1
|
Yu Y, Zhao B, Li J, Yang J, Bao Z, Cai J, Chen Y, Wu X. (-)-Epigallocatechin-3-gallate promotes the dermal papilla cell proliferation and migration through the induction of VEGFA. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119902. [PMID: 39814186 DOI: 10.1016/j.bbamcr.2025.119902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/03/2025] [Accepted: 01/08/2025] [Indexed: 01/18/2025]
Abstract
Dermal papilla cells (DPCs) are crucial for the growth and development of hair follicles (HF). (-)-Epigallocatechin-3-gallate (EGCG) is the primary catechin identified in green tea, which has antioxidant effects and regulates cell activity. This study demonstrates that EGCG could promote the proliferation of DPCs. In addition, EGCG treatment significantly upregulated the expression of PCNA, CCND1, HIF-1α, VEGFA, and Bcl-2 mRNAs in DPCs, while significantly reducing the gene expression of Bax. The optimal concentration of EGCG addition was screened. When detecting the antioxidant ability of DPCs, treatment with 0.5 μM EGCG could intensify the relative activity of catalase, superoxide dismutase, and glutathione, promoting the antioxidant ability and migration of DPCs. Subsequently, the differentially expressed genes (DEGs) associated with the EGCG treatment in DPCs were identified by RNA sequencing, revealing 21 DEGs, including VEGFA, POSTN, CLU, SERPINE2, and NPY. As the candidate gene, the role of VEGFA in regulating HF growth and development was investigated. Immunofluorescence staining revealed that EGCG treatment enhanced the fluorescence intensity of VEGFA and CLU in DPCs. After VEGFA overexpression and knockdown in DPCs, it was found to regulate the HF growth and the expression of development-related genes, enhance the expression of proliferating cell nuclear antigen, and promote DPCs proliferation. EGCG could also rescue the siRNA-VEGFA effect in DPCs. Thus, this study demonstrates that EGCG possibly regulates cell viability in DPCs by inducing VEGFA expression level, and provides a reference for exploring the mechanism of HF growth and the treatment of hair-related illnesses.
Collapse
Affiliation(s)
- Yongqi Yu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Bohao Zhao
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Jiali Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Jie Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Zhiyuan Bao
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Jiawei Cai
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yang Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Xinsheng Wu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
2
|
Zeng Q, Ma Y, Cai R, Li X, Luo Y, Zheng B, Wang G, Xu X, Wang X, Liu Z. Direct reprogramming of human fibroblasts into hair-inducing dermal papilla cell-like cells by a single small molecule. Biochem Pharmacol 2025; 233:116744. [PMID: 39798934 DOI: 10.1016/j.bcp.2025.116744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 12/12/2024] [Accepted: 01/06/2025] [Indexed: 01/15/2025]
Abstract
Dermal papilla cells (DPCs) are a crucial subset of mesenchymal cells in the skin responsible for regulating hair follicle development and growth, making them invaluable for cell-based therapies targeting hair loss. However, obtaining sufficient DPCs with potent hair-inducing abilities remains a persistent challenge. In this study, the Food and Drug Administration (FDA)-approved drug library was utilized to screen small molecules capable of reprogramming readily accessible human skin fibroblasts into functional DPCs. In the initial screening, five candidate small molecules were identified from a pool of 1,817 compounds, and the small molecule peficitinib was further identified by the further hair follicle regeneration experiments. Following peficitinib treatment, fibroblasts derived from primary human foreskin and scalp exhibited the capability to induce hair growth and possessed a molecular profile highly similar to that of primary DPCs. We refer to these cells as dermal papilla cell-like cells (DPC-LCs). Furthermore, transcriptome analysis showed that the wingless/integrated (Wnt) signaling pathway and the transforming growth factor β (TGF-β) signaling pathway, both of which play crucial roles in hair follicle morphogenesis, are upregulated and enriched in these DPC-LCs. These functional DPC-LCs offer a promising avenue for obtaining a plentiful supply of hair-inducing cells, thereby advancing the development of therapeutic strategies for hair loss treatment.
Collapse
Affiliation(s)
- Qinglan Zeng
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
| | - Yihe Ma
- Department of Respiratory and Allergy, Third Affiliated Hospital of Shenzhen University, Shenzhen 518020, China; State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Ruizhao Cai
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510275, China
| | - Xinxin Li
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China; Center for Child Care and Mental Health, Shenzhen Children's Hospital Affiliated to Shantou University Medical College, Shenzhen 518026, China
| | - Yilin Luo
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
| | - Binkai Zheng
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
| | - Gaofeng Wang
- Department of Pastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou 510515, China
| | - Xuejuan Xu
- Department of Endocrinology, The First People's Hospital of Foshan, Foshan 528000, China.
| | - Xusheng Wang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China.
| | - Zhongjie Liu
- Department of Anesthesiology, Shenzhen Children's Hospital, Yitian Road 7019, Shenzhen 518000, China.
| |
Collapse
|
3
|
Hyun J, Lee SY, An J, Lee YB, Bhang SH. Strengthening the cellular function of dermal fibroblasts and dermal papilla cells using nanovesicles extracted from stem cells using blue light-based photobiomodulation technology. Biomater Sci 2025; 13:1209-1221. [PMID: 39902823 DOI: 10.1039/d4bm01591f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Human dermal fibroblasts (hDFs) play a critical role in skin health by producing extracellular matrix (ECM) components essential for structural stability, while hair follicle dermal papilla cells (HFDPCs) are key to hair follicle growth and regeneration. However, factors such as UV radiation, oxidative stress, and aging impair the functions of hDFs and HFDPCs, leading to decrement in ECM production and skin maintenance and hair loss conditions like alopecia. Recent advances in nanovesicles (NVs) derived from human adipose-derived stem cells (hADSCs) have shown an innovative way in the regenerative medicine field, particularly with promise for enhancing the functionality of diverse cell types. NVs, filled with diverse bioactive molecules, are non-immunogenic, biologically stable, and capable of promoting cellular activities. To further enhance the therapeutic potential of NVs, photobiomodulation (PBM) using blue light has emerged as a promising application. Optimized blue light irradiation can induce moderate levels of reactive oxygen species production in hADSCs, activating signaling pathways that upregulate angiogenic and regenerative markers in hADSCs. In this study, blue light-irradiated NVs demonstrated superior efficacy in promoting hDF proliferation, ECM synthesis, and the functionality of HFDPCs, resulting in enhanced skin maintenance and hair follicle regeneration. This approach presents a safer and more efficient way for treating skin and hair disorders, highlighting the potential use of blue light-irradiated NVs as an innovative therapeutic strategy.
Collapse
Affiliation(s)
- Jiyu Hyun
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Sang Yoon Lee
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Jiseon An
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - You Bin Lee
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Suk Ho Bhang
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
4
|
Liu J, Liu B, Mu Q, Liu J, Li Y, Gong W, Chahaer T, Song Y, Hai E, Wang H, Zhang Y, Zhao Y. Melatonin promotes the proliferation of dermal papilla cells in cashmere goats via activation of chi-let-7d-5p/WNT2 axis. Genomics 2024; 116:110961. [PMID: 39577785 DOI: 10.1016/j.ygeno.2024.110961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 11/01/2024] [Accepted: 11/08/2024] [Indexed: 11/24/2024]
Abstract
Exogenous melatonin promotes the differentiation of secondary hair follicles in Cashmere goats, thereby improving cashmere production. MicroRNAs (miRNAs) play a crucial role in regulating post-transcriptional gene expression and influence hair follicle growth. However, the mechanism through which melatonin regulates hair follicle development via miRNA mediation remains unclear. In this study, we used RNA-seq to identify differentially expressed (DE) miRNAs during melatonin-induced growth of secondary hair follicles in inner Mongolian Cashmere goats. In total, 170 DE miRNAs were identified. Enrichment analysis revealed that the target genes of these DE miRNAs were related to biological processes such as protein modification; cytoskeletal components; and the Notch, Wnt, and MAPK signaling pathways. The miRNA-mRNA regulatory network suggested that the DE miRNA chi-let-7d-5p negatively regulates WNT2 expression. Mechanistic studies revealed that melatonin promotes the proliferation of DP cells in Cashmere goats via the chi-let-7d-5p/WNT2 axis.
Collapse
Affiliation(s)
- Junyang Liu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China; Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
| | - Bin Liu
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
| | - Qing Mu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China; Inner Mongolia Key Laboratory of Sheep & Goat Genetics Breeding and Reproduction, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Jiasen Liu
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
| | - Yunhua Li
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
| | - Wendian Gong
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Tergel Chahaer
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China; Inner Mongolia Key Laboratory of Sheep & Goat Genetics Breeding and Reproduction, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Yukun Song
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China; Inner Mongolia Key Laboratory of Sheep & Goat Genetics Breeding and Reproduction, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Erhan Hai
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China; Inner Mongolia Key Laboratory of Sheep & Goat Genetics Breeding and Reproduction, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Haoyuan Wang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China; Inner Mongolia Key Laboratory of Sheep & Goat Genetics Breeding and Reproduction, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Yanjun Zhang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China; Inner Mongolia Key Laboratory of Sheep & Goat Genetics Breeding and Reproduction, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Yanhong Zhao
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China; Inner Mongolia Key Laboratory of Sheep & Goat Genetics Breeding and Reproduction, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China.
| |
Collapse
|
5
|
Zhang HL, Qiu XX, Liao XH. Dermal Papilla Cells: From Basic Research to Translational Applications. BIOLOGY 2024; 13:842. [PMID: 39452150 PMCID: PMC11504027 DOI: 10.3390/biology13100842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/13/2024] [Accepted: 10/18/2024] [Indexed: 10/26/2024]
Abstract
As an appendage of the skin, hair protects against ultraviolet radiation and mechanical damage and regulates body temperature. It also reflects an individual's health status and serves as an important method of expressing personality. Hair loss and graying are significant psychosocial burdens for many people. Hair is produced from hair follicles, which are exclusively controlled by the dermal papilla (DP) at their base. The dermal papilla cells (DPCs) comprise a cluster of specialized mesenchymal cells that induce the formation of hair follicles during early embryonic development through interaction with epithelial precursor cells. They continue to regulate the growth cycle, color, size, and type of hair after the hair follicle matures by secreting various factors. DPCs possess stem cell characteristics and can be cultured and expanded in vitro. DPCs express numerous stemness-related factors, enabling them to be reprogrammed into induced pluripotent stem cells (iPSCs) using only two, or even one, Yamanaka factor. DPCs are an important source of skin-derived precursors (SKPs). When combined with epithelial stem cells, they can reconstitute skin and hair follicles, participating in the regeneration of the dermis, including the DP and dermal sheath. When implanted between the epidermis and dermis, DPCs can induce the formation of new hair follicles on hairless skin. Subcutaneous injection of DPCs and their exosomes can promote hair growth. This review summarizes the in vivo functions of the DP; highlights the potential of DPCs in cell therapy, particularly for the treatment of hair loss; and discusses the challenges and recent advances in the field, from basic research to translational applications.
Collapse
Affiliation(s)
- He-Li Zhang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China;
- School of Life Sciences, Shanghai University, Shanghai 200444, China;
| | - Xi-Xi Qiu
- School of Life Sciences, Shanghai University, Shanghai 200444, China;
| | - Xin-Hua Liao
- School of Life Sciences, Shanghai University, Shanghai 200444, China;
| |
Collapse
|
6
|
Park S, Kim H, Ahn HS, Na C, Shin YK. Hair Growth-Promoting Effect of Hydrangea serrata (Thunb.) Ser. Extract and Its Active Component Hydrangenol: In Vitro and In Vivo Study. Int J Mol Sci 2024; 25:10370. [PMID: 39408700 PMCID: PMC11477035 DOI: 10.3390/ijms251910370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 09/25/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
With the escalating prevalence of hair loss, the demand for effective hair loss treatment has surged. This study evaluated the effects of hot water extract of Hydrangea serrata (Thunb.) Ser. leaf (WHS) on hair growth, employing cell cultures, mice, and human skin organoid models. Both WHS and hydrangenol were found to enhance 5α-reductase inhibitory activity. WHS and hydrangenol have been shown to stimulate dermal papilla cell (DPC) growth, potentially through factors like keratinocyte growth factor (KGF), fibroblast growth factor 10 (FGF10), and transforming growth factor-β1 (TGF-β1). They also elevated the expression levels of keratin genes (K31 and K85) and the ceramide synthase (CerS3) gene, crucial clinical indicators of hair health. Furthermore, they exhibited notable anti-inflammatory and anti-androgenic properties by reducing the levels of tumor necrosis factor-α (TNF-α) and androgen signaling molecules, including androgen receptor (AR) and dickkopf-1 (DKK-1) gene expression. Oral administration of WHS to C57BL/6 mice for 3 weeks confirmed its hair growth-promoting effects, improving hair growth parameters and gene expression without significant changes in hair weight. Additionally, in a human skin organoid model, WHS was found to stimulate hair formation and augment the expression of follicle markers. These findings position WHS as a promising nutraceutical for promoting hair health, as evidenced by its efficacy in both in vitro and in vivo models.
