1
|
Shimizu M, Furuichi K, Toyama T, Yamanouchi M, Hayashi D, Koshino A, Sako K, Horikoshi K, Yuasa T, Tamai A, Minami T, Oshima M, Nakagawa S, Kitajima S, Mizushima I, Hara A, Sakai N, Kitagawa K, Yoshimura M, Hoshino J, Ubara Y, Iwata Y, Wada T. Kidney lesions and risk of cardiovascular events in biopsy-proven diabetic kidney disease with type 2 diabetes. Clin Exp Nephrol 2025; 29:376-386. [PMID: 39466582 DOI: 10.1007/s10157-024-02576-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 10/05/2024] [Indexed: 10/30/2024]
Abstract
BACKGROUND This study assessed the association of pathological kidney lesions with cardiovascular events in biopsy-proven diabetic kidney disease (DKD) with type 2 diabetes. METHODS This multicenter, retrospective study involved 244 patients with no previous cardiovascular events before biopsy, estimated glomerular filtration rate (eGFR) ≥ 30 mL/min/1.73 m2 at biopsy (baseline), and ≥ 1 year of observation after biopsy. The outcomes were the first occurrence of cardiovascular events (cardiovascular death, non-fatal myocardial infarction, coronary intervention, or non-fatal stroke), and non-cardiovascular deaths before cardiovascular events were considered competing events. The association between the severity of each pathological lesion and cardiovascular events was investigated. RESULTS During follow-up (median: 6.4 years), 43 patients experienced cardiovascular events. The baseline clinical characteristics did not differ according to cardiovascular events. The cumulative incidence of cardiovascular events was higher in patients with mesangiolysis, global glomerulosclerosis ≥ 50%, moderate/severe interstitial inflammation, and moderate/severe arteriolar hyalinosis than in those having less advanced each lesion. Fine-Gray regression models revealed that global glomerulosclerosis ≥ 50% (subdistribution hazard ratio [SHR]: 3.85; 95% confidence interval [95% CI] 1.28-11.52), moderate/severe interstitial inflammation (SHR: 2.49; 95% CI 1.18-5.29), and moderate/severe arteriolar hyalinosis (SHR: 3.51; 95% CI 1.15-10.69) were linked to increased risk of cardiovascular events, after adjusting for clinical variables including RAAS inhibitors use at baseline. Adding the severity of these lesions to clinical variables improved the predictive value for cardiovascular events. CONCLUSIONS In DKD with type 2 diabetes, advanced glomerulosclerosis, interstitial inflammation, and arteriolar hyalinosis were associated with cardiovascular events, adding predictive value to clinical features.
Collapse
Affiliation(s)
- Miho Shimizu
- Department of Nephrology and Rheumatology, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takara-machi, Kanazawa, 920-8640, Japan.
| | - Kengo Furuichi
- Division of Nephrology, Kanazawa Medical University, Uchinada, Japan
| | - Tadashi Toyama
- Department of Nephrology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | | | - Daiki Hayashi
- Department of Nephrology and Rheumatology, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takara-machi, Kanazawa, 920-8640, Japan
| | - Akihiko Koshino
- Department of Nephrology and Rheumatology, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takara-machi, Kanazawa, 920-8640, Japan
| | - Keisuke Sako
- Department of Nephrology and Rheumatology, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takara-machi, Kanazawa, 920-8640, Japan
| | - Keisuke Horikoshi
- Department of Nephrology and Rheumatology, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takara-machi, Kanazawa, 920-8640, Japan
| | - Takahiro Yuasa
- Department of Nephrology and Rheumatology, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takara-machi, Kanazawa, 920-8640, Japan
| | - Akira Tamai
- Department of Nephrology and Rheumatology, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takara-machi, Kanazawa, 920-8640, Japan
| | - Taichiro Minami
- Department of Nephrology and Rheumatology, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takara-machi, Kanazawa, 920-8640, Japan
| | - Megumi Oshima
- Department of Nephrology and Rheumatology, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takara-machi, Kanazawa, 920-8640, Japan
| | - Shiori Nakagawa
- Department of Nephrology and Rheumatology, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takara-machi, Kanazawa, 920-8640, Japan
| | - Shinji Kitajima
- Department of Nephrology and Rheumatology, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takara-machi, Kanazawa, 920-8640, Japan
| | - Ichiro Mizushima
- Department of Nephrology and Rheumatology, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takara-machi, Kanazawa, 920-8640, Japan
| | - Akinori Hara
- Department of Hygiene and Public Health, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Norihiko Sakai
- Department of Nephrology and Rheumatology, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takara-machi, Kanazawa, 920-8640, Japan
| | - Kiyoki Kitagawa
- Division of Nephrology and Rheumatology, National Hospital Organization Kanazawa Medical Center, Kanazawa, Japan
| | | | - Junichi Hoshino
- Nephrology Center, Toranomon Hospital, Tokyo, Japan
- Department of Nephrology, Tokyo Women's Medical University, Tokyo, Japan
| | | | - Yasunori Iwata
- Department of Nephrology and Rheumatology, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takara-machi, Kanazawa, 920-8640, Japan
| | - Takashi Wada
- Department of Nephrology and Rheumatology, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takara-machi, Kanazawa, 920-8640, Japan
| |
Collapse
|
2
|
Sunilkumar S, Subrahmanian SM, Yerlikaya EI, Toro AL, Harhaj EW, Kimball SR, Dennis MD. REDD1 expression in podocytes facilitates renal inflammation and pyroptosis in streptozotocin-induced diabetic nephropathy. Cell Death Dis 2025; 16:79. [PMID: 39920111 PMCID: PMC11806006 DOI: 10.1038/s41419-025-07396-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 01/10/2025] [Accepted: 01/27/2025] [Indexed: 02/09/2025]
Abstract
Sterile inflammation resulting in an altered immune response is a key determinant of renal injury in diabetic nephropathy (DN). In this investigation, we evaluated the hypothesis that hyperglycemic conditions augment the pro-inflammatory immune response in the kidney by promoting podocyte-specific expression of the stress response protein regulated in development and DNA damage response 1 (REDD1). In support of the hypothesis, streptozotocin (STZ)-induced diabetes increased REDD1 protein abundance in the kidney concomitant with renal immune cell infiltration. In diabetic mice, administration of the SGLT2 inhibitor dapagliflozin was followed by reductions in blood glucose concentration, renal REDD1 protein abundance, and immune cell infiltration. In contrast with diabetic REDD1+/+ mice, diabetic REDD1-/- mice did not exhibit albuminuria, increased pro-inflammatory factors, or renal macrophage infiltration. In cultured human podocytes, exposure to hyperglycemic conditions promoted REDD1-dependent activation of NF-κB signaling. REDD1 deletion in podocytes attenuated both the increase in chemokine expression and macrophage chemotaxis under hyperglycemic conditions. Notably, podocyte-specific REDD1 deletion prevented the pro-inflammatory immune cell infiltration in the kidneys of diabetic mice. Furthermore, exposure of podocytes to hyperglycemic conditions promoted REDD1-dependent pyroptotic cell death, evidenced by an NLRP3-mediated increase in caspase-1 activity and LDH release. REDD1 expression in podocytes was also required for an increase in pyroptosis markers in the glomeruli of diabetic mice. The data support that podocyte-specific REDD1 is necessary for chronic NF-κB activation in the context of diabetes and raises the prospect that therapies targeting podocyte-specific REDD1 may be helpful in DN.
Collapse
Affiliation(s)
- Siddharth Sunilkumar
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA, USA
| | - Sandeep M Subrahmanian
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA, USA
| | - Esma I Yerlikaya
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA, USA
| | - Allyson L Toro
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA, USA
| | - Edward W Harhaj
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, PA, USA
| | - Scot R Kimball
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA, USA
| | - Michael D Dennis
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA, USA.
| |
Collapse
|
3
|
Jha R, Lopez-Trevino S, Kankanamalage HR, Jha JC. Diabetes and Renal Complications: An Overview on Pathophysiology, Biomarkers and Therapeutic Interventions. Biomedicines 2024; 12:1098. [PMID: 38791060 PMCID: PMC11118045 DOI: 10.3390/biomedicines12051098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Diabetic kidney disease (DKD) is a major microvascular complication of both type 1 and type 2 diabetes. DKD is characterised by injury to both glomerular and tubular compartments, leading to kidney dysfunction over time. It is one of the most common causes of chronic kidney disease (CKD) and end-stage renal disease (ESRD). Persistent high blood glucose levels can damage the small blood vessels in the kidneys, impairing their ability to filter waste and fluids from the blood effectively. Other factors like high blood pressure (hypertension), genetics, and lifestyle habits can also contribute to the development and progression of DKD. The key features of renal complications of diabetes include morphological and functional alterations to renal glomeruli and tubules leading to mesangial expansion, glomerulosclerosis, homogenous thickening of the glomerular basement membrane (GBM), albuminuria, tubulointerstitial fibrosis and progressive decline in renal function. In advanced stages, DKD may require treatments such as dialysis or kidney transplant to sustain life. Therefore, early detection and proactive management of diabetes and its complications are crucial in preventing DKD and preserving kidney function.
Collapse
Affiliation(s)
- Rajesh Jha
- Kansas College of Osteopathic Medicine, Wichita, KS 67202, USA;
| | - Sara Lopez-Trevino
- Department of Diabetes, School of Translational Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Haritha R. Kankanamalage
- Department of Diabetes, School of Translational Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Jay C. Jha
- Department of Diabetes, School of Translational Medicine, Monash University, Melbourne, VIC 3004, Australia
| |
Collapse
|
4
|
Limonte CP, Gao X, Bebu I, Seegmiller JC, Lorenzi GM, Perkins BA, Karger AB, Arends VL, Paterson A, Molitch ME, de Boer IH. Longitudinal Trajectories of Biomarkers of Kidney Tubular Function in Type 1 Diabetes. Kidney Int Rep 2024; 9:1406-1418. [PMID: 38707816 PMCID: PMC11068962 DOI: 10.1016/j.ekir.2023.11.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/06/2023] [Indexed: 05/07/2024] Open
Abstract
Introduction Tubular biomarkers may shed insight into progression of kidney tubulointerstitial pathology complementary to traditional measures of glomerular function and damage. Methods We examined trajectories of tubular biomarkers in the Diabetes Control and Complications Trial and the Epidemiology of Diabetes Interventions and Complications Study (DCCT/EDIC Study) of type 1 diabetes (T1D). Biomarkers were measured in a subset of 220 participants across 7 time points over 26 years. Measurements included the following: kidney injury molecule 1 (KIM-1), soluble tumor necrosis factor 1 (sTNFR1) in serum or plasma, epidermal growth factor (EGF), monocyte chemoattractant protein-1 (MCP1) in timed urine, and a composite tubular secretion score. We described biomarker trajectories and examined how these were affected by intensive glucose-lowering therapy and glycemia. Results At baseline, participants had a mean age of 28 years, 45% were women, and 50% were assigned to intensive glucose-lowering therapy. The mean estimated glomerular filtration rate (eGFR) was 125 ml/min per 1.73 m2 and 90% of participants had a urinary albumin excretion rate (AER) <30 mg/24h. Mean changes in biomarkers over time (percent/decade) were: KIM-1: 27.3% (95% confidence interval [CI]: 21.4-33.5), sTNFR1: 16.9% (14.5-19.3), MCP1: 18.4% (8.9-28.8), EGF: -13.5% (-16.7 to -10.1), EGF-MCP1 ratio: -26.9% (-32.2 to -21.3), and tubular secretion score -0.9% (-1.8 to 0.0), versus -12.0% (CI: -12.9 to -11.1) for eGFR and 10.9% (2.5-20.1) for AER. Intensive versus conventional glucose-lowering therapy was associated with slower increase in sTNFR1 (relative difference in change: 0.94 [0.90-0.98]). Higher HbA1c was associated with faster increases in sTNFR1 (relative difference in change: 1.06 per 1% higher HbA1c [1.05-1.08]) and KIM-1 (1.09 [1.05-1.14]). Conclusion Among participants with T1D and normal eGFR at baseline, kidney tubular biomarkers changed significantly over long-term follow-up. Hyperglycemia was associated with larger increases in serum or plasma sTNFR1 and KIM-1, when followed-up longitudinally.
Collapse
Affiliation(s)
- Christine P. Limonte
- Division of Nephrology, Department of Medicine, University of Washington, Seattle, Washington, USA
- Kidney Research Institute, University of Washington, Seattle, Washington, USA
| | - Xiaoyu Gao
- Biostatistics Center, The George Washington University, Rockville, Maryland, USA
| | - Ionut Bebu
- Biostatistics Center, The George Washington University, Rockville, Maryland, USA
| | - Jesse C. Seegmiller
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Gayle M. Lorenzi
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Bruce A. Perkins
- Division of Endocrinology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Amy B. Karger
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Valerie L. Arends
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Andrew Paterson
- Program in Genetics and Genome Biology, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Mark E. Molitch
- Division of Endocrinology, Metabolism, and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Ian H. de Boer
- Division of Nephrology, Department of Medicine, University of Washington, Seattle, Washington, USA
- Kidney Research Institute, University of Washington, Seattle, Washington, USA
| | - DCCT/EDIC Research Group9
- Division of Nephrology, Department of Medicine, University of Washington, Seattle, Washington, USA
- Kidney Research Institute, University of Washington, Seattle, Washington, USA
- Biostatistics Center, The George Washington University, Rockville, Maryland, USA
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
- Division of Endocrinology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- Program in Genetics and Genome Biology, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
- Division of Endocrinology, Metabolism, and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
5
|
Kostopoulou E, Kalavrizioti D, Davoulou P, Papachristou E, Sinopidis X, Fouzas S, Dassios T, Gkentzi D, Kyriakou SI, Karatza A, Dimitriou G, Goumenos D, Spiliotis BE, Plotas P, Papasotiriou M. Monocyte Chemoattractant Protein-1 (MCP-1), Activin-A and Clusterin in Children and Adolescents with Obesity or Type-1 Diabetes Mellitus. Diagnostics (Basel) 2024; 14:450. [PMID: 38396489 PMCID: PMC10887959 DOI: 10.3390/diagnostics14040450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/04/2024] [Accepted: 02/17/2024] [Indexed: 02/25/2024] Open
Abstract
Inflammation plays a crucial role in diabetes and obesity through macrophage activation. Macrophage chemoattractant protein-1 (MCP-1), activin-A, and clusterin are chemokines with known roles in diabetes and obesity. The aim of this study is to investigate their possible diagnostic and/or early prognostic values in children and adolescents with obesity and type-1 diabetes mellitus (T1DM). METHODS We obtained serum samples from children and adolescents with a history of T1DM or obesity, in order to measure and compare MCP-1, activin-A, and clusterin concentrations. RESULTS Forty-three subjects were included in each of the three groups (controls, T1DM, and obesity). MCP-1 values were positively correlated to BMI z-score. Activin-A was increased in children with obesity compared to the control group. A trend for higher values was detected in children with T1DM. MCP-1 and activin-A levels were positively correlated. Clusterin levels showed a trend towards lower values in children with T1DM or obesity compared to the control group and were negatively correlated to renal function. CONCLUSIONS The inflammation markers MCP-1, activin-A, and clusterin are not altered in children with T1DM. Conversely, obesity in children is positively correlated to serum MCP-1 values and characterized by higher activin-A levels, which may reflect an already established systematic inflammation with obesity since childhood.
