1
|
Therapeutic delivery of nucleic acids for skin wound healing. Ther Deliv 2022; 13:339-358. [PMID: 35975470 DOI: 10.4155/tde-2022-0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Though wound care has advanced, treating chronic wounds remains a challenge and there are many clinical issues that must be addressed. Gene therapy is a recent approach to treating chronic wounds that remains in its developmental stage. The limited reports available describe the therapeutic applications of various forms of nucleic acid delivery for treating chronic wounds, including DNA, mRNA, siRNA, miRNA and so on. Though these bioactive molecules represent great therapeutic potential, sustaining their bioactivity in the wound bed is a challenge. To overcome this hurdle, delivery systems are also being widely investigated. In this review, nucleic acid-based therapy and its delivery for treating chronic wounds is discussed in detail.
Collapse
|
2
|
Ahmadi-Ashtiani HR, Bishe P, Baldisserotto A, Buso P, Manfredini S, Vertuani S. Stem Cells as a Target for the Delivery of Active Molecules to Skin by Topical Administration. Int J Mol Sci 2020; 21:ijms21062251. [PMID: 32213974 PMCID: PMC7139485 DOI: 10.3390/ijms21062251] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/22/2020] [Accepted: 03/23/2020] [Indexed: 12/14/2022] Open
Abstract
Cutaneous stem cells, gained great attention in the field of regenerative medicine as a potential therapeutic target for the treatment of skin and hair disorders and various types of skin cancers. Cutaneous stem cells play a key role in several processes like the renovation of skin structures in the condition of homeostasis and after injuries, the hair follicle growth and the reconstruction and production of melanocytes. Thus, gaining effective access to skin stem cells for therapeutic interventions that often involve active molecules with non-favorable characteristics for skin absorption is a valuable achievement. The topical route with high patient compliance and several other benefits is gaining increasing importance in basic and applied research. However, the major obstacle for topical drug delivery is the effective barrier provided by skin against penetration of the vast majority of exogenous molecules. The research in this field is focusing more and more on new strategies to circumvent and pass this barrier effectively. In this article the existing approaches are discussed considering physical and chemical methods along with utilization of novel drug delivery systems to enhance penetration of drugs to the skin. In particular, attention has been paid to studies finalized to the delivery of molecules to cutaneous stem cells with the aim of transferring signals, modulating their metabolic program, inducing physiological modifications and stem cell gene therapy.
Collapse
Affiliation(s)
- Hamid-Reza Ahmadi-Ashtiani
- Department of Basic Sciences, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran 194193311, Iran;
- Cosmetic, Hygienic and Detergent Sciences and Technology Research Center, Tehran Medical Sciences, Islamic Azad University, Tehran 19419311, Iran
- Correspondence: (H.-R.A.-A.); (A.B.); Tel.: +39-21-226400515 (H.-R.A.-A.); +39-0532-455258 (A.B.)
| | - Parisa Bishe
- Department of Basic Sciences, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran 194193311, Iran;
- Cosmetic, Hygienic and Detergent Sciences and Technology Research Center, Tehran Medical Sciences, Islamic Azad University, Tehran 19419311, Iran
| | - Anna Baldisserotto
- Department of Life Sciences and Biotechnology, Faculty of Medicine, Pharmacy and Prevention, Master Course in Cosmetic Sciences, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy; (P.B.); (S.M.); (S.V.)
- Correspondence: (H.-R.A.-A.); (A.B.); Tel.: +39-21-226400515 (H.-R.A.-A.); +39-0532-455258 (A.B.)
| | - Piergiacomo Buso
- Department of Life Sciences and Biotechnology, Faculty of Medicine, Pharmacy and Prevention, Master Course in Cosmetic Sciences, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy; (P.B.); (S.M.); (S.V.)
| | - Stefano Manfredini
- Department of Life Sciences and Biotechnology, Faculty of Medicine, Pharmacy and Prevention, Master Course in Cosmetic Sciences, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy; (P.B.); (S.M.); (S.V.)
| | - Silvia Vertuani
- Department of Life Sciences and Biotechnology, Faculty of Medicine, Pharmacy and Prevention, Master Course in Cosmetic Sciences, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy; (P.B.); (S.M.); (S.V.)
| |
Collapse
|
3
|
Xue M, Zhao R, Lin H, Jackson C. Delivery systems of current biologicals for the treatment of chronic cutaneous wounds and severe burns. Adv Drug Deliv Rev 2018; 129:219-241. [PMID: 29567398 DOI: 10.1016/j.addr.2018.03.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 02/08/2018] [Accepted: 03/13/2018] [Indexed: 12/15/2022]
Abstract
While wound therapy remains a clinical challenge in current medical practice, much effort has focused on developing biological therapeutic approaches. This paper presents a comprehensive review of delivery systems for current biologicals for the treatment of chronic wounds and severe burns. The biologicals discussed here include proteins such as growth factors and gene modifying molecules, which may be delivered to wounds free, encapsulated, or released from living systems (cells, skin grafts or skin equivalents) or biomaterials. Advances in biomaterial science and technologies have enabled the synthesis of delivery systems such as scaffolds, hydrogels and nanoparticles, designed to not only allow spatially and temporally controlled release of biologicals, but to also emulate the natural extracellular matrix microenvironment. These technologies represent an attractive field for regenerative wound therapy, by offering more personalised and effective treatments.
Collapse
|
4
|
Sessions JW, Armstrong DG, Hope S, Jensen BD. A review of genetic engineering biotechnologies for enhanced chronic wound healing. Exp Dermatol 2018; 26:179-185. [PMID: 27574909 DOI: 10.1111/exd.13185] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/26/2016] [Indexed: 12/29/2022]
Abstract
Traditional methods for addressing chronic wounds focus on correcting dysfunction by controlling extracellular elements. This review highlights technologies that take a different approach - enhancing chronic wound healing by genetic modification to wound beds. Featured cutaneous transduction/transfection methods include viral modalities (ie adenoviruses, adeno-associated viruses, retroviruses and lentiviruses) and conventional non-viral modalities (ie naked DNA injections, microseeding, liposomal reagents, particle bombardment and electroporation). Also explored are emerging technologies, focusing on the exciting capabilities of wound diagnostics such as pyrosequencing as well as site-specific nuclease editing tools such as CRISPR-Cas9 used to both transiently and permanently genetically modify resident wound bed cells. Additionally, new non-viral transfection methods (ie conjugated nanoparticles, multi-electrode arrays, and microfabricated needles and nanowires) are discussed that can potentially facilitate more efficient and safe transgene delivery to skin but also represent significant advances broadly to tissue regeneration research.
Collapse
Affiliation(s)
- John W Sessions
- Department of Mechanical Engineering, Brigham Young University, Provo, UT, USA
| | - David G Armstrong
- Southern Arizona Limb Salvage Alliance (SALSA), University of Arizona, Tucson, AZ, USA
| | - Sandra Hope
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, USA
| | - Brian D Jensen
- Department of Mechanical Engineering, Brigham Young University, Provo, UT, USA
| |
Collapse
|
5
|
Xu HL, Xu J, Zhang SS, Zhu QY, Jin BH, ZhuGe DL, Shen BX, Wu XQ, Xiao J, Zhao YZ. Temperature-sensitive heparin-modified poloxamer hydrogel with affinity to KGF facilitate the morphologic and functional recovery of the injured rat uterus. Drug Deliv 2017; 24:867-881. [PMID: 28574291 PMCID: PMC8241134 DOI: 10.1080/10717544.2017.1333173] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 05/13/2017] [Accepted: 05/17/2017] [Indexed: 02/06/2023] Open
Abstract
Endometrial injury usually results in intrauterine adhesion (IUA), which is an important cause of infertility and recurrent miscarriage in reproductive women. There is still lack of an effective therapeutic strategy to prevent occurrence of IUA. Keratinocyte growth factor (KGF) is a potent repair factor for epithelial tissues. Here, a temperature-sensitive heparin-modified poloxamer (HP) hydrogel with affinity to KGF (KGF-HP) was used as a support matrix to prevent IUA and deliver KGF. The rheology of KGF-HP hydrogel was carefully characterized. The cold KGF-HP solution was rapidly transited to hydrogel with suitable storage modulus (G') and loss modulus (G″) for the applications of uterus cavity at temperature of 33 °C. In vitro release demonstrated that KGF was released from HP hydrogels in sustained release manner for a long time. In vivo bioluminescence imaging showed that KGF-HP hydrogel was able to prolong the retention of the encapsulated KGF in injured uterus of rat model. Moreover, the morphology and function of the injured uterus were significantly recovered after administration of KGF-HP hydrogel, which were evaluated by two-dimensional ultrasound imaging and receptive fertility. Not only proliferation of endometrial glandular epithelial cells and luminal epithelial cells but also angiogenesis of injured uterus were observed by Ki67 and CD31 staining after 7 d of treatment with KGF-HP hydrogel. Finally, a close relatively relationship between autophagy and proliferation of endometrial epithelial cells (EEC) and angiogenesis was firstly confirmed by detecting expression of LC3-II and P62 after KGF treatment. Overall, KGF-HP may be used as a promising candidate for IUA treatment.
