1
|
Legiawati L, Suseno LS, Sitohang IBS, Yusharyahya SN, Fahira A, Ramadan ET, Paramastri K. Adipose-derived stem cell conditioned medium for hair regeneration therapy in alopecia: a review of literature. Arch Dermatol Res 2024; 316:525. [PMID: 39153118 DOI: 10.1007/s00403-024-03255-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/20/2024] [Accepted: 07/30/2024] [Indexed: 08/19/2024]
Abstract
To date, therapeutic choices for alopecia have shown limited effectiveness and safety, making the discovery of new therapeutic choices challenging. Adipose-derived stem cells conditioned-medium (ADSC-CM) contain various growth factors released by ADSCs that may support hair regrowth. This literature review aims to discover the effect and clinical impact of ADSC-CM in the treatment of alopecia. A comprehensive literature search was performed through four databases (Pubmed, ScienceDirect, Cochrane, and Scopus) in September 2021. A combination of search terms including "adipose-derived stem cells" and "alopecia" was used. Studies published in English that included ADSC-CM interventions on alopecia of all types were selected and summarized. A total of five studies were selected for review, all of which were case series. All studies showed a positive outcome for intervention. Outcomes measured in the studies include hair count or hair density, hair thickness, anagen, and telogen hair count. No adverse effects were reported from all studies. Limitations lie in the differences in intervention method, application, and length of treatment. ADSC-CM hair regeneration therapy is an effective and safe treatment for alopecia that may be combined with other types of therapy to improve outcomes.
Collapse
Affiliation(s)
- Lili Legiawati
- Department of Dermatology and Venereology, Faculty of Medicine, Universitas Indonesia Dr. Cipto Mangunkusumo National General Hospital Jakarta, Diponegoro no. 71 Kenari, Senen, Jakarta, 10430, Indonesia.
| | - Lis Surachmiati Suseno
- Department of Dermatology and Venereology, Faculty of Medicine, Universitas Indonesia Dr. Cipto Mangunkusumo National General Hospital Jakarta, Diponegoro no. 71 Kenari, Senen, Jakarta, 10430, Indonesia
| | - Irma Bernadette S Sitohang
- Department of Dermatology and Venereology, Faculty of Medicine, Universitas Indonesia Dr. Cipto Mangunkusumo National General Hospital Jakarta, Diponegoro no. 71 Kenari, Senen, Jakarta, 10430, Indonesia
| | - Shannaz Nadia Yusharyahya
- Department of Dermatology and Venereology, Faculty of Medicine, Universitas Indonesia Dr. Cipto Mangunkusumo National General Hospital Jakarta, Diponegoro no. 71 Kenari, Senen, Jakarta, 10430, Indonesia
| | - Alessa Fahira
- Department of Dermatology and Venereology, Faculty of Medicine, Universitas Indonesia Dr. Cipto Mangunkusumo National General Hospital Jakarta, Diponegoro no. 71 Kenari, Senen, Jakarta, 10430, Indonesia
| | - Edwin Ti Ramadan
- Department of Dermatology and Venereology, Faculty of Medicine, Universitas Indonesia Dr. Cipto Mangunkusumo National General Hospital Jakarta, Diponegoro no. 71 Kenari, Senen, Jakarta, 10430, Indonesia
| | - Kanya Paramastri
- Department of Dermatology and Venereology, Faculty of Medicine, Universitas Indonesia Dr. Cipto Mangunkusumo National General Hospital Jakarta, Diponegoro no. 71 Kenari, Senen, Jakarta, 10430, Indonesia
| |
Collapse
|
2
|
Kang Y, Yeo M, Derman ID, Ravnic DJ, Singh YP, Alioglu MA, Wu Y, Makkar J, Driskell RR, Ozbolat IT. Intraoperative bioprinting of human adipose-derived stem cells and extra-cellular matrix induces hair follicle-like downgrowths and adipose tissue formation during full-thickness craniomaxillofacial skin reconstruction. Bioact Mater 2024; 33:114-128. [PMID: 38024230 PMCID: PMC10665670 DOI: 10.1016/j.bioactmat.2023.10.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/31/2023] [Accepted: 10/31/2023] [Indexed: 12/01/2023] Open
Abstract
Craniomaxillofacial (CMF) reconstruction is a challenging clinical dilemma. It often necessitates skin replacement in the form of autologous graft or flap surgery, which differ from one another based on hypodermal/dermal content. Unfortunately, both approaches are plagued by scarring, poor cosmesis, inadequate restoration of native anatomy and hair, alopecia, donor site morbidity, and potential for failure. Therefore, new reconstructive approaches are warranted, and tissue engineered skin represents an exciting alternative. In this study, we demonstrated the reconstruction of CMF full-thickness skin defects using intraoperative bioprinting (IOB), which enabled the repair of defects via direct bioprinting of multiple layers of skin on immunodeficient rats in a surgical setting. Using a newly formulated patient-sourced allogenic bioink consisting of both human adipose-derived extracellular matrix (adECM) and stem cells (ADSCs), skin loss was reconstructed by precise deposition of the hypodermal and dermal components under three different sets of animal studies. adECM, even at a very low concentration such as 2 % or less, has shown to be bioprintable via droplet-based bioprinting and exhibited de novo adipogenic capabilities both in vitro and in vivo. Our findings demonstrate that the combinatorial delivery of adECM and ADSCs facilitated the reconstruction of three full-thickness skin defects, accomplishing near-complete wound closure within two weeks. More importantly, both hypodermal adipogenesis and downgrowth of hair follicle-like structures were achieved in this two-week time frame. Our approach illustrates the translational potential of using human-derived materials and IOB technologies for full-thickness skin loss.
Collapse
Affiliation(s)
- Youngnam Kang
- Engineering Science and Mechanics Department, Penn State University, University Park, PA, 16802, USA
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA, 16802, USA
| | - Miji Yeo
- Engineering Science and Mechanics Department, Penn State University, University Park, PA, 16802, USA
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA, 16802, USA
| | - Irem Deniz Derman
- Engineering Science and Mechanics Department, Penn State University, University Park, PA, 16802, USA
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA, 16802, USA
| | - Dino J. Ravnic
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA, 16802, USA
- Department of Surgery, College of Medicine, Penn State University, Hershey, PA, 17033, USA
| | - Yogendra Pratap Singh
- Engineering Science and Mechanics Department, Penn State University, University Park, PA, 16802, USA
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA, 16802, USA
| | - Mecit Altan Alioglu
- Engineering Science and Mechanics Department, Penn State University, University Park, PA, 16802, USA
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA, 16802, USA
| | - Yang Wu
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Jasson Makkar
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, 99164, USA
| | - Ryan R. Driskell
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, 99164, USA
| | - Ibrahim T. Ozbolat
- Engineering Science and Mechanics Department, Penn State University, University Park, PA, 16802, USA
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA, 16802, USA
- Department of Biomedical Engineering, Penn State University, University Park, PA, 16802, USA
- Materials Research Institute, Penn State University, University Park, PA, 16802, USA
- Department of Neurosurgery, Pennsylvania State College of Medicine, Hershey, PA, 17033, USA
- Penn State Cancer Institute, Penn State University, Hershey, PA, 17033, USA
- Department of Medical Oncology, Cukurova University, Adana, 01130, Turkey
| |
Collapse
|
3
|
Zhang L, Wang J, Cai G, Ma L, Zhao Z, Ma Q, Deng X. Imprinted Dlk1-Gtl2 cluster miRNAs are potential epigenetic regulators of lamb fur quality. BMC Genomics 2023; 24:632. [PMID: 37872623 PMCID: PMC10594899 DOI: 10.1186/s12864-023-09741-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 10/13/2023] [Indexed: 10/25/2023] Open
Abstract
BACKGROUND Tan and Hu sheep are well-known local breeds in China, producing lamb fur with unique ornamental and practical values highly appreciated by consumers worldwide. Fur quality is optimal at one month of age and gradually declines with time. Despite active research on its genetic mechanism using transcriptomic and whole genome bisulfite sequencing analysis, the main effective gene locus has not been found, and its regulatory mechanism is still unclear, which limits the breeding and improvement of fur traits. RESULTS Scapular skin samples from newborn (1-month old) and adult (24-month old) Tan sheep were utilized for small ribonucleic acid (RNA) sequencing Principal Component Analysis (PCA) showed that the newborn and adult groups were completely separated. Differential expression analysis of micro-RNAs (miRNAs) identified 32 up-regulated miRNAs and 48 down-regulated miRNAs in the newborn groups. All up-regulated miRNAs were located in the imprinted. Dlk1-Gtl2 locus on chromosome 18, whereas all down-regulated miRNAs were distributed across the sheep chromosomes, without a clear pattern of positional consistency. Further, by systematically analyzing the target genes and signaling pathways of all 32 up-regulated miRNAs, we found that the PI3K-AKT signaling pathway has the potential to be targeted and regulated by most of the miRNAs in the Dlk1-Gtl2 region. In addition, we also re-analyzed miRNA sequencing data from public databases on Hu lambs (full sibling Hu lambs with high- and low-quality fur characteristics). Again, it was found that most of the up-regulated miRNAs in lambs with high-quality fur were also located in the Dlk1-Gtl2 region, whereas this patter was not present for down-regulated miRNAs. CONCLUSION Sequencing of miRNAs in conjunction with public databases was employed to identify miRNAs within the imprinted Dlk1-Gtl2 region on chromosome 18, suggesting their potential roles as epigenetic regulators of fur traits. Small RNAs located at the Dlk1-Gtl2 locus were identified as having the potential to systematically regulate the PI3K-AKT signaling pathway, thereby indicating the relevance of the Dlk1-Gtl2/PI3K-AKT axis in the context of fur traits. Selection of parental specific expressed imprinted genes in the process of conserving and exploiting lamb fur traits should be emphasized.