Collapse
Affiliation(s)
- Eirini Kostopoulou
- Division of Pediatric Endocrinology, Department of Pediatrics, University Hospital of Patras, School of Medicine, University of Patras, 26504 Patras, Greece; (E.K.); (B.E.S.)
| | - Dimitra Kalavrizioti
- Department of Nephrology and Kidney Transplantation, University Hospital of Patras, School of Medicine, University of Patras, 26504 Patras, Greece; (D.K.); (P.D.); (E.P.); (D.G.); (M.P.)
| | - Panagiota Davoulou
- Department of Nephrology and Kidney Transplantation, University Hospital of Patras, School of Medicine, University of Patras, 26504 Patras, Greece; (D.K.); (P.D.); (E.P.); (D.G.); (M.P.)
| | - Evangelos Papachristou
- Department of Nephrology and Kidney Transplantation, University Hospital of Patras, School of Medicine, University of Patras, 26504 Patras, Greece; (D.K.); (P.D.); (E.P.); (D.G.); (M.P.)
| | - Xenophon Sinopidis
- Department of Pediatric Surgery, University Hospital of Patras, School of Medicine, University of Patras, 26504 Patras, Greece;
| | - Sotirios Fouzas
- Department of Pediatrics, University Hospital of Patras, School of Medicine, University of Patras, 26504 Patras, Greece; (S.F.); (T.D.); (D.G.); (A.K.); (G.D.)
| | - Theodore Dassios
- Department of Pediatrics, University Hospital of Patras, School of Medicine, University of Patras, 26504 Patras, Greece; (S.F.); (T.D.); (D.G.); (A.K.); (G.D.)
| | - Despoina Gkentzi
- Department of Pediatrics, University Hospital of Patras, School of Medicine, University of Patras, 26504 Patras, Greece; (S.F.); (T.D.); (D.G.); (A.K.); (G.D.)
| | - Stavroula Ioanna Kyriakou
- Department of Pediatric Surgery, University Hospital of Patras, School of Medicine, University of Patras, 26504 Patras, Greece;
| | - Ageliki Karatza
- Department of Pediatrics, University Hospital of Patras, School of Medicine, University of Patras, 26504 Patras, Greece; (S.F.); (T.D.); (D.G.); (A.K.); (G.D.)
| | - Gabriel Dimitriou
- Department of Pediatrics, University Hospital of Patras, School of Medicine, University of Patras, 26504 Patras, Greece; (S.F.); (T.D.); (D.G.); (A.K.); (G.D.)
| | - Dimitrios Goumenos
- Department of Nephrology and Kidney Transplantation, University Hospital of Patras, School of Medicine, University of Patras, 26504 Patras, Greece; (D.K.); (P.D.); (E.P.); (D.G.); (M.P.)
| | - Bessie E. Spiliotis
- Division of Pediatric Endocrinology, Department of Pediatrics, University Hospital of Patras, School of Medicine, University of Patras, 26504 Patras, Greece; (E.K.); (B.E.S.)
| | - Panagiotis Plotas
- Department of Speech and Language Therapy, School of Health Rehabilitation Sciences, University of Patras, 26504 Patras, Greece;
| | - Marios Papasotiriou
- Department of Nephrology and Kidney Transplantation, University Hospital of Patras, School of Medicine, University of Patras, 26504 Patras, Greece; (D.K.); (P.D.); (E.P.); (D.G.); (M.P.)
| |
Collapse
|
6
|
Swaminathan SM, Rao IR, Bhojaraja MV, Attur RP, Nagri SK, Rangaswamy D, Shenoy SV, Nagaraju SP. Role of novel biomarker monocyte chemo-attractant protein-1 in early diagnosis & predicting progression of diabetic kidney disease: A comprehensive review. J Natl Med Assoc 2024; 116:33-44. [PMID: 38195327 DOI: 10.1016/j.jnma.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/11/2023] [Accepted: 12/03/2023] [Indexed: 01/11/2024]
Abstract
Diabetic kidney disease (DKD) is the most devastating complication of diabetes mellitus. Identification of patients at the early stages of progression may reduce the disease burden. The limitation of conventional markers such as serum creatinine and proteinuria intensify the need for novel biomarkers. The traditional paradigm of DKD pathogenesis has expanded to the activation of the immune system and inflammatory pathways. Monocyte chemo-attractant protein-1 (MCP-1) is extensively studied, as a key inflammatory mediator that modulates the development of DKD. Recent evidence supports the diagnostic role of MCP-1 in patients with or without proteinuria in DKD, as well as a significant role in the early prediction and risk stratification of DKD. In this review, we will summarize and update present evidence for MCP-1 for diagnostic ability and predicting the progression of DKD.
Collapse
Affiliation(s)
- Shilna Muttickal Swaminathan
- Department of Nephrology, Kasturba medical college, Manipal, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Indu Ramachandra Rao
- Department of Nephrology, Kasturba medical college, Manipal, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Mohan V Bhojaraja
- Department of Nephrology, Kasturba medical college, Manipal, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Ravindra Prabhu Attur
- Department of Nephrology, Kasturba medical college, Manipal, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Shivashankara Kaniyoor Nagri
- Department of Medicine, Kasturba medical college, Manipal, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Dharshan Rangaswamy
- Department of Nephrology, Kasturba medical college, Manipal, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Srinivas Vinayak Shenoy
- Department of Nephrology, Kasturba medical college, Manipal, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Shankar Prasad Nagaraju
- Department of Nephrology, Kasturba medical college, Manipal, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India.
| |
Collapse
|
7
|
Wu H, Xu F, Huang X, Li X, Yu P, Zhang L, Yang X, Kong J, Zhen C, Wang X. Lupenone improves type 2 diabetic nephropathy by regulating NF-κB pathway-mediated inflammation and TGF-β1/Smad/CTGF-associated fibrosis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 118:154959. [PMID: 37478684 DOI: 10.1016/j.phymed.2023.154959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/12/2023] [Accepted: 07/07/2023] [Indexed: 07/23/2023]
Abstract
BACKGROUND Type 2 diabetic nephropathy is a common diabetic complication and the main cause of death in patients with diabetes. Research has aimed to find an ideal drug with minimal side effects for treating this disease. Banana peel has been shown to be anti-diabetic, with lupenone isolated from banana peel exhibiting antidiabetic and anti-inflammatory activities; However, the effects of lupenone on type 2 diabetic nephropathy are largely unknown. PURPOSE This study aimed to investigate the ameliorative effect of lupenone on type 2 diabetic nephropathy, and its mechanism from both anti-inflammatory and anti-fibrotic perspectives. METHODS Spontaneous type 2 diabetic nephropathy db/db mouse models were given three levels of lupenone (24 or 12 or 6 mg/kg/d) via intragastric administration for six weeks, and irbesartan treatment was used for the positive control group. We explored the effects and mechanism of lupenone action using enzyme-linked immunosorbent assay, automatic biochemical analyzer, hematoxylin-eosin and Masson staining, real time-PCR, and western blotting. Concurrently, a high-sugar and high-fat diet combined with a low-dose streptozotocin-induced type 2 diabetic nephropathy rat model was used for confirmatory research. RESULTS Lupenone administration maintained the fasting blood glucose; reduced glycosylated hemoglobin, insulin, and 24 h proteinuria levels; and markedly regulated changes in biochemical indicators associated with kidney injury in serum and urine (including 24 h proteinuria, micro-albumin, N-acetyl-β-d-glucosaminidase, α1-micro-globulin, creatinine, urea nitrogen, uric acid, total protein, and albumin) of type 2 diabetic nephropathy mice and rats. Hematoxylin-eosin and Masson staining as well as molecular biology tests revealed that inflammation and fibrosis are the two key processes affected by lupenone treatment. Lupenone protected type 2 diabetic nephropathy kidneys by regulating the NF-κB-mediated inflammatory response and TGF-β1/Smad/CTGF pathway-associated fibrosis. CONCLUSION Lupenone has potential as an innovative drug for preventing and treating diabetic nephropathy. Additionally, it has great value for the utilization of banana peel resources.
Collapse
Affiliation(s)
- Hongmei Wu
- School of pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025 Guizhou, PR China
| | - Feng Xu
- School of pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025 Guizhou, PR China
| | - Xulong Huang
- School of pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025 Guizhou, PR China
| | - Xiaofen Li
- School of pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025 Guizhou, PR China
| | - Piao Yu
- School of pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025 Guizhou, PR China
| | - Lingling Zhang
- School of pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025 Guizhou, PR China
| | - Xiaosong Yang
- School of pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025 Guizhou, PR China
| | - Juan Kong
- School of pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025 Guizhou, PR China
| | - Cheng Zhen
- School of pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025 Guizhou, PR China
| | - Xiangpei Wang
- School of Chinese Ethnic Medicine, Guizhou Minzu University, Guiyang 550025 Guizhou, PR China.
| |
Collapse
|
8
|
Han Z, Liu Q, Li H, Zhang M, You L, Lin Y, Wang K, Gou Q, Wang Z, Zhou S, Cai Y, Yuan L, Chen H. The role of monocytes in thrombotic diseases: a review. Front Cardiovasc Med 2023; 10:1113827. [PMID: 37332592 PMCID: PMC10272466 DOI: 10.3389/fcvm.2023.1113827] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 05/18/2023] [Indexed: 06/20/2023] Open
Abstract
Cardiovascular and cerebrovascular diseases are the number one killer threatening people's life and health, among which cardiovascular thrombotic events are the most common. As the cause of particularly serious cardiovascular events, thrombosis can trigger fatal crises such as acute coronary syndrome (myocardial infarction and unstable angina), cerebral infarction and so on. Circulating monocytes are an important part of innate immunity. Their main physiological functions are phagocytosis, removal of injured and senescent cells and their debris, and development into macrophages and dendritic cells. At the same time, they also participate in the pathophysiological processes of pro-coagulation and anticoagulation. According to recent studies, monocytes have been found to play a significant role in thrombosis and thrombotic diseases of the immune system. In this manuscript, we review the relationship between monocyte subsets and cardiovascular thrombotic events and analyze the role of monocytes in arterial thrombosis and their involvement in intravenous thrombolysis. Finally, we summarize the mechanism and therapeutic regimen of monocyte and thrombosis in hypertension, antiphospholipid syndrome, atherosclerosis, rheumatic heart disease, lower extremity deep venous thrombosis, and diabetic nephropathy.
Collapse
Affiliation(s)
- Zhongyu Han
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiong Liu
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hongpeng Li
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Meiqi Zhang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Luling You
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yumeng Lin
- Eye School of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ke Wang
- Eye School of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiaoyin Gou
- Eye School of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhanzhan Wang
- Lianyungang Clinical College of Nanjing Medical University, Lianyungang, China
| | - Shuwei Zhou
- Department of Radiology, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - YiJin Cai
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lan Yuan
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Haoran Chen
- Science and Education Department, Chengdu Xinhua Hospital, Chengdu, China
| |
Collapse
|
9
|
Swaminathan SM, Rao IR, Shenoy SV, Prabhu AR, Mohan PB, Rangaswamy D, Bhojaraja MV, Nagri SK, Nagaraju SP. Novel biomarkers for prognosticating diabetic kidney disease progression. Int Urol Nephrol 2023; 55:913-928. [PMID: 36271990 PMCID: PMC10030535 DOI: 10.1007/s11255-022-03354-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 08/21/2022] [Indexed: 10/24/2022]
Abstract
The global burden of diabetic kidney disease (DKD) is escalating, and it remains as a predominant cause of the end-stage renal disease (ESRD). DKD is associated with increased cardiovascular disease and morbidity in all types of diabetes. Prediction of progression with albuminuria and eGFR is challenging in DKD, especially in non-proteinuric DKD patients. The pathogenesis of DKD is multifactorial characterized by injury to all components of the nephron, whereas albuminuria is an indicator of only glomerular injury. The limits in the diagnostic and prognostic value of urine albumin demonstrate the need for alternative and clinically significant early biomarkers, allowing more targeted and effective diabetic treatment, to reduce the burden of DKD and ESRD. Identification of biomarkers, based on multifactorial pathogenesis of DKD can be the crucial paradigm in the treatment algorithm of DKD patients. This review focuses on the potential biomarkers linked to DKD pathogenesis, particularly with the hope of broadening the diagnostic window to identify patients with different stages of DKD progression.
Collapse
Affiliation(s)
- Shilna Muttickal Swaminathan
- Department of Nephrology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Manipal, India
| | - Indu Ramachandra Rao
- Department of Nephrology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Manipal, India
| | - Srinivas Vinayak Shenoy
- Department of Nephrology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Manipal, India
| | - Attur Ravindra Prabhu
- Department of Nephrology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Manipal, India
| | - Pooja Basthi Mohan
- Department of Gastroenterology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Manipal, India
| | - Dharshan Rangaswamy
- Department of Nephrology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Manipal, India
| | - Mohan V Bhojaraja
- Department of Nephrology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Manipal, India
| | - Shivashankara Kaniyoor Nagri
- Department of Medicine, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Manipal, India
| | - Shankar Prasad Nagaraju
- Department of Nephrology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Manipal, India.
| |
Collapse
|
10
|
SGLT2 Inhibitor—Dapagliflozin Attenuates Diabetes-Induced Renal Injury by Regulating Inflammation through a CYP4A/20-HETE Signaling Mechanism. Pharmaceutics 2023; 15:pharmaceutics15030965. [PMID: 36986825 PMCID: PMC10054805 DOI: 10.3390/pharmaceutics15030965] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/21/2023] [Accepted: 03/13/2023] [Indexed: 03/19/2023] Open
Abstract
Diabetic kidney disease (DKD) is a serious complication of diabetes, affecting millions of people worldwide. Inflammation and oxidative stress are key contributors to the development and progression of DKD, making them potential targets for therapeutic interventions. Sodium-glucose cotransporter 2 inhibitors (SGLT2i) have emerged as a promising class of drugs, with evidence demonstrating that they can improve renal outcomes in people with diabetes. However, the exact mechanism by which SGLT2i exert their renoprotective effects is not yet fully understood. This study demonstrates that dapagliflozin treatment attenuates renal injury observed in type 2 diabetic mice. This is evidenced by the reduction in renal hypertrophy and proteinuria. Furthermore, dapagliflozin decreases tubulointerstitial fibrosis and glomerulosclerosis by mitigating the generation of reactive oxygen species and inflammation, which are activated through the production of CYP4A-induced 20-HETE. Our findings provide insights onto a novel mechanistic pathway by which SGLT2i exerts their renoprotective effects. Overall, and to our knowledge, the study provides critical insights into the pathophysiology of DKD and represents an important step towards improving outcomes for people with this devastating condition.
Collapse
|
11
|
Zhou H, Mu L, Yang Z, Shi Y. Identification of a novel immune landscape signature as effective diagnostic markers related to immune cell infiltration in diabetic nephropathy. Front Immunol 2023; 14:1113212. [PMID: 36969169 PMCID: PMC10030848 DOI: 10.3389/fimmu.2023.1113212] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 02/22/2023] [Indexed: 03/10/2023] Open
Abstract
Background The study aimed to identify core biomarkers related to diagnosis and immune microenvironment regulation and explore the immune molecular mechanism of diabetic nephropathy (DN) through bioinformatics analysis. Methods GSE30529, GSE99325, and GSE104954 were merged with removing batch effects, and different expression genes (DEGs) were screened at a criterion |log2FC| >0.5 and adjusted P <0.05. KEGG, GO, and GSEA analyses were performed. Hub genes were screened by conducting PPI networks and calculating node genes using five algorithms with CytoHubba, followed by LASSO and ROC analysis to accurately identify diagnostic biomarkers. In addition, two different GEO datasets, GSE175759 and GSE47184, and an experiment cohort with 30 controls and 40 DN patients detected by IHC, were used to validate the biomarkers. Moreover, ssGSEA was performed to analyze the immune microenvironment in DN. Wilcoxon test and LASSO regression were used to determine the core immune signatures. The correlation between biomarkers and crucial immune signatures was calculated by Spearman analysis. Finally, cMap was used to explore potential drugs treating renal tubule injury in DN patients. Results A total of 509 DEGs, including 338 upregulated and 171 downregulated genes, were screened out. "chemokine signaling pathway" and "cell adhesion molecules" were enriched in both GSEA and KEGG analysis. CCR2, CX3CR1, and SELP, especially for the combination model of the three genes, were identified as core biomarkers with high diagnostic capabilities with striking AUC, sensitivity, and specificity in both merged and validated datasets and IHC validation. Immune infiltration analysis showed a notable infiltration advantage for APC co-stimulation, CD8+ T cells, checkpoint, cytolytic activity, macrophages, MHC class I, and parainflammation in the DN group. In addition, the correlation analysis showed that CCR2, CX3CR1, and SELP were strongly and positively correlated with checkpoint, cytolytic activity, macrophages, MHC class I, and parainflammation in the DN group. Finally, dilazep was screened out as an underlying compound for DN analyzed by CMap. Conclusions CCR2, CX3CR1, and SELP are underlying diagnostic biomarkers for DN, especially in their combination. APC co-stimulation, CD8+ T cells, checkpoint, cytolytic activity, macrophages, MHC class I, and parainflammation may participate in the occurrence and development of DN. At last, dilazep may be a promising drug for treating DN.
