1
|
Saito-Sasaki N, Sawada Y. S100 Proteins in the Pathogenesis of Psoriasis and Atopic Dermatitis. Diagnostics (Basel) 2023; 13:3167. [PMID: 37891988 PMCID: PMC10606049 DOI: 10.3390/diagnostics13203167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/03/2023] [Accepted: 10/07/2023] [Indexed: 10/29/2023] Open
Abstract
The skin, the outermost layer of the human body, is exposed to various external stimuli that cause inflammatory skin reactions. These external stimulants trigger external epithelial cell damage and the release of intracellular substances. Following cellular damage or death, intracellular molecules are released that enhance tissue inflammation. As an important substance released from damaged cells, the S100 protein is a low-molecular-weight acidic protein with two calcium-binding sites and EF-hand motif domains. S100 proteins are widely present in systemic organs and interact with other proteins. Recent studies revealed the involvement of S100 in cutaneous inflammatory disorders, psoriasis, and atopic dermatitis. This review provides detailed information on the interactions among various S100 proteins in inflammatory diseases.
Collapse
Affiliation(s)
| | - Yu Sawada
- Department of Dermatology, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan;
| |
Collapse
|
2
|
Liang H, Li J, Zhang K. Pathogenic role of S100 proteins in psoriasis. Front Immunol 2023; 14:1191645. [PMID: 37346040 PMCID: PMC10279876 DOI: 10.3389/fimmu.2023.1191645] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/22/2023] [Indexed: 06/23/2023] Open
Abstract
Psoriasis is a chronic inflammatory skin disease. The histopathological features of psoriasis include excessive proliferation of keratinocytes and infiltration of immune cells. The S100 proteins are a group of EF-hand Ca2+-binding proteins, including S100A2, -A7, -A8/A9, -A12, -A15, which expression levels are markedly upregulated in psoriatic skin. These proteins exert numerous functions such as serving as intracellular Ca2+ sensors, transduction of Ca2+ signaling, response to extracellular stimuli, energy metabolism, and regulating cell proliferation and apoptosis. Evidence shows a crucial role of S100 proteins in the development and progress of inflammatory diseases, including psoriasis. S100 proteins can possibly be used as potential therapeutic target and diagnostic biomarkers. This review focuses on the pathogenic role of S100 proteins in psoriasis.
Collapse
Affiliation(s)
- Huifang Liang
- ShanXi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Center Hospital, Taiyuan, China
- State Key Breeding Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Center Hospital, Taiyuan, China
| | - Junqin Li
- ShanXi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Center Hospital, Taiyuan, China
- State Key Breeding Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Center Hospital, Taiyuan, China
| | - Kaiming Zhang
- ShanXi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Center Hospital, Taiyuan, China
- State Key Breeding Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Center Hospital, Taiyuan, China
| |
Collapse
|
3
|
Influence of S100A2 in Human Diseases. Diagnostics (Basel) 2022; 12:diagnostics12071756. [PMID: 35885660 PMCID: PMC9316160 DOI: 10.3390/diagnostics12071756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/13/2022] [Accepted: 07/19/2022] [Indexed: 11/18/2022] Open
Abstract
S100 proteins are a family of low-molecular-weight proteins characterized by two calcium-binding sites with a helix-loop-helix (“EF-hand-type”) domain. The S100 family of proteins is distributed across various organs and can interact with diverse molecules. Among the proteins of the S100 family, S100 calcium-binding protein A2 (S100A2) has been identified in mammary epithelial cells, glands, lungs, kidneys, and prostate gland, exhibiting various physiological and pathological actions in human disorders, such as inflammatory diseases and malignant tumors. In this review, we introduce basic knowledge regarding S100A2 regulatory mechanisms. Although S100A2 is a tumor suppressor, we describe the various influences of S100A2 on cancer and inflammatory diseases.
Collapse
|
4
|
Unlocking the Mechanisms of Cutaneous Adverse Drug Reactions: Activation of the Phosphatidylinositol 3-Kinase/Protein Kinase B Pathway by EGFR Inhibitors Triggers Keratinocyte Differentiation and Polarization of Epidermal Immune Responses. JID INNOVATIONS 2021; 1:100009. [PMID: 34909713 PMCID: PMC8659385 DOI: 10.1016/j.xjidi.2021.100009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 12/12/2022] Open
Abstract
EGFR inhibitors used in oncology therapy modify the keratinocyte differentiation processes, impairing proper skin barrier formation and leading to cutaneous adverse drug reactions. To uncover the molecular signatures associated with cutaneous adverse drug reactions, we applied phosphoproteomic and transcriptomic assays on reconstructed human epidermis tissues exposed to a therapeutically relevant concentration of afatinib, a second-generation EGFR inhibitor. After drug exposure, we observed activation of the phosphatidylinositol 3-kinase/protein kinase B pathway associated with an increased expression of gene families involved in keratinocyte differentiation, senescence, oxidative stress, and alterations in the epidermal immune-related markers. Furthermore, our results show that afatinib may interfere with vitamin D3 metabolism, acting via CYP27A1 and CYP24A1 to regulate calcium concentration through the phosphatidylinositol 3-kinase/protein kinase B pathway. Consequently, basal layer keratinocytes switch from a pro-proliferating to a prodifferentiative program, characterized by upregulation of biomarkers associated with increased keratinization, cornification, T helper type 2 response, and decreased innate immunity. Such effects may increase skin susceptibility to cutaneous penetration of irritants and pathogens. Taken together, these findings demonstrate a molecular mechanism of EGFR inhibitor–induced cutaneous adverse drug reactions.
Collapse
Key Words
- 1,25(OH)2VD3, 1,25-dihydroxyvitamine D3
- AFA, afatinib
- Akt, protein kinase B
- C, cluster
- CADR, cutaneous adverse drug reaction
- CYP, cytochrome P450
- EGFRi, EGFR inhibitor
- K, keratin
- KC, keratinocyte
- LCE, late cornified envelope
- PI3K, phosphatidylinositol 3-kinase
- RHE, reconstructed human epidermis
- TKI, tyrosine kinase inhibitor
- Th, T helper type
- VD3, vitamin D3
Collapse
|
5
|
Proteomics reveals that quinoa bioester promotes replenishing effects in epidermal tissue. Sci Rep 2020; 10:19392. [PMID: 33173110 PMCID: PMC7655866 DOI: 10.1038/s41598-020-76325-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 10/27/2020] [Indexed: 12/21/2022] Open
Abstract
The continuous search for natural products that attenuate age-related losses has increasingly gained notice; among them, those applicable for skin care have drawn significant attention. The bioester generated from the Chenopodium quinoa’s oil is a natural-origin ingredient described to produce replenishing skin effects. With this as motivation, we used shotgun proteomics to study the effects of quinoa bioester on human reconstructed epidermis tridimensional cell cultures after 0, 3, 6, 12, 24, and 48 h of exposure. Our experimental setup employed reversed-phase nano-chromatography coupled online with an Orbitrap-XL and PatternLab for proteomics as the data analysis tool. Extracted ion chromatograms were obtained as surrogates for relative peptide quantitation. Our findings spotlight proteins with increased abundance, as compared to the untreated cell culture counterparts at the same timepoints, that were related to preventing premature aging, homeostasis, tissue regeneration, protection against ultraviolet radiation and oxidative damage.
Collapse
|
6
|
Synthesis and Cytotoxic Evaluation of Some Substituted 5-Pyrazolones and Their Urea Derivatives. Molecules 2020; 25:molecules25040900. [PMID: 32085429 PMCID: PMC7070565 DOI: 10.3390/molecules25040900] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/13/2020] [Accepted: 02/15/2020] [Indexed: 12/21/2022] Open
Abstract
In this paper, a series of new substituted-5-pyrazolones were first synthesized, then formulated by the Vilsmeier–Haack reaction to obtain substituted-4-carbaldehyde-5-pyrazolones. In the final step, when urea was reacted with formulated pyrazolones, we found that, instead of the C=N bond in azomethine form, the compounds tautomerized to form a series of novel pyrazole-4-ylidenemethylurea structures. The structures of these compounds were elucidated by FTIR, 1H, 13C NMR, LC-MS/MS, and elemental analysis methods. The cytotoxic and antioxidant effects of substituted 5-pyrazolones and their pyrazolone-urea derivatives were investigated in metastatic A431 and noncancerous HaCaT human keratinocytes by a mitochondrial activity test. The effects of the compounds on the migration of cancerous and noncancerous cell lines were investigated by using a cell scratch assay. The General Linear Model, Statistical Package for Social Sciences (SPSS v26) was used to determine if there was a statistically significant difference between the control and the treatment groups. Four of the nine compounds showed an antioxidant effect. All 5-pyrazolone-urea compounds showed higher toxicity (p < 0.05) in cancerous A431 cells compared to noncancerous cells at all time points. All compounds also showed a biphasic hormetic effect. Four of the nine compounds inhibited cell migration.
