(s)
- Jisheng Nie
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yu Zhang
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Lijun Ning
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Zhiwei Yan
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Lei Duan
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Huaxing Xi
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Qiao Niu
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Qunwei Zhang
- Department of Environmental and Occupational Health Sciences, University of Louisville, Louisville, Kentucky, USA
| |
Collapse
|
7
|
Li H, Fang H, Chang L, Qiu S, Ren X, Cao L, Bian J, Wang Z, Guo Y, Lv J, Sun Z, Wang T, Li B. TC2N: A Novel Vital Oncogene or Tumor Suppressor Gene In Cancers. Front Immunol 2021; 12:764749. [PMID: 34925334 PMCID: PMC8674203 DOI: 10.3389/fimmu.2021.764749] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/29/2021] [Indexed: 12/12/2022] Open
Abstract
Several C2 domain-containing proteins play key roles in tumorigenesis, signal transduction, and mediating protein–protein interactions. Tandem C2 domains nuclear protein (TC2N) is a tandem C2 domain-containing protein that is differentially expressed in several types of cancers and is closely associated with tumorigenesis and tumor progression. Notably, TC2N has been identified as an oncogene in lung and gastric cancer but as a tumor suppressor gene in breast cancer. Recently, a large number of tumor-associated antigens (TAAs), such as heat shock proteins, alpha-fetoprotein, and carcinoembryonic antigen, have been identified in a variety of malignant tumors. Differences in the expression levels of TAAs between cancer cells and normal cells have led to these antigens being investigated as diagnostic and prognostic biomarkers and as novel targets in cancer treatment. In this review, we summarize the clinical characteristics of TC2N-positive cancers and potential mechanisms of action of TC2N in the occurrence and development of specific cancers. This article provides an exploration of TC2N as a potential target for the diagnosis and treatment of different types of cancers.
Collapse
Affiliation(s)
- Hanyang Li
- Department of Radiotherapy, The Second Hospital of Jilin University, Changchun, China
- Department of Thyroid Surgery, The Second Hospital of Jilin University, Changchun, China
| | - He Fang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Li Chang
- Department of Pathology, The Second Hospital of Jilin University, Changchun, China
| | - Shuang Qiu
- Department of Biobank, The China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xiaojun Ren
- Department of Radiotherapy, The Second Hospital of Jilin University, Changchun, China
| | - Lidong Cao
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Jinda Bian
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Zhenxiao Wang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Yi Guo
- Department of Breast Surgery, The Affiliated Hospital Changchun University of Chinese Medicine, Changchun, China
| | - Jiayin Lv
- Department of Orthopedics, The China-Japan Union Hospital of Jilin University, Changchun, China
| | - Zhihui Sun
- Department of Pharmacy, The Second Hospital of Jilin University, Changchun, China
| | - Tiejun Wang
- Department of Radiotherapy, The Second Hospital of Jilin University, Changchun, China
- *Correspondence: Tiejun Wang, ; Bingjin Li,
| | - Bingjin Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
- *Correspondence: Tiejun Wang, ; Bingjin Li,
| |
Collapse
|
8
|
Anti-Oxidative, Anti-Inflammatory and Anti-Apoptotic Effects of Flavonols: Targeting Nrf2, NF-κB and p53 Pathways in Neurodegeneration. Antioxidants (Basel) 2021; 10:antiox10101628. [PMID: 34679762 PMCID: PMC8533072 DOI: 10.3390/antiox10101628] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/07/2021] [Accepted: 10/12/2021] [Indexed: 12/15/2022] Open
Abstract
Neurodegenerative diseases are one of the leading causes of disability and death worldwide. Intracellular transduction pathways that end in the activation of specific transcription factors are highly implicated in the onset and progression of pathological changes related to neurodegeneration, of which those related to oxidative stress (OS) and neuroinflammation are particularly important. Here, we provide a brief overview of the key concepts related to OS- and neuroinflammation-mediated neuropathological changes in neurodegeneration, together with the role of transcription factors nuclear factor erythroid 2-related factor 2 (Nrf2) and nuclear factor-κB (NF-κB). This review is focused on the transcription factor p53 that coordinates the cellular response to diverse genotoxic stimuli, determining neuronal death or survival. As current pharmacological options in the treatment of neurodegenerative disease are only symptomatic, many research efforts are aimed at uncovering efficient disease-modifying agents. Natural polyphenolic compounds demonstrate powerful anti-oxidative, anti-inflammatory and anti-apoptotic effects, partially acting as modulators of signaling pathways. Herein, we review the current understanding of the therapeutic potential and limitations of flavonols in neuroprotection, with emphasis on their anti-oxidative, anti-inflammatory and anti-apoptotic effects along the Nrf2, NF-κB and p53 pathways. A better understanding of cellular and molecular mechanisms of their action may pave the way toward new treatments.
Collapse
|
9
|
Transcriptome Analysis of Cells Exposed to Actinomycin D and Nutlin-3a Reveals New Candidate p53-Target Genes and Indicates That CHIR-98014 Is an Important Inhibitor of p53 Activity. Int J Mol Sci 2021; 22:ijms222011072. [PMID: 34681730 PMCID: PMC8538697 DOI: 10.3390/ijms222011072] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/06/2021] [Accepted: 10/11/2021] [Indexed: 11/29/2022] Open
Abstract
Co-treatment with actinomycin D and nutlin-3a (A + N) strongly activates p53. Previously we reported that CHIR-98014 (GSK-3 kinase inhibitor), acting in cells exposed to A + N, prevents activation of TREM2-an innate immunity and p53-regulated gene associated with Alzheimer’s disease. In order to find novel candidate p53-target genes and genes regulated by CHIR-98014, we performed RNA-Seq of control A549 cells and the cells exposed to A + N, A + N with CHIR-98014 or to CHIR-98014. We validated the data for selected genes using RT-PCR and/or Western blotting. Using CRISPR/Cas9 technology we generated p53-deficient cells. These tools enabled us to identify dozens of candidate p53-regulated genes. We confirmed that p53 participates in upregulation of BLNK, APOE and IRF1. BLNK assists in activation of immune cells, APOE codes for apolipoprotein associated with Alzheimer’s disease and IRF1 is activated by interferon gamma and regulates expression of antiviral genes. CHIR-98014 prevented or inhibited the upregulation of a fraction of genes stimulated by A + N. Downregulation of GSK-3 did not mimic the activity of CHIR-98014. Our data generate the hypothesis, that an unidentified kinase inhibited by CHIR-98014, participates in modification of p53 and enables it to activate a subset of its target genes, e.g., the ones associated with innate immunity.
Collapse
|
10
|
Do PA, Lee CH. The Role of CDK5 in Tumours and Tumour Microenvironments. Cancers (Basel) 2020; 13:E101. [PMID: 33396266 PMCID: PMC7795262 DOI: 10.3390/cancers13010101] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/27/2020] [Accepted: 12/28/2020] [Indexed: 12/11/2022] Open
Abstract
Cyclin-dependent kinase 5 (CDK5), which belongs to the protein kinase family, regulates neuronal function but is also associated with cancer development and has been proposed as a target for cancer treatment. Indeed, CDK5 has roles in cell proliferation, apoptosis, angiogenesis, inflammation, and immune response. Aberrant CDK5 activation triggers tumour progression in numerous types of cancer. In this review, we summarise the role of CDK5 in cancer and neurons and CDK5 inhibitors. We expect that our review helps researchers to develop CDK5 inhibitors as treatments for refractory cancer.
Collapse
Affiliation(s)
| | - Chang Hoon Lee
- Phamaceutical Biochemistry, College of Pharmacy, BK21 FOUR Team, and Integrated Research Institute for Drug Development, Dongguk University, Goyang 100-715, Korea;
| |
Collapse
|
11
|
Marlier Q, D'aes T, Verteneuil S, Vandenbosch R, Malgrange B. Core cell cycle machinery is crucially involved in both life and death of post-mitotic neurons. Cell Mol Life Sci 2020; 77:4553-4571. [PMID: 32476056 PMCID: PMC11105064 DOI: 10.1007/s00018-020-03548-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 04/23/2020] [Accepted: 05/12/2020] [Indexed: 12/12/2022]
Abstract
A persistent dogma in neuroscience supported the idea that terminally differentiated neurons permanently withdraw from the cell cycle. However, since the late 1990s, several studies have shown that cell cycle proteins are expressed in post-mitotic neurons under physiological conditions, indicating that the cell cycle machinery is not restricted to proliferating cells. Moreover, many studies have highlighted a clear link between cell cycle-related proteins and neurological disorders, particularly relating to apoptosis-induced neuronal death. Indeed, cell cycle-related proteins can be upregulated or overactivated in post-mitotic neurons in case of acute or degenerative central nervous system disease. Given the considerable lack of effective treatments for age-related neurological disorders, new therapeutic approaches targeting the cell cycle machinery might thus be considered. This review aims at summarizing current knowledge about the role of the cell cycle machinery in post-mitotic neurons in healthy and pathological conditions.
Collapse
Affiliation(s)
- Quentin Marlier
- Developmental Neurobiology Unit, GIGA Stem Cells/Neurosciences, University of Liège, Quartier Hopital (CHU), Avenue Hippocrate, 15, 4000, Liege, Belgium
| | - Tine D'aes
- Developmental Neurobiology Unit, GIGA Stem Cells/Neurosciences, University of Liège, Quartier Hopital (CHU), Avenue Hippocrate, 15, 4000, Liege, Belgium
| | - Sébastien Verteneuil
- Developmental Neurobiology Unit, GIGA Stem Cells/Neurosciences, University of Liège, Quartier Hopital (CHU), Avenue Hippocrate, 15, 4000, Liege, Belgium
| | - Renaud Vandenbosch
- Developmental Neurobiology Unit, GIGA Stem Cells/Neurosciences, University of Liège, Quartier Hopital (CHU), Avenue Hippocrate, 15, 4000, Liege, Belgium
| | - Brigitte Malgrange
- Developmental Neurobiology Unit, GIGA Stem Cells/Neurosciences, University of Liège, Quartier Hopital (CHU), Avenue Hippocrate, 15, 4000, Liege, Belgium.
| |
Collapse
|
12
|
Hou Y, Wang Z, Huang S, Sun C, Zhao J, Shi J, Li Z, Wang Z, He X, Tam NL, Wu L. SKA3 Promotes tumor growth by regulating CDK2/P53 phosphorylation in hepatocellular carcinoma. Cell Death Dis 2019; 10:929. [PMID: 31804459 PMCID: PMC6895034 DOI: 10.1038/s41419-019-2163-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 01/20/2023]
Abstract
Spindle and kinetochore-related complex subunit 3 (SKA3) is a component of the spindle and kinetochore-related complexes and is essential for accurate timing of late mitosis. However, the relationship between SKA3 and hepatocellular carcinoma (HCC) has not yet been fully elucidated. Gene expression omnibus (GEO) (GSE62232, GSE45436, GSE6764, and GSE36376) and The Cancer Atlas (TCGA) datasets were analyzed to identify differential expression genes. Cell proliferation ability was analyzed using Cell Counting Kit-8 (CCK8) assay and plate clone formation assay, while scratch wound healing assay and transwell assay were used to analyze cell invasion. The role of SKA3 in vivo was explored using subcutaneous xenotransplantation model and lung metastasis model. Bioinformatics analysis found that hepatocellular carcinoma patients with high levels of expression of SKA3 have a poor prognosis. Similarly, immunohistochemical staining of 236 samples of tumors also found higher SKA3 expression in them, than in adjacent normal liver tissues. Significant levels of inhibition of in vivo and in vitro tumor proliferation and invasion result from the downregulation of SKA3. Mechanistically, SKA3 was found to affect tumor progression through the cell cycle and P53 signaling pathway as shown by the gene enrichment analysis (GSEA). G2/M phase arrest and severe apoptosis was also found to result from SKA3 knockdown, as shown by the inhibition of CDK2/p53 phosphorylation together with downregulation of BAX/Bcl-2 expression in HCC cells. Overall, these findings uncover the role of SKA3 in regulating the apoptosis and proliferation of hepatocellular carcinoma cells. This study was able to uncover new information on the tumorigenesis mechanism in hepatocellular carcinoma.