Collapse
Affiliation(s)
- He-Lin Xu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, PR China
| | - Jie Xu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, PR China
| | - Si-Si Zhang
- First Affiliated Hospital, Wenzhou Medical University, Wenzhou City, PR China
| | - Qun-Yan Zhu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, PR China
| | - Bing-Hui Jin
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, PR China
| | - De-Li ZhuGe
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, PR China
| | - Bi-Xin Shen
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, PR China
| | - Xue-Qing Wu
- First Affiliated Hospital, Wenzhou Medical University, Wenzhou City, PR China
| | - Jian Xiao
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, PR China
| | - Ying-Zheng Zhao
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, PR China
| |
Collapse
|
6
|
Urello MA, Kiick KL, Sullivan MO. Integration of growth factor gene delivery with collagen-triggered wound repair cascades using collagen-mimetic peptides. Bioeng Transl Med 2016; 1:207-219. [PMID: 27981245 PMCID: PMC5125401 DOI: 10.1002/btm2.10037] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 09/06/2016] [Accepted: 09/13/2016] [Indexed: 12/11/2022] Open
Abstract
Growth factors (GFs) play vital roles in wound repair. Many GF therapies have reached clinical trials, but success has been hindered by safety concerns and a lack of efficacy. Previously, we presented an approach to produce protein factors in wound beds through localized gene delivery mediated by biomimetic peptides. Modification of polyethylenimine (PEI) DNA polyplexes with collagen-mimetic peptides (CMPs) enabled tailoring of polyplex release/retention and improved gene transfer activity in a cell-responsive manner. In this work, CMP-mediated delivery from collagen was shown to improve expression of platelet-derived growth factor-BB (PDGF-BB) and promote a diverse range of cellular processes associated with wound healing, including proliferation, extracellular matrix production, and chemotaxis. Collagens were pre-exposed to physiologically-simulating conditions (complete media, 37°C) for days to weeks prior to cell seeding to simulate the environment within typical wound dressings. In cell proliferation studies, significant increases in cell counts were demonstrated in collagen gels containing CMP-modified polyplex versus unmodified polyplex, and these effects became most pronounced following prolonged preincubation periods of greater than a week. Collagen containing CMP-modified polyplexes also induced a twofold increase in gel contraction as well as enhanced directionality and migratory activity in response to cell-secreted PDGF-BB gradients. While these PDGF-BB-triggered behaviors were observed in collagens containing unmodified polyplexes, the responses withstood much longer preincubation periods in CMP-modified polyplex samples (10 days vs. <5 days). Furthermore, enhanced closure rates in an in vitro wound model suggested that CMP-based PDGF-BB delivery may have utility in actual wound repair and other regenerative medicine applications.
Collapse
Affiliation(s)
- Morgan A. Urello
- Dept. of Chemical and Biomolecular EngineeringUniversity of DelawareNewarkDE19716
| | - Kristi L. Kiick
- Dept. of Material Science and EngineeringUniversity of DelawareNewarkDE19716
| | | |
Collapse
|
7
|
Mori HM, Kawanami H, Kawahata H, Aoki M. Wound healing potential of lavender oil by acceleration of granulation and wound contraction through induction of TGF-β in a rat model. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 16:144. [PMID: 27229681 PMCID: PMC4880962 DOI: 10.1186/s12906-016-1128-7] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Accepted: 05/18/2016] [Indexed: 12/30/2022]
Abstract
Background Although previous studies have suggested that lavender oil promote wound healing, no study has examined the molecular mechanisms of its effect. In this study, we investigated the effect of lavender oil on various steps of wound healing and its molecular mechanism, focusing on transforming growth factor-β (TGF-β). Methods Circular full-thickness skin wounds were produced on rats. Control solution or lavender oil was topically applied to the wounds on alternating days for 14 days. Results The area of wounds topically treated with lavender oil was significantly decreased as compared to that of wounds of control rats at 4, 6, 8, and 10 days after wounding. Topical application of lavender oil induced expression of type I and III collagen at 4 days after wounding, accompanied by an increased number of fibroblasts, which synthesize collagen. Induced expression of type III collagen by topical application of lavender oil was reduced to control level at 7 days after wounding although increased expression of type I collagen still continued even at 7 days, suggesting rapid collagen replacement from type III to type I in wounds treated with lavender oil. Importantly, expression of TGF-β in wounds treated with lavender oil was significantly increased as compared to control. Moreover, an increased number of myofibroblasts was observed in wounds treated with lavender oil at 4 days after wounding, suggesting promotion of differentiation of fibroblasts through induction of TGF-β, which is needed for wound contraction. Conclusion This study demonstrated that topical application of lavender oil promoted collagen synthesis and differentiation of fibroblasts, accompanied by up-regulation of TGF-β. These data suggest that lavender oil has the potential to promote wound healing in the early phase by acceleration of formation of granulation tissue, tissue remodeling by collagen replacement and wound contraction through up-regulation of TGF-β. The beneficial effect of lavender oil on wound healing may raise the possibility of new approaches as complementary treatment besides conventional therapy.
Collapse
|
8
|
Mayet N, Choonara YE, Kumar P, Tomar LK, Tyagi C, Du Toit LC, Pillay V. A comprehensive review of advanced biopolymeric wound healing systems. J Pharm Sci 2014; 103:2211-30. [PMID: 24985412 DOI: 10.1002/jps.24068] [Citation(s) in RCA: 163] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 05/28/2014] [Accepted: 05/29/2014] [Indexed: 11/12/2022]
Abstract
Wound healing is a complex and dynamic process that involves the mediation of many initiators effective during the healing process such as cytokines, macrophages and fibroblasts. In addition, the defence mechanism of the body undergoes a step-by-step but continuous process known as the wound healing cascade to ensure optimal healing. Thus, when designing a wound healing system or dressing, it is pivotal that key factors such as optimal gaseous exchange, a moist wound environment, prevention of microbial activity and absorption of exudates are considered. A variety of wound dressings are available, however, not all meet the specific requirements of an ideal wound healing system to consider every aspect within the wound healing cascade. Recent research has focussed on the development of smart polymeric materials. Combining biopolymers that are crucial for wound healing may provide opportunities to synthesise matrices that are inductive to cells and that stimulate and trigger target cell responses crucial to the wound healing process. This review therefore outlines the processes involved in skin regeneration, optimal management and care required for wound treatment. It also assimilates, explores and discusses wound healing drug-delivery systems and nanotechnologies utilised for enhanced wound healing applications.
Collapse
Affiliation(s)
- Naeema Mayet
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Parktown, 2193, South Africa
| | | | | | | | | | | | | |
Collapse
|
9
|
Dou C, Lay F, Ansari AM, Rees DJ, Ahmed AK, Kovbasnjuk O, Matsangos AE, Du J, Hosseini SM, Steenbergen C, Fox-Talbot K, Tabor AT, Williams JA, Liu L, Marti GP, Harmon JW. Strengthening the skin with topical delivery of keratinocyte growth factor-1 using a novel DNA plasmid. Mol Ther 2014; 22:752-61. [PMID: 24434934 PMCID: PMC3982499 DOI: 10.1038/mt.2014.2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 12/23/2013] [Indexed: 12/25/2022] Open
Abstract
Fragile skin, susceptible to decubitus ulcers and incidental trauma, is a problem particularly for the elderly and for those with spinal cord injury. Here, we present a simple approach to strengthen the skin by the topical delivery of keratinocyte growth factor-1 (KGF-1) DNA. In initial feasibility studies with the novel minimalized, antibiotic-free DNA expression vector, NTC8385-VA1, the reporter genes luciferase and enhanced green fluorescent protein were delivered. Transfection was documented when luciferase expression significantly increased after transfection. Microscopic imaging of enhanced green fluorescent protein-transfected skin showed green fluorescence in hair follicles, hair shafts, and dermal and superficial epithelial cells. With KGF-1 transfection, KGF-1 mRNA level and protein production were documented with quantitative reverse transcriptase-polymerase chain reaction and immunohistochemistry, respectively. Epithelial thickness of the transfected skin in the KGF group was significantly increased compared with the control vector group (26 ± 2 versus 16 ± 4 µm) at 48 hours (P = 0.045). Dermal thickness tended to be increased in the KGF group (255 ± 36 versus 162 ± 16 µm) at 120 hours (P = 0.057). Biomechanical assessment showed that the KGF-1-treated skin was significantly stronger than control vector-transfected skin. These findings indicate that topically delivered KGF-1 DNA plasmid can increase epithelial thickness and strength, demonstrating the potential of this approach to restore compromised skin.