Collapse
Affiliation(s)
- Huandi Zhou
- Department of Pathology, Hebei Medical University, Shijiazhuang, China
- Hebei Key Laboratory of Kidney Disease, Hebei Medical University, Shijiazhuang, Hebei, China
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Lin Mu
- Department of Pathology, Hebei Medical University, Shijiazhuang, China
- Hebei Key Laboratory of Kidney Disease, Hebei Medical University, Shijiazhuang, Hebei, China
- Department of Nephrology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Zhifen Yang
- Department of Pathology, Hebei Medical University, Shijiazhuang, China
- Hebei Key Laboratory of Kidney Disease, Hebei Medical University, Shijiazhuang, Hebei, China
- Gynecology and Obstetrics, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yonghong Shi
- Department of Pathology, Hebei Medical University, Shijiazhuang, China
- Hebei Key Laboratory of Kidney Disease, Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
12
|
Kim YK, Ning X, Munir KM, Davis SN. Emerging drugs for the treatment of diabetic nephropathy. Expert Opin Emerg Drugs 2022; 27:417-430. [PMID: 36472144 DOI: 10.1080/14728214.2022.2155632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Diabetic nephropathy remains a significant economic and social burden on both the individual patient and health-care systems as the prevalence of diabetes increases in the general population. The complex pathophysiology of diabetic kidney disease poses a challenge in the development of effective medical treatments for the disease. However, the multiple facets of diabetic nephropathy also offer a variety of potential strategies to manage this condition. AREAS COVERED We retrieved PubMed, Cochrane Library, Scopus, Google Scholar, and ClinicalTrials.gov records to identify studies and articles focused on new pharmacologic advances to treat diabetic nephropathy. EXPERT OPINION RAAS blockers have remained the mainstay of therapy for DM nephropathy for many years, with only recent advancements with SGLT2 inhibitors and nonsteroidal MRAs. Better understanding of the long-term renal effects of ambient hyperglycemia, ranging from hemodynamic changes to increased production of oxidative and pro-inflammatory substances, has evolved our approach to the treatment of diabetic nephropathy. With continuing research for new therapeutics as well as combination therapy, the medical community may be able to better ease the burden of diabetic kidney disease.
Collapse
Affiliation(s)
- Yoon Kook Kim
- Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Center for Diabetes and Endocrinology, Baltimore, MD, USA
| | - Xinyuan Ning
- Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Center for Diabetes and Endocrinology, Baltimore, MD, USA
| | - Kashif M Munir
- Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Center for Diabetes and Endocrinology, Baltimore, MD, USA
| | - Stephen N Davis
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
13
|
van der Velden AIM, van den Berg BM, van den Born BJ, Galenkamp H, Ijpelaar DHT, Rabelink TJ. Ethnic differences in urinary monocyte chemoattractant protein-1 and heparanase-1 levels in individuals with type 2 diabetes: the HELIUS study. BMJ Open Diabetes Res Care 2022; 10:10/6/e003003. [PMID: 36564084 PMCID: PMC9791388 DOI: 10.1136/bmjdrc-2022-003003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 11/05/2022] [Indexed: 12/25/2022] Open
Abstract
INTRODUCTION We aimed to investigate ethnic differences in two urinary inflammatory markers in participants with type 2 diabetes mellitus (T2DM). RESEARCH DESIGN AND METHODS We included 55 Dutch, 127 South-Asian Surinamese, 92 African Surinamese, 62 Ghanaian, 74 Turkish and 88 Moroccan origin participants with T2DM from the HEalthy LIfe in an Urban Setting study. Using linear regression analyses, we investigated differences in urinary monocyte chemoattractant protein-1 (MCP-1) and heparanase-1 (HPSE-1) levels across ethnic minorities compared with Dutch. Associations between the urinary markers and albuminuria (albumin:creatinine ratio (ACR)) was investigated per ethnicity. RESULTS Urinary MCP-1 levels were higher in the Moroccan participants (0.15 log ng/mmol, 95% CI 0.05 to 0.26) compared with Dutch after multiple adjustments. Urinary HPSE-1 levels were lower in the African Surinamese and Ghanaian participants compared with the Dutch, with a difference of -0.16 log mU/mmol (95% CI -0.29 to -0.02) in African Surinamese and -0.16 log mU/mmol (95% CI -0.31 to -0.00) in Ghanaian after multiple adjustments. In all ethnic groups except the Dutch and Ghanaian participants, MCP-1 was associated with ACR. This association remained strongest after multiple adjustment in South-Asian and African Surinamese participants, with an increase in log ACR of 1.03% (95% CI 0.58 to 1.47) and 1.23% (95% CI 0.52 to 1.94) if log MCP-1 increased 1%. Only in the Dutch participants, an association between HPSE-1 and ACR was found, with increase in log ACR of 0.40% (95% CI 0.04 to 0.76) if log HPSE-1 increased 1%. CONCLUSIONS We found ethnic differences in urinary MCP-1 and HPSE-1 levels, in a multi-ethnic cohort of participants with T2DM. In addition, we found ethnic differences in the association of MCP-1 and HPSE-1 levels with albuminuria. These findings suggest differences in renal inflammation across ethnic groups.
Collapse
Affiliation(s)
- Anouk I M van der Velden
- Department of Internal Medicine (Nephrology) and Einthoven Laboratory of Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Bernard M van den Berg
- Department of Internal Medicine (Nephrology) and Einthoven Laboratory of Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - B J van den Born
- Internal Medicine, Amsterdam UMC-Locatie AMC, Amsterdam, The Netherlands
| | - Henrike Galenkamp
- Public and Occupational Health, Amsterdam UMC-Locatie AMC, Amsterdam, The Netherlands
| | - Daphne H T Ijpelaar
- Department of Internal Medicine (Nephrology) and Einthoven Laboratory of Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Department of Internal Medicine and Nephrology, Groene Hart Hospital, Gouda, The Netherlands
| | - Ton J Rabelink
- Department of Internal Medicine (Nephrology) and Einthoven Laboratory of Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
14
|
Cardiorenal benefits of mineralocorticoid antagonists in CKD and type 2 diabetes : Lessons from the FIGARO-DKD trial. Herz 2022; 47:401-409. [PMID: 36094559 DOI: 10.1007/s00059-022-05138-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2022] [Indexed: 11/04/2022]
Abstract
Diabetic kidney disease (DKD) develops in almost half of all patients with diabetes and is the most common cause of chronic kidney disease (CKD) worldwide. Despite the high risk of chronic renal failure in these patients, only few therapeutic strategies are available. The use of renin-angiotensin system blockers to reduce the incidence of kidney failure in patients with DKD was established years ago and remains the hallmark of therapy. The past 2 years have seen a dramatic change in our therapeutic arsenal for CKD. Sodium-glucose co-transporter‑2 inhibitors (SGLT2s) have been successfully introduced for the treatment of CKD. A further addition is a novel compound antagonizing the activation of the mineralocorticoid receptor: finerenone. Finerenone reduces albuminuria and surrogate markers of cardiovascular disease in patients who are already on optimal therapy. In the past, treatment with other mineralocorticoid receptor antagonists was hampered by a significantly increased risk of hyperkalemia. Finerenone had a much smaller effect on hyperkalemia. Together with a reduced effect on blood pressure and no signs of gynecomastia, this therapeutic strategy had a more specific anti-inflammatory effect and a smaller effect on the volume/electrolyte axis. In the FIDELIO-DKD study comparing the actions of the non-steroidal mineralocorticoid receptor antagonist finerenone with placebo, finerenone reduced the progression of DKD and the incidence of cardiovascular events, with a relatively safe adverse event profile. In this article, we summarize the available evidence on the cardioprotective and nephroprotective effects of finerenone and analyze the molecular mechanisms involved. In addition, we discuss the potential future role of mineralocorticoid receptor inhibition in the treatment of patients with diabetic CKD.
Collapse
|
15
|
Paul Owens E, Grania Healy H, Andrew Vesey D, Elizabeth Hoy W, Carolyn Gobe G. Targeted biomarkers of progression in chronic kidney disease. Clin Chim Acta 2022; 536:18-28. [PMID: 36041551 DOI: 10.1016/j.cca.2022.08.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/22/2022] [Accepted: 08/24/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND Chronic kidney disease (CKD) is an increasingly significant health issue worldwide. Early stages of CKD can be asymptomatic and disease trajectory difficult to predict. Not everyone with CKD progresses to kidney failure, where kidney replacement therapy is the only life-sustaining therapy. Predicting which patients will progress to kidney failure would allow better use of targeted treatments and more effective allocation of health resources. Current diagnostic tests to identify patients with progressive disease perform poorly but there is a suite of new and emerging predictive biomarkers with great clinical promise. METHODS This narrative review describes new and emerging biomarkers of pathophysiologic processes of CKD development and progression, accessible in blood or urine liquid biopsies. Biomarkers were selected based on their reported pathobiological functions in kidney injury, inflammation, oxidative stress, repair and fibrosis. Biomarker function and evidence of involvement in CKD development and progression are reported. CONCLUSION Many biomarkers reviewed here have received little attention to date, perhaps because of conflicting conclusions of their utility in CKD. The functional roles of the selected biomarkers in the underlying pathobiology of progression of CKD are a powerful rationale for advancing and validating these molecules as prognosticators and predictors of CKD trajectory.
Collapse
Affiliation(s)
- Evan Paul Owens
- NHMRC CKD CRE (CKD.QLD), The University of Queensland, Brisbane 4072, Australia; Faculty of Medicine, The University of Queensland, Brisbane 4072, Australia; Kidney Disease Research Collaborative, Translational Research Institute, Brisbane 4102, Australia
| | - Helen Grania Healy
- NHMRC CKD CRE (CKD.QLD), The University of Queensland, Brisbane 4072, Australia; Faculty of Medicine, The University of Queensland, Brisbane 4072, Australia; Kidney Health Service, Royal Brisbane and Women's Hospital, Brisbane 4029, Australia
| | - David Andrew Vesey
- NHMRC CKD CRE (CKD.QLD), The University of Queensland, Brisbane 4072, Australia; Faculty of Medicine, The University of Queensland, Brisbane 4072, Australia
| | - Wendy Elizabeth Hoy
- NHMRC CKD CRE (CKD.QLD), The University of Queensland, Brisbane 4072, Australia; Faculty of Medicine, The University of Queensland, Brisbane 4072, Australia; Centre for Chronic Disease, The University of Queensland, Brisbane 4072, Australia
| | - Glenda Carolyn Gobe
- NHMRC CKD CRE (CKD.QLD), The University of Queensland, Brisbane 4072, Australia; Faculty of Medicine, The University of Queensland, Brisbane 4072, Australia; Kidney Disease Research Collaborative, Translational Research Institute, Brisbane 4102, Australia.
| |
Collapse
|
16
|
Chen J, Liu Q, He J, Li Y. Immune responses in diabetic nephropathy: Pathogenic mechanisms and therapeutic target. Front Immunol 2022; 13:958790. [PMID: 36045667 PMCID: PMC9420855 DOI: 10.3389/fimmu.2022.958790] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/28/2022] [Indexed: 11/14/2022] Open
Abstract
Diabetic nephropathy (DN) is a chronic, inflammatory disease affecting millions of diabetic patients worldwide. DN is associated with proteinuria and progressive slowing of glomerular filtration, which often leads to end-stage kidney diseases. Due to the complexity of this metabolic disorder and lack of clarity about its pathogenesis, it is often more difficult to diagnose and treat than other kidney diseases. Recent studies have highlighted that the immune system can inadvertently contribute to DN pathogenesis. Cells involved in innate and adaptive immune responses can target the kidney due to increased expression of immune-related localization factors. Immune cells then activate a pro-inflammatory response involving the release of autocrine and paracrine factors, which further amplify inflammation and damage the kidney. Consequently, strategies to treat DN by targeting the immune responses are currently under study. In light of the steady rise in DN incidence, this timely review summarizes the latest findings about the role of the immune system in the pathogenesis of DN and discusses promising preclinical and clinical therapies.
Collapse
Affiliation(s)
| | | | - Jinhan He
- *Correspondence: Jinhan He, ; Yanping Li,
| | - Yanping Li
- *Correspondence: Jinhan He, ; Yanping Li,
| |
Collapse
|
17
|
Zhou Y, Chang DY, Li J, Shan Y, Huang XY, Zhang F, Luo Q, Xiong ZY, Zhao MH, Hou S, Chen M. The role of Kimmelstiel-Wilson nodule in the kidney outcome in patients with diabetic kidney disease: A two-center retrospective cohort study. Diabetes Res Clin Pract 2022; 190:109978. [PMID: 35809689 DOI: 10.1016/j.diabres.2022.109978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/16/2022] [Accepted: 06/26/2022] [Indexed: 11/23/2022]
Abstract
AIMS In the current study, we aimed to investigate the predictive value of the Kimmelstiel-Wilson (K-W) nodule for the risk of ESKD in patients with type 2 diabetes mellitus (T2DM). METHODS In the two-center retrospective study, clinical and pathological parameters were compared between DKD patients with and without K-W nodules. Furthermore, we used Cox regression analysis to explore the predictive value of the K-W nodule for the risk of ESKD. RESULTS Compared with DKD patients without K-W nodules, patients with K-W nodules had a significantly higher level of proteinuria [5.1(3.1, 8.0) g/24 hr vs. 2.4(1.1, 4.4) g/24 hr, p < 0.001]. Patients with K-W nodules had significantly higher interstitial fibrosis and tubular atrophy (IFTA) and arteriosclerosis scores than those without (p = 0.001 and p = 0.006). Kaplan-Meier analysis showed that the probability of developing ESKD was significantly higher in patients with K-W nodules than in those without (log-rank test, p < 0.001). However, after adjusting closer variables, the K-W nodule was not an independent predictor for the risk of ESKD (p > 0.05). CONCLUSIONS In T2DM patients with DKD, the K-W nodule was associated with a more severe phenotype, and to some extent, associated with poorer renal outcome, but might not be an independent risk factor for the progression of ESKD.