Collapse
Affiliation(s)
- Yuchen Hou
- Department of Organ Transplantation, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China.,Department of Liver Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Road, Shanghai, 200127, China
| | - Ziming Wang
- Department of Biliary and Pancreatic Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Shanzhou Huang
- Department of Organ Transplantation, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China.,Department of General Surgery, Guangdong Provincial People's Hospital. Guangdong Academy of Medical Sciences, Guangzhou, 510030, China
| | - Chengjun Sun
- Department of Organ Transplantation, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Jingya Zhao
- The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Jiayu Shi
- The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Zhongqiu Li
- Department of Organ Transplantation, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Zekang Wang
- Department of Organ Transplantation, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Xiaoshun He
- Department of Organ Transplantation, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China. .,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China. .,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Nga Lei Tam
- Digestive Medical Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China.
| | - Linwei Wu
- Department of Organ Transplantation, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China. .,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China. .,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
13
|
Zhang J, Li W, Yuan Q, Zhou J, Zhang J, Cao Y, Fu G, Hu W. Transcriptome Analyses of the Anti-Proliferative Effects of 20(S)-Ginsenoside Rh2 on HepG2 Cells. Front Pharmacol 2019; 10:1331. [PMID: 31780945 PMCID: PMC6855211 DOI: 10.3389/fphar.2019.01331] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 10/18/2019] [Indexed: 12/21/2022] Open
Abstract
20(S)-ginsenoside Rh2 (Rh2), a well-known protopanaxadiol-type ginsenoside from Panax ginseng has especially gained attention for its anticancer activities on various types of human cancer cells. However, the molecular mechanism through which Rh2 promotes apoptosis in hepatocellular carcinoma (HePG2) cells is not known at the transcriptome level. Rh2 can specifically inhibit the proliferation of HePG2 in a dose- and time-dependent manner. Moreover, Rh2 can significantly increase the apoptosis which was related with an increase in protein expression levels of caspase-3, caspase-6, and poly (ADP-ribose) polymerase. Comparison of RNA-seq transcriptome profiles from control group and Rh2-treated group yielded a list of 2116 genes whose expression was significantly affected, which includes 971 up-regulated genes and 1145 down-regulated genes. The differentially expressed genes in p53 signaling pathway and DNA replication may have closely relationships to the cells apoptosis caused by Rh2 treatment. The results of qPCR validation showed that dynamic changes in mRNA, such as CDKN1A, CCND2, PMAIP1, GTSE1, and TP73.
Collapse
Affiliation(s)
- Ji Zhang
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection/Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, School of Life Sciences, Huaiyin Normal University, Huaian, China
| | - Weibo Li
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection/Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, School of Life Sciences, Huaiyin Normal University, Huaian, China
| | - Qiaoyun Yuan
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection/Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, School of Life Sciences, Huaiyin Normal University, Huaian, China
| | - Jing Zhou
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection/Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, School of Life Sciences, Huaiyin Normal University, Huaian, China
| | - Jianmei Zhang
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection/Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, School of Life Sciences, Huaiyin Normal University, Huaian, China
| | - Yufeng Cao
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection/Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, School of Life Sciences, Huaiyin Normal University, Huaian, China
| | - Guangbo Fu
- Department of Urology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huaian, China
| | - Weicheng Hu
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection/Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, School of Life Sciences, Huaiyin Normal University, Huaian, China
| |
Collapse
|
14
|
Down-regulation of cyclin-dependent kinase 5 attenuates p53-dependent apoptosis of hippocampal CA1 pyramidal neurons following transient cerebral ischemia. Sci Rep 2019; 9:13032. [PMID: 31506563 PMCID: PMC6737192 DOI: 10.1038/s41598-019-49623-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 07/10/2019] [Indexed: 01/09/2023] Open
Abstract
Abnormal activation of cyclin-dependent kinase 5 (Cdk5) is associated with pathophysiological conditions. Ischemic preconditioning (IPC) can provide neuroprotective effects against subsequent lethal ischemic insult. The objective of this study was to determine how Cdk5 and related molecules could affect neuroprotection in the hippocampus of gerbils after with IPC [a 2-min transient cerebral ischemia (TCI)] followed by 5-min subsequent TCI. Hippocampal CA1 pyramidal neurons were dead at 5 days post-TCI. However, treatment with roscovitine (a potent inhibitor of Cdk5) and IPC protected CA1 pyramidal neurons from TCI. Expression levels of Cdk5, p25, phospho (p)-Rb and p-p53 were increased in nuclei of CA1 pyramidal neurons at 1 and 2 days after TCI. However, these expressions were attenuated by roscovitine treatment and IPC. In particular, Cdk5, p-Rb and p-p53 immunoreactivities in their nuclei were decreased. Furthermore, TUNEL-positive CA1 pyramidal neurons were found at 5 days after TCI with increased expression levels of Bax, PUMA, and activated caspase-3. These TUNEL-positive cells and increased molecules were decreased by roscovitine treatment and IPC. Thus, roscovitine treatment and IPC could protect CA1 pyramidal neurons from TCI through down-regulating Cdk5, p25, and p-p53 in their nuclei. These findings indicate that down-regulating Cdk5 might be a key strategy to attenuate p53-dependent apoptosis of CA1 pyramidal neurons following TCI.
Collapse
|
15
|
Site-specific phosphorylation of Fbxw7 by Cdk5/p25 and its resulting decreased stability are linked to glutamate-induced excitotoxicity. Cell Death Dis 2019; 10:579. [PMID: 31371703 PMCID: PMC6675790 DOI: 10.1038/s41419-019-1818-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 07/08/2019] [Accepted: 07/17/2019] [Indexed: 12/22/2022]
Abstract
Cyclin-dependent kinase 5 (Cdk5) is a serine/threonine protein kinase that regulates brain development and neurodegeneration. Cdk5 is activated by p25 that is generated from calpain-dependent cleavage of p35. The generation of p25 is responsible for the aberrant hyper-activation of Cdk5, which causes neurodegeneration. Using in vitro assays, we discovered that F-box/WD repeat-containing protein 7 (Fbxw7) is a new substrate of Cdk5. Additionally, Cdk5-dependent phosphorylation of Fbxw7 was detected in the presence of p25, and two amino acid residues (S349 and S372) were determined to be major phosphorylation sites. This phosphorylation was eventually linked to decreased stability of Fbxw7. Using a culture model of cortical neurons challenged with glutamate, we confirmed that decreased stability of Fbxw7 was indeed Cdk5-dependent. Furthermore, diminished levels of Fbxw7 led to increased levels of transcription factor AP-1 (c-Jun), a known substrate of Fbxw7. Given that previous reports demonstrate that c-Jun plays a role in accelerating neuronal apoptosis in these pathological models, our data support the concepts of a molecular cascade in which Cdk5-mediated phosphorylation of Fbxw7 negatively regulates Fbxw7 expression, thereby contributing to neuronal cell death following glutamate-mediated excitotoxicity.
Collapse
|
16
|
Man A, Slevin M, Petcu E, Fraefel C. The Cyclin-Dependent Kinase 5 Inhibitor Peptide Inhibits Herpes Simplex Virus Type 1 Replication. Sci Rep 2019; 9:1260. [PMID: 30718749 PMCID: PMC6362106 DOI: 10.1038/s41598-018-37989-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 10/18/2018] [Indexed: 11/09/2022] Open
Abstract
In order to evaluate the influence of CDK5 inhibitory peptide (CIP) on Human alphaherpesvirus 1 (HSV-1) replication, we constructed two recombinant adeno-associated-virus 2 (rAAV2) vectors encoding CIP fused with cyan-fluorescent-protein (CFP), with or without nuclear localization signal. A third vector encoding non-fused CIP and CFP was also constructed. HeLa and HEK 293T cells were infected with the rAAV-CIP vectors at multiplicity of infection (MOI) of 5000, in the absence or presence of a recombinant HSV-1 that encodes a yellow-fluorescent-protein (rHSV48Y; MOI = 1). Cells co-infected with rHSV48Y and rAAV vectors that did not express the CIP gene (rAAV-CFP-Neo) served as controls. At 24 h after infection, the effect of CIP on rHSV48Y replication was assessed by PCR, qRT-PCR, Western-blot, flow-cytometry, epifluorescence and confocal microscopy. We show that in cultures co-infected with rAAV-CFP-Neo, 27% of the CFP-positive cells present rHSV48Y replication compartments. By contrast, in cultures co-infected with CIP-encoding rAAV2 vectors and rHSV48Y only 6-20% of the cells positive for CIP showed rHSV48Y replication compartments, depending on the CIP variant. Flow-cytometry showed that less than 40% of the rHSV48Y/rAAV-CIP, and more than 75% of rHSV48Y/rAAV-CFP-Neo co-infected cells were positive for both transgene products. The microscopy and flow-cytometry data support the hypothesis that CIP is inhibiting HSV-1 replication.
Collapse
Affiliation(s)
- Adrian Man
- Institute of Virology, University of Zurich, Zurich, Switzerland
- Department of Microbiology, University of Medicine and Pharmacy of Tîrgu Mureș, Târgu Mureș, Romania
| | - Mark Slevin
- University of Medicine and Pharmacy of Tîrgu Mureș, Târgu Mureș, Romania.
- School of Healthcare Science, Manchester Metropolitan University, Manchester, UK.
| | - Eugen Petcu
- Griffith University, Gold Coast, Brisbane, Australia
| | - Cornel Fraefel
- Institute of Virology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
17
|
Hao XL, Han F, Zhang N, Chen HQ, Jiang X, Yin L, Liu WB, Wang DD, Chen JP, Cui ZH, Ao L, Cao J, Liu JY. TC2N, a novel oncogene, accelerates tumor progression by suppressing p53 signaling pathway in lung cancer. Cell Death Differ 2018; 26:1235-1250. [PMID: 30254375 PMCID: PMC6748156 DOI: 10.1038/s41418-018-0202-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 08/01/2018] [Accepted: 08/30/2018] [Indexed: 01/09/2023] Open
Abstract
The protein containing the C2 domain has been well documented for its essential roles in endocytosis, cellular metabolism and cancer. Tac2-N (TC2N) is a tandem C2 domain-containing protein, but its function, including its role in tumorigenesis, remains unknown. Here, we first identified TC2N as a novel oncogene in lung cancer. TC2N was preferentially upregulated in lung cancer tissues compared with adjacent normal lung tissues. High TC2N expression was significantly associated with poor outcome of lung cancer patients. Knockdown of TC2N markedly induces cell apoptosis and cell cycle arrest with repressing proliferation in vitro, and suppresses tumorigenicity in vivo, whereas overexpression of TC2N has the opposite effects both in vitro and in vivo. Using a combination of TCGA database and bioinformatics, we demonstrate that TC2N is involved in regulation of the p53 signaling pathway. Mechanistically, TC2N attenuates p53 signaling pathway through inhibiting Cdk5-induced phosphorylation of p53 via inducing Cdk5 degradation or disrupting the interaction between Cdk5 and p53. Moreover, the blockade of p53 attenuates the function of TC2N knockdown in the regulation of cell proliferation and apoptosis. In addition, downregulated TC2N is involved in the apoptosis of lung cancer cells induced by doxorubicin, leading to p53 pathway activation. Overall, these findings uncover a role for the p53 inactivator TC2N in regulating the proliferation and apoptosis of lung cancer cells. Our present study provides novel insights into the mechanism of tumorigenesis in lung cancer.