Collapse
|
7
|
Chen CC, Hsia CW, Ho CW, Liang CM, Chen CM, Huang KL, Kang BH, Chen YH. Hypoxia and hyperoxia differentially control proliferation of rat neural crest stem cells via distinct regulatory pathways of the HIF1α-CXCR4 and TP53-TPM1 proteins. Dev Dyn 2017; 246:162-185. [PMID: 28002632 DOI: 10.1002/dvdy.24481] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 12/09/2016] [Accepted: 12/13/2016] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Neural crest stem cells (NCSCs) are a population of adult multipotent stem cells. We are interested in studying whether oxygen tensions affect the capability of NCSCs to self-renew and repair damaged tissues. NCSCs extracted from the hair follicle bulge region of the rat whisker pad were cultured in vitro under different oxygen tensions. RESULTS We found significantly increased and decreased rates of cell proliferation in rat NCSCs (rNCSCs) cultured, respectively, at 0.5% and 80% oxygen levels. At 0.5% oxygen, the expression of both hypoxia-inducible factor (HIF) 1α and CXCR4 was greatly enhanced in the rNCSC nuclei and was suppressed by incubation with the CXCR4-specific antagonist AMD3100. In addition, the rate of cell apoptosis in the rNCSCs cultured at 80% oxygen was dramatically increased, associated with increased nuclear expression of TP53, decreased cytoplasmic expression of TPM1 (tropomyosin-1), and increased nuclear-to-cytoplasmic translocation of S100A2. Incubation of rNCSCs with the antioxidant N-acetylcysteine (NAC) overcame the inhibitory effect of 80% oxygen on proliferation and survival of rNCSCs. CONCLUSIONS Our results show for the first time that extreme oxygen tensions directly control NCSC proliferation differentially via distinct regulatory pathways of proteins, with hypoxia via the HIF1α-CXCR4 pathway and hyperoxia via the TP53-TPM1 pathway. Developmental Dynamics 246:162-185, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Chien-Cheng Chen
- Graduate Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Neihu District, Taipei City, Taiwan
| | - Ching-Wu Hsia
- Department of Finance, School of Management, Shih Hsin University, Wenshan District, Taipei City, Taiwan
| | - Cheng-Wen Ho
- Graduate Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Neihu District, Taipei City, Taiwan
- Division of Rehabilitation Medicine, Taoyuan Armed Forces General Hospital, Longtan District, Taoyuan City, Taiwan
| | - Chang-Min Liang
- Department of Ophthalmology, Tri-Service General Hospital, Neihu District, Taipei City, Taiwan
| | - Chieh-Min Chen
- Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Neihu District, Taipei City, Taiwan
| | - Kun-Lun Huang
- Graduate Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Neihu District, Taipei City, Taiwan
- Department of Undersea and Hyperbaric Medicine, Tri-Service General Hospital, Neihu District, Taipei City, Taiwan
| | - Bor-Hwang Kang
- Division of Diving Medicine, Zuoying Branch of Kaohsiung Armed Forces General Hospital, Zuoying District, Kaohsiung City, Taiwan
- Department of Otorhinolaryngology - Head and Neck Surgery, Tri-Service General Hospital, Taipei City, Taiwan
| | - Yi-Hui Chen
- Graduate Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Neihu District, Taipei City, Taiwan
| |
Collapse
|
8
|
Yamaguchi F, Tsuchiya M, Shimamoto S, Fujimoto T, Tokumitsu H, Tokuda M, Kobayashi R. Oxidative Stress Impairs the Stimulatory Effect of S100 Proteins on Protein Phosphatase 5 Activity. TOHOKU J EXP MED 2016; 240:67-78. [DOI: 10.1620/tjem.240.67] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
| | - Mitsumasa Tsuchiya
- Department of Signal Transduction Sciences, Faculty of Medicine, Kagawa University
| | - Seiko Shimamoto
- Laboratory of Oncology, Institute of Microbial Chemistry, Microbial Chemistry Research Foundation
| | - Tomohito Fujimoto
- Department of Signal Transduction Sciences, Faculty of Medicine, Kagawa University
| | - Hiroshi Tokumitsu
- Department of Signal Transduction Sciences, Faculty of Medicine, Kagawa University
| | - Masaaki Tokuda
- Department of Cell Physiology, Faculty of Medicine, Kagawa University
| | - Ryoji Kobayashi
- Department of Signal Transduction Sciences, Faculty of Medicine, Kagawa University
| |
Collapse
|
9
|
Leśniak W, Graczyk-Jarzynka A. The S100 proteins in epidermis: Topology and function. Biochim Biophys Acta Gen Subj 2015; 1850:2563-72. [PMID: 26409143 DOI: 10.1016/j.bbagen.2015.09.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 09/20/2015] [Indexed: 12/21/2022]
Abstract
BACKGROUND S100 proteins are small calcium binding proteins encoded by genes located in the epidermal differentiation complex (EDC). Differently to other proteins encoded by EDC genes, which are indispensable for normal epidermal differentiation, the role of S100 proteins in the epidermis remains largely unknown. SCOPE OF REVIEW Particular S100 proteins differ in their distribution in epidermal layers, skin appendages, melanocytes and Langerhans cells. Taking into account that each epidermal component consists of specialized cells with well-defined functions, such differential distribution may be indicative of the function of a given S100 protein. We used this criterion together with the survey of the current experimental data pertinent to epidermis to provide a fairly comprehensive view on the possible function of individual S100 proteins in this tissue. MAJOR CONCLUSIONS S100 proteins are differently expressed and, despite extensive structural homology, perform diverse functions in the epidermis. Certain S100 proteins probably ensure constant epidermal renewal and support wound healing while others act in epidermal differentiation or have a protective role. As their expression is differently affected in various skin pathologies, particular S100 proteins could be valuable diagnostic markers. GENERAL SIGNIFICANCE S100 proteins seem to be important although not yet fully recognized epidermal constituents. Better understanding of their role in the epidermis might be helpful in designing therapies to various skin diseases.
Collapse
Affiliation(s)
- Wiesława Leśniak
- Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, 3 Pasteur Street, 02-093 Warsaw, Poland.
| | - Agnieszka Graczyk-Jarzynka
- Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, 3 Pasteur Street, 02-093 Warsaw, Poland
| |
Collapse
|
10
|
Egeland EV, Boye K, Pettersen SJ, Haugen MH, Øyjord T, Malerød L, Flatmark K, Mælandsmo GM. Enrichment of nuclear S100A4 during G2/M in colorectal cancer cells: possible association with cyclin B1 and centrosomes. Clin Exp Metastasis 2015; 32:755-67. [PMID: 26349943 DOI: 10.1007/s10585-015-9742-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 09/03/2015] [Indexed: 01/01/2023]
Abstract
S100A4 promotes metastasis in several types of cancer, but the involved molecular mechanisms are still incompletely described. The protein is associated with a wide variety of biological functions and it locates to different subcellular compartments, including nuclei, cytoplasm and extracellular space. Nuclear expression of S100A4 has been associated with more advanced disease stage as well as poor outcome in colorectal cancer (CRC). The present study was initiated to investigate the nuclear function of S100A4 and thereby unravel potential biological mechanisms linking nuclear expression to a more aggressive phenotype. CRC cell lines show heterogeneity in nuclear S100A4 expression and preliminary experiments revealed cells in G2/M to have increased nuclear accumulation compared to G1 and S cells, respectively. Synchronization experiments validated nuclear S100A4 expression to be most prominent in the G2/M phase, but manipulating nuclear levels of S100A4 using lentiviral modified cells failed to induce changes in cell cycle distribution and proliferation. Proximity ligation assay did, however, demonstrate proximity between S100A4 and cyclin B1 in vitro, while confocal microscopy showed S100A4 to localize to areas corresponding to centrosomes in mitotic cells prior to chromosome segregation. This might indicate a novel and uncharacterized function of the metastasis-associated protein in CRC cells.