Collapse
Affiliation(s)
- Yue Zhou
- Division of Nephrology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Dong-Yuan Chang
- Division of Nephrology, Peking University First Hospital, Beijing, China.
| | - Jing Li
- Division of Nephrology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Ying Shan
- Clinical Research Academy, Peking University Shenzhen Hospital, Shenzhen, China
| | - Xiao-Yan Huang
- Division of Nephrology, Peking University Shenzhen Hospital, Shenzhen, China; Clinical Research Academy, Peking University Shenzhen Hospital, Shenzhen, China
| | - Fan Zhang
- Division of Nephrology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Qiong Luo
- Division of Nephrology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Zu-Ying Xiong
- Division of Nephrology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Ming-Hui Zhao
- Division of Nephrology, Peking University First Hospital, Beijing, China
| | - Shuang Hou
- Division of Nephrology, Peking University Shenzhen Hospital, Shenzhen, China.
| | - Min Chen
- Division of Nephrology, Peking University First Hospital, Beijing, China.
| |
Collapse
|
18
|
Mandrah K, Jain V, Shukla S, Ansari JA, Jagdale P, Ayanur A, Srivastava V, Roy SK. A study on bisphenol S induced nephrotoxicity and assessment of altered downstream kidney metabolites using gas chromatography-mass spectrometry based metabolomics. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 93:103883. [PMID: 35550874 DOI: 10.1016/j.etap.2022.103883] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 04/29/2022] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
The global use of bisphenol S (BPS) has now been significantly increased for commensurate utilization as a substitute for BPA for its regulatory concerns. Though, previous reports indicated that BPS been also appeared as a toxic congener comparable to BPA. In the present study, we determined nephrotoxicity condition induced due to BPS exposure. Results indicated that BPS significantly promoted histopathological disturbance in the kidney, and altered the levels of biomarkers of kidney damage in serum and urine samples of Wistar rats. It is also indicated that BPS altered the expression of kidney damage biomarkers associated with glomerular and tubular injury. Additionally, we determined the perturbation of kidney metabolites in the underlying pathophysiological response of kidney injury due to BPS exposure. Gas chromatography-mass spectrometry based untargeted metabolomics exhibited 20 significantly perturbed metabolites. Moreover, metabolic pathway analysis revealed significant disturbance in the TCA cycle and pyruvate metabolism pathways.
Collapse
Affiliation(s)
- Kapil Mandrah
- Analytical Chemistry Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Veena Jain
- Analytical Chemistry Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shagun Shukla
- Developmental Toxicology Laboratory, Systems Toxicology & Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow 226001, India
| | - Jamal Ahmad Ansari
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Immunotoxicology Laboratory, Food Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, India
| | - Pankaj Jagdale
- Pathology Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, India
| | - Anjaneya Ayanur
- Pathology Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, India
| | - Vikas Srivastava
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Developmental Toxicology Laboratory, Systems Toxicology & Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow 226001, India
| | - Somendu Kumar Roy
- Analytical Chemistry Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
19
|
Tuttle KR, Agarwal R, Alpers CE, Bakris GL, Brosius FC, Kolkhof P, Uribarri J. Molecular Mechanisms and Therapeutic Targets for Diabetic Kidney Disease. Kidney Int 2022; 102:248-260. [PMID: 35661785 DOI: 10.1016/j.kint.2022.05.012] [Citation(s) in RCA: 244] [Impact Index Per Article: 81.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/29/2022] [Accepted: 05/10/2022] [Indexed: 12/12/2022]
Abstract
Diabetic kidney disease has a high global disease burden and substantially increases risk of kidney failure and cardiovascular events. Despite treatment, there is substantial residual risk of disease progression with existing therapies. Therefore, there is an urgent need to better understand the molecular mechanisms driving diabetic kidney disease to help identify new therapies that slow progression and reduce associated risks. Diabetic kidney disease is initiated by diabetes-related disturbances in glucose metabolism, which then trigger other metabolic, hemodynamic, inflammatory, and fibrotic processes that contribute to disease progression. This review summarizes existing evidence on the molecular drivers of diabetic kidney disease onset and progression, focusing on inflammatory and fibrotic mediators-factors that are largely unaddressed as primary treatment targets and for which there is increasing evidence supporting key roles in the pathophysiology of diabetic kidney disease. Results from recent clinical trials highlight promising new drug therapies, as well as a role for dietary strategies, in treating diabetic kidney disease.
Collapse
Affiliation(s)
- Katherine R Tuttle
- Providence Medical Research Center, Providence Health Care, Spokane, Washington, USA; Institute of Translational Health Sciences, Kidney Research Institute, and Nephrology Division, University of Washington, Seattle, Washington, USA.
| | - Rajiv Agarwal
- Nephrology Division, Indiana University School of Medicine, Indianapolis, Indiana, USA; Nephrology Division, VA Medical Center, Indianapolis, Indiana, USA
| | - Charles E Alpers
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - George L Bakris
- American Heart Association Comprehensive Hypertension Center at the University of Chicago Medicine, Chicago, Illinois, USA
| | - Frank C Brosius
- Department of Medicine, College of Medicine, University of Arizona, Tucson, Arizona, USA; Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA; Department of Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Peter Kolkhof
- Cardiovascular Precision Medicines, Pharmaceuticals, Research & Development, Bayer AG, Wuppertal, Germany
| | - Jaime Uribarri
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
20
|
de Melo TR, de Souza KSC, Ururahy MAG, Bortolin RH, Bezerra JF, de Oliveira Galvão MF, Hirata RDC, Hirata MH, Arrais RF, Almeida MDG, de Rezende AA, Silbiger VN. Toll-like receptor inflammatory cascade and the development of diabetic kidney disease in children and adolescents with type 1 diabetes. J Paediatr Child Health 2022; 58:996-1000. [PMID: 35006634 DOI: 10.1111/jpc.15884] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 12/16/2022]
Abstract
AIM This study aimed to evaluate the association of toll-like receptor (TLR) inflammatory cascade with the development of diabetic kidney disease (DKD) in children and adolescents with type 1 diabetes (T1D). METHODS A total of 49 T1D patients and 49 normoglycaemic (NG) subjects aged 5-20 years old were recruited. TLR2, TLR4, MYD88, NFKB, MCP1/CCL2 and IL18 mRNA expressions were measured in peripheral blood mononuclear cells by reverse transcription-quantitative polymerase chain reaction. Fasting glucose, glycated haemoglobin, serum urea, serum creatinine and urinary albumin-to-creatinine ratio (ACR) were determined. RESULTS The mRNA expressions of TLR2, TLR4, MYD88 and NFKB were significantly increased in the T1D group compared with the NG group. The mRNA expression levels of MCP1/CCL2 and IL18 were higher in 21 T1D patients (42.9%) (average of MCP1/CCL2: 6.6-fold and IL18: 5.8-fold) than in NG patients. Furthermore, ACR was increased in the T1D group compared with the NG group. CONCLUSION The increased mRNA expression of TLR2, TLR4, MYD88, NFKB, MCP1/CCL2 and IL18 favours the development of an inflammatory process that may lead to a decline in renal function and consequently DKD in children and adolescents with T1D. This suggests that these genes are early mediators of onset DKD since the beginning of the lives of the paediatric T1D patients.
Collapse
Affiliation(s)
- Thamara R de Melo
- Department of Clinical and Toxicological Analysis, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Karla S C de Souza
- Department of Clinical and Toxicological Analysis, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Marcela A G Ururahy
- Department of Clinical and Toxicological Analysis, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Raul H Bortolin
- Department of Clinical and Toxicological Analysis, University of São Paulo, São Paulo, Brazil
| | - João F Bezerra
- Department of Clinical and Toxicological Analysis, Federal University of Rio Grande do Norte, Natal, Brazil.,Technical School of Health, Paraiba Federal University, João Pessoa, Brazil
| | | | - Rosario D C Hirata
- Department of Clinical and Toxicological Analysis, University of São Paulo, São Paulo, Brazil
| | - Mario H Hirata
- Department of Clinical and Toxicological Analysis, University of São Paulo, São Paulo, Brazil
| | - Ricardo F Arrais
- Department of Pediatrics, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Maria das Graças Almeida
- Department of Clinical and Toxicological Analysis, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Adriana A de Rezende
- Department of Clinical and Toxicological Analysis, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Vivian N Silbiger
- Department of Clinical and Toxicological Analysis, Federal University of Rio Grande do Norte, Natal, Brazil
| |
Collapse
|
21
|
Gonzalez J, Jatem E, Roig J, Valtierra N, Ostos E, Abo A, Santacana M, Garcia A, Segarra A. Usefulness of urinary biomarkers to estimate the interstitial fibrosis surface in diabetic nephropathy with normal kidney function. Nephrol Dial Transplant 2022; 37:2102-2110. [PMID: 35583251 DOI: 10.1093/ndt/gfac185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Kidney biopsies of patients with diabetic nephropathy (DN) and normal kidney function may exhibit interstitial fibrosis (IF) without reduction of glomerular filtration rate because of hyperfiltration. The aim of our study was to analyze the performance of a set of biomarkers of tubular injury to estimate the extent of IF in patients with DN and normal kidney function. PATIENTS AND METHODS This cross-sectional study included 118 adults with DN diagnosed by kidney biopsy and GFR ≥ 90 mL/min/1.73 m2 and a control group of healthy subjects. We measured the urinary excretion of MCP-1, NGAL, KIM-1, L-FABP, β2-microglobulin and DKK-3 at the time of kidney biopsy. GFR was measured by Cr-EDTA (mGFR). IF was quantified using a quantitative morphometric procedure. Predictive multivariate models were developed to estimate the IF surface. RESULTS patients with DN showed significantly higher levels of DKK-3, MCP-1 and L-FABP and significantly lower levels of EGF than healthy controls. There were no significant between-group differences in the levels of β2-microglobulin, KIM-1 or NGAL. IF was negatively associated with EGF and a positively with age, proteinuria, MCP-1, DKK-3 and L-FABP but no with β2-microglobulin, KIM-1, NGAL or GFR. The best model to predict IF surface accounted for 59% of its variability and included age, proteinuria, EGF, DKK-3 and MCP-1. CONCLUSIONS our study provides a model to estimate the IF in DN that can be useful to assess the progression of IF in patients with normal kidney function.
Collapse
Affiliation(s)
- Jorge Gonzalez
- Servicio de Nefrologia Hospital Arnau de Vilanova, Lleida
| | - Elias Jatem
- Servicio de Nefrologia Hospital Arnau de Vilanova, Lleida
| | - Jordi Roig
- Servicio de Nefrologia Hospital Arnau de Vilanova, Lleida
| | | | - Elena Ostos
- Vall d'Hebrón Institut de Recerca, Barcelona
| | - Anabel Abo
- Servicio de Anatomia Patológica, Hospital Arnau de Vilanova, Lleida
| | - Maria Santacana
- Servicio de Anatomia Patológica, Hospital Arnau de Vilanova, Lleida.,Institut de Recerca Biomèdica August Pi i Sunyer, Lleida
| | - Alicia Garcia
- Institut de Recerca Biomèdica August Pi i Sunyer, Lleida
| | - Alfons Segarra
- Servicio de Nefrologia Hospital Arnau de Vilanova, Lleida.,Vall d'Hebrón Institut de Recerca, Barcelona.,Institut de Recerca Biomèdica August Pi i Sunyer, Lleida.,Servicio de Nefrologia Hospital Vall d'Hebrón, Barcelona, Spain
| |
Collapse
|
22
|
Kong L, Andrikopoulos S, MacIsaac RJ, Mackay LK, Nikolic‐Paterson DJ, Torkamani N, Zafari N, Marin ECS, Ekinci EI. Role of the adaptive immune system in diabetic kidney disease. J Diabetes Investig 2022; 13:213-226. [PMID: 34845863 PMCID: PMC8847140 DOI: 10.1111/jdi.13725] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/19/2021] [Accepted: 11/28/2021] [Indexed: 12/14/2022] Open
Abstract
Diabetic kidney disease (DKD) is a highly prevalent complication of diabetes and the leading cause of end-stage kidney disease. Inflammation is recognized as an important driver of progression of DKD. Activation of the immune response promotes a pro-inflammatory milieu and subsequently renal fibrosis, and a progressive loss of renal function. Although the role of the innate immune system in diabetic renal disease has been well characterized, the potential contribution of the adaptive immune system remains poorly defined. Emerging evidence in experimental models of DKD indicates an increase in the number of T cells in the circulation and in the kidney cortex, that in turn triggers secretion of inflammatory mediators such as interferon-γ and tumor necrosis factor-α, and activation of cells in innate immune response. In human studies, the number of T cells residing in the interstitial region of the kidney correlates with the degree of albuminuria in people with type 2 diabetes. Here, we review the role of the adaptive immune system, and associated cytokines, in the development of DKD. Furthermore, the potential therapeutic benefits of targeting the adaptive immune system as a means of preventing the progression of DKD are discussed.
Collapse
Affiliation(s)
- Lingyun Kong
- Department of MedicineAustin Health, University of MelbourneMelbourneVictoriaAustralia
| | | | - Richard J MacIsaac
- Department of MedicineAustin Health, University of MelbourneMelbourneVictoriaAustralia
- Department of Endocrinology & DiabetesSt Vincent's Hospital MelbourneMelbourneVictoriaAustralia
| | - Laura K Mackay
- Department of Microbiology and ImmunologyPeter Doherty Institute for Infection and ImmunityThe University of MelbourneMelbourneVictoriaAustralia
| | - David J Nikolic‐Paterson
- Department of NephrologyMonash Medical Center and Monash University Center for Inflammatory DiseasesMelbourneVictoriaAustralia
| | - Niloufar Torkamani
- Department of MedicineAustin Health, University of MelbourneMelbourneVictoriaAustralia
- Endocrine Center of ExcellenceAustin HealthMelbourneVictoriaAustralia
| | - Neda Zafari
- Department of MedicineAustin Health, University of MelbourneMelbourneVictoriaAustralia
| | - Evelyn C S Marin
- College of Sport and Exercise ScienceVictoria UniversityMelbourneVictoriaAustralia
| | - Elif I Ekinci
- Department of MedicineAustin Health, University of MelbourneMelbourneVictoriaAustralia
- Endocrine Center of ExcellenceAustin HealthMelbourneVictoriaAustralia
| |
Collapse
|
23
|
Fang P, Han L, Liu C, Deng S, Zhang E, Gong P, Ren Y, Gu J, He L, Yuan ZX. Dual-Regulated Functionalized Liposome-Nanoparticle Hybrids Loaded with Dexamethasone/TGFβ1-siRNA for Targeted Therapy of Glomerulonephritis. ACS APPLIED MATERIALS & INTERFACES 2022; 14:307-323. [PMID: 34968038 DOI: 10.1021/acsami.1c20053] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Mesangial cell (MC)-mediated glomerulonephritis is a frequent cause of end-stage renal disease, with immune inflammatory damage and fibrosis as its basic pathological processes. However, the treatment of glomerulonephritis remains challenging owing to limited drug accumulation and serious side effects. Hence, the specific codelivery of "anti-inflammatory/antifibrosis" drugs to the glomerular MC region is expected to yield better therapeutic effects. In this study, liposome-nanoparticle hybrids (Au-LNHy) were formed by coating the surface of gold nanoparticles with a phospholipid bilayer; the Au-LNHys formed were comodified with PEG and α8 integrin antibodies to obtain gold nanoparticle immunoliposomes (Au-ILs). Next, the Au-ILs were loaded with dexamethasone and TGFβ1 siRNA to obtain DXMS/siRNA@Au-ILs. Our results showed that the functionalized nanoparticles had a core-shell structure, a uniform and suitable particle size, low cytotoxicity, and good MC entry, and lysosomal escape abilities. The nanoparticles were found to exhibit enhanced retention in glomerular MCs due to anti-α8 integrin antibody mediation. In vivo and in vitro pharmacodynamic studies showed the enhanced efficacy of DXMS/siRNA@Au-ILs modified with α8 integrin antibodies in the treatment of glomerulonephritis. In addition, DXMS/siRNA@Au-ILs were capable of effectively reducing the expression levels of TNF-α, TGF-β1, and other cytokines, thereby improving pathological inflammatory and fibrotic conditions in the kidney, and significantly mediating the dual regulation of inflammation and fibrosis. In summary, our results demonstrated that effectively targeting the MCs of the glomerulus for drug delivery can inhibit local inflammation and fibrosis and produce better therapeutic effects, providing a new strategy and promising therapeutic approach for the development of targeted therapies for glomerular diseases.