Collapse
Affiliation(s)
| | | | | | | | - Yu-Kyong Shin
- Department of New Material Development, COSMAXBIO, Seongnam 13486, Republic of Korea; (S.P.); (H.K.); (H.S.A.); (C.N.)
| |
Collapse
|
7
|
Jin SE, Kim J, Sung JH. Recent approaches of antibody therapeutics in androgenetic alopecia. Front Pharmacol 2024; 15:1434961. [PMID: 39221145 PMCID: PMC11362041 DOI: 10.3389/fphar.2024.1434961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
Therapeutic antibodies (Abs) have been anticipated as promising alternatives to conventional treatments such as topical minoxidil and oral finasteride for androgenetic alopecia (AGA). Due to the high molecular weight of typical Abs, the half-life of subcutaneous Abs exceeds 2 weeks, allowing an administration intervals of once a month or longer. Direct injection into the areas of hair loss is also feasible, potentially enhancing treatment efficacy while minimizing systemic side effects. However, therapeutic Abs are rarely developed for AGA therapy due to the requirement to be responsiveness to androgens and to exist in the extracellular fluid or cell surface surrounding the hair follicle. In this review, we introduce recent progress of antibody therapeutics in AGA targeting the prolactin receptor, Interleukin-6 receptor, C-X-C motif chemokine ligand 12, and dickkopf 1. As therapeutic Abs for AGA are still in the early stages, targets need further validation and optimization for clinical application.
Collapse
Affiliation(s)
- Su-Eon Jin
- Epi Biotech Co., Ltd., Incheon, Republic of Korea
| | - Jino Kim
- New Hair Plastic Surgery Clinic, Seoul, Republic of Korea
| | | |
Collapse
|
8
|
Tang X, Zhang T, Wang B, Mao B, Zhang Q, Zhao J, Chen W, Cui S. Biotransformation of Cacumen platycladi Extract by Lactiplantibacillus plantarum CCFM1348 Promotes Hair Growth in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:11493-11502. [PMID: 38738816 DOI: 10.1021/acs.jafc.4c00807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Cacumen platycladi (CP) is a frequently used traditional Chinese medicine to treat hair loss. In this study, CP fermented by Lactiplantibacillus plantarum CCFM1348 increased the proliferation of human dermal papilla cells. In an in vivo assay, compared to nonfermented CP, postbiotics (fermented CP) and synbiotics (live bacteria with nonfermented CP) promoted hair growth in mice. The Wnt/β-catenin signaling pathway plays crucial roles in the development of hair follicles, including growth cycle restart and maintenance. Both postbiotics and synbiotics upregulated β-catenin, a major factor of the Wnt/β-catenin signaling pathway. Postbiotics and synbiotics also increased the vascular endothelial growth factor expression and decreased the BAX/Bcl2 ratio in the dorsal skin of mice. These results suggest that fermented CP by L. plantarum CCFM1348 may promote hair growth through regulating the Wnt/β-catenin signaling pathway, promoting the expression of growth factors and reducing apoptosis.
Collapse
Affiliation(s)
- Xin Tang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, Jiangsu, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, P. R. China
| | - Tongtong Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, Jiangsu, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, P. R. China
| | - Botao Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, Jiangsu, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, P. R. China
- Bloomage Biotechnology Co., Ltd, Jinan 250000, P. R. China
| | - Bingyong Mao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, Jiangsu, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, P. R. China
| | - Qiuxiang Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, Jiangsu, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, P. R. China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, Jiangsu, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, P. R. China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, Jiangsu, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, P. R. China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, Jiangsu, P. R. China
| | - Shumao Cui
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, Jiangsu, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, P. R. China
| |
Collapse
|
9
|
Kamishima T, Hirabe C, Myint KZY, Taguchi J. Divergent progression pathways in male androgenetic alopecia and female pattern hair loss: Trichoscopic perspectives. J Cosmet Dermatol 2024; 23:1828-1839. [PMID: 38189587 DOI: 10.1111/jocd.16177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/22/2023] [Accepted: 12/28/2023] [Indexed: 01/09/2024]
Abstract
BACKGROUND Despite similarities in progressive miniaturization of hair follicles and transition of terminal hairs to vellus hairs, insufficient trichoscopic comparisons between male androgenetic alopecia (MAGA) and female pattern hair loss (FPHL) hinder our ability to select effective treatments. AIM Our study aimed to explore gender-specific trichoscopic characteristics of MAGA and FPHL, while formulating hypotheses regarding the progression of these conditions across clinical stages. METHODS We classified 126 male MAGA subjects using Hamilton-Norwood Classification and 57 FPHL subjects using adopted Sinclair Scale. Subsequently, we analyzed nine trichoscopic factors divided into three categories: hair-diameter related, hair-number per follicular unit related, and hair density related factors. RESULTS Of the nine quantitative trichoscopic factors, hair-diameter and hair-number per follicular unit showed strong correlations with clinical stages in both genders. Hair density, a common trichoscopic factor for hair loss evaluation, weakly correlated with clinical stages in FPHL, but not at all in MAGA. In addition, MAGA was characterized by a progressive reduction in hair-diameter, followed by a reduction in hair-number per follicular unit. FPHL, on the contrary, showed the opposite progression. CONCLUSIONS Trichoscopic factors vary with disease severity in a gender-specific manner. Our research highlights that MAGA and FPHL involve two distinct streams: hair-diameter decreasing by hair follicle miniaturization (Stream 1), and hair-number per follicular unit decreasing by hair follicle tri-lineage niche dysfunction (Stream 2). MAGA typically starts from Stream 1 to Stream 2, while FPHL starts from Stream 2. These diverse progression pathways underscore the importance of personalized treatment approaches.
Collapse
Affiliation(s)
- Tomoko Kamishima
- Department of Dermatology, Tokyo Midtown Skin/Aesthetic Clinic Noage, Tokyo, Japan
| | - Chie Hirabe
- Department of Dermatology, Tokyo Midtown Skin/Aesthetic Clinic Noage, Tokyo, Japan
| | - Khin Zay Yar Myint
- Tokyo Midtown Center for Advanced Medical Science and Technology, Tokyo, Japan
| | | |
Collapse
|
10
|
Kiselev A, Park S. Immune niches for hair follicle development and homeostasis. Front Physiol 2024; 15:1397067. [PMID: 38711955 PMCID: PMC11070776 DOI: 10.3389/fphys.2024.1397067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 04/09/2024] [Indexed: 05/08/2024] Open
Abstract
The hair follicle is a dynamic mini-organ that has specialized cycles and architectures with diverse cell types to form hairs. Previous studies for several decades have investigated morphogenesis and signaling pathways during embryonic development and adult hair cycles in both mouse and human skin. In particular, hair follicle stem cells and mesenchymal niches received major attention as key players, and their roles and interactions were heavily revealed. Although resident and circulating immune cells affect cellular function and interactions in the skin, research on immune cells has mainly received attention on diseases rather than development or homeostasis. Recently, many studies have suggested the functional roles of diverse immune cells as a niche for hair follicles. Here, we will review recent findings about immune niches for hair follicles and provide insight into mechanisms of hair growth and diseases.
Collapse
Affiliation(s)
- Artem Kiselev
- Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI, United States
- Division of Dermatology, Department of Medicine, College of Human Medicine, Michigan State University, East Lansing, MI, United States
- Department of Pharmacology and Toxicology, College of Human Medicine, Michigan State University, East Lansing, MI, United States
| | - Sangbum Park
- Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI, United States
- Division of Dermatology, Department of Medicine, College of Human Medicine, Michigan State University, East Lansing, MI, United States
- Department of Pharmacology and Toxicology, College of Human Medicine, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
11
|
Kim Y, Lee JO, Lee JM, Lee MH, Kim HM, Chung HC, Kim DU, Lee JH, Kim BJ. Low Molecular Weight Collagen Peptide (LMWCP) Promotes Hair Growth by Activating the Wnt/GSK-3β/β-Catenin Signaling Pathway. J Microbiol Biotechnol 2024; 34:17-28. [PMID: 37830229 PMCID: PMC10840484 DOI: 10.4014/jmb.2308.08013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/05/2023] [Accepted: 09/21/2023] [Indexed: 10/14/2023]
Abstract
Low molecular weight collagen peptide (LMWCP) is a collagen hydrolysate derived from fish. We investigated the effects of LMWCP on hair growth using human dermal papilla cells (hDPCs), human hair follicles (hHFs), patch assay, and telogenic C57BL/6 mice, while also examining the underlying mechanisms of its action. LMWCP promoted proliferation and mitochondrial potential, and the secretion of hair growth-related factors, such as EGF, HB-EGF, FGF-4, and FGF-6 in hDPCs. Patch assay showed that LMWCP increased the neogeneration of new HFs in a dose-dependent manner. This result correlated with an increase in the expression of dermal papilla (DP) signature genes such as, ALPL, SHH, FGF7, and BMP-2. LMWCP upregulated phosphorylation of glycogen synthase kinase-3β (GSK-3β) and β-catenin, and nuclear translocation of β-catenin, and it increased the expression of Wnt3a, LEF1, VEGF, ALP, and β-catenin. LMWCP promoted the growth of hHFs and increased the expression of β-catenin and VEGF. Oral administration of LMWCP to mice significantly stimulated hair growth. The expression of Wnt3a, β-catenin, PCNA, Cyclin D1, and VEGF was also elevated in the back skin of the mice. Furthermore, LMWCP increased the expression of cytokeratin and Keratin Type I and II. Collectively, these findings demonstrate that LMWCP has the potential to increase hair growth via activating the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Yujin Kim
- Department of Dermatology, College of Medicine, Chung-Ang University, Seoul 06974, Republic of Korea
- Department of Medicine, Graduate School, Chung-Ang University, Seoul 06973, Republic of Korea
| | - Jung Ok Lee
- Department of Dermatology, College of Medicine, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Jung Min Lee
- Department of Dermatology, College of Medicine, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Mun-Hoe Lee
- Health Food Research and Development, NEWTREE Co., Ltd., Seoul 05604, Republic of Korea
| | - Hyeong-Min Kim
- Health Food Research and Development, NEWTREE Co., Ltd., Seoul 05604, Republic of Korea
| | - Hee-Chul Chung
- Health Food Research and Development, NEWTREE Co., Ltd., Seoul 05604, Republic of Korea
| | - Do-Un Kim
- Health Food Research and Development, NEWTREE Co., Ltd., Seoul 05604, Republic of Korea
| | - Jin-Hee Lee
- Health Food Research and Development, NEWTREE Co., Ltd., Seoul 05604, Republic of Korea
| | - Beom Joon Kim
- Department of Dermatology, College of Medicine, Chung-Ang University, Seoul 06974, Republic of Korea
- Department of Medicine, Graduate School, Chung-Ang University, Seoul 06973, Republic of Korea
| |
Collapse
|
12
|
Sun H, He Z, Zhao F, Hu J, Wang J, Liu X, Zhao Z, Li M, Luo Y, Li S. Spatiotemporal Expression Characterization of KRTAP6 Family Genes and Its Effect on Wool Traits. Genes (Basel) 2024; 15:95. [PMID: 38254984 PMCID: PMC10815594 DOI: 10.3390/genes15010095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Keratin-related proteins (KAPs) are structural components of wool fibers and are thought to play a key role in regulating the physical and mechanical properties of fibers. Among all KAP genes (KRTAPs), KRTAP6 gene family (KRTAP6-1, KRTAP6-2, KRTAP6-3, KRTAP6-4, and KRTAP6-5) is a very important member with high polymorphism and notable association with some wool traits. In this study, we used real-time fluorescence quantitative PCR (RT-qPCR) and in situ hybridization to investigate spatiotemporal expression of KRTAP6s. The results revealed that KRTAP6 family genes were significantly expressed during anagen compared to other stages (p < 0.05). And it was found the five genes were expressed predominantly in the dermal papillae, inner and outer root sheaths, and showed a distinct spatiotemporal expression pattern. Also, it was found that KRTAP6-1 and KRTAP6-5 mRNA expression was negatively correlated with wool mean fiber diameter (MFD) and mean staple strength (MSS) (p < 0.05). In summary, the KRTAP6 family genes share a similar spatiotemporal expression pattern. And KRTAP6-1 and KRTAP6-5 may regulate the MFD and MSS of Gansu Alpine fine-wool sheep wool by changing the expression.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Shaobin Li
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, International Wool Research Institute, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (H.S.); (Z.H.); (F.Z.); (J.H.); (J.W.); (X.L.); (Z.Z.); (M.L.); (Y.L.)
| |
Collapse
|
13
|
Hagiwara K, Kiso A, Ono S, Kitamura H, Yamanishi H, Tsunekawa Y, Iwabuchi T. 18-β-Glycyrrhetinic Acid Promotes Hair Growth by Stimulating the Proliferation of Dermal Papilla Cells and Outer Root Sheath Cells, and Extends the Anagen Phase by Inhibiting 5α-Reductase. Biol Pharm Bull 2024; 47:1392-1395. [PMID: 39085137 DOI: 10.1248/bpb.b24-00302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
18-β-Glycyrrhetinic acid, a major component of licorice, stimulated the proliferation of both dermal papilla cells and outer root sheath cells isolated from human hair follicles. Thus, suggesting that this compound promotes hair growth. Furthermore, this compound inhibited the activity of testosterone 5α-reductase, an enzyme responsible for converting androgen to dihydroandrogen, with an IC50 of 137.1 µM. 18-β-Glycyrrhetinic acid also suppressed the expression of transforming growth factor-β1 (TGF-β1), which shifts the hair cycle from the anagen phase to the telogen phase. It suggested that this compound may prolong the anagen phase. Based on these findings, this compound could be a potentially effective treatment for androgenetic alopecia.