Collapse
Affiliation(s)
- Eivind Valen Egeland
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, 0310, Oslo, Norway.
| | - Kjetil Boye
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, 0310, Oslo, Norway.,Department of Oncology, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, 0310, Oslo, Norway
| | - Solveig J Pettersen
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, 0310, Oslo, Norway
| | - Mads H Haugen
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, 0310, Oslo, Norway
| | - Tove Øyjord
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, 0310, Oslo, Norway
| | - Lene Malerød
- Department of Molecular Cell Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, 0310, Oslo, Norway
| | - Kjersti Flatmark
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, 0310, Oslo, Norway.,Department of Gastroenterological Surgery, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, 0310, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, 0318, Oslo, Norway
| | - Gunhild M Mælandsmo
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, 0310, Oslo, Norway. .,Department of Pharmacy, University of Tromsø, 9037, Tromsø, Norway.
| |
Collapse
|
11
|
TSUCHIYA MITSUMASA, YAMAGUCHI FUMINORI, SHIMAMOTO SEIKO, FUJIMOTO TOMOHITO, TOKUMITSU HIROSHI, TOKUDA MASAAKI, KOBAYASHI RYOJI. Oxidized S100A4 inhibits the activation of protein phosphatase 5 through S100A1 in MKN-45 gastric carcinoma cells. Int J Mol Med 2014; 34:1713-9. [DOI: 10.3892/ijmm.2014.1947] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Accepted: 09/23/2014] [Indexed: 11/06/2022] Open
|
12
|
S100A2 protein and non-small cell lung cancer. The dual role concept. Tumour Biol 2014; 35:7327-33. [PMID: 24863947 DOI: 10.1007/s13277-014-2117-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Accepted: 05/19/2014] [Indexed: 02/03/2023] Open
Abstract
S100A2 is a member of the EF-hand motif family S100. Its role has been recently implicated in carcinogenesis and metastasis. Although its precise role in NSCLC patients is debated and conflicting results have been published, it has been associated with patient survival. S100A2 expression was downregulated in some studies while others disagree that S100A2 is strongly expressed in lung cancer. It has been recently published by Hountis et al. that there is a significant association between nuclear S100A2 positivity and better disease-free interval. Intensity of expression was the highest in the early and advanced stages, and equally distributed in the middle stages. This is indicative for a dual role of this protein in carcinogenesis. The expression of S100A2 in operable NSCLC varies widely, and this differential location and expression pattern (nuclear or cytoplasmic or both) seem to correlate with prognosis. The precise role for the movement of S100A2 protein between cytoplasm and nucleus is still unclear. We present here a literature review, and we propose the dual concept on its substantial role as a prognostic or predictive indicator in this unfavorable group of patients.
Collapse
|
13
|
Zhu L, Kohda F, Nakahara T, Chiba T, Tsuji G, Hachisuka J, Ito T, Tu Y, Moroi Y, Uchi H, Furue M. Aberrant expression of S100A6 and matrix metalloproteinase 9, but not S100A2, S100A4, and S100A7, is associated with epidermal carcinogenesis. J Dermatol Sci 2013; 72:311-9. [PMID: 23993025 DOI: 10.1016/j.jdermsci.2013.07.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 07/05/2013] [Accepted: 07/12/2013] [Indexed: 11/18/2022]
Abstract
BACKGROUND S100 proteins belong to a family of calcium-binding proteins that regulate cell proliferation and differentiation. Despite our growing knowledge about the biology of S100 proteins in some human cancers, little is known about the expression of S100 family members in epidermal tumors and their clinical significance. OBJECTIVE To determine the expression of S100A2, S100A4, S100A6, S100A7, as well as matrix metalloproteinases 9 (MMP9) in a spectrum of epidermal tumors with benign and malignant characteristics. METHODS Immunohistological staining was performed for S100A2, S100A4, S100A6, S100A7, and MMP9 in 101 cases of various types of epidermal tumors, viz., squamous cell carcinoma (SCC), Bowen's disease (BD), actinic keratosis (AK), basal cell carcinoma (BCC), keratoacanthoma (KA), and seborrheic keratosis (SK). Thirteen specimens of normal skin (NS) served as control. RESULTS S100A2, S100A6, and S100A7 positive immunostaining was variably observed in different epidermal tumors. S100A4 staining was not observed in any epidermal tumors, but was clearly visible in dendritic cells. MMP9 immunostaining was positive only in 22/26 (84.62%) of SCC and 2/15 (13.33%) of BD cases. Expression of S100A2, S100A6, and S100A7 was increased in tumor cells compared to NS. However, only S100A6 expression was significantly associated with malignant transformation of epidermal tumors. Moreover, S100A6 expression was correlated with MMP9 expression in metastatic SCC. CONCLUSIONS Epidermal tumors show increased expression of S100A2 and S100A7 proteins. S100A4 may be a useful and distinct marker for epidermal dendritic cells. Expression of S100A6 and MMP9 in combination is associated with the development of SCC.
Collapse
Affiliation(s)
- Li Zhu
- Department of Dermatology, Kyushu University, Fukuoka, Japan; Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Zhu L, Okano S, Takahara M, Chiba T, Tu Y, Oda Y, Furue M. Expression of S100 protein family members in normal skin and sweat gland tumors. J Dermatol Sci 2013; 70:211-9. [DOI: 10.1016/j.jdermsci.2013.03.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 02/26/2013] [Accepted: 03/04/2013] [Indexed: 12/18/2022]
|
15
|
Yoneda K, Nakagawa T, Lawrence OT, Huard J, Demitsu T, Kubota Y, Presland RB. Interaction of the profilaggrin N-terminal domain with loricrin in human cultured keratinocytes and epidermis. J Invest Dermatol 2012; 132:1206-14. [PMID: 22277945 DOI: 10.1038/jid.2011.460] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The relationship between the two coexpressed differentiation markers, profilaggrin and loricrin, is not clear right now. In this study, we explored the interaction of profilaggrin N-terminal domain (PND) with loricrin in keratinocytes and epidermis. Confocal immunofluorescence microscopic analysis of human epidermis showed that PND colocalized with loricrin. Loricrin nucleofected into HaCaT cells colocalized with PND in the nucleus and cytoplasm. The PND localizes to both the nucleus and cytoplasm of epidermal granular layer cells. Nucleofected PND also colocalized with keratin 10 (K10) in the nucleus and cytoplasm. Immunoelectron microscopic analysis of human epidermis confirmed the findings in nucleofected keratinocytes. Yeast two-hybrid assays showed that the B domain of human and mouse PND interacted with loricrin. The glutathione S-transferase (GST) pull-down analysis using recombinant GST-PND revealed that PND interacted with loricrin and K10. Knockdown of PND in an organotypic skin culture model caused loss of filaggrin expression and a reduction in both the size and number of keratohyalin granules, as well as markedly reduced expression of loricrin. Considering that expression of PND is closely linked to keratinocyte terminal differentiation, we conclude that PND interacts with loricrin and K10 in vivo and that these interactions are likely to be relevant for cornified envelope assembly and subsequent epidermal barrier formation.
