1
|
Boutin L, Roger E, Gayat E, Depret F, Blot-Chabaud M, Chadjichristos CE. The role of CD146 in renal disease: from experimental nephropathy to clinics. J Mol Med (Berl) 2024; 102:11-21. [PMID: 37993561 DOI: 10.1007/s00109-023-02392-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/10/2023] [Accepted: 10/24/2023] [Indexed: 11/24/2023]
Abstract
Vascular endothelial dysfunction is a major risk factor in the development of renal diseases. Recent studies pointed out a major interest for the inter-endothelial junction protein CD146, as its expression is modulated during renal injury. Indeed, some complex mechanisms involving this adhesion molecule and its multiple ligands are observed in a large number of renal diseases in fundamental or clinical research. The purpose of this review is to summarize the most recent literature on the role of CD146 in renal pathophysiology, from experimental nephropathy to clinical trials.
Collapse
Affiliation(s)
- Louis Boutin
- FHU PROMICE AP-HP, Saint Louis and DMU Parabol, Critical Care Medicine and Burn Unit, AP-HP, Department of Anesthesiology, University Paris Cité, 75010, Paris, France
- INSERM, UMR-942, MASCOT, Cardiovascular Markers in Stress Condition, University Paris Cité, 75010, Paris, France
- INSERM, UMR-S1155, Bâtiment Recherche, Tenon Hospital, 4 rue de la Chine, 75020, Paris, France
| | - Elena Roger
- INSERM, UMR-S1155, Bâtiment Recherche, Tenon Hospital, 4 rue de la Chine, 75020, Paris, France
- Faculty of Medicine, Sorbonne University, 75013, Paris, France
| | - Etienne Gayat
- FHU PROMICE AP-HP, Saint Louis and DMU Parabol, Critical Care Medicine and Burn Unit, AP-HP, Department of Anesthesiology, University Paris Cité, 75010, Paris, France
- INSERM, UMR-942, MASCOT, Cardiovascular Markers in Stress Condition, University Paris Cité, 75010, Paris, France
| | - François Depret
- FHU PROMICE AP-HP, Saint Louis and DMU Parabol, Critical Care Medicine and Burn Unit, AP-HP, Department of Anesthesiology, University Paris Cité, 75010, Paris, France
- INSERM, UMR-942, MASCOT, Cardiovascular Markers in Stress Condition, University Paris Cité, 75010, Paris, France
| | | | - Christos E Chadjichristos
- INSERM, UMR-S1155, Bâtiment Recherche, Tenon Hospital, 4 rue de la Chine, 75020, Paris, France.
- Faculty of Medicine, Sorbonne University, 75013, Paris, France.
| |
Collapse
|
2
|
Garimella PS, Scherzer R, Kestenbaum BR, Hoofnagle AN, Jotwani V, Gustafson D, Karim R, Sharma A, Cohen M, Dumond J, Abraham A, Estrella M, Shlipak MG, Ix JH. Tubular Secretory Solute Clearance and HIV Infection. J Acquir Immune Defic Syndr 2023; 93:319-326. [PMID: 36988544 PMCID: PMC10313730 DOI: 10.1097/qai.0000000000003200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 12/05/2022] [Indexed: 03/30/2023]
Abstract
BACKGROUND Tubular secretion is an important kidney function responsible for the clearance of numerous medications, including antibiotics and antivirals. It is unknown whether persons living with HIV have lower secretion compared with HIV-uninfected persons, which might predispose them to the risk of progressive kidney disease or adverse drug events. SETTING AND METHODS We evaluated a panel of 6 endogenous secretory solutes in 199 women living with HIV (WLWH) and 100 women without HIV enrolled in the Women's Interagency HIV Study. Secretory clearance was estimated as the urine-to-plasma ratio of each solute, with adjustment for urine tonicity. Using multivariable linear regression analysis, we compared differences in levels of secretory solute clearance between women with and without HIV and evaluated characteristics associated with secretion. RESULTS WLWH were older (median 40 vs. 38 years) but had similar estimated glomerular filtration rate (eGFR, 96 vs. 100 mL/minute/1.73 m 2 ) compared with those without HIV. African American and Latino race, diabetes, diastolic blood pressure, smoking, hepatitis C, peak HIV viral load, and current and nadir CD4 count were associated with differences in clearance of at least 1 marker after multivariable adjustment. The secretory clearance of 3 solutes (cinnamoylglycine, kynurenic acid, and pyridoxic acid) were on average 10%-15% lower among WLWH compared with those without HIV independent of eGFR, albuminuria and chronic kidney disease risk factors, including HCV, and injection drug use. CONCLUSIONS HIV is associated with reduced secretion among women with preserved eGFR. The implications of these findings for drug dosing and adverse events need to be evaluated.
Collapse
Affiliation(s)
- Pranav S. Garimella
- Kidney Research Innovation Hub of San Diego and Division of Nephrology and Hypertension, University of California San Diego, San Diego, USA
| | - Rebecca Scherzer
- Kidney Health Research Collaborative, San Francisco VA Medical Center and University of California, San Francisco, USA
| | | | - Andrew N. Hoofnagle
- Department of Laboratory Medicine, University of Washington, Seattle, WA, USA
| | - Vasantha Jotwani
- Kidney Health Research Collaborative, San Francisco VA Medical Center and University of California, San Francisco, USA
- Department of Medicine, San Francisco VA Medical Health Care System, San Francisco, USA
| | - Deborah Gustafson
- Department of Neurology, SUNY Downstate Medical Center, New York, NY, USA
| | - Roksana Karim
- Department of Clinical Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Anjali Sharma
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Mardge Cohen
- Stroger Hospital of Cook County Health and Human Services, Chicago, IL, USA
| | - Julie Dumond
- Division of Pharmacotherapy and Experimental Therapeutics, University of North Carolina Chapel Hill, Chapel Hill, NC, USA
| | - Alison Abraham
- Department of Epidemiology, University of Colorado School of Public Health, Denver, CO, USA
| | - Michelle Estrella
- Kidney Health Research Collaborative, San Francisco VA Medical Center and University of California, San Francisco, USA
- Department of Medicine, San Francisco VA Medical Health Care System, San Francisco, USA
| | - Michael G. Shlipak
- Kidney Health Research Collaborative, San Francisco VA Medical Center and University of California, San Francisco, USA
- Department of Medicine, San Francisco VA Medical Health Care System, San Francisco, USA
| | - Joachim H. Ix
- Kidney Research Innovation Hub of San Diego and Division of Nephrology and Hypertension, University of California San Diego, San Diego, USA
- Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
| |
Collapse
|
3
|
Ndiaye JF, Nekka F, Craig M. Understanding the Mechanisms and Treatment of Heart Failure: Quantitative Systems Pharmacology Models with a Focus on SGLT2 Inhibitors and Sex-Specific Differences. Pharmaceutics 2023; 15:1002. [PMID: 36986862 PMCID: PMC10052171 DOI: 10.3390/pharmaceutics15031002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/06/2023] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
Heart failure (HF), which is a major clinical and public health challenge, commonly develops when the myocardial muscle is unable to pump an adequate amount of blood at typical cardiac pressures to fulfill the body's metabolic needs, and compensatory mechanisms are compromised or fail to adjust. Treatments consist of targeting the maladaptive response of the neurohormonal system, thereby decreasing symptoms by relieving congestion. Sodium-glucose co-transporter 2 (SGLT2) inhibitors, which are a recent antihyperglycemic drug, have been found to significantly improve HF complications and mortality. They act through many pleiotropic effects, and show better improvements compared to others existing pharmacological therapies. Mathematical modeling is a tool used to describe the pathophysiological processes of the disease, quantify clinically relevant outcomes in response to therapies, and provide a predictive framework to improve therapeutic scheduling and strategies. In this review, we describe the pathophysiology of HF, its treatment, and how an integrated mathematical model of the cardiorenal system was built to capture body fluid and solute homeostasis. We also provide insights into sex-specific differences between males and females, thereby encouraging the development of more effective sex-based therapies in the case of heart failure.
Collapse
Affiliation(s)
- Jean François Ndiaye
- Department of Mathematics and Statistics, Université de Montréal, Montréal, QC H3C 3J7, Canada
- Sainte-Justine University Hospital Research Centre, Montréal, QC H3T 1C5, Canada
| | - Fahima Nekka
- Faculty of Pharmacy, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Morgan Craig
- Department of Mathematics and Statistics, Université de Montréal, Montréal, QC H3C 3J7, Canada
- Sainte-Justine University Hospital Research Centre, Montréal, QC H3T 1C5, Canada
| |
Collapse
|
4
|
Piossek F, Beneke S, Schlichenmaier N, Mucic G, Drewitz S, Dietrich DR. Physiological oxygen and co-culture with human fibroblasts facilitate in vivo-like properties in human renal proximal tubular epithelial cells. Chem Biol Interact 2022; 361:109959. [DOI: 10.1016/j.cbi.2022.109959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 04/08/2022] [Accepted: 04/12/2022] [Indexed: 11/28/2022]
|
5
|
Garimella PS, Katz R, Waikar SS, Srivastava A, Schmidt I, Hoofnagle A, Palsson R, Rennke HG, Stillman IE, Wang K, Kestenbaum BR, Ix JH. Kidney Tubulointerstitial Fibrosis and Tubular Secretion. Am J Kidney Dis 2022; 79:709-716. [PMID: 34571064 PMCID: PMC8973399 DOI: 10.1053/j.ajkd.2021.08.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 08/13/2021] [Indexed: 11/11/2022]
Abstract
RATIONALE & OBJECTIVE Tubular secretion plays an important role in the efficient elimination of endogenous solutes and medications, and lower secretory clearance is associated with risk of kidney function decline. We evaluated whether histopathologic quantification of interstitial fibrosis and tubular atrophy (IFTA) is associated with lower tubular secretory clearance in persons undergoing kidney biopsy. STUDY DESIGN Cross-sectional. SETTINGS & PARTICIPANTS The Boston Kidney Biopsy Cohort is a study of persons undergoing native kidney biopsies for clinical indications. EXPOSURES Semiquantitative score of IFTA reported by 2 trained pathologists. OUTCOMES We measured plasma and urine concentrations of 9 endogenous secretory solutes using a targeted liquid chromatography/mass spectrometry assay. We used linear regression to test associations of urine-to-plasma ratios (UPRs) of these solutes with IFTA score after controlling for estimated glomerular filtration rate (eGFR) and albuminuria. RESULTS Among 418 participants, mean age was 53 years, 51% were women, 64% were White, and 18% were Black. Mean eGFR was 50mL/min/1.73m2, and median urinary albumin-creatinine ratio was 819mg/g. Compared with individuals with≤25% IFTA, those with>50% IFTA had 12%-37% lower UPRs for all 9 secretory solutes. Adjusting for age, sex, race, eGFR, and urine albumin and creatinine levels attenuated the associations, yet a trend of lower secretion across groups remained statistically significant (P<0.05 for trend) for 7 of 9 solutes. A standardized composite secretory score incorporating UPR for all 9 secretory solutes using the min-max method showed similar results (P<0.05 for trend). LIMITATIONS Single time point and spot measures of secretory solutes. CONCLUSIONS Greater IFTA severity is associated with lower clearance of endogenous secretory solutes even after adjusting for eGFR and albuminuria.