Collapse
Affiliation(s)
- Pengchao Fang
- College of Pharmacy, Southwest Minzu University, Chengdu 610041, Sichuan, PR China
- Lab of Pharmaceutics, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, PR China
| | - Lu Han
- College of Pharmacy, Southwest Minzu University, Chengdu 610041, Sichuan, PR China
| | - Chunping Liu
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Shichen Deng
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, Sichuan, PR China
| | - E Zhang
- Officers College of PAP, Chengdu 610213, Sichuan, PR China
| | - Puyang Gong
- College of Pharmacy, Southwest Minzu University, Chengdu 610041, Sichuan, PR China
| | - Yan Ren
- College of Pharmacy, Southwest Minzu University, Chengdu 610041, Sichuan, PR China
| | - Jian Gu
- College of Pharmacy, Southwest Minzu University, Chengdu 610041, Sichuan, PR China
| | - Lili He
- College of Pharmacy, Southwest Minzu University, Chengdu 610041, Sichuan, PR China
| | - Zhi-Xiang Yuan
- College of Pharmacy, Southwest Minzu University, Chengdu 610041, Sichuan, PR China
| |
Collapse
|
24
|
Schettini IVG, Faria DV, Nogueira LS, Otoni A, Silva ACSE, Rios DRA. Renin angiotensin system molecules and chemokine (C-C motif) ligand 2 (CCL2) in chronic kidney disease patients. J Bras Nefrol 2022; 44:19-25. [PMID: 34251390 PMCID: PMC8943881 DOI: 10.1590/2175-8239-jbn-2021-0030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 06/26/2021] [Indexed: 11/22/2022] Open
Abstract
INTRODUCTION Studies have shown that the renin angiotensin aldosterone system (RAAS) and inflammation are related to kidney injury progression. The aim of this study was to evaluate RAAS molecules and chemokine (C-C motif) ligand 2 (CCL2) in 82 patients with chronic kidney disease (CKD). METHODS Patients were divided into two groups: patients diagnosed with CKD and patients without a CKD diagnosis. Glomerular filtration rate (GFR) and albumin/creatinine ratio (ACR) were determined, as well as plasma levels of angiotensin-(1-7) [Ang-(1-7)], angiotensin-converting enzyme (ACE)1, ACE2, and plasma and urinary levels of CCL2. RESULTS CCL2 plasma levels were significantly higher in patients with CKD compared to the control group. Patients with lower GFR had higher plasma levels of ACE2 and CCL2 and lower ratio ACE1/ACE2. Patients with higher ACR values had higher ACE1 plasma levels. CONCLUSION Patients with CKD showed greater activity of both RAAS axes, the classic and alternative, and higher plasma levels of CCL2. Therefore, plasma levels of RAAS molecules and CCL2 seem to be promising prognostic markers and even therapeutic targets for CKD.
Collapse
Affiliation(s)
| | - Débora Vargas Faria
- Universidade Federal de São João del-Rei, Campus Centro Oeste,
Divinópolis, MG, Brasil
| | | | - Alba Otoni
- Universidade Federal de São João del-Rei, Campus Centro Oeste,
Divinópolis, MG, Brasil
| | - Ana Cristina Simões e Silva
- Universidade Federal de Minas Gerais, Faculdade de Medicina,
Laboratório Interdisciplinar de Investigação Médica, Departamento de Pediatria, Belo
Horizonte, MG, Brasil
| | | |
Collapse
|
25
|
Hsieh YH, Wang WC, Hung TW, Lee CC, Tsai JP. C-C Motif Chemokine Ligand-17 as a Novel Biomarker and Regulator of Epithelial Mesenchymal Transition in Renal Fibrogenesis. Cells 2021; 10:cells10123345. [PMID: 34943853 PMCID: PMC8699042 DOI: 10.3390/cells10123345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/19/2021] [Accepted: 11/26/2021] [Indexed: 02/07/2023] Open
Abstract
CCL17, a chemotactic cytokine produced by macrophages, is known to promote inflammatory and fibrotic effects in multiple organs, but its role in mediating renal fibrosis is unclear. In our study cohort of 234 chronic kidney disease (CKD) patients and 65 healthy controls, human cytokine array analysis revealed elevated CCL17 expression in CKD that correlated negatively with renal function. The area under the receiver operating characteristic curve of CCL17 to predict the development of CKD stages 3b–5 was 0.644 (p < 0.001), with the optimal cut-off value of 415.3 ng/mL. In vitro over-expression of CCL17 in HK2 cells had no effect on cell viability, but increased cell motility and the expression of α-SMA, vimentin and collagen I, as shown by western blot analysis. In a unilateral ureteral obstruction (UUO) mouse model, we observed significantly increased interstitial fibrosis and renal tubule dilatation by Masson’s Trichrome and H&E staining, and markedly increased expression of CCL17, vimentin, collagen I, and α-SMA by IHC stain, qRTPCR, and western blotting. CCL17 induced renal fibrosis by promoting the epithelial-mesenchymal transition, resulting in ECM accumulation. CCL17 may be a useful biomarker for predicting the development of advanced CKD.
Collapse
Affiliation(s)
- Yi-Hsien Hsieh
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan; (Y.-H.H.); (W.-C.W.)
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Wen-Chien Wang
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan; (Y.-H.H.); (W.-C.W.)
- School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan;
- Department of Medical Education, Taichung Vererans General Hospital, Taichung 40705, Taiwan
| | - Tung-Wei Hung
- School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan;
- Division of Nephrology, Department of Medicine, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Chu-Che Lee
- Department of Medicine Research, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi 62247, Taiwan;
| | - Jen-Pi Tsai
- School of Medicine, Tzu Chi University, Hualien 97004, Taiwan
- Division of Nephrology, Department of Internal Medicine, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi 62247, Taiwan
- Correspondence:
| |
Collapse
|
26
|
Yang Y, Shi K, Patel DM, Liu F, Wu T, Chai Z. How to inhibit transforming growth factor beta safely in diabetic kidney disease. Curr Opin Nephrol Hypertens 2021; 30:115-122. [PMID: 33229911 DOI: 10.1097/mnh.0000000000000663] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
PURPOSE OF REVIEW Diabetic kidney disease (DKD) is a leading cause of mortality and morbidity in diabetes. This review aims to discuss the major features of DKD, to identify the difficult barrier encountered in developing a therapeutic strategy and to provide a potentially superior novel approach to retard DKD. RECENT FINDINGS Renal inflammation and fibrosis are prominent features of DKD. Transforming growth factor beta (TGFβ) with its activity enhanced in DKD plays a key pathological profibrotic role in promoting renal fibrosis. However, TGFβ is a difficult drug target because it has multiple important physiological functions, such as immunomodulation. These physiological functions of TGFβ can be interrupted as a result of complete blockade of the TGFβ pathway if TGFβ is directly targeted, leading to catastrophic side-effects, such as fulminant inflammation. Cell division autoantigen 1 (CDA1) is recently identified as an enhancer of profibrotic TGFβ signaling and inhibitor of anti-inflammatory SIRT1. Renal CDA1 expression is elevated in human DKD as well as in rodent models of DKD. Targeting CDA1, by either genetic approach or pharmacological approach in mice, leads to concurrent attenuation of renal fibrosis and inflammation without any deleterious effects observed. SUMMARY Targeting CDA1, instead of directly targeting TGFβ, represents a superior approach to retard DKD.
Collapse
Affiliation(s)
- Yuxin Yang
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Department of Pathology, Zunyi maternity and Child Healthcare Hospital, Zunyi
| | - Kexin Shi
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Devang M Patel
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Fang Liu
- Department of Nephrology, West China Hospital, Sichuan University, Chengdu, China
| | - Tieqiao Wu
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Zhonglin Chai
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
27
|
Feng ST, Yang Y, Yang JF, Gao YM, Cao JY, Li ZL, Tang TT, Lv LL, Wang B, Wen Y, Sun L, Xing GL, Liu BC. Urinary sediment CCL5 messenger RNA as a potential prognostic biomarker of diabetic nephropathy. Clin Kidney J 2021; 15:534-544. [PMID: 35211307 PMCID: PMC8862108 DOI: 10.1093/ckj/sfab186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Indexed: 12/14/2022] Open
Abstract
ABSTRACT
Background
Urinary sediment messenger RNAs (mRNAs) have been shown as novel biomarkers of kidney disease. We aimed to identify targeted urinary mRNAs in diabetic nephropathy (DN) based on bioinformatics analysis and clinical validation.
Methods
Microarray studies of DN were searched in the GEO database and Nephroseq platform. Gene modules negatively correlated with estimated glomerular filtration rate (eGFR) were identified by informatics methods. Hub genes were screened within the selected modules. In validation cohorts, a quantitative polymerase chain reaction assay was used to compare the expression levels of candidate mRNAs. Patients with renal biopsy–confirmed DN were then followed up for a median time of 21 months. End-stage renal disease (ESRD) was defined as the primary endpoint. Multivariate Cox proportional hazards regression was developed to evaluate the prognostic values of candidate mRNAs.
Results
Bioinformatics analysis revealed four chemokines (CCL5, CXCL1, CXLC6 and CXCL12) as candidate mRNAs negatively correlated with eGFR, of which CCL5 and CXCL1 mRNA levels were upregulated in the urinary sediment of patients with DN. In addition, urinary sediment mRNA of CXCL1 was negatively correlated with eGFR (r = −0.2275, P = 0.0301) and CCL5 level was negatively correlated with eGFR (r = −0.4388, P < 0.0001) and positively correlated with urinary albumin:creatinine ratio (r = 0.2693, P = 0.0098); also, CCL5 and CXCL1 were upregulated in patients with severe renal interstitial fibrosis. Urinary sediment CCL5 mRNA was an independent predictor of ESRD [hazard ratio 1.350 (95% confidence interval 1.045–1.745)].
Conclusions
Urinary sediment CCL5 and CXCL1 mRNAs were upregulated in DN patients and associated with a decline in renal function and degree of renal interstitial fibrosis. Urinary sediment CCL5 mRNA could be used as a potential prognostic biomarker of DN.
Collapse
Affiliation(s)
- Song-Tao Feng
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, Jiangsu Province, China
| | - Yang Yang
- Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Jin-Fei Yang
- Department of Nephrology, the Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Yue-Ming Gao
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, Jiangsu Province, China
| | - Jing-Yuan Cao
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, Jiangsu Province, China
| | - Zuo-Lin Li
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, Jiangsu Province, China
| | - Tao-Tao Tang
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, Jiangsu Province, China
| | - Lin-Li Lv
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, Jiangsu Province, China
| | - Bin Wang
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, Jiangsu Province, China
| | - Yi Wen
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, Jiangsu Province, China
| | - Lin Sun
- Department of Nephrology, the Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Guo-Lan Xing
- Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Bi-Cheng Liu
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, Jiangsu Province, China
| |
Collapse
|
28
|
Jang HR, Kim M, Hong S, Lee K, Park MY, Yang KE, Lee CJ, Jeon J, Lee KW, Lee JE, Park JB, Kim K, Kwon GY, Kim YG, Kim DJ, Huh W. Early postoperative urinary MCP-1 as a potential biomarker predicting acute rejection in living donor kidney transplantation: a prospective cohort study. Sci Rep 2021; 11:18832. [PMID: 34552150 PMCID: PMC8458304 DOI: 10.1038/s41598-021-98135-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 09/01/2021] [Indexed: 11/16/2022] Open
Abstract
We investigated the clinical relevance of urinary cytokines/chemokines reflecting intrarenal immunologic micromilieu as prognostic markers and the optimal measurement timing after living donor kidney transplantation (LDKT). This prospective cohort study included 77 LDKT patients who were followed for ≥ 5 years. Patients were divided into control (n = 42) or acute rejection (AR, n = 35) group. Early AR was defined as AR occurring within 3 months. Serum and urine cytokines/chemokines were measured serially as follows: intraoperative, 8/24/72 h, 1 week, 3 months, and 1 year after LDKT. Intrarenal total leukocytes, T cells, and B cells were analyzed with immunohistochemistry followed by tissueFAXS. Urinary MCP-1 and fractalkine were also analyzed in a validation cohort. Urinary MCP-1 after one week was higher in the AR group. Urinary MCP-1, fractalkine, TNF-α, RANTES, and IL-6 after one week were significantly higher in the early AR group. Intrarenal total leukocytes and T cells were elevated in the AR group compared with the control group. Urinary fractalkine, MCP-1, and IL-10 showed positive correlation with intrarenal leukocyte infiltration. Post-KT 1 week urinary MCP-1 showed predictive value in the validation cohort. One-week post-KT urinary MCP-1 may be used as a noninvasive diagnostic marker for predicting AR after LDKT.
Collapse
Affiliation(s)
- Hye Ryoun Jang
- Division of Nephrology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-Ro, Gangnam-Gu, Seoul, 06351, Republic of Korea
| | - Minjung Kim
- Division of Nephrology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-Ro, Gangnam-Gu, Seoul, 06351, Republic of Korea
| | - Sungjun Hong
- Department of Digital Health, Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University, Seoul, Republic of Korea
| | - Kyungho Lee
- Division of Nephrology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-Ro, Gangnam-Gu, Seoul, 06351, Republic of Korea
| | - Mee Yeon Park
- Division of Nephrology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-Ro, Gangnam-Gu, Seoul, 06351, Republic of Korea
| | - Kyeong Eun Yang
- Research Center for Materials Analysis, Korea Basic Science Institute, Daejeon, Republic of Korea
| | - Cheol-Jung Lee
- Research Center for Materials Analysis, Korea Basic Science Institute, Daejeon, Republic of Korea
| | - Junseok Jeon
- Division of Nephrology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-Ro, Gangnam-Gu, Seoul, 06351, Republic of Korea
| | - Kyo Won Lee
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jung Eun Lee
- Division of Nephrology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-Ro, Gangnam-Gu, Seoul, 06351, Republic of Korea
| | - Jae Berm Park
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Kyunga Kim
- Statistics and Data Center, Samsung Medical Center, Seoul, Republic of Korea
| | - Ghee Young Kwon
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Yoon Goo Kim
- Division of Nephrology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-Ro, Gangnam-Gu, Seoul, 06351, Republic of Korea
| | - Dae Joong Kim
- Division of Nephrology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-Ro, Gangnam-Gu, Seoul, 06351, Republic of Korea
| | - Wooseong Huh
- Division of Nephrology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-Ro, Gangnam-Gu, Seoul, 06351, Republic of Korea.
| |
Collapse
|
29
|
Development of Biomarkers and Molecular Therapy Based on Inflammatory Genes in Diabetic Nephropathy. Int J Mol Sci 2021; 22:ijms22189985. [PMID: 34576149 PMCID: PMC8465809 DOI: 10.3390/ijms22189985] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 02/06/2023] Open
Abstract
Diabetic Nephropathy (DN) is a debilitating consequence of both Type 1 and Type 2 diabetes affecting the kidney and renal tubules leading to End Stage Renal Disease (ESRD). As diabetes is a world epidemic and almost half of diabetic patients develop DN in their lifetime, a large group of people is affected. Due to the complex nature of the disease, current diagnosis and treatment are not adequate to halt disease progression or provide an effective cure. DN is now considered a manifestation of inflammation where inflammatory molecules regulate most of the renal physiology. Recent advances in genetics and genomic technology have identified numerous susceptibility genes that are associated with DN, many of which have inflammatory functions. Based on their role in DN, we will discuss the current aspects of developing biomarkers and molecular therapy for advancing precision medicine.