Collapse
Affiliation(s)
- Chunqing Dou
- 1] Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chinese PLA General Hospital, Beijing, China [2] Department of Surgery and Hendrix Burn/Wound Laboratory, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Frank Lay
- Department of Surgery and Hendrix Burn/Wound Laboratory, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Amir Mehdi Ansari
- Department of Surgery and Hendrix Burn/Wound Laboratory, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Donald J Rees
- Department of Surgery and Hendrix Burn/Wound Laboratory, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ali Karim Ahmed
- Department of Surgery and Hendrix Burn/Wound Laboratory, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Olga Kovbasnjuk
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Aerielle E Matsangos
- Department of Surgery and Hendrix Burn/Wound Laboratory, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Junkai Du
- Department of Surgery and Hendrix Burn/Wound Laboratory, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Sayed Mohammad Hosseini
- Department of Surgery and Hendrix Burn/Wound Laboratory, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Charles Steenbergen
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Karen Fox-Talbot
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | | - Lixin Liu
- Department of Surgery and Hendrix Burn/Wound Laboratory, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Guy P Marti
- Department of Surgery and Hendrix Burn/Wound Laboratory, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - John W Harmon
- Department of Surgery and Hendrix Burn/Wound Laboratory, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
10
|
Urello MA, Kiick KL, Sullivan MO. A CMP-based method for tunable, cell-mediated gene delivery from collagen scaffolds. J Mater Chem B 2014; 2:8174-8185. [DOI: 10.1039/c4tb01435a] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Collagen mimetic peptides (CMP)s were used to tailor release vs. retention of DNA polyplexes from collagen while preserving polyplex activity.
Collapse
Affiliation(s)
- M. A. Urello
- The Department of Chemical and Biomolecular Engineering
- The University of Delaware
- Newark, USA
| | - K. L. Kiick
- The Department of Materials Science and Engineering
- The University of Delaware
- Newark, USA
| | - M. O. Sullivan
- The Department of Chemical and Biomolecular Engineering
- The University of Delaware
- Newark, USA
| |
Collapse
|
11
|
Jeschke MG, Finnerty CC, Shahrokhi S, Branski LK, Dibildox M. Wound coverage technologies in burn care: novel techniques. J Burn Care Res 2013; 34:612-20. [PMID: 23877140 PMCID: PMC3819403 DOI: 10.1097/bcr.0b013e31829b0075] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Improvements in burn wound care have vastly decreased morbidity and mortality in severely burned patients. Development of new therapeutic approaches to increase wound repair has the potential to reduce infection, graft rejection, and hypertrophic scarring. The incorporation of tissue-engineering techniques, along with the use of exogenous proteins, genes, or stem cells to enhance wound healing, heralds new treatment regimens based on the modification of already existing biological activity. Refinements to surgical techniques have enabled the creation of protocols for full facial transplantation. With new technologies and advances such as these, care of the severely burned will undergo massive changes over the next decade. This review centers on new developments that have recently shown great promise in the investigational arena.
Collapse
Affiliation(s)
- Marc G. Jeschke
- Ross Tilley Burn Centre, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Department of Surgery and Plastic Surgery, University of Toronto, Toronto, Canada
| | - Celeste C. Finnerty
- Department of Surgery, Sealy Center for Molecular Medicine, and the Institute for Translational Science, University of Texas Medical Branch and Shriners Hospitals for Children, Galveston, Texas, USA
| | - Shahriar Shahrokhi
- Ross Tilley Burn Centre, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Department of Surgery and Plastic Surgery, University of Toronto, Toronto, Canada
| | - Ludwik K. Branski
- Department of Plastic and Reconstructive Surgery, Hannover Medical School, Hannover, Germany
| | - Manuel Dibildox
- Ross Tilley Burn Centre, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Department of Surgery and Plastic Surgery, University of Toronto, Toronto, Canada
| | | |
Collapse
|
12
|
Junker JP, Kamel RA, Caterson E, Eriksson E. Clinical Impact Upon Wound Healing and Inflammation in Moist, Wet, and Dry Environments. Adv Wound Care (New Rochelle) 2013; 2:348-356. [PMID: 24587972 DOI: 10.1089/wound.2012.0412] [Citation(s) in RCA: 258] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Indexed: 11/12/2022] Open
Abstract
SIGNIFICANCE Successful treatment of wounds relies on precise control and continuous monitoring of the wound-healing process. Wet or moist treatment of wounds has been shown to promote re-epithelialization and result in reduced scar formation, as compared to treatment in a dry environment. RECENT ADVANCES By treating wounds in a controlled wet environment, delivery of antimicrobials, analgesics, other bioactive molecules such as growth factors, as well as cells and micrografts, is allowed. The addition of growth factors or transplantation of cells yields the possibility of creating a regenerative wound microenvironment that favors healing, as opposed to excessive scar formation. CRITICAL ISSUES Although several manufacturers have conceived products implementing the concept of moist wound healing, there remains a lack of commercial translation of wet wound-healing principles into clinically available products. This can only be mitigated by further research on the topic. FUTURE DIRECTIONS The strong evidence pointing to the favorable healing of wounds in a wet or moist environment compared to dry treatment will extend the clinical indications for this treatment. Further advances are required to elucidate by which means this microenvironment can be optimized to improve the healing outcome.
Collapse
Affiliation(s)
- Johan P.E. Junker
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Rami A. Kamel
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - E.J. Caterson
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Elof Eriksson
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
13
|
Abstract
BACKGROUND In the past two decades, regenerative surgeons have focused increasing attention on the potential of gene therapy for treatment of local disorders and injuries. Gene transfer techniques may provide an effective local and short-term induction of growth factors without the limits of other topical therapies. In 2002, Tepper and Mehrara accurately reviewed the topic: given the substantial advancement of research on this issue, an updated review is provided. METHODS Literature indexed in the National Center for Biotechnology Information database (PubMed) has been reviewed using variable combinations of keywords ("gene therapy," "regenerative medicine," "tissue regeneration," and "gene medicine"). Articles investigating the association between gene therapies and local pathologic conditions have been considered. Attention has been focused on articles published after 2002. Further literature has been obtained by analysis of references listed in reviewed articles. RESULTS Gene therapy approaches have been successfully adopted in preclinical models for treatment of a large variety of local diseases affecting almost every type of tissue. Experiences in abnormalities involving skin (e.g., chronic wounds, burn injuries, pathologic scars), bone, cartilage, endothelia, and nerves have been reviewed. In addition, the supporting role of gene therapies to other tissue-engineering approaches has been discussed. Despite initial reports, clinical evidence has been provided only for treatment of diabetic ulcers, rheumatoid arthritis, and osteoarthritis. CONCLUSIONS Translation of gene therapy strategies into human clinical trials is still a lengthy, difficult, and expensive process. Even so, cutting-edge gene therapy-based strategies in reconstructive procedures could soon set valuable milestones for development of efficient treatments in a growing number of local diseases and injuries.
Collapse
|
14
|
Balaji S, King A, Dhamija Y, Le LD, Shaaban AF, Crombleholme TM, Keswani SG. Pseudotyped adeno-associated viral vectors for gene transfer in dermal fibroblasts: implications for wound-healing applications. J Surg Res 2013; 184:691-8. [PMID: 23590866 DOI: 10.1016/j.jss.2013.03.051] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2013] [Revised: 03/11/2013] [Accepted: 03/14/2013] [Indexed: 12/11/2022]
Abstract
BACKGROUND Cell-specific gene transfer and sustained transgene expression are goals of cutaneous gene therapy. Pseudotyping strategy with adeno-associated viral (AAV) vectors has the potential to confer unique cellular tropism and transduction efficiency. We hypothesize that pseudotyped AAV vectors have differential tropism and transduction efficiency under normal and wound conditions in dermal fibroblasts. MATERIALS AND METHODS We packaged AAV2 genome with green fluorescent protein reporter in capsids of other serotypes, AAV5, AAV7, and AAV8, producing pseudotyped vectors AAV2/5, AAV2/7, and AAV2/8, respectively. Murine and human dermal fibroblasts were transduced by the different pseudotypes for 24 h at multiplicities of infection 10(2), 10(3), 10(4), and 10(5). We assessed transduction efficiency at days 3 and 7. Experiments were repeated in a simulated wound environment by adding 10 ng/mL platelet-derived growth factor-B to culture media. RESULTS Transduction efficiency of the pseudotyped AAV vectors was dose dependent. Multiplicity of infection 10(5) resulted in significantly higher gene transfer. Under normal culture conditions, the pseudotyping strategy conferred differential transduction of dermal fibroblasts, with significantly enhanced transduction of murine cells by AAV2/5 and AAV2/8 compared with AAV2/2. Adeno-associated virus 2/8 was more efficacious in transducing human cells. Under wound conditions, transduction efficiency of AAV2/2, 2/5, and 2/8 was significantly lower in murine fibroblasts. At day 3 under wound conditions, all vectors demonstrated similar transduction efficiency, but by day 7, the three pseudotyped vectors transduced significantly more murine cells compared with AAV2/2. However, in human cells, there was no significant difference in the transduction efficiency of each pseudotype between normal and wound conditions at both 3 and 7 d. CONCLUSIONS The AAV pseudotyping strategy represents a gene transfer technology that can result in differential transduction of dermal fibroblasts. The differences in transduction efficiency in murine and human dermal fibroblasts in both the normal and wound environment highlight issues with translatability of gene transfer techniques. These data provide a template for using pseudotyped AAV vectors in cutaneous applications.