Collapse
Affiliation(s)
- Pranav S Garimella
- Division of Nephrology-Hypertension, University of California San Diego, La Jolla; Kidney Health, Research and Innovation Hub of San Diego, San Diego, CA.
| | - Ronit Katz
- Departments of Obstetrics and Gynecology, University of Washington, Seattle, WA
| | - Sushrut S Waikar
- Section of Nephrology, Department of Medicine, Boston University School of Medicine, Boston Medical Center, Boston, MA
| | - Anand Srivastava
- Division of Nephrology and Hypertension, Center for Translational Metabolism and Health, Institute for Public Health and Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Insa Schmidt
- Section of Nephrology, Department of Medicine, Boston University School of Medicine, Boston Medical Center, Boston, MA
| | | | - Ragnar Palsson
- Division of Nephrology, Landspitali-The National University Hospital of Iceland, Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Helmut G Rennke
- Department of Pathology, Brigham and Women's Hospital, Boston, MA
| | - Isaac E Stillman
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA
| | - Ke Wang
- Department of Medicine, Division of Nephrology, University of Washington, Seattle, WA; Kidney Research Institute, Seattle, WA
| | - Bryan R Kestenbaum
- Department of Medicine, Division of Nephrology, University of Washington, Seattle, WA; Kidney Research Institute, Seattle, WA
| | - Joachim H Ix
- Division of Nephrology-Hypertension, University of California San Diego, La Jolla
| |
Collapse
|
6
|
Abstract
An exploration of the normal limits of physiologic responses and how these responses are lost when the kidney is injured rarely occurs in clinical practice. However, the differences between "resting" and "stressed" responses identify an adaptive reactiveness that is diminished before baseline function is impaired. This functional reserve is important in the evaluation of prognosis and progression of kidney disease. Here, we discuss stress tests that examine protein-induced hyperfiltration, proximal tubular secretion, urea-selective concentration defects, and acid retention. We discuss diseases in which these tests have been used to diagnose subclinical injury. The study and follow-up of abnormal functional reserve may add considerable understanding to the natural history of CKD.
Collapse
Affiliation(s)
- Armando Armenta
- Department of Nephrology, National Institute of Cardiology “Ignacio Chavez,” Mexico City, Mexico
| | - Magdalena Madero
- Department of Nephrology, National Institute of Cardiology “Ignacio Chavez,” Mexico City, Mexico
| | - Bernardo Rodriguez-Iturbe
- Department of Nephrology, National Institute of Cardiology "Ignacio Chavez," Mexico City, Mexico .,Department of Nephrology and Mineral Metabolism, National Institute of Health Sciences and Nutrition "Salvador Zubirán," Mexico City, Mexico
| |
Collapse
|
7
|
Abstract
Complex multicellular life in mammals relies on functional cooperation of different organs for the survival of the whole organism. The kidneys play a critical part in this process through the maintenance of fluid volume and composition homeostasis, which enables other organs to fulfil their tasks. The renal endothelium exhibits phenotypic and molecular traits that distinguish it from endothelia of other organs. Moreover, the adult kidney vasculature comprises diverse populations of mostly quiescent, but not metabolically inactive, endothelial cells (ECs) that reside within the kidney glomeruli, cortex and medulla. Each of these populations supports specific functions, for example, in the filtration of blood plasma, the reabsorption and secretion of water and solutes, and the concentration of urine. Transcriptional profiling of these diverse EC populations suggests they have adapted to local microenvironmental conditions (hypoxia, shear stress, hyperosmolarity), enabling them to support kidney functions. Exposure of ECs to microenvironment-derived angiogenic factors affects their metabolism, and sustains kidney development and homeostasis, whereas EC-derived angiocrine factors preserve distinct microenvironment niches. In the context of kidney disease, renal ECs show alteration in their metabolism and phenotype in response to pathological changes in the local microenvironment, further promoting kidney dysfunction. Understanding the diversity and specialization of kidney ECs could provide new avenues for the treatment of kidney diseases and kidney regeneration.
Collapse
|
8
|
Rapid Regulation of Human Multidrug and Extrusion Transporters hMATE1 and hMATE2K. Int J Mol Sci 2020; 21:ijms21145157. [PMID: 32708212 PMCID: PMC7404265 DOI: 10.3390/ijms21145157] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/17/2020] [Accepted: 07/20/2020] [Indexed: 12/18/2022] Open
Abstract
Vectorial transport of organic cations (OCs) in renal proximal tubules is mediated by sequential action of human OC transporter 2 (hOCT2) and human multidrug and toxic extrusion protein 1 and 2K (hMATE1 and hMATE2K), expressed in the basolateral (hOCT2) and luminal (hMATE1 and hMATE2K) plasma membranes, respectively. It is well known that hOCT2 activity is subjected to rapid regulation by several signaling pathways, suggesting that renal OC secretion may be acutely adapted to physiological requirements. Therefore, in this work, the acute regulation of hMATEs stably expressed in human embryonic kidney cells was characterized using the fluorescent substrate 4-(4-(dimethylamino)styryl)-N-methylpyridinium (ASP+) as a marker. A specific regulation of ASP+ transport by hMATE1 and hMATE2K measured in uptake and efflux configurations was observed. In the example of hMATE1 efflux reduction by inhibition of casein kinase II, it was also shown that this regulation is able to modify transcellular transport of ASP+ in Madin–Darby canine kidney II cells expressing hOCT2 and hMATE1 on the basolateral and apical membrane domains, respectively. The activity of hMATEs can be rapidly regulated by some intracellular pathways, which sometimes are common to those found for hOCTs. Interference with these pathways may be important to regulate renal secretion of OCs.
Collapse
|
9
|
Caetano-Pinto P, Stahl SH. Perspective on the Application of Microphysiological Systems to Drug Transporter Studies. Drug Metab Dispos 2018; 46:1647-1657. [PMID: 30135246 DOI: 10.1124/dmd.118.082750] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 08/20/2018] [Indexed: 02/13/2025] Open
Abstract
Transmembrane flux of a drug within a tissue or organ frequently involves a complex system of transporters from multiple families that have redundant and overlapping specificities. Current in vitro systems poorly represent physiology, with reduced expression and activity of drug transporter proteins; therefore, novel models that recapitulate the complexity and interplay among various transporters are needed. The development of microphysiological systems that bring simulated physiologic conditions to in vitro cell culture models has enormous potential to better reproduce the morphology and transport activity across several organ models, especially in tissues such as the liver, kidney, intestine, or the blood-brain barrier, in which drug transporters play a key role. The prospect of improving the in vitro function of organ models highly prolific in drug transporters holds the promise of implementing novel tools to study these mechanisms with far more representative biology than before. In this short review, we exemplify recent developments in the characterization of perfused microphysiological systems involving the activity of drug transporters. Furthermore, we analyze the challenges and opportunities for the implementation of such systems in the study of transporter-mediated drug disposition and the generation of clinically relevant physiology-based in silico models incorporating relevant drug transport activity.
Collapse
Affiliation(s)
- Pedro Caetano-Pinto
- Mechanistic Safety and ADME Sciences, Drug Safety and Metabolism, IMED Biotech Unit, AstraZeneca, Cambridge, United Kingdom
| | - Simone H Stahl
- Mechanistic Safety and ADME Sciences, Drug Safety and Metabolism, IMED Biotech Unit, AstraZeneca, Cambridge, United Kingdom
| |
Collapse
|
10
|
Radford R, Frain H, Ryan MP, Slattery C, McMorrow T. Mechanisms of chemical carcinogenesis in the kidneys. Int J Mol Sci 2013; 14:19416-33. [PMID: 24071941 PMCID: PMC3821564 DOI: 10.3390/ijms141019416] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 09/05/2013] [Accepted: 09/09/2013] [Indexed: 12/17/2022] Open
Abstract
Chemical carcinogens are substances which induce malignant tumours, increase their incidence or decrease the time taken for tumour formation. Often, exposure to chemical carcinogens results in tissue specific patterns of tumorigenicity. The very same anatomical, biochemical and physiological specialisations which permit the kidney to perform its vital roles in maintaining tissue homeostasis may in fact increase the risk of carcinogen exposure and contribute to the organ specific carcinogenicity observed with numerous kidney carcinogens. This review will address the numerous mechanisms which play a role in the concentration, bioactivation, and uptake of substances from both the urine and blood which significantly increase the risk of cancer in the kidney.
Collapse
Affiliation(s)
- Robert Radford
- UCD School of Biomolecular and Biomedical Research, Conway Institute, University College Dublin, Dublin, Dublin 4, Ireland; E-Mails: (R.R.); (H.F.); (M.P.R.); (C.S.)
- Renal Disease Research Group, School of Biomolecular and Biomedical Science, Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Dublin 4, Ireland
| | - Helena Frain
- UCD School of Biomolecular and Biomedical Research, Conway Institute, University College Dublin, Dublin, Dublin 4, Ireland; E-Mails: (R.R.); (H.F.); (M.P.R.); (C.S.)
- Renal Disease Research Group, School of Biomolecular and Biomedical Science, Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Dublin 4, Ireland
| | - Michael P. Ryan
- UCD School of Biomolecular and Biomedical Research, Conway Institute, University College Dublin, Dublin, Dublin 4, Ireland; E-Mails: (R.R.); (H.F.); (M.P.R.); (C.S.)
- Renal Disease Research Group, School of Biomolecular and Biomedical Science, Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Dublin 4, Ireland
| | - Craig Slattery
- UCD School of Biomolecular and Biomedical Research, Conway Institute, University College Dublin, Dublin, Dublin 4, Ireland; E-Mails: (R.R.); (H.F.); (M.P.R.); (C.S.)