Collapse
Affiliation(s)
- Xiang-Lin Hao
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Fei Han
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Ning Zhang
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Hong-Qiang Chen
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Xiao Jiang
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Li Yin
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Wen-Bin Liu
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Dan-Dan Wang
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Jian-Ping Chen
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Zhi-Hong Cui
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Lin Ao
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Jia Cao
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China.
| | - Jin-Yi Liu
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China.
| |
Collapse
|
18
|
Dixit AB, Banerjee J, Tripathi M, Sarkar C, Chandra PS. Synaptic roles of cyclin-dependent kinase 5 & its implications in epilepsy. Indian J Med Res 2018. [PMID: 28639593 PMCID: PMC5501049 DOI: 10.4103/ijmr.ijmr_1249_14] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
There is an urgent need to understand the molecular mechanisms underlying epilepsy to find novel prognostic/diagnostic biomarkers to prevent epilepsy patients at risk. Cyclin-dependent kinase 5 (CDK5) is involved in multiple neuronal functions and plays a crucial role in maintaining homeostatic synaptic plasticity by regulating intracellular signalling cascades at synapses. CDK5 deregulation is shown to be associated with various neurodegenerative diseases such as Alzheimer's disease. The association between chronic loss of CDK5 and seizures has been reported in animal models of epilepsy. Genetic expression of CDK5 at transcriptome level has been shown to be abnormal in intractable epilepsy. In this review various possible mechanisms by which deregulated CDK5 may alter synaptic transmission and possibly lead to epileptogenesis have been discussed. Further, CDK5 has been proposed as a potential biomarker as well as a pharmacological target for developing treatments for epilepsy.
Collapse
Affiliation(s)
- Aparna Banerjee Dixit
- Center for Excellence in Epilepsy, A Joint National Brain Research Centre (NBRC)- All India Institute of Medical Sciences (AIIMS) Collaboration, NBRC, Gurugram, India
| | - Jyotirmoy Banerjee
- Center for Excellence in Epilepsy, A Joint National Brain Research Centre (NBRC)- All India Institute of Medical Sciences (AIIMS) Collaboration, NBRC, Gurugram, India
| | | | | | | |
Collapse
|
19
|
Huang PH, Chen MC, Peng YT, Kao WH, Chang CH, Wang YC, Lai CH, Hsieh JT, Wang JH, Lee YT, Lin E, Yue CH, Wang HY, You SC, Lin H. Cdk5 Directly Targets Nuclear p21CIP1 and Promotes Cancer Cell Growth. Cancer Res 2017; 76:6888-6900. [PMID: 27909065 DOI: 10.1158/0008-5472.can-15-3253] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 08/03/2016] [Accepted: 09/09/2016] [Indexed: 11/16/2022]
Abstract
The significance of Cdk5 in cell-cycle control and cancer biology has gained increased attention. Here we report the inverse correlation between the protein levels of Cdk5 and p21CIP1 from cell-based and clinical analysis. Mechanistically, we identify that Cdk5 overexpression triggers the proteasome-dependent degradation of p21CIP1 through a S130 phosphorylation in a Cdk2-independent manner. Besides, the evidence from cell-based and clinical analysis shows that Cdk5 primarily regulates nuclear p21CIP1 protein degradation. S130A-p21CIP1 mutant enables to block either its protein degradation or the increase of cancer cell growth caused by Cdk5. Notably, Cdk5-triggered p21CIP1 targeting primarily appears in S-phase, while Cdk5 overexpression increases the activation of Cdk2 and its interaction with DNA polymerase δ. The in vivo results show that Cdk2 might play an important role in the downstream signaling to Cdk5. In summary, these findings suggest that Cdk5 in a high expression status promotes cancer growth by directly and rapidly releasing p21CIP1-dependent cell-cycle inhibition and subsequent Cdk2 activation, which illustrates an oncogenic role of Cdk5 potentially applied for future diagnosis and therapy. Cancer Res; 76(23); 6888-900. ©2016 AACR.
Collapse
Affiliation(s)
- Pao-Hsuan Huang
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Mei-Chih Chen
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Yu-Ting Peng
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Wei-Hsiang Kao
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Chih-Hsiang Chang
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Yun-Chi Wang
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Chih-Ho Lai
- Department of Microbiology and Immunology, Chang Gung University, Taoyuan, Taiwan
| | - Jer-Tsong Hsieh
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Jo-Hsin Wang
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Yueh-Tsung Lee
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan.,Department of Surgery, Chang Bing Show Chwan Memorial Hospital, Changhua, Taiwan
| | - Eugene Lin
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan.,Department of Urology, Chang Bing Show Chwan Memorial Hospital, Changhua, Taiwan
| | - Chia-Herng Yue
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan.,Department of Surgery, Tung's Taichung MetroHarbor Hospital, Taichung, Taiwan
| | - Hsin-Yi Wang
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan.,Department of Nuclear Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Shuen-Chi You
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Ho Lin
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan. .,Department of Biotechnology, Asia University, Taichung, Taiwan.,Department of Medical Research, China Medical University Hospital, Taichung, Taiwan.,Agricultural Biotechnology Center, National Chung Hsing University, Taichung, Taiwan.,Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
20
|
Ning X, Tao T, Shen J, Ji Y, Xie L, Wang H, Liu N, Xu X, Sun C, Zhang D, Shen A, Ke K. The O-GlcNAc Modification of CDK5 Involved in Neuronal Apoptosis Following In Vitro Intracerebral Hemorrhage. Cell Mol Neurobiol 2017; 37:527-536. [PMID: 27316643 PMCID: PMC11482199 DOI: 10.1007/s10571-016-0391-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 06/07/2016] [Indexed: 11/26/2022]
Abstract
Contrary to cell cycle-associated cyclin-dependent kinases, CDK5 is best known for its regulation of signaling processes in regulating mammalian CNS development. Studies of CDK5 have focused on its phosphorylation, although the diversity of CDK5 functions in the brain suggests additional forms of regulation. Here we expanded on the functional roles of CDK5 glycosylation in neurons. We showed that CDK5 was dynamically modified with O-GlcNAc in response to neuronal activity and that glycosylation represses CDK5-dependent apoptosis by impairing its association with p53 pathway. Blocking glycosylation of CDK5 alters cellular function and increases neuronal apoptosis in the cell model of the ICH. Our findings demonstrated a new role for O-glycosylation in neuronal apoptosis and provided a mechanistic understanding of how glycosylation contributes to critical neuronal functions. Moreover, we identified a previously unknown mechanism for the regulation of activity-dependent gene expression, neural development, and apoptosis.
Collapse
Affiliation(s)
- Xiaojin Ning
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, 226001, China
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, China
| | - Tao Tao
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, China
| | - Jianhong Shen
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Yuteng Ji
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, 226001, China
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, China
| | - Lili Xie
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, 226001, China
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, China
| | - Hongmei Wang
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, 226001, China
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, China
| | - Ning Liu
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, 226001, China
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, China
| | - Xide Xu
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Chi Sun
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, China
| | - Dongmei Zhang
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, China
| | - Aiguo Shen
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, China.
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.
| | - Kaifu Ke
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, 226001, China.
| |
Collapse
|
21
|
Liao Y, Feng Y, Shen J, Hornicek FJ, Duan Z. The roles and therapeutic potential of cyclin-dependent kinases (CDKs) in sarcoma. Cancer Metastasis Rev 2017; 35:151-63. [PMID: 26669603 DOI: 10.1007/s10555-015-9601-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Uncontrolled proliferation and cell growth is the hallmark of many different malignant diseases, including sarcomas. Cyclin-dependent kinases (CDKs) are members of the serine/threonine protein kinase family and play crucial roles in tumor cell proliferation and growth by controlling cell cycle, transcription, and RNA splicing. In addition, several CDKs influence multiple targets and phosphorylate transcription factors involved in tumorigenesis. There are many examples linking dysregulated activation and expression of CDKs to tumors, and targeting CDKs in tumor cells has become a promising therapeutic strategy. More recently, the Food and Drug Administration (FDA) has approved the CDK4/6 inhibitor palbociclib for treating metastatic breast cancer. In sarcomas, high levels of CDK mRNA and protein expression have been found in most human sarcoma cells and patient tissues. Many studies have demonstrated consistent results in which inhibition of different CDKs decrease sarcoma cell growth and induce apoptosis. Therefore, CDKs comprise an attractive set of targets for novel anti-sarcoma drug development. In this review, we discuss the roles of different members of CDKs in various sarcomas and provide a pre-clinical overview of promising therapeutic potentials of targeting CDKs with a special emphasis on sarcoma.
Collapse
Affiliation(s)
- Yunfei Liao
- Department of Orthopaedic Surgery, Sarcoma Biology Laboratory, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Jackson 1115, Boston, MA, 02114, USA.,Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jie Fang Avenue, Wuhan, China, 430022
| | - Yong Feng
- Department of Orthopaedic Surgery, Sarcoma Biology Laboratory, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Jackson 1115, Boston, MA, 02114, USA.,Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jie Fang Avenue, Wuhan, China, 430022
| | - Jacson Shen
- Department of Orthopaedic Surgery, Sarcoma Biology Laboratory, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Jackson 1115, Boston, MA, 02114, USA
| | - Francis J Hornicek
- Department of Orthopaedic Surgery, Sarcoma Biology Laboratory, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Jackson 1115, Boston, MA, 02114, USA
| | - Zhenfeng Duan
- Department of Orthopaedic Surgery, Sarcoma Biology Laboratory, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Jackson 1115, Boston, MA, 02114, USA.
| |
Collapse
|
22
|
Ianes C, Xu P, Werz N, Meng Z, Henne-Bruns D, Bischof J, Knippschild U. CK1δ activity is modulated by CDK2/E- and CDK5/p35-mediated phosphorylation. Amino Acids 2016; 48:579-92. [PMID: 26464264 DOI: 10.1007/s00726-015-2114-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 10/05/2015] [Indexed: 10/23/2022]
Abstract
CK1 protein kinases form a family of serine/threonine kinases which are highly conserved through different species and ubiquitously expressed. CK1 family members can phosphorylate numerous substrates thereby regulating different biological processes including membrane trafficking, cell cycle regulation, circadian rhythm, apoptosis, and signal transduction. Deregulation of CK1 activity and/or expression contributes to the development of neurological diseases and cancer. Therefore, CK1 became an interesting target for drug development and it is relevant to further understand the mechanisms of its regulation. In the present study, Cyclin-dependent kinase 2/Cyclin E (CDK2/E) and Cyclin-dependent kinase 5/p35 (CDK5/p35) were identified as cellular kinases able to modulate CK1δ activity through site-specific phosphorylation of its C-terminal domain. Furthermore, pre-incubation of CK1δ with CDK2/E or CDK5/p35 reduces CK1δ activity in vitro, indicating a functional impact of the interaction between CK1δ and CDK/cyclin complexes. Interestingly, inhibition of Cyclin-dependent kinases by Dinaciclib increases CK1δ activity in pancreatic cancer cells. In summary, these results suggest that CK1δ activity can be modulated by the interplay between CK1δ and CDK2/E or CDK5/p35. These findings extend our knowledge about CK1δ regulation and may be of use for future development of CK1-related therapeutic strategies in the treatment of neurological diseases or cancer.