Collapse
Affiliation(s)
- Swathi Balaji
- Division of Pediatric, General, Thoracic, and Fetal Surgery, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, Ohio 45229-3039, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Acute and impaired wound healing: pathophysiology and current methods for drug delivery, part 2: role of growth factors in normal and pathological wound healing: therapeutic potential and methods of delivery. Adv Skin Wound Care 2012; 25:349-70. [PMID: 22820962 DOI: 10.1097/01.asw.0000418541.31366.a3] [Citation(s) in RCA: 149] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This is the second of 2 articles that discuss the biology and pathophysiology of wound healing, reviewing the role that growth factors play in this process and describing the current methods for growth factor delivery into the wound bed.
Collapse
|
16
|
Hartwell R, Leung V, Chavez-Munoz C, Nabai L, Yang H, Ko F, Ghahary A. A novel hydrogel-collagen composite improves functionality of an injectable extracellular matrix. Acta Biomater 2011; 7:3060-9. [PMID: 21569870 DOI: 10.1016/j.actbio.2011.04.024] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2010] [Revised: 03/13/2011] [Accepted: 04/25/2011] [Indexed: 01/07/2023]
Abstract
Cellular transplantation is now closer to becoming a practical clinical strategy to repair, regenerate or restore the function of skin, muscle, nerves and pancreatic islets. In this study we sought to develop a simple injectable collagen matrix that would preserve the normal cellular organization of skin cells. Three different scaffolds were created and compared: collagen-glycosaminoglycan (GAG) scaffolds, crosslinked collagen-GAG scaffolds without polyvinyl alcohol (PVA) and crosslinked collagen-GAG scaffolds containing PVA hydrogel. Importantly, all scaffolds were found to be non-cytotoxic. PVA-containing gels exhibited a higher tensile strength (P<0.05), faster fibril formation (P<0.001) and reduced collagenase digestion (P<0.01) compared with other gels. Free floating fibroblast-populated, PVA-borate scaffolds resisted contraction over a 10 day period (P<0.001). The fibroblast-populated scaffolds containing PVA demonstrated a 3-fold reduction in cellularity over 10 days compared with the control gels (P<0.001). Multicellular skin substitutes containing PVA-borate networks display a linear cellular organization, reduced cellularity and the formation of a keratinized epidermis that resembles normal skin. In conclusion, these data underscore the multifunctionality of a simple PVA-borate-collagen matrix as an injectable composite for tissue engineering or cell transplantation.
Collapse
|
17
|
Geusens B, Strobbe T, Bracke S, Dynoodt P, Sanders N, Gele MV, Lambert J. Lipid-mediated gene delivery to the skin. Eur J Pharm Sci 2011; 43:199-211. [DOI: 10.1016/j.ejps.2011.04.003] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2010] [Revised: 11/16/2010] [Accepted: 04/09/2011] [Indexed: 11/29/2022]
|
18
|
Jung MR, Shim IK, Kim ES, Park YJ, Yang YI, Lee SK, Lee SJ. Controlled release of cell-permeable gene complex from poly(L-lactide) scaffold for enhanced stem cell tissue engineering. J Control Release 2011; 152:294-302. [DOI: 10.1016/j.jconrel.2011.03.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Revised: 02/10/2011] [Accepted: 03/07/2011] [Indexed: 01/08/2023]
|
19
|
Ackermann M, Wolloscheck T, Wellmann A, Li VW, Li WW, Konerding MA. Priming with a combination of proangiogenic growth factors improves wound healing in normoglycemic mice. Int J Mol Med 2011; 27:647-53. [PMID: 21373751 DOI: 10.3892/ijmm.2011.641] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Accepted: 12/20/2010] [Indexed: 12/19/2022] Open
Abstract
Growth factors and/or angiogenic factors are supposed to improve wound healing. The aim of our study was to evaluate the effects of subcutaneous pretreatment with combinatory proangiogenic factors on wound closure, mechanical properties, vessel density and morphology. Twenty-eight Balb/c mice were divided equally into two groups. A mixture of VEGF (35.0 µg), bFGF (2.5 µg) and PDGF (3.5 µg) was administered subcutaneously 3, 5 and 7 days to 14 mice before full thickness skin punch biopsy wounding, whereas 14 control animals received three injections of 0.2 ml saline solution. Wound sizes were assessed daily and the repaired tissues were harvested 7 days after complete wound closure. Complete closure (≥ 95% healing of initial wound area) was reached in all proangiogenic pretreated animals on day 10, whereas controls needed 13 days for complete closure. Tensile strengths were nearly twofold higher compared to the controls (p ≤ 0.01). The punch biopsy material revealed 4.2-fold higher vessel densities in the proangiogenic pretreated group. On day 17, the vessel densities in the proangiogenic pretreated wounds were also 3.2-fold higher compared to the untreated controls. No significant differences were seen in the collagen ratio. Pretreatment with proangiogenic factors revealed several significant effects on wound healing: faster time to closure, a higher vessel density and a better functional outcome. These results suggest a beneficial effect of pretreatment with combinatory growth factors in mouse skin wounds without impaired wound healing. This might be exploited in further investigations in diabetic healing as a therapeutic approach for elective surgery.
Collapse
Affiliation(s)
- Maximilian Ackermann
- Institute of Functional and Clinical Anatomy, University Medical Center of Johannes Gutenberg University Mainz, Mainz, Germany
| | | | | | | | | | | |
Collapse
|
20
|
Biswas A, Bharara M, Hurst C, Armstrong DG, Rilo H. The micrograft concept for wound healing: strategies and applications. J Diabetes Sci Technol 2010; 4:808-19. [PMID: 20663442 PMCID: PMC2909510 DOI: 10.1177/193229681000400407] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The standard of care for wound coverage is to use an autologous skin graft. However, large or chronic wounds become an exceptionally challenging problem especially when donor sites are limited. It is important that the clinician be aware of various treatment modalities for wound care and incorporate those methods appropriately in the proper clinical context. This report reviews an alternative to traditional meshed skin grafting for wound coverage: micrografting. The physiological concept of micrografting, along with historical context, and the evolution of the technique are discussed, as well as studies needed for micrograft characterization and future applications of the technique.
Collapse
Affiliation(s)
- Atanu Biswas
- College of Medicine, Department of Surgery, Center for Cellular Transplantation, University of ArizonaTucson, Arizona
| | - Manish Bharara
- College of Medicine, Department of Surgery, Southern Arizona Limb Salvage Alliance, University of ArizonaTucson, Arizona
| | - Craig Hurst
- College of Medicine, Department of Surgery, Division of Plastic and Reconstructive Surgery, University of ArizonaTucson, Arizona
| | - David G. Armstrong
- College of Medicine, Department of Surgery, Southern Arizona Limb Salvage Alliance, University of ArizonaTucson, Arizona
| | - Horacio Rilo
- College of Medicine, Department of Surgery, Center for Cellular Transplantation, University of ArizonaTucson, Arizona
- College of Medicine, Department of Surgery, Southern Arizona Limb Salvage Alliance, University of ArizonaTucson, Arizona
| |
Collapse
|
21
|
Branski LK, Masters OE, Herndon DN, Mittermayr R, Redl H, Traber DL, Cox RA, Kita K, Jeschke MG. Pre-clinical evaluation of liposomal gene transfer to improve dermal and epidermal regeneration. Gene Ther 2010; 17:770-778. [PMID: 20376099 DOI: 10.1038/gt.2010.32] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2009] [Revised: 08/06/2009] [Accepted: 08/10/2009] [Indexed: 02/02/2023]
Abstract
Liposomal gene transfer effectively enhances dermal and epidermal regeneration in burned rodents. To advance this treatment to clinical studies, we investigated the efficacy of liposomal gene transfer in a clinically relevant porcine wound model. Mimicking the clinical scenario, six female Yorkshire pigs (40-50 kg) received up to 12 burns of 50 cm(2) area that were fully excised and covered with skin autograft meshed at 4:1 ratio 24 h post-burn. Animals received control injections (empty liposomes), liposomes (DMRIE-C) containing 1 mg LacZ-cDNA, or liposomes (DMRIE-C) with 1 mg of platelet-derived growth factor (PDGF)-cDNA, or the naked PDGF gene. Serial biopsies were taken from different wound sites at multiple time points up to 12 days post-wounding. Transfection efficacy and transfection rate of LacZ and localization of beta-gal were determined by immunohistochemical and immunofluorescent techniques. RT-PCR and multiplex protein analysis (ELISA) were used to measure levels of growth factor mRNA transcribed and growth factor protein translated. Wound re-epithelialization and graft adhesion was evaluated using planimetric analysis and clinical scores. We found that peak transfection of liposomal beta-galactosidase occurred on day 2, with a fluorescence increase of 154% to baseline (P<0.001). Transfection intensity dropped to 115% above baseline on day 4 (P<0.001) and 109% on day 7. Immunohistochemistry showed a maximum transfection rate of 34% of cells in wound tissue. Gene transfer of liposomal PDGF-cDNA resulted in increased PDGF-mRNA and protein expression on days 2 and 4, and accelerated wound re-epithlialization as well as graft adhesion on day 9 (P<0.05). In this study, we showed that liposomal cDNA gene transfer is possible in a porcine wound model, and by using PDGF-cDNA we further showed that dermal and epidermal regeneration can be improved. These data indicate that liposomal gene transfer can be a new therapeutic approach to improve wound healing in humans.