- Renal Disease Research Group, School of Biomolecular and Biomedical Science, Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Dublin 4, Ireland
| | - Tara McMorrow
- UCD School of Biomolecular and Biomedical Research, Conway Institute, University College Dublin, Dublin, Dublin 4, Ireland; E-Mails: (R.R.); (H.F.); (M.P.R.); (C.S.)
- Renal Disease Research Group, School of Biomolecular and Biomedical Science, Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Dublin 4, Ireland
| |
Collapse
|
11
|
Effect of cobicistat on glomerular filtration rate in subjects with normal and impaired renal function. J Acquir Immune Defic Syndr 2012; 61:32-40. [PMID: 22732469 DOI: 10.1097/qai.0b013e3182645648] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE This study evaluated the effect of cobicistat (COBI) on glomerular filtration rate in subjects with normal renal function (RF) or with mild/moderate renal impairment, by comparing creatinine clearance [estimated glomerular filtration rate (eGFR)] with actual GFR (aGFR) using iohexol, a probe drug excreted by glomerular filtration. COBI is a potent CYP3A inhibitor (pharmacoenhancer) currently in phase 3 testing with elvitegravir, atazanavir, and darunavir. METHODS Normal RF subjects received COBI 150 mg QD, ritonavir (RTV) 100 mg QD, or placebo for 7 days; subjects with mild/moderate renal impairment received COBI 150 mg QD. The eGFR and aGFR were measured on days 0, 7, and 14 and within-subject changes calculated relative to day 0. COBI and RTV pharmacokinetics were analyzed on day 7. RESULTS All 36 subjects in cohort 1 and 17 of 18 subjects in cohort 2 completed all study treatments. Study treatments were well tolerated. Small increases in serum creatinine with corresponding mean decreases in eGFR (∼10 mL/min or mL/min per 1.73 m) were observed on day 7 relative to day 0 in subjects receiving COBI (P < 0.05). The decreases were reversible on COBI discontinuation; mean eGFR values returned to baseline on day 14 (P > 0.05). No statistically significant changes in aGFR on days 7 or 14 relative to day 0 were seen with COBI (P > 0.05). No statistically significant decreases in aGFR or eGFR were observed with RTV or placebo. CONCLUSIONS COBI affects eGFR but not the actual GFR. The time to onset, magnitude, and time to resolution of changes in eGFR are consistent with altered proximal tubular secretion of creatinine through inhibition of drug transporters.
Collapse
|
12
|
Ellam T. Increased tubular creatinine secretion by remnant nephrons--unexplained but informative? Clin Kidney J 2011; 4:138-9. [PMID: 25984137 PMCID: PMC4421573 DOI: 10.1093/ndtplus/sfq215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Tim Ellam
- Sheffield Kidney Institute, Northern General Hospital, Sheffield, S. Yorks, United Kingdom
| |
Collapse
|
13
|
Abstract
Membrane transport processes, at both the plasma membranes and intracellular membranes, play critical roles in renal function and are a determining factor in the susceptibility of renal epithelial cells to blood-borne drugs and toxic chemicals. Proximal tubular epithelial cells possess a large array of transport proteins for organic anions, organic cations, and peptides on both basolateral and brush-border plasma membranes. Although these transporters function in excretion of waste products and reabsorption of nutrients, they also play a role in the susceptibility of the kidneys to drugs and other toxicants in the blood. The proximal tubules are typically the primary target cells because they are the first epithelial cell population exposed to such chemicals in either the renal plasma or glomerular filtrate and because of their large array of membrane transporters. Besides transport across the basolateral and brush-border plasma membranes, transport across intracellular membranes such as the mitochondrial inner membrane is a critical determinant of metabolite distribution. To illustrate the function of these transporters, carrier-mediated processes for transport of the tripeptide and antioxidant glutathione across the basolateral, brush-border, and mitochondrial inner membranes of the renal proximal tubule are reviewed. Studies are summarized that have identified the involvement of specific carrier proteins and characterized the role of these transporters in glutathione metabolism and turnover, susceptibility of the proximal tubules to oxidative and other stresses, and modulation in disease and other pathological processes.
Collapse
Affiliation(s)
- L H Lash
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| |
Collapse
|
14
|
Gerlyand AM, Sitar DS. Protein kinase inhibition differentially regulates organic cation transport. Can J Physiol Pharmacol 2010; 87:821-30. [PMID: 20052008 DOI: 10.1139/y09-072] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Previous studies showed that amantadine transport increased while tetraethylammonium (TEA) transport decreased in kidney tissue from diabetic rats. Changes in transport activity were reversed by exogenous insulin. We hypothesized that this difference in transport regulation is due to differential regulation of different transport systems. Native human embryonic kidney cortex cells (HEK293 cell line) and rat organic cation transporter (rOCT)-transfected cells were used to test the hypothesis. In support of differential regulation, short-term glucose starvation stimulated amantadine transport and inhibited TEA transport, but the effect was bicarbonate-modulated only for amantadine. cAMP analogues inhibited TEA transport while stimulating amantadine transport. This effect was additive to the effect of insulin, and the presence of bicarbonate affected the extent of the change. Our findings indicated that regulation of rOCT 1 and 2 was mediated by transmembrane adenylyl cyclase, and regulation of amantadine transport was mediated by soluble adenylyl cyclase, suggesting that intracellular microdomains of cAMP may be important in determining overall cellular transport for organic cations. Soluble adenylyl cyclase activity is known to be modulated by bicarbonate and lactate. These observations support our hypothesis and reconcile our previous studies demonstrating increased transport affinity for amantadine in the presence of bicarbonate and decreased transport affinity in the presence of lactate.
Collapse
Affiliation(s)
- Alexander M Gerlyand
- Department of Pharmacology and Therapeutics, University of Manitoba, A220-753 McDermot Avenue, Winnipeg, MB R3E 0T6, Canada
| | | |
Collapse
|
15
|
Srimaroeng C, Perry JL, Pritchard JB. Physiology, structure, and regulation of the cloned organic anion transporters. Xenobiotica 2008; 38:889-935. [PMID: 18668434 DOI: 10.1080/00498250801927435] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
1. The transport of negatively charged drugs, xenobiotics, and metabolites by epithelial tissues, particularly the kidney, plays critical roles in controlling their distribution, concentration, and retention in the body. Thus, organic anion transporters (OATs) impact both their therapeutic efficacy and potential toxicity. 2. This review summarizes current knowledge of the properties and functional roles of the cloned OATs, the relationships between transporter structure and function, and those factors that determine the efficacy of transport. Such factors include plasma protein binding of substrates, genetic polymorphisms among the transporters, and regulation of transporter expression. 3. Clearly, much progress has been made in the decade since the first OAT was cloned. However, unresolved questions remain. Several of these issues--drug-drug interactions, functional characterization of newly cloned OATs, tissue differences in expression and function, and details of the nature and consequences of transporter regulation at genomic and intracellular sites--are discussed in the concluding Perspectives section.
Collapse
Affiliation(s)
- C Srimaroeng
- Laboratory of Pharmacology, Environmental Toxicology Program, National Institute of Environmental Health Sciences, NC 27709, USA
| | | | | |
Collapse
|
16
|
Abstract
1. Organic cation transporters (OCTs) translocate endogenous (e.g. dopamine) and exogenous (e.g. drugs) substances of cationic nature and, therefore, play an important role in the detoxification of exogenous compounds. This review aims to furnish essential information on OCTs, with an emphasis on pharmacological aspects. 2. Analysis of the literature on OCTs makes clear that there is a species- and organ-specific distribution of the different isoforms, which can also be differentially regulated. OCTs are responsible for the excretion and/or distribution of many drugs and also for serious tissue-specific side-effects such as cisplatin-induced nephrotoxicity. The presence of single nucleotide polymorphisms in these transporters significantly influences the response of patients to medication, as demonstrated for the antidiabetic drug metformin. 3. A substantial amount of research has to be undertaken to clarify further the OCT structure-function relationships specifically to define the role of oligomerization on their activity and regulation, to identify intracellular interaction partners of OCTs, and to characterize their pharmacogenetic aspects.
Collapse
Affiliation(s)
- G Ciarimboli
- Medizinische Klinik und Poliklinik D, Experimentelle Nephrologie, Universitatsklinikum Munster, Germany.
| |
Collapse
|
17
|
Tschuppert Y, Buclin T, Rothuizen LE, Decosterd LA, Galleyrand J, Gaud C, Biollaz J. Effect of dronedarone on renal function in healthy subjects. Br J Clin Pharmacol 2007; 64:785-91. [PMID: 17662087 PMCID: PMC2198776 DOI: 10.1111/j.1365-2125.2007.02998.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
AIMS To assess the effects of dronedarone on renal function and tubular cation handling. METHODS Twelve healthy males were enrolled in a randomized, cross-over, placebo-controlled, double-blind study. They received 400 mg dronedarone or placebo twice daily for 7 days. Baseline and on-treatment renal function tests were performed under strict standardization of intakes, by assessing creatinine, sinistrin, para-amino-hippurate (PAH) and N-methylnicotinamide (NMN) CLs, and electrolyte excretion. RESULTS Compared with placebo, dronedarone significantly decreased renal creatinine CL (mean 138-119 ml min(-1) after dronedarone vs. 142-149 ml min(-1) after placebo) and NMN CL (448-368 ml min(-1)vs. 435-430 ml min(-1)), but did not alter renal sinistrin CL, PAH CL and other renal parameters. CONCLUSIONS Dronedarone reduces renal creatinine and NMN clearance by about 18%, without evidence of an effect on GFR, renal plasma flow or electrolyte exchanges. This suggests a specific partial inhibition of tubular organic cation transporters (OCT). A limited increase in serum creatinine is therefore expected with dronedarone treatment, but does not mean there is a decline in renal function.