Collapse
Affiliation(s)
- Kenta Hagiwara
- Faculty of Bioscience and Biotechnology, Tokyo University of Technology
| | - Akinori Kiso
- Research Center, Maruzen Pharmaceuticals Co., Ltd
| | - Shogo Ono
- Faculty of Bioscience and Biotechnology, Tokyo University of Technology
| | - Hiroaki Kitamura
- Faculty of Bioscience and Biotechnology, Tokyo University of Technology
| | - Haruyo Yamanishi
- Faculty of Bioscience and Biotechnology, Tokyo University of Technology
| | - Yuki Tsunekawa
- Faculty of Bioscience and Biotechnology, Tokyo University of Technology
| | - Tokuro Iwabuchi
- Faculty of Bioscience and Biotechnology, Tokyo University of Technology
| |
Collapse
|
14
|
Iwabuchi T, Ogura K, Hagiwara K, Ueno S, Kitamura H, Yamanishi H, Tsunekawa Y, Kiso A. Ginsenosides in Panax ginseng Extract Promote Anagen Transition by Suppressing BMP4 Expression and Promote Human Hair Growth by Stimulating Follicle-Cell Proliferation. Biol Pharm Bull 2024; 47:240-244. [PMID: 38246611 DOI: 10.1248/bpb.b23-00276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Studies showing that Panax ginseng promotes hair growth have largely been conducted using mice; there are few reports on how P. ginseng affects human hair growth. In particular, little is known about its effect on the telogen to anagen transition. To determine the effect of P. ginseng on human hair growth and the transition from the telogen to the anagen phase. The effects of P. ginseng extract (PGE) and the three major ginsenoside components, Rb1, Rg1, and Re, on the proliferation of human dermal papilla cells (DPCs) and human outer root sheath cells (ORSCs) were investigated. The effects of these compounds on the cell expression of bone morphogenetic protein 4 (BMP4), fibroblast growth factor 18 (FGF18) and Noggin were assessed by real-time PCR. The effect of PGE on hair-shaft elongation was determined in a human hair follicle organ-culture system. PGE and the three ginsenosides stimulated the proliferation of DPCs and ORSCs and suppressed BMP4 expression in DPCs but did not affect FGF18 expression in ORSCs and Noggin expression in DPCs. PGE stimulated hair-shaft growth. PGE and the ginsenosides Rb1, Rg1, and Re stimulate the transition from the telogen phase to anagen phase of the hair cycle by suppressing BMP4 expression in DPCs. These compounds might be useful for promoting the growth of human hair.
Collapse
Affiliation(s)
- Tokuro Iwabuchi
- Faculty of Bioscience and Biotechnology, Tokyo University of Technology
| | - Kazuki Ogura
- Faculty of Bioscience and Biotechnology, Tokyo University of Technology
| | - Kenta Hagiwara
- Faculty of Bioscience and Biotechnology, Tokyo University of Technology
| | - Shogo Ueno
- Faculty of Bioscience and Biotechnology, Tokyo University of Technology
| | - Hiroaki Kitamura
- Faculty of Bioscience and Biotechnology, Tokyo University of Technology
| | - Haruyo Yamanishi
- Faculty of Bioscience and Biotechnology, Tokyo University of Technology
| | - Yuki Tsunekawa
- Faculty of Bioscience and Biotechnology, Tokyo University of Technology
| | - Akinori Kiso
- Research Center, Maruzen Pharmaceuticals Co., Ltd
| |
Collapse
|
15
|
Quílez C, Valencia L, González‐Rico J, Suárez‐Cabrera L, Amigo‐Morán L, Jorcano JL, Velasco D. In vitro induction of hair follicle signatures using human dermal papilla cells encapsulated in fibrin microgels. Cell Prolif 2024; 57:e13528. [PMID: 37539497 PMCID: PMC10771113 DOI: 10.1111/cpr.13528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/13/2023] [Accepted: 06/27/2023] [Indexed: 08/05/2023] Open
Abstract
Cellular spheroids have been described as an appropriate culture system to restore human follicle dermal papilla cells (hFDPc) intrinsic properties; however, they show a low and variable efficiency to promote complete hair follicle formation in in vivo experiments. In this work, a conscientious analysis revealed a 25% cell viability in the surface of the dermal papilla spheroid (DPS) for all culture conditions, questioning whether it is an appropriate culture system for hFDPc. To overcome this problem, we propose the use of human blood plasma for the generation of fibrin microgels (FM) with encapsulated hFDPc to restore its inductive signature, either in the presence or in the absence of blood platelets. FM showed a morphology and extracellular matrix composition similar to the native dermal papilla, including Versican and Collagen IV and increasing cell viability up to 85%. While both systems induce epidermal invaginations expressing hair-specific keratins K14, K15, K71, and K75 in in vitro skin cultures, the number of generated structures increases from 17% to 49% when DPS and FM were used, respectively. These data show the potential of our experimental setting for in vitro hair follicle neogenesis with wild adult hFDPc using FM, being a crucial step in the pursuit of human hair follicle regeneration therapies.
Collapse
Affiliation(s)
- Cristina Quílez
- Department of BioengineeringUniversidad Carlos III de MadridLeganésSpain
- Fundación Instituto de Investigación Sanitaria de la Fundación Jiménez DíazMadridSpain
| | - Leticia Valencia
- Department of BioengineeringUniversidad Carlos III de MadridLeganésSpain
| | - Jorge González‐Rico
- Department of Continuum Mechanics and Structural AnalysisUniversidad Carlos III de MadridLeganésSpain
| | | | - Lidia Amigo‐Morán
- Department of BioengineeringUniversidad Carlos III de MadridLeganésSpain
| | - José Luis Jorcano
- Department of BioengineeringUniversidad Carlos III de MadridLeganésSpain
- Instituto De Investigacion Sanitaria Gregorio MarañonMadridSpain
| | - Diego Velasco
- Department of BioengineeringUniversidad Carlos III de MadridLeganésSpain
- Fundación Instituto de Investigación Sanitaria de la Fundación Jiménez DíazMadridSpain
- Instituto De Investigacion Sanitaria Gregorio MarañonMadridSpain
| |
Collapse
|
16
|
Qi WH, Liu T, Zheng CL, Zhao Q, Zhou N, Zhao GJ. Identification of Potential miRNA-mRNA Regulatory Network Associated with Growth and Development of Hair Follicles in Forest Musk Deer. Animals (Basel) 2023; 13:3869. [PMID: 38136906 PMCID: PMC10740511 DOI: 10.3390/ani13243869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/05/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
In this study, sRNA libraries and mRNA libraries of HFs of FMD were constructed and sequenced using an Illumina HiSeq 2500, and the expression profiles of miRNAs and genes in the HFs of FMD were obtained at the anagen and catagen stages. In total, 565 differentially expressed unigenes (DEGs) were identified, 90 of which were upregulated and 475 of which were downregulated. In the BP category of GO enrichment, the DEGs were enriched in the processes related to HF development and differentiation, including the hair cycle regulation and processes, HF development, skin epidermis development, regulation of HF development, skin development, the Wnt signaling pathway, and the BMP signaling pathway. Through KEGG analysis it was found that DEGs were significantly enriched in pathways associated with HF development and growth. A total of 186 differentially expressed miRNAs (DEmiRNAs) were screened (p < 0.05) in the HFs of FMD at the anagen stage vs. the catagen stage, 33 of which were upregulated and 153 of which were downregulated. Through DEmiRNA-mRNA association analysis, we found DEmiRNAs and target genes that mainly play regulatory roles in HF development and growth. The enrichment analysis of DEmiRNA target genes revealed similarities with the enrichment results of DEGs associated with HF development. Notably, both sets of genes were enriched in key pathways such as the Notch signaling pathway, melanogenesis, the cAMP signaling pathway, and cGMP-PKG. To validate our findings, we selected 11 DEGs and 11 DEmiRNAs for experimental verification using RT-qPCR. The results of the experimental validation were consistent with the RNA-Seq results.
Collapse
Affiliation(s)
- Wen-Hua Qi
- College of Biological and Food Engineering, Chongqing Three Gorges University, Chongqing 404100, China; (W.-H.Q.); (T.L.); (Q.Z.)
| | - Ting Liu
- College of Biological and Food Engineering, Chongqing Three Gorges University, Chongqing 404100, China; (W.-H.Q.); (T.L.); (Q.Z.)
| | - Cheng-Li Zheng
- Sichuan Institute of Musk Deer Breeding, Chengdu 611830, China;
| | - Qi Zhao
- College of Biological and Food Engineering, Chongqing Three Gorges University, Chongqing 404100, China; (W.-H.Q.); (T.L.); (Q.Z.)
| | - Nong Zhou
- College of Biological and Food Engineering, Chongqing Three Gorges University, Chongqing 404100, China; (W.-H.Q.); (T.L.); (Q.Z.)
| | - Gui-Jun Zhao
- Chongqing Institute of Medicinal Plant Cultivation, Chongqing 408435, China
| |
Collapse
|
17
|
Luo X, Liu J, Zhang P, Yu Y, Wu B, Jia Q, Liu Y, Xiao C, Cao Y, Jin H, Zhang L. Isolation, characterization and differentiation of dermal papilla cells from Small-tail Han sheep. Anim Biotechnol 2023; 34:3475-3482. [PMID: 36542538 DOI: 10.1080/10495398.2022.2156873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Dermal papilla cells (DPCs) are the key dermal component of the hair follicle that directly regulates hair follicle development, growth and regeneration. Successfully isolated and cultured DPCs from Small-tail Han sheep could provide a good model for the study of hair follicle development mechanism in vitro. DPCs were isolated using enzyme digestion and dissecting microscope from Small-tail Han sheep. Adherent cells were identified by cell characteristics, particular gene expression, differentiation capability to adipocyte and osteoblast using specific differentiation mediums. Additionally, flow cytometry was used to detect the cell cycle of DPCs. Cells originating from the dermal papilla showed the morphological appearance of mesenchymal cells (fibroblast-like cells). Purified DPCs were positive for α-SMA (α smooth muscle actin) and vimentin; in addition to their strong proliferation abilities in vitro, these DPCs can be differentiated into adipocyte and osteoblasts lineage under appropriate culture condition. DPCs were successfully isolated and subcultured from Small-tail Han sheep, which exhibited progenitor cell features and multiple differentiation potency. It provides a material for studying the molecular mechanism of hair follicle development and hair cycle, which will promote wool production in the future.
Collapse
Affiliation(s)
- Xinhui Luo
- Institute of Animal Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, Jilin, China
| | - Jianqiang Liu
- Institute of Animal Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, Jilin, China
| | - Pengju Zhang
- Institute of Animal Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, Jilin, China
| | - Yongsheng Yu
- Institute of Animal Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, Jilin, China
| | - Bin Wu
- Institute of Animal Sciences, Jilin Academy of Agricultural Sciences, Changchun, Jilin, China
| | - Qi Jia
- Institute of Animal Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, Jilin, China
- Agriculture College, Yanbian University, Yanji, Jilin, China
| | - Yanguang Liu
- Institute of Animal Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, Jilin, China
- Agriculture College, Yanbian University, Yanji, Jilin, China
| | - Cheng Xiao
- Institute of Animal Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, Jilin, China
| | - Yang Cao
- Institute of Animal Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, Jilin, China
| | - Haiguo Jin
- Institute of Animal Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, Jilin, China
| | - Lichun Zhang
- Institute of Animal Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, Jilin, China
| |
Collapse
|
18
|
Woo MJ, Kang HY, Paik SJ, Choi HJ, Uddin S, Lee S, Kim SY, Choi S, Jung SK. The In Vivo and In Vitro Effects of Terminalia bellirica (Gaertn.) Roxb. Fruit Extract on Testosterone-Induced Hair Loss. J Microbiol Biotechnol 2023; 33:1467-1474. [PMID: 37482816 DOI: 10.4014/jmb.2306.06004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/25/2023]
Abstract
Due to the continuous increase in patients with androgenetic alopecia (AGA) and psychological disorders such as depression and anxiety, the demand for hair loss treatment and effective hair growth materials has increased. Terminalia bellirica (Gaertn.) Roxb. (TBE) reportedly exerts anti-inflammatory, hepatoprotective, and antidiabetic effects, among others, but its effects on testosterone (TS)-inhibited hair growth remains unclear. In this study, we evaluated the effects of TBE on TS-induced hair growth regression in human follicle dermal papilla cells (HFDPCs) and C57BL/6 mice. Oral administration of TBE increased TS-induced hair growth retardation. Interestingly, effects were greater when compared with finasteride, a commercial hair loss treatment product. Histological analyses revealed that oral TBE administration increased hair follicles in the dorsal skin of C57BL/6 mice. Additionally, western blotting and immunofluorescence showed that oral TBE administration recovered the TS-induced inhibition of cyclin D1, proliferating cell nuclear antigen (PCNA), and Ki67 expression in vivo. Using in vitro proliferation assays, TBE promoted HFDPC growth, which was suppressed by TS treatment. Thus, TBE may be a promising nutraceutical for hair health as it promoted hair growth in AGA-like in vitro and in vivo models.