Collapse
Affiliation(s)
- Kozo Yoneda
- Department of Dermatology, Faculty of Medicine, Kagawa University, Kagawa, Japan.
| | | | | | | | | | | | | |
Collapse
|
16
|
Flores AM, Gurevich I, Zhang C, Ramirez VP, Devens TR, Aneskievich BJ. TNIP1 is a corepressor of agonist-bound PPARs. Arch Biochem Biophys 2011; 516:58-66. [PMID: 21967852 DOI: 10.1016/j.abb.2011.08.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Revised: 08/03/2011] [Accepted: 08/17/2011] [Indexed: 11/18/2022]
Abstract
Nuclear receptor (NR) coregulators include coactivators, contributing to holoreceptor transcriptional activity, and corepressors, mediating NR target gene silencing in the absence of hormone. We identified an atypical NR coregulator, TNFα-induced protein 3-interacting protein 1 (TNIP1), from a peroxisome proliferator activated receptor (PPAR) α screen of a human keratinocyte cDNA library. TNIP1's complex nomenclature parallels its additional function as an NF-κB inhibitor. Here we show TNIP1 is an atypical NR corepressor using two-hybrid systems, biochemical studies, and receptor activity assays. The requirements for TNIP1-PPAR interaction are characteristic for coactivators; however, TNIP1 partially decreases PPAR activity. TNIP1 has separable transcriptional activation and repression domains suggesting a modular nature to its overall effect. It may provide a means of lowering receptor activity in the presence of ligand without total loss of receptor function. TNIP1's multiple roles and expression in several cell types suggest its regulatory effect depends on its expression level and the expression of other regulators in NR and/or NF-κB signaling pathways. As a NR coregulator, TNIP1 targeting agonist-bound PPAR and reducing transcriptional activity offers control of receptor signaling not available from typical corepressors and may contribute to combinatorial regulation of transcription.
Collapse
Affiliation(s)
- Anthony M Flores
- Graduate Program in Pharmacology & Toxicology, University of Connecticut, Storrs, 06269-3092, USA
| | | | | | | | | | | |
Collapse
|
17
|
Copper-mediated cross-linking of S100A4, but not of S100A2, results in proinflammatory effects in melanoma cells. Biochem Biophys Res Commun 2011; 413:494-8. [DOI: 10.1016/j.bbrc.2011.08.132] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Accepted: 08/30/2011] [Indexed: 11/21/2022]
|
18
|
Benton MA, Rager JE, Smeester L, Fry RC. Comparative genomic analyses identify common molecular pathways modulated upon exposure to low doses of arsenic and cadmium. BMC Genomics 2011; 12:173. [PMID: 21457566 PMCID: PMC3082247 DOI: 10.1186/1471-2164-12-173] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Accepted: 04/01/2011] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Exposure to the toxic metals arsenic and cadmium is associated with detrimental health effects including cancers of various organs. While arsenic and cadmium are well known to cause adverse health effects at high doses, the molecular impact resulting from exposure to environmentally relevant doses of these metals remains largely unexplored. RESULTS In this study, we examined the effects of in vitro exposure to either arsenic or cadmium in human TK6 lymphoblastoid cells using genomics and systems level pathway mapping approaches. A total of 167 genes with differential expression were identified following exposure to either metal with surprisingly no overlap between the two. Real-time PCR was used to confirm target gene expression changes. The gene sets were overlaid onto protein-protein interaction maps to identify metal-induced transcriptional networks. Interestingly, both metal-induced networks were significantly enriched for proteins involved in common biological processes such as tumorigenesis, inflammation, and cell signaling. These findings were further supported by gene set enrichment analysis. CONCLUSIONS This study is the first to compare the transcriptional responses induced by low dose exposure to cadmium and arsenic in human lymphoblastoid cells. These results highlight that even at low levels of exposure both metals can dramatically influence the expression of important cellular pathways.
Collapse
Affiliation(s)
- Margaret Ann Benton
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Julia E Rager
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Lisa Smeester
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Rebecca C Fry
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
19
|
Wolf S, Haase-Kohn C, Pietzsch J. S100A2 in cancerogenesis: a friend or a foe? Amino Acids 2010; 41:849-61. [PMID: 20521072 DOI: 10.1007/s00726-010-0623-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Accepted: 05/05/2010] [Indexed: 12/11/2022]
Abstract
Owing to the exceptional intracellular distribution and the heterogeneous expression pattern during transformation and metastasis in various tumors, the EF-hand calcium-binding protein S100A2 attracts increasing attention. Unlike the majority of S100 proteins, S100A2 expression is downregulated in many cancers and the loss in nuclear expression has been associated with poor prognosis. On the other hand, S100A2 is upregulated in some cancers. This mini review highlights the general characteristics of S100A2 and discusses recent findings on its putative functional implication as a suppressor or promoter in cancerogenesis.
Collapse
Affiliation(s)
- Susann Wolf
- Department of Radiopharmaceutical Biology, Institute of Radiopharmacy, Research Center Dresden-Rossendorf, POB 51 01 19, 01314, Dresden, Germany
| | | | | |
Collapse
|
20
|
Leclerc E, Fritz G, Vetter SW, Heizmann CW. Binding of S100 proteins to RAGE: an update. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1793:993-1007. [PMID: 19121341 DOI: 10.1016/j.bbamcr.2008.11.016] [Citation(s) in RCA: 387] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Revised: 11/24/2008] [Accepted: 11/28/2008] [Indexed: 12/21/2022]
Abstract
The Receptor for Advanced Glycation Endproducts (RAGE) is a multi-ligand receptor of the immunoglobulin family. RAGE interacts with structurally different ligands probably through the oligomerization of the receptor on the cell surface. However, the exact mechanism is unknown. Among RAGE ligands are members of the S100 protein family. S100 proteins are small calcium binding proteins with high structural homology. Several members of the family have been shown to interact with RAGE in vitro or in cell-based assays. Interestingly, many RAGE ligands appear to interact with distinct domains of the extracellular portion of RAGE and to trigger various cellular effects. In this review, we summarize the modes of S100 protein-RAGE interaction with regard to their cellular functions.
Collapse
Affiliation(s)
- Estelle Leclerc
- Department of Chemistry and Biochemistry, Florida Atlantic University, 777 Glades Road, Boca Raton, Fl 33431, USA
| | | | | | | |
Collapse
|
21
|
Li Y, Gudjonsson JE, Woods TL, Zhang T, Johnston A, Stoll SW, Elder JT. Transgenic expression of S100A2 in hairless mouse skin enhances Cxcl13 mRNA in response to solar-simulated radiation. Arch Dermatol Res 2008; 301:205-17. [PMID: 18773213 DOI: 10.1007/s00403-008-0881-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2008] [Revised: 04/25/2008] [Accepted: 08/11/2008] [Indexed: 10/21/2022]
Abstract
S100A2 is a homodimeric protein that undergoes oxidative cross-linking and translocation from the nucleus to the cytosol in the context of oxidative stress. Suggestive of a role for S100A2 in the cutaneous response to ultraviolet light, we found altered S100A2 immunostaining in photodamaged human skin, and crosslinking of S100A2 after ultraviolet A (UVA) irradiation of normal human keratinocytes (NHK). Skin from mice, rats, and rabbits did not contain S100A2 protein, whereas skin samples from pigs, frogs and humans were strongly positive. Survival after UVA irradiation was significantly greater in NHK compared to mouse keratinocytes, suggesting a protective role for S100A2. To test this hypothesis in vivo, we expressed S100A2 in SKH2/J hairless mice under the control of a bovine keratin 5 promoter, and compared responses of TG and WT mice from 1 to 7 days after a single dose (0.5-1 MED) of solar-simulated radiation (SSR) from UVA-340 bulbs. WT and TG mice manifested a similarly robust response to SSR, characterized by epidermal hyperplasia, marked induction of p21(WAF), and a twofold increase in p53. Thymine dimers (TD) were markedly increased in the epidermis and the dermis, but while over 95% of the epidermal TD were removed by 5-6 days, elevated dermal TD persisted nearly unchanged for 7 days. Global transcriptional profiling of WT and TG mice revealed strong induction of multiple transcripts, including keratins K6 and K16, defensin beta 3, S100A8, S100A9, Sprr2i and Sprr2f. However, the only S100A2-dependent difference we observed was an induction of Cxcl13 transcripts in TG, but not WT mice (4.4-fold vs. 0.7-fold, n = 3, P = 0.022). This finding was confirmed in an independent set of mice analyzed by quantitative RT-PCR (8.8-fold vs. 1.2-fold, n = 4, P = 0.001). The finding of persistent dermal DNA damage after suberythemal doses of SSR merits further study.