Collapse
Affiliation(s)
- Yvonne Tschuppert
- Clinical Pharmacology and Toxicology, University Hospital, Lausanne, Switzerland
| | | | | | | | | | | | | |
Collapse
|
18
|
Role of rat organic anion transporter 3 (Oat3) in the renal basolateral transport of glutathione. Chem Biol Interact 2007; 170:124-34. [PMID: 17719021 DOI: 10.1016/j.cbi.2007.07.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2007] [Revised: 07/10/2007] [Accepted: 07/13/2007] [Indexed: 01/11/2023]
Abstract
The tripeptide GSH is important in maintenance of renal redox status and defense against reactive electrophiles and oxidants. Previous studies showed that GSH is transported across the basolateral plasma membrane (BLM) into the renal proximal tubule by both sodium-coupled and sodium-independent pathways. Substrate specificity and inhibitor studies suggested the function of several carriers, including organic anion transporter 3 (Oat3). To test the hypothesis that rat Oat3 can function in renal GSH transport, the cDNA for rat Oat3 was expressed as a His6-tagged protein in E. coli, purified from inclusion bodies and by Ni2+-affinity chromatography, and reconstituted into proteoliposomes. cDNA-expressed and reconstituted Oat3 transported both GSH and p-aminohippurate (PAH) in exchange for 2-oxoglutarate (2-OG) and 2-OG and PAH in exchange for GSH, and PAH uptake was inhibited by both probenecid and furosemide, consistent with function of Oat3. mRNA expression of Oat3 and several other potential carriers was detected by RT-PCR in rat kidney cortex but was absent from NRK-52E cells, a rat proximal tubular cell line. Basolateral uptake of GSH in NRK-52E cells showed little PAH- or 2-OG-stimulated uptake. We conclude that Oat3 can function in GSH uptake and that NRK-52E cells possess a low background rate of GSH uptake, making these cells a good model for overexpression of specific, putative GSH carriers.
Collapse
|
19
|
Lash LH, Putt DA, Cai H. Membrane transport function in primary cultures of human proximal tubular cells. Toxicology 2006; 228:200-18. [DOI: 10.1016/j.tox.2006.08.035] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2006] [Revised: 08/07/2006] [Accepted: 08/24/2006] [Indexed: 01/11/2023]
|
20
|
Fujiwara K, Shin M, Hougaard DM, Larsson LI. Distribution of anticancer antibiotic daunomycin in the rat heart and kidney revealed by immunocytochemistry using monoclonal antibodies. Histochem Cell Biol 2006; 127:69-77. [PMID: 16850318 DOI: 10.1007/s00418-006-0216-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2006] [Indexed: 10/24/2022]
Abstract
Two monoclonal antibodies (ADM-1-11 and 79-31 mAbs) were raised against daunomycin (DM) conjugated to bovine serum albumin via the cross-linker N-(gamma-maleimidobutyryloxy)succinimide. The monoclonal antibodies (mAbs) specifically detected DM as well as its analogs doxorubicin and epirubicin, but did not react with other anticancer antibiotics, including pepleomycin, mitomycin C, and actinomycin D. The mAbs reacted strongly with glutaraldehyde-conjugated DM in an enzyme linked immunosorbent assay (ELISA) used as a model system for immunocytochemistry as well as in appropriately pretreated sections of tissues from animals injected with DM. No staining occurred in tissues from uninjected animals. In order to perform DM ICC a number of tissue treatment conditions critical to the detection of low molecular weight substances were employed. Uptake of DM was studied in rats after a single i.v. or i.p. administration of the drug. In the heart, accumulation of DM occurred in nuclei and in the cytoplasm. In the kidney, DM immunoreactivity accumulated in all segments of the nephron except for the proximal tubules. Since the proximal tubules are known to be where a variety of transport systems including P-glycoprotein (Pgp) and organic anion-transporting polypeptides (OATPs) in drug interactions occur, the absence of DM accumulation in these segments may reflect a transport phenomenon depending upon such transporters. The availability of methods to study sites of accumulation of DM offers possibilities for understanding toxic side effects of this drug on the heart and kidney. Moreover, the immunocytochemical methodology developed may prove useful for the localization of other low molecular weight drugs that can be fixed in situ by glutaraldehyde.
Collapse
Affiliation(s)
- Kunio Fujiwara
- Department of Applied Life Science, Faculty of Biotechnology and Life Science, Sojo University, Ikeda, 4-22-1, Kumamoto 860-0082, Japan.
| | | | | | | |
Collapse
|
21
|
Bases pharmacocinétiques de la prescription médicale chez le patient insuffisant rénal. ACTA ACUST UNITED AC 2006. [DOI: 10.1016/s1634-6939(06)75443-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
22
|
Durand E, Chaumet-Riffaud P, Archambaud F, Moati F, Prigent A. Mesure de la fonction rénale par les méthodes radio-isotopiques. ACTA ACUST UNITED AC 2006. [DOI: 10.1016/s1762-0945(06)75699-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
23
|
Karyekar CS, Eddington ND, Briglia A, Gubbins PO, Dowling TC. Renal interaction between itraconazole and cimetidine. J Clin Pharmacol 2005; 44:919-27. [PMID: 15286096 DOI: 10.1177/0091270004266783] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Renal drug interactions can result from competitive inhibition between drugs that undergo extensive renal tubular secretion by transporters such as P-glycoprotein (P-gp). The purpose of this study was to evaluate the effect of itraconazole, a known P-gp inhibitor, on the renal tubular secretion of cimetidine in healthy volunteers who received intravenous cimetidine alone and following 3 days of oral itraconazole (400 mg/day) administration. Glomerular filtration rate (GFR) was measured continuously during each study visit using iothalamate clearance. Iothalamate, cimetidine, and itraconazole concentrations in plasma and urine were determined using high-performance liquid chromatography/ultraviolet (HPLC/UV) methods. Renal tubular secretion (CL(sec)) of cimetidine was calculated as the difference between renal clearance (CL(r)) and GFR (CL(ioth)) on days 1 and 5. Cimetidine pharmacokinetic estimates were obtained for total clearance (CL(T)), volume of distribution (Vd), elimination rate constant (K(el)), area under the plasma concentration-time curve (AUC(0-240 min)), and average plasma concentration (Cp(ave)) before and after itraconazole administration. Plasma itraconazole concentrations following oral dosing ranged from 0.41 to 0.92 microg/mL. The cimetidine AUC(0-240 min) increased by 25% (p < 0.01) following itraconazole administration. The GFR and Vd remained unchanged, but significant reductions in CL(T) (655 vs. 486 mL/min, p < 0.001) and CL(sec) (410 vs. 311 mL/min, p = 0.001) were observed. The increased systemic exposure of cimetidine during coadministration with itraconazole was likely due to inhibition of P-gp-mediated renal tubular secretion. Further evaluation of renal P-gp-modulating drugs such as itraconazole that may alter the renal excretion of coadministered drugs is warranted.
Collapse
Affiliation(s)
- Chetan S Karyekar
- Renal Clinical Pharmacology Laboratory, School of Pharmacy, and the Department of Medicine, Division of Nephrology, School of Medicine, University of Maryland, Baltimore 21201, USA
| | | | | | | | | |
Collapse
|
24
|
Ciarimboli G, Koepsell H, Iordanova M, Gorboulev V, Dürner B, Lang D, Edemir B, Schröter R, Van Le T, Schlatter E. Individual PKC-Phosphorylation Sites in Organic Cation Transporter 1 Determine Substrate Selectivity and Transport Regulation. J Am Soc Nephrol 2005; 16:1562-70. [PMID: 15829703 DOI: 10.1681/asn.2004040256] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
To elucidate the molecular mechanisms underlying stimulation of rat organic cation transporter type 1 (rOCT1) by protein kinase C (PKC) activation, functional properties and regulation of rOCT1 stably expressed in HEK293 cells after site-directed mutagenesis of putative PKC phosphorylation-sites were compared with wild-type (WT) rOCT1 using microfluorometric measurements with the fluorescence organic cation 4-(4-(dimethylamino)styryl)-N-methylpyridinium (ASP(+)). Either substitutions of single (S286A, S292A, T296A, S328A, and T550A) or of all five PKC-sites (5x-PKC) with alanine suppressed PKC-induced stimulation of ASP(+) uptake, whereas regulation by p56(lck) tyrosine kinase was conserved in all mutants. Remarkably, the apparent affinities for TEA(+), TPA(+), and quinine were changed differently in each mutant (EC(50) in WT, S286A, S292A, T296A, S328A, T550A, and 5x-PKC in mumol: TEA(+): 105, 153, 56, 1135, 484, 498, 518; TPA(+): 0.1, 2.1, 0.3, 1.0, 43, 0.3, 2.2; quinine: 1.5, 3.0, 2.5, 4.8, 81, 7.6, 8.9, respectively). After mutations, no effects of PKC activation on apparent affinity of rOCT1 for these substrates could be detected, in contrast to what was observed in WT. PKC activation had no significant effect on rOCT1 trafficking from intracellular pools to the cell membrane. Substitution of all PKC sites suppressed PKC-induced phosphorylation of rOCT1. In conclusion, it was found that the presence of all five potential PKC phosphorylation sites is necessary for the PKC-induced stimulation of rOCT1. The different effects on the EC(50) values by the different mutations suggest that the large intracellular loop participates in building the substrate binding pocket of rOCT1 or specifically modulates its structure.
Collapse
Affiliation(s)
- Giuliano Ciarimboli
- Medizinische Klinik und Poliklinik D, Experimentelle Nephrologie, Universitätsklinikum Münster, Domagkstrasse 3a, Münster, D-48149 Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Nascimento CR, Braga F, Capella LS, Santos OR, Lopes AG, Capella MAM. Comparative Study on the Effects of Cyclosporin A in Renal Cells in Culture. ACTA ACUST UNITED AC 2005; 99:e77-86. [PMID: 15665554 DOI: 10.1159/000083415] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2004] [Accepted: 08/11/2004] [Indexed: 11/19/2022]
Abstract
BACKGROUND Although cyclosporin A (CSA) inhibits P-glycoprotein (ABCB1), the relationship between this inhibition and CSA-induced nephrotoxicity is not established. METHODS Three renal cell lines were used to investigate the effects of CSA in cellular viability and accumulation of rhodamine 123 (Rho123): LLC-PK1, which does not express ABCB1 substantially; MDCK, expressing moderate amounts of this protein, and Ma104 cells, which express high amounts of ABCB1. RESULTS The viability was significantly reduced in the three cell lines after treatment with CSA concentrations >10 microM. Ma104 was the more resistant and LLC-PK1 the more sensitive. CSA increased Rho123 accumulation in the three cell lines when incubated simultaneously, MDCK presenting the higher increase. However, different results were achieved when the periods of incubation with Rho123 and CSA were disconnected: a post-incubation with CSA was more effective in Ma104 cells, while MDCK and LLC-PK1 showed no difference between pre-, co- and post-incubation with CSA. CONCLUSIONS Our results suggest that the effects of CSA may be divided into two groups: ABCB1-independent (direct injury), and ABCB1-dependent toxicity, due to modulation of its activity. This could result in increased accumulation of noxious ABCB1 substrates, contributing to CSA-induced nephrotoxicity. Furthermore, the mechanisms of ABCB1 modulation by CSA may be different for different cell lines.