Collapse
Affiliation(s)
- Letian Zhang
- Beijing Key Laboratory for Animal Genetic Improvement & Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, 100193, China
| | - Jiankui Wang
- Beijing Key Laboratory for Animal Genetic Improvement & Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, 100193, China
| | - Ganxian Cai
- Beijing Key Laboratory for Animal Genetic Improvement & Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, 100193, China
| | - Lina Ma
- Institute of Animal Science, Ningxia Academy of Agriculture and Forestry Sciences, 750002, Yinchuan, China
| | - Zhengwei Zhao
- Institute of Animal Science, Ningxia Academy of Agriculture and Forestry Sciences, 750002, Yinchuan, China
| | - Qing Ma
- Institute of Animal Science, Ningxia Academy of Agriculture and Forestry Sciences, 750002, Yinchuan, China
| | - Xuemei Deng
- Beijing Key Laboratory for Animal Genetic Improvement & Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
4
|
Kang Y, Yeo M, Derman ID, Ravnic DJ, Singh YP, Alioglu MA, Wu Y, Makkar J, Driskell RR, Ozbolat IT. Intraoperative Bioprinting of Human Adipose-derived Stem cells and Extra-cellular Matrix Induces Hair Follicle-Like Downgrowths and Adipose Tissue Formation during Full-thickness Craniomaxillofacial Skin Reconstruction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.03.560695. [PMID: 37873077 PMCID: PMC10592950 DOI: 10.1101/2023.10.03.560695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Craniomaxillofacial (CMF) reconstruction is a challenging clinical dilemma. It often necessitates skin replacement in the form of autologous graft or flap surgery, which differ from one another based on hypodermal/dermal content. Unfortunately, both approaches are plagued by scarring, poor cosmesis, inadequate restoration of native anatomy and hair, alopecia, donor site morbidity, and potential for failure. Therefore, new reconstructive approaches are warranted, and tissue engineered skin represents an exciting alternative. In this study, we demonstrated the reconstruction of CMF full-thickness skin defects using intraoperative bioprinting (IOB), which enabled the repair of defects via direct bioprinting of multiple layers of skin on immunodeficient rats in a surgical setting. Using a newly formulated patient-sourced allogenic bioink consisting of both human adipose-derived extracellular matrix (adECM) and stem cells (ADSCs), skin loss was reconstructed by precise deposition of the hypodermal and dermal components under three different sets of animal studies. adECM, even at a very low concentration such as 2% or less, has shown to be bioprintable via droplet-based bioprinting and exhibited de novo adipogenic capabilities both in vitro and in vivo . Our findings demonstrate that the combinatorial delivery of adECM and ADSCs facilitated the reconstruction of three full-thickness skin defects, accomplishing near-complete wound closure within two weeks. More importantly, both hypodermal adipogenesis and downgrowth of hair follicle-like structures were achieved in this two-week time frame. Our approach illustrates the translational potential of using human-derived materials and IOB technologies for full-thickness skin loss.
Collapse
|
5
|
Zhang Z, Li W, Chang D, Wei Z, Wang E, Yu J, Xu Y, Que Y, Chen Y, Fan C, Ma B, Zhou Y, Huan Z, Yang C, Guo F, Chang J. A combination therapy for androgenic alopecia based on quercetin and zinc/copper dual-doped mesoporous silica nanocomposite microneedle patch. Bioact Mater 2022; 24:81-95. [PMID: 36582348 PMCID: PMC9772573 DOI: 10.1016/j.bioactmat.2022.12.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/23/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022] Open
Abstract
A nanocomposite microneedle (ZCQ/MN) patch containing copper/zinc dual-doped mesoporous silica nanoparticles loaded with quercetin (ZCQ) was developed as a combination therapy for androgenic alopecia (AGA). The degradable microneedle gradually dissolves after penetration into the skin and releases the ZCQ nanoparticles. ZCQ nanoparticles release quercetin (Qu), copper (Cu2+) and zinc ions (Zn2+) subcutaneously to synergistically promote hair follicle regeneration. The mechanism of promoting hair follicle regeneration mainly includes the regulation of the main pathophysiological phenomena of AGA such as inhibition of dihydrotestosterone, inhibition of inflammation, promotion of angiogenesis and activation of hair follicle stem cells by the combination of Cu2+ and Zn2+ ions and Qu. This study demonstrates that the systematic intervention targeting different pathophysiological links of AGA by the combination of organic drug and bioactive metal ions is an effective treatment strategy for hair loss, which provides a theoretical basis for development of biomaterial based anti-hair loss therapy.
Collapse
Affiliation(s)
- Zhaowenbin Zhang
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, PR China,Wenzhou Institute, University of Chinese Academy of Sciences, Zhejiang, 325000, PR China,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Wenbo Li
- Department of Plastic Surgery, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, 200025, PR China
| | - Di Chang
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, PR China,Fudan University, Shanghai, 200433, PR China
| | - Ziqin Wei
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, PR China,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Endian Wang
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, PR China,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Jing Yu
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, PR China,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Yuze Xu
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, PR China,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Yumei Que
- Wenzhou Institute, University of Chinese Academy of Sciences, Zhejiang, 325000, PR China
| | - Yanxin Chen
- Wenzhou Institute, University of Chinese Academy of Sciences, Zhejiang, 325000, PR China
| | - Chen Fan
- Wenzhou Institute, University of Chinese Academy of Sciences, Zhejiang, 325000, PR China
| | - Bing Ma
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, PR China,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Yanling Zhou
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, PR China,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Zhiguang Huan
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, PR China,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Chen Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Zhejiang, 325000, PR China,Corresponding author.
| | - Feng Guo
- Department of Plastic Surgery, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, 200025, PR China,Corresponding author.
| | - Jiang Chang
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, PR China,Wenzhou Institute, University of Chinese Academy of Sciences, Zhejiang, 325000, PR China,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China,Corresponding author. State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, PR China.
| |
Collapse
|
6
|
Salhab O, Khayat L, Alaaeddine N. Stem cell secretome as a mechanism for restoring hair loss due to stress, particularly alopecia areata: narrative review. J Biomed Sci 2022; 29:77. [PMID: 36199062 PMCID: PMC9533579 DOI: 10.1186/s12929-022-00863-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/28/2022] [Indexed: 12/03/2022] Open
Abstract
Background Living organisms are continuously exposed to multiple internal and external stimuli which may influence their emotional, psychological, and physical behaviors. Stress can modify brain structures, reduces functional memory and results in many diseases such as skin disorders like acne, psoriasis, telogen effluvium, and alopecia areata. In this review, we aim to discuss the effect of secretome on treating alopecia, especially alopecia areata. We will shed the light on the mechanism of action of the secretome in the recovery of hair loss and this by reviewing all reported in vitro and in vivo literature. Main body Hair loss has been widely known to be enhanced by stressful events. Alopecia areata is one of the skin disorders which can be highly induced by neurogenic stress especially if the patient has a predisposed genetic background. This condition is an autoimmune disease where stress in this case activates the immune response to attack the body itself leading to hair cycle destruction. The currently available treatments include medicines, laser therapy, phototherapy, and alternative medicine therapies with little or no satisfactory results. Regenerative medicine is a new era in medicine showing promising results in treating many medical conditions including Alopecia. The therapeutic effects of stem cells are due to their paracrine and trophic effects which are due to their secretions (secretome). Conclusion Stem cells should be more used as an alternative to conventional therapies due to their positive outcomes. More clinical trials on humans should be done to maximize the dose needed and type of stem cells that must be used to treat alopecia areata.
Collapse
Affiliation(s)
- Ola Salhab
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | - Luna Khayat
- University of Ottawa, Faculty of Science, Ottawa, ON, Canada
| | - Nada Alaaeddine
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon.
| |
Collapse
|
7
|
Dou J, Zhang Z, Xu X, Zhang X. Exploring the effects of Chinese herbal ingredients on the signaling pathway of alopecia and the screening of effective Chinese herbal compounds. JOURNAL OF ETHNOPHARMACOLOGY 2022; 294:115320. [PMID: 35483562 DOI: 10.1016/j.jep.2022.115320] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE alopecia is a hair disorder that can add a significant medical and psychological burden to patients. Currently, the FDA-approved drugs for the treatment of androgenetic alopecia (AGA) are minoxidil and finasteride and immunosuppressives are therapeutic options for alopecia areata (AA), but the objective adverse effects and high cost of these treatments reduce patient compliance and thus the effectiveness of the drugs. Traditional Chinese medicine (TCM) has good efficacy, a high safety profile and low treatment costs, but its mechanism of action is still not fully understood. The use of signaling pathways to modulate hair loss is a major direction in the study of the pathogenesis and pharmacology of alopecia. AIM OF THE STUDY This review aims to collect the results of experimental studies related to alopecia, to screen previously documented combinations of herbs claimed to be effective based on the herbs and their constituent compounds used in the identified studies, and to uncover other useful information that we hope will better guide the clinical application and scientific research of drug combinations or individual herbs for the treatment of alopecia. MATERIALS AND METHODS We have reviewed experimental studies to determine the methods used and the mechanisms of action of the herbs and constituent compounds. The following keywords were searched in databases, including PubMed, EMBASE, CNKI and CSTJ." Medicinal plants" "Chinese herbal medicine", "hair loss", " alopecia", "androgenetic alopecia" and " alopecia areata ". We also collected combinations of drugs from books approved by various schools for screening. RESULTS Using known combinations of compounds within herbal medicine to match the documented combinations, 34 topical combinations and 74 oral combinations were identified, and among the 108 herbal combinations screened Angelica, Rehmannia glutinosaLigusticum chuanxiong hort, Radix Rehmanniae, etc. The number of occurrences was very high, and the association with vascular drugs was also found to be very close. CONCLUSIONS This review further elucidates the therapeutic mechanisms of the compounds within the herbal components associated with alopecia and screens for other combinations that may be dominated by this component for the treatment of alopecia, uncovering compounds from other drugs that may be key factors in the treatment of alopecia. This improvement will provide a better quality of evidence for the effectiveness of herbs and compounds used to treat alopecia.
Collapse
Affiliation(s)
- Jinjin Dou
- The First Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, 150040, China
| | - Zhiming Zhang
- The First Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, 150040, China
| | - Xianrong Xu
- The First Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, 150040, China
| | - Xiwu Zhang
- Institute of Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, 150040, China.
| |
Collapse
|
8
|
Mysore V, Alexander S, Nepal S, Venkataram A. Regenerative Medicine Treatments for Androgenetic Alopecia. Indian J Plast Surg 2022; 54:514-520. [PMID: 34984094 PMCID: PMC8719950 DOI: 10.1055/s-0041-1739257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 09/05/2021] [Indexed: 11/16/2022] Open
Abstract
Regenerative medicine and the role of stem cells are being studied for applications in nearly every field of medicine. The pluripotent nature of stem cells underlies their vast potential for treatment of androgenic alopecia. Several advances in recent years have heightened interest in this field, chief among them are the evolution of simpler techniques to isolate regenerative elements and stems cells. These techniques are easy, outpatient procedures with immediate injection, often single session with harvest, and minimal manipulation (usually physical). This paper seeks to critically review the existing data and determine the current evidence and their role in practice.