Collapse
Affiliation(s)
- Chiara Ianes
- Department of General and Visceral Surgery, Surgery Centre, Ulm University Hospital, Albert‑Einstein‑Allee 23, 89081 Ulm, Germany
| | | | | | | | | | | | | |
Collapse
|
23
|
Liu D, Cui L, Wang Y, Yang G, He J, Hao R, Fan C, Qu M, Liu Z, Wang M, Chen L, Li H, Guo D. Hepatitis B e antigen and its precursors promote the progress of hepatocellular carcinoma by interacting with NUMB and decreasing p53 activity. Hepatology 2016; 64:390-404. [PMID: 27106262 DOI: 10.1002/hep.28594] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 03/05/2016] [Accepted: 03/24/2016] [Indexed: 01/04/2023]
Abstract
UNLABELLED Hepatitis B viral infection is one of the leading causes of hepatocellular carcinoma (HCC) worldwide. Although several viral factors have been identified that may increase the risk for HCC development, the molecular mechanisms leading to the transformation of normal hepatocytes into cancer cells remain elusive. In this study, we demonstrated that the intracellular hepatitis B e antigen (HBeAg) and its precore precursors, but not their homologous core protein, could associate with NUMB and thereby impair the stability and transcriptional activity of tumor suppressor p53. HBeAg and its precursors could disrupt p53-NUMB and HDM2-NUMB interactions and tricomplex p53-HDM2-NUMB formation, inhibit the acetylation and translocation of p53 from cytosol to the nucleus, promote HDM2-mediated ubiquitination and degradation of p53, and suppress p53-dependent apoptosis. A xenograft tumorigenicity assay showed that expression of HBeAg and its precursors promoted carcinogenesis in a mouse model. Immunohistochemical analysis of the bioptic liver samples of HCC patients revealed that HBeAg positivity was associated with reduced transcriptional activity of p53. Taken together, the results suggest a role of intracellular HBeAg and its precursors in HCC development. CONCLUSION HBeAg and its precursors promote HDM2-mediated degradation and impair transcriptional activity of p53 by interacting with NUMB, consequently contributing to HCC development. (Hepatology 2016;64:390-404).
Collapse
Affiliation(s)
- Dan Liu
- State Key Laboratory of Virology, School of Basic Medical Sciences, Wuhan University, Wuhan, P.R. China
| | - Lei Cui
- Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, P.R. China
| | - Yuan Wang
- State Key Laboratory of Virology, School of Basic Medical Sciences, Wuhan University, Wuhan, P.R. China
| | - Guifang Yang
- Department of Pathology, Zhongnan Hospital, Wuhan University, Wuhan, P.R. China
| | - Jing He
- Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, P.R. China
| | - Ruidong Hao
- Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, P.R. China
| | - Chengpeng Fan
- State Key Laboratory of Virology, School of Basic Medical Sciences, Wuhan University, Wuhan, P.R. China
| | - Mengmeng Qu
- State Key Laboratory of Virology, School of Basic Medical Sciences, Wuhan University, Wuhan, P.R. China
| | - Zhepeng Liu
- State Key Laboratory of Virology, School of Basic Medical Sciences, Wuhan University, Wuhan, P.R. China
| | - Min Wang
- State Key Laboratory of Virology, School of Basic Medical Sciences, Wuhan University, Wuhan, P.R. China
| | - Lang Chen
- State Key Laboratory of Virology, School of Basic Medical Sciences, Wuhan University, Wuhan, P.R. China
| | - Hui Li
- State Key Laboratory of Virology, School of Basic Medical Sciences, Wuhan University, Wuhan, P.R. China
| | - Deyin Guo
- State Key Laboratory of Virology, School of Basic Medical Sciences, Wuhan University, Wuhan, P.R. China
| |
Collapse
|
24
|
Grant NJ, Coates PJ, Woods YL, Bray SE, Morrice NA, Hastie CJ, Lamont DJ, Carey FA, Sutherland C. Phosphorylation of a splice variant of collapsin response mediator protein 2 in the nucleus of tumour cells links cyclin dependent kinase-5 to oncogenesis. BMC Cancer 2015; 15:885. [PMID: 26555036 PMCID: PMC4640224 DOI: 10.1186/s12885-015-1691-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 10/07/2015] [Indexed: 12/17/2022] Open
Abstract
Background Cyclin-dependent protein kinase-5 (CDK5) is an unusual member of the CDK family as it is not cell cycle regulated. However many of its substrates have roles in cell growth and oncogenesis, raising the possibility that CDK5 modulation could have therapeutic benefit. In order to establish whether changes in CDK5 activity are associated with oncogenesis one could quantify phosphorylation of CDK5 targets in disease tissue in comparison to appropriate controls. However the identity of physiological and pathophysiological CDK5 substrates remains the subject of debate, making the choice of CDK5 activity biomarkers difficult. Methods Here we use in vitro and in cell phosphorylation assays to identify novel features of CDK5 target sequence determinants that confer enhanced CDK5 selectivity, providing means to select substrate biomarkers of CDK5 activity with more confidence. We then characterize tools for the best CDK5 substrate we identified to monitor its phosphorylation in human tissue and use these to interrogate human tumour arrays. Results The close proximity of Arg/Lys amino acids and a proline two residues N-terminal to the phosphorylated residue both improve recognition of the substrate by CDK5. In contrast the presence of a proline two residues C-terminal to the target residue dramatically reduces phosphorylation rate. Serine-522 of Collapsin Response Mediator-2 (CRMP2) is a validated CDK5 substrate with many of these structural criteria. We generate and characterise phosphospecific antibodies to Ser522 and show that phosphorylation appears in human tumours (lung, breast, and lymphoma) in stark contrast to surrounding non-neoplastic tissue. In lung cancer the anti-phospho-Ser522 signal is positive in squamous cell carcinoma more frequently than adenocarcinoma. Finally we demonstrate that it is a specific and unusual splice variant of CRMP2 (CRMP2A) that is phosphorylated in tumour cells. Conclusions For the first time this data associates altered CDK5 substrate phosphorylation with oncogenesis in some but not all tumour types, implicating altered CDK5 activity in aspects of pathogenesis. These data identify a novel oncogenic mechanism where CDK5 activation induces CRMP2A phosphorylation in the nuclei of tumour cells. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-1691-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nicola J Grant
- Division of Cardiovascular and Diabetes Medicine, University of Dundee, Ninewells Medical School, DD1 9SY, Dundee, UK.
| | | | - Yvonne L Woods
- Department of Pathology, Ninewells Hospital, NHS Tayside, Dundee, UK.
| | - Susan E Bray
- Division of Cancer, University of Dundee, Dundee, UK.
| | | | - C James Hastie
- Division of Signal Transduction and Therapy, University of Dundee, Dundee, UK.
| | - Douglas J Lamont
- FingerPrints Proteomics Facility, University of Dundee, Dundee, UK.
| | - Francis A Carey
- Department of Pathology, Ninewells Hospital, NHS Tayside, Dundee, UK.
| | - Calum Sutherland
- Division of Cardiovascular and Diabetes Medicine, University of Dundee, Ninewells Medical School, DD1 9SY, Dundee, UK.
| |
Collapse
|
25
|
Wilkaniec A, Czapski GA, Adamczyk A. Cdk5 at crossroads of protein oligomerization in neurodegenerative diseases: facts and hypotheses. J Neurochem 2015; 136:222-33. [PMID: 26376455 DOI: 10.1111/jnc.13365] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 09/02/2015] [Accepted: 09/03/2015] [Indexed: 02/06/2023]
Abstract
Cyclin-dependent kinase 5 (Cdk5) is involved in proper neurodevelopment and brain function and serves as a switch between neuronal survival and death. Overactivation of Cdk5 is associated with many neurodegenerative disorders such as Alzheimer's or Parkinson's diseases. It is believed that in those diseases Cdk5 may be an important link between disease-initiating factors and cell death effectors. A common hallmark of neurodegenerative disorders is incorrect folding of specific proteins, thus leading to their intra- and extracellular accumulation in the nervous system. Abnormal Cdk5 signaling contributes to dysfunction of individual proteins and has a substantial role in either direct or indirect interactions of proteins common to, and critical in, different neurodegenerative diseases. While the roles of Cdk5 in α-synuclein (ASN) - tau or β-amyloid peptide (Aβ) - tau interactions are well documented, its contribution to many other pertinent interactions, such as that of ASN with Aβ, or interactions of the Aβ - ASN - tau triad with prion proteins, did not get beyond plausible hypotheses and remains to be proven. Understanding of the exact position of Cdk5 in the deleterious feed-forward loop critical for development and progression of neurodegenerative diseases may help designing successful therapeutic strategies of several fatal neurodegenerative diseases. Cyclin-dependent kinase 5 (Cdk5) is associated with many neurodegenerative disorders such as Alzheimer's or Parkinson's diseases. It is believed that in those diseases Cdk5 may be an important factor involved in protein misfolding, toxicity and interaction. We suggest that Cdk5 may contribute to the vicious circle of neurotoxic events involved in the pathogenesis of different neurodegenerative diseases.
Collapse
Affiliation(s)
- Anna Wilkaniec
- Department of Cellular Signalling, Mossakowski Medical Research Centre Polish Academy of Sciences, Warsaw, Poland
| | - Grzegorz A Czapski
- Department of Cellular Signalling, Mossakowski Medical Research Centre Polish Academy of Sciences, Warsaw, Poland
| | - Agata Adamczyk
- Department of Cellular Signalling, Mossakowski Medical Research Centre Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
26
|
Zhang S, Lu Z, Mao W, Ahmed AA, Yang H, Zhou J, Jennings N, Rodriguez-Aguayo C, Lopez-Berestein G, Miranda R, Qiao W, Baladandayuthapani V, Li Z, Sood AK, Liu J, Le XF, Bast RC. CDK5 Regulates Paclitaxel Sensitivity in Ovarian Cancer Cells by Modulating AKT Activation, p21Cip1- and p27Kip1-Mediated G1 Cell Cycle Arrest and Apoptosis. PLoS One 2015; 10:e0131833. [PMID: 26146988 PMCID: PMC4492679 DOI: 10.1371/journal.pone.0131833] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 06/06/2015] [Indexed: 01/12/2023] Open
Abstract
Cyclin-dependent kinase 5 (CDK5) is a cytoplasmic serine/ threonine kinase. Knockdown of CDK5 enhances paclitaxel sensitivity in human ovarian cancer cells. This study explores the mechanisms by which CDK5 regulates paclitaxel sensitivity in human ovarian cancers. Multiple ovarian cancer cell lines and xenografts were treated with CDK5 small interfering RNA (siRNA) with or without paclitaxel to examine the effect on cancer cell viability, cell cycle arrest and tumor growth. CDK5 protein was measured by immunohistochemical staining of an ovarian cancer tissue microarray to correlate CDK5 expression with overall patient survival. Knockdown of CDK5 with siRNAs inhibits activation of AKT which significantly correlates with decreased cell growth and enhanced paclitaxel sensitivity in ovarian cancer cell lines. In addition, CDK5 knockdown alone and in combination with paclitaxel induced G1 cell cycle arrest and caspase 3 dependent apoptotic cell death associated with post-translational upregulation and nuclear translocation of TP53 and p27Kip1 as well as TP53-dependent transcriptional induction of p21Cip1 in wild type TP53 cancer cells. Treatment of HEYA8 and A2780 wild type TP53 xenografts in nu/nu mice with CDK5 siRNA and paclitaxel produced significantly greater growth inhibition than either treatment alone. Increased expression of CDK5 in human ovarian cancers correlates inversely with overall survival. CDK5 modulates paclitaxel sensitivity by regulating AKT activation, the cell cycle and caspase-dependent apoptosis. CDK5 inhibition can potentiate paclitaxel activity in human ovarian cancer cells.