Collapse
|
26
|
Ludwig T, Riethmüller C, Gekle M, Schwerdt G, Oberleithner H. Nephrotoxicity of platinum complexes is related to basolateral organic cation transport. Kidney Int 2005; 66:196-202. [PMID: 15200426 DOI: 10.1111/j.1523-1755.2004.00720.x] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Cisplatin and its analogs oxaliplatin and carboplatin are widely used antitumor drugs. Nephrotoxicity is a common and relevant adverse effect that occurs especially in cisplatin therapy. Cellular and molecular mechanisms of cisplatin-induced nephrotoxicity are not completely understood. The nephrotoxicity of platinum complexes was evaluated by a new in vitro system that utilizes the high Trans Epithelial Electrical Resistance (TEER) of the C7 clone of the MDCK (Madin-Darby canine kidney) cells. By means of this assay system we addressed the question whether the side of application of renal epithelia influences platinum complex toxicity. METHODS C7 cells were grown in membrane filter cups, and the apical or basolateral membranes were exposed to 100-micromol/L cis-, oxali-, or carboplatin. TEER and caspase-3 activity were determined. Cimetidine was used as an inhibitor of organic cation transporters (OCTs). C7 cell lysates were analyzed for OCT-1 and -2 by Western blot analysis. RESULTS TEER dropped by 89.5 +/- 9.3% (mean +/- SEM; N= 6) within 24 hours after addition of cisplatin to the basolateral side of C7 cells, while caspase activity increased up to 840.6 +/- 17.4% (mean +/- SEM; N= 6) compared to control cells. Exposure of the apical membrane to cisplatin reduced TEER by only 13.4 +/- 8.7% (mean +/- SEM; N= 6), and increased caspase-3 activity up to 213.9 +/- 7.6% (mean +/- SEM; N= 6). Oxaliplatin and carboplatin reduced TEER to a lesser extent than cisplatin. Oxaliplatin lowered TEER stronger than carboplatin. In general, basolateral application led to higher caspase activities and lower TEERs. The OCT-inhibitor cimetidine inhibited the TEER decrease induced by platinum complexes. Immunoblotting confirmed the presence of OCT-2 in C7 cells. CONCLUSION Toxic effects of platinum complexes on renal epithelia depend on the platinum complex used and the site of application. We conclude that cell polarity and basolateral transport mechanisms are essential in nephrotoxicity of platinum drugs.
Collapse
Affiliation(s)
- Thomas Ludwig
- Institut für Physiologie II, Westfälische Wilhelms-Universität Münster, Münster, Germany.
| | | | | | | | | |
Collapse
|
27
|
Knepper MA, Kleyman T, Gamba G. Diuretics: Mechanisms of Action. Hypertension 2005. [DOI: 10.1016/b978-0-7216-0258-5.50152-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
28
|
Ciarimboli G, Struwe K, Arndt P, Gorboulev V, Koepsell H, Schlatter E, Hirsch JR. Regulation of the human organic cation transporter hOCT1. J Cell Physiol 2004; 201:420-8. [PMID: 15389554 DOI: 10.1002/jcp.20081] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The human organic cation transporter type 1 (hOCT1) is an important transport system for small organic cations in the liver. Organic cation transporters are regulated by different signaling pathways, but the regulation of hOCT1 has not yet been studied. In this work, we have for the first time investigated the regulation of hOCT1. hOCT1 was expressed in Chinese hamster ovary cells (CHO-hOCT1) and in human embryonic kidney cells (HEK293-hOCT1). Its activity was monitored using microfluorimetry with the fluorescent organic cation 4-(4-(dimethylamino)styryl)-N-methylpyridinium (ASP(+)) as substrate. hOCT1 expressed in CHO-cells was inhibited by protein kinase A (PKA) activation (1 microM forskolin, -58 +/- 6%, n = 12), calmodulin inhibition (0.1 microM calmidazolium, -68 +/- 3%, n = 6; 10 microM ophiobolin A, -48 +/- 10%, n = 7), calmodulin-dependent kinase II inhibition (1 microM KN62, -78 +/- 4%, n = 12), and inhibition of p56(lck) tyrosine kinase (10 microM aminogenistein, -35 +/- 7%, n = 12). The apparent affinities for TEA(+) were lower in CHO-hOCT1 than in HEK293-hOCT1, while those for TPA(+) and quinine were almost identical; the rank order of EC(50) values (TPA(+) > quinine > TEA(+)) was independent of the expression system. EC(50) values for TEA(+) in CHO-hOCT1 or HEK293-hOCT1 were increased under calmidazolium incubation (6.3 and 1.4 mM, respectively). hOCT1 was inhibited by PKA and endogenously activated by calmodulin, calmodulin-dependent kinase II, and p56(lck) tyrosine kinase. Regulation pathways were the same in the two expression systems. Since apparent substrate affinities depend on activity of regulatory pathways, the expression system plays a role in determining the substrate affinities.
Collapse
Affiliation(s)
- Giuliano Ciarimboli
- Medizinische Klinik und Poliklinik D, Experimentelle Nephrologie, Universitätsklinikum Münster, D-48149 Münster, Germany
| | | | | | | | | | | | | |
Collapse
|
29
|
Ciarimboli G, Schlatter E. Regulation of organic cation transport. Pflugers Arch 2004; 449:423-41. [PMID: 15688244 DOI: 10.1007/s00424-004-1355-5] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2004] [Accepted: 09/27/2004] [Indexed: 01/11/2023]
Abstract
Transport of organic cations (OC) is important for the recycling of endogenous OC and also a necessary step for detoxification of exogenous OC in the body. Even though the identification and characterisation of numerous OC transporters in recent years has allowed the elucidation of molecular mechanisms underlying OC transport, elucidation of the regulation of this transport is just beginning. This review summarises the general properties of OC transport and then analyses the literature on the regulation of these processes. Studies on short- and long-term regulation of OC transport are considered separately. Important aspects of short-term regulation have been clarified and the regulatory pathways of several OC transporters have been characterised. Short-term regulation appears to be transporter subtype-, tissue- and species-dependent and to involve transporter phosphorylation. Transporter phosphorylation may alter the affinity for substrates or/and expression on the plasma membrane. Even though several studies have shown long-term regulation of OC transport, the pathophysiological meaning of these changes are not well understood. In this case, regulation seems to be subtype-, tissue- and gender-specific. Further research is necessary to clarify this important issue of regulation of OC transport.
Collapse
Affiliation(s)
- Giuliano Ciarimboli
- Experimentelle Nephrologie, Medizinische Klinik und Poliklinik D, Universitätsklinikum Münster, Domagkstrasse 3a, 48149, Münster, Germany.
| | | |
Collapse
|
30
|
Mage DT, Allen RH, Gondy G, Smith W, Barr DB, Needham LL. Estimating pesticide dose from urinary pesticide concentration data by creatinine correction in the Third National Health and Nutrition Examination Survey (NHANES-III). JOURNAL OF EXPOSURE ANALYSIS AND ENVIRONMENTAL EPIDEMIOLOGY 2004; 14:457-65. [PMID: 15367927 DOI: 10.1038/sj.jea.7500343] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
The Third National Health and Nutrition Examination Survey (NHANES-III) of the Centers for Disease Control and Prevention (CDC) recorded data on the urinary concentrations of 12 chemicals (analytes), which were either pesticides or their metabolites, that represent exposure to certain pesticides, in urine samples collected from 1988 to 1994 from a cohort of 978 volunteer subjects, aged 20-59 years. We have used each subject's urinary creatinine concentration and their individual daily creatinine excretion rate (g/day) computed from their age, gender, height and weight, to estimate their daily excretion rate in microg analyte/kg/day. We discuss the mechanisms of excretion of the analytes and certain assumptions needed to compute the equivalent daily dietary intake (microg/kg/day) of the most likely parent pesticide compounds for each excreted analyte. We used literature data on the average amount of parent compound ingested per unit amount of the analyte excreted in the urine, and compared these estimated daily intakes to the US EPA's reference dose (RfD) values for each of those parent pesticides. A Johnson S(B) distribution (four-parameter lognormal) was fit to these data to estimate the national distribution of exclusive exposures to these 12 parent compounds. Only three such pesticides had a few predicted values above their RfD (lindane 1.6%; 2,4-dichlorophenol 1.3%; chlorpyrifos 0.02%). Given the possibility of a subject's dietary intake of a pesticide's metabolites incorporated into treated food, our results show that few, if any, individuals in the general US population aged 20-59 years and not employed in pesticide application were likely to have exceeded the USEPA RfD for these parent compounds during the years studied.
Collapse
Affiliation(s)
- David T Mage
- Institute for Survey Research, Temple University, Philadelphia, PA 19122-6099, USA.
| | | | | | | | | | | |
Collapse
|
31
|
Kim GH. Long-term adaptation of renal ion transporters to chronic diuretic treatment. Am J Nephrol 2004; 24:595-605. [PMID: 15564765 DOI: 10.1159/000082314] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2004] [Accepted: 10/26/2004] [Indexed: 11/19/2022]
Abstract
Loop and thiazide diuretics are clinically useful to induce negative sodium balance. However, with chronic treatment, their effects tend to be blunted since the kidney adapts to diuretics. Molecular identification of the renal ion transporters has provided us with a new understanding of the mechanisms of intrarenal adaptation to diuretics at molecular levels. In the kidney, loop and thiazide diuretics are secreted from the proximal tubule via the organic anion transporter-1 (OAT1) and exert their diuretic action by binding to the Na-K-2Cl cotransporter type 2 (NKCC2) in the thick ascending limb and the Na-Cl cotransporter (NCC) in the distal convoluted tubule, respectively. Recent studies in animal models suggest that abundance of these ion transporters is affected by long-term diuretic administration. Downstream from the primary site of diuretic action, an increase in epithelial Na+ channel (ENaC) abundance is induced by chronic furosemide or hydrochlorothiazide treatment. This adaptation is consistent with previous reports showing cellular hypertrophy and increased Na+ absorption in distal tubular segments. The abundance of NKCC2 and NCC is increased by furosemide and hydrochlorothiazide, respectively. This compensatory upregulation suggests that either diuretic may activate the ion transporter within the primary site of action. In the proximal tubule, the abundance of OAT1 is increased by chronic treatment with furosemide or hydrochlorothiazide. This upregulation of OAT1 seems to be induced by substrate stimulation, lessening diuretic tolerance associated with long-term diuretic use.