Collapse
Affiliation(s)
- Venkataram Mysore
- The Venkat Center for Skin ENT and Plastic Surgery, Bangalore, India
| | - Sajin Alexander
- Department of Dermatology, Sony Memorial Hospital, Erumely, Kottayam, Kerala, India
| | | | | |
Collapse
|
9
|
Nepal S, Venkataram A, Mysore V. The Role of Adipose Tissue in Hair Regeneration: A Potential Tool for Management? J Cutan Aesthet Surg 2021; 14:295-304. [PMID: 34908771 PMCID: PMC8611710 DOI: 10.4103/jcas.jcas_47_19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Human adipose tissue (AT) is a rich and easily harvestable source of stem cells and various growth factors (GFs). It has been widely used hitherto for facial rejuvenation and volumization. Increasing evidence shows that dermal adipocytes are intricately associated with hair follicles (HFs) and may be necessary to drive follicular stem cell activation. Early published data have shown encouraging preliminary results for the use of adipocytes and their stem cells as a treatment option for hair growth. The aim of this review study is to analyze published literature on the effect of fat on hair growth and to summarize the current evidence.
Collapse
Affiliation(s)
- Suman Nepal
- The Venkat Center for Skin, ENT and Plastic Surgery, Bengaluru, Karnataka, India
| | - Aniketh Venkataram
- The Venkat Center for Skin, ENT and Plastic Surgery, Bengaluru, Karnataka, India
| | - Venkataram Mysore
- The Venkat Center for Skin, ENT and Plastic Surgery, Bengaluru, Karnataka, India
| |
Collapse
|
10
|
Park S, Lee J. Modulation of Hair Growth Promoting Effect by Natural Products. Pharmaceutics 2021; 13:pharmaceutics13122163. [PMID: 34959442 PMCID: PMC8706577 DOI: 10.3390/pharmaceutics13122163] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 02/04/2023] Open
Abstract
A large number of people suffer from alopecia or hair loss worldwide. Drug-based therapies using minoxidil and finasteride for the treatment of alopecia are available, but they have shown various side effects in patients. Thus, the use of new therapeutic approaches using bioactive products to reduce the risk of anti-hair-loss medications has been emphasized. Natural products have been used since ancient times and have been proven safe, with few side effects. Several studies have demonstrated the use of plants and their extracts to promote hair growth. Moreover, commercial products based on these natural ingredients have been developed for the treatment of alopecia. Several clinical, animal, and cell-based studies have been conducted to determine the anti-alopecia effects of plant-derived biochemicals. This review is a collective study of phytochemicals with anti-alopecia effects, focusing mainly on the mechanisms underlying their hair-growth-promoting effects.
Collapse
Affiliation(s)
- Seyeon Park
- Department of Applied Chemistry, Dongduk Women’s University, Seoul 02748, Korea;
| | - Joomin Lee
- Department of Food and Nutrition, Chosun University, Gwangju 61452, Korea
- Correspondence: ; Tel.: +82-62-230-7722
| |
Collapse
|
11
|
Hair-Growth-Promoting Effects of Fermented Red Ginseng Marc and Traditional Polyherb Formula in C57BL/6 Mice. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11031195] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
An abnormal hair-growth cycle induces hair loss, which affects psychological distress and impairs life quality. Red ginseng marc (RGM) is usually discarded as a byproduct after extracting red ginseng, but several studies have shown that the RGM still has bioactive components including ginsenosides. Therefore, the hair-growth effects of fermented RGM (fRGM) and traditional polyherb formula (PH) were examined in C57BL/6 mice. The dorsal hairs of mice were depilated, and they were topically treated with fRGM or PH at 400, 200 and 100 mg/kg or the combination of both middle doses (combi) once a day for two weeks. The hair-covering regions were significantly increased with higher doses of fRGM and PH and in combi groups, compared with the control treated with distilled water. Hair length, thickness and weight also increased in the treatment groups. In particular, the fRGM and PH increased the anagen-phased hair follicles, the follicular diameters and the dermal thickness. Immunostains for Ki-67 showed the anagen-phased cell division in the treatment groups. The beneficial effects were greater in the high doses of fRGM and PH and the combi groups. These suggest hair-growth-promoting effects of fRGM, PH and the combination by enhancing the hair-growth cycle.
Collapse
|
12
|
Dermal Adipose Tissue Secretes HGF to Promote Human Hair Growth and Pigmentation. J Invest Dermatol 2021; 141:1633-1645.e13. [PMID: 33493531 DOI: 10.1016/j.jid.2020.12.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/20/2020] [Accepted: 12/03/2020] [Indexed: 02/08/2023]
Abstract
Hair follicles (HFs) are immersed within dermal white adipose tissue (dWAT), yet human adipocyte‒HF communication remains unexplored. Therefore, we investigated how perifollicular adipocytes affect the physiology of human anagen scalp HFs. Quantitative immunohistomorphometry, X-ray microcomputed tomography, and transmission electron microscopy showed that the number and size of perifollicular adipocytes declined during anagen‒catagen transition, whereas fluorescence-lifetime imaging revealed increased lipid oxidation in adipocytes surrounding the bulge and/or sub-bulge region. Ex vivo, dWAT tendentially promoted hair shaft production, and significantly stimulated hair matrix keratinocyte proliferation and HF pigmentation. Both dWAT pericytes and PREF1/DLK1+ adipocyte progenitors secreted HGF during human HF‒dWAT co-culture, for which the c-Met receptor was expressed in the hair matrix and dermal papilla. These effects were reproduced using recombinant HGF and abrogated by an HGF-neutralizing antibody. Laser-capture microdissection‒based microarray analysis of the hair matrix showed that dWAT-derived HGF upregulated keratin (K) genes (K27, K73, K75, K84, K86) and TCHH. Mechanistically, HGF stimulated Wnt/β-catenin activity in the human hair matrix (increased AXIN2, LEF1) by upregulating WNT6 and WNT10B, and inhibiting SFRP1 in the dermal papilla. Our study demonstrates that dWAT regulates human hair growth and pigmentation through HGF secretion, and thus identifies dWAT and HGF as important novel molecular and cellular targets for therapeutic intervention in human hair growth and pigmentation disorders.
Collapse
|
13
|
The Effect of Conditioned Media From Human Adipocyte-Derived Mesenchymal Stem Cells on Androgenetic Alopecia After Nonablative Fractional Laser Treatment. Dermatol Surg 2021; 46:1698-1704. [PMID: 32769526 DOI: 10.1097/dss.0000000000002518] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND The conditioned media from adipocyte-derived mesenchymal stem cells-conditioned media (ADSC-CM) contains cytokines and growth factors that stimulate hair regeneration. OBJECTIVE We evaluated the efficacy and safety of human ADSC-CM treatment on patients who underwent nonablative fractional laser for the treatment of androgenetic alopecia (AGA). MATERIALS AND METHODS Thirty patients who underwent nonablative fractional laser treatment were topically administered either ADSC-CM or placebo solution. As a primary outcome, phototrichograms were taken to measure changes in hair density at each visit. In addition, global improvement scores (GISs) were compared by clinical digital photographs, which were taken at the initial and final visits, and assessed by 2 independent dermatologists. Finally, the investigator's improvement score was measured by questionnaire response during the final visit. RESULTS Hair density comparisons during the treatment period revealed that the ADSC-CM group had significantly higher final densities compared with the placebo group. The GIS of the ADSC-CM group was also significantly higher than the placebo group. Finally, no adverse effects associated with the application of ADSC-CM were noted during the study. CONCLUSION The application of ADSC-CM after nonablative fractional laser treatment accelerated increases in hair density and volume in AGA patients.
Collapse
|
14
|
Sequential Scalp Assessment in Hair Regeneration Therapy Using an Adipose-Derived Stem Cell-Conditioned Medium. Dermatol Surg 2020; 46:819-825. [PMID: 31490301 DOI: 10.1097/dss.0000000000002128] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND An adipose-derived stem cell-conditioned medium (ADSC-CM) reportedly exerts skin-rejuvenating and hair growth-promoting effects. In the therapeutic application of ADSC-CM for alopecia, changes to the interfollicular scalp remain unclear although some evidence has indicated hair growth-promoting effects. OBJECTIVE To evaluate the effects of ADSC-CM not only on hair follicles, but also on the interfollicular scalp. METHODS Forty patients (21 men, 19 women; age range, 23-74 years) with alopecia were treated by intradermal injection of ADSC-CM every month for 6 months. Eighty fixed sites on patients were investigated by trichograms, physiological examinations, and ultrasonographic examinations at 4 time points (before treatment and 2, 4, and 6 months after the initial treatment). RESULTS Hair density and anagen hair rate increased significantly. As physiological parameters, transepidermal water loss value gradually increased, with significant differences at 4 and 6 months after the initial treatment, but hydration state of the stratum corneum and skin surface lipid level showed no obvious changes. As ultrasonographic parameters, dermal thickness and dermal echogenicity were increased significantly. CONCLUSION Intradermal administration of ADSC-CM on the scalp has strong potential to provide regenerative effects for hair follicles and the interfollicular scalp. An adipose-derived stem cell-conditioned medium offers a promising prospect as an alternative treatment for alopecia.
Collapse
|
15
|
Dell’Acqua G, Richards A, Thornton MJ. The Potential Role of Nutraceuticals as an Adjuvant in Breast Cancer Patients to Prevent Hair Loss Induced by Endocrine Therapy. Nutrients 2020; 12:nu12113537. [PMID: 33217935 PMCID: PMC7698784 DOI: 10.3390/nu12113537] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/10/2020] [Accepted: 11/16/2020] [Indexed: 12/21/2022] Open
Abstract
Nutraceuticals, natural dietary and botanical supplements offering health benefits, provide a basis for complementary and alternative medicine (CAM). Use of CAM by healthy individuals and patients with medical conditions is rapidly increasing. For the majority of breast cancer patients, treatment plans involve 5–10 yrs of endocrine therapy, but hair loss/thinning is a common side effect. Many women consider this significant, severely impacting on quality of life, even leading to non-compliance of therapy. Therefore, nutraceuticals that stimulate/maintain hair growth can be proposed. Although nutraceuticals are often available without prescription and taken at the discretion of patients, physicians can be reluctant to recommend them, even as adjuvants, since potential interactions with endocrine therapy have not been fully elucidated. It is, therefore, important to understand the modus operandi of ingredients to be confident that their use will not interfere/interact with therapy. The aim is to improve clinical/healthcare outcomes by combining specific nutraceuticals with conventional care whilst avoiding detrimental interactions. This review presents the current understanding of nutraceuticals beneficial to hair wellness and outcomes concerning efficacy/safety in breast cancer patients. We will focus on describing endocrine therapy and the role of estrogens in cancer and hair growth before evaluating the effects of natural ingredients on breast cancer and hair growth.