Collapse
Affiliation(s)
- Shu Zhang
- Departments of Experimental Therapeutics, University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- Department of General Surgery, the Second Affiliated Hospital, School of Medicine, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Zhen Lu
- Departments of Experimental Therapeutics, University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Weiqun Mao
- Departments of Experimental Therapeutics, University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Ahmed A. Ahmed
- Departments of Experimental Therapeutics, University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Hailing Yang
- Departments of Experimental Therapeutics, University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Jinhua Zhou
- Departments of Experimental Therapeutics, University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Nicholas Jennings
- Departments of Gynecologic Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Cristian Rodriguez-Aguayo
- Departments of Experimental Therapeutics, University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- Center for RNA Interference and Non-Coding RNA, University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Gabriel Lopez-Berestein
- Departments of Experimental Therapeutics, University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- Center for RNA Interference and Non-Coding RNA, University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Roberto Miranda
- Departments of Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas, Untied States of America
| | - Wei Qiao
- Bioinformatics Computer Biology, University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Veera Baladandayuthapani
- Bioinformatics Computer Biology, University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Zongfang Li
- Department of General Surgery, the Second Affiliated Hospital, School of Medicine, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Anil K. Sood
- Departments of Gynecologic Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- Center for RNA Interference and Non-Coding RNA, University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Jinsong Liu
- Departments of Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas, Untied States of America
| | - Xiao-Feng Le
- Departments of Experimental Therapeutics, University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- * E-mail: (RCB); (XFL)
| | - Robert C. Bast
- Departments of Experimental Therapeutics, University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- * E-mail: (RCB); (XFL)
| |
Collapse
|
27
|
Yildiz-Unal A, Korulu S, Karabay A. Neuroprotective strategies against calpain-mediated neurodegeneration. Neuropsychiatr Dis Treat 2015; 11:297-310. [PMID: 25709452 PMCID: PMC4327398 DOI: 10.2147/ndt.s78226] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Calpains are calcium-dependent proteolytic enzymes that have deleterious effects on neurons upon their pathological over-activation. According to the results of numerous studies to date, there is no doubt that abnormal calpain activation triggers activation and progression of apoptotic processes in neurodegeneration, leading to neuronal death. Thus, it is very crucial to unravel all the aspects of calpain-mediated neurodegeneration in order to protect neurons through eliminating or at least minimizing its lethal effects. Protecting neurons against calpain-activated apoptosis basically requires developing effective, reliable, and most importantly, therapeutically applicable approaches to succeed. From this aspect, the most significant studies focusing on preventing calpain-mediated neurodegeneration include blocking the N-methyl-d-aspartate (NMDA)-type glutamate receptor activities, which are closely related to calpain activation; directly inhibiting calpain itself via intrinsic or synthetic calpain inhibitors, or inhibiting its downstream processes; and utilizing the neuroprotectant steroid hormone estrogen and its receptors. In this review, the most remarkable neuroprotective strategies for calpain-mediated neurodegeneration are categorized and summarized with respect to their advantages and disadvantages over one another, in terms of their efficiency and applicability as a therapeutic regimen in the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Aysegul Yildiz-Unal
- Department of Molecular Biology and Genetics, Faculty of Science, Muğla Sıtkı Koçman University, Kötekli, Muğla, Turkey
| | - Sirin Korulu
- Department of Molecular Biology and Genetics, Istanbul Arel University, Istanbul Turkey
| | - Arzu Karabay
- Department of Molecular Biology and Genetics, Faculty of Science and Letters, Istanbul Technical University, Maslak, Istanbul, Turkey
| |
Collapse
|
28
|
Tripathi BK, Qian X, Mertins P, Wang D, Papageorge AG, Carr SA, Lowy DR. CDK5 is a major regulator of the tumor suppressor DLC1. ACTA ACUST UNITED AC 2014; 207:627-42. [PMID: 25452387 PMCID: PMC4259810 DOI: 10.1083/jcb.201405105] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
CDK5 activates the tumor suppressor DLC1 by phosphorylating and diminishing the binding of an autoinhibitory region of DLC1 to its Rho-GAP domain and allows it to localize to focal adhesions. DLC1 is a tumor suppressor protein whose full activity depends on its presence at focal adhesions, its Rho–GTPase activating protein (Rho-GAP) function, and its ability to bind several ligands, including tensin and talin. However, the mechanisms that regulate and coordinate these activities remain poorly understood. Here we identify CDK5, a predominantly cytoplasmic serine/threonine kinase, as an important regulator of DLC1 functions. The CDK5 kinase phosphorylates four serines in DLC1 located N-terminal to the Rho-GAP domain. When not phosphorylated, this N-terminal region functions as an autoinhibitory domain that places DLC1 in a closed, inactive conformation by efficiently binding to the Rho-GAP domain. CDK5 phosphorylation reduces this binding and orchestrates the coordinate activation DLC1, including its localization to focal adhesions, its Rho-GAP activity, and its ability to bind tensin and talin. In cancer, these anti-oncogenic effects of CDK5 can provide selective pressure for the down-regulation of DLC1, which occurs frequently in tumors, and can contribute to the pro-oncogenic activity of CDK5 in lung adenocarcinoma.
Collapse
Affiliation(s)
- Brajendra K Tripathi
- Laboratory of Cellular Oncology, National Cancer Institute, National Institutes of Health, Bethesda 20892, MD
| | - Xiaolan Qian
- Laboratory of Cellular Oncology, National Cancer Institute, National Institutes of Health, Bethesda 20892, MD
| | | | - Dunrui Wang
- Laboratory of Cellular Oncology, National Cancer Institute, National Institutes of Health, Bethesda 20892, MD
| | - Alex G Papageorge
- Laboratory of Cellular Oncology, National Cancer Institute, National Institutes of Health, Bethesda 20892, MD
| | - Steven A Carr
- The Broad Institute of MIT and Harvard, Cambridge 02142, MA
| | - Douglas R Lowy
- Laboratory of Cellular Oncology, National Cancer Institute, National Institutes of Health, Bethesda 20892, MD
| |
Collapse
|
29
|
Ke K, Shen J, Song Y, Cao M, Lu H, Liu C, Shen J, Li A, Huang J, Ni H, Chen X, Liu Y. CDK5 Contributes to Neuronal Apoptosis via Promoting MEF2D Phosphorylation in Rat Model of Intracerebral Hemorrhage. J Mol Neurosci 2014; 56:48-59. [DOI: 10.1007/s12031-014-0466-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 11/10/2014] [Indexed: 12/22/2022]
|
30
|
Czapski GA, Gąssowska M, Wilkaniec A, Cieślik M, Adamczyk A. Extracellular alpha-synuclein induces calpain-dependent overactivation of cyclin-dependent kinase 5 in vitro. FEBS Lett 2013; 587:3135-41. [PMID: 23954626 DOI: 10.1016/j.febslet.2013.07.053] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 07/26/2013] [Accepted: 07/31/2013] [Indexed: 10/26/2022]
Abstract
Extracellular alpha-synuclein (ASN) could be involved in the pathomechanism of Parkinson's disease (PD) via disturbances of calcium homeostasis, activation of nitric oxide synthase and oxidative/nitrosative stress. In this study we analyzed the role of cyclin-dependent kinase 5 (Cdk5) in the molecular mechanism(s) of ASN toxicity. We found that exposure of PC12 cells to ASN increases Cdk5 activity via calpain-dependent p25 formation and by enhancement of Cdk5 phosphorylation at Tyr15. Cdk5 and calpain inhibitors prevented ASN-evoked cell death. Our findings, indicating the participation of Cdk5 in ASN toxicity, provide new insight into how extracellular ASN may trigger dopaminergic cell dysfunction in PD.
Collapse
Affiliation(s)
- Grzegorz A Czapski
- Department of Cellular Signalling, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawinskiego 5, 02-106 Warsaw, Poland.
| | | | | | | | | |
Collapse
|
31
|
Macdonald JI, Dick FA. Posttranslational modifications of the retinoblastoma tumor suppressor protein as determinants of function. Genes Cancer 2013; 3:619-33. [PMID: 23634251 DOI: 10.1177/1947601912473305] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The retinoblastoma tumor suppressor protein (pRB) plays an integral role in G1-S checkpoint control and consequently is a frequent target for inactivation in cancer. The RB protein can function as an adaptor, nucleating components such as E2Fs and chromatin regulating enzymes into the same complex. For this reason, pRB's regulation by posttranslational modifications is thought to be critical. pRB is phosphorylated by a number of different kinases such as cyclin dependent kinases (Cdks), p38 MAP kinase, Chk1/2, Abl, and Aurora b. Although phosphorylation of pRB by Cdks has been extensively studied, activities regulated through phosphorylation by other kinases are just starting to be understood. As well as being phosphorylated, pRB is acetylated, methylated, ubiquitylated, and SUMOylated. Acetylation, methylation, and SUMOylation play roles in pRB mediated gene silencing. Ubiquitinylation of pRB promotes its degradation and may be used to regulate apoptosis. Recent proteomic data have revealed that pRB is posttranslationally modified to a much greater extent than previously thought. This new information suggests that many unknown pathways affect pRB regulation. This review focuses on posttranslational modifications of pRB and how they influence its function. The final part of the review summarizes new phosphorylation sites from accumulated proteomic data and discusses the possibilities that might arise from this data.
Collapse
Affiliation(s)
- James I Macdonald
- Western University, London Regional Cancer Program, Department of Biochemistry, London, ON, Canada
| | | |
Collapse
|
32
|
Hage-Sleiman R, Esmerian MO, Kobeissy H, Dbaibo G. p53 and Ceramide as Collaborators in the Stress Response. Int J Mol Sci 2013; 14:4982-5012. [PMID: 23455468 PMCID: PMC3634419 DOI: 10.3390/ijms14034982] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Revised: 01/22/2013] [Accepted: 02/01/2013] [Indexed: 02/08/2023] Open
Abstract
The sphingolipid ceramide mediates various cellular processes in response to several extracellular stimuli. Some genotoxic stresses are able to induce p53-dependent ceramide accumulation leading to cell death. However, in other cases, in the absence of the tumor suppressor protein p53, apoptosis proceeds partly due to the activity of this "tumor suppressor lipid", ceramide. In the current review, we describe ceramide and its roles in signaling pathways such as cell cycle arrest, hypoxia, hyperoxia, cell death, and cancer. In a specific manner, we are elaborating on the role of ceramide in mitochondrial apoptotic cell death signaling. Furthermore, after highlighting the role and mechanism of action of p53 in apoptosis, we review the association of ceramide and p53 with respect to apoptosis. Strikingly, the hypothesis for a direct interaction between ceramide and p53 is less favored. Recent data suggest that ceramide can act either upstream or downstream of p53 protein through posttranscriptional regulation or through many potential mediators, respectively.