Collapse
Affiliation(s)
- L K Branski
- Shriners Hospitals for Children and University of Texas Medical Branch, Galveston, TX 77550, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Mechanism of Sustained Release of Vascular Endothelial Growth Factor in Accelerating Experimental Diabetic Healing. J Invest Dermatol 2009; 129:2275-87. [DOI: 10.1038/jid.2009.26] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
23
|
Abstract
Chronic, nonhealing wounds and their therapy are not only a medical problem but a severe economic one as well. Such wounds have a great effect on quality of life. Basic research has enhanced our understanding of the stimulation and inhibition of wound healing and provides the basis for introducing new and innovative treatment methods. This paper reviews the most relevant in- and extrinsic factors that disturb physiologic wound healing to result in chronic nonhealing wounds. In addition, molecular intervention modalities targeting various aspects of wound repair are demonstrated.
Collapse
|
24
|
Branski LK, Gauglitz GG, Herndon DN, Jeschke MG. A review of gene and stem cell therapy in cutaneous wound healing. Burns 2008; 35:171-80. [PMID: 18603379 DOI: 10.1016/j.burns.2008.03.009] [Citation(s) in RCA: 196] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2008] [Accepted: 03/11/2008] [Indexed: 11/28/2022]
Abstract
Different therapies that effect wound repair have been proposed over the last few decades. This article reviews the emerging fields of gene and stem cell therapy in wound healing. Gene therapy, initially developed for treatment of congenital defects, is a new option for enhancing wound repair. In order to accelerate wound closure, genes encoding for growth factors or cytokines showed the greatest potential. The majority of gene delivery systems are based on viral transfection, naked DNA application, high pressure injection, or liposomal vectors. Embryonic and adult stem cells have a prolonged self-renewal capacity with the ability to differentiate into various tissue types. A variety of sources, such as bone marrow, peripheral blood, umbilical cord blood, adipose tissue, skin and hair follicles, have been utilized to isolate stem cells to accelerate the healing response of acute and chronic wounds. Recently, the combination of gene and stem cell therapy has emerged as a promising approach for treatment of chronic and acute wounds.
Collapse
Affiliation(s)
- Ludwik K Branski
- Department of Surgery, The University of Texas Medical Branch and Shriners Hospitals for Children, Galveston, TX 77550, United States
| | | | | | | |
Collapse
|
25
|
Abstract
Diabetic foot ulcers remain a major cause of morbidity. Significant progress has been accomplished in ulcer healing by improved management of both ischemia and neuropathy in the diabetic foot. Nevertheless, there is a vital need for further improvement. Becaplermin gel represents an important therapeutic advance for diabetic neuropathic foot ulcers with adequate blood supply. Randomized controlled trials have shown that it is effective in increasing healing rates. However, this efficacy has not translated to positive clinical experience, and the drug is not widely used. Moreover, becaplermin is an expensive medication. Even though it has repeatedly been estimated as cost-effective, its high cost may be prohibitive for some clinicians, especially in developing countries. Clearly, further work is needed to clarify whether use of becaplermin is justified in everyday clinical practice. Future research also needs to assess the potential room for improvement with becaplermin, for instance by combination with other growth factors or by exploring alternative modes of drug delivery.
Collapse
Affiliation(s)
- Nikolaos Papanas
- Outpatient Clinic of Obesity, Diabetes and Metabolism at the Second Department of Internal Medicine, Democritus University of Thrace, Alexandroupolis, Greece.
| | | |
Collapse
|
26
|
Marti GP, Mohebi P, Liu L, Wang J, Miyashita T, Harmon JW. KGF-1 for wound healing in animal models. Methods Mol Biol 2008; 423:383-91. [PMID: 18370216 DOI: 10.1007/978-1-59745-194-9_30] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Keratinocyte growth factor-1 (KGF-1) is a member of the fibroblast growth factor (FGF) family FGF7 and is expressed in normal and wounded skin. KGF-1 is massively produced in the early stages of the wound healing process as well as during the later remodeling process (1, 2). We have studied the effects of the electroporation of a KGF-1 plasmid into excisional wounds of different rodent models mimicking diseases known to impair the normal wound healing process. We have used a genetically diabetic mouse model and a septic rat model in our experiments, and we have shown improvement of the healing rate (92% of the wounds are healed at day 12 vs. 40% of the control), the quality of epithelialization (histological score of 3.3 vs. 1.5), and the density of new blood vessels (85% more new blood vessels in the superficial layers than that of the control) (3, 4). Considering these results, we believe we can further explore the treatment modalities for using the electroporation-assisted transfection of DNA plasmid expression vectors of growth factors to enhance cutaneous wound healing.
Collapse
Affiliation(s)
- Guy P Marti
- Department of Surgery, Johns Hopkins Bayview Medical Center, Baltimore, MD, USA
| | | | | | | | | | | |
Collapse
|
27
|
|
28
|
Heyde M, Partridge KA, Oreffo ROC, Howdle SM, Shakesheff KM, Garnett MC. Gene therapy used for tissue engineering applications. J Pharm Pharmacol 2007; 59:329-50. [PMID: 17331336 DOI: 10.1211/jpp.59.3.0002] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This review highlights the advances at the interface between tissue engineering and gene therapy. There are a large number of reports on gene therapy in tissue engineering, and these cover a huge range of different engineered tissues, different vectors, scaffolds and methodology. The review considers separately in-vitro and in-vivo gene transfer methods. The in-vivo gene transfer method is described first, using either viral or non-viral vectors to repair various tissues with and without the use of scaffolds. The use of a scaffold can overcome some of the challenges associated with delivery by direct injection. The ex-vivo method is described in the second half of the review. Attempts have been made to use this therapy for bone, cartilage, wound, urothelial, nerve tissue regeneration and for treating diabetes using viral or non-viral vectors. Again porous polymers can be used as scaffolds for cell transplantation. There are as yet few comparisons between these many different variables to show which is the best for any particular application. With few exceptions, all of the results were positive in showing some gene expression and some consequent effect on tissue growth and remodelling. Some of the principal advantages and disadvantages of various methods are discussed.
Collapse
Affiliation(s)
- Mieke Heyde
- Division of Advanced Drug Delivery and Tissue Engineering, School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | | | | | | | | | | |
Collapse
|
29
|
Papanas N, Maltezos E. Growth factors in the treatment of diabetic foot ulcers: new technologies, any promises? INT J LOW EXTR WOUND 2007; 6:37-53. [PMID: 17344201 DOI: 10.1177/1534734606298416] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Foot ulcers remain a common problem, leading to increased morbidity in patients with diabetes. Despite the progress that has been achieved in revascularization techniques as well as in off-loading to relieve high-pressure areas, diabetic foot wounds remain a clinical challenge. Growth factors are a major technological advance that promised to change the face of wound healing. The most important of growth factors are recombinant human platelet-derived growth factor-BB and granulocyte colony-stimulating factor. The former has been approved by the FDA for the treatment of neuropathic ulcers when there is adequate blood supply. The latter is less demonstrably useful. Advances include methods of delivering growth factors.
Collapse
Affiliation(s)
- N Papanas
- Outpatient Department of Diabetes, Obesity and Metabolism at the Second Department of Internal Medicine, Democritus University of Thrace, Greece.
| | | |
Collapse
|
30
|
Lin MP, Marti GP, Dieb R, Wang J, Ferguson M, Qaiser R, Bonde P, Duncan MD, Harmon JW. Delivery of plasmid DNA expression vector for keratinocyte growth factor-1 using electroporation to improve cutaneous wound healing in a septic rat model. Wound Repair Regen 2007; 14:618-24. [PMID: 17014675 DOI: 10.1111/j.1743-6109.2006.00169.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We have previously shown that wound healing was improved in a diabetic mouse model of impaired wound healing following transfection with keratinocyte growth factor-1 (KGF-1) cDNA. We now extend these findings to the characterization of the effects of DNA plasmid vectors delivered to rats using electroporation (EP) in vivo in a sepsis-based model of impaired wound healing. To assess plasmid transfection and wound healing, gWIZ luciferase and PCDNA3.1/KGF-1 expression vectors were used, respectively. Cutaneous wounds were produced using an 8 mm-punch biopsy in Sprague-Dawley rats in which healing was impaired by cecal ligation-induced sepsis. We used National Institutes of Health image analysis software and histologic assessment to analyze wound closure and found that EP increased expression of gWIZ luciferase vector up to 53-fold compared with transfection without EP (p < 0.001). EP-assisted plasmid transfection was found to be localized to skin. Septic rats had a 4.7 times larger average wound area on day 9 compared with control (p < 0.001). Rats that underwent PCDNA3.1/KGF-1 transfection with EP had 60% smaller wounds on day 12 compared with vector without EP (p < 0.009). Quality of healing with KGF-1 vector plus EP scored 3.0 +/- 0.3 and was significantly better than that of 1.8 +/- 0.3 for treatment with vector alone (p < 0.05). We conclude that both the rate and quality of healing were improved with DNA plasmid expression vector for growth factor delivered with EP to septic rats.