Collapse
Affiliation(s)
- Yong Li
- Department of Dermatology, University of Michigan, Ann Arbor, MI 48109-0932, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Kirschner RD, Sänger K, Müller GA, Engeland K. Transcriptional activation of the tumor suppressor and differentiation gene S100A2 by a novel p63-binding site. Nucleic Acids Res 2008; 36:2969-80. [PMID: 18388131 PMCID: PMC2396407 DOI: 10.1093/nar/gkn132] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
S100A2 is generally found expressed in the epidermis and was recently shown to play a crucial role in the differentiation of keratinocytes. Also known as CaN19, S100A2 was identified as a potential tumor suppressor. Expression of S100A2 is upregulated by p53. The proteins p63 and p73 are related to p53 and are expressed as several splice variants with partially overlapping tasks but also functions different from p53. It had been shown that p63 proteins with mutations in their DNA-binding domain cause severe phenotypes in man as autosomal dominantly inherited disease including EEC, AEC, SHFM, LMS and ADULT syndromes. Here we show that S100A2 is a transcriptional target of p63/p73 family members, particularly the p63 splice variant TAp63γ. The regulation is mediated by a novel transcriptional element in the S100A2 promoter which is bound by TAp63γ but not by p53. Mutant p63 proteins derived from EEC and ADULT syndrome patients cannot activate S100A2 transcription whereas SHFM-related mutants still can stimulate the S100A2 promoter. Consistent with a function in tumor suppression S100A2 expression is stimulated upon DNA damage. After doxorubicin treatment p63γ proteins are recruited to the S100A2 promoter in vivo. This may indicate a function of the p63-dependent S100A2 regulation in tumor suppression.
Collapse
Affiliation(s)
- Ralf D Kirschner
- Interdisziplinäres Zentrum für Klinische Forschung IZKF, Frauenklinik, Medizinische Fakultät, Universität Leipzig, Semmelweisstrasse, 14, D-04103 Leipzig, Germany
| | | | | | | |
Collapse
|
23
|
Koch M, Bhattacharya S, Kehl T, Gimona M, Vasák M, Chazin W, Heizmann CW, Kroneck PMH, Fritz G. Implications on zinc binding to S100A2. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2007; 1773:457-70. [PMID: 17239974 DOI: 10.1016/j.bbamcr.2006.12.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2006] [Revised: 12/07/2006] [Accepted: 12/11/2006] [Indexed: 10/23/2022]
Abstract
Human S100A2 is an EF-hand calcium-binding S100 protein that is localized mainly in the nucleus and functions as tumor suppressor. In addition to Ca2+ S100A2 binds Zn2+ with a high affinity. Studies have been carried out to investigate whether Zn2+ acts as a regulatory ion for S100A2, as in the case of Ca2+. Using the method of competition with the Zn2+ chelator 4-(2-pyridylazo)-resorcinol, an apparent Kd of 25 nM has been determined for Zn2+ binding to S100A2. The affinity lies close to the range of intracellular free Zn2+ concentrations, suggesting that S100A2 is able to bind Zn2+ in the nucleus. Two Zn2+-binding sites have been identified using site directed mutagenesis and several spectroscopic techniques with Cd2+ and Co2+ as probes. In site 1 Zn2+ is bound by Cys21 and most likely by His 17. The binding of Zn2+ in site 2 induces the formation of a tetramer, whereby the Zn(2+) is coordinated by Cys2 from each subunit. Remarkably, only binding of Zn2+ to site 2 substantially weakens the affinity of S100A2 for Ca2+. Analysis of the individual Ca2+-binding constants revealed that the Ca2+ affinity of one EF-hand is decreased about 3-fold, whereas the other EF-hand exhibits a 300-fold decrease in affinity. These findings imply that S100A2 is regulated by both Zn2+ and Ca2+, and suggest that Zn2+ might deactivate S100A2 by inhibiting response to intracellular Ca2+ signals.
Collapse
Affiliation(s)
- Michael Koch
- Department of Biology, University of Konstanz, Universitätsstrasse 10, Postfach M665, 78457 Konstanz, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
The S100 proteins are exclusively expressed in vertebrates and are the largest subgroup within the superfamily of EF-hand Ca2(+)-binding proteins Generally, S100 proteins are organized as tight homodimers (some as heterodimers). Each subunit is composed of a C-terminal, 'canonical' EF-hand, common to all EF-hand proteins, and a N-terminal, 'pseudo' EF-hand, characteristic of S100 proteins. Upon Ca2(+)-binding, the C-terminal EF-hand undergoes a large conformational change resulting in the exposure of a hydrophobic surface responsible for target binding A unique feature of this protein family is that some members are secreted from cells upon stimulation, exerting cytokine- and chemokine-like extracellular activities via the Receptor for Advanced Glycation Endproducts, RAGE. Recently, larger assemblies of some S100 proteins (hexamers, tetramers, octamers) have been also observed and are suggested to be the active extracellular species required for receptor binding and activation through receptor multimerization Most S100 genes are located in a gene cluster on human chromosome 1q21, a region frequently rearranged in human cancer The functional diversification of S100 proteins is achieved by their specific cell- and tissue-expression patterns, structural variations, different metal ion binding properties (Ca2+, Zn2+ and Cu2+) as well as their ability to form homo-, hetero- and oligomeric assemblies Here, we review the most recent developments focussing on the biological functions of the S100 proteins and we discuss the presently available S100-specific mouse models and their possible use as human disease models In addition, the S100-RAGE interaction and the activation of various cellular pathways will be discussed. Finally, the close association of S100 proteins with cardiomyopathy, cancer, inflammation and brain diseases is summarized as well as their use in diagnosis and their potential as drug targets to improve therapies in the future.
Collapse
Affiliation(s)
- C W Heizmann
- Division of Clinical Chemistry and Biochemistry, Department of Pediatrics, University of Zurich, Switzerland.
| | | | | |
Collapse
|
25
|
Enk CD, Jacob-Hirsch J, Gal H, Verbovetski I, Amariglio N, Mevorach D, Ingber A, Givol D, Rechavi G, Hochberg M. The UVB-induced gene expression profile of human epidermis in vivo is different from that of cultured keratinocytes. Oncogene 2006; 25:2601-14. [PMID: 16434974 DOI: 10.1038/sj.onc.1209292] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In order to obtain a comprehensive picture of the molecular events regulating cutaneous photodamage of intact human epidermis, suction blister roofs obtained after a single dose of in vivo ultraviolet (UV)B exposure were used for microarray profiling. We found a changed expression of 619 genes. Half of the UVB-regulated genes had returned to pre-exposure baseline levels at 72 h, underscoring the transient character of the molecular cutaneous UVB response. Of special interest was our finding that several of the central p53 target genes remained unaffected following UVB exposure in spite of p53 protein accumulation. We next compared the in vivo expression profiles of epidermal sheets to that of cultured human epidermal keratinocytes exposed to UVB in vitro. We found 1931 genes that differed in their expression profiles between the two groups. The expression profile in intact epidemis was geared mainly towards DNA repair, whereas cultured keratinocytes responded predominantly by activating genes associated with cell-cycle arrest and apoptosis. These differences in expression profiles might reflect differences between mature differentiating keratinocytes in the suprabasal epidermal layers versus exponentially proliferating keratinocytes in cell culture. Our findings show that extreme care should be taken when extrapolating from findings based on keratinocyte cultures to changes in intact epidermis.
Collapse
Affiliation(s)
- C D Enk
- Department of Dermatology, The Hadassah-Hebrew University Medical Center, Jerusalem, Israel.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Oram S, Cai X, Haleem R, Cyriac J, Wang Z. Regulation of calcium homeostasis by S100RVP, an androgen-regulated S100 protein in the rat ventral prostate. Prostate 2006; 66:768-78. [PMID: 16444689 DOI: 10.1002/pros.20395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND S100RVP was previously identified as an androgen-response gene in the rat ventral prostate (RVP). Characterization of S100RVP is important for elucidating the function of S100 proteins in androgen action. METHODS The expression and subcellular localization of S100RVP were determined by Northern blot, in situ hybridization, and fluorescent microscopy. Calcium overlay and calcium ionophore sensitivity assays were performed to investigate the calcium binding and function of S100RVP. RESULTS S100RVP is abundantly expressed in the RVP epithelial cells. A green fluorescent protein(GFP)-S100RVP fusion protein is present in both the cytoplasm and nucleus of transfected cells. A GST-S100RVP fusion protein bound calcium in vitro at levels similar to known S100 proteins. Furthermore, GFP-S100RVP transfected LNCaP and PC3 cells exhibited reduced sensitivity to calcium ionophore-induced cell death, but not to UV-induced cell death. CONCLUSION The results of this study argue for a role of S100RVP in calcium homeostasis in the prostate.