Collapse
Affiliation(s)
- Gheun-Ho Kim
- Department of Internal Medicine and Institute of Biomedical Sciences, Hanyang University College of Medicine, Seoul, Korea.
| |
Collapse
|
32
|
Wright SH, Dantzler WH. Molecular and cellular physiology of renal organic cation and anion transport. Physiol Rev 2004; 84:987-1049. [PMID: 15269342 DOI: 10.1152/physrev.00040.2003] [Citation(s) in RCA: 299] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Organic cations and anions (OCs and OAs, respectively) constitute an extraordinarily diverse array of compounds of physiological, pharmacological, and toxicological importance. Renal secretion of these compounds, which occurs principally along the proximal portion of the nephron, plays a critical role in regulating their plasma concentrations and in clearing the body of potentially toxic xenobiotics agents. The transepithelial transport involves separate entry and exit steps at the basolateral and luminal aspects of renal tubular cells. It is increasingly apparent that basolateral and luminal OC and OA transport reflects the concerted activity of a suite of separate transport processes arranged in parallel in each pole of proximal tubule cells. The cloning of multiple members of several distinct transport families, the subsequent characterization of their activity, and their subcellular localization within distinct regions of the kidney now allows the development of models describing the molecular basis of the renal secretion of OCs and OAs. This review examines recent work on this issue, with particular emphasis on attempts to integrate information concerning the activity of cloned transporters in heterologous expression systems to that observed in studies of physiologically intact renal systems.
Collapse
Affiliation(s)
- Stephen H Wright
- Dept. of Physiology, College of Medicine, Univ. of Arizona, Tucson, AZ 85724, USA.
| | | |
Collapse
|
33
|
Villar SR, Brandoni A, Quaglia NB, Torres AM. Renal elimination of organic anions in rats with bilateral ureteral obstruction. Biochim Biophys Acta Mol Basis Dis 2004; 1688:204-9. [PMID: 15062870 DOI: 10.1016/j.bbadis.2003.12.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2003] [Revised: 11/26/2003] [Accepted: 12/04/2003] [Indexed: 10/26/2022]
Abstract
Urinary tract obstruction is an important cause of acute renal failure. Several abnormalities in renal tubular function may occur in obstructive nephropathy. The tubular secretion of organic anions is an important function of the kidney that eliminates potentially toxic organic anions from the body, however, the mechanisms involved in organic anions renal elimination in rats with bilateral ureteral obstruction (BUO) have not been elucidated. In this study, it was evaluated the renal handling of p-aminohippurate (PAH) in adult male Wistar rats with BUO. A diminished renal clearance of PAH was observed in BUO rats as consequence of a diminution in the secreted load of this organic anion. The increase in the abundance of organic anions transporter 1 (OAT1) and the absence of modification in cortical renal blood flow, measured with fluorescence microspheres, do not explain the altered secretion of PAH. The diminished Na,K-ATPase activity in cortex from obstructed kidneys might condition OAT1 function. Additionally, it is also possible to conclude that in the presence of BUO, PAH clearance is not a good estimate of renal plasma flow.
Collapse
Affiliation(s)
- Silvina R Villar
- Departamento Ciencias Fisiologicas, Farmacología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, CONICET, Suipacha 531, Rosario 2000, Argentina
| | | | | | | |
Collapse
|
34
|
Ljubojevic M, Herak-Kramberger CM, Hagos Y, Bahn A, Endou H, Burckhardt G, Sabolic I. Rat renal cortical OAT1 and OAT3 exhibit gender differences determined by both androgen stimulation and estrogen inhibition. Am J Physiol Renal Physiol 2004; 287:F124-38. [PMID: 15010355 DOI: 10.1152/ajprenal.00029.2004] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
In rats, the secretion of p-aminohippurate (PAH) by the kidney is higher in males (M) than in females (F). The role of the major renal PAH transporters, OAT1 and OAT3, in the generation of these gender differences, as well as the responsible hormones and mechanisms, has not been clarified. Here we used various immunocytochemical methods to study effects of gender, gonadectomy, and treatment with sex hormones on localization and abundance of OAT1 and OAT3 along the rat nephron. Both transporters were localized to the basolateral membrane: OAT1 was strong in proximal tubule S2 and weak in the S3 segments, whereas OAT3 was stained in proximal tubule S1 and S2 segments, thick ascending limb, distal tubule, and in principal cells along the collecting duct. Gender differences in the expression of both transporters in adult rats (M > F) were observed only in the cortical tubules. OAT1 in the cortex was strongly reduced by castration in adult M, whereas the treatment of castrated M with testosterone, estradiol, or progesterone resulted in its complete restitution, further depression, or partial restitution, respectively. In adult F, ovariectomy weakly increased, whereas estradiol treatment of ovariectomized F strongly decreased, the expression of OAT1. The expression of OAT3 in the M and F cortex largely followed a similar pattern, except that ovariectomy and progesterone treatment showed no effect, whereas in other tissue zones gender differences were not observed. In prepubertal rats, the expression of OAT1 and OAT3 in the kidney cortex was low and showed no gender differences. Our data indicate that gender differences in the rat renal cortical OAT1 and OAT3 (M > F) appear after puberty and are determined by both a stimulatory effect of androgens (and progesterone in the case of OAT1) and an inhibitory effect of estrogens.
Collapse
Affiliation(s)
- Marija Ljubojevic
- Unit of Molecular Toxicology, Institute for Medical Research and Occupational Health, HR-10001 Zagreb, Croatia
| | | | | | | | | | | | | |
Collapse
|
35
|
Eraly SA, Bush KT, Sampogna RV, Bhatnagar V, Nigam SK. The molecular pharmacology of organic anion transporters: from DNA to FDA? Mol Pharmacol 2004; 65:479-87. [PMID: 14978224 DOI: 10.1124/mol.65.3.479] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Renal organic anion secretion has been implicated in numerous clinically significant drug interactions and adverse reactions, indicating the importance of a detailed understanding of this pathway for the development of optimum therapeutics. With the cloning of multiple genes encoding organic anion transporters (OATs), the study of organic anion secretion has entered the molecular age. In this review, we focus on various aspects of the molecular biology and pharmacology of the OATs, including discussion of their structural biology, genomic organization in pairs, developmental regulation, toxicology, and pharmacogenetics. We propose functional, pathophysiological, and evolutionary hypotheses to help explain recent experimental and genomic data.
Collapse
Affiliation(s)
- Satish A Eraly
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093-0693, USA
| | | | | | | | | |
Collapse
|
36
|
Grover B, Buckley D, Buckley AR, Cacini W. Reduced expression of organic cation transporters rOCT1 and rOCT2 in experimental diabetes. J Pharmacol Exp Ther 2004; 308:949-56. [PMID: 14718608 DOI: 10.1124/jpet.103.058388] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Recent reports have documented a functional deficit of organic cation transport in diabetic rats by an unknown mechanism. This study was designed to test the hypothesis that experimental diabetes decreases expression of organic cation transporters at the basolateral membrane. Streptozotocin-induced diabetic rats were maintained for varying durations after induction of diabetes. A second group of age-matched control rats was maintained in a parallel manner. Kinetic analysis of tetraethylammonium accumulation in freshly isolated proximal tubular cells indicated a significantly lower V(max) value for the diabetics versus controls with no statistical difference in K(m) values between the two groups. Cortex sections were processed by standard procedures for Northern and immunoblot analysis. Protein expression of the organic cation transporters rOCT1 and rOCT2 progressively decreased with increasing duration of diabetes. After 21 days of diabetes, rOCT1 and rOCT2 were maximally reduced by 50 and 70%, respectively. Quantification of mRNA expression revealed that the roct1 transcript remained unchanged, whereas the roct2 transcript was decreased by 50% after 14 days of diabetes. Treatment with insulin prevented the reductions in transporter levels. These results support the hypothesis by demonstrating that experimental diabetes decreased expression of both rOCT1 and rOCT2 protein and also of roct2 mRNA accumulation. On the other hand, roct1 mRNA levels were unaffected by the diabetic state. This suggests that differences in rOCT2 protein may result from transcriptional and/or translational changes, whereas rOCT1 deficits may be due to posttranscriptional alterations.
Collapse
Affiliation(s)
- Brett Grover
- College of Pharmacy, University of Cincinnati Medical Center, Cincinnati, OH 45267-0004, USA
| | | | | | | |
Collapse
|
37
|
Sauvant C, Holzinger H, Gekle M. Short-Term Regulation of Basolateral Organic Anion Uptake in Proximal Tubular Opossum Kidney Cells: Prostaglandin E2 Acts via Receptor-Mediated Activation of Protein Kinase A. J Am Soc Nephrol 2003; 14:3017-26. [PMID: 14638901 DOI: 10.1097/01.asn.0000099376.87890.71] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
ABSTRACT. It was shown previously that EGF induces release of the important prostanoid prostaglandin E2 (PGE2) in proximal tubular opossum kidney (OK) cells and PGE2 then stimulates initial basolateral uptake of organic anions (OA) dose dependently. PGE2 is a receptor agonist and a known substrate for the basolateral exchanger mediating OA uptake (OAT1 and/or OAT3). This study investigated the mechanism of short-term PGE2 action on initial basolateral OA uptake in OK cells. PGE2 stimulation of OA uptake was abolished by selective inhibition of adenylate cyclase (by MDL-12, 330A) or protein kinase A (PKA; by H89). PGE2 stimulation of OA uptake persisted after preloading the cells with glutarate and was still abolished by inhibition of PKA. Selective activation of adenylate cyclase by forskolin led to identical results. These data contradicted the hypothesis that PGE2 action on OA uptake is due to its action as a counter ion. Therefore, we tested whether the PGE2 receptors (EP1 to 4) are involved in stimulation of OA uptake in OK cells by PGE2. Because of their intracellular signaling profile, EP1 and EP3 were not taken into account as possible receptors for mediation of PGE2-induced OA uptake. With the use of selective agonists (11-deoxy PGE1 and butaprost), EP4 was pharmacologically identified as the receptor responsible for PGE2-mediated stimulation of OA uptake. By reverse transcription–PCR, cloning, and subsequent sequencing, a homologue fragment to EP4 was identified in OK cells. EGF-induced stimulation of basolateral organic anion uptake was abolished by inhibition of adenylate cyclase or PKA. This indicates that EGF action is mediated by generation of PGE2. The following model is proposed: PGE2 generated in the cells does not act as a counter ion but activates adenylate cyclase. This is mediated by a homologue of EP4 receptor. cAMP then activates PKA, which stimulates initial basolateral uptake of OA in OK cells by a not-yet-known mechanism. PGE2 is an organic anion, a potential stimulator of organic anion excretion, and an important mediator of inflammation all at once. Thus, the mechanism presented here may contribute to a limitation of inflammatory events in the kidney cortex interstitium.