Collapse
Affiliation(s)
- Michael P Lin
- Section of Surgical Sciences, Johns Hopkins Bayview Medical Center, Johns Hopkins Medical Institutions, Baltimore, Maryland 21224, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
Wound repair involves the sequential interaction of various cell types, extracellular matrix molecules, and soluble mediators. During the past 10 years, much new information on signals controlling wound cell behavior has emerged. This knowledge has led to a number of novel therapeutic strategies. In particular, the local delivery of pluripotent growth factor molecules to the injured tissue has been intensively investigated over the past decade. Limited success of clinical trails indicates that a crucial aspect of the growth factor wound healing strategy is the effective delivery of these polypeptides to the wound site. A molecular approach in which genetically modified cells synthesize and deliver the desired growth factor in regulated fashion has been used to overcome the limitations associated with the (topical) application of recombinant growth factor proteins. We have summarized the molecular and cellular basis of repair mechanisms and their failure, and we give an overview of techniques and studies applied to gene transfer in tissue repair.
Collapse
Affiliation(s)
- Sabine A Eming
- Department of Dermatology, University of Cologne, D-50937 Cologne, Germany
| | | | | |
Collapse
|
32
|
Andreadis ST. Gene-modified tissue-engineered skin: the next generation of skin substitutes. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2006; 103:241-74. [PMID: 17195466 DOI: 10.1007/10_023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Tissue engineering combines the principles of cell biology, engineering and materials science to develop three-dimensional tissues to replace or restore tissue function. Tissue engineered skin is one of most advanced tissue constructs, yet it lacks several important functions including those provided by hair follicles, sebaceous glands, sweat glands and dendritic cells. Although the complexity of skin may be difficult to recapitulate entirely, new or improved functions can be provided by genetic modification of the cells that make up the tissues. Gene therapy can also be used in wound healing to promote tissue regeneration or prevent healing abnormalities such as formation of scars and keloids. Finally, gene-enhanced skin substitutes have great potential as cell-based devices to deliver therapeutics locally or systemically. Although significant progress has been made in the development of gene transfer technologies, several challenges have to be met before clinical application of genetically modified skin tissue. Engineering challenges include methods for improved efficiency and targeted gene delivery; efficient gene transfer to the stem cells that constantly regenerate the dynamic epidermal tissue; and development of novel biomaterials for controlled gene delivery. In addition, advances in regulatable vectors to achieve spatially and temporally controlled gene expression by physiological or exogenous signals may facilitate pharmacological administration of therapeutics through genetically engineered skin. Gene modified skin substitutes are also employed as biological models to understand tissue development or disease progression in a realistic three-dimensional context. In summary, gene therapy has the potential to generate the next generation of skin substitutes with enhanced capacity for treatment of burns, chronic wounds and even systemic diseases.
Collapse
Affiliation(s)
- Stelios T Andreadis
- Bioengineering Laboratory, Department of Chemical & Biological Engineering, University at Buffalo, The State University of New York (SUNY), Amherst, NY 14260, USA.
| |
Collapse
|
33
|
Branski LK, Pereira CT, Herndon DN, Jeschke MG. Gene therapy in wound healing: present status and future directions. Gene Ther 2006; 14:1-10. [PMID: 16929353 DOI: 10.1038/sj.gt.3302837] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Gene therapy was traditionally considered a treatment modality for patients with congenital defects of key metabolic functions or late-stage malignancies. The realization that gene therapy applications were much vaster has opened up endless opportunities for therapeutic genetic manipulations, especially in the skin and external wounds. Cutaneous wound healing is a complicated, multistep process with numerous mediators that act in a network of activation and inhibition processes. Gene delivery in this environment poses a particular challenge. Numerous models of gene delivery have been developed, including naked DNA application, viral transfection, high-pressure injection, liposomal delivery, and more. Of the various methods for gene transfer, cationic cholesterol-containing liposomal constructs are emerging as a method with great potential for non-viral gene transfer in the wound. This article aims to review the research on gene therapy in wound healing and possible future directions in this exciting field.
Collapse
Affiliation(s)
- L K Branski
- Department of Surgery, The University of Texas Medical Branch, Shriners Hospitals for Children, Galveston, TX 77550, USA
| | | | | | | |
Collapse
|
34
|
Kurup S, Abramsson A, Li JP, Lindahl U, Kjellen L, Betsholtz C, Gerhardt H, Spillmann D. Heparan sulphate requirement in platelet-derived growth factor B-mediated pericyte recruitment. Biochem Soc Trans 2006; 34:454-5. [PMID: 16709185 DOI: 10.1042/bst0340454] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
HS (heparan sulphate) plays a key role in angiogenesis, by interacting with growth factors required in the process. It has been proposed that HS controls the diffusion, and thus the availability, of platelet-derived growth factor B that is needed for pericyte recruitment around newly formed capillaries. The present paper summarizes our studies on the importance of HS structure in this regulatory process.
Collapse
Affiliation(s)
- S Kurup
- Department of Medical Biochemistry and Microbiology, The Biomedical Center, Uppsala University, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Gene technology and tissue engineering. MINIM INVASIV THER 2006; 11:93-9. [PMID: 16754057 DOI: 10.1080/136457002320174159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The interest in gene therapy to treat human diseases has increased with the advances in recombinant DNA technology and the improved physical, chemical and biological methods of delivering genes to mammalian cells. Areas of therapeutic interest for gene therapy relevant for tissue engineering are, for example, in the treatment of wounds, skin diseases, nerve, bone, and muscle diseases. The transfer of a gene into a cell can lead to the addition or modification of a function and may be an attractive alternative to the pharmacological use of proteins. The complementation of defective functions could also be an effective treatment for inherited skin diseases with a gene defect. The two major challenges facing gene technology in tissue engineering are the problem of identifying appropriate genes that are effective in tissue repair, and the reliable expression of the therapeutic gene at clinically beneficial levels. This review discusses principles and methods of delivering genes encoding growth factors into cells, together with their respective advantages and disadvantages.
Collapse
|
36
|
Abstract
Understanding wound healing today involves much more than simply stating that there are three phases: inflammation, proliferation, and maturation. Wound healing is a complex series of reactions and interactions among cells and "mediators." Each year, new mediators are discovered and our understanding of inflammatory mediators and cellular interactions grows. This article will attempt to provide a concise overview on wound healing and wound management.
Collapse
Affiliation(s)
- George Broughton
- Department of Plastic Surgery, Nancy L & Perry Bass Advanced Wound Healing Laboratory, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9132, USA.
| | | | | |
Collapse
|
37
|
Roth D, Piekarek M, Paulsson M, Christ H, Bloch W, Krieg T, Davidson JM, Eming SA. Plasmin modulates vascular endothelial growth factor-A-mediated angiogenesis during wound repair. THE AMERICAN JOURNAL OF PATHOLOGY 2006; 168:670-84. [PMID: 16436680 PMCID: PMC1606492 DOI: 10.2353/ajpath.2006.050372] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Plasmin-catalyzed cleavage of the vascular endothelial growth factor (VEGF)-A isoform VEGF165 results in loss of its carboxyl-terminal heparin-binding domain and significant loss in its bioactivity. Little is known about the in vivo significance of this process. To investigate the biological relevance of the protease sensitivity of VEGF165 in wound healing we assessed the activity of a VEGF165 mutant resistant to plasmin proteolysis (VEGF165(A111P)) in a genetic mouse model of impaired wound healing (db/db mouse). In the present study we demonstrate that in this mouse model plasmin activity is increased at the wound site. The stability of the mutant VEGF165 was substantially increased in wound tissue lysates in comparison to wild-type VEGF165, thus indicating a prolonged activity of the plasmin-resistant VEGF165 mutant. The db/db delayed healing phenotype could be reversed by topical application of wild-type VEGF165 or VEGF165(A111P). However, resistance of VEGF165 to plasmin cleavage resulted in the increased stability of vascular structures during the late phase of healing due to increased recruitment of perivascular cells and delayed and reduced endothelial cell apoptosis. Our data provide the first indication that plasmin-catalyzed cleavage regulates VEGF165-mediated angiogenesis in vivo. Inactivation of the plasmin cleavage site Arg110/Ala111 may preserve the biological function of VEGF165 in therapeutic angiogenesis under conditions in which proteases are highly active, such as wound repair and inflammation.