Collapse
Affiliation(s)
| | | | - M. Julie Thornton
- Centre for Skin Sciences, University of Bradford, Bradford BD17 7DF, UK
- Correspondence:
| |
Collapse
|
16
|
Xia J, Minamino S, Kuwabara K, Arai S. Stem cell secretome as a new booster for regenerative medicine. Biosci Trends 2020; 13:299-307. [PMID: 31527327 DOI: 10.5582/bst.2019.01226] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Stem cells are an undifferentiated cell population that has the ability to develop into many different cell types and also has the ability to repair damaged tissues in some cases. For a long time, the stem cell regenerative paradigm has been based on the assumption that progenitor cells play a critical role in tissue repair by means of their plasticity and differentiation potential. However, recent works suggest that the mechanism underlying the benefits of stem cell transplantation might relate to a paracrine modulatory effect rather than the replacement of affected cells at the site of injury. This paracrine modulatory effect derives from secretome which comprises a diverse host of growth factors, cytokines, chemokines, angiogenic factors, and exosomes which are extracellular vesicles that are produced in the endosomal compartment of most eukaryotic cells and are from about 30 to several hundred nanometers in diameter. The role of these factors is being increasingly recognized as key to the regulation of many physiological processes including leading endogenous and progenitor cells to sites of injury as well as mediating apoptosis, proliferation, migration, and angiogenesis. In reality, the immunomodulatory and paracrine role of these factors may mainly account for the therapeutic effects of stem cells and a number of in vitro and in vivo researches have proved limited stem cell engraftment at the site of injury. As a cell-free way for regenerative medicine therapies, stem cell secretome has shown great potential in a variety of clinical applications including prevention of cardiac disfunction, neurodegenerative disease, type 1 diabetes, hair loss, tumors, and joint osteoarthritis.
Collapse
Affiliation(s)
- Jufeng Xia
- Graduate School of Frontier Science, The University of Tokyo.,Department of stem cell and regenerative medicine, Arai Japan Medical Institute
| | - Shuichi Minamino
- Department of stem cell and regenerative medicine, Arai Japan Medical Institute
| | - Kazuma Kuwabara
- Department of stem cell and regenerative medicine, Arai Japan Medical Institute
| | - Shunichi Arai
- Department of stem cell and regenerative medicine, Arai Japan Medical Institute
| |
Collapse
|
17
|
Yoshida Y, Soma T, Kishimoto J. Characterization of human dermal sheath cells reveals CD36-expressing perivascular cells associated with capillary blood vessel formation in hair follicles. Biochem Biophys Res Commun 2019; 516:945-950. [DOI: 10.1016/j.bbrc.2019.06.146] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 06/27/2019] [Indexed: 01/27/2023]
|
18
|
Zhang Y, Chen S, Qu F, Su G, Zhao Y. In vivo and in vitro evaluation of hair growth potential of Cacumen Platycladi, and GC-MS analysis of the active constituents of volatile oil. JOURNAL OF ETHNOPHARMACOLOGY 2019; 238:111835. [PMID: 30917929 DOI: 10.1016/j.jep.2019.111835] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 03/08/2019] [Accepted: 03/22/2019] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cacumen Platycladi (CP) is the leaves of Platycladus orientalis which has been traditionally used to resist alopecia and promote hair growth. However, no study has been reported on the effects of CP on proliferation of dermal papilla cells (DPCs). And there is also no complete and systematic research on hair re-growth efficacies of CP. AIM OF THE STUDY To evaluate the hair-growth activity of their extracts on the proliferation of DPCs and the promotion of hair reproduction in C57BL/6 mice. MATERIALS AND METHODS For the DPCs, different extract fractions of CP were investigated. The hair growth effect of CP volatile oil on C57BL/6 mice was evaluated for 28 days. Meanwhile, the chemical constituents of the volatile oil from Cacumen Platycladi were isolated and identified by GC-MS. RESULTS The study showed that the extracts of CP could promote the proliferation of DPCs, and the activity of volatile oil was the best. CP volatile oil (100 μg/mL) resulted in stronger proliferation of DPCs by 239.8% compared with control (100%) and minoxidil (130.3%) during the 48 h incubation. And no obvious cytotoxic activity was observed when volatile oil was dosed up to 500 μg/mL. At different growth stages, mice treated with 0.2 g/kg CP volatile oil required shorter time than 2% minoxidil. Hair length for 0.2 g/kg CP volatile oil treated group was longer than those of minoxidil and control. Further histological observation indicated that CP volatile oil could prolonged the anagen phase of hair follicles. Moreover, thirty four components, with contents of 81.9% of the total volatile oils, were separaed and identified. CONCLUSION The CP volatile oil may have the potential therapeutic agent for the treatment of alopecia.
Collapse
Affiliation(s)
- Yan Zhang
- Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Shanshan Chen
- Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Fanzhi Qu
- Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Guangyue Su
- Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China; Key Laboratory of Structure-based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Yuqing Zhao
- Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China; Key Laboratory of Structure-based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| |
Collapse
|
19
|
Sasaki GH. Review of Human Hair Follicle Biology: Dynamics of Niches and Stem Cell Regulation for Possible Therapeutic Hair Stimulation for Plastic Surgeons. Aesthetic Plast Surg 2019; 43:253-266. [PMID: 30324295 DOI: 10.1007/s00266-018-1248-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 09/19/2018] [Indexed: 12/13/2022]
Abstract
Plastic surgeons are frequently asked to manage male- and female-pattern hair loss in their practice. This article discusses the epidemiology, pathophysiology, and current management of androgenetic alopecia and emphasizes more recent knowledge of stem cell niches in hair follicles that drive hair cycling, alopecia, and its treatment. The many treatment programs available for hair loss include newer strategies that involve the usage of growth factors, platelet-rich plasma, and fat to stimulate follicle growth. Future research may clarify novel biomolecular mechanisms that target specific cells that promote hair regeneration.Level of Evidence V This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Collapse
|
20
|
Abstract
Androgenetic alopecia (AGA) is characterized by a non-scarring progressive miniaturization of the hair follicle in predisposed men and women with a pattern distribution. Although AGA is a very prevalent condition, approved therapeutic options are limited. This article discusses the current treatment alternatives including their efficacy, safety profile, and quality of evidence. Finasteride and minoxidil for male androgenetic alopecia and minoxidil for female androgenetic alopecia still are the therapeutic options with the highest level evidence. The role of antiandrogens for female patients, the importance of adjuvant therapies, as well as new drugs and procedures are also addressed.
Collapse
Affiliation(s)
- Yanna Kelly
- Department of Dermatology, Universidade de São Paulo, São Paulo, SP, Brazil. .,Department of Dermatology, Hospital do Servidor Publico Municipal de São Paulo, São Paulo, SP, Brazil. .,, 1364, Oscar Freire Street, São Paulo, SP, 05409-010, Brazil.
| | - Aline Blanco
- Department of Dermatology, Universidade Federal do Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Antonella Tosti
- Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
21
|
Qi Y, Li M, Xu L, Chang Z, Shu X, Zhou L. Therapeutic role of human hepatocyte growth factor (HGF) in treating hair loss. PeerJ 2016; 4:e2624. [PMID: 27833804 PMCID: PMC5101615 DOI: 10.7717/peerj.2624] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 09/27/2016] [Indexed: 12/03/2022] Open
Abstract
Hepatocyte growth factor (HGF) is a paracrine hormone that plays an important role in epithelial-mesenchymal transition. HGF secreted by mesenchymal cells affects many properties of epithelial cells, such as proliferation, motility, and morphology. HGF has been reported to promote follicular growth. The purpose of the present study is to investigate the therapeutic role of HGF in hair loss treatment. A recombinant vector containing the human HGF (hHGF) gene (pTARGET-hHGF) was constructed, and the expression of hHGF in vitro was quantitatively and qualitatively evaluated. The effect of hHGF on hair growth was tested in mice, and results demonstrated that pTARGET-hHGF was successfully delivered into fibroblasts in vitro leading to a high expression of hHGF. Local injections of the pTARGET-hHGF recombinant vector into mice resulted in multiple beneficial effects compared to placebo, including faster hair regeneration, improved follicle development, and significantly increased HGF receptor (HGF-R). In conclusion, we have established a nonviral vector of hHGF which could be utilized to manipulate the sheath fibroblasts surrounding hair follicles (HF), thereby stimulating hair regeneration.
Collapse
Affiliation(s)
- Yonghao Qi
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, People's Republic of China
| | - Miao Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, People's Republic of China
| | - Lian Xu
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, People's Republic of China
| | - Zhijing Chang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, People's Republic of China
| | - Xiong Shu
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, People's Republic of China
| | - Lijun Zhou
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, People's Republic of China
| |
Collapse
|
22
|
Iwabuchi T, Takeda S, Yamanishi H, Ideta R, Ehama R, Tsuruda A, Shibata H, Ito T, Komatsu N, Terai K, Oka S. The topical penta-peptide Gly-Pro-Ile-Gly-Ser increases the proportion of thick hair in Japanese men with androgenetic alopecia. J Cosmet Dermatol 2016; 15:176-84. [PMID: 27030543 DOI: 10.1111/jocd.12216] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/19/2016] [Indexed: 11/27/2022]
Abstract
BACKGROUND A penta-peptide, Gly-Pro-Ile-Gly-Ser (GPIGS), promotes proliferation of mouse hair keratinocytes and accelerates hair growth in mice. AIM OF THIS STUDY This study focused on the ability of the peptide to promote human hair growth. METHODS We used a human hair keratinocyte proliferation assay and organ cultures of human hair follicle as in vitro systems. The lotions with and without the penta-peptide were administered to 22 Japanese men with androgenetic alopecia (AGA) for 4 months in a double-blind and randomized clinical study. RESULTS The penta-peptide significantly stimulated the proliferation of human hair keratinocytes at a concentration of 2.3 μm (P < 0.01), and 5.0 μm of this peptide had a marked effect on hair shaft elongation in the organ culture (P < 0.05). The change in the proportion of thick hair (≥60 μm) compared to baseline in patients that received the peptide was significantly higher than in the placebo (P = 0.006). The change in the proportion of vellus hair (<40 μm) was also significantly lower in the peptide group than in the placebo (P = 0.029). The penta-peptide also significantly improved the appearance of baldness (P = 0.020) when blinded reviewers graded photographs of the participants according to a standardized baldness scale. No adverse dermatological effects due to treatment were noted during this clinical study. CONCLUSIONS This penta-peptide promotes proliferation of human hair keratinocytes and hair shaft elongation of human hair follicles, in vitro. This peptide increases thick hair ratio in vivo, and this compound is useful for the improvement of AGA.