Collapse
|
30
|
Wang Y, Zhao M, Zhang Y. Identification of fibronectin 1 (FN1) and complement component 3 (C3) as immune infiltration-related biomarkers for diabetic nephropathy using integrated bioinformatic analysis. Bioengineered 2021; 12:5386-5401. [PMID: 34424825 PMCID: PMC8806822 DOI: 10.1080/21655979.2021.1960766] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Immune cell infiltration (ICI) plays a pivotal role in the development of diabetic nephropathy (DN). Evidence suggests that immune-related genes play an important role in the initiation of inflammation and the recruitment of immune cells. However, the underlying mechanisms and immune-related biomarkers in DN have not been elucidated. Therefore, this study aimed to explore immune-related biomarkers in DN and the underlying mechanisms using bioinformatic approaches. In this study, four DN glomerular datasets were downloaded, merged, and divided into training and test cohorts. First, we identified 55 differentially expressed immune-related genes; their biological functions were mainly enriched in leukocyte chemotaxis and neutrophil migration. The CIBERSORT algorithm was then used to evaluate the infiltrated immune cells; macrophages M1/M2, T cells CD8, and resting mast cells were strongly associated with DN. The ICI-related gene modules as well as 25 candidate hub genes were identified to construct a protein-protein interactive network and conduct molecular complex detection using the GOSemSim algorithm. Consequently, FN1, C3, and VEGFC were identified as immune-related biomarkers in DN, and a related transcription factor-miRNA-target network was constructed. Receiver operating characteristic curve analysis was estimated in the test cohort; FN1 and C3 had large area under the curve values (0.837 and 0.824, respectively). Clinical validation showed that FN1 and C3 were negatively related to the glomerular filtration rate in patients with DN. Six potential therapeutic small molecule compounds, such as calyculin, phenamil, and clofazimine, were discovered in the connectivity map. In conclusion, FN1 and C3 are immune-related biomarkers of DN.
Collapse
Affiliation(s)
- Yuejun Wang
- Department of Nephrology, Zhejiang Aged Care Hospital, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Mingming Zhao
- Department of Nephrology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yu Zhang
- Department of Nephrology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
31
|
Abstract
Diabetic kidney disease (DKD) has been the leading cause of chronic kidney disease for over 20 years. Yet, over these two decades, the clinical approach to this condition has not much improved beyond the administration of glucose-lowering agents, renin-angiotensin-aldosterone system blockers for blood pressure control, and lipid-lowering agents. The proportion of diabetic patients who develop DKD and progress to end-stage renal disease has remained nearly the same. This unmet need for DKD treatment is caused by the complex pathophysiology of DKD, and the difficulty of translating treatment from bench to bed, which further adds to the growing argument that DKD is not a homogeneous disease. To better capture the full spectrum of DKD in our design of treatment regimens, we need improved diagnostic tools that can better distinguish the subgroups within the condition. For instance, DKD is typically placed in the broad category of a non-inflammatory kidney disease. However, genome-wide transcriptome analysis studies consistently indicate the inflammatory signaling pathway activation in DKD. This review will utilize human data in discussing the potential for redefining the role of inflammation in DKD. We also comment on the therapeutic potential of targeted anti-inflammatory therapy for DKD.
Collapse
Affiliation(s)
- Su Woong Jung
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University School of Medicine, Seoul, Korea
| | - Ju-Young Moon
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University School of Medicine, Seoul, Korea
- Correspondence to Ju-Young Moon, M.D. Division of Nephrology, Department of Internal Medicine, Kyung Hee University School of Medicine, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea Tel: +82-2-440-7064 Fax: +82-2-440-8150 E-mail:
| |
Collapse
|
32
|
Moratal C, Laurain A, Naïmi M, Florin T, Esnault V, Neels JG, Chevalier N, Chinetti G, Favre G. Regulation of Monocytes/Macrophages by the Renin-Angiotensin System in Diabetic Nephropathy: State of the Art and Results of a Pilot Study. Int J Mol Sci 2021; 22:ijms22116009. [PMID: 34199409 PMCID: PMC8199594 DOI: 10.3390/ijms22116009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/17/2021] [Accepted: 05/28/2021] [Indexed: 12/24/2022] Open
Abstract
Diabetic nephropathy (DN) is characterized by albuminuria, loss of renal function, renal fibrosis and infiltration of macrophages originating from peripheral monocytes inside kidneys. DN is also associated with intrarenal overactivation of the renin-angiotensin system (RAS), an enzymatic cascade which is expressed and controlled at the cell and/or tissue levels. All members of the RAS are present in the kidneys and most of them are also expressed in monocytes/macrophages. This review focuses on the control of monocyte recruitment and the modulation of macrophage polarization by the RAS in the context of DN. The local RAS favors the adhesion of monocytes on renal endothelial cells and increases the production of monocyte chemotactic protein-1 and of osteopontin in tubular cells, driving monocytes into the kidneys. There, proinflammatory cytokines and the RAS promote the differentiation of macrophages into the M1 proinflammatory phenotype, largely contributing to renal lesions of DN. Finally, resolution of the inflammatory process is associated with a phenotype switch of macrophages into the M2 anti-inflammatory subset, which protects against DN. The pharmacologic interruption of the RAS reduces albuminuria, improves the trajectory of the renal function, decreases macrophage infiltration in the kidneys and promotes the switch of the macrophage phenotype from M1 to M2.
Collapse
Affiliation(s)
- Claudine Moratal
- Université Côte d’Azur, INSERM, C3M, 06204 Nice, France;
- Correspondence:
| | - Audrey Laurain
- Faculty of Medicine, Côte d’Azur University, 06107 Nice, France; (A.L.); (V.E.); (G.F.)
- Centre National de la Recherche Scientifique, UMR 7073, Laboratory of Physiology and Molecular Medicine (LP2M), 06107 Nice, France
- Nephrology, Dialysis and Transplantation Department, University Hospital, 06002 Nice, France;
| | - Mourad Naïmi
- Université Côte d’Azur, CHU, 06000 Nice, France;
| | - Thibault Florin
- Nephrology, Dialysis and Transplantation Department, University Hospital, 06002 Nice, France;
| | - Vincent Esnault
- Faculty of Medicine, Côte d’Azur University, 06107 Nice, France; (A.L.); (V.E.); (G.F.)
- Nephrology, Dialysis and Transplantation Department, University Hospital, 06002 Nice, France;
| | - Jaap G. Neels
- Université Côte d’Azur, INSERM, C3M, 06204 Nice, France;
| | - Nicolas Chevalier
- Université Côte d’Azur, CHU, INSERM, C3M, 06000 Nice, France; (N.C.); (G.C.)
| | - Giulia Chinetti
- Université Côte d’Azur, CHU, INSERM, C3M, 06000 Nice, France; (N.C.); (G.C.)
| | - Guillaume Favre
- Faculty of Medicine, Côte d’Azur University, 06107 Nice, France; (A.L.); (V.E.); (G.F.)
- Centre National de la Recherche Scientifique, UMR 7073, Laboratory of Physiology and Molecular Medicine (LP2M), 06107 Nice, France
- Nephrology, Dialysis and Transplantation Department, University Hospital, 06002 Nice, France;
| |
Collapse
|
33
|
Pan X, Kaminga AC, Wen SW, Liu A. Chemokines in Prediabetes and Type 2 Diabetes: A Meta-Analysis. Front Immunol 2021; 12:622438. [PMID: 34054797 PMCID: PMC8161229 DOI: 10.3389/fimmu.2021.622438] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 03/09/2021] [Indexed: 12/11/2022] Open
Abstract
Background A growing number of studies found inconsistent results on the role of chemokines in the progression of type 2 diabetes (T2DM) and prediabetes (PDM). The purpose of this meta-analysis was to summarize the results of previous studies on the association between the chemokines system and T2DM/PDM. Methods We searched in the databases, PubMed, Web of Science, Embase and Cochrane Library, for eligible studies published not later than March 1, 2020. Data extraction was performed independently by 2 reviewers, on a standardized, prepiloted form. Group differences in chemokines concentrations were summarized using the standardized mean difference (SMD) with a 95% confidence interval (CI), calculated by performing a meta-analysis using the random-effects model. Results We identified 98 relevant studies that investigated the association between 32 different chemokines and T2DM/PDM. Altogether, these studies involved 14,708 patients and 14,574 controls. Results showed that the concentrations of CCL1, CCL2, CCL4, CCL5, CCL11, CXCL8, CXCL10 and CX3CL1 in the T2DM patients were significantly higher than that in the controls, while no difference in these concentrations was found between the PDM patients and controls. Conclusion Progression of T2DM may be associated with elevated concentrations of chemokines. Meta-Analysis Registration PROSPERO, identifier CRD42019148305.
Collapse
Affiliation(s)
- Xiongfeng Pan
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China.,Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, China
| | - Atipatsa C Kaminga
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China.,Department of Mathematics and Statistics, Mzuzu University, Mzuzu, Malawi
| | - Shi Wu Wen
- OMNI Research Group, Ottawa Hospital Research Institute, Ottawa, ON, Canada.,Department of Obstetrics and Gynaecology and School of Epidemiology and Public Health, University of Ottawa Faculty of Medicine, Ottawa, ON, Canada
| | - Aizhong Liu
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China
| |
Collapse
|
34
|
Lee YH, Kim KP, Park SH, Kim DJ, Kim YG, Moon JY, Jung SW, Kim JS, Jeong KH, Lee SY, Yang DH, Lim SJ, Woo JT, Rhee SY, Chon S, Choi HY, Park HC, Jo YI, Yi JH, Han SW, Lee SH. Urinary chemokine C-X-C motif ligand 16 and endostatin as predictors of tubulointerstitial fibrosis in patients with advanced diabetic kidney disease. Nephrol Dial Transplant 2021; 36:295-305. [PMID: 31598726 DOI: 10.1093/ndt/gfz168] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 07/19/2019] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Interstitial fibrosis and tubular atrophy (IFTA) is a well-recognized risk factor for poor renal outcome in patients with diabetic kidney disease (DKD). However, a noninvasive biomarker for IFTA is currently lacking. The purpose of this study was to identify urinary markers of IFTA and to determine their clinical relevance as predictors of renal prognosis. METHODS Seventy patients with biopsy-proven isolated DKD were enrolled in this study. We measured multiple urinary inflammatory cytokines and chemokines by multiplex enzyme-linked immunosorbent assay in these patients and evaluated their association with various pathologic features and renal outcomes. RESULTS Patients enrolled in this study exhibited advanced DKD at the time of renal biopsy, characterized by moderate to severe renal dysfunction [mean estimated glomerular filtration rate (eGFR) 36.1 mL/min/1.73 m2] and heavy proteinuria (mean urinary protein:creatinine ratio 7.8 g/g creatinine). Clinicopathologic analysis revealed that higher IFTA scores were associated with worse baseline eGFR (P < 0.001) and poor renal outcome (P = 0.002), whereas glomerular injury scores were not. Among measured urinary inflammatory markers, C-X-C motif ligand 16 (CXCL16) and endostatin showed strong correlations with IFTA scores (P = 0.001 and P < 0.001, respectively), and patients with higher levels of urinary CXCL16 and/or endostatin experienced significantly rapid renal progression compared with other patients (P < 0.001). Finally, increased urinary CXCL16 and endostatin were independent risk factors for poor renal outcome after multivariate adjustments (95% confidence interval 1.070-3.455, P = 0.029). CONCLUSIONS Urinary CXCL16 and endostatin could reflect the degree of IFTA and serve as biomarkers of renal outcome in patients with advanced DKD.
Collapse
Affiliation(s)
- Yu Ho Lee
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University School of Medicine, Seoul, Korea.,Division of Nephrology, Department of Internal Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Korea
| | - Ki Pyo Kim
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University School of Medicine, Seoul, Korea.,Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Sun-Hwa Park
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University School of Medicine, Seoul, Korea
| | - Dong-Jin Kim
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University School of Medicine, Seoul, Korea
| | - Yang-Gyun Kim
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University School of Medicine, Seoul, Korea
| | - Ju-Young Moon
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University School of Medicine, Seoul, Korea
| | - Su-Woong Jung
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University School of Medicine, Seoul, Korea
| | - Jin Sug Kim
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University School of Medicine, Seoul, Korea
| | - Kyung-Hwan Jeong
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University School of Medicine, Seoul, Korea
| | - So-Young Lee
- Division of Nephrology, Department of Internal Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Korea
| | - Dong-Ho Yang
- Division of Nephrology, Department of Internal Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Korea
| | - Sung-Jig Lim
- Department of Pathology, Department of Internal Medicine, Kyung Hee University School of Medicine, Seoul, Korea
| | - Jeong-Taek Woo
- Department of Endocrinology and Metabolism, Kyung Hee University School of Medicine, Seoul, Korea
| | - Sang Youl Rhee
- Department of Endocrinology and Metabolism, Kyung Hee University School of Medicine, Seoul, Korea
| | - Suk Chon
- Department of Endocrinology and Metabolism, Kyung Hee University School of Medicine, Seoul, Korea
| | - Hoon-Young Choi
- Division of Nephrology, Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Hyeong-Cheon Park
- Division of Nephrology, Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Young-Il Jo
- Division of Nephrology, Department of Internal Medicine, Konkuk University Medical Center, Seoul, Korea
| | - Joo-Hark Yi
- Division of Nephrology, Department of Internal Medicine, Hanyang University Guri Hospital, Guri, Korea
| | - Sang-Woong Han
- Division of Nephrology, Department of Internal Medicine, Hanyang University Guri Hospital, Guri, Korea
| | - Sang-Ho Lee
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University School of Medicine, Seoul, Korea.,Kyung Hee Medical Science Research Institute, Kyung Hee University, Seoul, Korea
| |
Collapse
|
35
|
Zhang Q, Yang M, Xiao Y, Han Y, Yang S, Sun L. Towards Better Drug Repositioning: Targeted Immunoinflammatory Therapy for Diabetic Nephropathy. Curr Med Chem 2021; 28:1003-1024. [PMID: 31701843 DOI: 10.2174/0929867326666191108160643] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/23/2019] [Accepted: 09/26/2019] [Indexed: 11/22/2022]
Abstract
Diabetic nephropathy (DN) is one of the most common and important microvascular complications of diabetes mellitus (DM). The main clinical features of DN are proteinuria and a progressive decline in renal function, which are associated with structural and functional changes in the kidney. The pathogenesis of DN is multifactorial, including genetic, metabolic, and haemodynamic factors, which can trigger a sequence of events. Controlling metabolic risks such as hyperglycaemia, hypertension, and dyslipidaemia is not enough to slow the progression of DN. Recent studies emphasized immunoinflammation as a critical pathogenic factor in the progression of DN. Therefore, targeting inflammation is considered a potential and novel treatment strategy for DN. In this review, we will briefly introduce the inflammatory process of DN and discuss the anti-inflammatory effects of antidiabetic drugs when treating DN.