Collapse
Affiliation(s)
- Min Jeong Woo
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Ha Yeong Kang
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - So Jeong Paik
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Hee Jung Choi
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Salah Uddin
- Ethnobotanical Database of Bangladesh (EDB), 7/I, B.F.D.C Road, Tejgaon, Dhaka-1208, Bangladesh
| | - Sangwoo Lee
- International Biological Material Research Center, Korea Research Institute of Bioscience & Biotechnology, Daejeon 34141, Republic of Korea
| | - Soo-Yong Kim
- International Biological Material Research Center, Korea Research Institute of Bioscience & Biotechnology, Daejeon 34141, Republic of Korea
| | - Sangho Choi
- International Biological Material Research Center, Korea Research Institute of Bioscience & Biotechnology, Daejeon 34141, Republic of Korea
| | - Sung Keun Jung
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
- Research Institute of Tailored Food Technology, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
19
|
Muangsanguan A, Linsaenkart P, Chaitep T, Sangta J, Sommano SR, Sringarm K, Arjin C, Rachtanapun P, Jantanasakulwong K, Phimolsiripol Y, Castagnini JM, Ruksiriwanich W. Hair Growth Promotion and Anti-Hair Loss Effects of By-Products Arabica Coffee Pulp Extracts Using Supercritical Fluid Extraction. Foods 2023; 12:4116. [PMID: 38002174 PMCID: PMC10670875 DOI: 10.3390/foods12224116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/06/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Coffee has been a common ingredient in many traditional hair loss remedies, but limited scientific evidence supports its use, particularly in coffee pulp. Androgenetic alopecia (AGA) is caused by androgens, inflammation, and oxidative stress. In the present study, supercritical fluid extraction (SFE) was used under various conditions to obtain six coffee pulp extracts. The SFE-4 extract, using 50% (v/v) ethanol as a co-solvent at conditions of 100 °C and 500 bars for 30 min, exhibited the highest phenolic, flavonoid, and caffeine contents. Additionally, the SFE-4 extract increased the migration and cell proliferation of HFDPCs (human hair follicle dermal papilla cells), which control hair cycle regulation, and had scavenging effects on ABTS and DPPH radicals. Additionally, the SFE-4 extract showed potassium ion channel opener activity in HFDPCs, as well as a stimulation effect on the enzyme matrix metalloproteinase-2 (MMP-2) (28.53 ± 1.08% of control), which may be related to the vascular endothelial growth factor (VEGF) gene upregulation. In human prostate cancer cells (DU-145) and HFDPC cells, the SFE-4 extract significantly decreased the expression of SRD5A1, SRD5A2, and SRD5A3, an essential pathway involved in AGA. Hair growth factor genes in the Wnt/-catenin (CTNNB1) and Sonic Hedgehog (SHH, SMO, and GLI1) pathways could be significantly activated by the SFE-4 extract. These results imply that employing SFE in coffee pulp extraction could help AGA treatment by preventing hair loss and promoting hair growth pathways. This would help small coffee producers gain economic empowerment and ensure the long-term sustainability of agricultural waste utilization.
Collapse
Affiliation(s)
- Anurak Muangsanguan
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (A.M.); (P.L.); (T.C.)
- Master of Science Program in Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Pichchapa Linsaenkart
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (A.M.); (P.L.); (T.C.)
| | - Tanakarn Chaitep
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (A.M.); (P.L.); (T.C.)
| | - Jiraporn Sangta
- Interdisciplinary Program in Biotechnology, Graduate School, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Sarana Rose Sommano
- Cluster of Valorization and Bio-Green Transformation for Translation Research Innovation of Raw Materials and Products, Chiang Mai University, Chiang Mai 50200, Thailand; (S.R.S.); (K.S.)
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (P.R.); (K.J.); (Y.P.)
- Department of Plant and Soil Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Korawan Sringarm
- Cluster of Valorization and Bio-Green Transformation for Translation Research Innovation of Raw Materials and Products, Chiang Mai University, Chiang Mai 50200, Thailand; (S.R.S.); (K.S.)
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (P.R.); (K.J.); (Y.P.)
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Chaiwat Arjin
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Pornchai Rachtanapun
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (P.R.); (K.J.); (Y.P.)
- School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Kittisak Jantanasakulwong
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (P.R.); (K.J.); (Y.P.)
- School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Yuthana Phimolsiripol
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (P.R.); (K.J.); (Y.P.)
- School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Juan M. Castagnini
- Research Group in Innovative Technologies for Sustainable Food (ALISOST), Department of Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine, Faculty of Pharmacy, Universitat de València, Avenida Vicent Andrés Estellés s/n, 46100 Burjassot, Spain;
| | - Warintorn Ruksiriwanich
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (A.M.); (P.L.); (T.C.)
- Cluster of Valorization and Bio-Green Transformation for Translation Research Innovation of Raw Materials and Products, Chiang Mai University, Chiang Mai 50200, Thailand; (S.R.S.); (K.S.)
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (P.R.); (K.J.); (Y.P.)
| |
Collapse
|
20
|
Adav SS, Ng KW. Recent omics advances in hair aging biology and hair biomarkers analysis. Ageing Res Rev 2023; 91:102041. [PMID: 37634889 DOI: 10.1016/j.arr.2023.102041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/27/2023] [Accepted: 08/23/2023] [Indexed: 08/29/2023]
Abstract
Aging is a complex natural process that leads to a decline in physiological functions, which is visible in signs such as hair graying, thinning, and loss. Although hair graying is characterized by a loss of pigment in the hair shaft, the underlying mechanism of age-associated hair graying is not fully understood. Hair graying and loss can have a significant impact on an individual's self-esteem and self-confidence, potentially leading to mental health problems such as depression and anxiety. Omics technologies, which have applications beyond clinical medicine, have led to the discovery of candidate hair biomarkers and may provide insight into the complex biology of hair aging and identify targets for effective therapies. This review provides an up-to-date overview of recent omics discoveries, including age-associated alterations of proteins and metabolites in the hair shaft and follicle, and highlights the significance of hair aging and graying biomarker discoveries. The decline in hair follicle stem cell activity with aging decreased the regeneration capacity of hair follicles. Cellular senescence, oxidative damage and altered extracellular matrix of hair follicle constituents characterized hair follicle and hair shaft aging and graying. The review attempts to correlate the impact of endogenous and exogenous factors on hair aging. We close by discussing the main challenges and limitations of the field, defining major open questions and offering an outlook for future research.
Collapse
Affiliation(s)
- Sunil S Adav
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Kee Woei Ng
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore; Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, 637141, Singapore.
| |
Collapse
|
21
|
Lin SJ, Yue Z, Paus R. Clinical Pathobiology of Radiotherapy-Induced Alopecia: A Guide toward More Effective Prevention and Hair Follicle Repair. J Invest Dermatol 2023; 143:1646-1656. [PMID: 37294241 DOI: 10.1016/j.jid.2023.02.041] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 01/19/2023] [Accepted: 02/08/2023] [Indexed: 06/10/2023]
Abstract
Because hair follicles (HFs) are highly sensitive to ionizing radiation, radiotherapy-induced alopecia (RIA) is a core adverse effect of oncological radiotherapy. Yet, effective RIA-preventive therapy is unavailable because the underlying pathobiology remains underinvestigated. Aiming to revitalize interest in pathomechanism-tailored RIA management, we describe the clinical RIA spectrum (transient, persistent, progressive alopecia) and our current understanding of RIA pathobiology as an excellent model for studying principles of human organ and stem cell repair, regeneration, and loss. We explain that HFs respond to radiotherapy through two distinct pathways (dystrophic anagen or catagen) and why this makes RIA management so challenging. We discuss the responses of different HF cell populations and extrafollicular cells to radiation, their roles in HF repair and regeneration, and how they might contribute to HF miniaturization or even loss in persistent RIA. Finally, we highlight the potential of targeting p53-, Wnt-, mTOR-, prostaglandin E2-, FGF7-, peroxisome proliferator-activated receptor-γ-, and melatonin-associated pathways in future RIA management.
Collapse
Affiliation(s)
- Sung-Jan Lin
- Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan; Department of Dermatology, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan; Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan; Center for Frontier Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Zhicao Yue
- Department of Cell Biology and Medical Genetics, Shenzhen University Medical School, Shenzhen, China; International Cancer Center, Shenzhen University Medical School, Shenzhen, China; Guangdong Key Laboratory for Genome Stability and Disease Prevention, Shenzhen University Medical School, Shenzhen, China
| | - Ralf Paus
- Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA; Monasterium Laboratory, Münster, Germany; Cutaneon, Hamburg, Germany.
| |
Collapse
|
22
|
Sibony-Benyamini H, Aamar E, Enshell-Seijffers D. Hdac1 and Hdac2 regulate the quiescent state and survival of hair-follicle mesenchymal niche. Nat Commun 2023; 14:4820. [PMID: 37563109 PMCID: PMC10415406 DOI: 10.1038/s41467-023-40573-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/02/2023] [Indexed: 08/12/2023] Open
Abstract
While cell division is essential for self-renewal and differentiation of stem cells and progenitors, dormancy is required to maintain the structure and function of the stem-cell niche. Here we use the hair follicle to show that during growth, the mesenchymal niche of the hair follicle, the dermal papilla (DP), is maintained quiescent by the activity of Hdac1 and Hdac2 in the DP that suppresses the expression of cell-cycle genes. Furthermore, Hdac1 and Hdac2 in the DP promote the survival of DP cells throughout the hair cycle. While during growth and regression this includes downregulation of p53 activity and the control of p53-independent programs, during quiescence, this predominantly involves p53-independent mechanisms. Remarkably, Hdac1 and Hdac2 in the DP during the growth phase also participate in orchestrating the hair cycle clock by maintaining physiological levels of Wnt signaling in the vicinity of the DP. Our findings not only provide insight into the molecular mechanism that sustains the function of the stem-cell niche in a persistently changing microenvironment, but also unveil that the same mechanism provides a molecular toolbox allowing the DP to affect and fine tune the microenvironment.
Collapse
Affiliation(s)
- Hadas Sibony-Benyamini
- The Laboratory of Developmental Biology, The Azrieli Faculty of Medicine, Bar Ilan University, 8 Henrietta Szold, Safed, Israel
| | - Emil Aamar
- The Laboratory of Developmental Biology, The Azrieli Faculty of Medicine, Bar Ilan University, 8 Henrietta Szold, Safed, Israel
| | - David Enshell-Seijffers
- The Laboratory of Developmental Biology, The Azrieli Faculty of Medicine, Bar Ilan University, 8 Henrietta Szold, Safed, Israel.
| |
Collapse
|
23
|
Redmond LC, Limbu S, Farjo B, Messenger AG, Higgins CA. Male pattern hair loss: Can developmental origins explain the pattern? Exp Dermatol 2023; 32:1174-1181. [PMID: 37237288 PMCID: PMC10946844 DOI: 10.1111/exd.14839] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 05/04/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023]
Abstract
Male pattern hair loss (MPHL), also referred to as male androgenetic alopecia (AGA) is the most common type of non-scarring progressive hair loss, with 80% of men suffering from this condition in their lifetime. In MPHL, the hair line recedes to a specific part of the scalp which cannot be accurately predicted. Hair is lost from the front, vertex, and the crown, yet temporal and occipital follicles remain. The visual effect of hair loss is due to hair follicle miniaturisation, where terminal hair follicles become dimensionally smaller. Miniaturisation is also characterised by a shortening of the growth phase of the hair cycle (anagen), and a prolongation of the dormant phase (kenogen). Together, these changes result in the production of thinner and shorter hair fibres, referred to as miniaturised or vellus hairs. It remains unclear why miniaturisation occurs in this specific pattern, with frontal follicles being susceptible while occipital follicles remain in a terminal state. One main factor we believe to be at play, which will be discussed in this viewpoint, is the developmental origin of the skin and hair follicle dermis on different regions of the scalp.
Collapse
Affiliation(s)
| | - Summik Limbu
- Department of BioengineeringImperial College LondonLondonUK
| | | | | | | |
Collapse
|
24
|
Augustyniak A, McMahon H. Effect of Marine-Derived Saccharides on Human Skin Fibroblasts and Dermal Papilla Cells. Mar Drugs 2023; 21:330. [PMID: 37367655 DOI: 10.3390/md21060330] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/19/2023] [Accepted: 05/25/2023] [Indexed: 06/28/2023] Open
Abstract
The skin is the largest organ of the human body, composed of a diverse range of cell types, non-cellular components, and an extracellular matrix. With aging, molecules that are part of the extracellular matrix undergo qualitative and quantitative changes and the effects, such as a loss of skin firmness or wrinkles, can be visible. The changes caused by the aging process do not only affect the surface of the skin, but also extend to skin appendages such as hair follicles. In the present study, the ability of marine-derived saccharides, L-fucose and chondroitin sulphate disaccharide, to support skin and hair health and minimize the effects of intrinsic and extrinsic aging was investigated. The potential of the tested samples to prevent adverse changes in the skin and hair through stimulation of natural processes, cellular proliferation, and production of extracellular matrix components collagen, elastin, or glycosaminoglycans was investigated. The tested compounds, L-fucose and chondroitin sulphate disaccharide, supported skin and hair health, especially in terms of anti-aging effects. The obtained results indicate that both ingredients support and promote the proliferation of dermal fibroblasts and dermal papilla cells, provide cells with a supply of sulphated disaccharide GAG building blocks, increase ECM molecule production (collagen and elastin) by HDFa, and support the growth phase of the hair cycle (anagen).