Collapse
Affiliation(s)
- Rouba Hage-Sleiman
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Infectious Diseases, Faculty of Medicine, American University of Beirut, P.O. Box 11-0236 Riad El Solh, 1107 2020 Beirut, Lebanon; E-Mails: (M.O.E.); (G.D.)
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, P.O. Box 11-0236 Riad El Solh, 1107 2020 Beirut, Lebanon; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +961-1-350-000 (ext. 4883)
| | - Maria O. Esmerian
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Infectious Diseases, Faculty of Medicine, American University of Beirut, P.O. Box 11-0236 Riad El Solh, 1107 2020 Beirut, Lebanon; E-Mails: (M.O.E.); (G.D.)
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, P.O. Box 11-0236 Riad El Solh, 1107 2020 Beirut, Lebanon; E-Mail:
| | - Hadile Kobeissy
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, P.O. Box 11-0236 Riad El Solh, 1107 2020 Beirut, Lebanon; E-Mail:
| | - Ghassan Dbaibo
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Infectious Diseases, Faculty of Medicine, American University of Beirut, P.O. Box 11-0236 Riad El Solh, 1107 2020 Beirut, Lebanon; E-Mails: (M.O.E.); (G.D.)
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, P.O. Box 11-0236 Riad El Solh, 1107 2020 Beirut, Lebanon; E-Mail:
| |
Collapse
|
33
|
Abstract
Cyclin-dependent kinase 5 (Cdk5) is a multifaceted serine/threonine kinase protein with important roles in the nervous system. Two related proteins, p35 and p39, activate Cdk5 upon direct binding. Over the past decade, Cdk5 activity has been demonstrated to regulate many events during brain development, including neuronal migration as well as axon and dendrite development. Recent evidence also suggests a pivotal role for Cdk5 in synaptic plasticity, behavior, and cognition. Dysfunction of Cdk5 has been implicated in a number of neurological disorders and neurodegenerative diseases including Alzheimer's disease, amyotrophic lateral sclerosis, Niemann-Pick type C disease, and ischemia. Hyperactivation of Cdk5 due to the conversion of p35 to p25 by the calcium-dependent protease calpain during neurotoxicity also contributes to the pathological state. This review surveys recent literature surrounding Cdk5 in synaptic plasticity and homeostasis, with particular emphasis on Cdk5 kinase activity under neurodegenerative conditions.
Collapse
Affiliation(s)
- Susan C Su
- Howard Hughes Medical Institute, Cambridge, Massachusetts 02139, USA
| | | |
Collapse
|
34
|
Luo P, Lin M, Li L, Yang B, He Q. The proteasome inhibitor bortezomib enhances ATRA-induced differentiation of neuroblastoma cells via the JNK mitogen-activated protein kinase pathway. PLoS One 2011; 6:e27298. [PMID: 22087283 PMCID: PMC3210155 DOI: 10.1371/journal.pone.0027298] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Accepted: 10/13/2011] [Indexed: 11/18/2022] Open
Abstract
Neuroblastoma (NB) is the most common extracranial solid tumor in childhood. Differentiated human NBs are associated with better outcome and lower stage; induction of differentiation is considered to be therapeutically advantageous. All-trans retinoic acid (ATRA) has been shown to induce the differentiation of neuroblastoma (NB) cell lines. The proteasome inhibitor bortezomib inhibits cell growth and angiogenesis in NBs. Here, we investigated the synergistic effect between bortezomib and ATRA in inducing NB cell differentiation in different NB cell lines. Bortezomib combined with ATRA had a significantly enhanced antiproliferative effect. This inhibition was characterized by a synergistic increase in neuronal differentiation. At the same time, the combination therapy showed little neuronal toxicity which was assessed in primary cultures of rat cerebellar granule cells by the MTT assay, PI staining. The combination of bortezomib and ATRA triggered increased differentiation through the activation of proteins, including RARα, RARβ, RARγ, p-JNK and p21, compared with ATRA treatment alone. Using JNK inhibitor SP600125 to block JNK-dependent activity, the combination therapy-induced neuronal differentiation was partially attenuated. In addition, p21 shRNA had no effect on the combination therapy-induced neuronal differentiation. The in vivo antitumor activities were examined in human NB cell xenografts and GFP-labeled human NB cell xenografts. Treatment of human NB cell CHP126-bearing nude mice with ATRA plus bortezomib resulted in more significant tumor growth inhibition than mice treated with either drug alone. These findings provide the rationale for the development of a new therapeutic strategy for NB based on the pharmacological combination of ATRA and bortezomib.
Collapse
Affiliation(s)
- Peihua Luo
- College of Pharmaceutical Sciences, Institute of Pharmacology and Toxicology, Zhejiang University, Hangzhou, China
| | - Meili Lin
- College of Pharmaceutical Sciences, Institute of Pharmacology and Toxicology, Zhejiang University, Hangzhou, China
| | - Lin Li
- College of Pharmaceutical Sciences, Institute of Pharmacology and Toxicology, Zhejiang University, Hangzhou, China
| | - Bo Yang
- College of Pharmaceutical Sciences, Institute of Pharmacology and Toxicology, Zhejiang University, Hangzhou, China
| | - Qiaojun He
- College of Pharmaceutical Sciences, Institute of Pharmacology and Toxicology, Zhejiang University, Hangzhou, China
| |
Collapse
|
35
|
Contreras-Vallejos E, Utreras E, Gonzalez-Billault C. Going out of the brain: non-nervous system physiological and pathological functions of Cdk5. Cell Signal 2011; 24:44-52. [PMID: 21924349 DOI: 10.1016/j.cellsig.2011.08.022] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Accepted: 08/29/2011] [Indexed: 12/23/2022]
Abstract
Cyclin-dependent kinase 5 (Cdk5) is a proline-directed serine/threonine kinase that is mostly active in the nervous system, where it regulates several processes such as neuronal migration, actin and microtubule dynamics, axonal guidance, and synaptic plasticity, among other processes. In addition to these known functions, in the past few years, novel roles for Cdk5 outside of the nervous system have been proposed. These include roles in gene transcription, vesicular transport, apoptosis, cell adhesion, and migration in many cell types and tissues such as pancreatic cells, muscle cells, neutrophils, and others. In this review, we will summarize the recently studied non-neuronal functions of Cdk5, with a thorough analysis of the biological consequences of these novel roles.
Collapse
Affiliation(s)
- Erick Contreras-Vallejos
- Department of Biology and Institute for Cell Dynamics and Biotechnology, Faculty of Sciences, Universidad de Chile, Santiago, Chile.
| | | | | |
Collapse
|
36
|
Kaźmierczak A, Czapski GA, Adamczyk A, Gajkowska B, Strosznajder JB. A novel mechanism of non-Aβ component of Alzheimer's disease amyloid (NAC) neurotoxicity. Interplay between p53 protein and cyclin-dependent kinase 5 (Cdk5). Neurochem Int 2010; 58:206-14. [PMID: 21130128 DOI: 10.1016/j.neuint.2010.11.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Revised: 11/23/2010] [Accepted: 11/25/2010] [Indexed: 01/15/2023]
Abstract
The non-Aβ component of Alzheimer's disease (AD) amyloid (NAC) is produced from the precursor protein NACP/α-synuclein (ASN) by till now unknown mechanism. Previous study showed that like ASN, NAC peptide induced oxidative/nitrosative stress and apoptosis. Our present study focused on the mechanisms of PC12 cells death evoked by NAC peptide, with particular consideration on the role of p53 protein. On the basis of molecular and transmission electron microscopic (TEM) analysis it was found that exogenous NAC peptide (10 μM) caused mitochondria dysfunction, enhanced free radical generation, and induced both apoptotic and autophagic cell death. Morphological and immunocytochemical evidence from TEM showed marked changes in expression and in translocation of proapoptotic protein Bax. We also observed time-dependent enhancement of Tp53 gene expression after NAC treatment. Free radicals scavenger N-tert-butyl-alpha-phenylnitrone (PBN, 1 mM) and p53 inhibitor (α-Pifithrin, 20 μM) significantly protected PC12 cells against NAC peptide-evoked cell death. In addition, exposure to NAC peptide resulted in higher expression of cyclin-dependent kinase 5 (Cdk5), one of the enzymes responsible for p53 phosphorylation and activation. Concomitantly, we observed the increase of expression of Cdk5r1 and Cdk5r2 genes, coding p35 and p39 peptides that are essential regulators of Cdk5 activity. Moreover, the specific Cdk5 inhibitor (BML-259, 10 μM) protected large population of cells against NAC-evoked cell death. Our findings indicate that NAC peptide exerts its toxic effect by activation of p53/Cdk5 and Bax-dependent apoptotic signaling pathway.
Collapse
Affiliation(s)
- Anna Kaźmierczak
- Mossakowski Medical Research Center, Polish Academy of Sciences, Department of Cellular Signaling, Pawińskiego 5, 02-106 Warsaw, Poland.
| | | | | | | | | |
Collapse
|
37
|
Hisanaga SI, Endo R. Regulation and role of cyclin-dependent kinase activity in neuronal survival and death. J Neurochem 2010; 115:1309-21. [PMID: 21044075 DOI: 10.1111/j.1471-4159.2010.07050.x] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cyclin-dependent kinase (Cdk)5 is a proline-directed Ser/Thr protein kinase that functions mainly in neurons and is activated by binding to a regulatory subunit, p35 or p39. Kinase activity is mainly determined by the amount of p35 available, which is controlled by a balance between synthesis and degradation. Kinase activity is also regulated by Cdk5 phosphorylation, but the activity of phosphorylated Cdk5 is in contrast to that of cycling Cdks. Cdk5 is a versatile protein kinase that regulates multiple neuronal activities including neuronal migration and synaptic signaling. Further, Cdk5 plays a role in both survival and death of neurons. Long-term inactivation of Cdk5 triggers cell death, and the survival activity of Cdk5 is apparent when neurons suffer from stress. In contrast, hyper-activation of Cdk5 by p25 promotes cell death, probably by reactivating cell-cycle machinery in the nucleus. The pro-death activity is suppressed by membrane association of Cdk5 via myristoylation of p35. Appropriate activity, localization, and regulation of Cdk5 may be critical for long-term survival of neurons, which is more than 80 years in the case of humans.