Collapse
Affiliation(s)
- Christoph Sauvant
- Physiologisches Institut der Universität Würzburg, Würzburg, Germany.
| | | | | |
Collapse
|
38
|
Eraly SA, Blantz RC, Bhatnagar V, Nigam SK. Novel aspects of renal organic anion transporters. Curr Opin Nephrol Hypertens 2003; 12:551-8. [PMID: 12920404 DOI: 10.1097/00041552-200309000-00011] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Organic anion transporters, transmembrane proteins present in the renal proximal tubule, are a critical component of the human drug excretion machinery. Recent advances have clarified the function of these transporters, with broad clinical implications for pharmacogenetics, drug interactions and adverse reactions. Here, we discuss these issues in the context of the basic biology of the transporters. RECENT FINDINGS Understanding of organic anion transporter function has proceeded on several fronts. The continued cataloging of organic anion transporter substrates has revealed that the transporters' activity likely underlies many common drug interactions and nephrotoxic adverse reactions. Meanwhile, immunohistochemical and physiological studies suggest their potential involvement in the apical as well as basolateral steps of renal organic anion secretion. In addition, studies of the genomic organization of these transporters reveal that they are found in pairs of similar and similarly expressed genes, suggesting that pair members are coordinately regulated. Finally, we hypothesize here that organic anion transporters might impact renal susceptibility to ischemia and toxic injury, because their uptake of substrates can result in the efflux of Krebs cycle intermediates, an important nutrient source for the proximal tubule. SUMMARY The study of these transporters will likely have a significant impact on renal pharmacology and pharmacogenetics. In this regard, the generation of organic anion transporter gene knockout mice could provide invaluable models for defects in renal drug-handling. Ultimately, detailed knowledge of organic anion transporter function will assist in the choice of optimum pharmacological therapies.
Collapse
Affiliation(s)
- Satish A Eraly
- Department of Medicine1, University of California, San Diego, 9500 Gilman Drive, La Jolla, Californian 92093-0693, USA.
| | | | | | | |
Collapse
|
39
|
Brandoni A, Quaglia NB, Torres AM. Compensation increase in organic anion excretion in rats with acute biliary obstruction: role of the renal organic anion transporter 1. Pharmacology 2003; 68:57-63. [PMID: 12711831 DOI: 10.1159/000069529] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2002] [Accepted: 09/25/2002] [Indexed: 12/14/2022]
Abstract
The purpose of the present study was to examine in rats the effects of acute bile duct ligation on the expression of the organic anion transporter 1 in the kidney and the consequences of these effects on the systemic clearance of organic anions, particularly on P-aminohippurate (PAH) clearance, since it has been viewed as the prototypic organic anion. Male Wistar rats underwent bile duct ligation (BDL rats). Pair-fed sham-operated rats served as controls. All studies were carried out 21 h after surgery. Our data revealed that BDL rats had a higher expression of organic transporter 1 protein in kidney cortex homogenates. Accordingly, systemic clearance of PAH and urinary excretion of PAH were both higher in BDL rats. These findings suggest that impairment of the liver function after BDL is followed by a distinct and statistically significant increase in renal excretion of PAH, indicating a possible compensation mechanism.
Collapse
Affiliation(s)
- Anabel Brandoni
- Farmacología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Conicet, Rosario, Argentina
| | | | | |
Collapse
|
40
|
Saitoh H, Arashiki Y, Oka A, Oda M, Hatakeyama Y, Kobayashi M, Hosoi K. Arbekacin is actively secreted in the rat intestine via a different efflux system from P-glycoprotein. Eur J Pharm Sci 2003; 19:133-40. [PMID: 12791416 DOI: 10.1016/s0928-0987(03)00072-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
This study was undertaken to examine the secretory transport of arbekacin, an aminoglycoside antibiotic, in the rat small intestine and to compare it with those in Caco-2 and LLC-PK1 cells. In vitro permeation of arbekacin was examined using an Ussing chamber technique. Serosal-to-mucosal (secretory)/mucosal-to-serosal (absorptive) permeation ratios of 0.5 mM arbekacin were 2.8 in the jejunum and 7.0 in the ileum, respectively, indicating that arbekacin permeation was highly secretory-oriented. In the ileum, the ratios became smaller with increase in arbekacin concentration applied. When D-glucose was replaced with 3-o-methyl-D-glucose in the experimental medium, the directionality of the arbekacin permeation disappeared almost completely. Absorptive permeation of arbekacin was not significantly influenced by verapamil, cyclosporin A, or probenecid. On the other hand, when gentamicin sulfate was added to the serosal medium, secretory transport of arbekacin was significantly inhibited. The results of this study strongly suggest that a specialized efflux system other than P-glycoprotein and multidrug resistance proteins was involved in the secretory transport of arbekacin in the rat intestine. There was no directionality in arbekacin permeation across Caco-2 cell monolayers, suggesting the absence or very slight expression of the secretory system for arbekacin in this cell line.
Collapse
Affiliation(s)
- Hiroshi Saitoh
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan.
| | | | | | | | | | | | | |
Collapse
|
41
|
Quaglia NB, Brandoni A, Ferri A, Torres AM. Early manifestation of nephropathy in rats with arterial calcinosis. Ren Fail 2003; 25:355-66. [PMID: 12803500 DOI: 10.1081/jdi-120021150] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
In vascular smooth muscle, calcium overload is a highly pathogenic event, which increases with advancing age. An increase in the calcium content of arterial wall may be produced in rats by treatment with vitamin D3. The aim of this study was to evaluate the renal clearance of sulfanilamide (a model organic anion, preferentially eliminated by the kidneys) and other parameters of global renal function in rats with arterial calcinosis. Arterial calcinosis was produced in adult rats by means of a single dose of vitamin D3 (300,000 UI/kg bw, i.m.) 5 days before the experiment. Treated rats showed a large increase in calcium content of aortic tissue and an increase in systolic arterial pressure. No modifications were observed in plasma calcium levels and in plasma lipid profiles. Statistically significant decrements were observed in renal clearance of sulfanilamide, in renal blood flow, in fractional excretion of sodium and potassium. A slight decrease, not statistically different, was observed in the glomerular filtration rate. Rats with arterial calcinosis also showed an increment of total calcium levels in renal tissue, in fractional excretion of calcium and in the expression of organic anion transporter 1 (OAT1). Histological studies revealed tubular alterations. In summary, modifications in hemodynamics and tubular parameters are early manifestations of nephropathy in rats with arterial calcinosis, some of which may account for the changes observed in organic anions renal depuration. It is important to mention that the decrease in clearance of organic anions were seen in spite of the increase in expression of OAT1.
Collapse
Affiliation(s)
- Nora B Quaglia
- Facultad de Ciencias Bioquimicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | | | | | | |
Collapse
|
42
|
Karyekar CS, Eddington ND, Garimella TS, Gubbins PO, Dowling TC. Evaluation of P-glycoprotein-mediated renal drug interactions in an MDR1-MDCK model. Pharmacotherapy 2003; 23:436-42. [PMID: 12680473 DOI: 10.1592/phco.23.4.436.32125] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
STUDY OBJECTIVE To evaluate P-glycoprotein (P-gp)-mediated renal drug interactions in an in vitro model of tubular secretion. DESIGN In vitro experiment. SETTING University-affiliated pharmacokinetics laboratory. CELL LINES: Madin-Darby canine kidney (MDCK), multidrug-resistant-1 (MDR1)-MDCK, and human colon carcinoma (Caco-2) cells. INTERVENTION Transepithelial transport (basolateral-to-apical and apical-to-basolateral) of cimetidine was assessed in the absence and presence of various concentrations of the P-gp inhibitors itraconazole and PSC-833 in a renal P-gp cell culture model (MDR1-MDCK). MEASUREMENTS AND MAIN RESULTS Apparent permeability of cimetidine was characterized, and level of P-gp expression was determined by Western blot analysis, in MDCK (wild type), MDR1-MDCK, and Caco-2 cells (for relative comparison). In the presence of PSC-833, cimetidine's apparent permeability value for basolateral-to-apical transport decreased from 2.96 to 1.15 x 10(-6) cm/second, coupled with a decrease in efflux ratio from 2.36 to 1.80. The effect of itraconazole was concentration dependent, with cimetidine's apparent permeability value for basolateral-to-apical transport decreasing from 3.96 to 1.92 x 10(-6) cm/second (p < 0.05), resulting in a 50% decrease in efflux ratio. Expression of P-gp was negligible in MDCK (wild-type) cells, but high-level expression was confirmed in both MDR1-MDCK and Caco-2 cells. CONCLUSION P-glycoprotein plays a significant role in the renal tubular secretion of organic cations such as cimetidine, and the high level of P-gp expression in MDR1-MDCK cells makes this a well-suited model for evaluating mechanisms of renal drug interactions.
Collapse
Affiliation(s)
- Chetan S Karyekar
- Pharmacokinetics-Biopharmaceutics Laboratory, School of Pharmacy, University of Maryland, Baltimore 21201, USA
| | | | | | | | | |
Collapse
|
43
|
Kakihara T, Imai C, Hotta H, Ikarashi Y, Tanaka A, Uchiyama M. Impaired tubular excretory function as a late renal side effect of chemotherapy in children. J Pediatr Hematol Oncol 2003; 25:209-14. [PMID: 12621239 DOI: 10.1097/00043426-200303000-00006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE Renal drug excretion is variously influenced by nephrotoxic drugs. This study was designed to evaluate renal function as a late renal side effects in children receiving combination chemotherapy for malignancy. PATIENTS AND METHODS Follow-up studies of 30 newly diagnosed patients were performed a median of 12 months after completion of chemotherapy. The glomerular filtration rate (GFR) was measured using sodium thiosulfate. The following were also assessed: urinary high-molecular-weight fraction (urinary albumin/urinary creatinine ratio); para-aminohippurate (PAH) clearance; urinary low-molecular-weight fraction (urinary beta2-microglobulin/urinary creatinine ratio); and routine serum and urinary parameters. RESULTS Serum and urinary electrolytes were normal in most patients. GFR was low in four patients (13%). Urinary high-molecular-weight fraction was elevated in two patients. Urinary low-molecular-weight fraction was elevated in one patient. PAH clearance was below the referenced normal value in 73% of the patients. CONCLUSIONS This report demonstrates decreased PAH clearance as a late renal side effect of chemotherapy and suggests disturbed function of the organic anion transport system. The unexpected high serum concentration of drugs excreted through the organic anion transport system may induce severe side effects. Elucidation of the mechanism and clinical relevance of decreased PAH clearance is warranted.