Collapse
Affiliation(s)
- Aleksandra Augustyniak
- Circular Bioeconomy Research Group, Shannon Applied Biotechnology Centre, Munster Technological University-Kerry, Clash, V92CX88 Tralee, Co. Kerry, Ireland
| | - Helena McMahon
- Circular Bioeconomy Research Group, Shannon Applied Biotechnology Centre, Munster Technological University-Kerry, Clash, V92CX88 Tralee, Co. Kerry, Ireland
| |
Collapse
|
25
|
Jia Q, Zhang S, Wang D, Liu J, Luo X, Liu Y, Li X, Sun F, Xia G, Zhang L. Regulatory Effects of FGF9 on Dermal Papilla Cell Proliferation in Small-Tailed Han Sheep. Genes (Basel) 2023; 14:genes14051106. [PMID: 37239467 DOI: 10.3390/genes14051106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/12/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Fibroblast growth factor 9 (FGF9) is crucial for the growth and development of hair follicles (HFs); however, its role in sheep wool growth is unknown. Here, we clarified the role of FGF9 in HF growth in the small-tailed Han sheep by quantifying FGF9 expression in skin tissue sections collected at different periods. Moreover, we evaluated the effects of FGF9 protein supplementation on hair shaft growth in vitro and FGF9 knockdown on cultured dermal papilla cells (DPCs). The relationship between FGF9 and the Wnt/β-catenin signaling pathway was examined, and the underlying mechanisms of FGF9-mediated DPC proliferation were investigated. The results show that FGF9 expression varies throughout the HF cycle and participates in wool growth. The proliferation rate and cell cycle of FGF9-treated DPCs substantially increase compared to that of the control group, and the mRNA and protein expression of CTNNB1, a Wnt/β-catenin signaling pathway marker gene, is considerably lower than that in the control group. The opposite occurs in FGF9-knockdown DPCs. Moreover, other signaling pathways are enriched in the FGF9-treated group. In conclusion, FGF9 accelerates the proliferation and cell cycle of DPCs and may regulate HF growth and development through the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Qi Jia
- Institute of Animal Biotechnology, Jilin Academy of Agricultural Sciences, Gongzhuling 136100, China
- College of Agriculture, Yanbian University, Yanji 130021, China
| | - Shuangshuang Zhang
- Institute of Animal Biotechnology, Jilin Academy of Agricultural Sciences, Gongzhuling 136100, China
- College of Agriculture, Yanbian University, Yanji 130021, China
| | - Dan Wang
- College of Agriculture, Yanbian University, Yanji 130021, China
| | - Jianqiang Liu
- Institute of Animal Biotechnology, Jilin Academy of Agricultural Sciences, Gongzhuling 136100, China
| | - Xinhui Luo
- Institute of Animal Biotechnology, Jilin Academy of Agricultural Sciences, Gongzhuling 136100, China
| | - Yu Liu
- Institute of Animal Biotechnology, Jilin Academy of Agricultural Sciences, Gongzhuling 136100, China
| | - Xin Li
- Institute of Animal Biotechnology, Jilin Academy of Agricultural Sciences, Gongzhuling 136100, China
| | - Fuliang Sun
- College of Agriculture, Yanbian University, Yanji 130021, China
| | - Guangjun Xia
- College of Agriculture, Yanbian University, Yanji 130021, China
| | - Lichun Zhang
- Institute of Animal Biotechnology, Jilin Academy of Agricultural Sciences, Gongzhuling 136100, China
| |
Collapse
|
26
|
Abreu CM, Lago MEL, Pires J, Reis RL, da Silva LP, Marques AP. Gellan gum-based hydrogels support the recreation of the dermal papilla microenvironment. BIOMATERIALS ADVANCES 2023; 150:213437. [PMID: 37116455 DOI: 10.1016/j.bioadv.2023.213437] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 03/10/2023] [Accepted: 04/17/2023] [Indexed: 04/30/2023]
Abstract
The dermal papilla (DP), a specialized compartment within the hair follicle, regulates hair growth. However, human DP cells rapidly lose their inductivity in 2D-culture given the loss of positional and microenvironmental cues. Spheroids have been capable of recreating the 3D intercellular organization of DP cells, however, DP cell-matrix interactions are poorly represented. Considering the specific nature of the DP's extracellular matrix (ECM), we functionalized gellan gum (GG) with collagen IV-(HepIII) or fibronectin-(cRGDfC) derived peptide sequences to generate a 3D environment in which the phenotype and physiological functions of DP cells are restored. We further tuned the stiffness of the microenvironments by varying GG amount. Biomimetic peptides in stiffer hydrogels promoted the adhesion of DP cells, while each peptide and amount of polymer independently influenced the type and quantity of ECM proteins deposited. Furthermore, although peptides did not seem to have an influence, stiffer hydrogels improved the inductive capacity of DP cells after short term culture. Interestingly, independently of the peptide, these hydrogels supported the recapitulation of basic hair morphogenesis-like events when incorporated in an organotypic human skin in vitro model. Our work demonstrates that tailored GG hydrogels support the generation of a microenvironment in which both cell-ECM and cell-cell interactions positively influence DP cells towards the creation of an artificial DP.
Collapse
Affiliation(s)
- Carla M Abreu
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, Avepark, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Manuela E L Lago
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, Avepark, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Joana Pires
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, Avepark, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, Avepark, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Lucília P da Silva
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, Avepark, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Alexandra P Marques
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, Avepark, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
27
|
Huang D, Ding H, Wang Y, Cheng G, Wang X, Leng T, Zhao H. Hair Follicle Transcriptome Analysis Reveals Differentially Expressed Genes That Regulate Wool Fiber Diameter in Angora Rabbits. BIOLOGY 2023; 12:biology12030445. [PMID: 36979137 PMCID: PMC10045444 DOI: 10.3390/biology12030445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/15/2023]
Abstract
Wool fiber diameter (WFD) is an important index of wool traits and the main determinant of wool quality and value. However, the genetic determinants of fiber diameter have not yet been fully elucidated. Here, coarse and fine wool of Wan strain Angora rabbits and their hair follicle traits were characterized. The results indicated significant differences in the diameters of wool fibers and their hair follicles. The RNA sequencing (RNA-Seq) technique was used to identify differences in gene expression in hair follicles between coarse and fine wool. In total, 2574 differentially expressed genes (DEGs) were found between the two hair follicle groups. Transcription factors, keratin-associated protein (KAP) and keratin (KRT) families, and ECM-related genes may control the structure of fine fibers in rabbits. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses revealed that skin development, epidermal cell and keratinocyte differentiation, epithelium development, and Notch and ribosome signaling pathways were significantly enriched, respectively. GSEA further filtered six important pathways and related core genes. PPI analysis also mined functional DEGs associated with hair structure, including LEF1, FZD3, SMAD3, ITGB6, and BMP4. Our findings provide valuable information for researching the molecular mechanisms regulating wool fiber and could facilitate enhanced selection of super-fine wool rabbits through gene-assisted selection in the future.
Collapse
|
28
|
Shimizu Y, Ntege EH, Sunami H, Inoue Y. Regenerative medicine strategies for hair growth and regeneration: A narrative review of literature. Regen Ther 2022; 21:527-539. [DOI: 10.1016/j.reth.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/30/2022] [Accepted: 10/15/2022] [Indexed: 11/06/2022] Open
|
29
|
Baltenneck F, Genty G, Samra EB, Richena M, Harland DP, Clerens S, Leccia E, Le Balch M, Doucet J, Michelet JF, Commo S. Age-associated thin hair displays molecular, structural and mechanical characteristic changes. J Struct Biol 2022; 214:107908. [PMID: 36265530 DOI: 10.1016/j.jsb.2022.107908] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/29/2022] [Accepted: 10/11/2022] [Indexed: 12/05/2022]
Abstract
Hair thinning occurs during normal chronological aging in women and in men leading to an increased level of thinner hair shafts alongside original thicker shafts. However, the characteristics of age-associated thin hairs remain largely unknown. Here we analyzed these characteristics by comparing at multiscale thin and thick hairs originated from Caucasian women older than 50 years. We observed that the cortex of thick hair contains many K35(+)/K38(-) keratinocytes that decrease in number with decreasing hair diameter. Accordingly, X-ray diffraction revealed differences supporting that thin and thick hairs are different with regards to the nature of the intermediate filaments making up their cortices. In addition, we observed a direct correlation between hair ellipticity and diameter with thin hairs having an unexpected round shape compared to the elliptic shape of thick hairs. We also observed fewer cuticle layers and a reduced frequency of a medullae in thin hairs. Regarding mechanical properties, thin hairs exhibited a surprising increased rigidity, a decrease of the viscosity and a decrease of the water diffusion coefficient. Hence, aged-associated thin hairs exhibit numerous modifications likely due to changes of hair differentiation program as evidenced by the modulations in the expression of hair keratins and keratin-associated proteins and by the X-ray diffraction specters. Hence, hair thinning with age does not consist simply of the production of a smaller hair. It is rather a more profound process likely relying on the implementation of an "aged hair program" that takes place within the hair follicle.
Collapse
Affiliation(s)
| | - Gaianne Genty
- L'Oréal Research and Innovation, Aulnay-sous-Bois, France
| | | | | | | | | | | | | | | | | | - Stéphane Commo
- L'Oréal Research and Innovation, Aulnay-sous-Bois, France.
| |
Collapse
|
30
|
Joo HW, Kim MK, Bak SS, Sung YK. Bioengineering of Hair Follicle-like Structure for Validation of Hair Growth Promoting Compounds. Bioengineering (Basel) 2022; 9:645. [PMID: 36354556 PMCID: PMC9687544 DOI: 10.3390/bioengineering9110645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 10/31/2022] [Accepted: 10/31/2022] [Indexed: 08/30/2023] Open
Abstract
We aimed to establish screening and efficacy test techniques for use in the development of hair-promoting agents. To this end, we used the dermal papilla cell (DPc)-derived immortalized cell line (SV40T-hTERT DPc) and neonatal foreskin-derived keratinocyte cell line (Ker-CT) to form an immortalized cell-based hair follicle-like structure. The SV40T-hTERT DPc spheroids exhibited a higher cell ratio in the spheroids than primary DPc spheroids, and SV40T-hTERT DPc aggregated with spheroids larger in diameter than primary DPc when the same cell number was seeded into the low-adhesion plate. Microscopic imaging and fluorescence staining results indicated that both primary and immortalized cell combinations form a hair follicle-like structure with a long-stretched keratinocyte layer under the condition that the spheroids have the same diameter as that of in vivo dermal papillary tissue in the hair follicle. The hair follicle-like structure elongation was increased upon treatment with three known hair follicle growth-promoting compounds (minoxidil, tofacitinib, and ascorbic acid) compared with that in the control group. Therefore, using immortalized cells to generate a coherent follicle-like structure, we have developed models for screening and evaluating hair-care materials commonly used in the industry.
Collapse
Affiliation(s)
- Hyun Woo Joo
- Department of Immunology, School of Medicine, Kyungpook National University, Daegu 41944, Korea
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Sciences, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Min Kyu Kim
- Department of Immunology, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Soon Sun Bak
- Department of Immunology, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Young Kwan Sung
- Department of Immunology, School of Medicine, Kyungpook National University, Daegu 41944, Korea
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Sciences, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| |
Collapse
|
31
|
Castro AR, Portinha C, Logarinho E. The Emergent Power of Human Cellular vs Mouse Models in Translational Hair Research. Stem Cells Transl Med 2022; 11:1021-1028. [PMID: 35962707 PMCID: PMC9585950 DOI: 10.1093/stcltm/szac059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/17/2022] [Indexed: 11/27/2022] Open
Abstract
Different animal models have been used for hair research and regeneration studies based on the similarities between animal and human skins. Primary knowledge on hair follicle (HF) biology has arisen from research using mouse models baring spontaneous or genetically engineered mutations. These studies have been crucial for the discovery of genes underlying human hair cycle control and hair loss disorders. Yet, researchers have become increasingly aware that there are distinct architectural and cellular features between the mouse and human HFs, which might limit the translation of findings in the mouse models. Thus, it is enticing to reason that the spotlight on mouse models and the unwillingness to adapt to the human archetype have been hampering the emergence of the long-awaited human hair loss cure. Here, we provide an overview of the major limitations of the mainstream mouse models for human hair loss research, and we underpin a future course of action using human cell bioengineered models and the emergent artificial intelligence.
Collapse
Affiliation(s)
- Ana Rita Castro
- Aging and Aneuploidy Group, IBMC, Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.,i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Saúde Viável-Insparya Hair Center, Porto, Portugal.,Doctoral Program in Biomedical Engineering, Faculdade de Engenharia, Universidade do Porto, Porto, Portugal
| | | | - Elsa Logarinho
- Aging and Aneuploidy Group, IBMC, Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.,i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Saúde Viável-Insparya Hair Center, Porto, Portugal
| |
Collapse
|
32
|
Cellular Heterogeneity Facilitates the Functional Differences Between Hair Follicle Dermal Sheath Cells and Dermal Papilla Cells: A New Classification System for Mesenchymal Cells within the Hair Follicle Niche. Stem Cell Rev Rep 2022; 18:2016-2027. [PMID: 35849252 DOI: 10.1007/s12015-022-10411-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2022] [Indexed: 10/17/2022]
Abstract
Mesenchymal stem cells (MSCs) are known for their self-renewal and multi-lineage differentiation potential, with these cells often being evaluated in the regulation and maintenance of specific cellular niches including those of the hair follicle. Most mesenchymal stem cells in the hair follicles are housed in the dermal papilla (DP) and dermal sheath (DS), with both niches characterized by a broad variety of cellular subsets. However, while most previous studies describing the hair follicle mesenchymal niche treated all DP and DS cells as Hair Follicle Mesenchymal Stem Cells (HF-MSCs), the high number of cellular subsets would suggest that these cells are actually too heterogenous for such a broad definition. Given this we designed this study to evaluate the differentiation processes in these cells and used this data to create a new set of classifications for DP and DS cells, dividing them into "hair follicle mesenchymal stem cells (HF-MSCs)", "hair follicle mesenchymal progenitor cells (HF-MPCs)", and "hair follicle mesenchymal functional cells (HF-MFCs)". In addition, those cells that possess self-renewal and differentiation were re-named hair follicle derived mesenchymal multipotent cells (HF-MMCs). This new classification may help to further our understanding of the heterogeneity of hair follicle dermal cells and provide new insights into their evaluation.