Collapse
Affiliation(s)
- Shin-ichi Hisanaga
- Molecular Neuroscience, Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Hachioji, Tokyo, Japan.
| | | |
Collapse
|
38
|
Lu JW, Chang JG, Yeh KT, Chen RM, Tsai JJP, Hu RM. Decreased expression of p39 is associated with a poor prognosis in human hepatocellular carcinoma. Med Oncol 2010; 28 Suppl 1:S239-45. [PMID: 20936377 DOI: 10.1007/s12032-010-9707-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Accepted: 09/25/2010] [Indexed: 01/05/2023]
Abstract
The aims of this study are to investigate the relationship between p39 expression and clinicopathological parameters of hepatocellular carcinoma (HCC) and to evaluate the prognostic value of p39 for HCC patients. Real-time quantitative PCR and immunohistochemistry was used to measure p39 expression in tumor and adjacent nontumor samples. Relationships of p39 expression with clinical parameters and patient survival were analyzed. Real-time quantitative RT-PCR showed that the quantity of p39 mRNA in cancerous tissue was significantly lower than that in nontumor tissue (P < 0.001). Immunohistochemistry data confirmed that p39 protein was reduced in 64% of HCC. p39 expression was not influenced by chronic alcohol exposure or cirrhosis. Reduction in p39 was correlated with the HBV (P = 0.039), HCV (P = 0.011), and histological grade (P < 0.001). HCC patients with lower p39 expression had poorer overall survival rate than that with high expression (HR, 2.868; 95% CI, 1.451-5.670; P = 0.002). Together with other results, these results reveal that p39 expression was reduced in HCC tissue. p39 could be a useful clinical prognostic marker for hepatocellular carcinoma patients.
Collapse
Affiliation(s)
- Jeng-Wei Lu
- Department of Biotechnology, Asia University, Wufeng, Taichung 413, Taiwan.
| | | | | | | | | | | |
Collapse
|
39
|
Thompson T, Danilenko M, Vassilev L, Studzinski GP. Tumor suppressor p53 status does not determine the differentiation-associated G₁ cell cycle arrest induced in leukemia cells by 1,25-dihydroxyvitamin D₃ and antioxidants. Cancer Biol Ther 2010; 10:344-50. [PMID: 20543580 DOI: 10.4161/cbt.10.4.12366] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Vitamin D derivatives can induce differentiation of human acute myeloid leukemia (AML) cells. Here, we investigated if the G₁ cell cycle block associated with monocytic differentiation is modulated by the p53 status of the cells treated with 1,25D, alone or with plant antioxidants carnosic acid (C) or silibinin (S), and a p38 MAPK inhibitor SB202190 (SB), a combination (D-C/S-SB) previously shown to enhance differentiation of AML p53null cells. D-C/S-SB enhanced differentiation of OCI-AML3 (p53wt) and as expected HL60 (p53 null) cells, but not of MOLM-13 (p53wt) cells. Conversely, MOLM-13 (p53wt) cells treated with 1,25D and/or D-C/S-SB, resembled HL60 (p53 null) cells in rapid G₁ block, while OCI-AML3 (p53wt) cells showed a delayed G₁ block when treated in a similar way, indicating that there is no relationship between the p53 status and G₁ block. Western blot analysis revealed that 1,25D and D-C/S-SB increased the inhibitory phosphorylation levels MEK-1 (P-Thr286), but decreased the levels of activated ERK1/2 (Thr202/Tyr204;Thr185/Tyr187), again without any apparent relationship to the p53 status. Interestingly, the increased levels of p21(Waf1/Cip1) were insufficient to promote a G₁ block in this system, as only cell lines with increased levels of p27(Kip1) and p35Nck5a, an activator of Cdk5, showed a rapid G₁ block. Overall, our data show that the p53-p21 axis is unlikely to have a role in differentiation-associated G₁ block in AML cells with wt p53, and that this block is achieved by several, possibly co-operating but redundant pathways, that include inhibition of MEK-1 by p35Nck5a-activated Cdk5.
Collapse
Affiliation(s)
- Thelma Thompson
- Roche Research Center, Hoffmann-La Roche Inc., Nutley, NJ, USA
| | | | | | | |
Collapse
|
40
|
Beagle B, Mi K, Johnson GVW. Phosphorylation of PPP(S/T)P motif of the free LRP6 intracellular domain is not required to activate the Wnt/beta-catenin pathway and attenuate GSK3beta activity. J Cell Biochem 2010; 108:886-95. [PMID: 19711366 DOI: 10.1002/jcb.22318] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The canonical Wnt/beta-catenin signaling pathway plays a critical role in numerous physiological and pathological processes. LRP6 is an essential co-receptor for Wnt/beta-catenin signaling; as transduction of the Wnt signal is strongly dependent upon GSK3beta-mediated phosphorylation of multiple PPP(S/T)P motifs within the membrane-anchored LRP6 intracellular domain. Previously, we showed that the free LRP6 intracellular domain (LRP6-ICD) can activate the Wnt/beta-catenin pathway in a beta-catenin and TCF/LEF-1 dependent manner, as well as interact with and attenuate GSK3beta activity. However, it is unknown if the ability of LRP6-ICD to attenuate GSK3beta activity and modulate activation of the Wnt/beta-catenin pathway requires phosphorylation of the LRP6-ICD PPP(S/T)P motifs, in a manner similar to the membrane-anchored LRP6 intracellular domain. Here we provide evidence that the LRP6-ICD does not have to be phosphorylated at its PPP(S/T)P motif by GSK3beta to stabilize endogenous cytosolic beta-catenin resulting in activation of TCF/LEF-1 and the Wnt/beta-catenin pathway. LRP6-ICD and a mutant in which all 5 PPP(S/T)P motifs were changed to PPP(A)P motifs equivalently interacted with and attenuated GSK3beta activity in vitro, and both constructs inhibited the in situ GSK3beta-mediated phosphorylation of beta-catenin and tau to the same extent. These data indicate that the LRP6-ICD attenuates GSK3beta activity similar to other GSK3beta binding proteins, and is not a result of it being a GSK3beta substrate. Our findings suggest the functional and regulatory mechanisms governing the free LRP6-ICD may be distinct from membrane-anchored LRP6, and that release of the LRP6-ICD may provide a complimentary signaling cascade capable of modulating Wnt-dependent gene expression.
Collapse
Affiliation(s)
- Brandon Beagle
- Department of Anesthesiology, University of Rochester, Rochester, New York 14642, USA
| | | | | |
Collapse
|
41
|
No difference in kinetics of tau or histone phosphorylation by CDK5/p25 versus CDK5/p35 in vitro. Proc Natl Acad Sci U S A 2010; 107:2884-9. [PMID: 20133653 DOI: 10.1073/pnas.0912718107] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
CDK5/p35 is a cyclin-dependent kinase essential for normal neuron function. Proteolysis of the p35 subunit in vivo results in CDK5/p25 that causes neurotoxicity associated with a number of neurodegenerative diseases. Whereas the mechanism by which conversion of p35 to p25 leads to toxicity is unknown, there is common belief that CDK5/p25 is catalytically hyperactive compared to CDK5/p35. Here, we have compared the steady-state kinetic parameters of CDK5/p35 and CDK5/p25 towards both histone H1, the best known substrate for both enzymes, and the microtubule-associated protein, tau, a physiological substrate whose in vivo phosphorylation is relevant to Alzheimer's disease. We show that the kinetics of both enzymes are the same towards either substrate in vitro. Furthermore, both enzymes display virtually identical kinetics towards individual phosphorylation sites in tau monitored by NMR. We conclude that conversion of p35 to p25 does not alter the catalytic efficiency of the CDK5 catalytic subunit by using histone H1 or tau as substrates, and that neurotoxicity associated with CDK5/p25 is unlikely attributable to CDK5 hyperactivation, as measured in vitro.
Collapse
|
42
|
Hama Y, Katsuki H, Izumi Y, Kume T, Akaike A. Excitotoxicity-Associated p53 Expression in Adult Rat Retina Is Mediated by Calpain Activity but Not by Cl− Influx. J Pharmacol Sci 2009; 110:493-6. [DOI: 10.1254/jphs.09105sc] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
43
|
Dinu I, Potter JD, Mueller T, Liu Q, Adewale AJ, Jhangri GS, Einecke G, Famulski KS, Halloran P, Yasui Y. Gene-set analysis and reduction. Brief Bioinform 2008; 10:24-34. [PMID: 18836208 DOI: 10.1093/bib/bbn042] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Gene-set analysis aims to identify differentially expressed gene sets (pathways) by a phenotype in DNA microarray studies. We review here important methodological aspects of gene-set analysis and illustrate them with varying performance of several methods proposed in the literature. We emphasize the importance of distinguishing between 'self-contained' versus 'competitive' methods, following Goeman and Bühlmann. We also discuss reducing a gene set to its subset, consisting of 'core members' that chiefly contribute to the statistical significance of the differential expression of the initial gene set by phenotype. Significance analysis of microarray for gene-set reduction (SAM-GSR) can be used for an analytical reduction of gene sets to their core subsets. We apply SAM-GSR on a microarray dataset for identifying biological gene sets (pathways) whose gene expressions are associated with p53 mutation in cancer cell lines. Codes to implement SAM-GSR in the statistical package R can be downloaded from http://www.ualberta.ca/~yyasui/homepage.html.
Collapse
Affiliation(s)
- Irina Dinu
- PhD, School of Public Health, University of Alberta, 13-106J Clinical Sciences Building, Edmonton, Alberta T6G2G3, Canada.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Schnack C, Hengerer B, Gillardon F. Identification of novel substrates for Cdk5 and new targets for Cdk5 inhibitors using high-density protein microarrays. Proteomics 2008; 8:1980-6. [PMID: 18491313 DOI: 10.1002/pmic.200701063] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Cyclin-dependent kinase (Cdk) 5 is a serine/threonine kinase that plays an important role during CNS development and its dysregulation is causally involved in the process of neuronal degeneration. To date more than 20 Cdk5 substrates have been identified and the number of Cdk5 substrates is still increasing. The different cellular functions of Cdk5 and its substrates are not completely known at present. High-throughput protein microarray technology is a powerful tool to identify a large number of potential kinase substrates in parallel under the same experimental conditions. Using Protoarray protein microarrays we identified protein phosphatase 1, regulatory subunit 14A (PPP1R14A) as a novel substrate of Cdk5/p25. Phosphorylation was confirmed in two secondary assays. Our findings may contribute to the elucidation of the physiological function of Cdk5 in synaptic signalling. Functional Kinome Arrays were validated in a second set of experiments to characterize the selectivity of the Cdk5 inhibitor indolinone A. This lead to the identification of two additional kinases that are targeted by this compound and may provide a deeper understanding of its neuroprotective mode of action. However, several false negative results possibly due to a denatured or inactive conformation of the arrayed proteins, sound a note of caution when using protein array techniques.
Collapse
Affiliation(s)
- Cathrin Schnack
- Boehringer Ingelheim Pharma GmbH & Co. KG, CNS Research, Biberach an der Riss, Germany
| | | | | |
Collapse
|
45
|
Asada A, Yamamoto N, Gohda M, Saito T, Hayashi N, Hisanaga SI. Myristoylation of p39 and p35 is a determinant of cytoplasmic or nuclear localization of active cyclin-dependent kinase 5 complexes. J Neurochem 2008; 106:1325-36. [PMID: 18507738 DOI: 10.1111/j.1471-4159.2008.05500.x] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cdk5 is a member of the cyclin-dependent kinases (Cdks), activated by the neuron-specific activator p39 or p35. The activators also determine the cytoplasmic distribution of active Cdk5, but the mechanism is not yet known. In particular, little is known for p39. p39 and p35 contain localization motifs, such as a second Gly for myristoylation and Lys clusters in the N-terminal p10 region. Using mutant constructs, we investigated the cellular distribution mechanism. We observed that p39 localizes the active Cdk5 complex in the perinuclear region and at the plasma membrane as does p35. We demonstrated the myristoylation of both p39 and p35, and found that it is a major determinant of their membrane association. Plasma membrane targeting depends on the amino acid sequence containing the Lys-cluster in the N-terminal p10 region. In contrast, a non-myristoylated Ala mutant (p39G2A or p35G2A) showed nuclear localization with stronger accumulation of p39G2A than p35G2A. These results indicate that myristoylation regulates the membrane association of p39 as well as p35 and that the Lys cluster controls their trafficking to the plasma membrane. The differential nuclear accumulation of p39 and p35 suggests their segregated functions, p35-Cdk5 in the cytoplasm and p39-Cdk5 in the nucleus.