Collapse
Affiliation(s)
- Qin Zhang
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ming Yang
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ying Xiao
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yachun Han
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shikun Yang
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lin Sun
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
36
|
Kanemitsu N, Kiyonaga F, Mizukami K, Maeno K, Nishikubo T, Yoshida H, Ito H. Chronic treatment with the (iso-)glutaminyl cyclase inhibitor PQ529 is a novel and effective approach for glomerulonephritis in chronic kidney disease. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2021; 394:751-761. [PMID: 33159802 PMCID: PMC8007495 DOI: 10.1007/s00210-020-02013-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 10/29/2020] [Indexed: 01/08/2023]
Abstract
Glomeruli and renal tubule injury in chronic kidney disease (CKD) is reported to involve induction of macrophage activation through the CCL2/CCR2 axis. The effects of inhibitors of the CCL2/CCR2 axis, such as anti-CCL2 antibody and CCR2 antagonist, on kidney function in animal models or humans with kidney dysfunction have been demonstrated. The N-terminal glutamine on immature CCL2 is replaced with pyroglutamate (pE) by glutaminyl cyclase (QC) and isoQC. pE-CCL2 is stable and resistant to peptidases. We hypothesized that inhibiting QC/isoQC activity would lead to the degradation of CCL2, thereby ameliorating CKD and reducing kidney inflammation. To test this hypothesis, we investigated the renoprotective properties of the QC/isoQC inhibitor PQ529 in anti-glomerular basement membrane (GBM) antibody-induced glomerulonephritis Wistar Kyoto (WKY) rats. Three-week repeated administration of PQ529 (30 and 100 mg/kg, twice daily) significantly reduced the serum and urine CCL2 and urinary protein excretion in a dose-dependent manner. Correlations between the urinary protein level and serum or urinary CCL2 levels were confirmed in tested animals. Repeated administration of PQ529 significantly reduced the expression of CD68, a macrophage marker, in the kidney cortex and mononuclear infiltration into the tubulointerstitium. In addition, decreased levels of urinary KIM-1, β2 microglobulin, and clusterin were detected, suggesting the inhibition of inflammation in both the proximal and distal tubules. These results suggest that PQ529 suppresses the progression of inflammation-induced renal dysfunction by inhibiting the CCL2/CCR2 axis. Inhibition of QC/isoQC may thus be a viable alternative therapeutic approach for treating glomerulonephritis and CKD patients.
Collapse
MESH Headings
- Aminoacyltransferases/antagonists & inhibitors
- Animals
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Antigens, Differentiation, Myelomonocytic/genetics
- Antigens, Differentiation, Myelomonocytic/metabolism
- Benzimidazoles/pharmacokinetics
- Benzimidazoles/pharmacology
- Benzimidazoles/therapeutic use
- Cell Adhesion Molecules/urine
- Chemokine CCL2/antagonists & inhibitors
- Chemokine CCL2/blood
- Chemokine CCL2/metabolism
- Chemokine CCL2/urine
- Clusterin/urine
- Glomerulonephritis/blood
- Glomerulonephritis/drug therapy
- Glomerulonephritis/metabolism
- Glomerulonephritis/urine
- Imidazolines/pharmacokinetics
- Imidazolines/pharmacology
- Imidazolines/therapeutic use
- Interferon-gamma/metabolism
- Kidney/drug effects
- Kidney/metabolism
- Male
- Protective Agents/pharmacokinetics
- Protective Agents/pharmacology
- Protective Agents/therapeutic use
- Rats, Inbred WKY
- Renal Insufficiency, Chronic/blood
- Renal Insufficiency, Chronic/drug therapy
- Renal Insufficiency, Chronic/metabolism
- Renal Insufficiency, Chronic/urine
- beta 2-Microglobulin/urine
- Rats
Collapse
Affiliation(s)
- Naotoshi Kanemitsu
- Development, Astellas Pharma Inc., 2-5-1, Nihonbashi-Honcho, Chuo-ku, Tokyo, 103-8411, Japan.
| | - Fumiko Kiyonaga
- Corporate Advocacy, Astellas Pharma Inc., Chuo-ku, Tokyo, 103-8411, Japan
| | - Kazuhiko Mizukami
- Drug Discovery Research, Astellas Pharma Inc., Tsukuba-shi, Ibaraki, 305-8585, Japan
| | - Kyoichi Maeno
- Drug Discovery Research, Astellas Pharma Inc., Tsukuba-shi, Ibaraki, 305-8585, Japan
| | - Takashi Nishikubo
- Astellas Innovation Management LLC, 1030 Massachusetts Ave. Suite 310, Cambridge, MA, 02138, USA
| | - Hiroyuki Yoshida
- Drug Discovery Research, Astellas Pharma Inc., Tsukuba-shi, Ibaraki, 305-8585, Japan
| | - Hiroyuki Ito
- Drug Discovery Research, Astellas Pharma Inc., Tsukuba-shi, Ibaraki, 305-8585, Japan
| |
Collapse
|
37
|
Abstract
Globally, diabetic nephropathy (DN) is the foremost cause of end-stage renal disease. With the incidence of diabetes increasing day by day, DN's occurrence is expected to surge to pandemic proportions. Current available therapeutic interventions associated with DN emphasize blood pressure, glycemia and lipid control while ignoring DN's progression mechanism at a molecular level. This review sheds light on the molecular insights involved in DN to help understand the initiation and progression pattern. Further, we summarize novel strategies with reported applications in developing a nanomedicine-based platform for DN-targeted drug delivery to improve drug efficacy and safety.
Collapse
|
38
|
Duan S, Lu F, Song D, Zhang C, Zhang B, Xing C, Yuan Y. Current Challenges and Future Perspectives of Renal Tubular Dysfunction in Diabetic Kidney Disease. Front Endocrinol (Lausanne) 2021; 12:661185. [PMID: 34177803 PMCID: PMC8223745 DOI: 10.3389/fendo.2021.661185] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 05/21/2021] [Indexed: 12/29/2022] Open
Abstract
Over decades, substantial progress has been achieved in understanding the pathogenesis of proteinuria in diabetic kidney disease (DKD), biomarkers for DKD screening, diagnosis, and prognosis, as well as novel hypoglycemia agents in clinical trials, thereby rendering more attention focused on the role of renal tubules in DKD. Previous studies have demonstrated that morphological and functional changes in renal tubules are highly involved in the occurrence and development of DKD. Novel tubular biomarkers have shown some clinical importance. However, there are many challenges to transition into personalized diagnosis and guidance for individual therapy in clinical practice. Large-scale clinical trials suggested the clinical relevance of increased proximal reabsorption and hyperfiltration by sodium-glucose cotransporter-2 (SGLT2) to improve renal outcomes in patients with diabetes, further promoting the emergence of renal tubulocentric research. Therefore, this review summarized the recent progress in the pathophysiology associated with involved mechanisms of renal tubules, potential tubular biomarkers with clinical application, and renal tubular factors in DKD management. The mechanism of kidney protection and impressive results from clinical trials of SGLT2 inhibitors were summarized and discussed, offering a comprehensive update on therapeutic strategies targeting renal tubules.
Collapse
|
39
|
Vittori LN, Romasco J, Tarozzi A, Latessa PM. Urinary Markers and Chronic Effect of Physical Exercise. Methods Mol Biol 2021; 2292:193-200. [PMID: 33651363 DOI: 10.1007/978-1-0716-1354-2_17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Chronic kidney disease (CKD) is a type of kidney disease in which there is gradual loss of kidney function over a period of months to years. The clinical protocol of CKD forecasts that markers such as serum creatinine, the estimate of the glomerular filtration rate value, microalbuminuria, cystatin c are evaluated as routine markers. In recent years, new studies have identified new markers to diagnose and assess the level of kidney damage.The prevalence of CKD increases in subjects suffering from cardiovascular and metabolic diseases. The highest risk of cardiovascular risk in the CKD patient compared to the general population is related to risk factors such as hypertension, obesity, and specific renal disease factors such as albuminuria.Physical exercise, especially aerobic, has been seen through the analysis of urinary markers, able to mitigate the adverse effect of sedentary, hypertension and interstitial damage in patients with CKD and decrease the urinary levels liver-type fatty acid binding protein (L-FABP) and lower urinary albumin excretion.
Collapse
Affiliation(s)
| | - Jenny Romasco
- Department for Life Quality Studies, University of Bologna, Rimini, Italy
| | - Andrea Tarozzi
- Department for Life Quality Studies, University of Bologna, Rimini, Italy
| | | |
Collapse
|
40
|
Monaghan MLT, Bailey MA, Unwin RJ. Purinergic signalling in the kidney: In physiology and disease. Biochem Pharmacol 2020; 187:114389. [PMID: 33359067 DOI: 10.1016/j.bcp.2020.114389] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 02/06/2023]
Abstract
Historically, the control of renal vascular and tubular function has, for the most part, concentrated on neural and endocrine regulation. However, in addition to these extrinsic factors, it is now appreciated that several complex humoral control systems exist within the kidney that can act in an autocrine and/or paracrine fashion. These paracrine systems complement neuroendocrine regulation by dynamically fine-tuning renal vascular and tubular function to buffer rapid changes in nephron perfusion and flow rate of tubular fluid. One of the most pervasive is the extracellular nucleotide/P2 receptor system, which is central to many of the intrinsic regulatory feedback loops within the kidney such as renal haemodynamic autoregulation and tubuloglomerular feedback (TGF). Although physiological actions of extracellular adenine nucleotides were reported almost 100 years ago, the conceptual framework for purinergic regulation of renal function owes much to the work of Geoffrey Burnstock. In this review, we reflect on our >20-year collaboration with Professor Burnstock and highlight the research that is still unlocking the potential of the renal purinergic system to understand and treat kidney disease.
Collapse
Affiliation(s)
- Marie-Louise T Monaghan
- British Heart Foundation Centre for Cardiovascular Science, The University of Edinburgh, United Kingdom
| | - Matthew A Bailey
- British Heart Foundation Centre for Cardiovascular Science, The University of Edinburgh, United Kingdom
| | - Robert J Unwin
- The Department of Renal Medicine, University College London, United Kingdom.
| |
Collapse
|
41
|
Zhang T, Ma S, Liu C, Hu K, Xu M, Wang R. Rosmarinic Acid Prevents Radiation-Induced Pulmonary Fibrosis Through Attenuation of ROS/MYPT1/TGFβ1 Signaling Via miR-19b-3p. Dose Response 2020; 18:1559325820968413. [PMID: 33149731 PMCID: PMC7580151 DOI: 10.1177/1559325820968413] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 09/15/2020] [Accepted: 09/28/2020] [Indexed: 12/16/2022] Open
Abstract
The mechanism of pulmonary fibrosis caused by irradiation remains obscure. Since rosmarinic acid (RA) have anti-oxidant and anti-inflammatory properties, we aimed to evaluate the effect of RA on the X-ray-induced lung injury. Male rats received RA (30, 60, or 120 mg/kg) 7 days before 15 Gy of X-ray irradiation. Here, we showed that RA reduced X-ray-induced the expression of inflammatory related factors, and the level of reactive oxygen species. RA down-regulated the phosphorylation of nuclear factor kappa-B (NF-κB). We found that thoracic tumor patients whose lung regions received radiation showed lower level of microRNA-19b-3p (miR-19b-3p). Furthermore, we provided evidence that miR-19b-3p targets myosin phosphatase target subunit 1 (MYPT1), and RA attenuated RhoA/Rock signaling through upregulating miR-19b-3p, leading to the inhibition of fibrosis. In conclusion, RA may be an effective agent to relieve the pulmonary fibrosis caused by radiotherapy of thoracic tumor.
Collapse
Affiliation(s)
- Tingting Zhang
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Shanshan Ma
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Chang Liu
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Kai Hu
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Meng Xu
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Rensheng Wang
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
42
|
Urinary phosphate-containing nanoparticle contributes to inflammation and kidney injury in a salt-sensitive hypertension rat model. Commun Biol 2020; 3:575. [PMID: 33060834 PMCID: PMC7562875 DOI: 10.1038/s42003-020-01298-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 09/15/2020] [Indexed: 12/12/2022] Open
Abstract
Although disturbed phosphate metabolism frequently accompanies chronic kidney disease (CKD), its causal role in CKD progression remains unclear. It is also not fully understood how excess salt induces organ damage. We here show that urinary phosphate-containing nanoparticles promote kidney injury in salt-sensitive hypertension. In Dahl salt-sensitive rats, salt loading resulted in a significant increase in urinary phosphate excretion without altering serum phosphate levels. An intestinal phosphate binder sucroferric oxyhydroxide attenuated renal inflammation and proteinuria in this model, along with the suppression of phosphaturia. Using cultured proximal tubule cells, we confirmed direct pathogenic roles of phosphate-containing nanoparticles in renal tubules. Finally, transcriptome analysis revealed a potential role of complement C1q in renal inflammation associated with altered phosphate metabolism. These data demonstrate that increased phosphate excretion promotes renal inflammation in salt-sensitive hypertension and suggest a role of disturbed phosphate metabolism in the pathophysiology of hypertensive kidney disease and high salt-induced kidney injury.
Collapse
|
43
|
Zheng ZC, Zhu W, Lei L, Liu XQ, Wu YG. Wogonin Ameliorates Renal Inflammation and Fibrosis by Inhibiting NF-κB and TGF-β1/Smad3 Signaling Pathways in Diabetic Nephropathy. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:4135-4148. [PMID: 33116403 PMCID: PMC7549498 DOI: 10.2147/dddt.s274256] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 09/10/2020] [Indexed: 12/18/2022]
Abstract
Introduction Diabetic nephropathy (DN) has become an increasing threat to health, and inflammation and fibrosis play important roles in its progression. Wogonin, a flavonoid, has been proven to suppress inflammation and fibrosis in various diseases, including acute kidney injury. This study aimed at investigating the effect of wogonin on diabetes-induced renal inflammation and fibrosis. Materials and Methods Streptozotocin (STZ)-induced diabetic mouse models received gavage doses of wogonin (10, 20, and 40 mg/kg) for 12 weeks. Metabolic indices from blood and urine and pathological damage of glomerulus in the diabetic model were assessed. Glomerular mesangial cells SV40 were cultured in high glucose (HG) medium containing wogonin at concentrations of 1.5825, 3.125, and 6.25 μg/mL for 24 h. Inflammation and fibrosis indices were evaluated by histopathological, Western blotting, and PCR analyses. Results Wogonin treatment ameliorated albuminuria and histopathological lesions in diabetic mice. Inflammatory cytokines, such as monocyte chemotactic protein-1 (MCP-1), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and related signaling pathway NF-κB were downregulated after the administration of wogonin in vivo and in vitro. Furthermore, wogonin reduced the expression of extracellular matrix (ECM), including fibronectin (FN), collagen IV (Col-IV), α-smooth muscle actin (α-SMA), and transforming growth factor-β1 (TGF-β1) in the kidneys of diabetic mice and HG-induced mesangial cells. Moreover, the inhibition of TGF-β1/Smad3 pathway might be responsible for these changes. Conclusion Wogonin may ameliorate renal inflammation and fibrosis in diabetic nephropathy by inhibiting the NF-κB and TGF-β1/Smad3 signaling pathways.