Collapse
MESH Headings
- Animals
- Apoptosis
- COS Cells
- Cells, Cultured
- Chlorocebus aethiops
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/pathology
- Disease Models, Animal
- Endothelium, Vascular/cytology
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/metabolism
- Fibrinolysin/pharmacology
- Fibrinolytic Agents/pharmacology
- Humans
- Mice
- Mice, Inbred C57BL
- Mice, Mutant Strains
- Mutagenesis, Site-Directed
- Neovascularization, Physiologic
- Phenotype
- Umbilical Veins/cytology
- Umbilical Veins/drug effects
- Umbilical Veins/metabolism
- Vascular Endothelial Growth Factor A/genetics
- Vascular Endothelial Growth Factor A/metabolism
- Wound Healing
Collapse
Affiliation(s)
- Detlev Roth
- Department of Dermatology, University of Cologne, Joseph-Stelzmann Str. 9, 50931 Köln, Germany
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Jacobsen F, Hirsch T, Mittler D, Schulte M, Lehnhardt M, Druecke D, Homann HH, Steinau HU, Steinstraesser L. Polybrene improves transfection efficacy of recombinant replication-deficient adenovirus in cutaneous cells and burned skin. J Gene Med 2006; 8:138-46. [PMID: 16288494 DOI: 10.1002/jgm.843] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND The hostile environment found in acute and chronic wounds decreases the physiological half-life of purified synthetic or recombinant peptides dramatically. Gene therapy, on the other hand, may be a viable option since it relies on the cellular machinery of the host to locally manufacture the proteins of interest. The aim of this study was to evaluate and optimize the local administration of transient cutaneous adenoviral gene delivery in wounds. METHODS Primary human keratinocytes (HKC) and HaCaT cells were transfected with replication-deficient adenovirus (Ad5) containing the reporter gene for beta-galactosidase (LacZ). The vector was used alone or precoated with either (1) Lipofectamine 2000, (2) FuGENE 6, or (3) Polybrene. For in vivo testing a rat burn model was used. Animals were randomized into three groups: (1) Ad5-LacZ alone; (2) Ad5-LacZ precoated with Polybrene, or (3) carrier control (phosphate-buffered saline (PBS)). Samples were harvested from burned and unburned tissue sections after either 48 h or 7 days. Transgene expression was quantified by bioluminometric assay and localized using immunohistochemistry. A BrdU assay was performed to determine the influence of the used transfection reagents on cell proliferation. RESULTS Transfection efficacy was significantly improved in vitro (p < 0.001) as well as in partial thickness burned (p = 0.015) and unburned skin (p > 0.001) after precoating Ad5 with Polybrene compared to Ad5 alone. Transgene expression was 10-fold higher in burned skin (9305 pg/mg protein) compared to unburned skin (859 pg/mg protein). CONCLUSIONS It is feasible to improve transfection efficacy in vitro and in vivo by precoating the adenovirus with Polybrene.
Collapse
Affiliation(s)
- F Jacobsen
- Department for Plastic Surgery, Burn Center, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
The difficulties in facial reconstruction derive from the unique character of the face and the availability of local matching tissues. Facial reconstructive surgery must aim at a functionally and aesthetically rehabilitated patient. The performance of facial plastic surgery requires an understanding and the application of many important principles. The aim of this paper is to review the critical factors to be considered in the management of surgical wounds by second-intention healing, primary closure, skin grafting, and repair with local or distant free flaps. The key concepts useful in flap choice and implementation are discussed. In addition, an overview of new developments in tissue engineering and gene therapy as they relate to facial plastic surgery is provided.
Collapse
Affiliation(s)
- F Riedel
- Universitäts-Hals-Nasen-Ohren-Klinik Mannheim.
| | | |
Collapse
|
40
|
Jang JH, Rives CB, Shea LD. Plasmid delivery in vivo from porous tissue-engineering scaffolds: transgene expression and cellular transfection. Mol Ther 2005; 12:475-83. [PMID: 15950542 PMCID: PMC2648405 DOI: 10.1016/j.ymthe.2005.03.036] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2005] [Revised: 03/22/2005] [Accepted: 03/24/2005] [Indexed: 01/27/2023] Open
Abstract
Tissue engineering scaffolds capable of sustained plasmid release can promote gene transfer locally and stimulate new tissue formation. We have investigated the scaffold design parameters that influence the extent and duration of transgene expression and have characterized the distribution of transfected cells. Porous scaffolds with encapsulated plasmid were fabricated from poly(lactide-co-glycolide) with a gas foaming procedure, with wet granulation employed to mix the components homogeneously prior to foaming. Wet granulation enhanced plasmid incorporation relative to standard procedures and also enhanced in vivo transgene expression, possibly through the increased loading and maintenance of the scaffold pore structure. The plasmid loading regulated the quantity and duration of transgene expression, with expression for 105 days achieved at the highest dosage. Expression was localized to the implantation site, though the distribution of transfected cells varied with time. Transfected cells were initially observed at the scaffold periphery (day 3), then within the pores and adjacent to the polymer (day 17), and finally throughout the scaffold interior (day 126). Delivery of a plasmid encoding VEGF increased the blood vessel density relative to control. Correlating scaffold design with gene transfer efficiency and tissue formation will facilitate application of plasmid-releasing scaffolds to multiple tissues.
Collapse
Affiliation(s)
- Jae-Hyung Jang
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road E156, Evanston, IL 60208-3120, USA
| | - Christopher B. Rives
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road E156, Evanston, IL 60208-3120, USA
| | - Lonnie D. Shea
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road E156, Evanston, IL 60208-3120, USA
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road E156, Evanston, IL 60208-3120, USA
- To whom correspondence and reprint requests should be addressed. Fax: +1 847 491 3728. E-mail:
| |
Collapse
|
41
|
Petrie NC, Vranckx JJ, Hoeller D, Yao F, Eriksson E. Gene delivery of PDGF for wound healing therapy. J Tissue Viability 2005; 15:16-21. [PMID: 16302501 DOI: 10.1016/s0965-206x(05)54002-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Nicola C Petrie
- Laboratory of Wound Repair and Gene Transfer, Division of Plastic Surgery, Brigham and Women's Hospital, Boston, MA, USA
| | | | | | | | | |
Collapse
|
42
|
Theopold C, Yao F, Eriksson E. Gene therapy in the treatment of lower extremity wounds. INT J LOW EXTR WOUND 2005; 3:69-79. [PMID: 15866792 DOI: 10.1177/1534734604265431] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This article presents a brief overview of the etiology of chronic wounds of the lower extremities and their current medical and surgical treatment. Gene therapy as a potential tool for treating therapeutically challenging wounds is described in terms of the vectors employed in gene transfer, as well as the strategies used to promote wound healing. Results from animal model studies, as well as clinical trials, are presented.
Collapse
Affiliation(s)
- Christoph Theopold
- Division of Plastic Surgery, Brigham and Women's Hospital, Boston, MA 02115, USA
| | | | | |
Collapse
|
43
|
Ferguson M, Byrnes C, Sun L, Marti G, Bonde P, Duncan M, Harmon JW. Wound Healing Enhancement: Electroporation to Address a Classic Problem of Military Medicine. World J Surg 2005; 29 Suppl 1:S55-9. [PMID: 15815830 DOI: 10.1007/s00268-004-2062-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The major goal of wound healing biology is to determine how a wound can be induced to repair damaged tissue faster and more efficiently. Enhancement of dermal and epidermal regeneration is an extremely important goal for the treatment of many different types of wounds. Exogenous application of growth factors to the wound site has been shown to have potential to improve wound healing. Frequent applications of large amounts of growth factor have been required. This is because proteases in the wound quickly destroy peptide growth factor. Gene therapy has the potential to produce growth factors deep within the wound, where they can be effective as well as able to constantly replenish growth factor that is destroyed by peptidases. We have shown that application of plasmid DNA expression vectors directly into the wound is an inefficient modality. Electroporation, the application of an electrical field across cells to permeabilize the cell membrane has led us to explore the possibility of utilizing the technique to enhance transfection efficiency. We have identified electroporation parameters that improve the efficiency of DNA transfection in cutaneous wounds, and we have shown that electroporation itself does not impair wound healing. We are now on the threshold of exploring whether electroporation-assisted transfection with DNA plasmid expression vectors for growth factors will be an effective modality for enhancing cutaneous wound healing.