Collapse
Affiliation(s)
- Tokuro Iwabuchi
- Shiseido Global Innovation Center, Hayabuchi, Tsuzuki, Yokohama, Japan
| | - Shunsuke Takeda
- Shiseido Global Innovation Center, Hayabuchi, Tsuzuki, Yokohama, Japan
| | - Haruyo Yamanishi
- Shiseido Global Innovation Center, Hayabuchi, Tsuzuki, Yokohama, Japan
| | - Ritsuro Ideta
- Shiseido Global Innovation Center, Hayabuchi, Tsuzuki, Yokohama, Japan
| | - Ritsuko Ehama
- Shiseido Global Innovation Center, Hayabuchi, Tsuzuki, Yokohama, Japan
| | - Akinori Tsuruda
- National Institute of Advanced Industrial Science and Technology, Central 6, Tsukuba, Ibaraki, Japan
| | - Hideaki Shibata
- Frontier Technology Laboratory, Inc., Minato-ku, Tokyo, Japan
| | - Tomoko Ito
- Frontier Technology Laboratory, Inc., Minato-ku, Tokyo, Japan
| | | | - Keiko Terai
- Keiyu Hospital, Hiyoshi, Kohku-ku, Yokohama, Japan
| | - Syuichi Oka
- National Institute of Advanced Industrial Science and Technology, Central 6, Tsukuba, Ibaraki, Japan
| |
Collapse
|
23
|
Hair Growth Promotion Activity and Its Mechanism of Polygonum multiflorum. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:517901. [PMID: 26294926 PMCID: PMC4534627 DOI: 10.1155/2015/517901] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Accepted: 07/14/2015] [Indexed: 11/30/2022]
Abstract
Polygonum multiflorum Radix (PMR) has long history in hair growth promotion and hair coloring in clinical applications. However, several crucial problems in its clinic usage and mechanisms are still unsolved or lack scientific evidences. In this research, C57BL/6J mice were used to investigate hair growth promotion activity and possible mechanism of PMR and Polygonum multiflorum Radix Preparata (PMRP). Hair growth promotion activities were investigated by hair length, hair covered skin ratio, the number of follicles, and hair color. Regulation effects of several cytokines involved in the hair growth procedure were tested, such as fibroblast growth factor (FGF-7), Sonic Hedgehog (SHH), β-catenin, insulin-like growth factor-1 (IGF-1), and hepatocyte growth factor (HGF). Oral PMR groups had higher hair covered skin ratio (100 ± 0.00%) than oral PMRP groups (48%~88%). However, topical usage of PMRP had about 90% hair covered skin ratio. Both oral administration of PMR and topically given PMRP showed hair growth promotion activities. PMR was considered to be more suitable for oral administration, while PMRP showed greater effects in external use. The hair growth promotion effect of oral PMR was most probably mediated by the expression of FGF-7, while topical PMRP promoted hair growth by the stimulation of SHH expression.
Collapse
|
24
|
Kubanov AA, Gallyamova YUA, Selezneva OA. Role of peptide growth factors in the rhythm of change hair. VESTNIK DERMATOLOGII I VENEROLOGII 2015. [DOI: 10.25208/0042-4609-2015-91-3-54-61] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
The article presents current data on the role growth factors play in hair physiology. Based on a review of literature, the authors described the role growth factors play for initiating, suppressing the growth and differentiating hair follicles. According to them, each morphologic development stage of hair follicles is characterized by its own factor expression pattern. Referring to experimental and clinical studies, the authors describe the role some growth factors play for mechanisms promoting the development of androgynous and focal alopecia.
Collapse
|
25
|
Jing J, Wu XJ, Li YL, Cai SQ, Zheng M, Lu ZF. Expression of decorin throughout the murine hair follicle cycle: hair cycle dependence and anagen phase prolongation. Exp Dermatol 2015; 23:486-91. [PMID: 24816226 DOI: 10.1111/exd.12441] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2014] [Indexed: 01/14/2023]
Abstract
Decorin is a prototypical member of the small leucine-rich proteoglycan (SLRP) family, which is involved in numerous biological processes. The role of decorin, as a representative SLRP, in hair follicle morphogenesis has not been elucidated. We present our initial findings on decorin expression patterns during induced murine hair follicle (HF) cycles. It was found that decorin expression is exclusively restricted to the epidermis, outer root sheath and sebaceous glands during the anagen phase, which correlates with the upregulation of decorin mRNA and protein expression in depilated murine dorsal skin. Furthermore, we used a functional approach to investigate the effects of recombinant human decorin (rhDecorin) via cutaneous injection into HFs at various murine hair cycle stages. The local injection of rhDecorin (100 μg/ml) into the hypodermis of depilated C57BL/6 mice at anagen delayed catagen progression. In contrast, rhDecorin injection during the telogen phase caused the premature onset of anagen, as demonstrated by the assessment of the following parameters: (i) hair shaft length, (ii) follicular bulbar diameter, (iii) hair follicle cycling score and (iv) follicular phase percentage. Taken together, our results suggest that decorin may modulate follicular cycling and morphogenesis. In addition, this study also provides insight into the molecular control mechanisms governing hair follicular epithelial-mesenchymal interactions.
Collapse
Affiliation(s)
- Jing Jing
- Department of Dermatology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | | | | | | | | | | |
Collapse
|
26
|
Shin H, Ryu HH, Kwon O, Park BS, Jo SJ. Clinical use of conditioned media of adipose tissue-derived stem cells in female pattern hair loss: a retrospective case series study. Int J Dermatol 2015; 54:730-5. [PMID: 25777970 DOI: 10.1111/ijd.12650] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 10/28/2013] [Accepted: 01/12/2014] [Indexed: 12/22/2022]
Abstract
BACKGROUND Female pattern hair loss (FPHL) is a common disorder but presents severe psychosocial problems in many female patients. Adipose tissue-derived stem cells (ADSCs) and conditioned media of ADSCs (ADSC-CM) are reported to promote hair growth in vitro. However, there are no clinical reports on the treatment of alopecia using ADSC-CM. OBJECTIVES This study evaluates our clinical experience in the use of ADSC-CM for the treatment of FPHL. METHODS A retrospective, observational study of outcomes in 27 patients with FPHL treated with ADSC-CM was performed. To evaluate the efficacy of the treatment, patients' medical records and phototrichographic images were analyzed. RESULTS The application of ADSC-CM showed efficacy in treating FPHL after 12 weeks of therapy. Hair density increased from 105.4 to 122.7 hairs/cm(2) (P < 0.001). Hair thickness increased from 57.5 μm to 64.0 μm (P < 0.001). None of the patients reported severe adverse reactions. CONCLUSIONS The application of ADSC-CM is a potential treatment option for FPHL.
Collapse
Affiliation(s)
- Hyoseung Shin
- Department of Dermatology, Dongguk University Ilsan Hospital, Goyang, South Korea
| | - Hyeong Ho Ryu
- Department of Dermatology, Seoul National University College of Medicine, Seoul, South Korea
| | - Ohsang Kwon
- Department of Dermatology, Seoul National University College of Medicine, Seoul, South Korea
| | | | - Seong Jin Jo
- Department of Dermatology, Dongguk University Ilsan Hospital, Goyang, South Korea
| |
Collapse
|
27
|
Jung MK, Ha S, Huh SY, Park SB, Kim S, Yang Y, Kim D, Hur DY, Jeong H, Bang SI, Park H, Cho D. Hair-growth stimulation by conditioned medium from vitamin D3-activated preadipocytes in C57BL/6 mice. Life Sci 2015; 128:39-46. [PMID: 25748421 DOI: 10.1016/j.lfs.2015.02.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 12/30/2014] [Accepted: 02/11/2015] [Indexed: 12/30/2022]
Abstract
AIMS Recently, immature adipocyte lineage cells have been suggested as a potential hair-growth stimulator. Diverse studies have been attempted to find methods for the preconditioning of immature adipocyte lineage cells. The present study investigates the effect of conditioned medium (CM) from vitamin D3 (Vd3) pre-activated preadipocytes on hair-growth ability. MAIN METHODS To test the effect of CM from Vd3 pre-activated preadipocytes on hair-growth efficiency in mice, we compared the differences in hair regenerated after injecting CM from mouse preadipocytes pre-activated with or without Vd3. Next, to determine the regulating factors, the VEGF level was measured by ELISA and angiogenesis level was evaluated by IHC. Finally, the signaling mechanism was investigated by inhibitor kinase assay and western blotting. KEY FINDINGS The CM from Vd3 pre-activated preadipocyte injection markedly promoted the ability of hair regeneration in mice. The VEGF levels were increased by Vd3 treatment in vitro and the CM from Vd3 pre-activated preadipocytes significantly increased the angiogenesis in vivo, suggesting the involvement of angiognensis in the hair regeneration induced by CM from pre-activated preadipocytes. In signaling study, Vd3-enhanced VEGF production was reduced by an ERK1/2 inhibitor and the level of ERK1/2 phosphorylation was increased by treatment with Vd3. SIGNIFICANCE This has been the first report on CM from Vd3 pre-activated preadipocyte displaying stimulatory effects on hair growth via the enhancement of angiogenesis in a hairless-induced C57BL/6 mice.
Collapse
Affiliation(s)
- Min Kyung Jung
- Department of Life Science, Sookmyung Women's University, Chungpa-Dong 2-Ka, Yongsan-ku, Seoul 140-742, Republic of Korea
| | - Soogyeong Ha
- Department of Life Science, Sookmyung Women's University, Chungpa-Dong 2-Ka, Yongsan-ku, Seoul 140-742, Republic of Korea
| | - Scarlett Yoona Huh
- Department of Biological Sciences, University of Connecticut, CT 06269-3042, USA
| | - Seung Beom Park
- Biotech. Team, Cent'l Res. Inst., Ilyang Pharm., Co., Ltd., 359, Giheung-gu, Yongin-si, Gyeonggi-do, 449-726, Republic of Korea
| | - Sangyoon Kim
- Biotech. Team, Cent'l Res. Inst., Ilyang Pharm., Co., Ltd., 359, Giheung-gu, Yongin-si, Gyeonggi-do, 449-726, Republic of Korea
| | - Yoolhee Yang
- Department of Plastic Surgery, College of Medicine, Sungkyunkwan University, Seoul 110-745, Republic of Korea
| | - Daejin Kim
- Department of Anatomy, Inje University College of Medicine, Pusan 614-735, Republic of Korea
| | - Dae Young Hur
- Department of Anatomy, Inje University College of Medicine, Pusan 614-735, Republic of Korea
| | - Hyuk Jeong
- Department of Chemistry, Sookmyung Women's University, Cheongpa-ro 47-gil 100, Yongsan-Ku, Seoul 140-742, Republic of Korea
| | - Sa Ik Bang
- Department of Plastic Surgery, College of Medicine, Sungkyunkwan University, Seoul 110-745, Republic of Korea.
| | - Hyunjeong Park
- Department of Dermatology, St. Mary's Hospital, The Catholic University, Seoul 137-701, Republic of Korea.
| | - Daeho Cho
- Department of Life Science, Sookmyung Women's University, Chungpa-Dong 2-Ka, Yongsan-ku, Seoul 140-742, Republic of Korea.