Collapse
|
33
|
Yoshida Y, Takahashi M, Yamanishi H, Nakazawa Y, Kishimoto J, Ohyama M. Changes in the Expression of Smooth Muscle Cell–Related Genes in Human Dermal Sheath Cup Cells Associated with the Treatment Outcome of Autologous Cell–Based Therapy for Male and Female Pattern Hair Loss. Int J Mol Sci 2022; 23:ijms23137125. [PMID: 35806129 PMCID: PMC9266963 DOI: 10.3390/ijms23137125] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/20/2022] [Accepted: 06/23/2022] [Indexed: 02/04/2023] Open
Abstract
In a clinical study of autologous cell–based therapy using dermal sheath cup (DSC) cells, the treatment of hair loss showed improvements. However, the outcomes were variable. Here, correlations between marker gene expression in DSC cells and treatment outcomes were assessed to predict therapeutic efficacy. Overall, 32 DSC cell lines were used to evaluate correlations between marker gene expression and treatment outcomes. Correlations between vascular pericyte and preadipocyte marker expression and treatment outcomes were inconsistent. As smooth muscle cell markers, MYOCD correlated negatively with treatment outcomes and SRF consistently demonstrated an inverse correlation. Additionally, CALD1 correlated negatively and ACTA2 correlated inversely with treatment outcomes. DSC cell lines were divided into good and moderate/poor responders to further investigate the correlations. SRF and CALD1 were lower in a good responder compared with a moderate responder. Next, DSC cells were differentiated toward dermal papilla cells. Dermal papilla markers SOX2 and LEF1 before differentiation had moderate positive and inverse correlations with the treatment outcome, respectively. SOX2 after differentiation more consistently demonstrated a positive correlation. Significant downregulation of smooth muscle–related genes was also observed after differentiation. These findings revealed putative markers for preclinical evaluation of DSC cells to improve hair loss.
Collapse
Affiliation(s)
- Yuzo Yoshida
- Regenerative Medicine Research & Business Development Section, Shiseido FS Innovation Center, Yokohama 220-0011, Japan; (M.T.); (H.Y.); (Y.N.); (J.K.)
- Correspondence: (Y.Y.); (M.O.)
| | - Miki Takahashi
- Regenerative Medicine Research & Business Development Section, Shiseido FS Innovation Center, Yokohama 220-0011, Japan; (M.T.); (H.Y.); (Y.N.); (J.K.)
| | - Haruyo Yamanishi
- Regenerative Medicine Research & Business Development Section, Shiseido FS Innovation Center, Yokohama 220-0011, Japan; (M.T.); (H.Y.); (Y.N.); (J.K.)
| | - Yosuke Nakazawa
- Regenerative Medicine Research & Business Development Section, Shiseido FS Innovation Center, Yokohama 220-0011, Japan; (M.T.); (H.Y.); (Y.N.); (J.K.)
| | - Jiro Kishimoto
- Regenerative Medicine Research & Business Development Section, Shiseido FS Innovation Center, Yokohama 220-0011, Japan; (M.T.); (H.Y.); (Y.N.); (J.K.)
| | - Manabu Ohyama
- Department of Dermatology, Kyorin University Faculty of Medicine, Tokyo 181-8611, Japan
- Correspondence: (Y.Y.); (M.O.)
| |
Collapse
|
34
|
Lian L, Zhou C, Tang G, Xie M, Wang Z, Luo Z, Japo J, Wang D, Zhou J, Wang M, Li W, Maharjan S, Ruelas M, Guo J, Wu X, Zhang YS. Uniaxial and Coaxial Vertical Embedded Extrusion Bioprinting. Adv Healthc Mater 2022; 11:e2102411. [PMID: 34860472 DOI: 10.1002/adhm.202102411] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 11/22/2021] [Indexed: 12/12/2022]
Abstract
The 3D bioprinting technologies have attracted increasing attention due to their flexibility in producing architecturally relevant tissue constructs. Here, a vertical embedded extrusion bioprinting strategy using uniaxial or coaxial nozzles is presented, which allows formation of vertical structures of homogeneous or heterogeneous properties. By adjusting the bioprinting parameters, the characteristics of the bioprinted vertical patterns can be precisely controlled. Using this strategy, two proof-of-concept applications in tissue biofabrication are demonstrated. Specifically, intestinal villi and hair follicles, two liner-shaped tissues in the human body, are successfully generated with the vertical embedded bioprinting method, reconstructing some of their key structures as well as restoring partial functions in vitro. Caco-2 cells in the bioprinted intestinal villus constructs proliferated and aggregated properly, also showing functional biomarker expressions such as ZO-1 and villin. Moreover, preliminary hair follicle structures featuring keratinized human keratinocytes and spheroid-shaped human dermal papilla cells are formed after vertical bioprinting and culturing. In summary, this vertical embedded extrusion bioprinting technique harnessing a uniaxial or coaxial format will likely bring further improvements in the reconstruction of certain human tissues and organs, especially those with a linear structure, potentially leading to wide utilities in tissue engineering, tissue model engineering, and drug discovery.
Collapse
Affiliation(s)
- Liming Lian
- Division of Engineering in Medicine Department of Medicine Brigham and Women's Hospital Harvard Medical School Cambridge MA 02139 USA
| | - Cuiping Zhou
- Division of Engineering in Medicine Department of Medicine Brigham and Women's Hospital Harvard Medical School Cambridge MA 02139 USA
- Department of Emergency Nanfang Hospital Southern Medical University Guangzhou 510515 P. R. China
| | - Guosheng Tang
- Division of Engineering in Medicine Department of Medicine Brigham and Women's Hospital Harvard Medical School Cambridge MA 02139 USA
- NMPA & Guangdong Key Laboratory of Molecular Target & Clinical Pharmacology State Key Laboratory of Respiratory Disease School of Pharmaceutical Sciences The Fifth Affiliated Hospital Guangzhou Medical University Guangzhou Guangdong 511436 P. R. China
| | - Maobin Xie
- Division of Engineering in Medicine Department of Medicine Brigham and Women's Hospital Harvard Medical School Cambridge MA 02139 USA
| | - Zixuan Wang
- Division of Engineering in Medicine Department of Medicine Brigham and Women's Hospital Harvard Medical School Cambridge MA 02139 USA
| | - Zeyu Luo
- Division of Engineering in Medicine Department of Medicine Brigham and Women's Hospital Harvard Medical School Cambridge MA 02139 USA
| | - Julia Japo
- Division of Engineering in Medicine Department of Medicine Brigham and Women's Hospital Harvard Medical School Cambridge MA 02139 USA
| | - Di Wang
- Division of Engineering in Medicine Department of Medicine Brigham and Women's Hospital Harvard Medical School Cambridge MA 02139 USA
| | - Jianhua Zhou
- Division of Engineering in Medicine Department of Medicine Brigham and Women's Hospital Harvard Medical School Cambridge MA 02139 USA
| | - Mian Wang
- Division of Engineering in Medicine Department of Medicine Brigham and Women's Hospital Harvard Medical School Cambridge MA 02139 USA
| | - Wanlu Li
- Division of Engineering in Medicine Department of Medicine Brigham and Women's Hospital Harvard Medical School Cambridge MA 02139 USA
| | - Sushila Maharjan
- Division of Engineering in Medicine Department of Medicine Brigham and Women's Hospital Harvard Medical School Cambridge MA 02139 USA
| | - Marina Ruelas
- Division of Engineering in Medicine Department of Medicine Brigham and Women's Hospital Harvard Medical School Cambridge MA 02139 USA
| | - Jie Guo
- Division of Engineering in Medicine Department of Medicine Brigham and Women's Hospital Harvard Medical School Cambridge MA 02139 USA
| | - Xunwei Wu
- Cutaneous Biology Research Center Massachusetts General Hospital Harvard Medical School Boston MA 02129 USA
| | - Yu Shrike Zhang
- Division of Engineering in Medicine Department of Medicine Brigham and Women's Hospital Harvard Medical School Cambridge MA 02139 USA
| |
Collapse
|
35
|
Han J, Lin K, Choo H, He J, Wang X, Wu Y, Chen X. β-Catenin Signaling Evokes Hair Follicle Senescence by Accelerating the Differentiation of Hair Follicle Mesenchymal Progenitors. Front Cell Dev Biol 2022; 10:839519. [PMID: 35478971 PMCID: PMC9037041 DOI: 10.3389/fcell.2022.839519] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/22/2022] [Indexed: 11/13/2022] Open
Abstract
Rationale: β-catenin signaling controls multiple fibroblast subsets, with its overactivity promoting the differentiation of hair follicle dermal stem cells (hfDSCs) and the hyperactivation of interfollicular fibroblasts. Understanding the concept of hfDSC activation and modulation offers hope towards the therapeutic armamentarium in dermatology and related comorbidities, as well as their potential applications in gerontology (the study of physiological aging). Having a comprehensive understanding in this stochastic process could also further yield important, novel insights into the molecular basis of skin aging to improve lifespan and preventing aging-related diseases. Methods: A new CD34CrePGR mouse line was generated. Through fate-tracing models and a series of β-catenin genetic experiments, our study depicts how the wound environment increases phosphorylated β-catenin in hfDSCs and facilitates their differentiation into dermal papilla (DP) and dermal sheath (DS). In mice carrying hfDSC-specific activated allele of β-catenin, hfDSCs accelerated their differentiation into DP cells. Results: Notably, with β-catenin stabilization in CD34-expressing cells and potential activation of canonical Wnt signaling, the mutant mice showed a brief increase of hair density in the short term, but over time leads to a senescence phenotype developing premature canities and thinning [hair follicle (HF) miniaturization]. Conclusion: β-catenin signaling drove HF senescence by accelerating differentiation of CD34+ hfDSCs, resulting in phenotypes attributable to the differentiation of the hfDSCs into DP cells and the loss of their stem cell potential. Therefore, our study reveals that the regulation of β-catenin signaling in hfDSCs may potentially become an important subject for future exploration in development of clinically effective therapies for hair loss treatment and an excellent model for revealing new therapeutic approaches to reverse aging or retarding the development of alopecia.
Collapse
Affiliation(s)
- Jimin Han
- Department of Burn Surgery, The First People's Hospital of Foshan, Foshan, China.,School of Life Sciences, Tsinghua University, Beijing, China.,The Shenzhen Key Laboratory of Health Sciences and Technology, Shenzhen, China, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
| | - Kaijun Lin
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Huiqin Choo
- Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen, China
| | - Jia He
- Department of Burn Surgery, The First People's Hospital of Foshan, Foshan, China
| | - Xusheng Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yaojiong Wu
- School of Life Sciences, Tsinghua University, Beijing, China.,The Shenzhen Key Laboratory of Health Sciences and Technology, Shenzhen, China, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
| | - Xiaodong Chen
- Department of Burn Surgery, The First People's Hospital of Foshan, Foshan, China
| |
Collapse
|
36
|
Kim MJ, Seong KY, Kim DS, Jeong JS, Kim SY, Lee S, Yang SY, An BS. Minoxidil-loaded hyaluronic acid dissolving microneedles to alleviate hair loss in an alopecia animal model. Acta Biomater 2022; 143:189-202. [PMID: 35202857 DOI: 10.1016/j.actbio.2022.02.011] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 12/18/2022]
Abstract
Alopecia is defined as hair loss in a part of the head due to various causes, such as drugs, stress and autoimmune disorders. Various therapeutic agents have been suggested depending on the cause of the condition and patient sex, and age. Minoxidil (MXD) is commonly used topically to treat alopecia, but its low absorption rate limits widespread use. To overcome the low absorption, we suggest microneedles (MNs) as controlled drug delivery systems that release MXD. We used hyaluronic acid (HA) to construct MN, as it is biocompatible and safe. We examined the effect of HA on the hair dermal papilla (HDP) cells that control the development of hair follicles. HA enhanced proliferation, migration, and aggregation of HDP cell by increasing cell-cell adhesion and decreasing cell substratum. These effects were mediated by the cluster of differentiation (CD)-44 and phosphorylation of serine‑threonine kinase (Akt). In chemotherapy-induced alopecia mice, topical application of HA tended to decrease chemotherapy-induced hair loss. Although the amount of MXD administered by HA-MNs was 10% of topical treatment, the MXD-containing HA-MNs (MXD-HA-MNs) showed better effects on the growth of hair than topical application of MXD. In summary, our results demonstrated that HA reduces hair loss in alopecia mice, and that delivery of MXD and HA using MXD-HA-MNs maximizes therapeutic effects and minimize the side effects of MXD for the treatment of alopecia. STATEMENT OF SIGNIFICANCE: (1) Significance, This work reports a new approach for treatment of alopecia using a dissolving microneedle (MN) prepared with hyaluronic acid (HA). The HA provided a better environment for cellular functions in the hair dermal papilla cells. The HA-MNs containing minoxidil (MXD) exhibited a significant reduction of hair loss, although amount of MXD contained in them was only 10% of topically applied MXD., (2) Scientific impact, This is the first report demonstrating the direct anti-alopecia effects of HA administrated in a transdermal route and the feasibility of novel therapeutics using MXD-containing HA-MNs. We believe that our work will excite interdisciplinary readers of Acta Biomaterialia, those who are interested in the natural polymers, drug delivery, and alopecia.
Collapse
|
37
|
Chiu HY, Wang WH, Kuan CH, Wu YF, Tseng CJ, Huang WY, Wang SH, Lin SJ. Depilatory laser miniaturizes hair by inducing bystander dermal papilla cell necrosis through thermal diffusion. Lasers Surg Med 2022; 54:916-927. [PMID: 35289409 DOI: 10.1002/lsm.23533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 12/13/2021] [Accepted: 02/21/2022] [Indexed: 11/07/2022]
Abstract
OBJECTIVES Depilatory laser targeting melanin has been widely applied for the treatment of hypertrichosis. Both selective photothermolysis and thermal diffusion have been proposed for its effect, but the exact mechanism of permanent hair reduction remains unclear. In this study, we explore the role of thermal diffusion in depilatory laser-induced permanent hair loss and determine whether nonpigmented cells are injured by thermal diffusion. MATERIALS AND METHODS C57BL/6 mice in anagen and telogen were treated with alexandrite laser (wavelength 755 nm, pulse duration 3 milliseconds, fluence 12 J/cm2 , spot size 12 mm), respectively. Histological analysis, terminal deoxynucleotidyl transferase dUTP nick-end labeling assay, and transmission electron microscopic imaging were employed to evaluate the injury to hair follicle (HF) cells. The proliferation status of HF cells was examined by 5-bromo-2'-deoxyuridine pulse labeling. The number of HF stem cells was quantified by fluorescence-activated cell sorting. The size of the regenerated hair was determined by measuring its length and width. RESULTS We found that irradiating C57BL/6 mice in anagen with alexandrite laser led to hair miniaturization in the next anagen. In addition to thermal disruption of melanin-containing cells in the precortex region, we also detected necrosis of the adjacent nonpigmented dermal papilla cells due to thermal diffusion. Dermal papilla cells decreased by 24% after laser injury, while the number of bulge stem cells remained unchanged. When the laser was delivered to telogen HFs where no melanin was present adjacent to the dermal papilla, thermal necrosis and cell reduction were not detected in the dermal papilla and no hair miniaturization was observed. CONCLUSION Our results suggest that depilatory laser miniaturizes hair by inducing thermal necrosis of dermal papilla cells due to secondary thermal diffusion from melanin-containing precortex cells in the anagen hair bulbs.