Collapse
Affiliation(s)
- Shane Oram
- University of California at San Francisco, San Francisco VA Medical Center, San Francisco, California, USA
| | | | | | | | | |
Collapse
|
27
|
McCormick MM, Rahimi F, Bobryshev YV, Gaus K, Zreiqat H, Cai H, Lord RSA, Geczy CL. S100A8 and S100A9 in Human Arterial Wall. J Biol Chem 2005; 280:41521-9. [PMID: 16216873 DOI: 10.1074/jbc.m509442200] [Citation(s) in RCA: 152] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Atherogenesis is a complex process involving inflammation. S100A8 and S100A9, the Ca2+-binding neutrophil cytosolic proteins, are associated with innate immunity and regulate processes leading to leukocyte adhesion and transmigration. In neutrophils and monocytes the S100A8-S100A9 complex regulates phosphorylation, NADPH-oxidase activity, and fatty acid transport. The proteins have anti-microbial properties, and S100A8 may play a role in oxidant defense in inflammation. Murine S100A8 is regulated by inflammatory mediators and recruits macrophages with a proatherogenic phenotype. S100A9 but not S100A8 was found in macrophages in ApoE-/- murine atherosclerotic lesions, whereas both proteins are expressed in human giant cell arteritis. Here we demonstrate S100A8 and S100A9 protein and mRNA in macrophages, foam cells, and neovessels in human atheroma. Monomeric and complexed forms were detected in plaque extracts. S100A9 was strongly expressed in calcifying areas and the surrounding extracellular matrix. Vascular matrix vesicles contain high levels of Ca2+-binding proteins and phospholipids that regulate calcification. Matrix vesicles characterized by electron microscopy, x-ray microanalysis, nucleoside triphosphate pyrophosphohydrolase assay and cholesterol/phospholipid analysis contained predominantly S100A9. We propose that S100A9 associated with lipid structures in matrix vesicles may influence phospholipid-Ca2+ binding properties to promote dystrophic calcification. S100A8 and S100A9 were more sensitive to hypochlorite oxidation than albumin or low density lipoprotein and immunoaffinity confirmed S100A8-S100A9 complexes; some were resistant to reduction, suggesting that hypochlorite may contribute to protein cross-linking. S100A8 and S100A9 in atherosclerotic plaque and calcifying matrix vesicles may significantly influence redox- and Ca2+-dependent processes during atherogenesis and its chronic complications, particularly dystrophic calcification.
Collapse
Affiliation(s)
- Michelle M McCormick
- School of Medical Sciences, St. Vincent's Hospital, University of New South Wales, Sydney, Australia
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Nielsen K, Heegaard S, Vorum H, Birkenkamp-Demtröder K, Ehlers N, Orntoft TF. Altered expression of CLC, DSG3, EMP3, S100A2, and SLPI in corneal epithelium from keratoconus patients. Cornea 2005; 24:661-8. [PMID: 16015083 DOI: 10.1097/01.ico.0000153556.59407.69] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE This investigation was designed to determine whether the five genes, CLC, DSG3, EMP3, S100A2 and SLPI, are differentially expressed in keratoconus, as indicated from another study. METHODS Gene expression was monitored using quantitative real-time PCR on 14 keratoconus samples and 16 controls, and normalized to GAPDH and B2M. The DSG3, S100A2, and SLPI proteins were quantified by Western blotting, and the cellular localization was determined by immunohistochemistry. One of the genes, CLC, was reduced in gene expression and its four exons were sequenced. RESULTS The five genes were all differentially expressed in keratoconus (P < 0.04) and so were at least three of the encoded proteins (P = 0.009). DSG3 was expressed in association with the cell membrane of the basal and suprabasal epithelial cells, and S100A2 was expressed in the nucleus and cytoplasm, often as intracellular granules. Two SNPs (rs374185 and rs384138) were observed in the CLC gene, each with an allele frequency of 68%. No other mutations were detected. CONCLUSIONS The five genes, and three of the encoded proteins, were shown differentially expressed between a group of keratoconus patients and a reference group using different techniques. These alterations, in combination with earlier findings, strongly demonstrate the genes to be involved in the corneal disease. We suggest the unambiguously expressed DSG3 protein to be used as a marker for keratoconus.
Collapse
Affiliation(s)
- Kim Nielsen
- Department of Ophthalmology, Aarhus University Hospital, Denmark
| | | | | | | | | | | |
Collapse
|
29
|
Mueller A, Schäfer BW, Ferrari S, Weibel M, Makek M, Höchli M, Heizmann CW. The Calcium-binding Protein S100A2 Interacts with p53 and Modulates Its Transcriptional Activity. J Biol Chem 2005; 280:29186-93. [PMID: 15941720 DOI: 10.1074/jbc.m505000200] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Head and neck squamous cell carcinoma express high levels of the EF-hand calcium-binding protein S100A2 in contrast to other tumorigenic tissues and cell lines where the expression of this protein is reduced. Subtractive hybridization of tumorigenic versus normal tumor-derived mammary epithelial cells has previously identified the S100A2 protein as potential tumor suppressor. The biological function of S100A2 in carcinogenesis, however, has not been elucidated to date. Here, we report for the first time that during recovery from hydroxyurea treatment, the S100A2 protein translocated from the cytoplasm to the nucleus and co-localized with the tumor suppressor p53 in two different oral carcinoma cells (FADU and SCC-25). Co-immunoprecipitation experiments and electrophoretic mobility shift assay showed that the interaction between S100A2 and p53 is Ca(2+)-dependent. Preliminary characterization of this interaction indicated that the region in p53 involved with binding to S100A2 is located at the C terminus of p53. Finally, luciferase-coupled transactivation assays, where a p53-reporter construct was used, indicated that interaction with S100A2 increased p53 transcriptional activity. Our data suggest that in oral cancer cells the Ca(2+)- and cell cycle-dependent p53-S100A2 interaction might modulate proliferation.
Collapse
Affiliation(s)
- Andrea Mueller
- Division of Clinical Chemistry and Biochemistry, Department of Pediatrics, Steinwiesstrasse 75, 8032 Zurich
| | | | | | | | | | | | | |
Collapse
|
30
|
Tsai ST, Jin YT, Tsai WC, Wang ST, Lin YC, Chang MT, Wu LW. S100A2, a potential marker for early recurrence in early-stage oral cancer. Oral Oncol 2005; 41:349-57. [PMID: 15792606 DOI: 10.1016/j.oraloncology.2004.09.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2004] [Accepted: 09/21/2004] [Indexed: 11/29/2022]
Abstract
Early-stage oral cancer patients may have distinct clinical outcomes and respond differently to the same treatment. Up to now, there is still no individual marker to identify such patients with poor outcome. Down-regulation of a tumor suppressor gene, S100A2, in oral cancer cells was identified by mRNA profiling analysis then confirmed by RT-PCR and Southern blotting. The expression of nuclear S100A2 protein examined by immunohistochemistry was not significantly associated with any patient characteristic among the 70 early-stage oral squamous cell carcinoma (SCC) patients. Intriguingly, the loss of nuclear S100A2 positivity was significantly associated with shorter disease-free survival (p=0.019) while having no effect on the overall survival of these patients. Cox regression analysis with backward elimination identified S100A2 (p=0.006), tobacco smoking (p=0.013), and betel quid chewing (p=0.019) as independent predictors of disease-free survival. This is a first study to demonstrate that loss of nuclear S100A2 may serve as an independent prognostic marker for early-stage oral cancer patients at high risk of recurrence. A more aggressive treatment modality and intensive follow-up may be recommended for the patients with reduced expression of S100A2 in tumor cell nuclei.