| |
Collapse
|
28
|
Won CH, Jeong YM, Kang S, Koo TS, Park SH, Park KY, Sung YK, Sung JH. Hair-growth-promoting effect of conditioned medium of high integrin α6 and low CD 71 (α6bri/CD71dim) positive keratinocyte cells. Int J Mol Sci 2015; 16:4379-91. [PMID: 25706512 PMCID: PMC4394426 DOI: 10.3390/ijms16034379] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 02/06/2015] [Accepted: 02/11/2015] [Indexed: 11/16/2022] Open
Abstract
Keratinocyte stem/progenitor cells (KSCs) reside in the bulge region of the hair follicles and may be involved in hair growth. Hair follicle dermal papilla cells (HFDPCs) and outer root sheath (ORS) cells were treated with conditioned medium (CM) of KSCs. Moreover, the effects of KSC-CM on hair growth were examined ex vivo and in vivo. A human growth factor chip array and RT-PCR were employed to identify enriched proteins in KSC-CM as compared with CM from keratinocytes. KSC-CM significantly increased the proliferation of HFDPCs and ORS cells, and increased the S-phase of the cell cycle in HFDPCs. KSC-CM led to the phosphorylation of ATK and ERK1/2 in both cell types. After subcutaneous injection of KSC-CM in C3H/HeN mice, a significant increase in hair growth and increased proliferation of hair matrix keratinocytes ex vivo was observed. We identified six proteins enriched in KSC-CM (amphiregulin, insulin-like growth factor binding protein-2, insulin-like growth factor binding protein-5, granulocyte macrophage-colony stimulating factor, Platelet-derived growth factor-AA, and vascular endothelial growth factor). A growth-factor cocktail that contains these six recombinant growth factors significantly increased the proliferation of HFDPCs and ORS cells and enhanced the hair growth of mouse models. These results collectively indicate that KSC-CM has the potential to increase hair growth via the proliferative capacity of HFDPCs and ORS cells.
Collapse
Affiliation(s)
- Chong Hyun Won
- Department of Dermatology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 138-736, Korea.
| | - Yun-Mi Jeong
- Department of Applied Bioscience, CHA University, Seoul 135-081, Korea.
| | - Sangjin Kang
- Department of Applied Bioscience, CHA University, Seoul 135-081, Korea.
| | - Tae-Sung Koo
- Graduate School of New Drug Discovery and Development, Chungnam National University, Daejeon 305-764, Korea.
| | - So-Hyun Park
- Coway Cosmetics R&D Center, Seoul 153-792, Korea.
| | - Ki-Young Park
- Asan Institute for Life Sciences, Seoul 138-736, Korea.
| | - Young-Kwan Sung
- Department of Immunology, School of Medicine, Kyungpook National University, Daegu 700-422, Korea.
| | - Jong-Hyuk Sung
- College of Pharmacy, Yonsei University, Incheon 406-840, Korea.
| |
Collapse
|
29
|
Inui S, Itami S. A newly discovered linkage between proteoglycans and hair biology: decorin acts as an anagen inducer. Exp Dermatol 2014; 23:547-8. [DOI: 10.1111/exd.12471] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2014] [Indexed: 12/01/2022]
Affiliation(s)
- Shigeki Inui
- Department of Regenerative Dermatology; Osaka University Graduate School of Medicine; Suita Japan
| | - Satoshi Itami
- Department of Regenerative Dermatology; Osaka University Graduate School of Medicine; Suita Japan
| |
Collapse
|
30
|
Kim JH, Kim WK, Sung YK, Kwack MH, Song SY, Choi JS, Park SG, Yi T, Lee HJ, Kim DD, Seo HM, Song SU, Sung JH. The molecular mechanism underlying the proliferating and preconditioning effect of vitamin C on adipose-derived stem cells. Stem Cells Dev 2014; 23:1364-76. [PMID: 24524758 DOI: 10.1089/scd.2013.0460] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Although adipose-derived stem cells (ASCs) show promise for cell therapy, there is a tremendous need for developing ASC activators. In the present study, we investigated whether or not vitamin C increases the survival, proliferation, and hair-regenerative potential of ASCs. In addition, we tried to find the molecular mechanisms underlying the vitamin C-mediated stimulation of ASCs. Sodium-dependent vitamin C transporter 2 (SVCT2) is expressed in ASCs, and mediates uptake of vitamin C into ASCs. Vitamin C increased the survival and proliferation of ASCs in a dose-dependent manner. Vitamin C increased ERK1/2 phosphorylation, and inhibition of the mitogen-activated protein kinase (MAPK) pathway attenuated the proliferation of ASCs. Microarray and quantitative polymerase chain reaction showed that vitamin C primarily upregulated expression of proliferation-related genes, including Fos, E2F2, Ier2, Mybl1, Cdc45, JunB, FosB, and Cdca5, whereas Fos knock-down using siRNA significantly decreased vitamin C-mediated ASC proliferation. In addition, vitamin C-treated ASCs accelerated the telogen-to-anagen transition in C3H/HeN mice, and conditioned medium from vitamin C-treated ASCs increased the hair length and the Ki67-positive matrix keratinocytes in hair organ culture. Vitamin C increased the mRNA expression of HGF, IGFBP6, VEGF, bFGF, and KGF, which may mediate hair growth promotion. In summary, vitamin C is transported via SVCT2, and increased ASC proliferation is mediated by the MAPK pathway. In addition, vitamin C preconditioning enhanced the hair growth promoting effect of ASCs. Because vitamin C is safe and effective, it could be used to increase the yield and regenerative potential of ASCs.
Collapse
Affiliation(s)
- Ji Hye Kim
- 1 Department of Applied Bioscience, CHA University , Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Yu M, Finner A, Shapiro J, Lo B, Barekatain A, McElwee KJ. Hair follicles and their role in skin health. ACTA ACUST UNITED AC 2014. [DOI: 10.1586/17469872.1.6.855] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
32
|
Lim TC, Leong MF, Lu H, Du C, Gao S, Wan ACA, Ying JY. Follicular dermal papilla structures by organization of epithelial and mesenchymal cells in interfacial polyelectrolyte complex fibers. Biomaterials 2013; 34:7064-72. [PMID: 23796577 DOI: 10.1016/j.biomaterials.2013.05.068] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 05/25/2013] [Indexed: 02/06/2023]
Abstract
The hair follicle is a regenerating organ that produces a new hair shaft during each growth cycle. Development and cycling of the hair follicle is governed by interactions between the epithelial and mesenchymal components. Therefore, development of an engineered 3D hair follicle would be useful for studying these interactions to identify strategies for treatment of hair loss. We have developed a technique suitable for assembly of different cell types in close proximity in fibrous hydrogel scaffolds with resolutions of ∼50 μm. By assembly of dermal papilla (DP) and keratinocytes, structures similar to the native hair bulb arrangement are formed. Gene expression of these constructs showed up-regulation of molecules involved in epithelial-mesenchymal interactions of the hair follicle. Implantation of the follicular structures in SCID mice led to the formation of hair follicle-like structures, thus demonstrating their hair inductive ability. The transparency of the fiber matrix and the small dimensions of the follicular structures allowed the direct quantitation of DP cell proliferation by confocal microscopy, clearly illustrating the promoting or inhibitory effects of hair growth regulating agents. Collectively, our results suggested a promising application of these 3D engineered follicular structures for in vitro screening and testing of drugs for hair growth therapy.
Collapse
Affiliation(s)
- Tze Chiun Lim
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, Singapore 138669, Singapore
| | | | | | | | | | | | | |
Collapse
|
33
|
Choi SJ, Cho AR, Jo SJ, Hwang ST, Kim KH, Kwon OS. Effects of glucocorticoid on human dermal papilla cells in vitro. J Steroid Biochem Mol Biol 2013; 135:24-9. [PMID: 23220379 DOI: 10.1016/j.jsbmb.2012.11.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Revised: 11/14/2012] [Accepted: 11/26/2012] [Indexed: 02/01/2023]
Abstract
Glucocorticoid (GC) is synthesized mostly in the adrenal gland and is secreted in response to stressful conditions. The stress-induced increase in systemic GC may mediate diverse types of cellular damage. However, the specific effects of GC on the dermal papilla cells (DPCs) of hair follicles remain unknown, although stress-related hair loss has increased significantly in recent years. The objective of this study was to determine the effect of a synthetic GC, dexamethasone (Dex), on human DPCs in vitro. We evaluated the effects of Dex on cell proliferation, survival, and the expression of growth factors in DPCs. Dex treatment (1μM) significantly reduced the number of viable cells and the expression of the Ki-67 protein, VEGF and HGF were downregulated following treatment of DPCs with Dex. Taken together, we concluded that Dex inhibits human hair growth by inhibiting both the proliferation of, and growth factors expression by, DPCs.
Collapse
Affiliation(s)
- Soon-Jin Choi
- Department of Dermatology, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | | | | | | | | | | |
Collapse
|
34
|
Fukuoka H, Suga H, Narita K, Watanabe R, Shintani S. The Latest Advance in Hair Regeneration Therapy Using Proteins Secreted by Adipose-Derived Stem Cells. ACTA ACUST UNITED AC 2012. [DOI: 10.5992/ajcs-d-12-00015.1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Introduction: Adipose-derived stem cells (ADSCs) that can be harvested from fat cells are one of the latest breakthroughs in the aesthetic field. In addition, basic studies have reported that ADSC conditioned medium (ADSC-CM) promotes skin and hair regeneration. We validate our novel approach, known as hair regenerative therapy, for hair growth treatment using ADSC-CM. Materials and Methods: ADSCs were cultured and expanded in hypoxic culture conditions, and ADSC-CM was collected. ADSC-CM includes various cytokines and growth factors that influence hair regrowth, to which we added buflomedyl, cysteine, coenzyme Q10, and vitamins. Protein solution from ADSC-CM was applied 4 to 6 times every 3 to 5 weeks by mesotherapy techniques such as nappage and papule injections. Satisfactory results of hair regenerative therapy in 12 women and 13 men were determined with a visual analog scale. Results: All patients experienced increased hair growth from the treatments with ADSC-CM. Four treatment sessions performed within 3 to 4 months provided especially good results. Scores on the visual analog scale increased with treatment frequency. Statistical significance was determined by Friedman's 2-way analysis of variance (P < .01) and Wilcoxon's signed rank test (P < .01). Discussion: ADSCs secrete cytokines, such as keratinocyte growth factor, vascular endotheliatl growth factor, platelet-derived growth factor, hepatocyte growth factor. Those cytokines and growth factor are very important for hair growth. Our new therapy with ADSC-CM does not require specialized facilities, such as a cell-processing center, and can be a valuable treatment.