Collapse
Affiliation(s)
- Hsien-Yi Chiu
- Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan.,Department of Dermatology, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu, Taiwan.,Department of Dermatology, National Taiwan University Hospital, Taipei, Taiwan.,Department of Dermatology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wei-Hung Wang
- Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan
| | - Chen-Hsiang Kuan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.,Division of Plastic Surgery, Department of Surgery, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan.,Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan
| | - Yueh-Feng Wu
- Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan
| | - Chung-Jen Tseng
- Department of Dermatology, National Taiwan University Hospital, Taipei, Taiwan
| | - Wen-Yen Huang
- Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan
| | - Shiou-Han Wang
- Department of Dermatology, National Taiwan University Hospital, Taipei, Taiwan
| | - Sung-Jan Lin
- Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan.,Department of Dermatology, National Taiwan University Hospital, Taipei, Taiwan.,Department of Dermatology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan.,Brain Research Center, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
38
|
Hair Regeneration Effects of Lespedeza bicolor Extract In Vivo and In Vitro. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12062863] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Alopecia is a chronic inflammatory skin disease with various causes. Lespedeza bicolor extract (LBE) has been reported to have anti-inflammatory and antioxidative effects. In this study, the activity and mechanisms of LBE as a hair growth agent were investigated. Effects of cell proliferation, cytotoxicity, and cell cycle regulation of LBE and its active component protocatechuic acid (PCA) were evaluated in human dermal papilla cells (DPCs). Hair regeneration effects of LBE in 6-week-old C57BL/6 male mice were also determined using positive control 5% minoxidil. The dose-dependent proliferation of DPCs was estimated in response to LBE treatment (0.8–20 µg/mL). Additionally, significant extension of the anagen phase during the hair cell cycle upon LBE treatment was observed histologically and morphologically. Cell cycle arrest gene expression was determined by quantitative real-time polymerase chain reaction. Lespedezabicolor could be a potent treatment against alopecia through enhancing DPC proliferation and hair regrowth via anagen phase arrest.
Collapse
|
39
|
Wu P, Jiang TX, Lei M, Chen CK, Hsieh Li SM, Widelitz RB, Chuong CM. Cyclic growth of dermal papilla and regeneration of follicular mesenchymal components during feather cycling. Development 2021; 148:dev198671. [PMID: 34344024 PMCID: PMC10656464 DOI: 10.1242/dev.198671] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 07/08/2021] [Indexed: 01/23/2023]
Abstract
How dermis maintains tissue homeostasis in cyclic growth and wounding is a fundamental unsolved question. Here, we study how dermal components of feather follicles undergo physiological (molting) and plucking injury-induced regeneration in chickens. Proliferation analyses reveal quiescent, transient-amplifying (TA) and long-term label-retaining dermal cell (LRDC) states. During the growth phase, LRDCs are activated to make new dermal components with distinct cellular flows. Dermal TA cells, enriched in the proximal follicle, generate both peripheral pulp, which extends distally to expand the epithelial-mesenchymal interactive interface for barb patterning, and central pulp, which provides nutrition. Entering the resting phase, LRDCs, accompanying collar bulge epidermal label-retaining cells, descend to the apical dermal papilla. In the next cycle, these apical dermal papilla LRDCs are re-activated to become new pulp progenitor TA cells. In the growth phase, lower dermal sheath can generate dermal papilla and pulp. Transcriptome analyses identify marker genes and highlight molecular signaling associated with dermal specification. We compare the cyclic topological changes with those of the hair follicle, a convergently evolved follicle configuration. This work presents a model for analyzing homeostasis and tissue remodeling of mesenchymal progenitors.
Collapse
Affiliation(s)
- Ping Wu
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Ting-Xin Jiang
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Mingxing Lei
- 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
- Integrative Stem Cell Center, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
| | - Chih-Kuan Chen
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- The IEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan
| | - Shu-Man Hsieh Li
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, USA
- Department of Biochemistry, National Defense Medical Center, Taipei 114, Taiwan
| | - Randall B. Widelitz
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Cheng-Ming Chuong
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
40
|
Bhandary DJ, Girisha BS, Mahadevappa BN. Clinicodermoscopic Pattern of Beard Alopecia Areata: A Cross-Sectional Study. Indian Dermatol Online J 2021; 12:631-633. [PMID: 34430481 PMCID: PMC8354412 DOI: 10.4103/idoj.idoj_106_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 11/01/2020] [Accepted: 03/19/2021] [Indexed: 11/21/2022] Open
Affiliation(s)
- Delanthimar Joshika Bhandary
- Department of Dermo-Cosmetology, Lilavati Hospital and Research Centre, Mumbai Department of Dermatology, K.S. Hegde Medical Academy, Mangalore, Karnataka, India
| | - Banavasi Shanmukha Girisha
- Department of Dermo-Cosmetology, Lilavati Hospital and Research Centre, Mumbai Department of Dermatology, K.S. Hegde Medical Academy, Mangalore, Karnataka, India
| | - Basanna Nagargund Mahadevappa
- Department of Dermo-Cosmetology, Lilavati Hospital and Research Centre, Mumbai Department of Dermatology, K.S. Hegde Medical Academy, Mangalore, Karnataka, India
| |
Collapse
|
41
|
Detecting the Mechanism behind the Transition from Fixed Two-Dimensional Patterned Sika Deer ( Cervus nippon) Dermal Papilla Cells to Three-Dimensional Pattern. Int J Mol Sci 2021; 22:ijms22094715. [PMID: 33946876 PMCID: PMC8124381 DOI: 10.3390/ijms22094715] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 04/18/2021] [Accepted: 04/20/2021] [Indexed: 12/19/2022] Open
Abstract
The hair follicle dermal papilla is critical for hair generation and de novo regeneration. When cultured in vitro, dermal papilla cells from different species demonstrate two distinguishable growth patterns under the conventional culture condition: a self-aggregative three dimensional spheroidal (3D) cell pattern and a two dimensional (2D) monolayer cell pattern, correlating with different hair inducing properties. Whether the loss of self-aggregative behavior relates to species-specific differences or the improper culture condition remains unclear. Can the fixed 2D patterned dermal papilla cells recover the self-aggregative behavior and 3D pattern also remains undetected. Here, we successfully constructed the two growth patterns using sika deer (Cervus nippon) dermal papilla cells and proved it was the culture condition that determined the dermal papilla growth pattern. The two growth patterns could transit mutually as the culture condition was exchanged. The fixed 2D patterned sika deer dermal papilla cells could recover the self-aggregative behavior and transit back to 3D pattern, accompanied by the restoration of hair inducing capability when the culture condition was changed. In addition, the global gene expressions during the transition from 2D pattern to 3D pattern were compared to detect the potential regulating genes and pathways involved in the recovery of 3D pattern and hair inducing capability.
Collapse
|
42
|
Micro-Current Stimulation Has Potential Effects of Hair Growth-Promotion on Human Hair Follicle-Derived Papilla Cells and Animal Model. Int J Mol Sci 2021; 22:ijms22094361. [PMID: 33921970 PMCID: PMC8122395 DOI: 10.3390/ijms22094361] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/16/2021] [Accepted: 04/20/2021] [Indexed: 11/20/2022] Open
Abstract
Recently, a variety of safe and effective non-pharmacological methods have been introduced as new treatments of alopecia. Micro-current electrical stimulation (MCS) is one of them. It is generally known to facilitate cell proliferation and differentiation and promote cell migration and ATP synthesis. This study aimed to investigate the hair growth-promoting effect of MCS on human hair follicle-derived papilla cells (HFDPC) and a telogenic mice model. We examined changes in cell proliferation, migration, and cell cycle progression with MCS-applied HFDPC. The changes of expression of the cell cycle regulatory proteins, molecules related to the PI3K/AKT/mTOR/Fox01 pathway and Wnt/β-catenin pathway were also examined by immunoblotting. Subsequently, we evaluated the various growth factors in developing hair follicles by RT-PCR in MCS-applied (MCS) mice model. From the results, the MCS-applied groups with specific levels showed effects on HFDPC proliferation and migration and promoted cell cycle progression and the expression of cell cycle-related proteins. Moreover, these levels significantly activated the Wnt/β-catenin pathway and PI3K/AKT/mTOR/Fox01 pathway. Various growth factors in developing hair follicles, including Wnts, FGFs, IGF-1, and VEGF-B except for VEGF-A, significantly increased in MCS-applied mice. Our results may confirm that MCS has hair growth-promoting effect on HFDPC as well as telogenic mice model, suggesting a potential treatment strategy for alopecia.
Collapse
|
43
|
Sun D, Huang Z, Xu J, Wang Y, Chen L, Hou Y, Chi G. HaCaT‑conditioned medium supplemented with the small molecule inhibitors SB431542 and CHIR99021 and the growth factor PDGF‑AA prevents the dedifferentiation of dermal papilla cells in vitro. Mol Med Rep 2021; 23:326. [PMID: 33760132 PMCID: PMC7974413 DOI: 10.3892/mmr.2021.11965] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 12/11/2020] [Indexed: 12/22/2022] Open
Abstract
Hair loss, including alopecia, is a common and distressing problem for men and women, and as a result, there is considerable interest in developing treatments that can prevent or reverse hair loss. Dermal papillae closely interact with epidermal cells and play a key role during hair follicle induction and hair morphogenesis. As dermal papilla cells (DPCs) lose their hair‑inducing ability in monolayer cultures in vitro, it is difficult to obtain de novo hair follicle structures following DPC transplantation in vivo. The present study aimed to explore culture conditions to maintain DPC characteristics using conditioned media (CM) from the supernatant of cultured HaCaT keratinocyte cells supplemented with other components. Initially, it was observed that during passaging of in vitro monolayer DPC cultures, the Wnt/β‑catenin pathway was repressed, while the TGF‑β/Smad pathway was activated, and that HaCaT cells cultivated in 1% fetal bovine serum had higher levels of expression of Wnt3a and Wnt10b compared with normal keratinocytes. Culturing of high‑passage (P7) DPCs in CM from HaCaT cells (HaCaT‑CM) actively stimulated cell proliferation and maintained Sox2 and Versican expression levels. Supplementation of HaCaT‑CM with SB431542 (SB, a TGF‑β receptor inhibitor), CHIR99021, (CHIR, a GSK3α/β inhibitor and activator of Wnt signaling) and platelet‑derived growth factor (PDGF)‑AA further increased the expression levels of Sox2, Versican and alkaline phosphatase (ALP) in P7 DPCs. Three‑dimensional culture of P7 DPCs using hanging drop cultures in HaCaT‑CM supplemented with SB, CHIR and PDGF‑AA resulted in larger cell aggregates and a further significant upregulation of Sox2, ALP and Versican expression levels. Taken together, these findings demonstrated that HaCaT‑CM supplemented with SB, CHIR and PDGF‑AA may preserve the hair‑inducing ability of high‑passage DPCs and may therefore be useful in reconstructing new hair follicles in vivo.
Collapse
Affiliation(s)
- Dongjie Sun
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130000, P.R. China
| | - Zhehao Huang
- Department of Neurosurgery, China‑Japan Union Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Jinying Xu
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130000, P.R. China
| | - Yiqing Wang
- Department of Genetics, Basic Medical College of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Lin Chen
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130000, P.R. China
| | - Yi Hou
- Department of Regeneration Medicine, School of Pharmaceutical Science of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Guangfan Chi
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130000, P.R. China
| |
Collapse
|
44
|
Ding H, Zhao H, Zhao X, Qi Y, Wang X, Huang D. Analysis of histology and long noncoding RNAs involved in the rabbit hair follicle density using RNA sequencing. BMC Genomics 2021; 22:89. [PMID: 33509078 PMCID: PMC7845105 DOI: 10.1186/s12864-021-07398-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 01/19/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Hair follicle density influences wool fibre production, which is one of the most important traits of the Wan Strain Angora rabbit. However, molecular mechanisms regulating hair follicle density have remained elusive. RESULTS In this study, hair follicle density at different body sites of Wan Strain Angora rabbits with high and low wool production (HWP and LWP) was investigated by histological analysis. Haematoxylin-eosin staining showed a higher hair follicle density in the skin of the HWP rabbits. The long noncoding RNA (lncRNA) profile was investigated by RNA sequencing, and 50 and 38 differentially expressed (DE) lncRNAs and genes, respectively, were screened between the HWP and LWP groups. A gene ontology analysis revealed that phospholipid, lipid metabolic, apoptotic, lipid biosynthetic, and lipid and fatty acid transport processes were significantly enriched. Potential functional lncRNAs that regulate lipid metabolism, amino acid synthesis, as well as the Janus kinase (JAK)-signal transducer and activator of transcription (STAT) and hedgehog signalling pathways, were identified. Consequently, five lncRNAs (LNC_002171, LNC_000797, LNC_005567, LNC_013595, and LNC_020367) were considered to be potential regulators of hair follicle density and development. Three DE lncRNAs and genes were validated by quantitative real-time polymerase chain reaction (q-PCR). CONCLUSIONS LncRNA profiles provide information on lncRNA expression to improve the understanding of molecular mechanisms involved in the regulation of hair follicle density.