Collapse
Affiliation(s)
- Toshio Kakihara
- Division of Pediatrics, Department of Homeostatic Regulation and Development, Niigata University Graduate School of Medical and Dental Sciences, Niitata, Japan.
| | | | | | | | | | | |
Collapse
|
44
|
Tett SE, Kirkpatrick CMJ, Gross AS, McLachlan AJ. Principles and Clinical Application of Assessing Alterations in Renal Elimination Pathways. Clin Pharmacokinet 2003; 42:1193-211. [PMID: 14606929 DOI: 10.2165/00003088-200342140-00002] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Drugs and metabolites are eliminated from the body by metabolism and excretion. The kidney makes the major contribution to excretion of unchanged drug and also to excretion of metabolites. Net renal excretion is a combination of three processes - glomerular filtration, tubular secretion and tubular reabsorption. Renal function has traditionally been determined by measuring plasma creatinine and estimating creatinine clearance. However, estimated creatinine clearance measures only glomerular filtration with a small contribution from active secretion. There is accumulating evidence of poor correlation between estimated creatinine clearance and renal drug clearance in different clinical settings, challenging the 'intact nephron hypothesis' and suggesting that renal drug handling pathways may not decline in parallel. Furthermore, it is evident that renal drug handling is altered to a clinically significant extent in a number of disease states, necessitating dosage adjustment not just based on filtration. These observations suggest that a re-evaluation of markers of renal function is required. Methods that measure all renal handling pathways would allow informed dosage individualisation using an understanding of renal excretion pathways and patient characteristics. Methodologies have been described to determine individually each of the renal elimination pathways. However, their simultaneous assessment has only recently been investigated. A cocktail of markers to measure simultaneously the individual renal handling pathways have now been developed, and evaluated in healthy volunteers. This review outlines the different renal elimination pathways and the possible markers that can be used for their measurement. Diseases and other physiological conditions causing altered renal drug elimination are presented, and the potential application of a cocktail of markers for the simultaneous measurement of drug handling is evaluated. Further investigation of the effects of disease processes on renal drug handling should include people with HIV infection, transplant recipients (renal and liver) and people with rheumatoid arthritis. Furthermore, changes in renal function in the elderly, the effect of sex on renal function, assessment of living kidney donors prior to transplantation and the investigation of renal drug interactions would also be potential applications. Once renal drug handling pathways are characterised in a patient population, the implications for accurate dosage individualisation can be assessed. The simultaneous measurement of renal function elimination pathways of drugs and metabolites has the potential to assist in understanding how renal function changes with different disease states or physiological conditions. In addition, it will further our understanding of fundamental aspects of the renal elimination of drugs.
Collapse
Affiliation(s)
- Susan E Tett
- School of Pharmacy, University of Queensland, Brisbane, Australia.
| | | | | | | |
Collapse
|
45
|
Abstract
Multiple organic anion transporters in the proximal tubule of the kidney are involved in the secretion of drugs, toxic compounds, and their metabolites. Many of these compounds are potentially hazardous on accumulation, and it is therefore not surprising that the proximal tubule is also an important target for toxicity. In the past few years, considerable progress has been made in the cloning of these transporters and their functional characterization following heterologous expression. Members of the organic anion transporter (OAT), organic anion transporting polypeptide (OATP), multidrug resistance protein (MRP), sodium-phosphate transporter (NPT), and peptide transporter (PEPT) families have been identified in the kidney. In this review, we summarize our current knowledge on their localization, molecular and functional characteristics, and substrate and inhibitor specificity. A major challenge for the future will be to understand how these transporters work in concert to accomplish the renal secretion of specific anionic substrates.
Collapse
Affiliation(s)
- Frans G M Russel
- Department of Pharmacology and Toxicology, Nijmegen Center for Molecular Life Sciences, University Medical Center Nijmegen, The Netherlands.
| | | | | |
Collapse
|
46
|
Grover B, Auberger C, Sarangarajan R, Cacini W. Functional impairment of renal organic cation transport in experimental diabetes. PHARMACOLOGY & TOXICOLOGY 2002; 90:181-6. [PMID: 12076311 DOI: 10.1034/j.1600-0773.2002.900402.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This study was designed to determine the effect of diabetes on the function of the renal organic cation transport system that mediates the excretion of a wide variety of toxicants and drugs. The experiments compared the ability of renal cortex slices from streptozotocin-induced diabetic and non-diabetic rats to accumulate the model cation, 14C-tetraethylammonium under controlled conditions. Initial experiments demonstrated a progressive decline in tetraethylammonium accumulation with increasing duration of diabetes. The maximal decrease was observed at 21 days after streptozotocin injection. Time-dependent incubations revealed that tetraethylammonium uptake from both diabetic and non-diabetic rats followed a curvilinear pattern expected of an active process. However, at steady state the diabetic-derived slices accumulated a significant 38% less tetraethylammonium versus slices from non-diabetics. Concentration-dependent incubations of tetraethylammonium (0.01-10 mM, 60 min.) demonstrated saturable transport in both diabetic and non-diabetic slices with a significantly decreased capacity of diabetic-derived slices to accumulate tetraethylammonium. Cellular respiration rates in the two groups were not different. Insulin treatment of the diabetic rats prevented the transport decline. While the causative factor of the transport impairment in diabetes is unresolved, this study documents an aspect of diabetic nephropathy that has not been previously reported but which may have important implications for renal excretion of cationic drugs and toxicants. The results also provide a mechanism for the well-documented "protection phenomenon" by which the kidneys of diabetic rats are resistant to nephrotoxicity induced by the chemotherapeutic agent cisplatin.
Collapse
Affiliation(s)
- Brett Grover
- Division of Pharmaceutical Sciences, College of Pharmacy, University of Cincinnati Medical Center, Cincinnati, OH 45267-0004, USA
| | | | | | | |
Collapse
|
47
|
Cerrutti JA, Brandoni A, Quaglia NB, Torres AM. Sex differences in p-aminohippuric acid transport in rat kidney: role of membrane fluidity and expression of OAT1. Mol Cell Biochem 2002; 233:175-9. [PMID: 12083373 DOI: 10.1023/a:1015563021602] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Sex differences in the kinetic parameters of p-aminohippuric acid (PAH) transport in brush border (BBMV) and basolateral (BLMV) membrane vesicles from kidney cortex have been observed. Membrane fluidity of BBMV was higher in females as compared with male rats as indicated by anisotropy values (0.1897 +/- 0.0010 vs. 0.2003 +/- 0.0014, p < 0.05, for females and males respectively). Membrane fluidity of BLMV were similar in both sexes. Western blot studies revealed that OAT1 protein in female BLMV was present at only 40% of level found in BLMV from male rats. The lower expression of OAT1 in BLMV in association with the higher BBMV fluidity (which may affect the affinity of PAH transporter in this membrane domain) observed in females may be responsible, at least in part, for the gender difference described in renal PAH secretion.
Collapse
Affiliation(s)
- Jorgelina A Cerrutti
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, CONICET, Argentina
| | | | | | | |
Collapse
|
48
|
Abstract
The growing molecular identification of renal transporter genes is revealing that alternative splicing is common among transporters. In this paper, I review the physiological consequences of alternative splicing in some genes encoding renal transporters in which spliced isoforms have recently been identified. In some cases, the spliced isoforms resulted in nonfunctional proteins, which, however, possess a dominant negative effect on the cotransporter function, suggesting that the presence of such isoforms can be important in the functional regulation of the transporter. In most transporter genes, however, the spliced isoforms have been shown to be functional, resulting in a variety of physiological consequences, including, for example, changes in the polarization of isoforms to the apical or basolateral membrane, changes in pharmacological or kinetic properties, and changes in tissue distribution or intrarenal localization. In some cases, although the spliced isoform is functional, the consequence of splicing is still unknown. Different regulation among isoforms is an interesting possibility. Thus the diversity of several renal transporters is enhanced by alternative splicing mechanisms.
Collapse
Affiliation(s)
- G Gamba
- Molecular Physiology Unit, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Universidad Nacional Autónoma de México, Mexico City CP 14000, Mexico.
| |
Collapse
|
49
|
Pietig G, Mehrens T, Hirsch JR, Cetinkaya I, Piechota H, Schlatter E. Properties and regulation of organic cation transport in freshly isolated human proximal tubules. J Biol Chem 2001; 276:33741-6. [PMID: 11447227 DOI: 10.1074/jbc.m104617200] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The kidney, and more specifically the proximal tubule, is the main site of elimination of cationic endogenous metabolites and xenobiotics. Although numerous studies exist on renal organic cation transport of rat and rabbit, no information is available from humans. Therefore, we examined organic cation transport and its regulation across the basolateral membrane of isolated human proximal tubules. mRNA for the cation transporters hOCT1 and hOCT2 as well as hOCTN1 and hOCTN2 was detected in these tubules. Organic cation transport across the basolateral membrane of isolated collapsed proximal tubules was recorded with the fluorescent dye 4-(4-dimethylamino)styryl-N-methylpyridinium (ASP(+)). Depolarization of the cells by rising extracellular K(+) concentration to 145 mm reduced ASP(+) uptake by 20 +/- 5% (n = 15), indicating its electrogeneity. The substrates of organic cation transport tetraethylammonium (K(i) = 63 microm) and cimetidine (K(i) = 11 microm) as well as the inhibitor quinine (K(i) = 2.9 microm) reduced ASP(+) uptake concentration dependently. Maximal inhibition reached with these substances was approximately 60%. Stimulation of protein kinase C with 1,2-dioctanoyl-sn-glycerol (DOG, 1 microm) or ATP (100 microm) inhibited ASP(+) uptake by 30 +/- 3 (n = 16) and 38 +/- 13% (n = 6), respectively. The effect of DOG could be reduced with calphostin C (0.1 microm, n = 7). Activation of adenylate cyclase by forskolin (1 microm) decreased ASP(+) uptake by 29 +/- 3% (n = 10). hANP (10 nm) or 8-bromo-cGMP (100 microm) also decreased ASP(+) uptake by 17 +/- 3 (n = 9) or 32 +/- 5% (n = 10), respectively. We show for the first time that organic cation transport across the basolateral membrane of isolated human proximal tubules, most likely mediated via hOCT2, is electrogenic and regulated by protein kinase C, the cAMP- and the cGMP-dependent protein kinases.
Collapse
Affiliation(s)
- G Pietig
- Medizinische Klinik and Poliklinik D, Experimentelle Nephrologie, Universitätsklinikum Münster, D-48149 Münster, Germany
| | | | | | | | | | | |
Collapse
|