Collapse
|
35
|
A prototypic mathematical model of the human hair cycle. J Theor Biol 2012; 310:143-59. [DOI: 10.1016/j.jtbi.2012.05.027] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2011] [Revised: 05/21/2012] [Accepted: 05/25/2012] [Indexed: 02/04/2023]
|
36
|
TAKIKAWA MEGUMI, NAKAMURA SHINICHIRO, NAKAMURA SHINGO, ISHIRARA MASAYUKI, KISHIMOTO SATOKO, SASAKI KAORU, YANAGIBAYASHI SATOSHI, AZUMA RYUICHI, YAMAMOTO NAOTO, KIYOSAWA TOMOHARU. Enhanced Effect of Platelet-Rich Plasma Containing a New Carrier on Hair Growth. Dermatol Surg 2011; 37:1721-9. [DOI: 10.1111/j.1524-4725.2011.02123.x] [Citation(s) in RCA: 149] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
37
|
Mahjour SB, Ghaffarpasand F, Wang H. Hair follicle regeneration in skin grafts: current concepts and future perspectives. TISSUE ENGINEERING PART B-REVIEWS 2011; 18:15-23. [PMID: 21883016 DOI: 10.1089/ten.teb.2011.0064] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The repair and management of full-thickness skin defects resulting from burns and chronic wounds remain a significant unmet clinical challenge. For those skin defects exceeding 50%-60% of total body surface area, it is impractical to treat with autologous skin transplants because of the shortage of donor sites. The possibility of using tissue-engineered skin grafts for full-thickness wound repair is a promising approach. The primary goal of tissue-engineered skin grafts is to restore lost barrier function, but regeneration of appendages, such as hair follicles, has to be yet achieved. The successful regeneration of hair follicles in immunodeficient mice suggests that creating human hair follicles in tissue-engineered skin grafts is feasible. However, many limitations still need to be explored, particularly enriching isolated cells with trichogenic capacity, maintaining this ability during processing, and providing the cells with proper environmental cues. Current advances in hair follicle regeneration, in vitro and in vivo, are concisely summarized in this report, and key requirements to bioengineer a hair follicle are proposed, with emphasis on a three-dimensional approach.
Collapse
Affiliation(s)
- Seyed Babak Mahjour
- Department of Chemistry, Chemical Biology and Biomedical Engineering, Stevens Institute of Technology, Hoboken, New Jersey 07030, USA
| | | | | |
Collapse
|
38
|
Al-Nuaimi Y, Baier G, Watson REB, Chuong CM, Paus R. The cycling hair follicle as an ideal systems biology research model. Exp Dermatol 2010; 19:707-13. [PMID: 20590819 PMCID: PMC4383261 DOI: 10.1111/j.1600-0625.2010.01114.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In the postgenomic era, systems biology has rapidly emerged as an exciting field predicted to enhance the molecular understanding of complex biological systems by the use of quantitative experimental and mathematical approaches. Systems biology studies how the components of a biological system (e.g. genes, transcripts, proteins, metabolites) interact to bring about defined biological function or dysfunction. Living systems may be divided into five dimensions of complexity: (i) molecular; (ii) structural; (iii) temporal; (iv) abstraction and emergence; and (v) algorithmic. Understanding the details of these dimensions in living systems is the challenge that systems biology aims to address. Here, we argue that the hair follicle (HF), one of the signature features of mammals, is a perfect and clinically relevant model for systems biology research. The HF represents a stem cell-rich, essentially autonomous mini-organ, whose cyclic transformations follow a hypothetical intrafollicular "hair cycle clock" (HCC). This prototypic neuroectodermal-mesodermal interaction system, at the cross-roads of systems and chronobiology, encompasses various levels of complexity as it is subject to both intrafollicular and extrafollicular inputs (e.g. intracutaneous timing mechanisms with neural and systemic stimuli). Exploring how the cycling HF addresses the five dimensions of living systems, we argue that a systems biology approach to the study of hair growth and cycling, in man and mice, has great translational medicine potential. Namely, the easily accessible human HF invites preclinical and clinical testing of novel hypotheses generated with this approach.
Collapse
Affiliation(s)
- Yusur Al-Nuaimi
- Doctoral Training Centre in Integrative Systems Biology, Manchester Interdisciplinary Biocentre, University of Manchester, Manchester, UK
- Epithelial Sciences, School of Translational Medicine, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
| | - Gerold Baier
- Doctoral Training Centre in Integrative Systems Biology, Manchester Interdisciplinary Biocentre, University of Manchester, Manchester, UK
| | - Rachel E. B. Watson
- Epithelial Sciences, School of Translational Medicine, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
| | - Cheng-Ming Chuong
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Ralf Paus
- Epithelial Sciences, School of Translational Medicine, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
- Department of Dermatology, University of Lübeck, Lübeck, Germany
| |
Collapse
|
39
|
Park BS, Kim WS, Choi JS, Kim HK, Won JH, Ohkubo F, Fukuoka H. Hair growth stimulated by conditioned medium of adipose-derived stem cells is enhanced by hypoxia: evidence of increased growth factor secretion. ACTA ACUST UNITED AC 2010; 31:27-34. [PMID: 20203417 DOI: 10.2220/biomedres.31.27] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Adipose-derived stem cells (ADSCs) and their secretomes mediate diverse skin-regeneration effects, such as wound-healing and antioxidant protection, that are enhanced by hypoxia. We investigated the hair-growth-promoting effect of conditioned medium (CM) of ADSCs to determine if ADSCs and their secretomes regenerate hair and if hypoxia enhances hair regeneration. If so, we wanted to identify the factors responsible for hypoxia-enhanced hair-regeneration. We found that ADSC-CM administrated subcutaneously induced the anagen phase and increased hair regeneration in C(3)H/NeH mice. In addition, ADSC-CM increased the proliferation of human follicle dermal papilla cells (HFDPCs) and human epithelial keratinocytes (HEKs), which are derived from two major cell types present in hair follicles. We investigated the effect of hypoxia on ADSC function using the same animal model in which hypoxia increased hair regrowth. Forty-one growth factors in ADSC-CM from cells cultured under hypoxic or normoxic conditions were analyzed. The secretion of insulin-like growth factor binding protein (IGFBP)-1, IGFBP-2, macrophage colony-stimulating factor (M-CSF), M-CSF receptor, platelet-derived growth factor receptor-beta, and vascular endothelial growth factor was significantly increased by hypoxia, while the secretion of epithelial growth factor production was decreased. It is reasonable to conclude that ADSCs promote hair growth via a paracrine mechanism that is enhanced by hypoxia.
Collapse
|
40
|
Tateishi C, Tsuruta D, Sugawara K, Yoshizato K, Imanishi H, Nishida K, Ishii M, Kobayashi H. Spatial and temporal control of laminin-511 and -332 expressions during catagen. J Dermatol Sci 2010; 58:55-63. [PMID: 20226633 DOI: 10.1016/j.jdermsci.2010.02.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Revised: 01/27/2010] [Accepted: 02/08/2010] [Indexed: 11/24/2022]
Abstract
BACKGROUND We recently reported that the basement membrane (BM) zone components laminin-511 and -332 precisely regulate hair growth spatially and temporally during the anagen stage of the hair cycle. OBJECTIVE In this study, we examined the localization and roles of laminin-511 and -332 during catagen in mice. METHODS Using tissue from C57BL/6 hair depilation model mice, we performed immunohistochemistry, in situ hybridization, western blotting, and quantitative reverse transcriptase polymerase chain reaction (QRT-PCR) studies. RESULTS Although the distribution of laminin-332 around the BM of lower hair follicles changed during catagen, its total expression was stable throughout catagen stages at both the mRNA and protein levels. In sharp contrast, in situ hybridization, western blotting, and QRT-PCR studies of laminin alpha 5 showed that laminin-511 expression was gradually downregulated. Moreover, while the injection of recombinant laminin-332 at anagen stage VI did not affect catagen progression, injection of a laminin-511-rich A549 cell conditioned media protein extract at anagen stage VI delayed progression of catagen. CONCLUSION These results indicated that downregulation of laminin-511 is important for hair regression.
Collapse
Affiliation(s)
- Chiharu Tateishi
- Department of Dermatology, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka 545-8585, Japan
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Optimization of the reconstruction of dermal papilla like tissues employing umbilical cord mesenchymal stem cells. BIOTECHNOL BIOPROC E 2010. [DOI: 10.1007/s12257-009-3050-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
42
|
Yoo BY, Shin YH, Yoon HH, Seo YK, Park JK. Hair follicular cell/organ culture in tissue engineering and regenerative medicine. Biochem Eng J 2010. [DOI: 10.1016/j.bej.2009.09.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
43
|
Yamada H, Ikeda A. [New drug targets and research methods for androgenetic alopecia]. Nihon Yakurigaku Zasshi 2009; 133:73-77. [PMID: 19218745 DOI: 10.1254/fpj.133.73] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
|
44
|
Tsuboi R, Yamazaki M, Matsuda Y, Uchida K, Ueki R, Ogawa H. Antisense oligonucleotide targeting fibroblast growth factor receptor (FGFR)-1 stimulates cellular activity of hair follicles in an in vitro organ culture system. Int J Dermatol 2007; 46:259-63. [PMID: 17343580 DOI: 10.1111/j.1365-4632.2007.03018.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND The hair cycle is regulated by various molecules, among which FGF-5 has been shown to promote the transition from anagen to catagen. The FGFR-1, a trans-membrane receptor of FGF-5 with tyrosine kinase activity, is localized in the follicular papilla of hair follicles. OBJECTIVES In order to apply the antisense oligonucleotides targeting FGFR-1 as a treatment for baldness, we examined the effect of the oligonucleotides on hair follicle growth in a serum-free organ culture system. METHODS Vibrissal hair follicles from C3H/He mice were cultured in the presence of a reagent at 31 degrees C in 95% O(2)-5% CO(2) for 72 h. A 20-mer antisense nucleotide and its randomly arranged counterpart were prepared by predicting the effective target site of FGFR-1 mRNA. Cellular activity in the hair bulb was estimated by measuring the fluorescence intensity (FI) of the medium after incubation with AlamarBlue dye. RESULTS The addition of 30 microM of the phosphorothioate form of antisense oligonucleotide (A1561TS) to the media increased the FI by 30%, whereas the control produced no detectable change. This effect was reproducible dose-dependent with maximal stimulation at 30 microM. Incorporation of the oligonucleotide into the follicular papilla was histologically confirmed by incubation with FITC-labeled phosphorothioate oligonucleotides, and the intact morphological structure of the hair bulb was maintained intact after a 72-h incubation. CONCLUSIONS These results suggest the clinical utility of antisense nucleotide targeting FGFR-1 as a treatment for baldness.