Collapse
Affiliation(s)
- Akiko Asada
- Department of Biological Sciences, Tokyo Metropolitan University, Hachiohji, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
46
|
Hamdane M, Buée L. The complex p25/Cdk5 kinase in neurofibrillary degeneration and neuronal death: the missing link to cell cycle. Biotechnol J 2007; 2:967-77. [PMID: 17571276 DOI: 10.1002/biot.200700059] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Emergence of the cell cycle hypothesis in neurodegenerative disease comes from the numerous lines of evidence showing a tight link between "cell cycle-like reactivation" and neuronal death. Terminally differentiated neurons remain in G0 phase and display, compared to proliferating cells, an opposite regulation pattern of cell cycle markers in that most of the key activators and inhibitors are respectively down- and up-regulated. It has been clearly established that any experimental attempt to force terminally differentiated neurons to divide ultimately leads to their death. Conversely, cell cycle blockade in experimental models of neuronal death is able to rescue neurons. Hence, cell cycle deregulation is certainly among mechanisms governing neuronal death. However, many questions remain unresolved, especially those related to which molecular mechanisms trigger cell cycle deregulation and how this deregulation leads to cell death. In the present review, we focus on neurodegeneration in Alzheimer's disease and discuss the cell cycle deregulation related to this neurodegenerative pathology. Finally, we emphasize the role of p25/Cdk5 kinase complex in this pathological process through retinoblastoma protein phosphorylation and derepression of E2F-responsive genes and other actors such as cdc2, cyclins, and MCM proteins.
Collapse
|
47
|
Kim D, Nguyen MD, Dobbin MM, Fischer A, Sananbenesi F, Rodgers JT, Delalle I, Baur JA, Sui G, Armour SM, Puigserver P, Sinclair DA, Tsai LH. SIRT1 deacetylase protects against neurodegeneration in models for Alzheimer's disease and amyotrophic lateral sclerosis. EMBO J 2007; 26:3169-79. [PMID: 17581637 PMCID: PMC1914106 DOI: 10.1038/sj.emboj.7601758] [Citation(s) in RCA: 815] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2006] [Accepted: 05/22/2007] [Indexed: 01/10/2023] Open
Abstract
A progressive loss of neurons with age underlies a variety of debilitating neurological disorders, including Alzheimer's disease (AD) and amyotrophic lateral sclerosis (ALS), yet few effective treatments are currently available. The SIR2 gene promotes longevity in a variety of organisms and may underlie the health benefits of caloric restriction, a diet that delays aging and neurodegeneration in mammals. Here, we report that a human homologue of SIR2, SIRT1, is upregulated in mouse models for AD, ALS and in primary neurons challenged with neurotoxic insults. In cell-based models for AD/tauopathies and ALS, SIRT1 and resveratrol, a SIRT1-activating molecule, both promote neuronal survival. In the inducible p25 transgenic mouse, a model of AD and tauopathies, resveratrol reduced neurodegeneration in the hippocampus, prevented learning impairment, and decreased the acetylation of the known SIRT1 substrates PGC-1alpha and p53. Furthermore, injection of SIRT1 lentivirus in the hippocampus of p25 transgenic mice conferred significant protection against neurodegeneration. Thus, SIRT1 constitutes a unique molecular link between aging and human neurodegenerative disorders and provides a promising avenue for therapeutic intervention.
Collapse
Affiliation(s)
- Dohoon Kim
- Howard Hughes Medical Institute, Picower Insitute for Learning and Memory, Riken-MIT Neuroscience Research Center, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Boston, MA, USA
- Division of Medical Sciences, Harvard Medical School, Boston, MA, USA
| | - Minh Dang Nguyen
- Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Matthew M Dobbin
- Howard Hughes Medical Institute, Picower Insitute for Learning and Memory, Riken-MIT Neuroscience Research Center, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Boston, MA, USA
| | - Andre Fischer
- Howard Hughes Medical Institute, Picower Insitute for Learning and Memory, Riken-MIT Neuroscience Research Center, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Boston, MA, USA
| | - Farahnaz Sananbenesi
- Howard Hughes Medical Institute, Picower Insitute for Learning and Memory, Riken-MIT Neuroscience Research Center, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Boston, MA, USA
| | - Joseph T Rodgers
- Dana Farber Cancer Institute and Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Department of Cell Biology, Johns Hopkins University School of Medicine, Boston, MA, USA
| | - Ivana Delalle
- Howard Hughes Medical Institute, Picower Insitute for Learning and Memory, Riken-MIT Neuroscience Research Center, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Boston, MA, USA
| | - Joseph A Baur
- Department of Pathology and Paul F Glenn Laboratories for the Biological Mechanisms of Aging, Harvard Medical School, Boston, MA, USA
| | - Guangchao Sui
- Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Sean M Armour
- Department of Pathology and Paul F Glenn Laboratories for the Biological Mechanisms of Aging, Harvard Medical School, Boston, MA, USA
| | - Pere Puigserver
- Dana Farber Cancer Institute and Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Department of Cell Biology, Johns Hopkins University School of Medicine, Boston, MA, USA
| | - David A Sinclair
- Department of Pathology and Paul F Glenn Laboratories for the Biological Mechanisms of Aging, Harvard Medical School, Boston, MA, USA
| | - Li-Huei Tsai
- Howard Hughes Medical Institute, Picower Insitute for Learning and Memory, Riken-MIT Neuroscience Research Center, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Boston, MA, USA
| |
Collapse
|
48
|
Improving gene set analysis of microarray data by SAM-GS. BMC Bioinformatics 2007; 8:242. [PMID: 17612399 PMCID: PMC1931607 DOI: 10.1186/1471-2105-8-242] [Citation(s) in RCA: 187] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2007] [Accepted: 07/05/2007] [Indexed: 11/21/2022] Open
Abstract
Background Gene-set analysis evaluates the expression of biological pathways, or a priori defined gene sets, rather than that of individual genes, in association with a binary phenotype, and is of great biologic interest in many DNA microarray studies. Gene Set Enrichment Analysis (GSEA) has been applied widely as a tool for gene-set analyses. We describe here some critical problems with GSEA and propose an alternative method by extending the individual-gene analysis method, Significance Analysis of Microarray (SAM), to gene-set analyses (SAM-GS). Results Using a mouse microarray dataset with simulated gene sets, we illustrate that GSEA gives statistical significance to gene sets that have no gene associated with the phenotype (null gene sets), and has very low power to detect gene sets in which half the genes are moderately or strongly associated with the phenotype (truly-associated gene sets). SAM-GS, on the other hand, performs very well. The two methods are also compared in the analyses of three real microarray datasets and relevant pathways, the diverging results of which clearly show advantages of SAM-GS over GSEA, both statistically and biologically. In a microarray study for identifying biological pathways whose gene expressions are associated with p53 mutation in cancer cell lines, we found biologically relevant performance differences between the two methods. Specifically, there are 31 additional pathways identified as significant by SAM-GS over GSEA, that are associated with the presence vs. absence of p53. Of the 31 gene sets, 11 actually involve p53 directly as a member. A further 6 gene sets directly involve the extrinsic and intrinsic apoptosis pathways, 3 involve the cell-cycle machinery, and 3 involve cytokines and/or JAK/STAT signaling. Each of these 12 gene sets, then, is in a direct, well-established relationship with aspects of p53 signaling. Of the remaining 8 gene sets, 6 have plausible, if less well established, links with p53. Conclusion We conclude that GSEA has important limitations as a gene-set analysis approach for microarray experiments for identifying biological pathways associated with a binary phenotype. As an alternative statistically-sound method, we propose SAM-GS. A free Excel Add-In for performing SAM-GS is available for public use.
Collapse
|
49
|
Wang Y, White MG, Akay C, Chodroff RA, Robinson J, Lindl KA, Dichter MA, Qian Y, Mao Z, Kolson DL, Jordan-Sciutto KL. Activation of cyclin-dependent kinase 5 by calpains contributes to human immunodeficiency virus-induced neurotoxicity. J Neurochem 2007; 103:439-55. [PMID: 17897354 DOI: 10.1111/j.1471-4159.2007.04746.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Although the specific mechanism of neuronal damage in human immunodeficiency virus (HIV) -associated dementia is not known, a prominent role for NMDA receptor (NMDAR)-induced excitotoxicity has been demonstrated in neurons exposed to HIV-infected/activated macrophages. We hypothesized NMDAR-mediated activation of the calcium-dependent protease, calpain, would contribute to cell death by induction of cyclin-dependent kinase 5 (CDK5) activity. Using an in vitro model of HIV neurotoxicity, in which primary rat cortical cultures are exposed to supernatants from primary human HIV-infected macrophages, we have observed increased calpain-dependent cleavage of the CDK5 regulatory subunit, p35, to the constitutively active isoform, p25. Formation of p25 is dependent upon NMDAR activation and calpain activity and is coincident with increased CDK5 activity in this model. Further, inhibition of CDK5 by roscovitine provided neuroprotection in our in vitro model. Consistent with our observations in vitro, we have observed a significant increase in calpain activity and p25 levels in midfrontal cortex of patients infected with HIV, particularly those with HIV-associated cognitive impairment. Taken together, our data suggest calpain activation of CDK5, a pathway activated in HIV-infected individuals, can mediate neuronal damage and death in a model of HIV-induced neurotoxicity.
Collapse
Affiliation(s)
- Ying Wang
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Saito T, Konno T, Hosokawa T, Asada A, Ishiguro K, Hisanaga SI. p25/cyclin-dependent kinase 5 promotes the progression of cell death in nucleus of endoplasmic reticulum-stressed neurons. J Neurochem 2007; 102:133-40. [PMID: 17506859 DOI: 10.1111/j.1471-4159.2007.04540.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Dysregulation of cyclin-dependent kinase 5 (Cdk5) by cleavage of its activator p35 to p25 by calpain is involved in the neuronal cell death observed in neurodegenerative disorders, including Alzheimer's disease. However, it is not yet clear how p25/Cdk5 induces cell death, although its cytosolic localization or extended half life are thought to be involved. We show here that endoplasmic reticulum (ER) stress causes the calpain-dependent cleavage of p35 to p25 in primary cultured cortical neurons. Generation of p25 occurred at a cell death execution step in ER-stressed neurons. p25 translocated to the nucleus in ER-stressed neurons, whereas p35/Cdk5 was perinuclear in control neurons. Cdk5 inhibitors or dominant-negative Cdk5 suppressed ER stress-induced neuronal cell death. These findings indicate that p25/Cdk5 is a proapoptotic factor that promotes ER stress-induced neuronal cell death in nuclei.
Collapse
Affiliation(s)
- Taro Saito
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Hachiohji, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|