Collapse
Affiliation(s)
- Haisheng Ding
- Anhui Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, 230031, Anhui, People's Republic of China
| | - Huiling Zhao
- Anhui Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, 230031, Anhui, People's Republic of China
| | - Xiaowei Zhao
- Anhui Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, 230031, Anhui, People's Republic of China
| | - Yunxia Qi
- Anhui Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, 230031, Anhui, People's Republic of China
| | - Xiaofei Wang
- Anhui Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, 230031, Anhui, People's Republic of China
| | - Dongwei Huang
- Anhui Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, 230031, Anhui, People's Republic of China.
| |
Collapse
|
45
|
Iwabuchi T, Ogura K, Tamba K, Tsunekawa Y, Sugano M, Hagiwara K, Kiso A. Cepharanthine induces the proliferation of human dermal papilla cells and stimulates vascular endothelial growth factor expression through increased intracellular calcium mobilization and hypoxia-inducible factor activation. Clin Exp Dermatol 2021; 46:694-703. [PMID: 33296524 DOI: 10.1111/ced.14533] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/20/2020] [Accepted: 12/04/2020] [Indexed: 11/26/2022]
Abstract
BACKGROUND Cepharanthine (CEP), a compound extracted from the vine Stephania cephalantha, is commonly prescribed to treat alopecia areata; however, the scientific evidence for its efficacy is limited. AIM To investigate the effect of CEP and its structural analogues on human hair growth in vitro. METHODS The effects of CEP and three of its structural analogues on the proliferation of human dermal papilla cells (hDPCs) and human outer root sheath cells (hORSCs) were investigated. Their effects on vascular endothelial growth factor (VEGF) expression were also assessed by real-time PCR. Activation of pathways leading to VEGF expression, such as intracellular Ca2+ mobilization and hypoxia-inducible factor (HIF) expression, was also characterized. RESULTS CEP and two of its structural analogues significantly stimulated the growth of hDPCs but not hORSCs. Moreover, CEP and all three structural analogues significantly induced the expression of VEGF in hDPCs. CEP increased the intracellular Ca2+ concentration in hDPCs. CEP also increased the expression of HIF-1α and HIF-2α and induced the expression of HIF-responsive genes in hDPCs, even under normoxia. CONCLUSIONS These results suggest that CEP and its structural analogues have the potential to restore hair growth by promoting the proliferation of hDPCs and increasing their expression of VEGF.
Collapse
Affiliation(s)
- T Iwabuchi
- Faculty of Bioscience and Biotechnology, Tokyo University of Technology, Hachioji, Tokyo, Japan
| | - K Ogura
- Faculty of Bioscience and Biotechnology, Tokyo University of Technology, Hachioji, Tokyo, Japan
| | - K Tamba
- Faculty of Bioscience and Biotechnology, Tokyo University of Technology, Hachioji, Tokyo, Japan
| | - Y Tsunekawa
- Faculty of Bioscience and Biotechnology, Tokyo University of Technology, Hachioji, Tokyo, Japan
| | - M Sugano
- Faculty of Bioscience and Biotechnology, Tokyo University of Technology, Hachioji, Tokyo, Japan
| | - K Hagiwara
- Faculty of Bioscience and Biotechnology, Tokyo University of Technology, Hachioji, Tokyo, Japan
| | - A Kiso
- Research Center, Maruzen Pharmaceuticals Co. Ltd., Fukuyama, Hiroshima, Japan
| |
Collapse
|
46
|
Cao L, Tian T, Huang Y, Tao S, Zhu X, Yang M, Gu J, Feng G, Ma Y, Xia R, Xu W, Wang L. Neural progenitor cell-derived nanovesicles promote hair follicle growth via miR-100. J Nanobiotechnology 2021; 19:20. [PMID: 33430889 PMCID: PMC7802142 DOI: 10.1186/s12951-020-00757-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 12/15/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Accumulating evidence shows that mesenchymal stem cell-derived extracellular vesicles (EVs) hold great promise to promote hair growth. However, large-scale production of EVs is still a challenge. Recently, exosome-mimetic nanovesicles (NV) prepared by extruding cells have emerged as an alternative strategy for clinical-scale production. Here, ReNcell VM (ReN) cells, a neural progenitor cell line was serially extruded to produce NV. RESULTS ReN-NV were found to promote dermal papilla cell (DPC) proliferation. In addition, in a mouse model of depilation-induced hair regeneration, ReN-NV were injected subcutaneously, resulting in an acceleration of hair follicle (HF) cycling transition at the site. The underlying mechanism was indicated to be the activation of Wnt/β-catenin signaling pathway. Furthermore, miR-100 was revealed to be abundant in ReN-NV and significantly up-regulated in DPCs receiving ReN-NV treatment. miR-100 inhibition verified its important role in ReN-NV-induced β-catenin signaling activation. CONCLUSION These results provide an alternative agent to EVs and suggest a strategy for hair growth therapy.
Collapse
Affiliation(s)
- Lei Cao
- Department of Dermatology, The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Wuxi, 214000, Jiangsu, China
| | - Tian Tian
- Department of Neurobiology, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Yuanbo Huang
- Department of Dermatology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, 214000, Jiangsu, China
| | - Shiqin Tao
- Department of Dermatology, The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Wuxi, 214000, Jiangsu, China
| | - Xiaohong Zhu
- Department of Dermatology, The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Wuxi, 214000, Jiangsu, China
| | - Mifang Yang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210029, Jiangsu, China
- Institute of Stomatology, The Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, 210029, China
| | - Jing Gu
- Department of Dermatology, The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Wuxi, 214000, Jiangsu, China
| | - Guangdong Feng
- Department of Dermatology, The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Wuxi, 214000, Jiangsu, China
| | - Yinni Ma
- Department of Dermatology, The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Wuxi, 214000, Jiangsu, China
| | - Rushan Xia
- Department of Dermatology, The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Wuxi, 214000, Jiangsu, China.
| | - Wenrong Xu
- Department of Dermatology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, 214000, Jiangsu, China.
| | - Lei Wang
- Department of Dermatology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, 214000, Jiangsu, China.
| |
Collapse
|
47
|
Ent-kaurane-type diterpenoids from Isodonis Herba activate human hair follicle dermal papilla cells proliferation via the Akt/GSK-3β/β-catenin transduction pathway. J Nat Med 2021; 75:326-338. [PMID: 33417145 DOI: 10.1007/s11418-020-01477-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 11/19/2020] [Indexed: 10/22/2022]
Abstract
A methanol extract from Isodonis Herba demonstrated significant proliferative effect on human hair follicle dermal papilla cells (HFDPC, % of control: 150.0 ± 2.0% at 20 µg/mL, p < 0.01). From the extract, 14 ent-kaurane-type diterpenoids (1-14), two abietane-type diterpenoids (15 and 16) and four triterpenoids (17-20) were isolated. Among the isolates, enmein (1, 160.9 ± 3.0% at 20 µM, p < 0.01), isodocarpin (2, 169.3 ± 4.9% at 5 µM, p < 0.01), nodosin (4, 160.5 ± 12.4% at 20 µM, p < 0.01), and oridonin (8, 165.4 ± 10.6% at 10 µM, p < 0.01) showed the proliferative effects. The principal component enmein (1) activated the expression of vascular endothelial growth factor (VEGF) mRNA, upregulated the production of VEGF and increased levels of phospho-Akt, phospho-GSK-3β, and β-catenin accumulation in HFDPC, which could be the mechanism of these activate proliferation activity.
Collapse
|
48
|
A Mixture of Tocopherol Acetate and L-Menthol Synergistically Promotes Hair Growth in C57BL/6 Mice. Pharmaceutics 2020; 12:pharmaceutics12121234. [PMID: 33353178 PMCID: PMC7766712 DOI: 10.3390/pharmaceutics12121234] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/11/2020] [Accepted: 12/15/2020] [Indexed: 01/14/2023] Open
Abstract
Oral finasteride and topical minoxidil are single components approved by the US FDA for treating hair loss. Some other compounds originating from natural products are also traditionally used for promoting hair growth. In this study, observations of treated keratinocyte cells were used to demonstrate that tocopherol acetate, L-menthol, and stevioside exert an effect on cell regeneration. Furthermore, these were topically applied to the shaved skin of C57BL/6 mice to observe their effects on hair growth. A mixture of tocopherol acetate, L-menthol, and stevioside showed the highest potential for promoting hair growth in vivo. In in vivo experiments, the mixture of tocopherol acetate, L-menthol, and stevioside was more effective than tocopherol acetate or L-menthol alone in promoting hair growth. The transcriptome analysis of skin from the dorsal side of a mouse treated with tocopherol acetate or L-menthol versus vehicle revealed key changes in keratin, keratin-associated protein, forkhead box, sonic hedgehog, fibroblast growth factor 10, desmoglein 4, deoxyribonuclease 1-like 2, and cadherin 3, known to play roles in promoting hair growth.
Collapse
|
49
|
Shin W, Rosin NL, Sparks H, Sinha S, Rahmani W, Sharma N, Workentine M, Abbasi S, Labit E, Stratton JA, Biernaskie J. Dysfunction of Hair Follicle Mesenchymal Progenitors Contributes to Age-Associated Hair Loss. Dev Cell 2020; 53:185-198.e7. [PMID: 32315612 DOI: 10.1016/j.devcel.2020.03.019] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 01/06/2020] [Accepted: 03/25/2020] [Indexed: 12/16/2022]
Abstract
Skin aging is accompanied by hair loss due to impairments in hair follicle (HF) epithelial progenitor cells and their mesenchymal niche. This inductive mesenchyme, called dermal papilla (DP), undergoes progressive cell loss and eventual miniaturization that contributes to HF pathogenesis. Using laser ablation and fate mapping, we show that HF dermal stem cells (hfDSCs) reconstitute the damaged DP and maintain hair growth, suggesting that hfDSC dysfunction may trigger degeneration of the inductive niche. Fate mapping over 24 months revealed progressive hfDSC depletion, and in vivo clonal analysis of aged hfDSCs showed impaired self-renewal and biased differentiation. Single-cell RNA-seq confirmed hfDSCs as a central precursor, giving rise to divergent mesenchymal trajectories. In aged skin, hfDSCs exhibited senescent-like characteristics, and senescence-associated secretory phenotypes were identified in the aging HF mesenchyme. These results clarify fibroblast dynamics within the HF and suggest that progressive dysfunction within the mesenchymal progenitor pool contributes to age-related hair loss.
Collapse
Affiliation(s)
- Wisoo Shin
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Nicole L Rosin
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Holly Sparks
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Sarthak Sinha
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Waleed Rahmani
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Nilesh Sharma
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Matt Workentine
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Sepideh Abbasi
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Elodie Labit
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Jo Anne Stratton
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Jeff Biernaskie
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Department of Surgery, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada.
| |
Collapse
|
50
|
Jin GR, Zhang YL, Yap J, Boisvert WA, Lee BH. Hair growth potential of Salvia plebeia extract and its associated mechanisms. PHARMACEUTICAL BIOLOGY 2020; 58:400-409. [PMID: 32420784 PMCID: PMC7301722 DOI: 10.1080/13880209.2020.1759654] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/22/2020] [Accepted: 04/18/2020] [Indexed: 06/01/2023]
Abstract
Context: Although Salvia plebeia (SP) R. Brown (Labiatae) is known to possess various biological activities, the effects of SP on hair growth have not been elucidated.Objective: To investigate the hair growth potential of SP extract by using human dermal papilla cells (hDPCs) and C57BL/6 mice.Materials and methods: The entire SP plant sample was ground into powder and extracted with 99.9% methyl alcohol. Various concentrations of SP extract were added to hDPCs to evaluate the proliferation, migration, and factors related to hair growth and cycling. Effect of topical SP administration on hair regrowth was tested in vivo in male C57BL/6 mice for 21 days.Results: SP extract significantly increased the proliferation of cultured hDPCs at doses of 15.6 and 31.3 μg/mL compared to control group by 123% and 132%, respectively. Expression of hepatocyte growth factor increased while the level of TGF-β1 and SMAD2/3 decreased when treated with SP extract. At the molecular level, the extract activated Wnt/β-catenin signalling by raising β-catenin and phospho-GSK3β expression. SP extract also exerted anti-apoptotic and proliferative effects in hDPCs by increasing the Bcl-2/Bax ratio and activating cell proliferation-related proteins, ERK and Akt. Finally, the extract caused an induction of the anagen phase leading to significantly enhanced hair growth in treated male mice.Discussion and conclusion: Our results indicate that SP extract has the capacity to activate hDPCs into a proliferative state to promote hair growth. Further research is necessary to determine the bioactive components and their mechanisms of action responsible for SP-related hair growth effect.
Collapse
Affiliation(s)
- Guang-Ri Jin
- Department of Food and Nutrition, College of Biotechnology and Natural Resources, Chung-Ang University, Anseong, Gyeonggi, Korea
| | - Yi-Lin Zhang
- Department of Food and Nutrition, College of Biotechnology and Natural Resources, Chung-Ang University, Anseong, Gyeonggi, Korea
| | - Jonathan Yap
- Center for Cardiovascular Research, John A Burns School of Medicine, University of Hawaii, Honolulu, HI, USA
| | - William A. Boisvert
- Center for Cardiovascular Research, John A Burns School of Medicine, University of Hawaii, Honolulu, HI, USA
| | - Bog-Hieu Lee
- Department of Food and Nutrition, College of Biotechnology and Natural Resources, Chung-Ang University, Anseong, Gyeonggi, Korea
| |
Collapse
|