Collapse
Affiliation(s)
- Sen-Tien Tsai
- Department of Otolaryngology, National Cheng Kung University Hospital, 138 Sheng Li Road, Tainan 70428, Taiwan, ROC
| | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
Growth factors, including fibroblast growth factor-2 (FGF-2) and transforming growth factor-beta (TGF-beta) regulate fibroblast function, differentiation and proliferation. S100A8 and S100A9 are members of the S100 family of Ca2+-binding proteins and are now accepted as markers of inflammation. They are expressed by keratinocytes and inflammatory cells in human/murine wounds and by appropriately activated macrophages, endothelial cells, epithelial cells and keratinocytes in vitro. In this study, regulation and expression of S100A8 and S100A9 were examined in fibroblasts. Endotoxin (LPS), interferon gamma (IFNgamma), tumour-necrosis factor (TNF) and TGF-beta did not induce the S100A8 gene in murine fibroblasts whereas FGF-2 induced mRNA maximally after 12 h. The FGF-2 response was strongly enhanced and prolonged by heparin. Interleukin-1beta (IL-1beta) alone, or in synergy with FGF-2/heparin strongly induced the gene in 3T3 fibroblasts. S100A9 mRNA was not induced under any condition. Induction of S100A8 in the absence of S100A9 was confirmed in primary fibroblasts. S100A8 mRNA induction by FGF-2 and IL-1beta was partially dependent on the mitogen-activated-protein-kinase pathway and dependent on new protein synthesis. FGF-2-responsive elements were distinct from the IL-1beta-responsive elements in the S100A8 gene promoter. FGF-2-/heparin-induced, but not IL-1beta-induced responses were significantly suppressed by TGF-beta, possibly mediated by decreased mRNA stability. S100A8 in activated fibroblasts was mainly intracytoplasmic. Rat dermal wounds contained numerous S100A8-positive fibroblast-like cells 2 and 4 days post injury; numbers declined by 7 days. Up-regulation of S100A8 by FGF-2/IL-1beta, down-regulation by TGF-beta, and its time-dependent expression in wound fibroblasts suggest a role in fibroblast differentiation at sites of inflammation and repair.
Collapse
Affiliation(s)
- Farid Rahimi
- Inflammatory Diseases Research Unit, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | | | | | | |
Collapse
|
32
|
Vos JB, van Sterkenburg MA, Rabe KF, Schalkwijk J, Hiemstra PS, Datson NA. Transcriptional response of bronchial epithelial cells to Pseudomonas aeruginosa: identification of early mediators of host defense. Physiol Genomics 2005; 21:324-36. [PMID: 15701729 DOI: 10.1152/physiolgenomics.00289.2004] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The airway epithelium responds to microbial exposure by altering expression of a variety of genes to increase innate host defense. We aimed to delineate the early transcriptional response in human primary bronchial epithelial cells exposed for 6 h to a mixture of IL-1beta and TNF-alpha or heat-inactivated Pseudomonas aeruginosa. Because molecular mechanisms of epithelial innate host defense are not fully understood, the open-ended expression-profiling technique SAGE was applied to construct gene expression profiles covering 30,000 genes: 292 genes were found to be differentially expressed. Expression of seven genes was confirmed by real-time qPCR. Among differentially expressed genes, four classes or families were identified: keratins, proteinase inhibitors, S100 calcium-binding proteins, and IL-1 family members. Marked transcriptional changes were observed for keratins that form a key component of the cytoskeleton in epithelial cells. Expression of antimicrobial proteinase inhibitors SLPI and elafin was elevated after microbial or cytokine exposure. Interestingly, expression of numerous S100 family members was observed, and eight members, including S100A8 and S100A9, were among the most differentially expressed genes. Differential expression was also observed for the IL-1 family members IL-1beta, IL-1 receptor antagonist, and IL-1F9, a newly discovered IL-1 family member. Clustering of differentially expressed genes into biological processes revealed that the early inflammatory response in airway epithelial cells to IL-1beta-TNF-alpha and P. aeruginosa is characterized by expression of genes involved in epithelial barrier formation and host defense.
Collapse
Affiliation(s)
- Joost B Vos
- Department of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands.
| | | | | | | | | | | |
Collapse
|
33
|
Leśniak W, Szczepańska A, Kuźnicki J. Calcyclin (S100A6) expression is stimulated by agents evoking oxidative stress via the antioxidant response element. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2004; 1744:29-37. [PMID: 15878395 DOI: 10.1016/j.bbamcr.2004.11.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2004] [Revised: 11/03/2004] [Accepted: 11/04/2004] [Indexed: 01/15/2023]
Abstract
Calcyclin (S100A6) is a cell-specific, calcium binding protein of the S100 family whose expression is augmented in many types of cancer. By means of luciferase activity assays, RT-PCR and Northern blot hybridization, we established that transcription of S100A6 gene is increased by agents known to evoke oxidative stress. Mutation of the antioxidant response element (ARE) located at position -290/-281 of the calcyclin gene promoter, and overlapping the E-box sequence recognized by the upstream stimulatory factor (USF), led to inhibition of calcyclin gene promoter activity stimulated by cadmium ions. Electrophoretic mobility shift assays (EMSA) with the -302/-260 calcyclin gene promoter fragment revealed, apart from USF binding, the presence of another protein complex (N) shown by competitive EMSA to be bound to ARE. DNA affinity chromatography followed by Western blot showed the binding of Nrf2 transcription factor to the immobilized calcyclin gene promoter fragment and concomitant appearance of complex N in EMSA of the eluted fractions. The results indicate that agents evoking oxidative stress activate calcyclin gene via the ARE sequence in its promoter.
Collapse
Affiliation(s)
- Wiesława Leśniak
- Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, 3 Pasteur Street, 02-093 Warsaw, Poland.
| | | | | |
Collapse
|
34
|
Efimova T, Broome AM, Eckert RL. Protein kinase Cdelta regulates keratinocyte death and survival by regulating activity and subcellular localization of a p38delta-extracellular signal-regulated kinase 1/2 complex. Mol Cell Biol 2004; 24:8167-83. [PMID: 15340077 PMCID: PMC515052 DOI: 10.1128/mcb.24.18.8167-8183.2004] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Protein kinase Cdelta (PKCdelta) is an important regulator of apoptosis in epidermal keratinocytes. However, little information is available regarding the downstream kinases that mediate PKCdelta-dependent keratinocyte death. This study implicates p38delta mitogen-activated protein kinase (MAPK) as a downstream carrier of the PKCdelta-dependent death signal. We show that coexpression of PKCdelta with p38delta produces profound apoptosis-like morphological changes. These morphological changes are associated with increased sub-G(1) cell population, cytochrome c release, loss of mitochondrial membrane potential, caspase activation, and PARP cleavage. This death response is specific for the combination of PKCdelta and p38delta and is not produced by replacing PKCdelta with PKCalpha or p38delta with p38alpha. A constitutively active form of MEK6, an upstream activator of p38delta, can also produce cell death when coupled with p38delta. In addition, concurrent p38delta activation and extracellular signal-regulated kinase 1/2 (ERK1/2) inactivation are required for apoptosis. Regarding this inverse regulation, we describe a p38delta-ERK1/2 complex that may coordinate these changes in activity. We further show that this p38delta-ERK1/2 complex relocates into the nucleus in response to PKCdelta expression. This regulation appears to be physiological, since H(2)O(2), a known inducer of keratinocyte apoptosis, promotes identical PKCdelta and p38delta-ERK1/2 activity changes, leading to similar morphological changes.
Collapse
Affiliation(s)
- Tatiana Efimova
- Department of Physiology, Case Western Reserve University School of Medicine, 2109 Adelbert Rd., Cleveland, OH 44106-4970, USA
| | | | | |
Collapse
|
35
|
Abstract
The S100 proteins comprise a family of 21 low molecular weight (9-13 kDa) proteins that are characterized by the presence of two calcium-binding EF-hand motifs. Fourteen S100 protein genes are located within the epidermal differentiation complex on human chromosome 1q21 and 13 S100 proteins (S100A2, S100A3, S100A4, S100A6, S100A7, S100A8, S100A9, S100A10, S100A11, S100A12, S100A15, S100B, and S100P) are expressed in normal and/or diseased epidermis. S100 proteins exist in cells as anti-parallel hetero- and homodimers and upon calcium binding interact with target proteins to regulate cell function. S100 proteins are of interest as mediators of calcium-associated signal transduction and undergo changes in subcellular distribution in response to extracellular stimuli. They also function as chemotactic agents and may play a role in the pathogenesis of epidermal disease, as selected S100 proteins are markedly overexpressed in psoriasis, wound healing, skin cancer, inflammation, cellular stress, and other epidermal states.