Collapse
Affiliation(s)
- R Tsuboi
- Department of Dermatology, Tokyo Medical University, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
45
|
Kamimura A, Takahashi T, Morohashi M, Takano Y. Procyanidin Oligomers Counteract TGF-β 1- and TGF-β 2-Induced Apoptosis in Hair Epithelial Cells: An Insight into Their Mechanisms. Skin Pharmacol Physiol 2006; 19:259-65. [PMID: 16778458 DOI: 10.1159/000093981] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2005] [Accepted: 11/03/2005] [Indexed: 11/19/2022]
Abstract
Procyanidin oligomers are polyphenol compounds we have identified in apples and barley which have hair growth stimulant effects, and which are able to promote hair epithelial cell growth and induce anagen induction of the hair cycle in the in vivo murine model. For the purpose of examining the hair-growing mechanisms of procyanidin oligomers, we examined their relationship to the TGF-beta signal pathway, known to be a regulator of catagen induction, and the mitogen-activated protein kinase cascade linked to cell proliferation. Addition of TGF-beta(1) or TGF-beta(2) to hair epithelial cell cultures dose-dependently decreased cell growth and induced apoptosis; however, addition of procyanidin B-2 to the culture neutralized the growth-inhibiting effects of both TGF-beta(1) and TGF-beta(2) and protected the cells from apoptosis. The same effects were observed with procyanidin B-3. We confirmed that procyanidin B-2 upregulates the expression of MEK-1/2 in cultured murine hair epithelial cells. We speculate that the hair-growing activity of procyanidin oligomers is at least linked to their growth-promoting effects on hair epithelial cells that follow MEK activation and their protective action on TGF-beta(1)- or TGF-beta(2)-induced apoptosis that is assumed to trigger catagen induction in the hair cycle.
Collapse
Affiliation(s)
- A Kamimura
- Tsukuba Research Laboratories, Kyowa Hakko Kogyo Co., Tsukuba, Ibaraki, Japan.
| | | | | | | |
Collapse
|
46
|
Tomita Y, Akiyama M, Shimizu H. PDGF isoforms induce and maintain anagen phase of murine hair follicles. J Dermatol Sci 2006; 43:105-15. [PMID: 16725313 DOI: 10.1016/j.jdermsci.2006.03.012] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2006] [Revised: 03/22/2006] [Accepted: 03/30/2006] [Indexed: 11/27/2022]
Abstract
BACKGROUND It is known that platelet-derived growth factor (PDGF) receptors are expressed in hair follicle (HF) epithelium. OBJECTIVES The aim of the present study was to clarify the effects of PDGF-AA and -BB on the cyclic growth of HFs. METHODS PDGF-AA or -BB was injected into the dorsal skin of C3H mice during the second telogen phase once daily for five consecutive days, or PDGF-AA or -BB dissolved in hyaluronic acid was injected only once. In order to confirm the effects of different PDGF isoforms, anti-PDGF-AA antibody or anti-PDGF-BB antibody was injected just after each injection of PDGF-AA or -BB. In addition, anti-PDGF antibodies were injected into the skin of C3H mice during the second anagen phase once daily for 5 days. We studied expression of signaling molecules in the skin where anagen phase had been induced by PDGF injection by real-time RT-PCR. RESULTS Both PDGF-AA and -BB injection experiments immediately induced the anagen phase of the hair growth cycle at the injection sites. The induction of anagen was interfered by anti-PDGF antibody treatment. Real-time RT-PCR using extracted RNA from the PDGF injected sites of skin samples showed upregulated expression of HF differentiation-related key signaling molecules, Sonic hedgehog (Shh), Lef-1 and Wnt5a. CONCLUSIONS These results indicate that both PDGF-AA and -BB are involved in the induction and maintenance of the anagen phase in the mouse hair cycle. Local application of PDGF-AA and -BB might therefore prove to be an effective treatment option for alopecia associated with early catagen induction and elongated telogen phase.
Collapse
Affiliation(s)
- Y Tomita
- Department of Dermatology, Hokkaido University Graduate School of Medicine, N15 W7 Sapporo 060-8638, Japan
| | | | | |
Collapse
|
47
|
Okada M, Tashiro-Yamaji J, Takahashi T, Nomi H, Yamamoto Y, Yamaguchi S, Ueda K, Kubota T, Yoshida R. Regulation of Hair Regrowth in Alopecic Site of IFN-γ−/−Mice by Macrophages Infiltrating into Allograft in IFN-γ+/+Mice. J Interferon Cytokine Res 2005; 25:564-74. [PMID: 16181057 DOI: 10.1089/jir.2005.25.564] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We previously demonstrated that around 6 weeks of age, most of the interferon-gamma (IFN-gamma)-/- C57BL/6 mice began to lose morphogenesis-derived hairs in their dorsal and occipital areas and that hair regrowth in the alopecic site was induced by intraperitoneal (i.p.) injection of IFN-gamma and allogeneic Meth A cells. Here, we explored the IFN-gamma mRNA expression in the cells infiltrating into allograft in IFN-gamma(+)/(+) mice by RT-PCR and adoptively transferred specific antigen-minus infiltrates into IFN-gamma-/- mice to assess the hair regrowth inducibility. IFN- gamma mRNA was expressed in the infiltrates on days 3-8 after allografting, with a peak on day 3 or 4, and CD4(+) and F4/80(+) cells were the major producers of IFN-gamma. All infiltrates on day 3 induced hair regrowth, whereas those on days 0-2 or 4-8 were ineffective or partially effective, respectively. The removal of F4/80(+) macrophages from all infiltrates failed to induce hair regrowth, whereas the removal of Ly-6C(+) macrophages rather accelerated the hair regrowth. These results showed that F4/80(+), Ly-6C(+), and CD4(+) and F4/80(+) cells were stimulatory, inhibitory, and IFN-gamma-producing cells, respectively, in the regulation of hair regrowth.
Collapse
Affiliation(s)
- Masashi Okada
- Department of Physiology, Osaka Medical College, Takatsuki, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Hirai Y, Takebe K, Nakajima K. Structural optimization of pep7, a small peptide extracted from epimorphin, for effective induction of hair follicle anagen. Exp Dermatol 2005; 14:692-9. [PMID: 16098129 DOI: 10.1111/j.0906-6705.2005.00346.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Epimorphin is representative of a unique class of stromal membrane-anchored proteins that plays distinct functions depending on its membrane topology. When exposed extracellularly, this molecule acts as a morphoregulator for various tissues including hair follicle epithelia. Previous study identified its functional domain (the pep7 domain: SIEQSCDQDE) for hair follicular morphogenesis followed by the successful generation of a chemically modified active peptide. Here, we report optimization of this peptide by the introduction of sequential mutations and subsequent structural determination. We found that three residues from the C-terminus are dispensable, and alternation of the seventh amino acid to an Alanine residue enhanced activity. To favour the biologically active conformation, epsilon-Acp (NH(CH(2))(5)CO) linked to a Cysteine residue was connected at the N-terminus followed by the introduction of an intramolecular disulphide bridge, the modification process of which could be included in the peptide synthesis. The obtained modified peptide, termed 'EPM (epimorphin-derived) peptide', has a Mw of 950 Da and exerts an inductive effect on hair follicle regeneration at a concentration of approximately 0.00001% or even lower. The action of this EPM peptide was more apparent in mice treated with 1% minoxidil, suggesting its potential clinical benefit as a new type of hair-regenerating agent.
Collapse
Affiliation(s)
- Yohei Hirai
- Department of Morphoregulation, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | | | | |
Collapse
|
49
|
McElwee KJ, Huth A, Kissling S, Hoffmann R. Macrophage-Stimulating Protein Promotes Hair Growth Ex Vivo and Induces Anagen from Telogen Stage Hair Follicles In Vivo. J Invest Dermatol 2004; 123:34-40. [PMID: 15191539 DOI: 10.1111/j.0022-202x.2004.22712.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Hepatocyte growth factor (HGF) is a promoter of hair follicle growth. We examined another HGF family member, macrophage-stimulating protein (MSP), for its hair follicle-modulating properties. Western blotting revealed presence of mature MSP in cultured human dermal papilla (DP) cells and bulbar dermal sheath (DS) cells, but not non-bulbar DS cells. Immunohistology demonstrated expression of MSP receptor RON in the outer and inner root sheaths, hair matrix cells, DP, and bulbar DS whereas non-follicular epithelium and some cells of the sweat glands exhibited low-level receptor expression. Human hair follicles exposed in vitro for 8 d to 0.1, 1, 10, and 100 ng per mL MSP all yielded a mean net increase in hair follicle length in excess of the mean baseline growth observed in controls. MSP was incubated with agarose beads and injected subcutaneously into mice all 70 d old when a uniform telogen state in dorsal skin was apparent. All eight mice receiving 1 microg MSP, and four of eight receiving 100 ng MSP showed induction of anagen hair growth at the site of bead implantation by 16 d whereas eight mice implanted with saline incubated beads had no hair growth. The data identify MSP as a modulator of hair growth.
Collapse
Affiliation(s)
- Kevin J McElwee
- Department of Dermatology, Philipp University, Marburg, Germany.
| | | | | | | |
Collapse
|
50
|
Takebe K, Oka Y, Radisky D, Tsuda H, Tochigui K, Koshida S, Kogo K, Hirai Y. Epimorphin acts to induce hair follicle anagen in C57BL/6 mice. FASEB J 2003; 17:2037-47. [PMID: 14597673 DOI: 10.1096/fj.03-0386com] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Epimorphin is a mesenchymal morphogen that has been shown to mediate epithelial-mesenchymal signaling interactions in various organs. We now show that epimorphin functions in hair follicle morphogenesis; using a novel ex vivo organ culture assay, we define a mechanism for epimorphin signaling that may provide insight into general developmental processes. We found that epimorphin was produced by follicular mesenchymal cells and bound selectively to follicular epithelial cells, and that treatment with recombinant epimorphin could stimulate procession of hair follicles from telogen (resting stage) to anagen (growing stage). Based on analyses of epimorphin proteolytic digests that suggested a smaller peptide might be able to substitute for the full-length epimorphin molecule, we determined that pep7, a 10-amino acid peptide, was capable of inducing telogen-to-anagen transition both in the culture assay and in the mouse. That pep7 showed maximal activity only when modified with specific sulfhydryl-reactive reagents suggested that a particular structural conformation of the peptide was essential for activity; molecular dynamics studies were pursued to investigate the active peptide structure. These findings define a previously unknown morphogenic process in the hair follicle that may have applications to many other organs.
Collapse
Affiliation(s)
- Kyoko Takebe
- EPM project groups, Osaka R and D Laboratories, Sumitomo Electric Industries LTD. 1, Taya-cho Sakae-ku, Yokohama 244-8588, Japan
| | | | | | | | | | | | | | | |
Collapse
|