Collapse
Affiliation(s)
- Zhi-Chao Zheng
- Department of Nephrology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Wei Zhu
- Department of Nephrology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Lei Lei
- Department of Nephrology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Xue-Qi Liu
- Department of Nephrology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Yong-Gui Wu
- Department of Nephrology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| |
Collapse
|
44
|
Insights into predicting diabetic nephropathy using urinary biomarkers. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140475. [DOI: 10.1016/j.bbapap.2020.140475] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 05/27/2020] [Accepted: 06/14/2020] [Indexed: 12/20/2022]
|
45
|
Panigrahi P, Chowdhary S, Sharma SP, Kumar R, Agarwal N, Sharma SP. Role of Urinary Transforming Growth Factor Beta-B1 and Monocyte Chemotactic Protein-1 as Prognostic Biomarkers in Posterior Urethral Valve. J Indian Assoc Pediatr Surg 2020; 25:219-224. [PMID: 32939113 PMCID: PMC7478284 DOI: 10.4103/jiaps.jiaps_104_19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/09/2019] [Accepted: 01/26/2020] [Indexed: 11/25/2022] Open
Abstract
Background: Posterior Urethral Valves (PUV) are the most common cause of congenital LUT obstruction in males. Biomarkers of glomerular or tubular injury may be of particular value in predicting the need for surgical intervention or in tracing progression of chronic kidney disease. Measurement of biomarker in urine is relatively easy. Aim: To evaluate the changes in values of urinary Transforming Growth Factor Beta 1(TGF-B1) and Monocyte Chemotactic Protein (MCP-1) before and after valve ablation and its prognostic value in Posterior urethral valve. Material and Method: This prospective study was conducted from September 2016 to August 2018. The study group included 20 consecutive male babies with the diagnosis of PUV treated and followed up versus equal numbers of age matched control without any renal or urinary tract disease. Pre-operative urine samples were collected in Operative room. Cystoscopy and valve ablation was done. Follow up was done clinically by urinary stream and radiologically with VCUG. Follow-up was planned at 1 month, 3 months and 6 months following cystoscopic valve ablation. All collected urine samples were centrifuged at 10,000 rpm for 20 minutes. Supernatant was collected and two divided aliquots were stored at -200c to be thawed on the day of assay. Optical density of each well was recorded at 450 nm and 540 nm A p-value of <0.05 was considered to be statistically significant. Result and Discussion: Out of 20 cases of PUV, 14 (70%) cases were 1st born males of their family. The median age at the time of valve ablation in PUV cases was 2.5 (1.20-3.87) years.. Most common symptoms are fever and UTI. The preoperative median serum creatinine level was 1.65 mg/dl(1.22-2.42) pre-ablation, and fall significantly after ablation. Median eGFR level (calculated) was 25.635 (16.38-35.40) and after 6 months was 71.490 (45.44-96.93). Preoperative median MCP1 in PUV cases was 147.2 (82.8-512.5) and significant difference was also found in 1st, 3rd and 6th months after surgery (p<0.001, p=0.004 and p=0.002).Preoperative median TGF-B1 level was 197.8 pg/ml (79.9-386.4). There was no statistically significant change in TGF-B1 level at preoperative to 1 month and preop to 3 months after surgery but at 6 months after surgery the median TGF-B1 level significantly decreased as compared with preoperative TGF-B1 level. Conclusion: TGF β1 and MCP1 can be considered as prognostic urinary biomarkers in patients of PUV and can be used to specify and counsel patient's attendant regarding possibility of ESRD and need for further intervention.
Collapse
Affiliation(s)
- Pranay Panigrahi
- Department of Pediatric Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Sarita Chowdhary
- Department of Pediatric Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Shyamendra Pratap Sharma
- Department of Pediatric Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Rakesh Kumar
- Department of Pediatric Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Neeraj Agarwal
- Department of Endocrinology and Metabolism, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Shiv Prasad Sharma
- Department of Pediatric Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|
46
|
Wu L, Li XQ, Chang DY, Zhang H, Li JJ, Wu SL, Zhang LX, Chen M, Zhao MH. Associations of urinary epidermal growth factor and monocyte chemotactic protein-1 with kidney involvement in patients with diabetic kidney disease. Nephrol Dial Transplant 2020; 35:291-297. [PMID: 30357416 DOI: 10.1093/ndt/gfy314] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 09/05/2018] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND In diabetic kidney disease (DKD), it is important to find biomarkers for predicting initiation and progression of the disease. Besides glomerular damage, kidney tubular injury and inflammation are also involved in the development of DKD. The current study investigated the associations of urinary epidermal growth factor (uEGF), monocyte chemotactic protein-1 (MCP-1) and the uEGF:MCP-1 ratio with kidney involvement in patients at early and advanced stages of DKD. METHODS The concentration of uEGF and uMCP-1 was measured in two Chinese population-based studies. The associations of uEGF, uMCP-1 and uEGF/MCP-1 with occurrence of DKD were studied in a cross-sectional study (n = 1811) of early stage DKD. Associations of baseline uEGF, uMCP-1 and uEGF/MCP-1 with kidney outcome were assessed in a longitudinal cohort (n = 208) of advanced-stage DKD. RESULTS In both studies, positive correlations were found between uEGF/urine creatinine (Cr) and estimated glomerular filtration rate (eGFR) at sampling and between uMCP-1/Cr and urinary albumin:creatinine ratio (uACR). In the cross-sectional study, uEGF/Cr and uEGF/MCP-1 were negatively associated with the occurrence of DKD {odds ratio (OR) 0.65 [95% confidence interval (CI) 0.54-0.79], P < 0.001; 0.82 (0.71-0.94), P = 0.005, respectively}. In the longitudinal cohort, the uEGF:MCP-1 ratio correlated more closely with the percentage change of eGFR slope (r = 0.33, P < 0.001) as compared with uEGF/Cr or uMCP-1/Cr alone. The composite endpoint was defined as end-stage renal disease or 30% reduction of eGFR. These three markers were independently associated with composite endpoint after adjusting for potential confounders [hazard ratio 0.76 (0.59-1.00), P = 0.047 for uEGF/Cr; 1.18 (1.02-1.38), P = 0.028 for uMCP-1/Cr; 0.79 (0.68-0.91), P = 0.001 for uEGF/MCP-1]. CONCLUSION In Chinese patients, urinary EGF/MCP-1 was negatively associated with the occurrence of DKD. Moreover, uEGF/MCP-1 had a better ability to predict the composite endpoint and correlated more closely with kidney function decline in advanced DKD as compared with uEGF/Cr or uMCP-1/Cr alone.
Collapse
Affiliation(s)
- Liang Wu
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China.,Institute of Nephrology, Peking University, Beijing, China.,Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China.,Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | - Xiao-Qian Li
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China.,Institute of Nephrology, Peking University, Beijing, China.,Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China.,Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | - Dong-Yuan Chang
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China.,Institute of Nephrology, Peking University, Beijing, China.,Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China.,Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | - Huifen Zhang
- Kailuan General Hospital Affiliated to North China University of Science and Technology, Tangshan, China
| | - Jun-Juan Li
- Kailuan General Hospital Affiliated to North China University of Science and Technology, Tangshan, China
| | - Shou-Ling Wu
- Kailuan General Hospital Affiliated to North China University of Science and Technology, Tangshan, China
| | - Lu-Xia Zhang
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China.,Institute of Nephrology, Peking University, Beijing, China.,Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China.,Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China.,Center for Data Science in Health and Medicine, Peking University, Beijing, China
| | - Min Chen
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China.,Institute of Nephrology, Peking University, Beijing, China.,Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China.,Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | - Ming-Hui Zhao
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China.,Institute of Nephrology, Peking University, Beijing, China.,Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China.,Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| |
Collapse
|
47
|
Effects of LDL apheresis on proteinuria in patients with diabetes mellitus, severe proteinuria, and dyslipidemia. Clin Exp Nephrol 2020; 25:1-8. [PMID: 32857255 DOI: 10.1007/s10157-020-01959-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 08/11/2020] [Indexed: 01/14/2023]
Abstract
BACKGROUND Patients with diabetes mellitus and severe proteinuria present with poor renal prognoses, despite improvements in diabetes and kidney disease therapies. In this study, we designed a low-density lipoprotein (LDL)-cholesterol apheresis treatment for patients with diabetic nephropathy (DN)/diabetic kidney disease and severe proteinuria. This was a multicenter prospective LICENSE study to confirm the impact of LDL apheresis on proteinuria that exhibited hyporesponsiveness to treatment. In addition, we sought to determine the efficacy and safety of LDL apheresis by comparing the outcomes to those of historical controls in patients with diabetes, refractory hypercholesterolemia, and severe proteinuria. METHODS This was a prospective, multicenter study, including 40 patients with diabetes, severe proteinuria, and dyslipidemia. LDL apheresis was performed 6-12 times over a 12-week period. The primary endpoint was the proportion of patients with a decrease in proteinuria excretion of at least 30% in the 6 months after starting therapy. The secondary endpoints included serum creatinine levels and laboratory variables, which were evaluated 4, 6, 12, 18, and 24 months after therapy initiation. RESULTS LDL apheresis was performed on 40 registered patients with diabetes. The proportion of cases in which proteinuria decreased by 30% or more after 6 months of LDL apheresis was 25%, which was similar to that of historical controls. The overall survival and end-stage kidney disease-free survival rates were significantly higher in the LICENSE group compared to those in historical controls. CONCLUSION Our results suggest that LDL apheresis may be effective and safe for patients with diabetes, proteinuria, and dyslipidemia. TRIAL REGISTRATION Trial registration number: jRCTs042180076.
Collapse
|
48
|
Ram C, Jha AK, Ghosh A, Gairola S, Syed AM, Murty US, Naidu VGM, Sahu BD. Targeting NLRP3 inflammasome as a promising approach for treatment of diabetic nephropathy: Preclinical evidences with therapeutic approaches. Eur J Pharmacol 2020; 885:173503. [PMID: 32858047 DOI: 10.1016/j.ejphar.2020.173503] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/19/2020] [Accepted: 08/23/2020] [Indexed: 12/12/2022]
Abstract
Diabetes mellitus is an increasingly prevalent disease around the globe. The epidemic of diabetes mellitus and its complications pretenses the foremost health threat globally. Diabetic nephropathy is the notable complication in diabetes, leading to end-stage renal disease (ESRD) and premature death. Abundant experimental evidence indicates that oxidative stress and inflammation are the important mediators in diabetic kidney diseases and interlinked with various signal transduction molecular mechanisms. Inflammasomes are the critical components of innate immunity and are recognized as a critical mediator of inflammation and autoimmune disorders. NOD-like receptor protein 3 (NLRP3) inflammasome is the well-characterized protein and it exhibits the sterile inflammation through the regulation of pro-inflammatory cytokines interleukin (IL)-1β and IL-18 production in tissues. In recent years, the role of NLRP3 inflammasome in the pathophysiology of diabetic kidney diseases in both clinical and experimental studies has generated great interest. In the current review, we focused on and discussed the role of NLRP3 inflammasome in diabetic nephropathy. A literature review was performed using online databases namely, PubMed, Scopus, Google Scholar and Web of science to explore the possible pharmacological interventions that blunt the NLRP3 inflammasome-caspase-1-IL-1β/IL-18 axis and shown to have a beneficial effect in diabetic kidney diseases. This review describes the inhibition of NLRP3 inflammasome activation as a promising therapeutic target for drug discovery in future.
Collapse
Affiliation(s)
- Chetan Ram
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari, PIN-781101, Assam, India
| | - Ankush Kumar Jha
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari, PIN-781101, Assam, India
| | - Aparajita Ghosh
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari, PIN-781101, Assam, India
| | - Shobhit Gairola
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari, PIN-781101, Assam, India
| | - Abu Mohammad Syed
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari, PIN-781101, Assam, India
| | - Upadhyayula Suryanarayana Murty
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari, PIN-781101, Assam, India
| | - V G M Naidu
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari, PIN-781101, Assam, India
| | - Bidya Dhar Sahu
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari, PIN-781101, Assam, India.
| |
Collapse
|
49
|
Fan L, Gao W, Nguyen BV, Jefferson JR, Liu Y, Fan F, Roman RJ. Impaired renal hemodynamics and glomerular hyperfiltration contribute to hypertension-induced renal injury. Am J Physiol Renal Physiol 2020; 319:F624-F635. [PMID: 32830539 DOI: 10.1152/ajprenal.00239.2020] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Recently, we reported a mutation in γ-adducin (ADD3) was associated with an impaired myogenic response of the afferent arteriole and hypertension-induced chronic kidney disease (CKD) in fawn hooded hypertensive (FHH) rats. However, the mechanisms by which altered renal blood flow (RBF) autoregulation promotes hypertension-induced renal injury remain to be determined. The present study compared the time course of changes in renal hemodynamics and the progression of CKD during the development of DOCA-salt hypertension in FHH 1BN congenic rats [wild-type (WT)] with an intact myogenic response versus FHH 1BN Add3KO (Add3KO) rats, which have impaired myogenic response. RBF was well autoregulated in WT rats but not in Add3KO rats. Glomerular capillary pressure rose by 6 versus 14 mmHg in WT versus Add3KO rats when blood pressure increased from 100 to 150 mmHg. After 1 wk of hypertension, glomerular filtration rate increased by 38% and glomerular nephrin expression decreased by 20% in Add3KO rats. Neither were altered in WT rats. Proteinuria doubled in WT rats versus a sixfold increase in Add3KO rats. The degree of renal injury was greater in Add3KO than WT rats after 3 wk of hypertension. RBF, glomerular filtration rate, and glomerular capillary pressure were lower by 20%, 28%, and 19% in Add3KO rats than in WT rats, which was associated with glomerular matrix expansion and loss of capillary filtration area. The results indicated that impaired RBF autoregulation and eutrophic remodeling of preglomerular arterioles increase the transmission of pressure to glomeruli, which induces podocyte loss and accelerates the progression of CKD in hypertensive Add3KO rats.
Collapse
Affiliation(s)
- Letao Fan
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Wenjun Gao
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Bond V Nguyen
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Joshua R Jefferson
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Yedan Liu
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Fan Fan
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Richard J Roman
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
50
|
do Amaral CMCA, Casarini DE, Andrade MC, da Cruz ML, Macedo A. Study of serum and urinary markers of the renin-angiotensin-aldosterone system in myelomeningocele patients with renal injury detected by DMSA. Int Braz J Urol 2020; 46:805-813. [PMID: 32648420 PMCID: PMC7822362 DOI: 10.1590/s1677-5538.ibju.2019.0797] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 01/16/2020] [Indexed: 01/08/2023] Open
Abstract
Introduction: The Renin-Angiotensin-Aldosterone System (RAAS) has been suggested as a possible marker of renal injury in chronic diseases. This study proposes to analyze the serum and urinary markers of the RAAS in myelomeningocele patients with renal function abnormalities detected on DMSA. Material and Methods: Seventeen patients followed in our institution that presented with renal injury on DMSA. We review nephrologic and urologic clinical aspects and evaluated ultrassonagraphy, voiding urethrocystography and urodynamics. Urinary and serum samples were collected to evaluate possible correlations of renal lesions with RAAS. Control group urine and serum samples were also sent for analysis. Results: Serum ACE 2 activity means in relation to urodynamic findings were the only values that had a statistically significant difference (p = 0.040). Patients with normal bladder pattern presented higher ACE 2 levels than the high risk group. Statistical analysis showed that the study group (SG) had a significantly higher mean serum ACE than the CG. The means of ACE 2 and urinary ACE of the SG and CG were not statistically different. The ROC curve for serum ACE values had a statistically significant area for case and non-case differentiation, with 100% sensitivity and 53% specificity for values above 60.2 mg/dL. No statistically significant areas were observed in relation to ACE 2 and urinary ACE values between SG and CG. Conclusion: The analysis of serum ACE, ACE 2 and urinary ACE were not significant in patients with myelomeningocele and neurogenic bladder with renal injury previously detected by renal DMSA.
Collapse
Affiliation(s)
| | - Dulce Elena Casarini
- Departamento de Pediatria, Universidade Federal de São Paulo - UNIFESP, São Paulo, SP, Brasil
| | - Maria Cristina Andrade
- Departamento de Pediatria, Universidade Federal de São Paulo - UNIFESP, São Paulo, SP, Brasil
| | - Marcela Leal da Cruz
- Departamento de Urologia, Centro de Apoio à Criança com Anomalia Urológica -CACAU - Núcleo de Urologia Pediátrica - NUPEP, São Paulo, SP, Brasil
| | - Antônio Macedo
- Departamento de Pediatria, Universidade Federal de São Paulo - UNIFESP, São Paulo, SP, Brasil.,Departamento de Urologia, Centro de Apoio à Criança com Anomalia Urológica -CACAU - Núcleo de Urologia Pediátrica - NUPEP, São Paulo, SP, Brasil
| |
Collapse
|