Collapse
Affiliation(s)
- Mark Ferguson
- Section of Surgical Sciences, Johns Hopkins Bayview Medical Center, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Krein PM, Huang Y, Winston BW. Growth factor regulation and manipulation in wound repair: to scar or not to scar, that is the question. Expert Opin Ther Pat 2005. [DOI: 10.1517/13543776.11.7.1065] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
45
|
Eming SA, Krieg T, Davidson JM. Gene transfer in tissue repair: status, challenges and future directions. Expert Opin Biol Ther 2005; 4:1373-86. [PMID: 15335305 DOI: 10.1517/14712598.4.9.1373] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Wound repair involves a complex interaction of various cell types, extracellular matrix molecules and soluble mediators. Details on signals controlling wound cell activities are beginning to emerge. In recent years this knowledge has been applied to a number of therapeutic strategies in soft tissue repair. Key challenges include re-adjusting the adult repair process in order to augment diseased healing processes, and providing the basis for a regenerative rather than a reparative wound environment. In particular, the local delivery of pluripotent growth factor molecules to the injured tissue has been intensively investigated over the past decade. Limited success of clinical trials indicates that an important aspect of the growth factor wound-healing paradigm is the effective delivery of these polypeptides to the wound site. A molecular genetic approach in which genetically modified cells synthesise and deliver the desired growth factor in a time-regulated manner is a powerful means to overcome the limitations associated with the (topical) application of recombinant growth factor proteins. This article summarises repair mechanisms and their failure, and gives an overview of techniques and studies applied to gene transfer in tissue repair. It also provides perspectives on potential targets for gene transfer technology.
Collapse
Affiliation(s)
- Sabine A Eming
- University of Cologne, Department of Dermatology, Cologne, Joseph-Stelzmann Str. 9, 50931 Köln, Germany.
| | | | | |
Collapse
|
46
|
Abstract
The skin is an attractive target for gene therapy because it is easily accessible and shows great potential as an ectopic site for protein delivery in vivo. Genetically modified epidermal cells can be used to engineer three-dimensional skin substitutes, which when transplanted can act as in vivo 'bioreactors' for delivery of therapeutic proteins locally or systemically. Although some gene transfer technologies have the potential to afford permanent genetic modification, differentiation and eventual loss of genetically modified cells from the epidermis results in temporary transgene expression. Therefore, to achieve stable long-term gene expression, it is critical to deliver genes to epidermal stem cells, which possess unlimited growth potential and self-renewal capacity. This review discusses the recent advances in epidermal stem cell isolation, gene transfer and engineering of skin substitutes. Recent efforts that employ gene therapy and tissue engineering for the treatment of genetic diseases, chronic wounds and systemic disorders, such as leptin deficiency or diabetes, are reviewed. Finally, the use of gene-modified tissue-engineered skin as a biological model for understanding tissue development, wound healing and epithelial carcinogenesis is also discussed.
Collapse
Affiliation(s)
- Stelios T Andreadis
- University at Buffalo, Bioengineering Laboratory, Department of Chemical and Biological Engineering, State University of New York, Amherst, NY 14260, USA.
| |
Collapse
|
47
|
Bellocq NC, Kang DW, Wang X, Jensen GS, Pun SH, Schluep T, Zepeda ML, Davis ME. Synthetic Biocompatible Cyclodextrin-Based Constructs for Local Gene Delivery to Improve Cutaneous Wound Healing. Bioconjug Chem 2004; 15:1201-11. [PMID: 15546185 DOI: 10.1021/bc0498119] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The localized, sustained delivery of growth factors for wound healing therapy is actively being explored by gene transfer to the wound site. Biocompatible matrices such as bovine collagen have demonstrated usefulness in sustaining gene therapy vectors that express growth factors in local sites for tissue repair. Here, new synthetic biocompatible materials are prepared and shown to deliver a protein to cultured cells via the use of an adenoviral delivery vector. The synthetic construct consists of a linear, beta-cyclodextrin-containing polymer and an adamantane-based cross-linking polymer. When the two polymers are combined, they create an extended network by the formation of inclusion complexes between the cyclodextrins and adamantanes. The properties of the network are altered by controlling the polymer molecular weights and the number of adamantanes on the cross-linking polymer, and these modifications and others such as replacement of the beta-cyclodextrin (host) and adamantane (guest) with other cyclodextrins (hosts such as alpha, gamma, and substituted members) and inclusion complex forming molecules (guests) provide the ability to rationally design network characteristics. Fibroblasts exposed to these synthetic constructs show proliferation rates and migration patterns similar to those obtained with collagen. Gene delivery (green fluorescent protein) to fibroblasts via the inclusion of adenoviral vectors in the synthetic construct is equivalent to levels observed with collagen. These in vitro results suggest that the synthetic constructs are suitable for in vivo tissue repair applications.
Collapse
Affiliation(s)
- Nathalie C Bellocq
- Insert Therapeutics, Inc., 2585 Nina Street, Pasadena, California 91107, USA
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Carlson MA, Longaker MT. The fibroblast-populated collagen matrix as a model of wound healing: a review of the evidence. Wound Repair Regen 2004; 12:134-47. [PMID: 15086764 DOI: 10.1111/j.1067-1927.2004.012208.x] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The fibroblast-populated collagen matrix (FPCM) has been utilized as an in vitro model of wound healing for more than 2 decades. It offers a reasonable approximation of the healing wound during the phases of established granulation tissue and early scar. The gross and microscopic morphology of the FPCM and the healing wound are similar at analogous phases. The processes of proliferation, survival/apoptosis, protein synthesis, and contraction act in similar directions in these two models, and the response to exogenous agents also is consistent between them. If its limitations are respected, then the FPCM can be used as a model of the healing wound.
Collapse
Affiliation(s)
- Mark A Carlson
- Department of Surgery, University of Nebraska Medical Center and the Omaha VA Medical Center, Omaha, Nebraska 68105, USA.
| | | |
Collapse
|
49
|
Byrnes CK, Malone RW, Akhter N, Nass PH, Wetterwald A, Cecchini MG, Duncan MD, Harmon JW. Electroporation enhances transfection efficiency in murine cutaneous wounds. Wound Repair Regen 2004; 12:397-403. [PMID: 15260804 DOI: 10.1111/j.1067-1927.2004.012409.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Transfection of wounds with DNA-encoding growth factors has the potential to improve healing, but current means of nonviral gene delivery are inefficient. Repeated high doses of DNA, necessary to achieve reliable gene expression, are detrimental to healing. We assessed the ability of in vivo electroporation to enhance gene expression. Full-thickness cutaneous excisional wounds were created on the dorsum of female mice. A luciferase- encoding plasmid driven by a CMV promoter was injected at the wound border. Following plasmid administration, electroporative pulses were applied to injection sites. Pulse parameters were varied over a range of voltage, duration, and number. Animals were euthanized at intervals after transfection and the luciferase activity measured. Application of electric pulses consistently increased luciferase expression. The electroporative effect was most marked at a plasmid dose of 50 micro g, where an approximate tenfold increase was seen. Six 100- micro s-duration pulses of 1750 V/cm were found to be the most effective in increasing luciferase activity. High numbers of pulses tended to be less effective than smaller numbers. This optimal electroporation regimen had no detrimental effect on wound healing. We conclude that electroporation increases the efficiency of transgene expression and may have a role in gene therapy to enhance wound healing.
Collapse
Affiliation(s)
- Colman K Byrnes
- Section of Surgical Sciences, Johns Hopkins Medical Institutions, Johns Hopkins Bayview Medical Center, 4940 Eastern Avenue, Baltimore, MD 21224, USA
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Anusaksathien O, Webb SA, Jin QM, Giannobile WV. Platelet-derived growth factor gene delivery stimulates ex vivo gingival repair. ACTA ACUST UNITED AC 2004; 9:745-56. [PMID: 13678451 PMCID: PMC2586961 DOI: 10.1089/107632703768247421] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Destruction of tooth support due to the chronic inflammatory disease periodontitis is a major cause of tooth loss. There are limitations with available treatment options to tissue engineer soft tissue periodontal defects. The exogenous application of growth factors (GFs) such as platelet-derived growth factor (PDGF) has shown promise to enhance oral and periodontal tissue regeneration. However, the topical administration of GFs has not led to clinically significant improvements in tissue regeneration because of problems in maintaining therapeutic protein levels at the defect site. The utilization of PDGF gene transfer may circumvent many of the limitations with protein delivery to soft tissue wounds. The objective of this study was to test the effect of PDGF-A and PDGF-B gene transfer to human gingival fibroblasts (HGFs) on ex vivo repair in three-dimensional collagen lattices. HGFs were transduced with adenovirus encoding PDGF-A and PDGF-B genes. Defect fill of bilayer collagen gels was measured by image analysis of cell repopulation into the gingival defects. The modulation of gene expression at the defect site and periphery was measured by RT-PCR during a 10-day time course after gene delivery. The results demonstrated that PDGF-B gene transfer stimulated potent (>4-fold) increases in cell repopulation and defect fill above that of PDGF-A and corresponding controls. PDGF-A and PDGF-B gene expression was maintained for at least 10 days. PDGF gene transfer upregulated the expression of phosphatidylinosital 3-kinase and integrin alpha5 subunit at 5 days after adenovirus transduction. These results suggest that PDGF gene transfer has potential for periodontal soft tissue-engineering applications.
Collapse
Affiliation(s)
- Orasa Anusaksathien
- Center for Craniofacial Regeneration and Department of Periodontics, Prevention, and Geriatrics, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109-1078, USA
| | | | | | | |
Collapse
|