Collapse
Affiliation(s)
- Richard L Eckert
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA.
| | | | | | | | | | | |
Collapse
|
36
|
Prudovsky I, Mandinova A, Soldi R, Bagala C, Graziani I, Landriscina M, Tarantini F, Duarte M, Bellum S, Doherty H, Maciag T. The non-classical export routes: FGF1 and IL-1alpha point the way. J Cell Sci 2004; 116:4871-81. [PMID: 14625381 DOI: 10.1242/jcs.00872] [Citation(s) in RCA: 164] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Non-classical protein release independent of the ER-Golgi pathway has been reported for an increasing number of proteins lacking an N-terminal signal sequence. The export of FGF1 and IL-1alpha, two pro-angiogenic polypeptides, provides two such examples. In both cases, export is based on the Cu2+-dependent formation of multiprotein complexes containing the S100A13 protein and might involve translocation of the protein across the membrane as a 'molten globule'. FGF1 and IL-1alpha are involved in pathological processes such as restenosis and tumor formation. Inhibition of their export by Cu2+ chelators is thus an effective strategy for treatment of several diseases.
Collapse
Affiliation(s)
- Igor Prudovsky
- Center for Molecular Medicine, Maine Medical Center Research Institute, 81 Research Drive, Scarborough, Maine 04074, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Moll PR, Klausegger A, Hintner H, Reischl W, Breitenbach M, Richter K. Identification of vitamin D target genes in human keratinocytes by subtractive screening. J Steroid Biochem Mol Biol 2004; 89-90:261-7. [PMID: 15225782 DOI: 10.1016/j.jsbmb.2004.03.077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
1alpha,25-dihydroxyvitamin D(3) (1alpha,25(OH)(2) D(3)) imposes cell cycle block in late G1 phase in cultured human keratinocytes. We wanted to identify early vitamin D target genes using a subtractive screening approach. Human foreskin keratinocytes were grown to about 70% confluence, treated with 2 x 10(-7) M 1alpha,25(OH)(2) D(3) or left untreated and RNA from both populations were isolated after 22h of incubation. cDNA was synthesised and cloned into plasmid vectors. For screening of the libraries, cDNA was amplified in vitro using T7 RNA polymerase and then the amplified RNA (driver, control population) and single stranded cDNA (tester) were used for subtractive hybridisation. Heterohybrids were then separated from single stranded nucleotides using a hydroxyapatite column. The radiolabeled single stranded cDNA was used for screening a colony blot. Positive clones were rescreened, plasmid DNA was isolated and used for verifying the results by Northern blot analysis, using RNA isolated from untreated keratinocytes, as well as RNA isolated after 6h, 12h and 24h of vitamin D treatment.
Collapse
Affiliation(s)
- Pamela Renate Moll
- Department of Genetics and General Biology, University of Salzburg, Hellbrunnerstrasse 34, A-5020 Salzburg, Austria.
| | | | | | | | | | | |
Collapse
|
38
|
Peus D, Beyerle A, Vasa M, Pott M, Meves A, Pittelkow MR. Antipsoriatic drug anthralin induces EGF receptor phosphorylation in keratinocytes: requirement for H(2)O(2) generation. Exp Dermatol 2004; 13:78-85. [PMID: 15009100 DOI: 10.1111/j.0906-6705.2004.00119.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Even though anthralin is a well-established topical therapeutic agent for psoriasis, little is known about its effects and biochemical mechanisms of signal transduction. In contrast to a previous report, we found that anthralin induced time- and concentration-dependent phosphorylation of epidermal growth factor receptor in primary human keratinocytes. Four lines of evidence show that this process is mediated by reactive oxygen species. First, we found that anthralin induces time-dependent generation of H(2)O(2). Second, there is a correlation between a time-dependent increase in anthralin-induced epidermal growth factor receptor phosphorylation and H(2)O(2) generation. Third, the structurally different antioxidants n-propyl gallate and N-acetylcysteine inhibited epidermal growth factor receptor phosphorylation induced by anthralin. Fourth, overexpression of catalase inhibited this process. The epidermal growth factor receptor-specific tyrosine kinase inhibitor PD153035 abrogated anthralin-induced epidermal growth factor receptor phosphorylation and activation of extracellular-regulated kinase 1/2. These findings establish the following sequence of events: (1) H(2)O(2) generation, (2) epidermal growth factor receptor phosphorylation, and (3) extracellular-regulated kinase activation. Our data identify anthralin-induced reactive oxygen species and, more specifically, H(2)O(2) as an important upstream mediator required for ligand-independent epidermal growth factor receptor phosphorylation and downstream signaling.
Collapse
Affiliation(s)
- Dominik Peus
- Department of Dermatology and Biochemistry, Mayo Clinic and Mayo Foundation, Rochester, MN 55905, USA
| | | | | | | | | | | |
Collapse
|
39
|
Grimbaldeston MA, Geczy CL, Tedla N, Finlay-Jones JJ, Hart PH. S100A8 induction in keratinocytes by ultraviolet A irradiation is dependent on reactive oxygen intermediates. J Invest Dermatol 2004; 121:1168-74. [PMID: 14708622 DOI: 10.1046/j.1523-1747.2003.12561.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cutaneous exposure to ultraviolet (UV) A (320-400 nm) results in the formation of damaging reactive oxygen intermediates, which are implicated as mediators of DNA damage, apoptosis, and photoaging. S100A8 is a low-molecular-weight calcium-binding protein, highly sensitive to oxidation. In this study, UVA-induced S100A8 expression by keratinocytes was investigated. UVA (50-100 kJ per m2) strongly induced S100A8 in differentiated keratinocytes in the epidermis of BALB/c mice. Similarly, S100A8 mRNA and monomeric protein were significantly upregulated in PAM212 cells (a murine keratinocyte cell line) in response to 10 kJ per m2 UVA 24 h after irradiation. Although S100A9 associates with S100A8 in neutrophils and abnormally differentiated keratinocytes (human psoriasis), in this study it was not coinduced with keratinocyte S100A8. Dorsal application of 4-hydroxy-tempo (a superoxide dismutase-mimicking agent) to mice concentration-dependently reduced UVA-induced S100A8 expression. Incubation of PAM212 cells with superoxide dismutase and catalase during UVA irradiation also abrogated S100A8 induction. These results suggest that UVA-induced S100A8 is expressed by keratinocytes in response to generation of reactive oxygen intermediates.
Collapse
Affiliation(s)
- Michele A Grimbaldeston
- Department of Microbiology and Infectious Diseases, School of Medicine and Flinders Medical Research Institute, Flinders University, Adelaide, Australia
| | | | | | | | | |
Collapse
|
40
|
Broome AM, Eckert RL. Microtubule-Dependent Redistribution of a Cytoplasmic Cornified Envelope Precursor. J Invest Dermatol 2004; 122:29-38. [PMID: 14962086 DOI: 10.1046/j.0022-202x.2003.22105.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Several cytoplasmic cornified envelope precursors have been described. Nevertheless, the mechanism whereby these proteins are positioned at the site of crosslink formation is not known. In this study, we examine the intracellular distribution of the cornified envelope precursor S100A11 (S100C) and the effects of the physiologic differentiating agent calcium on this distribution. S100A11 is localized in the cytoplasm of resting cultured human keratinocytes. Treatment with calcium causes S100A11 to relocate to the cell periphery. Immunoprecipitation studies reveal that S100A11 associates with microtubules, and inhibitor studies indicate that functional micro-tubules are required for S100A11 peripheral redistribution. Parallel studies indicate that S100A11 is not present in the Golgi or endoplasmic reticulum (ER), suggesting that S100A11 is not moved to the cell periphery via the classical Golgi/ER export pathway. Further evidence that the Golgi/ER is not involved is provided by the observation that the Golgi/ER disruptor brefeldin A does not alter movement. These results suggest that redistribution along microtubules is a mechanism whereby S100A11 is positioned at the cell periphery in preparation for transglutaminase-dependent crosslinking. Staining of epidermal tissue sections from uninvolved and psoriatic epidermis reveals strong staining at the cell periphery in the majority of suprabasal cells, confirming a peripheral distribution of S100A11 in vivo.
Collapse
Affiliation(s)
- Ann-Marie Broome
- Department of Physiology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | | |
Collapse
|